Science.gov

Sample records for alters mitochondrial distribution

  1. Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion.

    PubMed

    Ranji, Mahsa; Motlagh, Mohammad Masoudi; Salehpour, Fahimeh; Sepehr, Reyhaneh; Heisner, James S; Dash, Ranjan K; Camara, Amadou K S

    2016-01-01

    Oxidation of substrates to generate ATP in mitochondria is mediated by redox reactions of NADH and FADH2. Cardiac ischemia and reperfusion (IR) injury compromises mitochondrial oxidative phosphorylation. We hypothesize that IR alters the metabolic heterogeneity of mitochondrial redox state of the heart that is only evident in the 3-D optical cryoimaging of the perfused heart before, during, and after IR. The study involved four groups of hearts: time control (TC: heart perfusion without IR), global ischemia (Isch), global ischemia followed by reperfusion (IR) and TC with PCP (a mitochondrial uncoupler) perfusion. Mitochondrial NADH and FAD autofluorescence signals were recorded spectrofluorometrically online in guinea pig ex vivo-perfused hearts in the Langendorff mode. At the end of each specified protocol, hearts were rapidly removed and snap frozen in liquid N2 for later 3-D optical cryoimaging of the mitochondrial NADH, FAD, and NADH/FAD redox ratio (RR). The TC hearts revealed a heterogeneous spatial distribution of NADH, FAD, and RR. Ischemia and IR altered the spatial distribution and caused an overall increase and decrease in the RR by 55% and 64%, respectively. Uncoupling with PCP resulted in the lowest level of the RR (73% oxidation) compared with TC. The 3-D optical cryoimaging of the heart provides novel insights into the heterogeneous distribution of mitochondrial NADH, FAD, RR, and metabolism from the base to the apex during ischemia and IR. This 3-D information of the mitochondrial redox state in the normal and ischemic heart was not apparent in the dynamic spectrofluorometric data. PMID:27574574

  2. Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion

    PubMed Central

    Motlagh, Mohammad Masoudi; Salehpour, Fahimeh; Sepehr, Reyhaneh; Heisner, James S.; Dash, Ranjan K.; Camara, Amadou K. S.

    2016-01-01

    Oxidation of substrates to generate ATP in mitochondria is mediated by redox reactions of NADH and FADH2. Cardiac ischemia and reperfusion (IR) injury compromises mitochondrial oxidative phosphorylation. We hypothesize that IR alters the metabolic heterogeneity of mitochondrial redox state of the heart that is only evident in the 3-D optical cryoimaging of the perfused heart before, during, and after IR. The study involved four groups of hearts: time control (TC: heart perfusion without IR), global ischemia (Isch), global ischemia followed by reperfusion (IR) and TC with PCP (a mitochondrial uncoupler) perfusion. Mitochondrial NADH and FAD autofluorescence signals were recorded spectrofluorometrically online in guinea pig ex vivo-perfused hearts in the Langendorff mode. At the end of each specified protocol, hearts were rapidly removed and snap frozen in liquid N2 for later 3-D optical cryoimaging of the mitochondrial NADH, FAD, and NADH/FAD redox ratio (RR). The TC hearts revealed a heterogeneous spatial distribution of NADH, FAD, and RR. Ischemia and IR altered the spatial distribution and caused an overall increase and decrease in the RR by 55% and 64%, respectively. Uncoupling with PCP resulted in the lowest level of the RR (73% oxidation) compared with TC. The 3-D optical cryoimaging of the heart provides novel insights into the heterogeneous distribution of mitochondrial NADH, FAD, RR, and metabolism from the base to the apex during ischemia and IR. This 3-D information of the mitochondrial redox state in the normal and ischemic heart was not apparent in the dynamic spectrofluorometric data. PMID:27574574

  3. Genetic Ablation of Calcium-independent Phospholipase A2γ Leads to Alterations in Hippocampal Cardiolipin Content and Molecular Species Distribution, Mitochondrial Degeneration, Autophagy, and Cognitive Dysfunction*

    PubMed Central

    Mancuso, David J.; Kotzbauer, Paul; Wozniak, David F.; Sims, Harold F.; Jenkins, Christopher M.; Guan, Shaoping; Han, Xianlin; Yang, Kui; Sun, Gang; Malik, Ibrahim; Conyers, Sara; Green, Karen G.; Schmidt, Robert E.; Gross, Richard W.

    2009-01-01

    Genetic ablation of calcium-independent phospholipase A2γ (iPLA2γ) results in profound alterations in hippocampal phospholipid metabolism and mitochondrial phospholipid homeostasis resulting in enlarged and degenerating mitochondria leading to autophagy and cognitive dysfunction. Shotgun lipidomics demonstrated multiple alterations in hippocampal lipid metabolism in iPLA2γ−/− mice including: 1) a markedly elevated hippocampal cardiolipin content with an altered molecular species composition characterized by a shift to shorter chain length molecular species; 2) alterations in both choline and ethanolamine glycerophospholipids, including a decreased plasmenylethanolamine content; 3) increased oxidized phosphatidylethanolamine molecular species; and 4) an increased content of ceramides. Electron microscopic examination demonstrated the presence of enlarged heteromorphic lamellar structures undergoing degeneration accompanied by the presence of ubiquitin positive spheroid inclusion bodies. Purification of these enlarged heteromorphic lamellar structures by buoyant density centrifugation and subsequent SDS-PAGE and proteomics identified them as degenerating mitochondria. Collectively, these results identify the obligatory role of iPLA2γ in neuronal mitochondrial lipid metabolism and membrane structure demonstrating that iPLA2γ loss of function results in a mitochondrial neurodegenerative disorder characterized by degenerating mitochondria, autophagy, and cognitive dysfunction. PMID:19840936

  4. Altered Cytoskeleton as a Mitochondrial Decay Signature in the Retinal Pigment Epithelium.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Sylvester, O'Donnell; Neksumi, Musa; Um, Ji-Yeon; Dluya, Thagriki; Bernstein, Paul S; Jahng, Wan Jin

    2016-06-01

    Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration. Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde versus anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases. PMID:27029380

  5. Altered dendritic distribution of dopamine D2 receptors and reduction in mitochondrial number in parvalbumin-containing interneurons in the medial prefrontal cortex of cannabinoid-1 (CB1) receptor knockout mice

    PubMed Central

    Fitzgerald, Megan L.; Chan, June; Mackie, Kenneth; Lupica, Carl R.; Pickel, Virginia M.

    2013-01-01

    The prelimbic prefrontal cortex (PL) is a brain region integral to complex behaviors that are highly influenced by cannabinoids and by dopamine D2 receptor (D2R)-mediated regulation of fast-firing parvalbumin-containing interneurons. We have recently shown that constitutive deletion of the cannabinoid CB1 receptor (CB1R) greatly reduces parvalbumin levels in these neurons. The effects of CB1R deletion on PL parvalbumin interneurons may be ascribed to loss of CB1R-mediated retrograde signaling on mesocortical dopamine transmission, and, in turn, altered expression and/or subcellular distribution of the D2R in the PL. Furthermore, diminished parvalbumin expression could indicate metabolic changes in fast-firing interneurons that may be reflected in changes in mitochondrial density in this population. We therefore comparatively examined electron microscopic dual labeling of the D2R and parvalbumin in CB1 (−/−) and CB1 (+/+) mice to test the hypothesis that absence of the CB1R produces changes in D2R localization and mitochondrial distribution in parvalbumin-containing interneurons of the PL. CB1 (−/−) mice had a significantly lower density of cytoplasmic D2R-immunogold particles in medium parvalbumin-labeled dendrites and a concomitant increase in the density of these particles in small dendrites. These dendrites received both excitatory and inhibitory-type synapses from unlabeled terminals and contained many mitochondria, whose numbers were significantly reduced in the CB1 (−/−) mice. Non-parvalbumin containing dendrites showed no between-group differences in either D2R distribution or mitochondrial number. These results suggest that cannabinoid signaling provides an important determinant of dendritic D2 receptor distribution and mitochondrial availability in fast-spiking interneurons. PMID:22592925

  6. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age.

    PubMed

    Ferree, Andrew W; Trudeau, Kyle; Zik, Eden; Benador, Ilan Y; Twig, Gilad; Gottlieb, Roberta A; Shirihai, Orian S

    2013-11-01

    To study mitochondrial protein age dynamics, we targeted a time-sensitive fluorescent protein, MitoTimer, to the mitochondrial matrix. Mitochondrial age was revealed by the integrated portions of young (green) and old (red) MitoTimer protein. Mitochondrial protein age was dependent on turnover rates as pulsed synthesis, decreased import, or autophagic inhibition all increased the proportion of aged MitoTimer protein. Mitochondrial fusion promotes the distribution of young mitochondrial protein across the mitochondrial network as cells lacking essential fusion genes Mfn1 and Mfn2 displayed increased heterogeneity in mitochondrial protein age. Experiments in hippocampal neurons illustrate that the distribution of older and younger mitochondrial protein within the cell is determined by subcellular spatial organization and compartmentalization of mitochondria into neurites and soma. This effect was altered by overexpression of mitochondrial transport protein, RHOT1/MIRO1. Collectively our data show that distribution of young and old protein in the mitochondrial network is dependent on turnover, fusion, and transport.

  7. Altered Mitochondrial Dynamics and TBI Pathophysiology.

    PubMed

    Fischer, Tara D; Hylin, Michael J; Zhao, Jing; Moore, Anthony N; Waxham, M Neal; Dash, Pramod K

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  8. Altered Mitochondrial Dynamics and TBI Pathophysiology

    PubMed Central

    Fischer, Tara D.; Hylin, Michael J.; Zhao, Jing; Moore, Anthony N.; Waxham, M. Neal; Dash, Pramod K.

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  9. Tissue-specific implications of mitochondrial alterations in aging

    PubMed Central

    Liu, Danhui; Li, Hongzhi; Lu, Jianxin; Bai, Yidong

    2016-01-01

    Aging is a multifactorial process during which physiological alterations occur in all tissues. A decline in mitochondrial function plays an important role in the process of aging and in aging-associated diseases. The mitochondrial genome encodes 13 essential subunits of protein complexes belonging to the oxidative phosphorylation system, while most of the mitochondria-related genes are encoded by the nuclear genome. Coordination between the nucleus and mitochondria is crucial for the regulation of mitochondrial biogenesis and function. In this review, we will discuss aging-related mitochondrial dysfunction in various tissues and its implication in aging-related diseases and the aging process. PMID:23277028

  10. Alterations in Mitochondrial Quality Control in Alzheimer’s Disease

    PubMed Central

    Cai, Qian; Tammineni, Prasad

    2016-01-01

    Mitochondrial dysfunction is one of the earliest and most prominent features in the brains of Alzheimer’s disease (AD) patients. Recent studies suggest that mitochondrial dysfunction plays a pivotal role in the pathogenesis of AD. Neurons are metabolically active cells, causing them to be particularly dependent on mitochondrial function for survival and maintenance. As highly dynamic organelles, mitochondria are characterized by a balance of fusion and fission, transport, and mitophagy, all of which are essential for maintaining mitochondrial integrity and function. Mitochondrial dynamics and mitophagy can therefore be identified as key pathways in mitochondrial quality control. Tremendous progress has been made in studying changes in these key aspects of mitochondrial biology in the vulnerable neurons of AD brains and mouse models, and the potential underlying mechanisms of such changes. This review highlights recent findings on alterations in the mitochondrial dynamics and mitophagy in AD and discusses how these abnormalities impact mitochondrial quality control and thus contribute to mitochondrial dysfunction in AD. PMID:26903809

  11. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    PubMed

    de Moura, Michelle Barbi; Uppala, Radha; Zhang, Yuxun; Van Houten, Bennett; Goetzman, Eric S

    2014-01-01

    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  12. Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations.

    PubMed Central

    James, A M; Wei, Y H; Pang, C Y; Murphy, M P

    1996-01-01

    A number of human diseases are caused by inherited mitochondrial DNA mutations. Two of these diseases, MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) and MERRF (myoclonic epilepsy and ragged-red fibres), are commonly caused by point mutations to tRNA genes encoded by mitochondrial DNA. Here we report on how these mutations affect mitochondrial function in primary fibroblast cultures established from a MELAS patient containing an A to G mutation at nucleotide 3243 in the tRNA(Leu(UUR) gene and a MERRF patient containing an A to G mutation at nucleotide 8344 in the tRNA(Lys) gene. Both mitochondrial membrane potential and respiration rate were significantly decreased in digitonin-permeabilized MELAS and MERRF fibroblasts respiring on glutamate/malate. A similar decrease in mitochondrial membrane potential was found in intact MELAS and MERRF fibroblasts. The mitochondrial content of these cells, estimated by stereological analysis of electron micrographs and from measurement of mitochondrial marker enzymes, was similar in control, MELAS and MERRF cells. Therefore, in cultured fibroblasts, mutation of mitochondrial tRNA genes leads to assembly of bioenergetically incompetent mitochondria, not to an alteration in their amount. However, the cell volume occupied by secondary lysosomes and residual bodies in the MELAS and MERRF cells was greater than in control cells, suggesting increased mitochondrial degradation in these cells. In addition, fibroblasts containing mitochondrial DNA mutations were 3-4-fold larger than control fibroblasts. The implications of these findings for the pathology of mitochondrial diseases are discussed. PMID:8809026

  13. Data for mitochondrial proteomic alterations in the developing rat brain.

    PubMed

    Villeneuve, Lance M; Stauch, Kelly L; Fox, Howard S

    2014-12-01

    Mitochondria are a critical organelle involved in many cellular processes, and due to the nature of the brain, neuronal cells are almost completely reliant on these organelles for energy generation. Due to the fact that biomedical research tends to investigate disease state pathogenesis, one area of mitochondrial research commonly overlooked is homeostatic responses to energy demands. Therefore, to elucidate mitochondrial alterations occurring during the developmentally important phase of E18 to P7 in the brain, we quantified the proteins in the mitochondrial proteome as well as proteins interacting with the mitochondria. We identified a large number of significantly altered proteins involved in a variety of pathways including glycolysis, mitochondrial trafficking, mitophagy, and the unfolded protein response. These results are important because we identified alterations thought to be homeostatic in nature occurring within mitochondria, and these results may be used to identify any abnormal deviations in the mitochondrial proteome occurring during this period of brain development. A more comprehensive analysis of this data may be obtained from the article "Proteomic analysis of mitochondria from embryonic and postnatal rat brains reveals response to developmental changes in energy demands" in the Journal of Proteomics. PMID:26217684

  14. Network Clustering Revealed the Systemic Alterations of Mitochondrial Protein Expression

    PubMed Central

    Koo, Hyun-Jung; Park, Wook-Ha; Yang, Jae-Seong; Yu, Myeong-Hee; Kim, Sanguk; Pak, Youngmi Kim

    2011-01-01

    The mitochondrial protein repertoire varies depending on the cellular state. Protein component modifications caused by mitochondrial DNA (mtDNA) depletion are related to a wide range of human diseases; however, little is known about how nuclear-encoded mitochondrial proteins (mt proteome) changes under such dysfunctional states. In this study, we investigated the systemic alterations of mtDNA-depleted (ρ0) mitochondria by using network analysis of gene expression data. By modularizing the quantified proteomics data into protein functional networks, systemic properties of mitochondrial dysfunction were analyzed. We discovered that up-regulated and down-regulated proteins were organized into two predominant subnetworks that exhibited distinct biological processes. The down-regulated network modules are involved in typical mitochondrial functions, while up-regulated proteins are responsible for mtDNA repair and regulation of mt protein expression and transport. Furthermore, comparisons of proteome and transcriptome data revealed that ρ0 cells attempted to compensate for mtDNA depletion by modulating the coordinated expression/transport of mt proteins. Our results demonstrate that mt protein composition changed to remodel the functional organization of mitochondrial protein networks in response to dysfunctional cellular states. Human mt protein functional networks provide a framework for understanding how cells respond to mitochondrial dysfunctions. PMID:21738461

  15. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.

    PubMed

    Zabielski, Piotr; Lanza, Ian R; Gopala, Srinivas; Heppelmann, Carrie J Holtz; Bergen, H Robert; Dasari, Surendra; Nair, K Sreekumaran

    2016-03-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  16. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  17. Mitochondrial function is altered in horse atypical myopathy.

    PubMed

    Lemieux, Hélène; Boemer, François; van Galen, Gaby; Serteyn, Didier; Amory, Hélène; Baise, Etienne; Cassart, Dominique; van Loon, Gunther; Marcillaud-Pitel, Christel; Votion, Dominique-M

    2016-09-01

    Equine atypical myopathy in Europe is a fatal rhabdomyolysis syndrome that results from the ingestion of hypoglycin A contained in seeds and seedlings of Acer pseudoplatanus (sycamore maple). Acylcarnitine concentrations in serum and muscle OXPHOS capacity were determined in 15 atypical myopathy cases. All but one acylcarnitine were out of reference range and mitochondrial respiratory capacity was severely decreased up to 49% as compared to 10 healthy controls. The hallmark of atypical myopathy thus consists of a severe alteration in the energy metabolism including a severe impairment in muscle mitochondrial respiration that could contribute to its high death rate. PMID:27374763

  18. Huntington's disease and mitochondrial alterations: emphasis on experimental models.

    PubMed

    Pérez-De la Cruz, Verónica; Carrillo-Mora, Paul; Santamaría, Abel

    2010-06-01

    Huntington's disease (HD) is an inheritable neurological disorder coursing with degeneration of basal ganglia and producing chorea and dementia. One common factor accounting for neurodegeneration in this disorder is mitochondrial deterioration at both morphologic and functional levels. The development of experimental models in animals or cell preparations to resemble pathologic and pathogenic conditions of this disorder has served for more than four decades to describe part of the mechanistic alterations that could be occurring in mitochondria of HD patients, and the subsequent design of therapeutic alternatives where mitochondrial alterations are the primary target. In this minireview we describe some of the most relevant studies at the experimental level, giving support to the hypothesis that mitochondria play a central role in HD pathogenesis.

  19. Curcumin Attenuates Gentamicin-Induced Kidney Mitochondrial Alterations: Possible Role of a Mitochondrial Biogenesis Mechanism

    PubMed Central

    Negrette-Guzmán, Mario; García-Niño, Wylly Ramsés; Tapia, Edilia; Zazueta, Cecilia; Huerta-Yepez, Sara; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Aparicio-Trejo, Omar Emiliano; Madero, Magdalena; Pedraza-Chaverri, José

    2015-01-01

    It has been shown that curcumin (CUR), a polyphenol derived from Curcuma longa, exerts a protective effect against gentamicin- (GM-) induced nephrotoxicity in rats, associated with a preservation of the antioxidant status. Although mitochondrial dysfunction is a hallmark in the GM-induced renal injury, the role of CUR in mitochondrial protection has not been studied. In this work, LLC-PK1 cells were preincubated 24 h with CUR and then coincubated 48 h with CUR and 8 mM GM. Treatment with CUR attenuated GM-induced drop in cell viability and led to an increase in nuclear factor (erythroid-2)-related factor 2 (Nrf2) nuclear accumulation and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) cell expression attenuating GM-induced losses in these proteins. In vivo, Wistar rats were injected subcutaneously with GM (75 mg/Kg/12 h) during 7 days to develop kidney mitochondrial alterations. CUR (400 mg/Kg/day) was administered orally 5 days before and during the GM exposure. The GM-induced mitochondrial alterations in ultrastructure and bioenergetics as well as decrease in activities of respiratory complexes I and IV and induction of calcium-dependent permeability transition were mostly attenuated by CUR. Protection of CUR against GM-induced nephrotoxicity could be in part mediated by maintenance of mitochondrial functions and biogenesis with some participation of the nuclear factor Nrf2. PMID:26345660

  20. Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis

    PubMed Central

    Lebedeva, Maria A.; Eaton, Jana S.; Shadel, Gerald S.

    2009-01-01

    In addition to its central role in cellular stress signaling, the tumor suppressor p53 modulates mitochondrial respiration through its nuclear transcription factor activity and localizes to mitochondria where it enhances apoptosis and suppresses mitochondrial DNA (mtDNA) mutagenesis. Here we demonstrate a new conserved role for p53 in mtDNA copy number maintenance and mitochondrial reactive oxygen species (ROS) homeostasis. In mammals, mtDNA is present in thousands of copies per cell and is essential for normal development and cell function. We show that p53 null mouse and p53 knock-down human primary fibroblasts exhibit mtDNA depletion and decreased mitochondrial mass under normal culture growth conditions. This is accompanied by a reduction of the p53R2 subunit of ribonucleotide reductase mRNA and protein and of mitochondrial transcription factor A (mtTFA) at the protein level only. Finally, p53-depleted cells exhibit significant disruption of cellular ROS homeostasis, characterized by reduced mitochondrial and cellular superoxide levels and increased cellular hydrogen peroxide. Altogether, these results elucidate additional mitochondria-related functions for p53 and implicate mtDNA depletion and ROS alterations as potentially relevant to cellular transformation, cancer cell phenotypes, and the Warburg Effect. PMID:19413947

  1. Human Misato regulates mitochondrial distribution and morphology

    SciTech Connect

    Kimura, Masashi . E-mail: yo@gifu-u.ac.jp; Okano, Yukio

    2007-04-15

    Misato of Drosophila melanogaster and Saccharomyces cerevisiae DML1 are conserved proteins having a homologous region with a part of the GTPase family that includes eukaryotic tubulin and prokaryotic FtsZ. We characterized human Misato sharing homology with Misato of D. melanogaster and S. cerevisiae DML1. Tissue distribution of Misato exhibited ubiquitous distribution. Subcellular localization of the protein studied using anti-Misato antibody suggested that it is localized to the mitochondria. Further experiments of fractionating mitochondria revealed that Misato was localized to the outer membrane. The transfection of Misato siRNA led to growth deficiencies compared with control siRNA transfected HeLa cells, and the Misato-depleted HeLa cells showed apoptotic nuclear fragmentation resulting in cell death. After silencing of Misato, the filamentous mitochondrial network disappeared and fragmented mitochondria were observed, indicating human Misato has a role in mitochondrial fusion. To examine the effects of overexpression, COS-7 cells were transfected with cDNA encoding EGFP-Misato. Its overexpression resulted in the formation of perinuclear aggregations of mitochondria in these cells. The Misato-overexpressing cells showed low viability and had no nuclei or a small and structurally unusual ones. These results indicated that human Misato has a role(s) in mitochondrial distribution and morphology and that its unregulated expression leads to cell death.

  2. Altered metabolism and mitochondrial genome in prostate cancer.

    PubMed

    Dakubo, G D; Parr, R L; Costello, L C; Franklin, R B; Thayer, R E

    2006-01-01

    Mutations in mitochondrial DNA are frequent in cancer and the accompanying mitochondrial dysfunction and altered intermediary metabolism might contribute to, or signal, tumour pathogenesis. The metabolism of human prostate peripheral zone glandular epithelial cells is unique. Compared with many other soft tissues, these glandular epithelial cells accumulate high concentrations of zinc, which inhibits the activity of m-aconitase, an enzyme involved in citrate metabolism through Krebs cycle. This causes Krebs cycle truncation and accumulation of high concentrations of citrate to be secreted in prostatic fluid. The accumulation of zinc also inhibits terminal oxidation. Therefore, these cells exhibit inefficient energy production. In contrast, malignant transformation of the prostate is associated with an early metabolic switch, leading to decreased zinc accumulation and increased citrate oxidation. The efficient energy production in these transformed cells implies increased electron transport chain activity, increased oxygen consumption, and perhaps, excess reactive oxygen species (ROS) production compared with normal prostate epithelial cells. Because ROS have deleterious effects on DNA, proteins, and lipids, the altered intermediary metabolism may be linked with ROS production and accelerated mitochondrial DNA mutations in prostate cancer. PMID:16394275

  3. Mitochondrial and Ion Channel Gene Alterations in Autism

    PubMed Central

    Smith, Moyra; Flodman, Pamela L.; Gargus, John J.; Simon, Mariella T; Verrell, Kimberley; Haas, Richard; Reiner, Gail E.; Naviaux, Robert; Osann, Katherine; Spence, M. Anne; Wallace, Douglas C.

    2012-01-01

    To evaluate the potential importance in autistic subjects of copy number variants (CNVs) that alter genes of relevance to bioenergetics, ionic metabolism, and synaptic function, we conducted a detailed microarray analysis of 69 autism probands and 35 parents, compared to 89 CEU HapMap controls. This revealed that the frequency CNVs of ≥ 100 kb and CNVs of ≥ 10 Kb were markedly increased in probands over parents and in probands and parents over controls. Evaluation of CNVs ≥ 1 Mb by chromosomal FISH confirmed the molecular identity of a subset of the CNVs, some of which were associated with chromosomal rearrangements. In a number of the cases, CNVs were found to alter the copy number of genes that are important in mitochondrial oxidative phosphorylation (OXPHOS), ion and especially calcium transport, and synaptic structure. Hence, autism might result from alterations in multiple bioenergetic and metabolic genes required for mental function. PMID:22538295

  4. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age

    PubMed Central

    Ferree, Andrew W; Trudeau, Kyle; Zik, Eden; Benador, Ilan Y; Twig, Gilad; Gottlieb, Roberta A; Shirihai, Orian S

    2013-01-01

    To study mitochondrial protein age dynamics, we targeted a time-sensitive fluorescent protein, MitoTimer, to the mitochondrial matrix. Mitochondrial age was revealed by the integrated portions of young (green) and old (red) MitoTimer protein. Mitochondrial protein age was dependent on turnover rates as pulsed synthesis, decreased import, or autophagic inhibition all increased the proportion of aged MitoTimer protein. Mitochondrial fusion promotes the distribution of young mitochondrial protein across the mitochondrial network as cells lacking essential fusion genes Mfn1 and Mfn2 displayed increased heterogeneity in mitochondrial protein age. Experiments in hippocampal neurons illustrate that the distribution of older and younger mitochondrial protein within the cell is determined by subcellular spatial organization and compartmentalization of mitochondria into neurites and soma. This effect was altered by overexpression of mitochondrial transport protein, RHOT1/MIRO1. Collectively our data show that distribution of young and old protein in the mitochondrial network is dependent on turnover, fusion, and transport. PMID:24149000

  5. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-β: A Protective Role of Melatonin

    PubMed Central

    Rosales-Corral, Sergio A.; Lopez-Armas, Gabriela; Cruz-Ramos, Jose; Melnikov, Valery G.; Tan, Dun-Xian; Manchester, Lucien C.; Munoz, Ruben; Reiter, Russel J.

    2012-01-01

    Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-β (Aβ) generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-β (Aβ). The purpose was to determine how Aβ may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aβ in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid β was injected, favoring an endogenous anti-inflammatory pathway. PMID:22666620

  6. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    PubMed

    Luz, Anthony L; Rooney, John P; Kubik, Laura L; Gonzalez, Claudia P; Song, Dong Hoon; Meyer, Joel N

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes. PMID:26106885

  7. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    PubMed

    Luz, Anthony L; Rooney, John P; Kubik, Laura L; Gonzalez, Claudia P; Song, Dong Hoon; Meyer, Joel N

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  8. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes

    PubMed Central

    Luz, Anthony L.; Rooney, John P.; Kubik, Laura L.; Gonzalez, Claudia P.; Song, Dong Hoon; Meyer, Joel N.

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes. PMID:26106885

  9. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast

    PubMed Central

    Murley, Andrew; Lackner, Laura L; Osman, Christof; West, Matthew; Voeltz, Gia K; Walter, Peter; Nunnari, Jodi

    2013-01-01

    Mitochondrial division is important for mitochondrial distribution and function. Recent data have demonstrated that ER–mitochondria contacts mark mitochondrial division sites, but the molecular basis and functions of these contacts are not understood. Here we show that in yeast, the ER–mitochondria tethering complex, ERMES, and the highly conserved Miro GTPase, Gem1, are spatially and functionally linked to ER-associated mitochondrial division. Gem1 acts as a negative regulator of ER–mitochondria contacts, an activity required for the spatial resolution and distribution of newly generated mitochondrial tips following division. Previous data have demonstrated that ERMES localizes with a subset of actively replicating mitochondrial nucleoids. We show that mitochondrial division is spatially linked to nucleoids and that a majority of these nucleoids segregate prior to division, resulting in their distribution into newly generated tips in the mitochondrial network. Thus, we postulate that ER-associated division serves to link the distribution of mitochondria and mitochondrial nucleoids in cells. DOI: http://dx.doi.org/10.7554/eLife.00422.001 PMID:23682313

  10. [Dysfunction of mitochondrial dynamic and distribution in Amyotrophic Lateral Sclerosis].

    PubMed

    Walczak, Jarosław; Szczepanowska, Joanna

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a complex disease leading to degradation of motor neurons. One of the early symptoms of many neurodegenerative disorders are mitochondrial dysfunctions. Since few decades mitochondrial morphology changes have been observed in tissues of patients with ALS. Mitochondria are highly dynamic organelles which constantly undergo continuous process of fusion and fission and are actively transported within the cell. Proper functioning of mitochondrial dynamics and distribution is crucial for cell survival, especially neuronal cells that have long axons. This article summarizes the current knowledge about the role of mitochondrial dynamics and distribution in pathophysiology of familial and sporadic form of ALS. PMID:26689011

  11. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts.

    PubMed

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I; Opal, Puneet; Goldman, Robert D

    2016-02-15

    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320

  12. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts.

    PubMed

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I; Opal, Puneet; Goldman, Robert D

    2016-02-15

    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility.

  13. A mitochondrial location for haemoglobins--dynamic distribution in ageing and Parkinson's disease.

    PubMed

    Shephard, Freya; Greville-Heygate, Oliver; Marsh, Oliver; Anderson, Susan; Chakrabarti, Lisa

    2014-01-01

    Haemoglobins are iron-containing proteins that transport oxygen in the blood of most vertebrates. The mitochondrion is the cellular organelle which consumes oxygen in order to synthesise ATP. Mitochondrial dysfunction is implicated in neurodegeneration and ageing. We find that α and β haemoglobin (Hba and Hbb) proteins are altered in their distribution in mitochondrial fractions from degenerating brain. We demonstrate that both Hba and Hbb are co-localised with the mitochondrion in mammalian brain. The precise localisation of the Hbs is within the inner membrane space and associated with inner mitochondrial membrane. Relative mitochondrial to cytoplasmic ratios of Hba and Hbb show changing distributions of these proteins during the process of neurodegeneration in the pcd(5j) mouse brain. A significant difference in mitochondrial Hba and Hbb content in the mitochondrial fraction is seen at 31 days after birth, this corresponds to a stage when dynamic neuronal loss is measured to be greatest in the Purkinje Cell Degeneration mouse. We also report changes in mitochondrial Hba and Hbb levels in ageing brain and muscle. Significant differences in mitochondrial Hba and Hbb can be seen when comparing aged brain to muscle, suggesting tissue specific functions of these proteins in the mitochondrion. In muscle there are significant differences between Hba levels in old and young mitochondria. To understand whether the changes detected in mitochondrial Hbs are of clinical significance, we examined Parkinson's disease brain, immunohistochemistry studies suggest that cell bodies in the substantia nigra accumulate mitochondrial Hb. However, western blotting of mitochondrial fractions from PD and control brains indicates significantly less Hb in PD brain mitochondria. One explanation could be a specific loss of cells containing mitochondria loaded with Hb proteins. Our study opens the door to an examination of the role of Hb function, within the context of the mitochondrion

  14. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle

    PubMed Central

    Porter, Craig; Reidy, Paul T.; Bhattarai, Nisha; Sidossis, Labros S.; Rasmussen, Blake B.

    2014-01-01

    Introduction Loss of mitochondrial competency is associated with several chronic illnesses. Therefore, strategies that maintain or increase mitochondrial function will likely be of benefit in a number of clinical settings. Endurance exercise has long been known to increase mitochondrial function in skeletal muscle. Comparatively little is known regarding the impact of resistance exercise training on skeletal muscle mitochondrial respiratory function. Purpose The purpose of the current study was to determine the impact of chronic resistance training on skeletal muscle mitochondrial respiratory capacity and function. Methods Here, we studied the impact of a 12-week resistance exercise training program on skeletal muscle mitochondrial function in eleven young healthy men. Muscle biopsies were collected before and after the 12-week training program and mitochondrial respiratory capacity determined in permeabilized myofibers by high-resolution respirometry. Results Resistance exercise training increased lean body mass and quadriceps muscle strength by 4 and 15%, respectively (P<0.001). Coupled mitochondria respiration supported by complex I, and complex I and II substrates, increased by 2- and 1.4-fold, respectively (P<0.01). The ratio of coupled complex I supported respiration to maximal respiration increased with resistance exercise training (P<0.05), as did complex I protein abundance (P<0.05), while the substrate control ratio for succinate was reduced after resistance exercise training (P<0.001). Transcripts responsible for proteins critical to electron transfer and NAD+ production increased with training (P<0.05), while transcripts involved in mitochondrial biogenesis were unaltered. Conclusion Collectively, 12-weeks of resistance exercise training resulted in qualitative and quantitative changes in skeletal muscle mitochondrial respiration. This adaptation occurs with modest changes in mitochondrial proteins and transcript expression. Resistance exercise training

  15. Reduced Mitochondrial Function in Human Huntington Disease Lymphoblasts is Not Due to Alterations in Cardiolipin Metabolism or Mitochondrial Supercomplex Assembly.

    PubMed

    Mejia, Edgard M; Chau, Sarah; Sparagna, Genevieve C; Sipione, Simonetta; Hatch, Grant M

    2016-05-01

    Huntington's Disease (HD) is an autosomal dominant disease that occurs as a result of expansion of the trinucleotide repeat CAG (glutamine) on the HTT gene. HD patients exhibit various forms of mitochondrial dysfunction within neurons and peripheral tissues. Cardiolipin (Ptd2Gro) is a polyglycerophospholipid found exclusively in mitochondria and is important for maintaining mitochondrial function. We examined if altered Ptd2Gro metabolism was involved in the mitochondrial dysfunction associated with HD. Mitochondrial basal respiration, spare respiratory capacity, ATP coupling efficiency and rate of glycolysis were markedly diminished in Epstein-Barr virus transformed HD lymphoblasts compared to controls (CTRL). Mitochondrial supercomplex formation and Complex I activity within these supercomplexes did not vary between HD patients with different length of CAG repeats and appeared unaltered compared to CTRL. In contrast, in vitro Complex I enzyme activity in mitochondrial enriched samples was reduced in HD lymphoblasts compared to CTRL. The total cellular pool size of Ptd2Gro and its synthesis/remodeling from [(3)H]acetate/[(14)C]oleate were unaltered in HD lymphoblasts compared to CTRL. In addition, the molecular species of Ptd2Gro were essentially unaltered in HD lymphoblasts compared to CTRL. We conclude that compared to CTRL lymphoblasts, HD lymphoblasts display impaired mitochondrial basal respiration, spare respiratory capacity, ATP coupling efficiency and rate of glycolysis with any pathological CAG repeat length, but this is not due to alterations in Ptd2Gro metabolism. We suggest that HD patient lymphoblasts may be a useful model to study defective energy metabolism that does not involve alterations in Ptd2Gro metabolism. PMID:26846325

  16. Supplementation with Vitamin E and Vitamin C inversely alters mitochondrial copy number and mitochondrial protein in obese, exercising rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controversy exists as to whether supplementation with the antioxidants vitamin E (VE) and vitamin C (VC) blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While obesity alters mitochondrial (MT) function and induces insulin resistance (IR), no data...

  17. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics

    PubMed Central

    Marzetti, Emanuele; Csiszar, Anna; Dutta, Debapriya; Balagopal, Gauthami; Calvani, Riccardo

    2013-01-01

    Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD. PMID:23748424

  18. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics.

    PubMed

    Marzetti, Emanuele; Csiszar, Anna; Dutta, Debapriya; Balagopal, Gauthami; Calvani, Riccardo; Leeuwenburgh, Christiaan

    2013-08-15

    Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD.

  19. Fourier analysis of mitochondrial distribution in oocytes

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Brooks, Dana H.; Newmark, Judith A.; Warner, Carol M.; DiMarzio, Charles A.

    2011-03-01

    This paper describes a novel approach to quantifying mitochondrial patterns which are typically described using the qualitative terms "diffuse" "aggregated" and are potentially key indicators for an oocyte's health and survival potential post-implantation. An oocyte was isolated in a confocal image and a coarse grid was superimposed upon it. The spatial spectrum was calculated and an aggregation factor was generated. A classifier for healthy cells was developed and verified. The aggregation factor showed a clear distinction between the healthy and unhealthy oocytes. The ultimate goal is to screen oocytes for viability preimplantation, thus improving the outcome of in vitro fertilization (IVF) treatments.

  20. Altered mitochondrial apoptotic pathway in placentas from undernourished rat gestations.

    PubMed

    Belkacemi, Louiza; Desai, Mina; Nelson, D Michael; Ross, Michael G

    2011-12-01

    Maternal undernutrition (MUN) during pregnancy results in intrauterine growth-restricted (IUGR) fetuses and small placentas. Although reduced fetal nutrient supply has been presumed to be etiologic in IUGR, MUN-induced placental dysfunction may occur prior to detectable fetal growth restriction. Placental growth impairment may result from apoptosis signaled by mitochondria in response to reduced energy substrate. Therefore, we sought to determine the presence of mitochondrial-induced apoptosis under MUN and ad libitum diet (AdLib) pregnancies. Pregnant rats were fed an AdLib or a 50% MUN diet from embryonic day 10 (E10) to E20. At E20, fetuses and placentas from proximal- and mid-horns (extremes of nutrient/oxygen supply) were collected. Right-horn placentas were used to quantify apoptosis. Corresponding left-horn placentas were separated into basal (hormone production) and labyrinth (feto-maternal exchange) zones, and protein expression of the mitochondrial pathway was determined. Our results show that the MUN placentas had significantly increased apoptosis, with lower expression of cytosolic and mitochondrial anti-apoptotic Bcl2 and Bcl-X(L), and significantly higher expression of pro-apoptotic Bax and Bak especially in the labyrinth zone. This was paralleled by higher coimmunostaining with the mitochondrial marker manganese superoxide dismutase (MnSOD), indicating transition of pro-apoptotic factors to the mitochondrial membrane. Also, cytosolic cytochrome c and activated caspases-9 and -3 were significantly higher in all MUN. Conversely, peroxisome proliferator-activator receptor-γ (PPARγ), a member of the nuclear receptor family with anti-apoptotic properties, was significantly downregulated in both zones and horns. Our results suggest that MUN during rat pregnancy enhances mitochondria-dependent apoptosis in the placenta, probably due to the downregulation of PPARγ expression.

  1. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    PubMed

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  2. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    PubMed

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  3. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders.

    PubMed

    Fields, Jerel Adam; Serger, Elisabeth; Campos, Sofia; Divakaruni, Ajit S; Kim, Changyoun; Smith, Kendall; Trejo, Margarita; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; Murphy, Anne N; Ellis, Ronald J; Letendre, Scott; Grant, Igor; Masliah, Eliezer

    2016-02-01

    HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration.

  4. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-Associated Neurocognitive Disorders

    PubMed Central

    Fields, Jerel Adam; Serger, Elisabeth; Campos, Sofia; Divakaruni, Ajit S.; Kim, Changyoun; Smith, Kendall; Trejo, Margarita; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; Murphy, Anne N.; Ellis, Ronald J.; Letendre, Scott; Grant, Igor; Masliah, Eliezer

    2015-01-01

    HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration. PMID:26611103

  5. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    PubMed Central

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583

  6. Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension.

    PubMed

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E; Tapia, Edilia; Osorio, Horacio; Arellano-Buendía, Abraham S; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Correa, Francisco; Zazueta, Cecilia; Johnson, Richard J; Lozada, Laura-Gabriela Sánchez

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  7. Nestin regulates proliferation and invasion of gastrointestinal stromal tumor cells by altering mitochondrial dynamics.

    PubMed

    Wang, J; Cai, J; Huang, Y; Ke, Q; Wu, B; Wang, S; Han, X; Wang, T; Wang, Y; Li, W; Lao, C; Song, W; Xiang, A P

    2016-06-16

    Nestin is widely expressed in numerous tumors and has become a diagnostic and prognostic indicator. However, the exact mechanism by which nestin contributes to tumor malignancy remains poorly understood. Here, we found marked upregulation of nestin expression in highly proliferative and invasive gastrointestinal stromal tumor (GIST) specimens. Nestin knockdown in GIST cells reduced the proliferative and invasive activity owing to a decrease of mitochondrial intracellular reactive oxygen species (ROS) generation. Furthermore, nestin was co-localized with mitochondria, and knockdown of nestin increased mitochondrial elongation and influenced the mitochondrial function, including oxygen consumption rates, ATP generation and mitochondrial membrane potential and so on. In exploring the underlying mechanism, we demonstrated nestin knockdown inhibited the mitochondrial recruitment of Dynamin-related protein1 and induced the change of mitochondrial dynamics. Thus, nestin may have an important role in GIST malignancy by regulating mitochondrial dynamics and altering intracellular ROS levels. The findings provide new clues to reveal mechanisms by which nestin mediates the proliferation and invasion of GISTs.

  8. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome.

    PubMed

    O'Connell, Grant C; Nichols, Cody; Guo, Ge; Croston, Tara L; Thapa, Dharendra; Hollander, John M; Pistilli, Emidio E

    2015-11-01

    Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occurred independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome.

  9. Heterogeneous base distribution in mitochondrial DNA of Neurospora crassa.

    PubMed Central

    Terpstra, P; Holtrop, M; Kroon, A

    1977-01-01

    The mitochondrial DNA of Neurospora crassa has a heterogeneous intramolecular base distribution. A contiguous piece, representing at least 30% of the total genome, has a G+C content that is 6% lower than the overall G+C content of the DNA. The genes for both ribosomal RNAs are contained in the remaining, relatively G+C rich, part of the genome. PMID:141040

  10. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults.

    PubMed

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  11. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults

    PubMed Central

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson’s and Alzheimer’s, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  12. Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension

    PubMed Central

    Chalmers, Susan; Saunter, Christopher D.; Girkin, John M.; McCarron, John G.

    2015-01-01

    Mitochondrial morphology is central to normal physiology and disease development. However, in many live cells and tissues, complex mitochondrial structures exist and morphology has been difficult to quantify. We have measured the shape of electrically-discrete mitochondria, imaging them individually to restore detail hidden in clusters and demarcate functional boundaries. Stochastic “flickers” of mitochondrial membrane potential were visualized with a rapidly-partitioning fluorophore and the pixel-by-pixel covariance of spatio-temporal fluorescence changes analyzed. This Flicker-assisted Localization Microscopy (FaLM) requires only an epifluorescence microscope and sensitive camera. In vascular myocytes, the apparent variation in mitochondrial size was partly explained by densely-packed small mitochondria. In normotensive animals, mitochondria were small spheres or rods. In hypertension, mitochondria were larger, occupied more of the cell volume and were more densely clustered. FaLM provides a convenient tool for increased discrimination of mitochondrial architecture and has revealed mitochondrial alterations that may contribute to hypertension. PMID:26593883

  13. Maintenance of mitochondrial genome distribution by mitochondrial AAA+ protein ClpX.

    PubMed

    Kasashima, Katsumi; Sumitani, Megumi; Endo, Hitoshi

    2012-11-01

    The segregation of mitochondrial DNA (mtDNA) is important for the maintenance and transmission of the genome between generations. Recently, we clarified that human mitochondrial transcription factor A (TFAM) is required for equal distribution and symmetric segregation of mtDNA in cultured cells; however, the molecular mechanism involved is largely unknown. ClpX is an ATPase associated with various cellular activities (AAA+) proteins that localize to the mitochondrial matrix and is suggested to associate with mtDNA. In this study, we found that RNAi-mediated knockdown of ClpX in HeLa cells resulted in enlarged mtDNA nucleoids, which is very similar to that observed in TFAM-knockdown cells in several properties. The expression of TFAM protein was not significantly reduced in ClpX-knockdown cells. However, the enlarged mtDNA nucleoids caused by ClpX-knockdown were suppressed by overexpression of recombinant TFAM and the phenotype was not observed in knockdown with ClpP, a protease subunit of ClpXP. Endogenous ClpX and TFAM exist in close vicinity, and ClpX enhanced DNA-binding activity of TFAM in vitro. These results suggest that human ClpX, a novel mtDNA regulator, maintains mtDNA nucleoid distribution through TFAM function as a chaperone rather than as a protease and its involvement in mtDNA segregation. PMID:22841477

  14. Chronic hypoxia-induced alterations in mitochondrial energy metabolism are not reversible in rat heart ventricles.

    PubMed

    Nouette-Gaulain, Karine; Biais, Matthieu; Savineau, Jean-Pierre; Marthan, Roger; Mazat, Jean-Pierre; Letellier, Thierry; Sztark, François

    2011-01-01

    Chronic hypoxia alters mitochondrial energy metabolism. In the heart, oxidative capacity of both ventricles is decreased after 3 weeks of chronic hypoxia. The aim of this study was to evaluate the reversal of these metabolic changes upon normoxia recovery. Rats were exposed to a hypobaric environment for 3 weeks and then subjected to a normoxic environment for 3 weeks (normoxia-recovery group) and compared with rats maintained in a normoxic environment (control group). Mitochondrial energy metabolism was differentially examined in both left and right ventricles. Oxidative capacity (oxygen consumption and ATP synthesis) was measured in saponin-skinned fibers. Activities of mitochondrial respiratory chain complexes and antioxidant enzymes were measured on ventricle homogenates. Morphometric analysis of mitochondria was performed on electron micrographs. In normoxia-recovery rats, oxidative capacities of right ventricles were decreased in the presence of glutamate or palmitoyl carnitine as substrates. In contrast, oxidation of palmitoyl carnitine was maintained in the left ventricle. Enzyme activities of complexes III and IV were significantly decreased in both ventricles. These functional alterations were associated with a decrease in numerical density and an increase in size of mitochondria. Finally, in the normoxia-recovery group, the antioxidant enzyme activities (catalase and glutathione peroxidase) increased. In conclusion, alterations of mitochondrial energy metabolism induced by chronic hypoxia are not totally reversible. Reactive oxygen species could be involved and should be investigated under such conditions, since they may represent a therapeutic target.

  15. Investigation of cyanine dyes for in vivo optical imaging of altered mitochondrial membrane potential in tumors

    PubMed Central

    Onoe, Satoru; Temma, Takashi; Shimizu, Yoichi; Ono, Masahiro; Saji, Hideo

    2014-01-01

    Mitochondrial membrane potential (Δψm) alteration is an important target for cancer diagnosis. In this study, we designed a series of near-infrared fluorescent cationic cyanine dyes with varying alkyl chain lengths (IC7-1 derivatives) to provide diverse lipophilicities and serum albumin-binding rates, and we evaluated the usefulness of these derivatives for in vivo Δψm imaging. IC7-1 derivatives with side chains from methyl to hexyl (IC7-1-Me to IC7-1-He) were synthesized, and their optical properties were measured. Cellular uptake and intracellular distribution were investigated with depolarized HeLa cells from carbonyl cyanine m-chlorophenylhydrazone (CCCP) treatment using a spectrofluorometer and a fluorescence microscope. Serum albumin-binding rates were evaluated using albumin-binding inhibitors. In vivo optical imaging was performed with HeLa cell xenograft mice following intravenous administration of IC7-1 derivatives with or without warfarin and CCCP as in vivo blocking agents. IC7-1 derivatives showing maximum excitation and emission wavelengths at 823 nm and ∼845 nm, respectively, were synthesized. IC7-1-Me to -Bu showed fluorescence in mitochondria that decreased with CCCP treatment in a concentration-dependent manner, which showed that IC7-1-Me to -Bu successfully indicated Δψm. Tumors were clearly visualized after IC7-1-Bu administration. Treatment with warfarin or CCCP significantly decreased IC7-1-Bu fluorescence in the tumor region. In summary, IC7-1-Bu exhibited fluorescence localized to mitochondria dependent on Δψm, which enabled clear in vivo tumor imaging via serum albumin as a drug carrier for effective tumor targeting. Our data suggest that IC7-1-Bu is a promising NIR probe for in vivo imaging of the altered Δψm of tumor cells. PMID:24737784

  16. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    PubMed Central

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  17. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy

    PubMed Central

    Fillmore, N; Mori, J; Lopaschuk, G D

    2014-01-01

    Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24147975

  18. Altered Glycolysis and Mitochondrial Respiration in a Zebrafish Model of Dravet Syndrome.

    PubMed

    Kumar, Maneesh G; Rowley, Shane; Fulton, Ruth; Dinday, Matthew T; Baraban, Scott C; Patel, Manisha

    2016-01-01

    Altered metabolism is an important feature of many epileptic syndromes but has not been reported in Dravet syndrome (DS), a catastrophic childhood epilepsy associated with mutations in a voltage-activated sodium channel, Nav1.1 (SCN1A). To address this, we developed novel methodology to assess real-time changes in bioenergetics in zebrafish larvae between 4 and 6 d postfertilization (dpf). Baseline and 4-aminopyridine (4-AP) stimulated glycolytic flux and mitochondrial respiration were simultaneously assessed using a Seahorse Biosciences extracellular flux analyzer. Scn1Lab mutant zebrafish showed a decrease in baseline glycolytic rate and oxygen consumption rate (OCR) compared to controls. A ketogenic diet formulation rescued mutant zebrafish metabolism to control levels. Increasing neuronal excitability with 4-AP resulted in an immediate increase in glycolytic rates in wild-type zebrafish, whereas mitochondrial OCR increased slightly and quickly recovered to baseline values. In contrast, scn1Lab mutant zebrafish showed a significantly slower and exaggerated increase of both glycolytic rates and OCR after 4-AP. The underlying mechanism of decreased baseline OCR in scn1Lab mutants was not because of altered mitochondrial DNA content or dysfunction of enzymes in the electron transport chain or tricarboxylic acid cycle. Examination of glucose metabolism using a PCR array identified five glycolytic genes that were downregulated in scn1Lab mutant zebrafish. Our findings in scn1Lab mutant zebrafish suggest that glucose and mitochondrial hypometabolism contribute to the pathophysiology of DS. PMID:27066534

  19. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes.

    PubMed

    Igosheva, Natalia; Abramov, Andrey Y; Poston, Lucilla; Eckert, Judith J; Fleming, Tom P; Duchen, Michael R; McConnell, Josie

    2010-01-01

    The negative impact of obesity on reproductive success is well documented but the stages at which development of the conceptus is compromised and the mechanisms responsible for the developmental failure still remain unclear. Recent findings suggest that mitochondria may be a contributing factor. However to date no studies have directly addressed the consequences of maternal obesity on mitochondria in early embryogenesis.Using an established murine model of maternal diet induced obesity and a live cell dynamic fluorescence imaging techniques coupled with molecular biology we have investigated the underlying mechanisms of obesity-induced reduced fertility. Our study is the first to show that maternal obesity prior to conception is associated with altered mitochondria in mouse oocytes and zygotes. Specifically, maternal diet-induced obesity in mice led to an increase in mitochondrial potential, mitochondrial DNA content and biogenesis. Generation of reactive oxygen species (ROS) was raised while glutathione was depleted and the redox state became more oxidised, suggestive of oxidative stress. These altered mitochondrial properties were associated with significant developmental impairment as shown by the increased number of obese mothers who failed to support blastocyst formation compared to lean dams. We propose that compromised oocyte and early embryo mitochondrial metabolism, resulting from excessive nutrient exposure prior to and during conception, may underlie poor reproductive outcomes frequently reported in obese women.

  20. Altered Glycolysis and Mitochondrial Respiration in a Zebrafish Model of Dravet Syndrome123

    PubMed Central

    Kumar, Maneesh G.; Rowley, Shane; Fulton, Ruth; Dinday, Matthew T.; Baraban, Scott C.

    2016-01-01

    Abstract Altered metabolism is an important feature of many epileptic syndromes but has not been reported in Dravet syndrome (DS), a catastrophic childhood epilepsy associated with mutations in a voltage-activated sodium channel, Nav1.1 (SCN1A). To address this, we developed novel methodology to assess real-time changes in bioenergetics in zebrafish larvae between 4 and 6 d postfertilization (dpf). Baseline and 4-aminopyridine (4-AP) stimulated glycolytic flux and mitochondrial respiration were simultaneously assessed using a Seahorse Biosciences extracellular flux analyzer. Scn1Lab mutant zebrafish showed a decrease in baseline glycolytic rate and oxygen consumption rate (OCR) compared to controls. A ketogenic diet formulation rescued mutant zebrafish metabolism to control levels. Increasing neuronal excitability with 4-AP resulted in an immediate increase in glycolytic rates in wild-type zebrafish, whereas mitochondrial OCR increased slightly and quickly recovered to baseline values. In contrast, scn1Lab mutant zebrafish showed a significantly slower and exaggerated increase of both glycolytic rates and OCR after 4-AP. The underlying mechanism of decreased baseline OCR in scn1Lab mutants was not because of altered mitochondrial DNA content or dysfunction of enzymes in the electron transport chain or tricarboxylic acid cycle. Examination of glucose metabolism using a PCR array identified five glycolytic genes that were downregulated in scn1Lab mutant zebrafish. Our findings in scn1Lab mutant zebrafish suggest that glucose and mitochondrial hypometabolism contribute to the pathophysiology of DS. PMID:27066534

  1. Altered Glycolysis and Mitochondrial Respiration in a Zebrafish Model of Dravet Syndrome.

    PubMed

    Kumar, Maneesh G; Rowley, Shane; Fulton, Ruth; Dinday, Matthew T; Baraban, Scott C; Patel, Manisha

    2016-01-01

    Altered metabolism is an important feature of many epileptic syndromes but has not been reported in Dravet syndrome (DS), a catastrophic childhood epilepsy associated with mutations in a voltage-activated sodium channel, Nav1.1 (SCN1A). To address this, we developed novel methodology to assess real-time changes in bioenergetics in zebrafish larvae between 4 and 6 d postfertilization (dpf). Baseline and 4-aminopyridine (4-AP) stimulated glycolytic flux and mitochondrial respiration were simultaneously assessed using a Seahorse Biosciences extracellular flux analyzer. Scn1Lab mutant zebrafish showed a decrease in baseline glycolytic rate and oxygen consumption rate (OCR) compared to controls. A ketogenic diet formulation rescued mutant zebrafish metabolism to control levels. Increasing neuronal excitability with 4-AP resulted in an immediate increase in glycolytic rates in wild-type zebrafish, whereas mitochondrial OCR increased slightly and quickly recovered to baseline values. In contrast, scn1Lab mutant zebrafish showed a significantly slower and exaggerated increase of both glycolytic rates and OCR after 4-AP. The underlying mechanism of decreased baseline OCR in scn1Lab mutants was not because of altered mitochondrial DNA content or dysfunction of enzymes in the electron transport chain or tricarboxylic acid cycle. Examination of glucose metabolism using a PCR array identified five glycolytic genes that were downregulated in scn1Lab mutant zebrafish. Our findings in scn1Lab mutant zebrafish suggest that glucose and mitochondrial hypometabolism contribute to the pathophysiology of DS.

  2. Mitochondrial (Dys)function in Adipocyte (De)differentiation and Systemic Metabolic Alterations

    PubMed Central

    De Pauw, Aurélia; Tejerina, Silvia; Raes, Martine; Keijer, Jaap; Arnould, Thierry

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissues, the importance of mitochondrial activity in the differentiation or the dedifferentiation programs of adipose cells and in systemic metabolic alterations has not been extensively reviewed previously. Here, we address the crucial role of mitochondrial functions during adipogenesis and in mature adipocytes and discuss the cellular responses of white adipocytes to mitochondrial activity impairment. In addition, we discuss the increase in scientific knowledge regarding mitochondrial functions in the last 10 years and the recent suspicion of mitochondrial dysfunction in several 21st century epidemics (ie, obesity and diabetes), as well as in lipodystrophy found in HIV-treated patients, which can contribute to the development of new therapeutic strategies targeting adipocyte mitochondria. PMID:19700756

  3. Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity

    PubMed Central

    Barra, Nicole G.; Palanivel, Rengasamy; Denou, Emmanuel; Chew, Marianne V.; Gillgrass, Amy; Walker, Tina D.; Kong, Josh; Richards, Carl D.; Jordana, Manel; Collins, Stephen M.; Trigatti, Bernardo L.; Holloway, Alison C.; Raha, Sandeep; Steinberg, Gregory R.; Ashkar, Ali A.

    2014-01-01

    Interleukin-15 (IL-15) is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s) involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg), overweight IL-15 deficient (IL-15−/−), and control C57Bl/6 (B6) mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15−/− mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function. PMID:25517731

  4. Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study.

    PubMed

    Agrawal, Sonal; Singh, Ashish; Tripathi, Pratibha; Mishra, Manisha; Singh, Pradhyumna Kumar; Singh, Mahendra Pratap

    2015-04-01

    Cypermethrin induces the slow and progressive degeneration of the nigrostriatal dopaminergic neurons in rats. Postnatal preexposure with low doses of cypermethrin is known to enhance the susceptibility of animals upon adulthood reexposure. The study was undertaken to delineate the role of mitochondria in cypermethrin-induced neurodegeneration. Indexes of dopaminergic neurodegeneration, microglial activation, and mitochondrial dysfunction and its proteome profile were assessed in controls and cypermethrin-treated rats. Cypermethrin increased nigral dopaminergic neurodegeneration and microglial activation while reduced mitochondrial membrane potential and complex I activity. Cypermethrin attenuated striatal dopamine content and differentially regulated the expressions of the nine striatal and ten nigral proteins. Western blot analyses showed that cypermethrin also increased c-Jun N-terminal kinase (JNK), caspase-3, tumor suppressor protein (p53), tumor necrosis factor-α (TNF-α), p38 mitogen-activated protein kinase (p38 MAPK), and heme oxygenase-1 (HO-1) expressions and reduced B cell lymphoma-2 protein (Bcl-2) expression. Syndopa and minocycline rescued from cypermethrin induced augmentation in microglial activation and reductions in mitochondrial membrane potential and complex I activity, striatal dopamine content, and degeneration of nigral dopaminergic neurons. Syndopa and minocycline, respectively, modulated the expressions of four and six striatal and four and seven nigral proteins. Furthermore, they reinstated the expressions of JNK, caspase-3, Bcl-2, p53, p38 MAPK, TNF-α, and HO-1. The study demonstrates that cypermethrin induces mitochondrial dysfunction and alters mitochondrial proteome leading to oxidative stress and apoptosis, which regulate the nigrostriatal dopaminergic neurodegeneration.

  5. Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis.

    PubMed

    Natale, Gianfranco; Lenzi, Paola; Lazzeri, Gloria; Falleni, Alessandra; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a

  6. Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis

    PubMed Central

    Natale, Gianfranco; Lenzi, Paola; Lazzeri, Gloria; Falleni, Alessandra; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a

  7. Increased skeletal muscle mitochondrial efficiency in rats with fructose-induced alteration in glucose tolerance.

    PubMed

    Crescenzo, Raffaella; Bianco, Francesca; Coppola, Paola; Mazzoli, Arianna; Cigliano, Luisa; Liverini, Giovanna; Iossa, Susanna

    2013-12-14

    In the present study, the effect of long-term fructose feeding on skeletal muscle mitochondrial energetics was investigated. Measurements in isolated tissue were coupled with the determination of whole-body energy expenditure and insulin sensitivity. A significant increase in plasma NEFA, as well as in skeletal muscle TAG and ceramide, was found in fructose-fed rats compared with the controls, together with a significantly higher plasma insulin response to a glucose load, while no significant variation in plasma glucose levels was found. Significantly lower RMR values were found in fructose-fed rats starting from week 4 of the dietary treatment. Skeletal muscle mitochondrial mass and degree of coupling were found to be significantly higher in fructose-fed rats compared with the controls. Significantly higher lipid peroxidation was found in fructose-fed rats, together with a significant decrease in superoxide dismutase activity. Phosphorylated Akt levels normalised to plasma insulin levels were significantly lower in fructose-fed rats compared with the controls. In conclusion, a fructose-rich diet has a deep impact on a metabolically relevant tissue such as skeletal muscle. In this tissue, the consequences of high fructose feeding are altered glucose tolerance, elevated mitochondrial biogenesis and increased mitochondrial coupling. This latter modification could have a detrimental metabolic effect by causing oxidative stress and energy sparing that contribute to the high metabolic efficiency of fructose-fed rats.

  8. T3 fails to restore mitochondrial thiol redox status altered by experimental hypothyroidism in rat testis.

    PubMed

    Chattopadhyay, Sutapa; Choudhury, Supragyanshree; Roy, Anita; Chainy, Gagan B N; Samanta, Luna

    2010-10-01

    Oxidative stress impaired sperm function might lead to infertility. The objective of this study was to evaluate the effects of altered thyroid hormone levels on regulation of mitochondrial glutathione redox status and its dependent antioxidant defense system in adult rat testis and their correlation with testicular function. Adult male Wistar rats were rendered hypothyroid by administration of 6-n-propyl-2-thiouracil in drinking water for six weeks. At the end of the treatment period, a subset of the hypothyroid rats was treated with T(3) (20 μg/100g body weight/day for 3 days). Mitochondria were isolated from euthyroid, hypothyroid and hypothyroid+T(3)-treated rat testes, and sub-fractionated into sub-mitochondrial particles and matrix fractions. Mitochondrial respiration, oxidative stress indices and antioxidant defenses were assayed. The results were correlated with daily testicular sperm production and epididymal sperm viability. Increased pro-oxidant level and reduced antioxidant capacity rendered the hypothyroid mitochondria susceptible to oxidative injury. The extent of damage was more evident in the membrane fraction. This was reflected in higher degree of oxidative damages inflicted upon membrane lipids and proteins. While membrane proteins were more susceptible to carbonylation, thiol residue damage was evident in matrix fraction. Reduced levels of glutathione and ascorbate further weakened the antioxidant defenses and impaired testicular function. Hypothyroid condition disturbed intra-mitochondrial thiol redox status leading to testicular dysfunction. Hypothyroidism-induced oxidative stress condition could not be reversed with T(3) treatment.

  9. Mitochondrial Morphofunctional Alterations in Smooth Muscle Cells of Aorta in Rats

    PubMed Central

    Tarán, Mariana; Llorens, Candelaria; Balceda, Ariel; Scribano, María de La Paz; Pons, Patricia; Moya, Mónica

    2014-01-01

    In an experimental model of atherogenesis induced by hyperfibrinogenemia (HF), the pharmacological response of vitamin E was studied in order to assess its antioxidant effect on the mitochondrial morphofunctional alterations in aortic smooth muscle cells. Three groups of male rats were used: (Ctr) control, (AI) atherogenesis induced for 120 days, and (AIE) atherogenesis induced for 120 days and treated with vitamin E. HF was induced by adrenalin injection (0.1 mg/day/rat) for 120 days. AIE group was treated with the administration of 3.42 mg/day/rat of vitamin E for 105 days after the first induction. Mitochondria morphology was analyzed by electronic microscopy (EM) and mitochondrial complexes (MC) by spectrophotometry. In group AI the total and mean number of mitochondria reduced significantly, the intermembranous matrix increased, and swelling was observed with respect to Ctr and AIE (P < 0.01). These damages were related to a significant decrease in the activity of citrate synthase and complexes I, II, III, and IV in group AI in comparison to Ctr (P < 0.001). Similar behavior was presented by group AI compared to AIE (P < 0.001). These results show that vitamin E produces a significative regression of inflammatory and oxidative stress process and it resolved the morphofunctional mitochondrial alterations in this experimental model of atherogenic disease. PMID:24653842

  10. Alcohol alters hepatic FoxO1, p53, and mitochondrial SIRT5 deacetylation function

    SciTech Connect

    Lieber, Charles S. Leo, Maria Anna; Wang, Xiaolei; DeCarli, Leonore M.

    2008-08-22

    Chronic alcohol consumption affects the gene expression of a NAD-dependent deacetylase Sirtuis 1 (SIRT1) and the peroxisome proliferator-activated receptor-{gamma} coactivator1{alpha} (PGC-1{alpha}). Our aim was to verify that it also alters the forkhead (FoxO1) and p53 transcription factor proteins, critical in the hepatic response to oxidative stress and regulated by SIRT1 through its deacetylating capacity. Accordingly, rats were pair-fed the Lieber-DeCarli alcohol-containing liquid diets for 28 days. Alcohol increased hepatic mRNA expression of FoxO1 (p = 0.003) and p53 (p = 0.001) while corresponding protein levels remained unchanged. However phospho-FoxO1 and phospho-Akt (protein kinase) were both decreased by alcohol consumption (p = 0.04 and p = 0.02, respectively) while hepatic p53 was found hyperacetylated (p = 0.017). Furthermore, mitochondrial SIRT5 was reduced (p = 0.0025), and PGC-1{alpha} hyperacetylated (p = 0.027), establishing their role in protein modification. Thus, alcohol consumption disrupts nuclear-mitochondrial interactions by post-translation protein modifications, which contribute to alteration of mitochondrial biogenesis through the newly discovered reduction of SIRT5.

  11. The purified and recombinant Legionella pneumophila chaperonin alters mitochondrial trafficking and microfilament organization.

    PubMed

    Chong, Audrey; Lima, Celia A; Allan, David S; Nasrallah, Gheyath K; Garduño, Rafael A

    2009-11-01

    A portion of the total cellular pool of the Legionella pneumophila chaperonin, HtpB, is found on the bacterial cell surface, where it can mediate invasion of nonphagocytic cells. HtpB continues to be abundantly produced and released by internalized L. pneumophila and may thus have postinvasion functions. We used here two functional models (protein-coated beads and expression of recombinant proteins in CHO cells) to investigate the competence of HtpB in mimicking early intracellular trafficking events of L. pneumophila, including the recruitment of mitochondria, cytoskeletal alterations, the inhibition of phagosome-lysosome fusion, and association with the endoplasmic reticulum. Microscopy and flow cytometry studies indicated that HtpB-coated beads recruited mitochondria in CHO cells and U937-derived macrophages and induced transient changes in the organization of actin microfilaments in CHO cells. Ectopic expression of HtpB in the cytoplasm of transfected CHO cells also led to modifications in actin microfilaments similar to those produced by HtpB-coated beads but did not change the distribution of mitochondria. Association of phagosomes containing HtpB-coated beads with the endoplasmic reticulum was not consistently detected by either fluorescence or electron microscopy studies, and only a modest delay in the fusion of TrOv-labeled lysosomes with phagosomes containing HtpB-coated beads was observed. HtpB is the first Legionella protein and the first chaperonin shown to, by means of our functional models, induce mitochondrial recruitment and microfilament rearrangements, two postinternalization events that typify the early trafficking of virulent L. pneumophila. PMID:19687203

  12. Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis.

    PubMed

    Agrimi, Gennaro; Brambilla, Luca; Frascotti, Gianni; Pisano, Isabella; Porro, Danilo; Vai, Marina; Palmieri, Luigi

    2011-04-01

    The modification of enzyme cofactor concentrations can be used as a method for both studying and engineering metabolism. We varied Saccharomyces cerevisiae mitochondrial NAD levels by altering expression of its specific mitochondrial carriers. Changes in mitochondrial NAD levels affected the overall cellular concentration of this coenzyme and the cellular metabolism. In batch culture, a strain with a severe NAD depletion in mitochondria succeeded in growing, albeit at a low rate, on fully respiratory media. Although the strain increased the efficiency of its oxidative phosphorylation, the ATP concentration was low. Under the same growth conditions, a strain with a mitochondrial NAD concentration higher than that of the wild type similarly displayed a low cellular ATP level, but its growth rate was not affected. In chemostat cultures, when cellular metabolism was fully respiratory, both mutants showed low biomass yields, indicative of impaired energetic efficiency. The two mutants increased their glycolytic fluxes, and as a consequence, the Crabtree effect was triggered at lower dilution rates. Strikingly, the mutants switched from a fully respiratory metabolism to a respirofermentative one at the same specific glucose flux as that of the wild type. This result seems to indicate that the specific glucose uptake rate and/or glycolytic flux should be considered one of the most important independent variables for establishing the long-term Crabtree effect. In cells growing under oxidative conditions, bioenergetic efficiency was affected by both low and high mitochondrial NAD availability, which suggests the existence of a critical mitochondrial NAD concentration in order to achieve optimal mitochondrial functionality.

  13. Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic, dynamic and auto(mito)phagy markers.

    PubMed

    Marques-Aleixo, I; Santos-Alves, E; Balça, M M; Rizo-Roca, D; Moreira, P I; Oliveira, P J; Magalhães, J; Ascensão, A

    2015-08-20

    We here investigate the effects of two exercise modalities (endurance treadmill training-TM and voluntary free-wheel activity-FW) on the brain cortex and cerebellum mitochondrial bioenergetics, permeability transition pore (mPTP), oxidative stress, as well as on proteins involved in mitochondrial biogenesis, apoptosis, and quality control. Eighteen male rats were assigned to sedentary-SED, TM and FW groups. Behavioral alterations and ex vivo brain mitochondrial function endpoints were assessed. Proteins involved in oxidative phosphorylation (OXPHOS, including the adenine nucleotide translocator), oxidative stress markers and regulatory proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α, TFAM) were evaluated. Apoptotic signaling was measured through quantifying caspase 3, 8 and 9-like activities, Bax, Bcl2, CypD, and cofilin expression. Mitochondrial dynamics (Mfn1/2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin, p62)-related proteins were also measured by Western blotting. Only the TM exercise group showed increased spontaneous alternation and exploratory activity. Both exercise regimens improved mitochondrial respiratory activity, increased OXPHOS complexes I, III and V subunits in both brain subareas and decreased oxidative stress markers. Increased resistance to mPTP and decreased apoptotic signaling were observed in the brain cortex from TM and in the cerebellum from TM and FW groups. Also, exercise increased the expression of proteins involved in mitochondrial biogenesis, autophagy and fusion, simultaneous with decreased expression of mitochondrial fission-related protein DRP1. In conclusion, physical exercise improves brain cortex and cerebellum mitochondrial function, decreasing oxidative stress and apoptotic related markers. It is also possible that favorable alterations in mitochondrial biogenesis, dynamics and autophagy signaling induced by exercise

  14. Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity.

    PubMed

    Kukat, Alexandra; Dogan, Sukru Anil; Edgar, Daniel; Mourier, Arnaud; Jacoby, Christoph; Maiti, Priyanka; Mauer, Jan; Becker, Christina; Senft, Katharina; Wibom, Rolf; Kudin, Alexei P; Hultenby, Kjell; Flögel, Ulrich; Rosenkranz, Stephan; Ricquier, Daniel; Kunz, Wolfram S; Trifunovic, Aleksandra

    2014-06-01

    Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. PMID:24945157

  15. Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity.

    PubMed

    Kukat, Alexandra; Dogan, Sukru Anil; Edgar, Daniel; Mourier, Arnaud; Jacoby, Christoph; Maiti, Priyanka; Mauer, Jan; Becker, Christina; Senft, Katharina; Wibom, Rolf; Kudin, Alexei P; Hultenby, Kjell; Flögel, Ulrich; Rosenkranz, Stephan; Ricquier, Daniel; Kunz, Wolfram S; Trifunovic, Aleksandra

    2014-06-01

    Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan.

  16. Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity

    PubMed Central

    Kukat, Alexandra; Dogan, Sukru Anil; Edgar, Daniel; Mourier, Arnaud; Jacoby, Christoph; Maiti, Priyanka; Mauer, Jan; Becker, Christina; Senft, Katharina; Wibom, Rolf; Kudin, Alexei P.; Hultenby, Kjell; Flögel, Ulrich; Rosenkranz, Stephan; Ricquier, Daniel; Kunz, Wolfram S.; Trifunovic, Aleksandra

    2014-01-01

    Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. PMID:24945157

  17. Oxidative stress generated during monensin treatment contributes to altered Toxoplasma gondii mitochondrial function

    PubMed Central

    Charvat, Robert A.; Arrizabalaga, Gustavo

    2016-01-01

    The ionophore monensin displays potent activities against several coccidian parasites of veterinary and medical importance including the opportunistic pathogen of humans, Toxoplasma gondii. While monensin is used widely in animals, toxicity impedes its use in humans. Nonetheless, given its potency, understanding its mode of action would reveal vulnerable aspects of the parasite that can be exploited for drug development. We previously established that monensin induces Toxoplasma to undergo cell cycle arrest and an autophagy-like cell death. Interestingly, these effects are dependent on the mitochondrion-localized TgMSH-1 protein, suggesting that monensin disrupts mitochondrial function. We demonstrate that monensin treatment results in decreased mitochondrial membrane potential and altered morphology. These effects are mitigated by the antioxidant compound N-acetyl-cysteine suggesting that monensin causes an oxidative stress, which was indeed the case based on direct detection of reactive oxygen species. Moreover, over-expression of the antioxidant proteins glutaredoxin and peroxiredoxin 2 protect Toxoplasma from the deleterious effects of monensin. Thus, our studies show that the effects of monensin on Toxoplasma are due to a disruption of mitochondrial function caused by the induction of an oxidative stress and implicate parasite redox biology as a viable target for the development of drugs against Toxoplasma and related pathogenic parasites. PMID:26976749

  18. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients

    PubMed Central

    Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  19. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients.

    PubMed

    Haylett, William; Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation.

  20. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients.

    PubMed

    Haylett, William; Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  1. A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function

    PubMed Central

    Jiang, Pingping; Wang, Meng; Xue, Ling; Xiao, Yun; Yu, Jialing; Wang, Hui; Yao, Juan; Liu, Hao; Peng, Yanyan; Liu, Hanqing; Li, Haiying; Chen, Ye

    2016-01-01

    In this report, we investigated the pathophysiology of a novel hypertension-associated mitochondrial tRNAAla 5655A → G (m.5655A → G) mutation. The destabilization of a highly conserved base pairing (A1-U72) at the aminoacyl acceptor stem by an m.5655A → G mutation altered the tRNAAla function. An in vitro processing analysis showed that the m.5655A → G mutation reduced the efficiency of tRNAAla precursor 5′ end cleavage catalyzed by RNase P. By using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA (mtDNA)-less (ρo) cells, we showed a 41% reduction in the steady-state level of tRNAAla in mutant cybrids. The mutation caused an improperly aminoacylated tRNAAla, as suggested by aberrantly aminoacylated tRNAAla and slower electrophoretic mobility of mutated tRNA. A failure in tRNAAla metabolism contributed to variable reductions in six mtDNA-encoded polypeptides in mutant cells, ranging from 21% to 37.5%, with an average of a 29.1% reduction, compared to levels of the controls. The impaired translation caused reduced activities of mitochondrial respiration chains. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These caused increases in the production of reactive oxygen species in the mutant cybrids. The data provide evidence for the association of the tRNAAla 5655A → G mutation with hypertension. PMID:27161322

  2. Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise

    PubMed Central

    Hanafin, William P; Beaudoin, Jessica N; Bica, Denisa E; DiLiberto, Stephen J; Kenis, Paul JA; Gaskins, H Rex

    2014-01-01

    The glutathione couple GSH/GSSG is the most abundant cellular redox buffer and is not at equilibrium among intracellular compartments. Perturbation of glutathione poise has been associated with tumorigenesis; however, due to analytical limitations, the underlying mechanisms behind this relationship are poorly understood. In this regard, we have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real-time glutathione redox potentials in the cytosol and mitochondrial matrix of tumorigenic and non-tumorigenic cells. First, we demonstrated that recovery time in both compartments depended upon the length of exposure to oxidative challenge with diamide, a thiol-oxidizing agent. We then monitored changes in glutathione poise in cytosolic and mitochondrial matrices following inhibition of glutathione (GSH) synthesis with L-buthionine sulphoximine (BSO). The mitochondrial matrix showed higher oxidation in the BSO-treated cells indicating distinct compartmental alterations in redox poise. Finally, the contributory role of the p53 protein in supporting cytosolic redox poise was demonstrated. Inactivation of the p53 pathway by expression of a dominant-negative p53 protein sensitized the cytosol to oxidation in BSO-treated tumor cells. As a result, both compartments of PF161-T + 53DD cells were equally oxidized ≈20 mV by inhibition of GSH synthesis. Conversely, mitochondrial oxidation was independent of p53 status in GSH-deficient tumor cells. Taken together, these findings indicate different redox requirements for the glutathione thiol/disulfide redox couple within the cytosol and mitochondria of resting cells and reveal distinct regulation of their redox poise in response to inhibition of glutathione biosynthesis. PMID:24586100

  3. Gestational protein restriction induces alterations in placental morphology and mitochondrial function in rats during late pregnancy.

    PubMed

    Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Moraes, Camila; Amaral, Maria Esmeria Corezola; Catisti, Rosana

    2013-12-01

    The placenta acts a regulator of nutrient composition and supply from mother to fetus and is the source of hormonal signals that affect maternal and fetal metabolism. Thus, appropriate development of the placenta is crucial for normal fetal development. We investigated the effect of gestational protein restriction (GPR) on placental morphology and mitochondrial function on day 19 of gestation. Pregnant dams were divided into two groups: normal (NP 17 % casein) or low-protein diet (LP 6 % casein). The placentas were processed for biochemical, histomorphometric and ultrastructural analysis. The integrity of rat placental mitochondria (RPM) isolated by conventional differential centrifugation was measured by oxygen uptake (Clark-type electrode). LP animals presented an increase in adipose tissue and triacylglycerol and a decrease in serum insulin levels. No alterations were observed in body, liver, fetus, or placenta weight. There was also no change in serum glucose, total protein, or lipid content. Gestational protein restriction had tissue-specific respiratory effects, with the observation of a small change in liver respiration (~13 %) and considerable respiratory inhibition in placenta samples (~37 %). The higher oxygen uptake by RPM in the LP groups suggests uncoupling between respiration and oxidative phosphorylation. In addition, ultrastructural analysis of junctional zone giant cells from LP placenta showed a disorganized cytoplasm, with loss of integrity of most organelles and intense vacuolization. The present results led us to hypothesize that GPR alters placental structure and morphology, induces sensitivity to insulin, mitochondrial abnormalities and suggests premature aging of the placenta. Further studies are needed to test this hypothesis.

  4. Dietary omega-3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+-induced permeability transition.

    PubMed

    O'Shea, Karen M; Khairallah, Ramzi J; Sparagna, Genevieve C; Xu, Wenhong; Hecker, Peter A; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Kristian, Tibor; Murphy, Robert C; Fiskum, Gary; Stanley, William C

    2009-12-01

    Consumption of omega-3 fatty acids from fish oil, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), decreases risk for heart failure and attenuates pathologic cardiac remodeling in response to pressure overload. Dietary supplementation with EPA + DHA may also impact cardiac mitochondrial function and energetics through alteration of membrane phospholipids. We assessed the role of EPA + DHA supplementation on left ventricular (LV) function, cardiac mitochondrial membrane phospholipid composition, respiration, and sensitivity to mitochondrial permeability transition pore (MPTP) opening in normal and infarcted myocardium. Rats were subjected to sham surgery or myocardial infarction by coronary artery ligation (n=10-14), and fed a standard diet, or supplemented with EPA + DHA (2.3% of energy intake) for 12 weeks. EPA + DHA altered fatty acid composition of total mitochondrial phospholipids and cardiolipin by reducing arachidonic acid content and increasing DHA incorporation. EPA + DHA significantly increased calcium uptake capacity in both subsarcolemmal and intrafibrillar mitochondria from sham rats. This treatment effect persisted with the addition of cyclosporin A, and was not accompanied by changes in mitochondrial respiration or coupling, or cyclophilin D protein expression. Myocardial infarction resulted in heart failure as evidenced by LV dilation and contractile dysfunction. Infarcted LV myocardium had decreased mitochondrial protein yield and activity of mitochondrial marker enzymes, however respiratory function of isolated mitochondria was normal. EPA + DHA had no effect on LV function, mitochondrial respiration, or MPTP opening in rats with heart failure. In conclusion, dietary supplementation with EPA + DHA altered mitochondrial membrane phospholipid fatty acid composition in normal and infarcted hearts, but delayed MPTP opening only in normal hearts.

  5. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension

    PubMed Central

    Sharma, Shruti; Sud, Neetu; Wiseman, Dean A.; Carter, A. Lee; Kumar, Sanjiv; Hou, Yali; Rau, Thomas; Wilham, Jason; Harmon, Cynthia; Oishi, Peter; Fineman, Jeffrey R.; Black, Stephen M.

    2008-01-01

    Utilizing aortopulmonary vascular graft placement in the fetal lamb, we have developed a model (shunt) of pulmonary hypertension that mimics congenital heart disease with increased pulmonary blood flow. Our previous studies have identified a progressive development of endothelial dysfunction in shunt lambs that is dependent, at least in part, on decreased nitric oxide (NO) signaling. The purpose of this study was to evaluate the possible role of a disruption in carnitine metabolism in shunt lambs and to determine the effect on NO signaling. Our data indicate that at 2 wk of age, shunt lambs have significantly reduced expression (P < 0.05) of the key enzymes in carnitine metabolism: carnitine palmitoyltransferases 1 and 2 as well as carnitine acetyltransferase (CrAT). In addition, we found that CrAT activity was inhibited due to increased nitration. Furthermore, free carnitine levels were significantly decreased whereas acylcarnitine levels were significantly higher in shunt lambs (P < 0.05). We also found that alterations in carnitine metabolism resulted in mitochondrial dysfunction, since shunt lambs had significantly decreased pyruvate, increased lactate, and a reduced pyruvate/lactate ratio. In pulmonary arterial endothelial cells cultured from juvenile lambs, we found that mild uncoupling of the mitochondria led to a decrease in cellular ATP levels and a reduction in both endothelial NO synthase-heat shock protein 90 (eNOS-HSP90) interactions and NO signaling. Similarly, in shunt lambs we found a loss of eNOS-HSP90 interactions that correlated with a progressive decrease in NO signaling. Our data suggest that mitochondrial dysfunction may play a role in the development of endothelial dysfunction and pulmonary hypertension and increased pulmonary blood flow. PMID:18024721

  6. Spaceflight alters immune cell function and distribution

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  7. Wide Distribution of Mitochondrial Genome Rearrangements in Wild Strains of the Cultivated Basidiomycete Agrocybe aegerita

    PubMed Central

    Barroso, G.; Blesa, S.; Labarere, J.

    1995-01-01

    We used restriction fragment length polymorphisms to examine mitochondrial genome rearrangements in 36 wild strains of the cultivated basidiomycete Agrocybe aegerita, collected from widely distributed locations in Europe. We identified two polymorphic regions within the mitochondrial DNA which varied independently: one carrying the Cox II coding sequence and the other carrying the Cox I, ATP6, and ATP8 coding sequences. Two types of mutations were responsible for the restriction fragment length polymorphisms that we observed and, accordingly, were involved in the A. aegerita mitochondrial genome evolution: (i) point mutations, which resulted in strain-specific mitochondrial markers, and (ii) length mutations due to genome rearrangements, such as deletions, insertions, or duplications. Within each polymorphic region, the length differences defined only two mitochondrial types, suggesting that these length mutations were not randomly generated but resulted from a precise rearrangement mechanism. For each of the two polymorphic regions, the two molecular types were distributed among the 36 strains without obvious correlation with their geographic origin. On the basis of these two polymorphisms, it is possible to define four mitochondrial haplotypes. The four mitochondrial haplotypes could be the result of intermolecular recombination between allelic forms present in the population long enough to reach linkage equilibrium. All of the 36 dikaryotic strains contained only a single mitochondrial type, confirming the previously described mitochondrial sorting out after cytoplasmic mixing in basidiomycetes. PMID:16534984

  8. Kalpaamruthaa ameliorates mitochondrial and metabolic alterations in diabetes mellitus induced cardiovascular damage.

    PubMed

    Latha, Raja; Shanthi, Palanivelu; Sachdanandam, Panchanadham

    2014-12-01

    Efficacy of Kalpaamruthaa on the activities of lipid and carbohydrate metabolic enzymes, electron transport chain complexes and mitochondrial ATPases were studied in heart and liver of experimental rats. Cardiovascular damage (CVD) was developed in 8 weeks after type 2 diabetes mellitus induction with high fat diet (2 weeks) and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 hr interval). In CVD-induced rats, the activities of total lipase, cholesterol ester hydrolase and cholesterol ester synthetase were increased, while lipoprotein lipase and lecithin-cholesterol acyltransferase activities were decreased. The activities of lipid-metabolizing enzymes were altered by Kalpaamruthaa in CVD-induced rats towards normal. Kalpaamruthaa modulated the activities of glycolytic enzymes (hexokinase, phosphogluco-isomerase, aldolase and glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1, 6-bisphosphatase) and glycogenolytic enzyme (glycogen phosphorylase) along with increased glycogen content in the liver of CVD-induced rats. The activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, α-ketoglutarate dehydrogenase, Complexes and ATPases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) were decreased in CVD-induced rats, which were ameliorated by the treatment with Kalpaamruthaa. This study ascertained the efficacy of Kalpaamruthaa for the treatment of CVD in diabetes through the modulation of metabolizing enzymes and mitochondrial dysfunction. PMID:24552274

  9. Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement.

    PubMed

    Massoz, Simon; Larosa, Véronique; Horrion, Bastien; Matagne, René F; Remacle, Claire; Cardol, Pierre

    2015-12-10

    The unicellular green alga Chlamydomonas reinhardtii is a model organism for studying energetic metabolism. Most mitochondrial respiratory-deficient mutants characterized to date have been isolated on the basis of their reduced ability to grow in heterotrophic conditions. Mitochondrial deficiencies are usually partly compensated by adjustment of photosynthetic activity and more particularly by transition to state 2. In this work, we explored the opportunity to select mutants impaired in respiration and/or altered in dark metabolism by measuring maximum photosynthetic efficiency by chlorophyll fluorescence analyses (FV/FM). Out of about 2900 hygromycin-resistant insertional mutants generated from wild type or from a mutant strain deficient in state transitions (stt7 strain), 22 were found to grow slowly in heterotrophic conditions and 8 of them also showed a lower FV/FM value. Several disrupted coding sequences were identified, including genes coding for three different subunits of respiratory-chain complex I (NUO9, NUOA9, NUOP4) or for isocitrate lyase (ICL1). Overall, the comparison of respiratory mutants obtained in wild-type or stt7 genetic backgrounds indicated that the FV/FM value can be used to isolate mutants severely impaired in dark metabolism.

  10. Kalpaamruthaa ameliorates mitochondrial and metabolic alterations in diabetes mellitus induced cardiovascular damage.

    PubMed

    Latha, Raja; Shanthi, Palanivelu; Sachdanandam, Panchanadham

    2014-12-01

    Efficacy of Kalpaamruthaa on the activities of lipid and carbohydrate metabolic enzymes, electron transport chain complexes and mitochondrial ATPases were studied in heart and liver of experimental rats. Cardiovascular damage (CVD) was developed in 8 weeks after type 2 diabetes mellitus induction with high fat diet (2 weeks) and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 hr interval). In CVD-induced rats, the activities of total lipase, cholesterol ester hydrolase and cholesterol ester synthetase were increased, while lipoprotein lipase and lecithin-cholesterol acyltransferase activities were decreased. The activities of lipid-metabolizing enzymes were altered by Kalpaamruthaa in CVD-induced rats towards normal. Kalpaamruthaa modulated the activities of glycolytic enzymes (hexokinase, phosphogluco-isomerase, aldolase and glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1, 6-bisphosphatase) and glycogenolytic enzyme (glycogen phosphorylase) along with increased glycogen content in the liver of CVD-induced rats. The activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, α-ketoglutarate dehydrogenase, Complexes and ATPases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) were decreased in CVD-induced rats, which were ameliorated by the treatment with Kalpaamruthaa. This study ascertained the efficacy of Kalpaamruthaa for the treatment of CVD in diabetes through the modulation of metabolizing enzymes and mitochondrial dysfunction.

  11. Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1.

    PubMed

    Asterholm, Ingrid Wernstedt; Mundy, Dorothy I; Weng, Jian; Anderson, Richard G W; Scherer, Philipp E

    2012-02-01

    Caveolin-1 is a major structural component of raft structures within the plasma membrane and has been implicated as a regulator of cellular signal transduction with prominent expression in adipocytes. Here, we embarked on a comprehensive characterization of the metabolic pathways dysregulated in caveolin-1 null mice. We found that these mice display decreased circulating levels of total and high molecular weight adiponectin and a reduced ability to change substrate use in response to feeding/fasting conditions. Caveolin-1 null mice are extremely lean but retain muscle mass despite lipodystrophy and massive metabolic dysfunction. Hepatic gluconeogenesis is chronically elevated, while hepatic steatosis is reduced. Our data suggest that the complex phenotype of the caveolin-1 null mouse is caused by altered metabolic and mitochondrial function in adipose tissue with a subsequent compensatory response driven mostly by the liver. This mouse model highlights the central contributions of adipose tissue for system-wide preservation of metabolic flexibility. PMID:22326219

  12. Altered Mitochondrial Function and Metabolic Inflexibility Associated with Loss of Caveolin-1

    PubMed Central

    Asterholm, Ingrid Wernstedt; Mundy, Dorothy I.; Weng, Jian; Anderson, Richard G. W.; Scherer, Philipp E.

    2012-01-01

    Caveolin-1 is a major structural component of raft structures within the plasma membrane and has been implicated as a regulator of cellular signal transduction with prominent expression in adipocytes. Here, we embarked on a comprehensive characterization of the metabolic pathways dysregulated in caveolin-1 null mice. We found that these mice display decreased circulating levels of total and high molecular weight adiponectin and a reduced ability to change substrate use in response to feeding/fasting conditions. Caveolin-1 null mice are extremely lean, but retain muscle mass despite lipodystrophy and massive metabolic dysfunction. Hepatic gluconeogenesis is chronically elevated, while hepatic steatosis is reduced. Our data suggest that the complex phenotype of the caveolin-1 null mouse is caused by altered metabolic and mitochondrial function in adipose tissue with a subsequent compensatory response driven mostly by the liver. This mouse model highlights the central contributions of adipose tissue for system-wide preservation of metabolic flexibility. PMID:22326219

  13. Calcium-Induced Alteration of Mitochondrial Morphology and Mitochondrial-Endoplasmic Reticulum Contacts in Rat Brown Adipocytes

    PubMed Central

    Golic, I.; Velickovic, K.; Markelic, M.; Stancic, A.; Jankovic, A.; Vucetic, M.; Otasevic, V.; Buzadzic, B.; Korac, B.

    2014-01-01

    Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1) and mitofusin 2 (MFN2) were increased, and mitochondrial fission as dynamin related protein 1 (DRP1) was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER). The level of uncoupling protein-1 (UCP1) was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes. PMID:25308841

  14. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup.

    PubMed

    Kuo, Hsiao-Mei; Weng, Shao-Wen; Chang, Alice Y W; Huang, Hung-Tu; Lin, Hung-Yu; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Tai, Ming-Hong; Lin, Ching-Yi; Wang, Pei-Wen

    2016-07-01

    The advantage of using a cytoplasmic hybrid (cybrid) model to study the genetic effects of mitochondria is that the cells have the same nuclear genomic background. We previously demonstrated the independent role of mitochondria in the pathogenesis of insulin resistance (IR) and pro-inflammation in type 2 diabetes. In this study, we compared mitochondrial dynamics and related physiological functions between cybrid cells harboring diabetes-susceptible (B4) and diabetes-protective (D4) mitochondrial haplogroups, especially the responses before and after insulin stimulation. Cybrid B4 showed a more fragmented mitochondrial network, impaired mitochondrial biogenesis and bioenergetics, increased apoptosis and ineffective mitophagy and a low expression of fusion-related molecules. Upon insulin stimulation, increases in network formation, mitochondrial DNA (mtDNA) content, and ATP production were observed only in cybrid D4. Insulin promoted a pro-fusion dynamic status in both cybrids, but the trend was greater in cybrid D4. In cybrid B4, the imbalance of mitochondrial dynamics and impaired biogenesis and bioenergetics, and increased apoptosis were significantly improved in response to antioxidant treatment. We concluded that diabetes-susceptible mtDNA variants are themselves resistant to insulin. PMID:27107769

  15. Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells.

    PubMed

    Lages, Yury M; Nascimento, Juliana M; Lemos, Gabriela A; Galina, Antonio; Castilho, Leda R; Rehen, Stevens K

    2015-01-01

    Oxygen concentration should be carefully regulated in all living tissues, beginning at the early embryonic stages. Unbalances in oxygen regulation can lead to cell death and disease. However, to date, few studies have investigated the consequences of variations in oxygen levels for fetal-like cells. Therefore, in the present work, human neural progenitor cells (NPCs) derived from pluripotent stem cells grown in 3% oxygen (v/v) were compared with NPCs cultured in 21% (v/v) oxygen. Low oxygen concentrations altered the mitochondrial content and oxidative functions of the cells, which led to improved ATP production, while reducing generation of reactive oxygen species (ROS). NPCs cultured in both conditions showed no differences in proliferation and glucose metabolism. Furthermore, antioxidant enzymatic activity was not altered in NPCs cultured in 3% oxygen under normal conditions, however, when exposed to external agents known to induce oxidative stress, greater susceptibility to DNA damage was observed. Our findings indicate that the management of oxygen levels should be considered for in vitro models of neuronal development and drug screening.

  16. Systems biology analysis of the proteomic alterations induced by MPP(+), a Parkinson's disease-related mitochondrial toxin.

    PubMed

    Monti, Chiara; Bondi, Heather; Urbani, Andrea; Fasano, Mauro; Alberio, Tiziana

    2015-01-01

    Parkinson's disease (PD) is a complex neurodegenerative disease whose etiology has not been completely characterized. Many cellular processes have been proposed to play a role in the neuronal damage and loss: defects in the proteosomal activity, altered protein processing, increased reactive oxygen species burden. Among them, the involvement of a decreased activity and an altered disposal of mitochondria is becoming more and more evident. The mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)), an inhibitor of complex I, has been widely used to reproduce biochemical alterations linked to PD in vitro and its precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), to induce a Parkinson-like syndrome in vivo. Therefore, we performed a meta-analysis of the literature of all the proteomic investigations of neuronal alterations due to MPP(+) treatment and compared it with our results obtained with a mitochondrial proteomic analysis of SH-SY5Y cells treated with MPP(+). By using open-source bioinformatics tools, we identified the biochemical pathways and the molecular functions mostly affected by MPP(+), i.e., ATP production, the mitochondrial unfolded stress response, apoptosis, autophagy, and, most importantly, the synapse funcionality. Eventually, we generated protein networks, based on physical or functional interactions, to highlight the relationships among the molecular actors involved. In particular, we identified the mitochondrial protein HSP60 as the central hub in the protein-protein interaction network. As a whole, this analysis clarified the cellular responses to MPP(+), the specific mitochondrial proteome alterations induced and how this toxic model can recapitulate some pathogenetic events of PD.

  17. The formation and functional consequences of heterogeneous mitochondrial distributions in skeletal muscle

    PubMed Central

    Pathi, B.; Kinsey, S. T.; Howdeshell, M. E.; Priester, C.; McNeill, R. S.; Locke, B. R.

    2012-01-01

    SUMMARY Diffusion plays a prominent role in governing both rates of aerobic metabolic fluxes and mitochondrial organization in muscle fibers. However, there is no mechanism to explain how the non-homogeneous mitochondrial distributions that are prevalent in skeletal muscle arise. We propose that spatially variable degradation with dependence on O2 concentration, and spatially uniform signals for biogenesis, can account for observed distributions of mitochondria in a diversity of skeletal muscle. We used light and transmission electron microscopy and stereology to examine fiber size, capillarity and mitochondrial distribution in fish red and white muscle, fish white muscle that undergoes extreme hypertrophic growth, and four fiber types in mouse muscle. The observed distributions were compared with those generated using a coupled reaction-diffusion/cellular automata (CA) mathematical model of mitochondrial function. Reaction-diffusion analysis of metabolites such as oxygen, ATP, ADP and PCr involved in energy metabolism and mitochondrial function were considered. Coupled to the reaction-diffusion approach was a CA approach governing mitochondrial life cycles in response to the metabolic state of the fiber. The model results were consistent with the experimental observations and showed higher mitochondrial densities near the capillaries because of the sometimes steep gradients in oxygen. The present study found that selective removal of mitochondria in the presence of low prevailing local oxygen concentrations is likely the primary factor dictating the spatial heterogeneity of mitochondria in a diversity of fibers. The model results also suggest decreased diffusional constraints corresponding to the heterogeneous mitochondrial distribution assessed using the effectiveness factor, defined as the ratio of the reaction rate in the system with finite rates of diffusion to that in the absence of any diffusion limitation. Thus, the non-uniform distribution benefits the

  18. FRIENDLY Regulates Mitochondrial Distribution, Fusion, and Quality Control in Arabidopsis1[W][OPEN

    PubMed Central

    El Zawily, Amr M.; Schwarzländer, Markus; Finkemeier, Iris; Johnston, Iain G.; Benamar, Abdelilah; Cao, Yongguo; Gissot, Clémence; Meyer, Andreas J.; Wilson, Ken; Datla, Raju; Macherel, David; Jones, Nick S.; Logan, David C.

    2014-01-01

    Mitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell. We sought to understand how disruption of FRIENDLY function in Arabidopsis (Arabidopsis thaliana) leads to mitochondrial clustering and the effects of this aberrant chondriome on cell and whole-plant physiology. We present evidence for a role of FRIENDLY in mediating intermitochondrial association, which is a necessary prelude to mitochondrial fusion. We demonstrate that disruption of mitochondrial association, motility, and chondriome structure in friendly affects mitochondrial quality control and leads to mitochondrial stress, cell death, and strong growth phenotypes. PMID:25165398

  19. Early Stress History Alters Serum Insulin-Like Growth Factor-1 and Impairs Muscle Mitochondrial Function in Adult Male Rats.

    PubMed

    Ghosh, S; Banerjee, K K; Vaidya, V A; Kolthur-Seetharam, U

    2016-09-01

    Early-life adversity is associated with an enhanced risk for adult psychopathology. Psychiatric disorders such as depression exhibit comorbidity for metabolic dysfunction, including obesity and diabetes. However, it is poorly understood whether, besides altering anxiety and depression-like behaviour, early stress also evokes dysregulation of metabolic pathways and enhances vulnerability for metabolic disorders. We used the rodent model of the early stress of maternal separation (ES) to examine the effects of early stress on serum metabolites, insulin-like growth factor (IGF)-1 signalling, and muscle mitochondrial content. Adult ES animals exhibited dyslipidaemia, decreased serum IGF1 levels, increased expression of liver IGF binding proteins, and a decline in the expression of specific metabolic genes in the liver and muscle, including Pck1, Lpl, Pdk4 and Hmox1. These changes occurred in the absence of alterations in body weight, food intake, glucose tolerance, insulin tolerance or insulin levels. ES animals also exhibited a decline in markers of muscle mitochondrial content, such as mitochondrial DNA levels and expression of TFAM (transcription factor A, mitochondrial). Furthermore, the expression of several genes involved in mitochondrial function, such as Ppargc1a, Nrf1, Tfam, Cat, Sesn3 and Ucp3, was reduced in skeletal muscle. Adult-onset chronic unpredictable stress resulted in overlapping and distinct consequences from ES, including increased circulating triglyceride levels, and a decline in the expression of specific metabolic genes in the liver and muscle, with no change in the expression of genes involved in muscle mitochondrial function. Taken together, our results indicate that a history of early adversity can evoke persistent changes in circulating IGF-1 and muscle mitochondrial function and content, which could serve to enhance predisposition for metabolic dysfunction in adulthood. PMID:27196416

  20. Hypoxia-reoxygenation differentially alters the thermal sensitivity of complex I basal and maximal mitochondrial oxidative capacity.

    PubMed

    Onukwufor, John O; Kibenge, Fred; Stevens, Don; Kamunde, Collins

    2016-11-01

    Hypoxia-reoxygenation (H-R) transitions and temperature fluctuations occur frequently in biological systems and likely interact to alter cell function. To test how H-R modulates mitochondrial function at different temperatures we measured the effects of H-R on isolated fish liver mitochondrial oxidation rates over a wide temperature range (5-25°C). Subsequently, the mechanisms underlying H-R induced mitochondrial responses were examined. H-R inhibited the complex I (CI) maximal (state 3) and stimulated the basal (state 4) mitochondrial oxidation rates with temperature enhancing both effects. As a result, the thermal sensitivity (Q10) for CI maximal respiration was reduced while that for basal respiration was increased by H-R. H-R reduced both the coupling and phosphorylation efficiencies more profoundly at high temperature suggesting that mitochondria were more resistant to H-R at low temperature. The H-R induced mitochondrial impairments were associated with increased reactive oxygen species (ROS) production and proton leak, dissipation of membrane potential, and loss of structural integrity of the organelles. Overall, our study provides insight into the mechanisms of H-R induced mitochondrial morphofunctional disruption and shows that the moderation of effects of H-R on oxidative phosphorylation by temperature depends on the functional state. PMID:27387443

  1. Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis

    SciTech Connect

    Lizard, G.; Fournel, S.; Genestier, L.; Dhedin, N.

    1995-11-01

    Programmed cell death or apoptosis is characterized by typical morphological alterations. By transmission electron microscopy, apoptotic cells are identified by condensation of the chromatin in tight apposition to the nuclear envelope, alteration of the nuclear envelope and fragmentation of the nucleus, whereas integrity of the plasma membrane and organelles is preserved. Conversely cells undergoing necrosis display and early desintegration of cytoplasmic membrane and swelling of mitochondria. In this study we assessed by flow cytometry the sequential alterations of forward angle light scatter, 90{degrees} light scatter, and fluorescence associated with fluorescein diacetate, rhodamine 123, and propidium iodide in two human B cell lines undergoing apoptosis induced by the topoisomerase II inhibitor VP-16. The kinetics of these modifications were compared to those of cells undergoing necrosis induced by the topoisomerase II inhibitor VP-16. The kinetics of these modifications were compared to those of cells undergoing necrosis induced by sodium azide. At the same time intervals, cells were examined by transmission electron microscopy and by UV microscopy after staining with Hoechst 33342. We report that sequential changes in light scatters and fluorescein diacetate are similar in cells undergoing apoptosis or necrosis, whereas apoptosis is characterized by a slightly delayed decrease of mitochondrial activity as assessed by rhodamine 123 staining. Surprisingly, a part of cells undergoing apoptosis displayed an early uptake of propidium iodide followed by a condensation and then a fragmentation of their nuclei. It is concluded that uptake of propidium iodide is a very early marker of cell death which does not discriminate between necrosis and apoptosis. Along with biochemical criteria, nuclear morphology revealed by staining with Hoechst 33342 would seem to be of the most simple and most discriminative assay of apoptosis. 33 refs., 5 figs., 1 tab.

  2. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Hayakari, Ryo; Yoshida, Hidemi; Kawaguchi, Shogo; Takahashi, Ippei; Nakaji, Shigeyuki; Imaizumi, Tadaatsu

    2016-01-01

    Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases. PMID:26954674

  3. Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients.

    PubMed

    Allen, Scott P; Duffy, Lynn M; Shaw, Pamela J; Grierson, Andrew J

    2015-10-01

    Mitochondria play a key role in aging, which is a well-established risk factor in amyotrophic lateral sclerosis (ALS). We have previously modeled metabolic dysregulation in ALS using fibroblasts isolated from sporadic ALS (SALS) and familial ALS patients. In the present study, we show that fibroblasts from SALS patients have an altered metabolic response to aging. Control fibroblasts demonstrated increased mitochondrial network complexity and spare respiratory capacity with age which was not seen in the SALS cases. SALS cases displayed an increase in uncoupled mitochondrial respiration, which was not evident in control cases. Unlike SALS cases, controls showed a decrease in glycolysis and an increase in the oxygen consumption rate/extracellular acidification rate ratio, indicating an increased reliance on mitochondrial function. Switching to a more oxidative state by removing glucose with in the culture media resulted in a loss of the mitochondrial interconnectivity and spare respiratory capacity increases observed in controls grown in glucose. Glucose removal also led to an age-independent increase in glycolysis in the SALS cases. This study is, to the best our knowledge, the first to assess the effect of aging on both mitochondrial and glycolytic function simultaneously in intact human fibroblasts and demonstrates that the SALS disease state shifts the cellular metabolic response to aging to a more glycolytic state compared with age-matched control fibroblasts. This work highlights that ALS alters the metabolic equilibrium even in peripheral tissues outside the central nervous system. Elucidating at a molecular level how this occurs and at what stage in the disease process is crucial to understanding why ALS affects cellular energy metabolism and how the disease alters the natural cellular response to aging. PMID:26344876

  4. Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Baburamani, Ana A.; Hurling, Chloe; Stolp, Helen; Sobotka, Kristina; Gressens, Pierre; Hagberg, Henrik; Thornton, Claire

    2015-01-01

    Perturbation of mitochondrial function and subsequent induction of cell death pathways are key hallmarks in neonatal hypoxic-ischemic (HI) injury, both in animal models and in term infants. Mitoprotective therapies therefore offer a new avenue for intervention for the babies who suffer life-long disabilities as a result of birth asphyxia. Here we show that after oxygen-glucose deprivation in primary neurons or in a mouse model of HI, mitochondrial protein homeostasis is altered, manifesting as a change in mitochondrial morphology and functional impairment. Furthermore we find that the mitochondrial fusion and cristae regulatory protein, OPA1, is aberrantly cleaved to shorter forms. OPA1 cleavage is normally regulated by a balanced action of the proteases Yme1L and Oma1. However, in primary neurons or after HI in vivo, protein expression of YmelL is also reduced, whereas no change is observed in Oma1 expression. Our data strongly suggest that alterations in mitochondria-shaping proteins are an early event in the pathogenesis of neonatal HI injury. PMID:26393574

  5. Quadriceps exercise intolerance in patients with chronic obstructive pulmonary disease: the potential role of altered skeletal muscle mitochondrial respiration.

    PubMed

    Gifford, Jayson R; Trinity, Joel D; Layec, Gwenael; Garten, Ryan S; Park, Song-Young; Rossman, Matthew J; Larsen, Steen; Dela, Flemming; Richardson, Russell S

    2015-10-15

    This study sought to determine if qualitative alterations in skeletal muscle mitochondrial respiration, associated with decreased mitochondrial efficiency, contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). Using permeabilized muscle fibers from the vastus lateralis of 13 patients with COPD and 12 healthy controls, complex I (CI) and complex II (CII)-driven State 3 mitochondrial respiration were measured separately (State 3:CI and State 3:CII) and in combination (State 3:CI+CII). State 2 respiration was also measured. Exercise tolerance was assessed by knee extensor exercise (KE) time to fatigue. Per milligram of muscle, State 3:CI+CII and State 3:CI were reduced in COPD (P < 0.05), while State 3:CII and State 2 were not different between groups. To determine if this altered pattern of respiration represented qualitative changes in mitochondrial function, respiration states were examined as percentages of peak respiration (State 3:CI+CII), which revealed altered contributions from State 3:CI (Con 83.7 ± 3.4, COPD 72.1 ± 2.4%Peak, P < 0.05) and State 3:CII (Con 64.9 ± 3.2, COPD 79.5 ± 3.0%Peak, P < 0.05) respiration, but not State 2 respiration in COPD. Importantly, a diminished contribution of CI-driven respiration relative to the metabolically less-efficient CII-driven respiration (CI/CII) was also observed in COPD (Con 1.28 ± 0.09, COPD 0.81 ± 0.05, P < 0.05), which was related to exercise tolerance of the patients (r = 0.64, P < 0.05). Overall, this study indicates that COPD is associated with qualitative alterations in skeletal muscle mitochondria that affect the contribution of CI and CII-driven respiration, which potentially contributes to the exercise intolerance associated with this disease.

  6. Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma †

    PubMed Central

    Lin, Chen-Sung; Lee, Hui-Ting; Lee, Ming-Huei; Pan, Siao-Cian; Ke, Chen-Yeh; Chiu, Allen Wen-Hsiang; Wei, Yau-Huei

    2016-01-01

    We investigated the role of mitochondrial DNA (mtDNA) copy number alteration in human renal cell carcinoma (RCC). The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR). An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM). Null target (NT) and TFAM-knockdown (TFAM-KD) represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1), ND6 and cytochrome c oxidase subunit 2 (COX-2); nuclear DNA (nDNA)-encoded succinate dehydrogenase subunit A (SDHA); v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC)-encoded MYC; glycolytic enzymes including hexokinase II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), and lactate dehydrogenase subunit A (LDHA); and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1), and pyruvate dehydrogenase E1 component α subunit (PDHA1) were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB), were measured by a Seahorse XFe-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043). The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034), lower mRNA levels of TFAM (p = 0.008), ND1 (p = 0.007), and ND6 (p = 0.017), and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0

  7. Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma.

    PubMed

    Lin, Chen-Sung; Lee, Hui-Ting; Lee, Ming-Huei; Pan, Siao-Cian; Ke, Chen-Yeh; Chiu, Allen Wen-Hsiang; Wei, Yau-Huei

    2016-01-01

    We investigated the role of mitochondrial DNA (mtDNA) copy number alteration in human renal cell carcinoma (RCC). The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR). An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM). Null target (NT) and TFAM-knockdown (TFAM-KD) represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1), ND6 and cytochrome c oxidase subunit 2 (COX-2); nuclear DNA (nDNA)-encoded succinate dehydrogenase subunit A (SDHA); v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC)-encoded MYC; glycolytic enzymes including hexokinase II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), and lactate dehydrogenase subunit A (LDHA); and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1), and pyruvate dehydrogenase E1 component α subunit (PDHA1) were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB), were measured by a Seahorse XF(e)-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043). The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034), lower mRNA levels of TFAM (p = 0.008), ND1 (p = 0.007), and ND6 (p = 0.017), and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0

  8. Metabolic Stress and Disorders Related to Alterations in Mitochondrial Fission or Fusion

    PubMed Central

    Babbar, Mansi; Sheikh, M. Saeed

    2014-01-01

    Mitochondrial morphology and metabolism play an important role in cellular homeostasis. Recent studies have shown that the fidelity of mitochondrial morphology is important in maintaining mitochondrial shape, number, size, membrane potential, ATP synthesis, mtDNA, motility, signaling, quality control, response to cellular stress, mitophagy and apoptosis. This article provides an overview of the current state of knowledge of the fission and fusion machinery with a focus on the mechanisms underlying the regulation of the mitochondrial morphology and cellular energy state. Several lines of evidence indicate that dysregulation of mitochondrial fission or fusion is associated with mitochondrial dysfunction, which in turn impacts mitophagy and apoptosis. Metabolic disorders are also associated with dysregulation of fission or fusion and the available lines of evidence point to a bidirectional interplay between the mitochondrial fission or fusion reactions and bioenergetics. Clearly, more in-depth studies are needed to fully elucidate the mechanisms that control mitochondrial fission and fusion. It is envisioned that the outcome of such studies will improve the understanding of the molecular basis of related metabolic disorders and also facilitate the development of better therapeutics. PMID:24533171

  9. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress.

    PubMed

    Boeck, Christina; Koenig, Alexandra Maria; Schury, Katharina; Geiger, Martha Leonie; Karabatsiakis, Alexander; Wilker, Sarah; Waller, Christiane; Gündel, Harald; Fegert, Jörg Michael; Calzia, Enrico; Kolassa, Iris-Tatjana

    2016-09-01

    The experience of maltreatment during childhood is associated with chronic low-grade inflammation in adulthood. However, the molecular mechanisms underlying this pro-inflammatory phenotype remain unclear. Mitochondria were recently found to principally coordinate inflammatory processes via both inflammasome activation and inflammasome-independent pathways. To this end, we hypothesized that alterations in immune cell mitochondrial functioning and oxidative stress might be at the interface between the association of maltreatment experiences during childhood and inflammation. We analyzed pro-inflammatory biomarkers (levels of C-reactive protein, cytokine secretion by peripheral blood mononuclear cells (PBMC) in vitro, PBMC composition, lysophosphatidylcholine levels), serum oxidative stress levels (arginine:citrulline ratio, l-carnitine and acetylcarnitine levels) and mitochondrial functioning (respiratory activity and density of mitochondria in PBMC) in peripheral blood samples collected from 30 women (aged 22-44years) with varying degrees of maltreatment experiences in form of abuse and neglect during childhood. Exposure to maltreatment during childhood was associated with an increased ROS production, higher levels of oxidative stress and an increased mitochondrial activity in a dose-response relationship. Moreover, the increase in mitochondrial activity and ROS production were positively associated with the release of pro-inflammatory cytokines by PBMC. Decreased serum levels of lysophosphatidylcholines suggested higher inflammasome activation with increasing severity of child maltreatment experiences. Together these findings offer preliminary evidence for the association of alterations in immune cell mitochondrial functioning, oxidative stress and the pro-inflammatory phenotype observed in individuals with a history of maltreatment during childhood. The results emphasize that the early prevention of child abuse and neglect warrants more attention, as the

  10. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects.

    PubMed

    Harris, Calliandra B; Chowanadisai, Winyoo; Mishchuk, Darya O; Satre, Mike A; Slupsky, Carolyn M; Rucker, Robert B

    2013-12-01

    Pyrroloquinoline quinone (PQQ) influences energy-related metabolism and neurologic functions in animals. The mechanism of action involves interactions with cell signaling pathways and mitochondrial function. However, little is known about the response to PQQ in humans. Using a crossover study design, 10 subjects (5 females, 5 males) ingested PQQ added to a fruit-flavored drink in two separate studies. In study 1, PQQ was given in a single dose (0.2 mg PQQ/kg). Multiple measurements of plasma and urine PQQ levels and changes in antioxidant potential [based on total peroxyl radical-trapping potential and thiobarbituric acid reactive product (TBAR) assays] were made throughout the period of 48 h. In study 2, PQQ was administered as a daily dose (0.3 mg PQQ/kg). After 76 h, measurements included indices of inflammation [plasma C-reactive protein, interleukin (IL)-6 levels], standard clinical indices (e.g., cholesterol, glucose, high-density lipoprotein, low-density lipoprotein, triglycerides, etc.) and (1)H-nuclear magnetic resonance estimates of urinary metabolites related in part to oxidative metabolism. The standard clinical indices were normal and not altered by PQQ supplementation. However, dietary PQQ exposure (Study 1) resulted in apparent changes in antioxidant potential based on malonaldehyde-related TBAR assessments. In Study 2, PQQ supplementation resulted in significant decreases in the levels of plasma C-reactive protein, IL-6 and urinary methylated amines such as trimethylamine N-oxide, and changes in urinary metabolites consistent with enhanced mitochondria-related functions. The data are among the first to link systemic effects of PQQ in animals to corresponding effects in humans.

  11. Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations.

    PubMed

    Mangum, Joshua E; Hardee, Justin P; Fix, Dennis K; Puppa, Melissa J; Elkes, Johnathon; Altomare, Diego; Bykhovskaya, Yelena; Campagna, Dean R; Schmidt, Paul J; Sendamarai, Anoop K; Lidov, Hart G W; Barlow, Shayne C; Fischel-Ghodsian, Nathan; Fleming, Mark D; Carson, James A; Patton, Jeffrey R

    2016-01-01

    Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1(-/-) animals. Pus1(-/-) mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1(-/-) mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1(-/-) mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1(-/-) mice. PMID:27197761

  12. Microcystic cyanobacteria causes mitochondrial membrane potential alteration and reactive oxygen species formation in primary cultured rat hepatocytes.

    PubMed Central

    Ding, W X; Shen, H M; Shen, Y; Zhu, H G; Ong, C N

    1998-01-01

    Cyanobacteria contamination of water has become a growing public health problem worldwide. Microcystis aeruginosa is one of the most common toxic cyanobacteria. It is capable of producing microcystins, a group of cyclic heptapeptide compounds with potent hepatotoxicity and tumor promotion activity. The present study investigated the effect of microcystic cyanobacteria on primary cultured rat hepatocytes by examining mitochondrial membrane potential (MMP) changes and intracellular reactive oxygen species (ROS) formation in cells treated with lyophilized freshwater microcystic cyanobacteria extract (MCE). Rhodamine 123 (Rh-123) was used as a fluorescent probe for changes in mitochondrial fluorescence intensity. The mitochondrial Rh-123 fluorescence intensity in MCE-treated hepatocytes, examined using a laser confocal microscope, responded in a dose- and time-dependent manner. The results thus indicate that the alteration of MMP might be an important event in the hepatotoxicity caused by cyanobacteria. Moreover, the parallel increase of ROS formation detected using another fluorescent probe, 2',7'-dichlorofluorescin diacetate also suggests the involvement of oxidative stress in the hepatotoxicity caused by cyanobacteria. The fact that MMP changes precede other cytotoxic parameters such as nuclear staining by propidium iodide and cell morphological changes suggests that mitochondrial damage is closely associated with MCE-induced cell injury in cultured rat hepatocytes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9637798

  13. Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations

    PubMed Central

    Mangum, Joshua E.; Hardee, Justin P.; Fix, Dennis K.; Puppa, Melissa J.; Elkes, Johnathon; Altomare, Diego; Bykhovskaya, Yelena; Campagna, Dean R.; Schmidt, Paul J.; Sendamarai, Anoop K.; Lidov, Hart G. W.; Barlow, Shayne C.; Fischel-Ghodsian, Nathan; Fleming, Mark D.; Carson, James A.; Patton, Jeffrey R.

    2016-01-01

    Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1−/− animals. Pus1−/− mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1−/− mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1−/− mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1−/− mice. PMID:27197761

  14. Mitochondrial and cytoskeletal alterations are involved in the pathogenesis of hydronephrosis in ICR/Mlac-hydro mice.

    PubMed

    Isarangkul, Duangnate; Wiyakrutta, Suthep; Kengkoom, Kanchana; Reamtong, Onrapak; Ampawong, Sumate

    2015-01-01

    The pathogenesis of congenital hydronephrosis in laboratory animals has been studied for many years, yet little is known about the underlying mechanism of this disease. In this study, we investigated a MS-based comparative proteomics approach to characterize the differently expressed proteins between kidney tissue samples of ICR/Mlac-hydro and wild-type mice. Interestingly, proteomic results exhibited several mitochondrial protein alterations especially the up-regulation of 60 kDa heat shock protein (Hsp60), stress-70 protein (GRP75) dysfunction, and down-regulation of voltage-dependent anion-selective channel protein 1 (VDAC-1). The results demonstrated that mitochondrial alteration may lead to inadequate energy-supply to maintain normal water reabsorption from the renal tubule, causing hydronephrosis. Moreover, the alteration of cytoskeleton proteins in the renal tubule, in particular the up-regulation of tubulin beta-4B chain (Tb4B) and N-myc downstream-regulated gene 1 protein (Ndr-1) may also be related due to their fundamental roles in maintaining cell morphology and tissue stability. In addition, cytoskeletal alterations may consequence to the reduction of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), cytoplasmic enzyme, which modulates the capacity of structural proteins. Our findings highlight a number of target proteins that may play a crucial role in congenital hydronephrosis and emphasize that the disorder of mitochondria and cytoskeleton proteins may be involved.

  15. Mitochondrial and cytoskeletal alterations are involved in the pathogenesis of hydronephrosis in ICR/Mlac-hydro mice

    PubMed Central

    Isarangkul, Duangnate; Wiyakrutta, Suthep; Kengkoom, Kanchana; Reamtong, Onrapak; Ampawong, Sumate

    2015-01-01

    The pathogenesis of congenital hydronephrosis in laboratory animals has been studied for many years, yet little is known about the underlying mechanism of this disease. In this study, we investigated a MS-based comparative proteomics approach to characterize the differently expressed proteins between kidney tissue samples of ICR/Mlac-hydro and wild-type mice. Interestingly, proteomic results exhibited several mitochondrial protein alterations especially the up-regulation of 60 kDa heat shock protein (Hsp60), stress-70 protein (GRP75) dysfunction, and down-regulation of voltage-dependent anion-selective channel protein 1 (VDAC-1). The results demonstrated that mitochondrial alteration may lead to inadequate energy-supply to maintain normal water reabsorption from the renal tubule, causing hydronephrosis. Moreover, the alteration of cytoskeleton proteins in the renal tubule, in particular the up-regulation of tubulin beta-4B chain (Tb4B) and N-myc downstream-regulated gene 1 protein (Ndr-1) may also be related due to their fundamental roles in maintaining cell morphology and tissue stability. In addition, cytoskeletal alterations may consequence to the reduction of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), cytoplasmic enzyme, which modulates the capacity of structural proteins. Our findings highlight a number of target proteins that may play a crucial role in congenital hydronephrosis and emphasize that the disorder of mitochondria and cytoskeleton proteins may be involved. PMID:26309577

  16. Mitochondrial and cytoskeletal alterations are involved in the pathogenesis of hydronephrosis in ICR/Mlac-hydro mice.

    PubMed

    Isarangkul, Duangnate; Wiyakrutta, Suthep; Kengkoom, Kanchana; Reamtong, Onrapak; Ampawong, Sumate

    2015-01-01

    The pathogenesis of congenital hydronephrosis in laboratory animals has been studied for many years, yet little is known about the underlying mechanism of this disease. In this study, we investigated a MS-based comparative proteomics approach to characterize the differently expressed proteins between kidney tissue samples of ICR/Mlac-hydro and wild-type mice. Interestingly, proteomic results exhibited several mitochondrial protein alterations especially the up-regulation of 60 kDa heat shock protein (Hsp60), stress-70 protein (GRP75) dysfunction, and down-regulation of voltage-dependent anion-selective channel protein 1 (VDAC-1). The results demonstrated that mitochondrial alteration may lead to inadequate energy-supply to maintain normal water reabsorption from the renal tubule, causing hydronephrosis. Moreover, the alteration of cytoskeleton proteins in the renal tubule, in particular the up-regulation of tubulin beta-4B chain (Tb4B) and N-myc downstream-regulated gene 1 protein (Ndr-1) may also be related due to their fundamental roles in maintaining cell morphology and tissue stability. In addition, cytoskeletal alterations may consequence to the reduction of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), cytoplasmic enzyme, which modulates the capacity of structural proteins. Our findings highlight a number of target proteins that may play a crucial role in congenital hydronephrosis and emphasize that the disorder of mitochondria and cytoskeleton proteins may be involved. PMID:26309577

  17. Alteration of ROS homeostasis and decreased lifespan in S. cerevisiae elicited by deletion of the mitochondrial translocator FLX1.

    PubMed

    Giancaspero, Teresa Anna; Dipalo, Emilia; Miccolis, Angelica; Boles, Eckhard; Caselle, Michele; Barile, Maria

    2014-01-01

    This paper deals with the control exerted by the mitochondrial translocator FLX1, which catalyzes the movement of the redox cofactor FAD across the mitochondrial membrane, on the efficiency of ATP production, ROS homeostasis, and lifespan of S. cerevisiae. The deletion of the FLX1 gene resulted in respiration-deficient and small-colony phenotype accompanied by a significant ATP shortage and ROS unbalance in glycerol-grown cells. Moreover, the flx1Δ strain showed H2O2 hypersensitivity and decreased lifespan. The impaired biochemical phenotype found in the flx1Δ strain might be justified by an altered expression of the flavoprotein subunit of succinate dehydrogenase, a key enzyme in bioenergetics and cell regulation. A search for possible cis-acting consensus motifs in the regulatory region upstream SDH1-ORF revealed a dozen of upstream motifs that might respond to induced metabolic changes by altering the expression of Flx1p. Among these motifs, two are present in the regulatory region of genes encoding proteins involved in flavin homeostasis. This is the first evidence that the mitochondrial flavin cofactor status is involved in controlling the lifespan of yeasts, maybe by changing the cellular succinate level. This is not the only case in which the homeostasis of redox cofactors underlies complex phenotypical behaviours, as lifespan in yeasts. PMID:24895546

  18. Alteration of ROS Homeostasis and Decreased Lifespan in S. cerevisiae Elicited by Deletion of the Mitochondrial Translocator FLX1

    PubMed Central

    Giancaspero, Teresa Anna; Dipalo, Emilia; Miccolis, Angelica; Boles, Eckhard; Caselle, Michele; Barile, Maria

    2014-01-01

    This paper deals with the control exerted by the mitochondrial translocator FLX1, which catalyzes the movement of the redox cofactor FAD across the mitochondrial membrane, on the efficiency of ATP production, ROS homeostasis, and lifespan of S. cerevisiae. The deletion of the FLX1 gene resulted in respiration-deficient and small-colony phenotype accompanied by a significant ATP shortage and ROS unbalance in glycerol-grown cells. Moreover, the flx1Δ strain showed H2O2 hypersensitivity and decreased lifespan. The impaired biochemical phenotype found in the flx1Δ strain might be justified by an altered expression of the flavoprotein subunit of succinate dehydrogenase, a key enzyme in bioenergetics and cell regulation. A search for possible cis-acting consensus motifs in the regulatory region upstream SDH1-ORF revealed a dozen of upstream motifs that might respond to induced metabolic changes by altering the expression of Flx1p. Among these motifs, two are present in the regulatory region of genes encoding proteins involved in flavin homeostasis. This is the first evidence that the mitochondrial flavin cofactor status is involved in controlling the lifespan of yeasts, maybe by changing the cellular succinate level. This is not the only case in which the homeostasis of redox cofactors underlies complex phenotypical behaviours, as lifespan in yeasts. PMID:24895546

  19. Number and Brightness analysis of alpha-synuclein oligomerization and the associated mitochondrial morphology alterations in live cells

    PubMed Central

    Plotegher, N.; Gratton, E.; Bubacco, L.

    2014-01-01

    Background Alpha-synuclein oligomerization is associated to Parkinson's disease etiopathogenesis. The study of alpha-synuclein oligomerization properties in live cell and the definition of their effects on cellular viability are among fields expected to provide the knowledge required to unravel the mechanism(s) of toxicity that lead to the disease. Methods We used Number and Brightness method, which is a method based on fluorescence fluctuation analysis, to monitor alpha-synuclein tagged with EGFP aggregation in living SH-SY5Y cells. The presence of alpha-synuclein oligomers detected with this method was associated with intracellular structure conditions, evaluated by fluorescence confocal imaging. Results Cells overexpressing alpha-synuclein-EGFP present a heterogeneous ensemble of oligomers constituted by less than 10 monomers, when the protein approaches a threshold concentration value of about 90 nM in the cell cytoplasm. We show that the oligomeric species are partially sequestered by lysosomes and that the mitochondria morphology is altered in cells presenting oligomers, suggesting that these mitochondria may be dysfunctional. Conclusions We showed that alpha-synuclein overexpression in SH-SY5Y causes the formation of alpha-synuclein oligomeric species, whose presence is associated with mitochondrial fragmentation and autophagic-lysosomal pathway activation in live cells. General significance The unique capability provided by the Number and Brightness analysis to study alpha-synuclein oligomers distribution and properties, and the study their association to intracellular components in single live cells is important to forward our understanding of the molecular mechanisms Parkinson’s disease and it may be of general significance when applied to the study of other aggregating proteins in cellular models. PMID:24561157

  20. Alteration of mitochondrial efficiency affects oxidative balance, development and growth in frog (Rana temporaria) tadpoles.

    PubMed

    Salin, Karine; Luquet, Emilien; Rey, Benjamin; Roussel, Damien; Voituron, Yann

    2012-03-01

    Mitochondria are known to play a central role in life history processes, being the main source of reactive oxygen species (ROS), which promote oxidative constraint. Surprisingly, although the main role of the mitochondria is to produce ATP, the plasticity of mitochondrial ATP generation has received little attention in life history studies. Yet, mitochondrial energy transduction represents the physiological link between environmental resources and energy allocated to animal performance. Studying both facets of mitochondrial functioning (ATP and ROS production) would allow better understanding of the proximate mechanisms underlying life history. We have experimentally modulated the mitochondrial capacity to generate ROS and ATP during larval development of Rana temporaria tadpoles, via chronic exposure (34 days) to a mitochondrial uncoupler (2,4-dinitrophenol, dNP). The aim was to better understand the impact of mitochondrial uncoupling on both responses in terms of oxidative balance, energy input (oxygen and feeding consumption) and energy output (growth and development of the tadpole). Exposure to 2,4-dNP reduced mitochondrial ROS generation, total antioxidant defences and oxidative damage in treated tadpoles compared with controls. Despite the beneficial effect of dNP on oxidative status, development and growth rates of treated tadpoles were lower than those in the control group. Treatment of tadpoles with 2,4-dNP promoted a mild mitochondrial uncoupling and enhanced metabolic rate. These tadpoles did not increase their food consumption, and thus failed to compensate for the energy loss elicited by the decrease in the efficiency of ATP production. These data suggest that the cost of ATP production, rather than the oxidative balance, is the parameter that constrains growth/development of tadpoles, highlighting the central role of energy transduction in larval performance. PMID:22323209

  1. Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model.

    PubMed

    Charli, Adhithiya; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2016-03-01

    Tebufenpyrad and pyridaben are two agro-chemically important acaricides that function like the known mitochondrial toxicant rotenone. Although these two compounds have been commonly used to kill populations of mites and ticks in commercial greenhouses, their neurotoxic profiles remain largely unknown. Therefore, we investigated the effects of these two pesticides on mitochondrial structure and function in an in vitro cell culture model using the Seahorse bioanalyzer and confocal fluorescence imaging. The effects were compared with rotenone. Exposing rat dopaminergic neuronal cells (N27 cells) to tebufenpyrad and pyridaben for 3h induced dose-dependent cell death with an EC50 of 3.98μM and 3.77μM, respectively. Also, tebufenpyrad and pyridaben (3μM) exposure induced reactive oxygen species (ROS) generation and m-aconitase damage, suggesting that the pesticide toxicity is associated with oxidative damage. Morphometric image analysis with the MitoTracker red fluorescent probe indicated that tebufenpyrad and pyridaben, as well as rotenone, caused abnormalities in mitochondrial morphology, including reduced mitochondrial length and circularity. Functional bioenergetic experiments using the Seahorse XF96 analyzer revealed that tebufenpyrad and pyridaben very rapidly suppressed the basal mitochondrial oxygen consumption rate similar to that of rotenone. Further analysis of bioenergetic curves also revealed dose-dependent decreases in ATP-linked respiration and respiratory capacity. The luminescence-based ATP measurement further confirmed that pesticide-induced mitochondrial inhibition of respiration is accompanied by the loss of cellular ATP. Collectively, our results suggest that exposure to the pesticides tebufenpyrad and pyridaben induces neurotoxicity by rapidly initiating mitochondrial dysfunction and oxidative damage in dopaminergic neuronal cells. Our findings also reveal that monitoring the kinetics of mitochondrial respiration with Seahorse could be used as an

  2. Mitochondrial Alterations in Peripheral Mononuclear Blood Cells from Alzheimer's Disease and Mild Cognitive Impairment Patients

    PubMed Central

    Delbarba, A.; Abate, G.; Prandelli, C.; Marziano, M.; Buizza, L.; Arce Varas, N.; Novelli, A.; Cuetos, F.; Martinez, C.; Lanni, C.; Memo, M.; Uberti, D.

    2016-01-01

    It is well recognized that mitochondrial dysfunction contributes to neurodegeneration occurring in Alzheimer's disease (AD). However, evidences of mitochondrial defects in AD peripheral cells are still inconclusive. Here, some mitochondrial-encoded and nuclear-encoded proteins, involved in maintaining the correct mitochondria machine, were investigated in terms of protein expression and enzymatic activity in peripheral blood mononuclear cells (PBMCs) isolated from AD and Mild Cognitive Impairment (MCI) patients and healthy subjects. In addition mitochondrial DNA copy number was measured by real time PCR. We found some differences and some similarities between AD and MCI patients when compared with healthy subjects. For example, cytochrome C and cytochrome B were decreased in AD, while MCI showed only a statistical reduction of cytochrome C. On the other hand, both AD and MCI blood cells exhibited highly nitrated MnSOD, index of a prooxidant environment inside the mitochondria. TFAM, a regulator of mitochondrial genome replication and transcription, was decreased in both AD and MCI patients' blood cells. Moreover also the mitochondrial DNA amount was reduced in PBMCs from both patient groups. In conclusion these data confirmed peripheral mitochondria impairment in AD and demonstrated that TFAM and mtDNA amount reduction could be two features of early events occurring in AD pathogenesis. PMID:26881032

  3. Paraoxonase 2 Deficiency Alters Mitochondrial Function and Exacerbates the Development of Atherosclerosis

    PubMed Central

    Devarajan, Asokan; Bourquard, Noam; Hama, Susan; Navab, Mohamad; Grijalva, Victor R.; Morvardi, Susan; Clarke, Catherine F.; Vergnes, Laurent; Reue, Karen; Teiber, John F.

    2011-01-01

    Abstract Increased production of reactive oxygen species (ROS) as a result of decreased activities of mitochondrial electron transport chain (ETC) complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. Our previous studies established that paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. The aim of the present study was to determine the mechanism by which PON2 modulates ROS production. In this report, we demonstrate that PON2-def mice on the hyperlipidemic apolipoprotein E−/− background (PON2-def/apolipoprotein E−/−) develop exacerbated atherosclerotic lesions with enhanced mitochondrial oxidative stress. We show that PON2 protein is localized to the inner mitochondrial membrane, where it is found associated with respiratory complex III. Employing surface-plasmon-resonance, we demonstrate that PON2 binds with high affinity to coenzyme Q10, an important component of the ETC. Enhanced mitochondrial oxidative stress in PON2-def mice was accompanied by significantly reduced ETC complex I + III activities, oxygen consumption, and adenosine triphosphate levels in PON2-def mice. In contrast, overexpression of PON2 effectively protected mitochondria from antimycin- or oligomycin-mediated mitochondrial dysfunction. Our results illustrate that the antiatherogenic effects of PON2 are, in part, mediated by the role of PON2 in mitochondrial function. Antioxid. Redox Signal. 14, 341–351. PMID:20578959

  4. Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related Pathology and in Parkinson Disease.

    PubMed

    Blanch, Marta; Mosquera, Jose Luis; Ansoleaga, Belén; Ferrer, Isidre; Barrachina, Marta

    2016-02-01

    Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states. PMID:26776077

  5. Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related Pathology and in Parkinson Disease.

    PubMed

    Blanch, Marta; Mosquera, Jose Luis; Ansoleaga, Belén; Ferrer, Isidre; Barrachina, Marta

    2016-02-01

    Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states.

  6. Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics.

    PubMed

    Tjalkens, Ronald B; Zoran, Mark J; Mohl, Brianne; Barhoumi, Roula

    2006-10-01

    The neurotoxicity of manganese [Mn] is due in part to glutamate excitotoxicity. Release of ATP by astrocytes is a critical modulator of glutamatergic neurotransmission, which is regulated by calcium (Ca(2+)) waves that propagate through astrocytic networks in response to synaptic activity. It was postulated that Mn alters ATP-dependent intracellular Ca(2+) dynamics in astrocytes, thereby suppressing Ca(2+) wave activity. Confluent primary cultures of cortical astrocytes were loaded with the Ca(2+)-sensitive dye fluo-4 and examined by fluorescence microscopy for Ca(2+) wave activity following micropipet mechanical stimulation of a single cell. Mitochondrial Ca(2+) was evaluated by fluorescence microscopy following addition of ATP using the mitochondrial-specific Ca(2+) dye rhod-2-AM. Imaging studies revealed that pretreatment of astrocytes with 1-10 microM Mn significantly reduced the rate, area, and amplitude of mechanically induced Ca(2+) waves. This attenuation was not a result of inhibited mitochondrial calcium uptake because robust calcium waves were still observed following pretreatment of astrocytes with Ru360, an inhibitor of mitochondrial Ca(2+) uptake, either in coupling or uncoupling conditions. However, determination of endoplasmic reticulum (ER) Ca(2+) levels in cells using the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin indicated that Mn reduced the available pool of releasable ER Ca(2+) at concentrations as low as 1 muM. Examination of ATP-stimulated changes in mitochondrial Ca(2+) indicated that, in cells pretreated with Mn, mitochondria retained high levels of Ca(2+). It is concluded that exposure of astrocytes to low concentrations of Mn(2+) results in sequestration of Ca(2+) within the mitochondria that reduces the available pool of releasable Ca(2+) within the ER, thereby inhibiting calcium wave activity. PMID:16934782

  7. Mitochondrial Bioenergetic Alterations in Mouse Neuroblastoma Cells Infected with Sindbis Virus: Implications to Viral Replication and Neuronal Death

    PubMed Central

    Silva da Costa, Leandro; Pereira da Silva, Ana Paula; Da Poian, Andrea T.; El-Bacha, Tatiana

    2012-01-01

    The metabolic resources crucial for viral replication are provided by the host. Details of the mechanisms by which viruses interact with host metabolism, altering and recruiting high free-energy molecules for their own replication, remain unknown. Sindbis virus, the prototype of and most widespread alphavirus, causes outbreaks of arthritis in humans and serves as a model for the study of the pathogenesis of neurological diseases induced by alphaviruses in mice. In this work, respirometric analysis was used to evaluate the effects of Sindbis virus infection on mitochondrial bioenergetics of a mouse neuroblastoma cell lineage, Neuro 2a. The modulation of mitochondrial functions affected cellular ATP content and this was synchronous with Sindbis virus replication cycle and cell death. At 15 h, irrespective of effects on cell viability, viral replication induced a decrease in oxygen consumption uncoupled to ATP synthesis and a 36% decrease in maximum uncoupled respiration, which led to an increase of 30% in the fraction of oxygen consumption used for ATP synthesis. Decreased proton leak associated to complex I respiration contributed to the apparent improvement of mitochondrial function. Cellular ATP content was not affected by infection. After 24 h, mitochondria dysfunction was clearly observed as maximum uncoupled respiration reduced 65%, along with a decrease in the fraction of oxygen consumption used for ATP synthesis. Suppressed respiration driven by complexes I- and II-related substrates seemed to play a role in mitochondrial dysfunction. Despite the increase in glucose uptake and glycolytic flux, these changes were followed by a 30% decrease in ATP content and neuronal death. Taken together, mitochondrial bioenergetics is modulated during Sindbis virus infection in such a way as to favor ATP synthesis required to support active viral replication. These early changes in metabolism of Neuro 2a cells may form the molecular basis of neuronal dysfunction and Sindbis

  8. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems?

    PubMed

    Allen, James W A; Jackson, Andrew P; Rigden, Daniel J; Willis, Antony C; Ferguson, Stuart J; Ginger, Michael L

    2008-05-01

    Mitochondrial cytochromes c and c(1) are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c-type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post-translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c-type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c-type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto-mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi-heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic-specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c-type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme-binding motif. The isolation of single-cysteine-containing mitochondrial cytochromes c from free-living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment

  9. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus).

    PubMed

    Du, Sherry N N; Mahalingam, Sajeni; Borowiec, Brittney G; Scott, Graham R

    2016-04-15

    Many fish encounter hypoxia in their native environment, but the role of mitochondrial physiology in hypoxia acclimation and hypoxia tolerance is poorly understood. We investigated the effects of hypoxia acclimation on mitochondrial respiration, O2kinetics, emission of reactive oxygen species (ROS), and antioxidant capacity in the estuarine killifish ( ITALIC! Fundulus heteroclitus). Killifish were acclimated to normoxia, constant hypoxia (5 kPa O2) or intermittent diel cycles of nocturnal hypoxia (12 h:12 h normoxia:hypoxia) for 28-33 days and mitochondria were isolated from liver. Neither pattern of hypoxia acclimation affected the respiratory capacities for oxidative phosphorylation or electron transport, leak respiration, coupling control or phosphorylation efficiency. Hypoxia acclimation also had no effect on mitochondrial O2kinetics, but ITALIC! P50(the O2tension at which hypoxia inhibits respiration by 50%) was lower in the leak state than during maximal respiration, and killifish mitochondria endured anoxia-reoxygenation without any impact on mitochondrial respiration. However, both patterns of hypoxia acclimation reduced the rate of ROS emission from mitochondria when compared at a common O2tension. Hypoxia acclimation also increased the levels of protein carbonyls and the activities of superoxide dismutase and catalase in liver tissue (the latter only occurred in constant hypoxia). Our results suggest that hypoxia acclimation is associated with changes in mitochondrial physiology that decrease ROS production and may help improve hypoxia tolerance. PMID:26896545

  10. Analysis of Nuclear Mitochondrial DNA Segments of Nine Plant Species: Size, Distribution, and Insertion Loci

    PubMed Central

    Ko, Young-Joon

    2016-01-01

    Nuclear mitochondrial DNA segment (Numt) insertion describes a well-known phenomenon of mitochondrial DNA transfer into a eukaryotic nuclear genome. However, it has not been well understood, especially in plants. Numt insertion patterns vary from species to species in different kingdoms. In this study, the patterns were surveyed in nine plant species, and we found some tip-offs. First, when the mitochondrial genome size is relatively large, the portion of the longer Numt is also larger than the short one. Second, the whole genome duplication event increases the ratio of the shorter Numt portion in the size distribution. Third, Numt insertions are enriched in exon regions. This analysis may be helpful for understanding plant evolution. PMID:27729838

  11. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells

    SciTech Connect

    Raza, Haider John, Annie; Brown, Eric M.; Benedict, Sheela; Kambal, Amr

    2008-01-15

    Cellular oxidative stress and alterations in redox metabolisms have been implicated in the etiology and pathology of many diseases including cancer. Antioxidant treatments have been proven beneficial in controlling these diseases. We have recently shown that 4-hydroxynonenal (4-HNE), a by-product of lipid peroxidation, induces oxidative stress in PC12 cells by compromising the mitochondrial redox metabolism. In this study, we have further investigated the deleterious effects of 4-HNE on mitochondrial respiratory functions and apoptosis using the same cell line. In addition, we have also compared the effects of two antioxidants, curcumin and melatonin, used as chemopreventive agents, on mitochondrial redox metabolism and respiratory functions in these cells. 4-HNE treatment has been shown to cause a reduction in glutathione (GSH) pool, an increase in reactive oxygen species (ROS), protein carbonylation and apoptosis. A marked inhibition in the activities of the mitochondrial respiratory enzymes, cytochrome c oxidase and aconitase was observed after 4-HNE treatment. Increased nuclear translocation of NF-kB/p65 protein was also observed after 4-HNE treatment. Curcumin and melatonin treatments, on the other hand, maintained the mitochondrial redox and respiratory functions without a marked effect on ROS production and cell viability. These results suggest that 4-HNE-induced cytotoxicity may be associated, at least in part, with the altered mitochondrial redox and respiratory functions. The alterations in mitochondrial energy metabolism and redox functions may therefore be critical in determining the difference between cell death and survival.

  12. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells.

    PubMed

    Raza, Haider; John, Annie; Brown, Eric M; Benedict, Sheela; Kambal, Amr

    2008-01-15

    Cellular oxidative stress and alterations in redox metabolisms have been implicated in the etiology and pathology of many diseases including cancer. Antioxidant treatments have been proven beneficial in controlling these diseases. We have recently shown that 4-hydroxynonenal (4-HNE), a by-product of lipid peroxidation, induces oxidative stress in PC12 cells by compromising the mitochondrial redox metabolism. In this study, we have further investigated the deleterious effects of 4-HNE on mitochondrial respiratory functions and apoptosis using the same cell line. In addition, we have also compared the effects of two antioxidants, curcumin and melatonin, used as chemopreventive agents, on mitochondrial redox metabolism and respiratory functions in these cells. 4-HNE treatment has been shown to cause a reduction in glutathione (GSH) pool, an increase in reactive oxygen species (ROS), protein carbonylation and apoptosis. A marked inhibition in the activities of the mitochondrial respiratory enzymes, cytochrome c oxidase and aconitase was observed after 4-HNE treatment. Increased nuclear translocation of NF-kB/p65 protein was also observed after 4-HNE treatment. Curcumin and melatonin treatments, on the other hand, maintained the mitochondrial redox and respiratory functions without a marked effect on ROS production and cell viability. These results suggest that 4-HNE-induced cytotoxicity may be associated, at least in part, with the altered mitochondrial redox and respiratory functions. The alterations in mitochondrial energy metabolism and redox functions may therefore be critical in determining the difference between cell death and survival. PMID:17935746

  13. Tyrosine kinase inhibition in leukemia induces an altered metabolic state sensitive to mitochondrial perturbations

    PubMed Central

    Alvarez-Calderon, Francesca; Gregory, Mark A.; Pham-Danis, Catherine; DeRyckere, Deborah; Stevens, Brett M.; Zaberezhnyy, Vadym; Hill, Amanda A.; Gemta, Lelisa; Kumar, Amit; Kumar, Vijay; Wempe, Michael F.; Pollyea, Daniel A.; Jordan, Craig T.; Serkova, Natalie J.; Graham, Douglas K.; DeGregori, James

    2015-01-01

    Purpose Although tyrosine kinase inhibitors (TKI) can be effective therapies for leukemia, they fail to fully eliminate leukemic cells and achieve durable remissions for many patients with advanced BCR-ABL+ leukemias or acute myeloid leukemias (AML). Through a large-scale synthetic lethal RNAi screen, we identified pyruvate dehydrogenase, the limiting enzyme for pyruvate entry into the mitochondrial tricarboxylic acid cycle, as critical for the survival of chronic myeloid leukemia cells upon BCR-ABL inhibition. Here we examined the role of mitochondrial metabolism in the survival of Ph+ leukemia and AML upon TK inhibition. Experimental Design Ph+ cancer cell lines, AML cell lines, leukemia xenografts, cord blood, patient samples were examined. Results We showed that the mitochondrial ATP-synthase inhibitor oligomycin-A greatly sensitized leukemia cells to TKI in vitro. Surprisingly, oligomycin-A sensitized leukemia cells to BCR-ABL inhibition at concentrations 100–1000-fold below those required for inhibition of respiration. Oligomycin-A treatment rapidly led to mitochondrial membrane depolarization and reduced ATP levels, and promoted superoxide production and leukemia cell apoptosis when combined with TKI. Importantly, oligomycin-A enhanced elimination of BCR-ABL+ leukemia cells by TKI in a mouse model and in primary blast crisis CML samples. Moreover, oligomycin-A also greatly potentiated the elimination of FLT3-dependent AML cells when combined with a FLT3 TKI, both in vitro and in vivo. Conclusions TKI therapy in leukemia cells creates a novel metabolic state that is highly sensitive to particular mitochondrial perturbations. Targeting mitochondrial metabolism as an adjuvant therapy could therefore improve therapeutic responses to TKI for patients with BCR-ABL+ and FLT3ITD leukemias. PMID:25547679

  14. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  15. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production.

    PubMed

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-03-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis.

  16. The distribution and apoptotic function of outer membrane proteins depend on mitochondrial fusion

    PubMed Central

    Weaver, David; Eisner, Verónica; Liu, Xingguo; Várnai, Péter; Hunyady, László; Gross, Atan; Hajnóczky, György

    2014-01-01

    Summary Cells deficient in mitochondrial fusion have been shown to have defects linked to the exchange of innermembrane and matrix components. Because outer-mitochondrial membrane (OMM) constituents insert directly from the cytoplasm, a role for fusion in their inter-mitochondrial transfer was unanticipated. Here we show that fibroblasts lacking the GTPases responsible for OMM fusion, Mitofusins1/2 (MFN1/2), display more heterogeneous distribution of OMM proteins. Proteins with different modes of OMM association display varying degrees of heterogeneity in Mfn1/2−/− cells and different kinetics of transfer during fusion in fusion-competent cells. Pro-apoptotic Bak exhibits marked heterogeneity, which is normalized upon expression of MFN2. Bak is critical for Bid-induced OMM permeabilization and cytochrome c release and Mfn1/2−/− cells show dysregulation of Bid-dependent apoptotic signaling. Bid sensitivity of Bak-deficient mitochondria is regained upon fusion with Bak-containing mitochondria. Thus, OMM protein distribution depends on mitochondrial fusion and is a locus of apoptotic dysfunction in conditions of fusion deficiency. PMID:24813948

  17. Alteration of mitochondrial oxidative phosphorylation in aged skeletal muscle involves modification of adenine nucleotide translocator.

    PubMed

    Gouspillou, Gilles; Bourdel-Marchasson, Isabelle; Rouland, Richard; Calmettes, Guillaume; Franconi, Jean-Michel; Deschodt-Arsac, Véronique; Diolez, Philippe

    2010-02-01

    The process of skeletal muscle aging is characterized by a progressive loss of muscle mass and functionality. The underlying mechanisms are highly complex and remain unclear. This study was designed to further investigate the consequences of aging on mitochondrial oxidative phosphorylation in rat gastrocnemius muscle, by comparing young (6 months) and aged (21 months) rats. Maximal oxidative phosphorylation capacity was clearly reduced in older rats, while mitochondrial efficiency was unaffected. Inner membrane properties were unaffected in aged rats since proton leak kinetics were identical to young rats. Application of top-down control analysis revealed a dysfunction of the phosphorylation module in older rats, responsible for a dysregulation of oxidative phosphorylation under low activities close to in vivo ATP turnover. This dysregulation is responsible for an impaired mitochondrial response toward changes in cellular ATP demand, leading to a decreased membrane potential which may in turn affect ROS production and ion homeostasis. Based on our data, we propose that modification of ANT properties with aging could partly explain these mitochondrial dysfunctions.

  18. Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing

    PubMed Central

    Ohtani, Kouhei; Yamamoto, Hiroyuki; Akimitsu, Kazuya

    2002-01-01

    Specificity in the interaction between rough lemon (Citrus jambhiri Lush.) and the fungal pathogen Alternaria alternata rough lemon pathotype is determined by a host-selective toxin, ACR-toxin. Mitochondria from rough lemon are sensitive to ACR-toxin whereas mitochondria from resistant plants, including other citrus species, are resistant. We have identified a C. jambhiri mitochondrial DNA sequence, designated ACRS (ACR-toxin sensitivity gene), that confers toxin sensitivity to Escherichia coli. ACRS is located in the group II intron of the mitochondrial tRNA-Ala and is translated into a SDS-resistant oligomeric protein in C. jambhiri mitochondria but is not translated in the toxin-insensitive mitochondria. ACRS is present in the mitochondrial genome of both toxin-sensitive and -insensitive citrus. However, in mitochondria of toxin-insensitive plants, the transcripts from ACRS are shorter than those in mitochondria of sensitive plants. These results demonstrate that sensitivity to ACR-toxin and hence specificity of the interaction between A. alternata rough lemon pathotype and C. jambhiri is due to differential posttranscriptional processing of a mitochondrial gene. PMID:11842194

  19. Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells

    PubMed Central

    Doczi, Judit; Torocsik, Beata; Echaniz-Laguna, Andoni; Mousson de Camaret, Bénédicte; Starkov, Anatoly; Starkova, Natalia; Gál, Aniko; Molnár, Mária J; Kawamata, Hibiki; Manfredi, Giovanni; Adam-Vizi, Vera; Chinopoulos, Christos

    2016-01-01

    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT’s voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the ‘thinness ratio’ and the ‘cobalt-calcein’ technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca2+ levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient. PMID:27221760

  20. Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells.

    PubMed

    Doczi, Judit; Torocsik, Beata; Echaniz-Laguna, Andoni; Mousson de Camaret, Bénédicte; Starkov, Anatoly; Starkova, Natalia; Gál, Aniko; Molnár, Mária J; Kawamata, Hibiki; Manfredi, Giovanni; Adam-Vizi, Vera; Chinopoulos, Christos

    2016-01-01

    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient. PMID:27221760

  1. Gestational Diabetes Is Characterized by Reduced Mitochondrial Protein Expression and Altered Calcium Signaling Proteins in Skeletal Muscle

    PubMed Central

    Boyle, Kristen E.; Hwang, Hyonson; Janssen, Rachel C.; DeVente, James M.; Barbour, Linda A.; Hernandez, Teri L.; Mandarino, Lawrence J.; Lappas, Martha; Friedman, Jacob E.

    2014-01-01

    The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (−60–75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum. PMID:25216282

  2. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  3. Homologs of mitochondrial transcription factor B, sparsely distributed within the eukaryotic radiation, are likely derived from the dimethyladenosine methyltransferase of the mitochondrial endosymbiont.

    PubMed

    Shutt, Timothy E; Gray, Michael W

    2006-06-01

    Mitochondrial transcription factor B (mtTFB), an essential component in regulating the expression of mitochondrial DNA-encoded genes in both yeast and humans, is a dimethyladenosine methyltransferase (DMT) that has acquired a secondary role in mitochondrial transcription. So far, mtTFB has only been well studied in Opisthokonta (metazoan animals and fungi). Here we investigate the phylogenetic distribution of mtTFB homologs throughout the domain Eucarya, documenting the first examples of this protein outside of the opisthokonts. Surprisingly, we identified putative mtTFB homologs only in amoebozoan protists and trypanosomatids. Phylogenetic analysis together with conservation of intron positions in amoebozoan and human genes supports the grouping of the putative mtTFB homologs as a distinct clade. Phylogenetic analysis further demonstrates that the mtTFB is most likely derived from the DMT of the mitochondrial endosymbiont.

  4. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism.

  5. Selection for high and low oxygen consumption altered hepatic mitochondrial energy efficiency in mice.

    PubMed

    Hong, Yu; Ardiyanti, Astrid; Kikusato, Motoi; Shimazu, Tomoyuki; Toyomizu, Masaaki; Suzuki, Keiichi

    2015-09-01

    Selection for high (H) and low (L) oxygen consumption (OC) as an indirect estimation of maintenance energy requirement was determined. Feed intake and body weight were measured and feed conversion ratio (FCR) of 4-8-week-old mice was calculated. Respiratory activity of hepatic mitochondria was measured at 12 weeks. Total feed intake (H: 103.74 g, L: 97.92 g, P < 0.01), daily feed intake (H: 3.70 g/day, L: 3.50 g/day, P < 0.01) and FCR (H: 18.79, L: 15.50, P < 0.01) were significantly different between lines. The line by sex interaction was significant for FCR. No line differences were observed in males; and the FCR of the H line was greater than in the L line in females. H line mice had the highest hepatic mitochondrial respiratory activity in state 2 (P < 0.01), the highest uncoupled respiratory rate of mitochondria in the presence of an uncoupling agent (P < 0.001), and the mitochondrial proton leak. The adenosine diphosphate/ O ratio was highest in the L line (P < 0.05). This suggests that the selection for high and low OC induced differences in basal mitochondrial respiration and basal metabolism, resulting in difference in FCR between H and L lines.

  6. Parasite altered micro-distribution of Gammarus pulex (Crustacea: Amphipoda).

    PubMed

    MacNeil, Calum; Fielding, Nina J; Hume, Kevin D; Dick, Jaimie T A; Elwood, Robert W; Hatcher, Melanie J; Dunn, Alison M

    2003-01-01

    In a river survey, Gammarus pulex amphipods both unparasitised and parasitised with the acanthocephalan Echinorhynchus truttae were distributed similarly with respect to flow regimen, tending to be more abundant in faster, shallower, riffle patches. However, there was a higher prevalence of parasitism in faster, shallower areas than in slower, deeper areas and abundance correlated with macrophyte coverage for unparasitised but not parasitised amphipods, indicating subtle differences in habitat usage. A laboratory 'patch' simulation indicated that parasitism influenced micro-distribution. There were higher proportions of unparasitised amphipods in/under stone substrates and within weed. In contrast, there were higher proportions of parasitised amphipods in the water column and at the water surface. As the experiment progressed, unparasitised but not parasitised amphipod habitat usage shifted from those micro-habitats above the substrate and in the water column to those in/under the substrates. Experiments also demonstrated that parasitised amphipods were more active and had a greater preference for illumination. Previous studies of the effects of acanthocephalan parasitism of amphipod hosts have focussed on how drift behaviour is altered, now we show that subtle differences in micro-habitat usage could translate to greatly increased vulnerability to fish predation. We discuss how aggregation of parasitised individuals within specific habitats could promote parasite transmission. PMID:12547346

  7. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy.

    PubMed Central

    Sepp, R.; Severs, N. J.; Gourdie, R. G.

    1996-01-01

    OBJECTIVE: To examine the distribution pattern of intercellular junctions (the mechanically coupling desmosomes and the electrically coupling gap junctions) in hypertrophic cardiomyopathy (HCM) hearts showing myofibre disarray. DESIGN: Samples from six necropsied hearts were studied, representing the interventricular septum and the free walls of the left and right ventricles. Immunohistochemical labelling of desmoplakin was used as a marker for desmosomes, and of connexin43 as a marker for gap junctions, in single and double stainings. The slides were examined by confocal laser scanning microscopy. RESULTS: Marked disorganisation of intercalated discs was observed in areas featuring myofibre disarray. Besides overall derangement, localised abnormalities in desmosome organisation were evident, which included: (1) the formation of abnormally enlarged megadiscs; (2) the presence of intersecting disc structures; and (3) aberrant side to side desmosomal connections. Gap junctional abnormalities included: (1) random distribution of gap junctions over the surface of myocytes, rather than localisation to intercalated discs; (2) abundant side to side gap junction connections between adjacent myocytes; and (3) formation of abnormally shaped gap junctions. Circles of myocytes continuously interconnected by gap junctions were also observed. Regions of the diseased hearts lacking myofibre disarray, and control hearts of normal patients and patients with other cardiac diseases, did not show these alterations. CONCLUSIONS: The disorganisation of the intercellular junctions associated with myofibre disarray in HCM may play an important role in the pathophysiological manifestations of the disease. The remodelling of gap junction distribution may underlie the formation of an arrhythmogenic substrate, thereby contributing to the generation and maintenance of cardiac arrhythmias associated with HCM. Images PMID:8944586

  8. Regulation of mitochondrial ceramide distribution by members of the BCL-2 family[S

    PubMed Central

    Zhang, Tejia; Barclay, Lauren; Walensky, Loren D.; Saghatelian, Alan

    2015-01-01

    Apoptosis is an intricately regulated cellular process that proceeds through different cell type- and signal-dependent pathways. In the mitochondrial apoptotic program, mitochondrial outer membrane permeabilization by BCL-2 proteins leads to the release of apoptogenic factors, caspase activation, and cell death. In addition to protein components of the mitochondrial apoptotic machinery, an interesting role for lipids and lipid metabolism in BCL-2 family-regulated apoptosis is also emerging. We used a comparative lipidomics approach to uncover alterations in lipid profile in the absence of the proapoptotic proteins BAX and BAK in mouse embryonic fibroblasts (MEFs). We detected over 1,000 ions in these experiments and found changes in an ion with an m/z of 534.49. Structural elucidation of this ion through tandem mass spectrometry revealed that this molecule is a ceramide with a 16-carbon N-acyl chain and sphingadiene backbone (d18:2/16:0 ceramide). Targeted LC/MS analysis revealed elevated levels of additional sphingadiene-containing ceramides (d18:2-Cers) in BAX, BAK-double knockout MEFs. Elevated d18:2-Cers are also found in immortalized baby mouse kidney epithelial cells lacking BAX and BAK. These results support the existence of a distinct biochemical pathway for regulating ceramides with different backbone structures and suggest that sphingadiene-containing ceramides may have functions that are distinct from the more common sphingosine-containing species. PMID:26059977

  9. Alterations of rat liver mitochondrial oxidative phosphorylation and calcium uptake by benzo[a]pyrene.

    PubMed

    Salazar, Inés; Pavani, Mario; Aranda, Waldo; Maya, Juan Diego; Morello, Antonio; Ferreira, Jorge

    2004-07-01

    We report that oxidative phosphorylation and Ca2+ uptake processes are enhanced in liver mitochondria isolated from benzo[a]pyrene (B[a]P)-treated rats. The carcinogen did not affect either the respiratory control index or the Ca2+ control ratio. B[a]P treatment increased the oxidation rate of several substrates that donate electrons at the level of all three coupling sites, either the ADP- or Ca2+-stimulated rates or those observed after ADP or Ca2+ exhaustion. However, the efficiency of energy coupling was maintained because both ADP/O and Ca2+/site ratios remained unchanged. The electron flow through NADH-oxidase, NADH-duroquinone reductase, NADH-juglone reductase, NADH-cytochrome c reductase, succinate-cytochrome c reductase, and cytochrome c oxidase was enhanced by B[a]P; however, succinate dehydrogenase activity was not affected. All these effects depended on the time post B[a]P administration, with a greater increase close to 48 h after administration of the carcinogen. The contents of cytochromes b, c1, and a + a3 from liver mitochondria, especially those isolated 48 h after B[a]P, were also significantly increased, although cytochrome c levels was just lightly increased 24 h after B[a]P treatment. These results suggest that B[a]P treatment stimulates mitochondrial respiration by increasing the level of several components of the mitochondrial respiratory chain. This may reflect mitochondrial adaptation to the cellular energy requirements of cell division in the neoplastic transformation process.

  10. Alterations in the mitochondrial alternative NAD(P)H Dehydrogenase NDB4 lead to changes in mitochondrial electron transport chain composition, plant growth and response to oxidative stress.

    PubMed

    Smith, Chevaun; Barthet, Michelle; Melino, Vanessa; Smith, Penelope; Day, David; Soole, Kathleen

    2011-07-01

    The branched respiratory electron transport chain of plants contains a non-phosphorylating alternative pathway consisting of type II NAD(P)H dehydrogenases on both sides of the inner membrane linked through the ubiquinone pool to an alternative oxidase (AOX). T-DNA and RNA interference (RNAi) were used to reduce gene expression to characterize the external NAD(P)H dehydrogenase NDB4 in Arabidopsis. The ndb4 lines showed different levels of suppression of NDB4 protein, leading to increases in NBD2 and AOX1a mRNA and protein levels in all lines. These changes were associated with lower reactive oxygen species formation and an altered phenotype, including changes in growth rate, root : shoot ratios and leaf area. The general growth pattern for the ndb4 mutants was decreased leaf area early in development (6-15 d) followed by a prompt subsequent increase in leaf area that exceeded the leaf area of the wild type by maturity (the 10-12 rosette stage). This pattern was most evident for the RNAi lines that had increased mitochondrial electron transport capacity. The RNAi lines also exhibited better tolerance to salinity stress, with better growth rates and lower shoot Na⁺ content compared with controls when grown under saline conditions. We hypothesize that these differences reflect the enhanced expression of NDB2 and AOX in the ndb4 mutant plants.

  11. Sulforaphane rescues memory dysfunction and synaptic and mitochondrial alterations induced by brain iron accumulation.

    PubMed

    Lavich, I C; de Freitas, B S; Kist, L W; Falavigna, L; Dargél, V A; Köbe, L M; Aguzzoli, C; Piffero, B; Florian, P Z; Bogo, M R; de Lima, M N M; Schröder, N

    2015-08-20

    Iron overload contributes to the development of neurodegeneration and the exacerbation of normal apoptosis rates, largely due to its participation in the Fenton reaction and production of reactive oxygen species (ROS). Mitochondria constitute the major intracellular source of ROS and the main target of attack by free radicals. They are dynamic organelles that bind (fusion) and divide (fission) in response to environmental stimuli, developmental status, and energy needs of the cells. Sulforaphane (SFN) is a natural compound that displays antioxidant and anti-inflammatory activities. This study aims to investigate the effects of SFN on memory deficits and changes in markers of mitochondrial function, DNM1L and OPA1, and the synaptic marker, synaptophysin, induced by neonatal iron treatment. Male rats received vehicle or carbonyl iron (30mg/kg) from the 12th to the 14th postnatal day. In adulthood, they were treated with saline or SFN (0.5 or 5mg/kg) for 14days every other day. Memory deficits were assessed using the object recognition task. DNM1L, OPA1, and synaptophysin levels in the hippocampus were quantified by Western blotting. Results showed that SFN was able to reverse iron-induced decreases in mitochondrial fission protein, DNM1L, as well as synaptophysin levels in the hippocampus, leading to a recovery of recognition memory impairment induced by iron. These findings suggest that SFN may be further investigated as potential agent for the treatment of cognitive deficits associated with neurodegenerative disorders.

  12. Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock in mice

    PubMed Central

    Yue, M.; Hinkle, K.; Davies, P.; Trushina, E.; Fiesel, F.; Christenson, T.; Schroeder, A.; Zhang, L.; Bowles, E.; Behrouz, B.; Lincoln, S.; Beevers, J.; Milnerwood, A.; Kurti, A.; McLean, P. J.; Fryer, J. D.; Springer, W.; Dickson, D.; Farrer, M.; Melrose, H.

    2015-01-01

    Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson’s disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore the role of physiological levels of mutant LRRK2, we created knock in mice harboring the most common LRRK2 mutation G2019S in their own genome. We have performed comprehensive dopaminergic, behavioral and neuropathological analyses in this model up to 24 months of age. We find elevated kinase activity in the brain of both heterozygous and homozygous mice. Although normal at 6 months, by 12 months of age, basal and pharmacologically induced extracellular release of dopamine is impaired in both heterozygous and homozygous mice, corroborating previous findings in transgenic models over-expressing mutant LRRK2. Via in vivo microdialysis measurement of basal and drug- evoked extracellular release of dopamine and its metabolites, our findings indicate that exocytotic release from the vesicular pool is impaired. Furthermore, profound mitochondrial abnormalities are evident in the striatum of older homozygous G2019S mice, which are consistent with mitochondrial fission arrest. We anticipate the G2019S will be a useful pre-clinical model for further evaluation of early mechanistic events in LRRK2 pathogenesis and for second-hit approaches to model disease progression. PMID:25836420

  13. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism.

    PubMed

    Perry, Rachel J; Borders, Candace B; Cline, Gary W; Zhang, Xian-Man; Alves, Tiago C; Petersen, Kitt Falk; Rothman, Douglas L; Kibbey, Richard G; Shulman, Gerald I

    2016-06-01

    In mammals, pyruvate kinase (PK) plays a key role in regulating the balance between glycolysis and gluconeogenesis; however, in vivo regulation of PK flux by gluconeogenic hormones and substrates is poorly understood. To this end, we developed a novel NMR-liquid chromatography/tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20-30-fold, increased hepatic TCA metabolite concentrations 2-3-fold, and increased endogenous glucose production rates by 20-100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only glucagon suppressed VPyr-Cyc/VMito These data show that under fasting conditions, when hepatic gluconeogenesis is stimulated, pyruvate recycling is relatively low in liver compared with VMito flux and that liver metabolism, in particular pyruvate cycling, is sensitive to propionate making it an unsuitable tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo. PMID:27002151

  14. Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal

    PubMed Central

    Flores-Bellver, M; Bonet-Ponce, L; Barcia, J M; Garcia-Verdugo, J M; Martinez-Gil, N; Saez-Atienzar, S; Sancho-Pelluz, J; Jordan, J; Galindo, M F; Romero, F J

    2014-01-01

    Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2′,7′-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases. PMID:25032851

  15. Role of metabolic modulator Bet-CA in altering mitochondrial hyperpolarization to suppress cancer associated angiogenesis and metastasis

    PubMed Central

    Saha, Suchandrima; Ghosh, Monisankar; Dutta, Samir Kumar

    2016-01-01

    Solid tumors characteristically reflect a metabolic switching from glucose oxidation to glycolysis that plays a fundamental role in angiogenesis and metastasis to facilitate aggressive tumor outcomes. Hyperpolarized mitochondrial membrane potential is a manifestation of malignant cells that compromise the intrinsic pathways of apoptosis and confer a suitable niche to promote the cancer associated hallmark traits. We have previously reported that co-drug Bet-CA selectively targets cancer cells by inducing metabolic catastrophe without a manifest in toxicity. Here we report that the same molecule at a relatively lower concentration deregulates the cardinal phenotypes associated with angiogenesis and metastasis. In mice syngeneic 4T1 breast cancer model, Bet-CA exhibited effective abrogation of angiogenesis and concomitantly obliterated lung metastasis consistent with altered mitochondrial bioenergetics. Furthermore, Bet-CA significantly lowered vascular endothelial growth factor (VEGF) levels and obviated matrix metalloproteases (MMP-2/9) production directly to the criterion where abrogation of autocrine VEGF/VEGFR2 signalling loop was documented. In vitro studies anticipatedly documented the role of Bet-CA in inhibiting actin remodeling, lamellipodia formation and cell membrane ruffling to constitutively suppress cell motility and invasion. Results comprehensively postulate that Bet-CA, a mitochondria targeting metabolic modulator may serve as an excellent candidate for combating angiogenesis and metastasis. PMID:27003027

  16. Dynamin-related Protein 1 Inhibition Mitigates Bisphenol A-mediated Alterations in Mitochondrial Dynamics and Neural Stem Cell Proliferation and Differentiation.

    PubMed

    Agarwal, Swati; Yadav, Anuradha; Tiwari, Shashi Kant; Seth, Brashket; Chauhan, Lalit Kumar Singh; Khare, Puneet; Ray, Ratan Singh; Chaturvedi, Rajnish Kumar

    2016-07-29

    The regulatory dynamics of mitochondria comprises well orchestrated distribution and mitochondrial turnover to maintain the mitochondrial circuitry and homeostasis inside the cells. Several pieces of evidence suggested impaired mitochondrial dynamics and its association with the pathogenesis of neurodegenerative disorders. We found that chronic exposure of synthetic xenoestrogen bisphenol A (BPA), a component of consumer plastic products, impaired autophagy-mediated mitochondrial turnover, leading to increased oxidative stress, mitochondrial fragmentation, and apoptosis in hippocampal neural stem cells (NSCs). It also inhibited hippocampal derived NSC proliferation and differentiation, as evident by the decreased number of BrdU- and β-III tubulin-positive cells. All these effects were reversed by the inhibition of oxidative stress using N-acetyl cysteine. BPA up-regulated the levels of Drp-1 (dynamin-related protein 1) and enhanced its mitochondrial translocation, with no effect on Fis-1, Mfn-1, Mfn-2, and Opa-1 in vitro and in the hippocampus. Moreover, transmission electron microscopy studies suggested increased mitochondrial fission and accumulation of fragmented mitochondria and decreased elongated mitochondria in the hippocampus of the rat brain. Impaired mitochondrial dynamics by BPA resulted in increased reactive oxygen species and malondialdehyde levels, disruption of mitochondrial membrane potential, and ATP decline. Pharmacological (Mdivi-1) and genetic (Drp-1siRNA) inhibition of Drp-1 reversed BPA-induced mitochondrial dysfunctions, fragmentation, and apoptosis. Interestingly, BPA-mediated inhibitory effects on NSC proliferation and neuronal differentiations were also mitigated by Drp-1 inhibition. On the other hand, Drp-1 inhibition blocked BPA-mediated Drp-1 translocation, leading to decreased apoptosis of NSC. Overall, our studies implicate Drp-1 as a potential therapeutic target against BPA-mediated impaired mitochondrial dynamics and

  17. Alterations of length heteroplasmy in mitochondrial DNA under various amplification conditions.

    PubMed

    Seo, Seung B; Jang, Byoung S; Zhang, Aihua; Yi, Jin A; Kim, Hye Y; Yoo, Seong H; Lee, Yoon S; Lee, Soong D

    2010-05-01

    There are several areas within mitochondrial DNA that show length heteroplasmy. If the heteroplasmy pattern is unique and consistent for each person, it may be used to support an interpretation of exclusion in identity testing. We investigated whether the length heteroplasmy pattern would be consistent under different amplification conditions. We also determined whether various amplification parameters would affect the homopolymeric cytosine stretches (C-stretch) in HV1. Monoclonal samples tended to be heteroplasmic after amplification. After several repetitions, C-stretch patterns of all samples were inconsistent even under the same amplification conditions. Increased PCR cycles and high template concentrations resulted in a more frequent heteroplasmic tendency. These amplification parameters seem to have little effect if samples are not long enough in C-stretch or total length of the segment from nt 16180 to nt 16193. It is suggested that the pattern of length heteroplasmy cannot be used as an additional polymorphic marker.

  18. Distribution of nuclear mitochondrial pseudogenes in three pollinator fig wasps associated with Ficus pumila

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Liu, Min; Compton, Stephen G.; Chen, Xiao-Yong

    2014-05-01

    Nuclear mitochondrial pseudogenes (NUMTs) are nuclear sequences transferred from mitochondrial genomes. Although widespread, their distribution patterns among populations or closely related species are rarely documented. We amplified and sequenced the mitochondrial cytochrome b (Cytb) gene to check for NUMTs in three fig wasp species that pollinate Ficus pumila (Wiebesia sp. 1, 2 and 3) in Southeastern China using direct and cloned sequencing. Unambiguous sequences (332) of 487 bp in length belonging to 33 haplotypes were found by direct sequencing. Their distribution was highly concordant with those of cytochrome c oxidase subunit I (COI). Obvious signs of co-amplification of NUMTs were indicated by their uneven distribution. NUMTs were observed in all individuals of 12 populations of Wiebesia sp. 3, and 13 individuals of three northern populations of Wiebesia sp. 1. Sequencing clones of potential co-amplification products confirmed that they were NUMTs. These NUMTs either clustered as NUMT clades basal to mtDNA Cytb clades (basal NUMTs), or together with Cytb haplotypes. Basal NUMTs had either stop codons or frame-shifting mutations resulting from deletion of a 106 bp fragment. In addition, no third codon or synonymous substitutions were detected within each NUMT clade. The phylogenetic tree indicated that basal NUMTs had been inserted into nuclei before divergence of the three species. No significant pairwise differences were detected in their ratios of third codon substitutions, suggesting that these NUMTs originated from one transfer event, with duplication in the nuclear genome resulting in the coexistence of the 381 bp copy. No significant substitution differences were detected between Cytb haplotypes and NUMTs that clustered with Cytb haplotypes. However, these NUMTs coexisted with Cytb haplotypes in multiple populations, suggesting that these NUMT haplotypes were recently inserted into the nuclear genome. Both basal and recently inserted NUMTs were rare

  19. Characterization of mitochondrial transport in neurons.

    PubMed

    Zhou, Bing; Lin, Mei-Yao; Sun, Tao; Knight, Adam L; Sheng, Zu-Hang

    2014-01-01

    Mitochondria are cellular power plants that supply ATP to power various biological activities essential for neuronal growth, survival, and function. Due to extremely varied morphological features, neurons face exceptional challenges to maintain energy homeostasis. Neurons require specialized mechanisms distributing mitochondria to distal synapses where energy is in high demand. Axons and synapses undergo activity-dependent remodeling, thereby altering mitochondrial distribution. The uniform microtubule polarity has made axons particularly useful for exploring mechanisms regulating mitochondrial transport. Mitochondria alter their motility under stress conditions or when their integrity is impaired. Therefore, research into the mechanisms regulating mitochondrial motility in healthy and diseased neurons is an important emerging frontier in neurobiology. In this chapter, we discuss the current protocols in the characterization of axonal mitochondrial transport in primary neuron cultures isolated from embryonic rats and adult mice. We also briefly discuss new procedures developed in our lab in analyzing mitochondrial motility patterns at presynaptic terminals and evaluate their impact on synaptic vesicle release. PMID:25416353

  20. Early mitochondrial dysfunction leads to altered redox chemistry underlying pathogenesis of TPI deficiency

    PubMed Central

    Hrizo, Stacy L.; Fisher, Isaac J.; Long, Daniel R.; Hutton, Joshua A.; Liu, Zhaohui; Palladino, Michael J.

    2013-01-01

    Triose phosphate isomerase (TPI) is responsible for the interconversion of dihydroxyacetone phosphate to glyceraldehyde-3-phosphate in glycolysis. Point mutations in this gene are associated with a glycolytic enzymopathy called TPI deficiency. This study utilizes a Drosophila melanogaster model of TPI deficiency; TPIsugarkill is a mutant allele with a missense mutation (M80T) that causes phenotypes similar to human TPI deficiency. In this study, the redox status of TPIsugarkill flies was examined and manipulated to provide insight into the pathogenesis of this disease. Our data show that TPIsugarkill animals exhibit higher levels of the oxidized forms of NAD+, NADP+ and glutathione in an age-dependent manner. Additionally, we demonstrate that mitochondrial redox state is significantly more oxidized in TPIsugarkill animals. We hypothesized that TPIsugarkill animals may be more sensitive to oxidative stress and that this may underlie the progressive nature of disease pathogenesis. The effect of oxidizing and reducing stressors on behavioral phenotypes of the TPIsugarkill animals was tested. As predicted, oxidative stress worsened these phenotypes. Importantly, we discovered that reducing stress improved the behavioral and longevity phenotypes of the mutant organism without having an effect on TPIsugarkill protein levels. Overall, these data suggest that reduced activity of TPI leads to an oxidized redox state in these mutants and that the alleviation of this stress using reducing compounds can improve the mutant phenotypes. PMID:23318931

  1. HSP70 of Leishmania amazonensis alters resistance to different stresses and mitochondrial bioenergetics

    PubMed Central

    Codonho, Bárbara Santoni; Costa, Solange dos Santos; Peloso, Eduardo de Figueiredo; Joazeiro, Paulo Pinto; Gadelha, Fernanda Ramos; Giorgio, Selma

    2016-01-01

    The 70 kDa heat shock protein (HSP70) is a molecular chaperone that assists the parasite Leishmania in returning to homeostasis after being subjected to different types of stress during its life cycle. In the present study, we evaluated the effects of HSP70 transfection of L. amazonensis promastigotes (pTEX-HSP70) in terms of morphology, resistance, infectivity and mitochondrial bioenergetics. The pTEX-HSP70 promastigotes showed no ultrastructural morphological changes compared to control parasites. Interestingly, the pTEX-HSP70 promastigotes are resistant to heat shock, H2O2-induced oxidative stress and hyperbaric environments. Regarding the bioenergetics parameters, the pTEX-HSP70 parasites had higher respiratory rates and released less H2O2 than the control parasites. Nevertheless, the infectivity capacity of the parasites did not change, as verified by the infection of murine peritoneal macrophages and human macrophages, as well as the infection of BALB/c mice. Together, these results indicate that the overexpression of HSP70 protects L. amazonensis from stress, but does not interfere with its infective capacity. PMID:27304024

  2. Acyl-CoA synthetase 1 deficiency alters cardiolipin species and impairs mitochondrial function

    PubMed Central

    Grevengoed, Trisha J.; Martin, Sarah A.; Katunga, Lalage; Cooper, Daniel E.; Anderson, Ethan J.; Murphy, Robert C.; Coleman, Rosalind A.

    2015-01-01

    Long-chain acyl-CoA synthetase 1 (ACSL1) contributes more than 90% of total cardiac ACSL activity, but its role in phospholipid synthesis has not been determined. Mice with an inducible knockout of ACSL1 (Acsl1T−/−) have impaired cardiac fatty acid oxidation and rely on glucose for ATP production. Because ACSL1 exhibited a strong substrate preference for linoleate, we investigated the composition of heart phospholipids. Acsl1T−/− hearts contained 83% less tetralinoleoyl-cardiolipin (CL), the major form present in control hearts. A stable knockdown of ACSL1 in H9c2 rat cardiomyocytes resulted in low incorporation of linoleate into CL and in diminished incorporation of palmitate and oleate into other phospholipids. Overexpression of ACSL1 in H9c2 and HEK-293 cells increased incorporation of linoleate into CL and other phospholipids. To determine whether increasing the content of linoleate in CL would improve mitochondrial respiratory function in Acsl1T−/− hearts, control and Acsl1T−/− mice were fed a high-linoleate diet; this diet normalized the amount of tetralinoleoyl-CL but did not improve respiratory function. Thus, ACSL1 is required for the normal composition of several phospholipid species in heart. Although ACSL1 determines the acyl-chain composition of heart CL, a high tetralinoleoyl-CL content may not be required for normal function. PMID:26136511

  3. Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure

    PubMed Central

    Griffin, Kevin L.; Anderson, O. Roger; Gastrich, Mary D.; Lewis, James D.; Lin, Guanghui; Schuster, William; Seemann, Jeffrey R.; Tissue, David T.; Turnbull, Matthew H.; Whitehead, David

    2001-01-01

    With increasing interest in the effects of elevated atmospheric CO2 on plant growth and the global carbon balance, there is a need for greater understanding of how plants respond to variations in atmospheric partial pressure of CO2. Our research shows that elevated CO2 produces significant fine structural changes in major cellular organelles that appear to be an important component of the metabolic responses of plants to this global change. Nine species (representing seven plant families) in several experimental facilities with different CO2-dosing technologies were examined. Growth in elevated CO2 increased numbers of mitochondria per unit cell area by 1.3–2.4 times the number in control plants grown in lower CO2 and produced a statistically significant increase in the amount of chloroplast stroma (nonappressed) thylakoid membranes compared with those in lower CO2 treatments. There was no observable change in size of the mitochondria. However, in contrast to the CO2 effect on mitochondrial number, elevated CO2 promoted a decrease in the rate of mass-based dark respiration. These changes may reflect a major shift in plant metabolism and energy balance that may help to explain enhanced plant productivity in response to elevated atmospheric CO2 concentrations. PMID:11226263

  4. In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse model of propionic acidemia: Implications for the pathophysiology of this disorder.

    PubMed

    Gallego-Villar, L; Rivera-Barahona, A; Cuevas-Martín, C; Guenzel, A; Pérez, B; Barry, M A; Murphy, M P; Logan, A; Gonzalez-Quintana, A; Martín, M A; Medina, S; Gil-Izquierdo, A; Cuezva, J M; Richard, E; Desviat, L R

    2016-07-01

    Accumulation of toxic metabolites has been described to inhibit mitochondrial enzymes, thereby inducing oxidative stress in propionic acidemia (PA), an autosomal recessive metabolic disorder caused by the deficiency of mitochondrial propionyl-CoA carboxylase. PA patients exhibit neurological deficits and multiorgan complications including cardiomyopathy. To investigate the role of mitochondrial dysfunction in the development of these alterations we have used a hypomorphic mouse model of PA that mimics the biochemical and clinical hallmarks of the disease. We have studied the tissue-specific bioenergetic signature by Reverse Phase Protein Microarrays and analysed OXPHOS complex activities, mtDNA copy number, oxidative damage, superoxide anion and hydrogen peroxide levels. The results show decreased levels and/or activity of several OXPHOS complexes in different tissues of PA mice. An increase in mitochondrial mass and OXPHOS complexes was observed in brain, possibly reflecting a compensatory mechanism including metabolic reprogramming. mtDNA depletion was present in most tissues analysed. Antioxidant enzymes were also found altered. Lipid peroxidation was present along with an increase in hydrogen peroxide and superoxide anion production. These data support the hypothesis that oxidative damage may contribute to the pathophysiology of PA, opening new avenues in the identification of therapeutic targets and paving the way for in vivo evaluation of compounds targeting mitochondrial biogenesis or reactive oxygen species production. PMID:27083476

  5. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins.

    PubMed

    Lai, James C K; Ananthakrishnan, Gayathri; Jandhyam, Sirisha; Dukhande, Vikas V; Bhushan, Alok; Gokhale, Mugdha; Daniels, Christopher K; Leung, Solomon W

    2010-10-05

    Recent evidence suggests silicon dioxide micro- and nanoparticles induce cytotoxic effects on lung cells. Thus, there is an increasing concern regarding their potential health hazard. Nevertheless, the putative toxicity of nanoparticles in mammalian cells has not yet been systematically investigated. We previously noted that several metallic oxide nanoparticles exert differential cytotoxic effects on human neural and nonneural cells. Therefore, we hypothesized that silicon dioxide nanoparticles induce cytotoxicity in U87 cells by lowering their survival by decreasing cell survival signaling and disturbing mitochondrial function. To investigate this hypothesis, we determined the activities of the key mitochondrial enzymes, citrate synthase and malate dehydrogenase, in astrocytoma U87 cells treated with silicon dioxide nanoparticles. In addition, we studied the expression of the mitochondrial DNA-encoded proteins, cytochrome C oxidase II and nicotinamide adenine dinucleotide (NADPH) dehydrogenase subunit 6, and cell signaling pathway protein extracellular signal-regulated kinase (ERK) and phosphorylated ERK in treated U87 cells. The activated form of ERK controls cell growth, differentiation, and proliferation. In parallel, we determined survival of U87 cells after treating them with various concentrations of silicon dioxide nanoparticles. Our results indicated that treatment with silicon dioxide nanoparticles induced decreases in U87 cell survival in a dose-related manner. The activities of citrate synthase and malate dehydrogenase in treated U87 cells were increased, possibly due to an energetic compensation in surviving cells. However, the expression of mitochondrial DNA-encoded cytochrome C oxidase subunit II and NADH dehydrogenase subunit 6 and the cell signaling protein ERK and phosphorylated ERK were altered in the treated U87 cells, suggesting that silicon dioxide nanoparticles induced disruption of mitochondrial DNA-encoded protein expression, leading to

  6. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene.

    PubMed

    Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L

    2016-02-15

    Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation. PMID:26745549

  7. [Distribution of foreign mitochondrial DNA during the first splittings of the transmitochondrial mouse embryos].

    PubMed

    Kustova, M E; Sokolova, V A; Bass, M G; Zakharova, F M; Sorokin, A V; Vasil'ev, V B

    2008-01-01

    Distribution of human mitochondrial DNA (mtDNA) among separate murine blastomeres was analyzed during the splitting of embryos in which the suspension of human mitochondria had been injected at the one- or two-cell stage. Human mtDNA was detected by PCR with species specific primers. The total amount of the two- and four-cell murine embryos analyzed in the study was 339. In all embryos examined the copies of human mitochondrial genome were revealed along with murine mtDNA, which indicated the phenomenon of an artificially modeled heteroplasmy. The foreign mtDNA was not ubiquitous among the blastomeres of transmitochondrial embryos. Mathematical analysis of the results showed that in the period between the injection of human mitochondria and the subsequent splitting no equal distribution of the human mtDNA occurred in the cytoplasm. These results also point at the presence of more than 2-3 segregation units of mtDNA in the entire pool of mitochondria (about 5 x 10(2)) introduced into an embryo by microinjection.

  8. Pore Pressure Distribution and Flank Instability in Hydrothermally Altered Stratovolcanoes

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Taron, J.; Hurwitz, S.; Reid, M. E.

    2015-12-01

    Field and geophysical investigations of stratovolcanoes with long-lived hydrothermal systems commonly reveal that initially permeable regions (such as brecciated layers of pyroclastic material) can become both altered and water-bearing. Hydrothermal alteration in these regions, including clay formation, can turn them into low-permeability barriers to fluid flow, which could increase pore fluid pressures resulting in flank slope instability. We examined elevated pore pressure conditions using numerical models of hydrothermal flow in stratovolcanoes, informed by geophysical data about internal structures and deposits. Idealized radially symmetric meshes were developed based on cross-sectional profiles and alteration/permeability structures of Cascade Range stratovolcanoes. We used the OpenGeoSys model to simulate variably saturated conditions in volcanoes heated only by regional heat fluxes, as well as 650°C intrusions at two km depth below the surface. Meteoric recharge was estimated from precipitation rates in the Cascade Range. Preliminary results indicate zones of elevated pore pressures form: 1) where slopes are underlain by continuous low-permeability altered layers, or 2) when the edifice has an altered core with saturated, less permeable limbs. The first scenario might control shallow collapses on the slopes above the altered layers. The second could promote deeper flank collapses that are initially limited to the summit and upper slopes, but could progress to the core of an edifice. In both scenarios, pore pressures can be further elevated by shallow intrusions, or evolve over longer time scales under forcing from regional heat flux. Geometries without confining low-permeability layers do not show these pressure effects. Our initial scenarios use radially symmetric models, but we are also simulating hydrothermal flow under real 3D geometries with asymmetric subsurface structures (Mount Adams). Simulation results will be used to inform 3D slope

  9. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis.

    PubMed

    Jandova, Jana; Janda, Jaroslav; Sligh, James E

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids.

  10. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    PubMed Central

    Jandova, Jana; Janda, Jaroslav; Sligh, James E

    2012-01-01

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. PMID:22705584

  11. Human Cytochrome P450 2E1 Mutations That Alter Mitochondrial Targeting Efficiency and Susceptibility to Ethanol-induced Toxicity in Cellular Models*

    PubMed Central

    Bansal, Seema; Anandatheerthavarada, Hindupur K.; Prabu, Govindaswamy K.; Milne, Ginger L.; Martin, Martha V.; Guengerich, F. Peter; Avadhani, Narayan G.

    2013-01-01

    Human polymorphisms in the 5′-upstream regulatory regions and also protein coding regions of cytochrome P450 2E1 (CYP2E1) are known to be associated with several diseases, including cancer and alcohol liver toxicity. In this study, we report novel mutations in the N-terminal protein targeting regions of CYP2E1 that markedly affect subcellular localization of the protein. Variant W23R/W30R protein (termed W23/30R) is preferentially targeted to mitochondria but very poorly to the endoplasmic reticulum, whereas the L32N protein is preferentially targeted to the endoplasmic reticulum and poorly to mitochondria. These results explain the physiological significance of bimodal CYP targeting to the endoplasmic reticulum and mitochondria previously described. COS-7 cells and HepG2 cells stably expressing W23/30R mutations showed markedly increased alcohol toxicity in terms of increased production of reactive oxygen species, respiratory dysfunction, and loss of cytochrome c oxidase subunits and activity. Stable cells expressing the L32N variant, on the other hand, were relatively less responsive to alcohol-induced toxicity and mitochondrial dysfunction. These results further support our previous data, based on mutational studies involving altered targeting, indicating that mitochondria-targeted CYP2E1 plays an important role in alcohol liver toxicity. The results also provide an interesting new link to genetic variations affecting subcellular distribution of CYP2E1 with alcohol-induced toxicity. PMID:23471973

  12. Possible nitric oxide modulation in protective effect of FK-506 against 3-nitropropionic acid-induced behavioral, oxidative, neurochemical, and mitochondrial alterations in rat brain.

    PubMed

    Kumar, Puneet; Kalonia, Harikesh; Kumar, Anil

    2010-10-01

    FK-506 is an immunosuppressant being widely used for allograft rejection cases in the present clinical scenario. Recently, the neuroprotective effect of FK-506 has also been reported against a number of neurodegenerative diseases in rodents. This study was designed to explore the possible protective effect of FK-506 and its interaction with nitric-oxide modulators against 3-nitropropionic acid (3-NP)-induced behavioural, biochemical, neurochemical, and mitochondrial alterations in striatum, cortex, and hippocampus regions of the brain. Systemic administration of 3-nitropropionic acid produces Huntington-like symptoms in rats. 3-NP (10 mg/kg) treatment for 14 days impaired locomotor activity, grip strength, and body weight. 3-NP treatment significantly raised malondialdehyde, nitrite concentration, depleted antioxidant enzymes (SOD and catalase), and levels of bioamines (dopamine and norepinephrine) in striatum, cortex, and hippocampus areas of rat brain. Significant alterations in mitochondrial enzyme complexes (I, II, and IV) activities and mitochondrial redox activity have also been altered significantly by 3-NP. Pretreatment with FK-506 (0.5, 1, and 2 mg/kg) significantly reversed these behavioral, biochemical, and cellular alterations. L-arginine treatment with a subeffective dose FK-506 (1 mg/kg) reversed the protective effect of FK-506. However, L-NAME pretreatment with FK-506 (1 mg/kg) potentiated the protective effect of FK-506. The present study shows that FK-506 attenuates 3-NP-induced neurotoxicity and nitric-oxide modulation might be involved in its protective action. PMID:20550427

  13. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    SciTech Connect

    Jandova, Jana; Janda, Jaroslav; Sligh, James E

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  14. Hepatic mitochondrial alteration in CD1 mice associated with prenatal exposures to low doses of perfluorooctanoic acid (PFOA)

    PubMed Central

    Quist, Erin M.; Filgo, Adam J.; Cummings, Connie A.; Kissling, Grace E.; Hoenerhoff, Mark J.; Fenton, Suzanne E.

    2014-01-01

    Perfluorooctanoic acid (PFOA) is a perfluoroalkyl acid primarily used as an industrial surfactant. It persists in the environment and has been linked to potentially toxic and/or carcinogenic effects in animals and people. As a known activator of peroxisome proliferator-activated receptors (PPARs), PFOA exposure can induce defects in fatty acid oxidation, lipid transport, and inflammation. Here, pregnant CD-1 mice were orally gavaged with 0, 0.01, 0.1, 0.3 and 1 mg/kg of PFOA from gestation days (GD) 1 through 17. On postnatal day (PND) 21, histopathologic changes in the livers of offspring included hepatocellular hypertrophy and periportal inflammation that increased in severity by PND 91 in an apparent dose-dependent response. Transmission electron microscopy (TEM) of selected liver sections from PND 91 mice revealed PFOA-induced cellular damage and mitochondrial abnormalities with no evidence of peroxisome proliferation. Within hypertrophied hepatocytes, mitochondria were not only increased in number, but also exhibited altered morphologies suggestive of increased and/or uncontrolled fission and fusion reactions. These findings suggest that peroxisome proliferation is not a component of PFOA-induced hepatic toxicity in animals that are prenatally exposed to low doses of PFOA. PMID:25326589

  15. Mitochondrial impairment induced by postnatal ActRIIB blockade does not alter function and energy status in exercising mouse glycolytic muscle in vivo.

    PubMed

    Béchir, Nelly; Pecchi, Émilie; Relizani, Karima; Vilmen, Christophe; Le Fur, Yann; Bernard, Monique; Amthor, Helge; Bendahan, David; Giannesini, Benoît

    2016-04-01

    Because it leads to a rapid and massive muscle hypertrophy, postnatal blockade of the activin type IIB receptor (ActRIIB) is a promising therapeutic strategy for counteracting muscle wasting. However, the functional consequences remain very poorly documented in vivo. Here, we have investigated the impact of 8-wk ActRIIB blockade with soluble receptor (sActRIIB-Fc) on gastrocnemius muscle anatomy, energy metabolism, and force-generating capacity in wild-type mice, using totally noninvasive magnetic resonance imaging (MRI) and dynamic(31)P-MRS. Compared with vehicle (PBS) control, sActRIIB-Fc treatment resulted in a dramatic increase in body weight (+29%) and muscle volume (+58%) calculated from hindlimb MR imaging, but did not alter fiber type distribution determined via myosin heavy chain isoform analysis. In resting muscle, sActRIIB-Fc treatment induced acidosis and PCr depletion, thereby suggesting reduced tissue oxygenation. During an in vivo fatiguing exercise (6-min repeated maximal isometric contraction electrically induced at 1.7 Hz), maximal and total absolute forces were larger in sActRIIB-Fc treated animals (+26 and +12%, respectively), whereas specific force and fatigue resistance were lower (-30 and -37%, respectively). Treatment with sActRIIB-Fc further decreased the maximal rate of oxidative ATP synthesis (-42%) and the oxidative capacity (-34%), but did not alter the bioenergetics status in contracting muscle. Our findings demonstrate in vivo that sActRIIB-Fc treatment increases absolute force-generating capacity and reduces mitochondrial function in glycolytic gastrocnemius muscle, but this reduction does not compromise energy status during sustained activity. Overall, these data support the clinical interest of postnatal ActRIIB blockade.

  16. Mitochondrial evidence for panmixia despite perceived barriers to gene flow in a widely distributed waterbird.

    PubMed

    Oomen, Rebekah A; Reudink, Matthew W; Nocera, Joseph J; Somers, Christopher M; Green, M Clay; Kyle, Christopher J

    2011-01-01

    We examined the mitochondrial genetic structure of American white pelicans (Pelecanus erythrorhynchos) to: 1) verify or refute whether American white pelicans are panmictic and 2) understand if any lack of genetic structure is the result of contemporary processes or historical phenomena. Sequence analysis of mitochondrial DNA control region haplotypes of 367 individuals from 19 colonies located across their North American range revealed a lack of population genetic or phylogeographic structure. This lack of structure was unexpected because: 1) Major geographic barriers such as the North American Continental Divide are thought to limit dispersal; 2) Differences in migratory behavior are expected to promote population differentiation; and 3) Many widespread North American migratory bird species show historic patterns of differentiation resulting from having inhabited multiple glacial refugia. Further, high haplotype diversity and many rare haplotypes are maintained across the species' distribution, despite frequent local extinctions and recolonizations that are expected to decrease diversity. Our findings suggest that American white pelicans have a high effective population size and low natal philopatry. We suggest that the rangewide panmixia we observed in American white pelicans is due to high historical and contemporary gene flow, enabled by high mobility and a lack of effective physical or behavioral barriers. PMID:21705489

  17. Sickness behavior induced by cisplatin chemotherapy and radiotherapy in a murine head and neck cancer model is associated with altered mitochondrial gene expression.

    PubMed

    Vichaya, Elisabeth G; Molkentine, Jessica M; Vermeer, Daniel W; Walker, Adam K; Feng, Rebekah; Holder, Gerard; Luu, Katherine; Mason, Ryan M; Saligan, Leo; Heijnen, Cobi J; Kavelaars, Annemieke; Mason, Kathy A; Lee, John H; Dantzer, Robert

    2016-01-15

    The present study was undertaken to explore the possible mechanisms of the behavioral alterations that develop in response to cancer and to cancer therapy. For this purpose we used a syngeneic heterotopic mouse model of human papilloma virus (HPV)-related head and neck cancer in which cancer therapy is curative. Mice implanted or not with HPV+ tumor cells were exposed to sham treatment or a regimen of cisplatin and radiotherapy (chemoradiation). Sickness was measured by body weight loss and reduced food intake. Motivation was measured by burrowing, a highly prevalent species specific behavior. Tumor-bearing mice showed a gradual decrease in burrowing over time and increased brain and liver inflammatory cytokine mRNA expression by 28 days post tumor implantation. Chemoradiation administered to healthy mice resulted in a mild decrease in burrowing, body weight, and food intake. Chemoradiation in tumor-bearing mice decreased tumor growth and abrogated liver and brain inflammation, but failed to attenuate burrowing deficits. PCR array analysis of selected hypoxia and mitochondrial genes revealed that both the tumor and chemoradiation altered the expression of genes involved in mitochondrial energy metabolism within the liver and brain and increased expression of genes related to HIF-1α signaling within the brain. The most prominent changes in brain mitochondrial genes were noted in tumor-bearing mice treated with chemoradiation. These findings indicate that targeting mitochondrial dysfunction following cancer and cancer therapy may be a strategy for prevention of cancer-related symptoms.

  18. Altering the Mitochondrial Fatty Acid Synthesis (mtFASII) Pathway Modulates Cellular Metabolic States and Bioactive Lipid Profiles as Revealed by Metabolomic Profiling

    PubMed Central

    Clay, Hayley B.; Parl, Angelika K.; Mitchell, Sabrina L.; Singh, Larry; Bell, Lauren N.; Murdock, Deborah G.

    2016-01-01

    Despite the presence of a cytosolic fatty acid synthesis pathway, mitochondria have retained their own means of creating fatty acids via the mitochondrial fatty acid synthesis (mtFASII) pathway. The reason for its conservation has not yet been elucidated. Therefore, to better understand the role of mtFASII in the cell, we used thin layer chromatography to characterize the contribution of the mtFASII pathway to the fatty acid composition of selected mitochondrial lipids. Next, we performed metabolomic analysis on HeLa cells in which the mtFASII pathway was either hypofunctional (through knockdown of mitochondrial acyl carrier protein, ACP) or hyperfunctional (through overexpression of mitochondrial enoyl-CoA reductase, MECR). Our results indicate that the mtFASII pathway contributes little to the fatty acid composition of mitochondrial lipid species examined. Additionally, loss of mtFASII function results in changes in biochemical pathways suggesting alterations in glucose utilization and redox state. Interestingly, levels of bioactive lipids, including lysophospholipids and sphingolipids, directly correlate with mtFASII function, indicating that mtFASII may be involved in the regulation of bioactive lipid levels. Regulation of bioactive lipid levels by mtFASII implicates the pathway as a mediator of intracellular signaling. PMID:26963735

  19. Loss of Lon1 in Arabidopsis Changes the Mitochondrial Proteome Leading to Altered Metabolite Profiles and Growth Retardation without an Accumulation of Oxidative Damage1[W][OA

    PubMed Central

    Solheim, Cory; Li, Lei; Hatzopoulos, Polydefkis; Millar, A. Harvey

    2012-01-01

    Lon1 is an ATP-dependent protease and chaperone located in the mitochondrial matrix in plants. Knockout in Arabidopsis (Arabidopsis thaliana) leads to a significant growth rate deficit in both roots and shoots and lowered activity of specific mitochondrial enzymes associated with respiratory metabolism. Analysis of the mitochondrial proteomes of two lon1 mutant alleles (lon1-1 and lon1-2) with different severities of phenotypes shows a common accumulation of several stress marker chaperones and lowered abundance of Complexes I, IV, and V of OXPHOS. Certain enzymes of the tricarboxylic acid (TCA) cycle are modified or accumulated, and TCA cycle bypasses were repressed rather than induced. While whole tissue respiratory rates were unaltered in roots and shoots, TCA cycle intermediate organic acids were depleted in leaf extracts in the day in lon1-1 and in both lon mutants at night. No significant evidence of broad steady-state oxidative damage to isolated mitochondrial samples could be found, but peptides from several specific proteins were more oxidized and selected functions were more debilitated in lon1-1. Collectively, the evidence suggests that loss of Lon1 significantly modifies respiratory function and plant performance by small but broad alterations in the mitochondrial proteome gained by subtly changing steady-state protein assembly, stability, and damage of a range of components that debilitate an anaplerotic role for mitochondria in cellular carbon metabolism. PMID:22968828

  20. Hierridin B Isolated from a Marine Cyanobacterium Alters VDAC1, Mitochondrial Activity, and Cell Cycle Genes on HT-29 Colon Adenocarcinoma Cells

    PubMed Central

    Freitas, Sara; Martins, Rosário; Costa, Margarida; Leão, Pedro N.; Vitorino, Rui; Vasconcelos, Vitor; Urbatzka, Ralph

    2016-01-01

    Background: Hierridin B was isolated from a marine cyanobacterium Cyanobium sp. strain and induced cytotoxicity selectively in HT-29 adenocarcinoma cells. The underlying molecular mechanism was not yet elucidated. Methods: HT-29 cells were exposed to the IC50 concentration of hierridin B (100.2 μM) for 48 h. Non-targeted proteomics was performed using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The mRNA expression of apoptotic and cell cycle genes were analyzed by real-time PCR. Automated quantification of 160 cytoplasm and mitochondrial parameter was done by fluorescence microscopy using CellProfiler software. Results: Proteomics identified 21 significant different proteins, which belonged to protein folding/synthesis and cell structure amongst others. Increase of VDAC1 protein responsible for formation of mitochondrial channels was confirmed by mRNA expression. A 10-fold decrease of cytoskeleton proteins (STMN1, TBCA) provided a link to alterations of the cell cycle. CCNB1 and CCNE mRNA were decreased two-fold, and P21CIP increased 10-fold, indicative of cell cycle arrest. Morphological analysis of mitochondrial parameter confirmed a reduced mitochondrial activity. Conclusion: Hierridin B is a potential anticancer compound that targets mitochondrial activity and function. PMID:27589771

  1. Mechanism of Altered Metformin Distribution in Nonalcoholic Steatohepatitis

    PubMed Central

    Clarke, John D.; Dzierlenga, Anika L.; Nelson, Nicholas R.; Li, Hui; Werts, Samantha; Goedken, Michael J.

    2015-01-01

    Metformin is an antihyperglycemic drug that is widely prescribed for type 2 diabetes mellitus and is currently being investigated for the treatment of nonalcoholic steatohepatitis (NASH). NASH is known to alter hepatic membrane transporter expression and drug disposition similarly in humans and rodent models of NASH. Metformin is almost exclusively eliminated through the kidney primarily through active secretion mediated by Oct1, Oct2, and Mate1. The purpose of this study was to determine how NASH affects kidney transporter expression and metformin pharmacokinetics. A single oral dose of [14C]metformin was administered to C57BL/6J (wild type [WT]) and diabetic ob/ob mice fed either a control diet or a methionine- and choline-deficient (MCD) diet. Metformin plasma concentrations were slightly increased in the WT/MCD and ob/control groups, whereas plasma concentrations were 4.8-fold higher in ob/MCD mice compared with WT/control. The MCD diet significantly increased plasma half-life and mean residence time and correspondingly decreased oral clearance in both genotypes. These changes in disposition were caused by ob/ob- and MCD diet–specific decreases in the kidney mRNA expression of Oct2 and Mate1, whereas Oct1 mRNA expression was only decreased in ob/MCD mice. These results indicate that the diabetic ob/ob genotype and the MCD disease model alter kidney transporter expression and alter the pharmacokinetics of metformin, potentially increasing the risk of drug toxicity. PMID:26016715

  2. Miro, MCU, and calcium: bridging our understanding of mitochondrial movement in axons.

    PubMed

    Niescier, Robert F; Chang, Karen T; Min, Kyung-Tai

    2013-09-10

    Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca(2) (+) plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

  3. Altered isotope charge distribution of acetylcholine neurotransmitter and Myasthenia Gravis.

    PubMed

    Bayri, A; Unal, S; Altin, S; Bulut, F; Dayanc, B E

    2016-04-01

    Acetylcholine (ACh) is a central neurotransmitter that is used for signal transmission among neurons. For signal transmission in neurons, a neurotransmitter must bind to its receptor in order to produce an action potential. It is known that in Myasthenia Gravis (MG) cases, autoantibodies could block this binding. In the future, the treatment of MG could be achieved via modulation of molecular interaction between ACh and acetylcholine receptor (AChR). This study suggests that if an atom on a ligand (i.e. a neurotransmitter) is replaced with its isotope, it may cause charge redistribution such as that the binding between ligand and its receptor may be improved. Hence suggesting that with replacement of atoms with their isotopes in any biologically important ligand could alter its affinity towards its corresponding receptor, which would have a wide array of applications in medicine.

  4. Enhanced Neuroplasticity by the Metabolic Enhancer Piracetam Associated with Improved Mitochondrial Dynamics and Altered Permeability Transition Pore Function

    PubMed Central

    Stockburger, Carola; Miano, Davide; Pallas, Thea; Müller, Walter E.

    2016-01-01

    The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function. PMID:27747106

  5. Food restriction alters the diurnal distribution of sleep in rats.

    PubMed

    Roky, R; Kapás, L; Taishi, T P; Fang, J; Krueger, J M

    1999-11-01

    The purpose of the present study was to determine the effects of restricting food and water intake to the light period on sleep and brain temperature (Tbr). Sprague-Dawley male rats were anesthetized and provided with electrodes and thermistors for electroencephalographic (EEG) and Tbr recordings. Baseline recordings were performed after a 3-week recovery period. After baseline recordings, access to food and water was restricted (FWR) to the light period for 29 days. During FWR, the diurnal distribution of rapid-eye-movement sleep (REMS) and Tbr were reversed, while the distribution of non-REMS (NREMS) between the dark and light periods was attenuated. Daily food and water intake, body weight, and the diurnal distribution of EEG slow-wave activity within NREMS remained unchanged. In a separate study, sham-operated and pinealectomized rats were studied in a similar manner. The sleep responses of pinealectomized and sham-operated rats to FWR were similar. Further, FWR did not affect melatonin levels in the sham-operated rats, thereby suggesting that the pineal gland does not mediate the effects of FWR on sleep.

  6. Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice.

    PubMed

    Rojanathammanee, Lalida; Rakoczy, Sharlene; Brown-Borg, Holly M

    2014-10-01

    Ames dwarf mice are deficient in growth hormone (GH), prolactin, and thyroid-stimulating hormone and live significantly longer than their wild-type (WT) siblings. The lack of GH is associated with stress resistance and increased longevity. However, the mechanism underlying GH's actions on cellular stress defense have yet to be elucidated. In this study, WT or Ames dwarf mice were treated with saline or GH (WT saline, Dwarf saline, and Dwarf GH) two times daily for 7 days. The body and liver weights of Ames dwarf mice were significantly increased after 7 days of GH administration. Mitochondrial protein levels of the glutathione S-transferase (GST) isozymes, K1 and M4 (GSTK1 and GSTM4), were significantly higher in dwarf mice (Dwarf saline) when compared with WT mice (WT saline). GH administration downregulated the expression of GSTK1 proteins in dwarf mice. We further investigated GST activity from liver lysates using different substrates. Substrate-specific GST activity (bromosulfophthalein, dichloronitrobenzene, and 4-hydrox-ynonenal) was significantly reduced in GH-treated dwarf mice. In addition, GH treatment attenuated the activity of thioredoxin and glutaredoxin in liver mitochondria of Ames mice. Importantly, GH treatment suppressed Trx2 and TrxR2 mRNA expression. These data indicate that GH has a role in stress resistance by altering the functional capacity of the GST system through the regulation of specific GST family members in long-living Ames dwarf mice. It also affects the regulation of thioredoxin and glutaredoxin, factors that regulate posttranslational modification of proteins and redox balance, thereby further influencing stress resistance.

  7. Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice.

    PubMed

    Rojanathammanee, Lalida; Rakoczy, Sharlene; Brown-Borg, Holly M

    2014-10-01

    Ames dwarf mice are deficient in growth hormone (GH), prolactin, and thyroid-stimulating hormone and live significantly longer than their wild-type (WT) siblings. The lack of GH is associated with stress resistance and increased longevity. However, the mechanism underlying GH's actions on cellular stress defense have yet to be elucidated. In this study, WT or Ames dwarf mice were treated with saline or GH (WT saline, Dwarf saline, and Dwarf GH) two times daily for 7 days. The body and liver weights of Ames dwarf mice were significantly increased after 7 days of GH administration. Mitochondrial protein levels of the glutathione S-transferase (GST) isozymes, K1 and M4 (GSTK1 and GSTM4), were significantly higher in dwarf mice (Dwarf saline) when compared with WT mice (WT saline). GH administration downregulated the expression of GSTK1 proteins in dwarf mice. We further investigated GST activity from liver lysates using different substrates. Substrate-specific GST activity (bromosulfophthalein, dichloronitrobenzene, and 4-hydrox-ynonenal) was significantly reduced in GH-treated dwarf mice. In addition, GH treatment attenuated the activity of thioredoxin and glutaredoxin in liver mitochondria of Ames mice. Importantly, GH treatment suppressed Trx2 and TrxR2 mRNA expression. These data indicate that GH has a role in stress resistance by altering the functional capacity of the GST system through the regulation of specific GST family members in long-living Ames dwarf mice. It also affects the regulation of thioredoxin and glutaredoxin, factors that regulate posttranslational modification of proteins and redox balance, thereby further influencing stress resistance. PMID:24285747

  8. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    SciTech Connect

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián; Simon, Felipe; Riedel, Claudia; Ferrick, David; Elorza, Alvaro A.

    2013-08-02

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive.

  9. Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy.

    PubMed

    Dlasková, Andrea; Engstová, Hana; Plecitá-Hlavatá, Lydie; Lessard, Mark; Alán, Lukáš; Reguera, David Pajuelo; Jabůrek, Martin; Ježek, Petr

    2015-06-01

    Mitochondrial nucleoids are confined sites of mitochondrial DNA existing in complex clusters with the DNA-compacting mitochondrial (mt) transcription factor A (TFAM) and other accessory proteins and gene expression machinery proteins, such as a mt single-stranded-DNA-binding protein (mtSSB). To visualize nucleoid distribution within the mt reticular network, we have employed three-dimensional (3D) double-color 4Pi microscopy. The mt network was visualized in hepatocellular carcinoma HepG2 cells via mt-matrix-addressed GFP, while 3D immunocytochemistry of mtSSB was performed. Optimization of iso-surface computation threshold for nucleoid 4Pi images to 30 led to an average nucleoid diameter of 219 ± 110 and 224 ± 100 nm in glucose- and galactose-cultivated HepG2 cells (the latter with obligatory oxidative phosphorylation). We have positioned mtDNA nucleoids within the mt reticulum network and refined our model for nucleoid redistribution within the fragmented network--clustering of up to ten nucleoids in 2 μm diameter mitochondrial spheroids of a fragmented mt network, arising from an original 10 μm mt tubule of a 400 nm diameter. However, the theoretically fragmented bulk parts were observed most frequently as being reintegrated into the continuous mt network in 4Pi images. Since the predicted nucleoid counts within the bulk parts corresponded to the model, we conclude that fragmentation/reintegration cycles are not accompanied by mtDNA degradation or that mtDNA degradation is equally balanced by mtDNA replication.

  10. Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress.

    PubMed

    Baret, Pascal; Septembre-Malaterre, Axelle; Rigoulet, Michel; Lefebvre d'Hellencourt, Christian; Priault, Muriel; Gonthier, Marie-Paule; Devin, Anne

    2013-01-01

    Numerous studies indicate that an increase in reactive oxygen species (ROS) significantly affects white adipose tissue biology and leads to an inflammatory profile and insulin resistance, which could contribute to obesity-associated diabetes and cardiovascular diseases. Mitochondria play a key role in adipose tissue energy metabolism and constitute the main source of cellular ROS such as H(2)O(2). Polyphenols constitute the most abundant antioxidants provided by the human diet. Indeed, they are widely distributed in fruits, vegetables and some plant-derived beverages such as coffee and tea. Thus, the biological effects of dietary polyphenols that may increase the antioxidant capacity of the body against obesity-induced oxidative stress are of high interest. Here, we studied the capacity of polyphenols to modulate the impact of oxidative stress on the mitochondria of preadipocytes, which are important cells governing the adipose tissue development for energy homeostasis. Whereas H(2)O(2) treatment induces a proliferation arrest associated with an increase in mitochondrial content in 3T3-L1 preadipocytes, preconditioning with some major dietary polyphenols totally or partially protects the cells against oxidative stress consequences. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.

  11. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.

    PubMed

    Cecatto, Cristiane; Hickmann, Fernanda H; Rodrigues, Marília D N; Amaral, Alexandre U; Wajner, Moacir

    2015-12-01

    Mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies are fatty acid oxidation disorders biochemically characterized by tissue accumulation of long-chain fatty acids and derivatives, including the monocarboxylic long-chain 3-hydroxy fatty acids (LCHFAs) 3-hydroxytetradecanoic acid (3HTA) and 3-hydroxypalmitic acid (3HPA). Patients commonly present severe cardiomyopathy for which the pathogenesis is still poorly established. We investigated the effects of 3HTA and 3HPA, the major metabolites accumulating in these disorders, on important parameters of mitochondrial homeostasis in Ca(2+) -loaded heart mitochondria. 3HTA and 3HPA significantly decreased mitochondrial membrane potential, the matrix NAD(P)H pool and Ca(2+) retention capacity, and also induced mitochondrial swelling. These fatty acids also provoked a marked decrease of ATP production reflecting severe energy dysfunction. Furthermore, 3HTA-induced mitochondrial alterations were completely prevented by the classical mitochondrial permeability transition (mPT) inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca(2+) uptake blocker, indicating that LCHFAs induced Ca(2+)-dependent mPT pore opening. Milder effects only achieved at higher doses of LCHFAs were observed in brain mitochondria, implying a higher vulnerability of heart to these fatty acids. By contrast, 3HTA and docosanoic acids did not change mitochondrial homeostasis, indicating selective effects for monocarboxylic LCHFAs. The present data indicate that the major LCHFAs accumulating in mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies induce mPT pore opening, compromising Ca(2+) homeostasis and oxidative phosphorylation more intensely in the heart. It is proposed that these pathomechanisms may contribute at least in part to the severe cardiac alterations characteristic of patients affected by these diseases.

  12. Cold exposure induces alterations in porcine triiodothyronine tissue distribution

    SciTech Connect

    Quesada, M.H.; Reed, H.L.; Hesslink, R.; Licauco, G.; Castro, S.; Homer, L.; Young, B. Univ. of Alberta, Edmonton )

    1991-03-11

    Evidence suggests that thyroid hormone plays an active role in modulation of tissue metabolism in response to cold challenge. In an attempts to identify tissues that may have increased capacity for triiodothyronine (T{sub 3}) and be actively involved in the thermogenic process, the authors investigated the T{sub 3} tissue distribution in 5 month old swine exposed to cold (4C) (N = 5) for three weeks, compared with controls at a thermoneutral temperature (20C) (N = 4). Both groups were injected I.V. with ({sup 125}I)T{sub 3} three hours before sacrifice. ({sup 125}I)T{sub 3} was organically extracted from heart, kidney, thyroid gland, adrenal, brain, 4 different types of striated muscles and fat tissues and counted to determine the CPM/gm of tissue. Serum total T{sub 3} and free T{sub 3} were elevated. The bulk of the tissue/serum ratios of cold exposed swine compared with controls were unchanged. However, calculation of the T{sub 3} organ pools revealed that the majority was elevated 2 to 3 times over control. Increases in tissue distribution volume (TVD) occurred in hip fat. Body and organ weights tended to increase but not to a significant degree except for the thyroid gland, which increased 66% over the average control value. The physiological significance of the cold associated augmented organ pool and the increased TCD in hip fat needs to be explored.

  13. A Genetic Discontinuity in a Continuously Distributed Species: Mitochondrial DNA in the American Oyster, Crassostrea Virginica

    PubMed Central

    Reeb, C. A.; Avise, J. C.

    1990-01-01

    Restriction site variation in mitochondrial DNA (mtDNA) of the American oyster (Crassostrea virginica) was surveyed in continuously distributed populations sampled from the Gulf of St. Lawrence, Canada, to Brownsville, Texas. mtDNA clonal diversity was high, with 82 different haplotypes revealed among 212 oysters with 13 endonucleases. The mtDNA clones grouped into two distinct genetic arrays (estimated to differ by about 2.6% in nucleotide sequence) that characterized oysters collected north vs. south of a region on the Atlantic mid-coast of Florida. The population genetic ``break'' in mtDNA contrasts with previous reports of near uniformity of nuclear (allozyme) allele frequencies throughout the range of the species, but agrees closely with the magnitude and pattern of mtDNA differentiation reported in other estuarine species in the southeastern United States. This concordance of mtDNA phylogenetic pattern across independently evolving species provides strong evidence for vicariant biogeographic processes in initiating intraspecific population structure. The post-Miocene ecological history of the region suggests that reduced precipitation levels in an enlarged Floridian peninsula may have created discontinuities in suitable estuarine habitat for oysters during glacial periods, and that today such population separations are maintained by the combined influence of ecological gradients and oceanic currents on larval dispersal. The results are consistent with the hypothesis that historical vicariant events, in conjunction with contemporary environmental influences on gene flow, can result in genetic discontinuities in continuously distributed species with high dispersal capability. PMID:1968412

  14. Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice

    PubMed Central

    Quirós, Pedro M; Ramsay, Andrew J; Sala, David; Fernández-Vizarra, Erika; Rodríguez, Francisco; Peinado, Juan R; Fernández-García, Maria Soledad; Vega, José A; Enríquez, José A; Zorzano, Antonio; López-Otín, Carlos

    2012-01-01

    Mitochondria are dynamic subcellular organelles that convert nutrient intermediates into readily available energy equivalents. Optimal mitochondrial function is ensured by a highly evolved quality control system, coordinated by protein machinery that regulates a process of continual fusion and fission. In this work, we provide in vivo evidence that the ATP-independent metalloprotease OMA1 plays an essential role in the proteolytic inactivation of the dynamin-related GTPase OPA1 (optic atrophy 1). We also show that OMA1 deficiency causes a profound perturbation of the mitochondrial fusion–fission equilibrium that has important implications for metabolic homeostasis. Thus, ablation of OMA1 in mice results in marked transcriptional changes in genes of lipid and glucose metabolic pathways and substantial alterations in circulating blood parameters. Additionally, Oma1-mutant mice exhibit an increase in body weight due to increased adipose mass, hepatic steatosis, decreased energy expenditure and impaired thermogenenesis. These alterations are especially significant under metabolic stress conditions, indicating that an intact OMA1-OPA1 system is essential for developing the appropriate adaptive response to different metabolic stressors such as a high-fat diet or cold-shock. This study provides the first description of an unexpected role in energy metabolism for the metalloprotease OMA1 and reinforces the importance of mitochondrial quality control for normal metabolic function. PMID:22433842

  15. 4-Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi.

    PubMed

    Britta, Elizandra Aparecida; Scariot, Débora Botura; Falzirolli, Hugo; da Silva, Cleuza Conceição; Ueda-Nakamura, Tânia; Dias Filho, Benedito Prado; Borsali, Redouane; Nakamura, Celso Vataru

    2015-06-01

    Trypanosoma cruzi is the causative agent of Chagas' disease, a parasitic disease that remains a serious health concern with unsatisfactory treatment. Drugs that are currently used to treat Chagas' disease are partially effective in the acute phase but ineffective in the chronic phase of the disease. The aim of the present study was to evaluate the antitrypanosomal activity and morphological, ultrastructural and biochemical alterations induced by a new molecule, 4-nitrobenzaldehyde thiosemicarbazone (BZTS), derived from S-(-)-limonene against epimastigote, trypomastigote and intracellular amastigote forms of T. cruzi. BZTS inhibited the growth of epimastigotes (IC50 = 9·2 μ m), intracellular amastigotes (IC50 = 3·23 μ m) and inhibited the viability of trypomastigotes (EC50 = 1·43 μ m). BZTS had a CC50 of 37·45 μ m in LLCMK2 cells. BZTS induced rounding and distortion of the cell body and severely damaged parasite mitochondria, reflected by extensive swelling and disorganization in the inner mitochondrial membrane and the presence of concentric membrane structures inside the organelle. Cytoplasmic vacuolization, endoplasmic reticulum that surrounded organelles, the loss of mitochondrial membrane potential, and increased mitochondrial O2 •- production were also observed. Our results suggest that BZTS alters the ultrastructure and physiology of mitochondria, which could be closely related to parasite death.

  16. Creatine Supplementation Increases Total Body Water Without Altering Fluid Distribution.

    PubMed

    Powers, Michael E.; Arnold, Brent L.; Weltman, Arthur L.; Perrin, David H.; Mistry, Dilawaar; Kahler, David M.; Kraemer, William; Volek, Jeff

    2003-03-01

    OBJECTIVE: To examine the effects of oral creatine (Cr) monohydrate supplementation on muscle Cr concentration, body mass, and total body water (TBW), extracellular water (ECW), and intracellular water (ICW) volumes. DESIGN AND SETTING: After an overnight fast, urinary Cr and creatinine concentrations, muscle Cr concentration, body mass, TBW, ECW, and ICW were measured, and subjects were randomly assigned to either a Cr or a placebo (P) group. The Cr group ingested 25 g/d of Cr for 7 days (loading phase) and 5 g/d for the remaining 21 days (maintenance phase), whereas the P group ingested a sucrose P using the same protocol. All the measures were reassessed immediately after the loading and maintenance phases. SUBJECTS: Sixteen men (age = 22.8 +/- 3.01 years, height = 179.8 +/- 7.1 cm, body mass = 84.8 +/- 11.2 kg) and 16 women (age = 21.8 +/- 2.51 years, height = 163.4 +/- 5.9 cm, body mass = 63.6 +/- 14.0 kg) involved in resistance training volunteered to participate in this study. MEASUREMENTS: Muscle Cr concentration was determined from the vastus lateralis muscle using a percutaneous needle-biopsy technique. Total body water, ECW, and ICW volumes were assessed using deuterium oxide and sodium bromide dilution analyses. RESULTS: The Cr group experienced a significant increase in muscle Cr concentration, body mass, and TBW. The P group experienced a small but significant increase in TBW only. CONCLUSIONS: The Cr supplementation protocol was effective for increasing muscle Cr concentrations, body mass, and TBW; however, fluid distribution was not changed.

  17. Creatine Supplementation Increases Total Body Water Without Altering Fluid Distribution

    PubMed Central

    Arnold, Brent L.; Weltman, Arthur L.; Perrin, David H.; Mistry, Dilawaar; Kahler, David M.; Kraemer, William; Volek, Jeff

    2003-01-01

    Objective: To examine the effects of oral creatine (Cr) monohydrate supplementation on muscle Cr concentration, body mass, and total body water (TBW), extracellular water (ECW), and intracellular water (ICW) volumes. Design and Setting: After an overnight fast, urinary Cr and creatinine concentrations, muscle Cr concentration, body mass, TBW, ECW, and ICW were measured, and subjects were randomly assigned to either a Cr or a placebo (P) group. The Cr group ingested 25 g/d of Cr for 7 days (loading phase) and 5 g/d for the remaining 21 days (maintenance phase), whereas the P group ingested a sucrose P using the same protocol. All the measures were reassessed immediately after the loading and maintenance phases. Subjects: Sixteen men (age = 22.8 ± 3.01 years, height = 179.8 ± 7.1 cm, body mass = 84.8 ± 11.2 kg) and 16 women (age = 21.8 ± 2.51 years, height = 163.4 ± 5.9 cm, body mass = 63.6 ± 14.0 kg) involved in resistance training volunteered to participate in this study. Measurements: Muscle Cr concentration was determined from the vastus lateralis muscle using a percutaneous needle-biopsy technique. Total body water, ECW, and ICW volumes were assessed using deuterium oxide and sodium bromide dilution analyses. Results: The Cr group experienced a significant increase in muscle Cr concentration, body mass, and TBW. The P group experienced a small but significant increase in TBW only. Conclusions: The Cr supplementation protocol was effective for increasing muscle Cr concentrations, body mass, and TBW; however, fluid distribution was not changed. PMID:12937471

  18. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression

    PubMed Central

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S. R. Murthy; Joly, Erik; Ruderman, Neil B.; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  19. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression.

    PubMed

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S R Murthy; Joly, Erik; Ruderman, Neil B; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  20. Protein Kinase Cδ Targets Mitochondria, Alters Mitochondrial Membrane Potential, and Induces Apoptosis in Normal and Neoplastic Keratinocytes When Overexpressed by an Adenoviral Vector

    PubMed Central

    Li, Luowei; Lorenzo, Patricia S.; Bogi, Krisztina; Blumberg, Peter M.; Yuspa, Stuart H.

    1999-01-01

    Inactivation of protein kinase Cδ (PKCδ) is associated with resistance to terminal cell death in epidermal tumor cells, suggesting that activation of PKCδ in normal epidermis may be a component of a cell death pathway. To test this hypothesis, we constructed an adenovirus vector carrying an epitope-tagged PKCδ under a cytomegalovirus promoter to overexpress PKCδ in normal and neoplastic keratinocytes. While PKCδ overexpression was detected by immunoblotting in keratinocytes, the expression level of other PKC isozymes, including PKCα, PKCɛ, PKCζ, and PKCη, did not change. Calcium-independent PKC-specific kinase activity increased after infection of keratinocytes with the PKCδ adenovirus. Activation of PKCδ by 12-O-tetradecanoylphorbol-13-acetate (TPA) at a nanomolar concentration was lethal to normal and neoplastic mouse and human keratinocytes overexpressing PKCδ. Lethality was inhibited by PKC selective inhibitors, GF109203X and Ro-32-0432. TPA-induced cell death was apoptotic as evidenced by morphological criteria, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay, DNA fragmentation, and increased caspase activity. Subcellular fractionation indicated that PKCδ translocated to a mitochondrial enriched fraction after TPA activation, and this finding was confirmed by confocal microscopy of cells expressing a transfected PKCδ-green fluorescent protein fusion protein. Furthermore, activation of PKCδ in keratinocytes altered mitochondrial membrane potential, as indicated by rhodamine-123 fluorescence. Mitochondrial inhibitors, rotenone and antimycin A, reduced TPA-induced cell death in PKCδ-overexpressing keratinocytes. These results indicate that PKCδ can initiate a death pathway in keratinocytes that involves direct interaction with mitochondria and alterations of mitochondrial function. PMID:10567579

  1. Mitochondrial cytopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-09-01

    Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise. PMID:26996063

  2. Genetic structure of wild bonobo populations: diversity of mitochondrial DNA and geographical distribution.

    PubMed

    Kawamoto, Yoshi; Takemoto, Hiroyuki; Higuchi, Shoko; Sakamaki, Tetsuya; Hart, John A; Hart, Terese B; Tokuyama, Nahoko; Reinartz, Gay E; Guislain, Patrick; Dupain, Jef; Cobden, Amy K; Mulavwa, Mbangi N; Yangozene, Kumugo; Darroze, Serge; Devos, Céline; Furuichi, Takeshi

    2013-01-01

    Bonobos (Pan paniscus) inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species' range. In 136 effective samples from different individuals (range: 7-37 per population), we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D), which included a newly identified clade (D). MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation.

  3. Genetic Structure of Wild Bonobo Populations: Diversity of Mitochondrial DNA and Geographical Distribution

    PubMed Central

    Higuchi, Shoko; Sakamaki, Tetsuya; Hart, John A.; Hart, Terese B.; Tokuyama, Nahoko; Reinartz, Gay E.; Guislain, Patrick; Dupain, Jef; Cobden, Amy K.; Mulavwa, Mbangi N.; Yangozene, Kumugo; Darroze, Serge; Devos, Céline; Furuichi, Takeshi

    2013-01-01

    Bonobos (Pan paniscus) inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species’ range. In 136 effective samples from different individuals (range: 7–37 per population), we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D), which included a newly identified clade (D). MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation. PMID:23544084

  4. Altered Redox Mitochondrial Biology in the Neurodegenerative Disorder Fragile X-Tremor/Ataxia Syndrome: Use of Antioxidants in Precision Medicine

    PubMed Central

    Song, Gyu; Napoli, Eleonora; Wong, Sarah; Hagerman, Randi; Liu, Siming; Tassone, Flora; Giulivi, Cecilia

    2016-01-01

    A 55–200 expansion of the CGG nucleotide repeat in the 5’-UTR of the fragile X mental retardation 1 gene (FMR1) is the hallmark of the triplet nucleotide disease known as the “premutation” as opposed to those with >200 repeats, known as the full mutation or fragile X syndrome. Originally, premutation carriers were thought to be free of phenotypic traits; however, some are diagnosed with emotional and neurocognitive issues and, later in life, with the neurodegenerative disease fragile X-associated tremor/ataxia syndrome (FXTAS). Considering that mitochondrial dysfunction has been observed in fibroblasts and post-mortem brain samples from carriers of the premutation, we hypothesized that mitochondrial dysfunction-derived reactive oxygen species (ROS) may result in cumulative oxidative-nitrative damage. Fibroblasts from premutation carriers (n = 31, all FXTAS-free except 8), compared with age- and sex-matched controls (n = 25), showed increased mitochondrial ROS production, impaired Complex I activity, lower expression of MIA40 (rate-limiting step of the redox-regulated mitochondrial-disulfide-relay-system), increased mtDNA deletions and increased biomarkers of lipid and protein oxidative-nitrative damage. Most of the outcomes were more pronounced in FXTAS-affected individuals. Significant recovery of mitochondrial mass and/or function was obtained with superoxide or hydroxyl radicals’ scavengers, a glutathione peroxidase analog, or by overexpressing MIA40. The effects of ethanol (a hydroxyl radical scavenger) were deleterious, while others (by N-acetyl-cysteine, quercetin and epigallocatechin-3-gallate) were outcome- and/or carrier- specific. The use of antioxidants in the context of precision medicine is discussed with the goal of improving mitochondrial function in carriers with the potential of decreasing the morbidity and/or delaying FXTAS onset. PMID:27385396

  5. Normalization of high dimensional genomics data where the distribution of the altered variables is skewed.

    PubMed

    Landfors, Mattias; Philip, Philge; Rydén, Patrik; Stenberg, Per

    2011-01-01

    Genome-wide analysis of gene expression or protein binding patterns using different array or sequencing based technologies is now routinely performed to compare different populations, such as treatment and reference groups. It is often necessary to normalize the data obtained to remove technical variation introduced in the course of conducting experimental work, but standard normalization techniques are not capable of eliminating technical bias in cases where the distribution of the truly altered variables is skewed, i.e. when a large fraction of the variables are either positively or negatively affected by the treatment. However, several experiments are likely to generate such skewed distributions, including ChIP-chip experiments for the study of chromatin, gene expression experiments for the study of apoptosis, and SNP-studies of copy number variation in normal and tumour tissues. A preliminary study using spike-in array data established that the capacity of an experiment to identify altered variables and generate unbiased estimates of the fold change decreases as the fraction of altered variables and the skewness increases. We propose the following work-flow for analyzing high-dimensional experiments with regions of altered variables: (1) Pre-process raw data using one of the standard normalization techniques. (2) Investigate if the distribution of the altered variables is skewed. (3) If the distribution is not believed to be skewed, no additional normalization is needed. Otherwise, re-normalize the data using a novel HMM-assisted normalization procedure. (4) Perform downstream analysis. Here, ChIP-chip data and simulated data were used to evaluate the performance of the work-flow. It was found that skewed distributions can be detected by using the novel DSE-test (Detection of Skewed Experiments). Furthermore, applying the HMM-assisted normalization to experiments where the distribution of the truly altered variables is skewed results in considerably higher

  6. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    PubMed

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  7. Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination.

    PubMed

    Thakar, Juilee; Mohanty, Subhasis; West, A Phillip; Joshi, Samit R; Ueda, Ikuyo; Wilson, Jean; Meng, Hailong; Blevins, Tamara P; Tsang, Sui; Trentalange, Mark; Siconolfi, Barbara; Park, Koonam; Gill, Thomas M; Belshe, Robert B; Kaech, Susan M; Shadel, Gerald S; Kleinstein, Steven H; Shaw, Albert C

    2015-01-01

    To elucidate gene expression pathways underlying age-associated impairment in influenza vaccine response, we screened young (age 21-30) and older (age≥65) adults receiving influenza vaccine in two consecutive seasons and identified those with strong or absent response to vaccine, including a subset of older adults meeting criteria for frailty. PBMCs obtained prior to vaccination (Day 0) and at day 2 or 4, day 7 and day 28 post-vaccine were subjected to gene expression microarray analysis. We defined a response signature and also detected induction of a type I interferon response at day 2 and a plasma cell signature at day 7 post-vaccine in young responders. The response signature was dysregulated in older adults, with the plasma cell signature induced at day 2, and was never induced in frail subjects (who were all non-responders). We also identified a mitochondrial signature in young vaccine responders containing genes mediating mitochondrial biogenesis and oxidative phosphorylation that was consistent in two different vaccine seasons and verified by analyses of mitochondrial content and protein expression. These results represent the first genome-wide transcriptional profiling analysis of age-associated dynamics following influenza vaccination, and implicate changes in mitochondrial biogenesis and function as a critical factor in human vaccine responsiveness.

  8. Phloretin ameliorates arsenic trioxide induced mitochondrial dysfunction in H9c2 cardiomyoblasts mediated via alterations in membrane permeability and ETC complexes.

    PubMed

    Vineetha, Vadavanath Prabhakaran; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2015-05-01

    Arsenic trioxide (ATO), though a very effective drug for the treatment of acute promyelocytic leukemia, leads to cardiotoxicity. As mitochondria are the center of attention of cardiac cell׳s general metabolic status, it is primarily important to see the interaction of ATO with mitochondria. Studies related exclusively to the alterations in mitochondria and its associated functions caused by ATO are very limited. The present investigation aims to explore the effect of ATO on various components of electron transport chain, oxygen consumption, ATP production, mitochondrial superoxide generation, transmembrane potential, permeability pore opening, calcium homeostasis and apoptosis. Attempts were also made to see the efficacy of phloretin, a potent antioxidant flavonoid found majorly in apple peel on cardiotoxicity. The H9c2 cells exposed to ATO (5µM) exhibited increased oxidative stress with reduced innate antioxidant status, mitochondrial dysfunctions and apoptosis. It increased the intracellular calcium content, caused alterations in the activity of transcription factor Nrf2, xanthine oxidase, aconitase and caspase 3 compared to the control group. Phloretin at 2.5 and 5µM concentrations were able to protect the cells from ATO toxicity via protecting mitochondria through its antioxidant potential. The present investigation based on mitochondria reveals the probability of cardioprotective potential of phloretin for the cancer patients on ATO chemotherapy. PMID:25746422

  9. Two Rare Human Mitofusin 2 Mutations Alter Mitochondrial Dynamics and Induce Retinal and Cardiac Pathology in Drosophila

    PubMed Central

    Chen, Yun; Bhandari, Poonam; Zhao, Peter; Jowdy, Casey C.; Engelhard, John T.; Dorn, Gerald W.

    2012-01-01

    Mitochondrial fusion is essential to organelle homeostasis and organ health. Inexplicably, loss of function mutations of mitofusin 2 (Mfn2) specifically affect neurological tissue, causing Charcot Marie Tooth syndrome (CMT) and atypical optic atrophy. As CMT-linked Mfn2 mutations are predominantly within the GTPase domain, we postulated that Mfn2 mutations in other functional domains might affect non-neurological tissues. Here, we defined in vitro and in vivo consequences of rare human mutations in the poorly characterized Mfn2 HR1 domain. Human exome sequencing data identified 4 rare non-synonymous Mfn2 HR1 domain mutations, two bioinformatically predicted as damaging. Recombinant expression of these (Mfn2 M393I and R400Q) in Mfn2-null murine embryonic fibroblasts (MEFs) revealed incomplete rescue of characteristic mitochondrial fragmentation, compared to wild-type human Mfn2 (hMfn2); Mfn2 400Q uniquely induced mitochondrial fragmentation in normal MEFs. To compare Mfn2 mutation effects in neurological and non-neurological tissues in vivo, hMfn2 and the two mutants were expressed in Drosophila eyes or heart tubes made deficient in endogenous fly mitofusin (dMfn) through organ-specific RNAi expression. The two mutants induced similar Drosophila eye phenotypes: small eyes and an inability to rescue the eye pathology induced by suppression of dMfn. In contrast, Mfn2 400Q induced more severe cardiomyocyte mitochondrial fragmentation and cardiac phenotypes than Mfn2 393I, including heart tube dilation, depressed fractional shortening, and progressively impaired negative geotaxis. These data reveal a central functional role for Mfn2 HR1 domains, describe organ-specific effects of two Mfn2 HR1 mutations, and strongly support prospective studies of Mfn2 400Q in heritable human heart disease of unknown genetic etiology. PMID:22957060

  10. Elevation of Pollen Mitochondrial DNA Copy Number by WHIRLY2: Altered Respiration and Pollen Tube Growth in Arabidopsis.

    PubMed

    Cai, Qiang; Guo, Liang; Shen, Zhao-Rui; Wang, Dan-Yang; Zhang, Quan; Sodmergen

    2015-09-01

    In plants, the copy number of the mitochondrial DNA (mtDNA) can be much lower than the number of mitochondria. The biological significance and regulatory mechanisms of this phenomenon remain poorly understood. Here, using the pollen vegetative cell, we examined the role of the Arabidopsis (Arabidopsis thaliana) mtDNA-binding protein WHIRLY2 (AtWHY2). AtWHY2 decreases during pollen development, in parallel with the rapid degradation of mtDNA; to examine the importance of this decrease, we used the pollen vegetative cell-specific promoter Lat52 to express AtWHY2. The transgenic plants (LWHY2) had very high mtDNA levels in pollen, more than 10 times more than in the wild type (ecotype Columbia-0). LWHY2 plants were fertile, morphologically normal, and set seeds; however, reciprocal crosses with heterozygous plants showed reduced transmission of LWHY2-1 through the male and slower growth of LWHY2-1 pollen tubes. We found that LWHY2-1 pollen had significantly more reactive oxygen species and less ATP compared with the wild type, indicating an effect on mitochondrial respiration. These findings reveal that AtWHY2 affects mtDNA copy number in pollen and suggest that low mtDNA copy numbers might be the normal means by which plant cells maintain mitochondrial genetic information.

  11. Elevation of Pollen Mitochondrial DNA Copy Number by WHIRLY2: Altered Respiration and Pollen Tube Growth in Arabidopsis1

    PubMed Central

    Cai, Qiang; Guo, Liang; Shen, Zhao-Rui; Wang, Dan-Yang; Zhang, Quan; Sodmergen

    2015-01-01

    In plants, the copy number of the mitochondrial DNA (mtDNA) can be much lower than the number of mitochondria. The biological significance and regulatory mechanisms of this phenomenon remain poorly understood. Here, using the pollen vegetative cell, we examined the role of the Arabidopsis (Arabidopsis thaliana) mtDNA-binding protein WHIRLY2 (AtWHY2). AtWHY2 decreases during pollen development, in parallel with the rapid degradation of mtDNA; to examine the importance of this decrease, we used the pollen vegetative cell-specific promoter Lat52 to express AtWHY2. The transgenic plants (LWHY2) had very high mtDNA levels in pollen, more than 10 times more than in the wild type (ecotype Columbia-0). LWHY2 plants were fertile, morphologically normal, and set seeds; however, reciprocal crosses with heterozygous plants showed reduced transmission of LWHY2-1 through the male and slower growth of LWHY2-1 pollen tubes. We found that LWHY2-1 pollen had significantly more reactive oxygen species and less ATP compared with the wild type, indicating an effect on mitochondrial respiration. These findings reveal that AtWHY2 affects mtDNA copy number in pollen and suggest that low mtDNA copy numbers might be the normal means by which plant cells maintain mitochondrial genetic information. PMID:26195569

  12. Elevation of Pollen Mitochondrial DNA Copy Number by WHIRLY2: Altered Respiration and Pollen Tube Growth in Arabidopsis.

    PubMed

    Cai, Qiang; Guo, Liang; Shen, Zhao-Rui; Wang, Dan-Yang; Zhang, Quan; Sodmergen

    2015-09-01

    In plants, the copy number of the mitochondrial DNA (mtDNA) can be much lower than the number of mitochondria. The biological significance and regulatory mechanisms of this phenomenon remain poorly understood. Here, using the pollen vegetative cell, we examined the role of the Arabidopsis (Arabidopsis thaliana) mtDNA-binding protein WHIRLY2 (AtWHY2). AtWHY2 decreases during pollen development, in parallel with the rapid degradation of mtDNA; to examine the importance of this decrease, we used the pollen vegetative cell-specific promoter Lat52 to express AtWHY2. The transgenic plants (LWHY2) had very high mtDNA levels in pollen, more than 10 times more than in the wild type (ecotype Columbia-0). LWHY2 plants were fertile, morphologically normal, and set seeds; however, reciprocal crosses with heterozygous plants showed reduced transmission of LWHY2-1 through the male and slower growth of LWHY2-1 pollen tubes. We found that LWHY2-1 pollen had significantly more reactive oxygen species and less ATP compared with the wild type, indicating an effect on mitochondrial respiration. These findings reveal that AtWHY2 affects mtDNA copy number in pollen and suggest that low mtDNA copy numbers might be the normal means by which plant cells maintain mitochondrial genetic information. PMID:26195569

  13. Development of barley (Hordeum vulgare L.) lines with altered starch granule size distribution.

    PubMed

    Jaiswal, Sarita; Båga, Monica; Ahuja, Geetika; Rossnagel, Brian G; Chibbar, Ravindra N

    2014-03-12

    Microscope analysis of starches prepared from 139 barley genotypes identified a Japanese genotype, Kinai Kyoshinkai-2 (KK-2), with altered starch granule size distribution. Compared to normal barley starch, KK-2 produced consistently higher volumes of starch granules with 5-15 μm diameter and reduced volumes of starch granules with >15 μm diameter when grown in different environments. A cross between KK-2 and normal starch cultivar CDC Kendall was made and led to the production of 154 F5 lines with alterations to the normal 7:3:1 distribution for A-:B-:C-type starch granule volumes. Three F5 lines showed unimodal starch granule size distribution due to apparent lack of very small (<5.0 μm diameter) C-type starch granules, but the phenotype was accompanied by reduced grain weight and total starch concentration. Five F5 lines produced a significantly larger population of large (>15 μm diameter) A-type starch granules as compared to normal starch and showed on average a 10:4:1 distribution for A-:B-:C-type starch granule volumes. The unusual starch phenotypes displayed by the F5 lines confirm starch granule size distribution in barley can be genetically altered.

  14. RE-EVALUATION OF THE GEOGRAPHIC DISTRIBUTION AND PHYLOGEOGRAPHY OF THE SIGMODON HISPIDUS COMPLEX BASED ON MITOCHONDRIAL DNA SEQUENCES

    PubMed Central

    Bradley, Robert D.; Henson, Dallas D.; Durish, Nevin D.

    2010-01-01

    Geographic distribution among members of the Sigmodon hispidus complex (Sigmodon hirsutus, S. hispidus, and S. toltecus) were examined using DNA sequences from the mitochondrial cytochrome-b gene. Geographic distribution of each taxon was defined based on DNA sequences obtained from 69 samples (19 newly obtained and 50 from previous studies) collected from North, Central, and South America. These data indicated that S. hispidus is restricted to the southern one-half of the United States and northeastern Mexico (Nuevo León and Tamaulipas), S. toltecus occupies the eastern one-third of Mexico (central Tamaulipas) to northern Honduras, and S. hirsutus is distributed from central Chiapas and southeastern Oaxaca to northern South America (Venezuela). The newly collected data extend distributions of S. hispidus from the southern United States southward into northeastern Mexico and that of S. toltecus from Chiapas, Mexico, southward to Honduras. Genetic divergence and patterns of phylogeography were examined within each taxon. PMID:20613884

  15. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia.

    PubMed

    Ren, He; Ferguson, Kyle; Kirkpatrick, Gordon; Vinning, Tanya; Chow, Victor; Ma, Sai

    2016-01-01

    During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future

  16. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia

    PubMed Central

    Ren, He; Ferguson, Kyle; Kirkpatrick, Gordon; Vinning, Tanya; Chow, Victor; Ma, Sai

    2016-01-01

    During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future

  17. Exercise-induced alterations in pancreatic oxidative stress and mitochondrial function in type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Raza, Haider; John, Annie; Shafarin, Jasmin; Howarth, Frank C

    2016-04-01

    Progressive metabolic complications accompanied by oxidative stress are the hallmarks of type 2 diabetes. The precise molecular mechanisms of the disease complications, however, remain elusive. Exercise-induced nontherapeutic management of type 2 diabetes is the first line of choice to control hyperglycemia and diabetes associated complications. In this study, using 11-month-old type 2 Goto-Kakizaki (GK) rats, we have investigated the effects of exercise on mitochondrial metabolic and oxidative stress in the pancreas. Our results showed an increase in theNADPHoxidase enzyme activity and reactive oxygen species (ROS) production inGKrats, which was inhibited after exercise. Increased lipid peroxidation and protein carbonylation andSODactivity were also inhibited after exercise. Interestingly, glutathione (GSH) level was markedly high in the pancreas ofGKdiabetic rats even after exercise. However,GSH-peroxidase andGSH-reductase activities were significantly reduced. Exercise also induced energy metabolism as observed by increased hexokinase and glutamate dehydrogenase activities. A significant decrease in the activities of mitochondrial ComplexesII/IIIandIVwere observed in theGKrats. Exercise improved only ComplexIVactivity suggesting increased utilization of oxygen. We also observed increased activities of cytochrome P450s in the pancreas ofGKrats which was reduced significantly after exercise.SDS-PAGEresults have shown a decreased expression ofNF-κB, Glut-2, andPPAR-ϒ inGKrats which was markedly increased after exercise. These results suggest differential oxidative stress and antioxidant defense responses after exercise. Our results also suggest improved mitochondrial function and energy utilization in the pancreas of exercisingGKrats. PMID:27095835

  18. Levetiracetam Differentially Alters CD95 Expression of Neuronal Cells and the Mitochondrial Membrane Potential of Immune and Neuronal Cells in vitro

    PubMed Central

    Rogers, Susannah K.; Shapiro, Lee A.; Tobin, Richard P.; Tow, Benjamin; Zuzek, Aleksej; Mukherjee, Sanjib; Newell-Rogers, M. Karen

    2014-01-01

    Epilepsy is a neurological seizure disorder that affects over 100 million people worldwide. Levetiracetam, either alone, as monotherapy, or as adjunctive treatment, is widely used to control certain types of seizures. Despite its increasing popularity as a relatively safe and effective anti-convulsive treatment option, its mechanism(s) of action are poorly understood. Studies have suggested neuronal, glial, and immune mechanisms of action. Understanding the precise mechanisms of action of levetiracetam would be extremely beneficial in helping to understand the processes involved in seizure generation and epilepsy. Moreover, a full understanding of these mechanisms would help to create more efficacious treatments while minimizing side-effects. The current study examined the effects of levetiracetam on the mitochondrial membrane potential of neuronal and non-neuronal cells, in vitro, in order to determine if levetiracetam influences metabolic processes in these cell types. In addition, this study sought to address possible immune-mediated mechanisms by determining if levetiracetam alters the expression of immune receptor–ligand pairs. The results show that levetiracetam induces expression of CD95 and CD178 on NGF-treated C17.2 neuronal cells. The results also show that levetiracetam increases mitochondrial membrane potential on C17.2 neuronal cells in the presence of nerve growth factor. In contrast, levetiracetam decreases the mitochondrial membrane potential of splenocytes and this effect was dependent on intact invariant chain, thus implicating immune cell interactions. These results suggest that both neuronal and non-neuronal anti-epileptic activities of levetiracetam involve control over energy metabolism, more specifically, mΔΨ. Future studies are needed to further investigate this potential mechanism of action. PMID:24600432

  19. Developmental Exposure to Second-Hand Smoke Increases Adult Atherogenesis and Alters Mitochondrial DNA Copy Number and Deletions in apoE−/− Mice

    PubMed Central

    Fetterman, Jessica L.; Pompilius, Melissa; Westbrook, David G.; Uyeminami, Dale; Brown, Jamelle; Pinkerton, Kent E.; Ballinger, Scott W.

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m3 total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1–19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12–14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis. PMID:23825571

  20. The order of exercise during concurrent training for rehabilitation does not alter acute genetic expression, mitochondrial enzyme activity or improvements in muscle function.

    PubMed

    MacNeil, Lauren G; Glover, Elisa; Bergstra, T Graham; Safdar, Adeel; Tarnopolsky, Mark A

    2014-01-01

    Concurrent exercise combines different modes of exercise (e.g., aerobic and resistance) into one training protocol, providing stimuli meant to increase muscle strength, aerobic capacity and mass. As disuse is associated with decrements in strength, aerobic capacity and muscle size concurrent training is an attractive modality for rehabilitation. However, interference between the signaling pathways may result in preferential improvements for one of the exercise modes. We recruited 18 young adults (10 ♂, 8 ♀) to determine if order of exercise mode during concurrent training would differentially affect gene expression, protein content and measures of strength and aerobic capacity after 2 weeks of knee-brace induced disuse. Concurrent exercise sessions were performed 3x/week for 6 weeks at gradually increasing intensities either with endurance exercise preceding (END>RES) or following (RES>END) resistance exercise. Biopsies were collected from the vastus lateralis before, 3 h after the first exercise bout and 48 h after the end of training. Concurrent exercise altered the expression of genes involved in mitochondrial biogenesis (PGC-1α, PRC, PPARγ), hypertrophy (PGC-1α4, REDD2, Rheb) and atrophy (MuRF-1, Runx1), increased electron transport chain complex protein content, citrate synthase and mitochondrial cytochrome c oxidase enzyme activity, muscle mass, maximum isometric strength and VO 2peak. However, the order in which exercise was completed (END>RES or RES>END) only affected the protein content of mitochondrial complex II subunit. In conclusion, concurrent exercise training is an effective modality for the rehabilitation of the loss of skeletal muscle mass, maximum strength, and peak aerobic capacity resulting from disuse, regardless of the order in which the modes of exercise are performed.

  1. Transcranial laser therapy alters amyloid precursor protein processing and improves mitochondrial function in a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    McCarthy, Thomas; Yu, Jin; El-Amouri, Salim; Gattoni-Celli, Sebastiano; Richieri, Steve; De Taboada, Luis; Streeter, Jackson; Kindy, Mark S.

    2011-03-01

    Transcranial laser therapy (TLT) using a near-infrared energy laser system was tested in the 2x Tg amyloid precursor protein (APP) mouse model of Alzheimer's Disease (AD). TLT was administered 3 times/week at escalating doses, starting at 3 months of age, and was compared to a control group which received no laser treatment. Treatment sessions were continued for a total of six months. The brains were examined for amyloid plaque burden, Aβ peptides (Aβ1-40 and Aβ1-42 ), APP cleavage products (sAPPα, CTFβ) and mitochondrial activity. Administration of TLT was associated with a significant, dose-dependent reduction in amyloid load as indicated by the numbers of Aβ plaques. Levels of Aβ1-40 and Aβ1-42 levels were likewise reduced in a dose-dependent fashion. All TLT doses produced an increase in brain sAPPα and a decrease in CTFβ levels consistent with an increase in α-secretase activity and a decrease in β-secretase activity. In addition, TLT increased ATP levels and oxygen utilization in treated animals suggesting improved mitochondrial function. These studies suggest that TLT is a potential candidate for treatment of AD.

  2. Distribution of the PBC-specific- (M2) and the naturally-occurring mitochondrial antigen- (NOMAg) systems in plants.

    PubMed Central

    Lang, P; Klein, R; Becker, E W; Berg, P A

    1992-01-01

    In previous studies it was demonstrated that antibodies in sera from patients with primary biliary cirrhosis (PBC) and their relatives can recognize two different antigen systems in the ATPase fraction prepared from beef heart mitochondria, namely the PBC-related M2- and the naturally occurring mitochondrial antigen (NOMAg)-related epitopes. Since separation of these two antigen systems could not be achieved using mammalian mitochondria, mitochondria from a wide spectrum of plants were analysed with respect to the presence of mitochondrial antigens. Mitochondria from 29 species of plants were prepared and tested by ELISA and Western blot using marker sera from patients with PBC reacting in the Western blot with M2a,b,c,d (alpha-ketoacid-dehydrogenase complex) and NOMAg-specific sera recognizing the three major epitopes epsilon, zeta, and eta at 65, 61 and 58 kD. Naturally occurring mitochondrial antibody (NOMA)-positive marker sera reacted in the ELISA with mitochondria from all plants, and the zeta/eta positive sera gave also a positive reaction at 61/58 kD in the Western blot while the epsilon epitope could not be visualized by this method. In contrast, the M2 antigen was detected preferentially in lower plants such as algae, fungi, and ferns. Analysing these data with respect to the evolution of proteins one would have to assume that the M2 antigen was lost in most higher plants or underwent some structural alterations. Furthermore, considering the fact that the M2- and the NOMAg-related epitopes could be only partially separated, i.e. there were no plant mitochondria showing only M2 but no NOMAg, one could speculate that anti-M2 antibodies are derived from the pool of naturally occurring antibodies. Images Fig. 2 PMID:1281057

  3. Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.

    2014-04-01

    Yellowstone National Park (YNP) displays numerous and extensive hydrothermal features. Although hydrothermal alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of field and drill core samples to provide constraints on the geometry of hydrothermal alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that hydrothermal zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by hydrothermal alteration processes. Such demagnetization is confirmed by measurements of rock samples from hydrothermal areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in hydrothermal areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of hydrothermal activity and mapped alteration.

  4. Rag1 aphid resistant soybeans alter the movement and distribution of soybean aphid (Hemiptera: Aphididae).

    PubMed

    Whalen, Rebecca; Harmon, Jason P

    2012-12-01

    Herbivorous insects often move and distribute according to the quality of the plant they are on, and this behavior could influence interactions with plants bred for herbivore resistance. However, when an insect is normally considered sedentary, less is known about the potential importance of movement. We performed experiments to determine if a resistant soybean variety alters the movement and distribution, both within and between plants, of the soybean aphid Aphis glycines Matsumura. We did this by counting apterous aphids on leaves of resistant and susceptible soybean plants across several days. In individual plant tests aphid distribution was different between susceptible and resistant soybeans. Most notably aphids on resistant plants were quickly found off the original leaf on which they were placed and were ultimately distributed throughout the resistant soybean. Aphids on susceptible plants, however, tended to stay on their initial leaf of placement. Follow up experiments indicated this was primarily because of the movement of individuals and not differential demography on various plant parts. In experiments where aphids were able to walk to an adjacent plant there appeared to be a net movement of aphids off resistant plants and on to susceptible plants. Aphid populations on susceptible plants were higher when the plant was adjacent to a resistant plant than when adjacent to another susceptible plant. The effect of resistant plants on aphid movement and distribution could lead to unintended side-effects such as greater spread of plant viruses or altered effectiveness of biological control agents.

  5. Dynamics of Mitochondrial Transport in Axons

    PubMed Central

    Niescier, Robert F.; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T.; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  6. Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages.

    PubMed

    Smietanka, B; Burzyński, A; Hummel, H; Wenne, R

    2014-09-01

    Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited. PMID:24619178

  7. Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages

    PubMed Central

    Śmietanka, B; Burzyński, A; Hummel, H; Wenne, R

    2014-01-01

    Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited. PMID:24619178

  8. Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages.

    PubMed

    Smietanka, B; Burzyński, A; Hummel, H; Wenne, R

    2014-09-01

    Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited.

  9. Administration of Harmine and Imipramine Alters Creatine Kinase and Mitochondrial Respiratory Chain Activities in the Rat Brain

    PubMed Central

    Réus, Gislaine Z.; Stringari, Roberto B.; Gonçalves, Cinara L.; Scaini, Giselli; Carvalho-Silva, Milena; Jeremias, Gabriela C.; Jeremias, Isabela C.; Ferreira, Gabriela K.; Streck, Emílio L.; Hallak, Jaime E.; Zuardi, Antônio W.; Crippa, José A.; Quevedo, João

    2012-01-01

    The present study evaluated mitochondrial respiratory chain and creatine kinase activities after administration of harmine (5, 10, and 15 mg/kg) and imipramine (10, 20, and 30 mg/kg) in rat brain. After acute treatment occurred an increase of creatine kinase in the prefrontal with imipramine (20 and 30 mg/kg) and harmine in all doses, in the striatum with imipramine (20 and 30 mg/kg) and harmine (5 and 10 mg/kg); harmine (15 mg/kg) decreased creatine kinase. In the chronic treatment occurred an increase of creatine kinase with imipramine (20 mg/kg), harmine (5 mg/kg) in the prefrontal with imipramine (20 and 30 mg/kg) and harmine (5 and 10 mg/kg) in the striatum. In the acute treatment, the complex I increased in the prefrontal with harmine (15 mg/kg) and in the striatum with harmine (10 mg/kg); the complex II decreased with imipramine (20 and 30 mg/kg) in the striatum; the complex IV increased with imipramine (30 mg/kg) in the striatum. In the chronic treatment, the complex I increased with harmine (5 mg/kg) in the prefrontal; the complex II increased with imipramine (20 mg/kg) in the prefrontal; the complex IV increased with harmine (5 mg/kg) in the striatum. Finally, these findings further support the hypothesis that harmine and imipramine could be involved in mitochondrial function. PMID:21969912

  10. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential.

    PubMed

    Fragouli, Elpida; Spath, Katharina; Alfarawati, Samer; Kaper, Fiona; Craig, Andrew; Michel, Claude-Edouard; Kokocinski, Felix; Cohen, Jacques; Munne, Santiago; Wells, Dagan

    2015-06-01

    Mitochondria play a vital role in embryo development. They are the principal site of energy production and have various other critical cellular functions. Despite the importance of this organelle, little is known about the extent of variation in mitochondrial DNA (mtDNA) between individual human embryos prior to implantation. This study investigated the biological and clinical relevance of the quantity of mtDNA in 379 embryos. These were examined via a combination of microarray comparative genomic hybridisation (aCGH), quantitative PCR and next generation sequencing (NGS), providing information on chromosomal status, amount of mtDNA, and presence of mutations in the mitochondrial genome. The quantity of mtDNA was significantly higher in embryos from older women (P=0.003). Additionally, mtDNA levels were elevated in aneuploid embryos, independent of age (P=0.025). Assessment of clinical outcomes after transfer of euploid embryos to the uterus revealed that blastocysts that successfully implanted tended to contain lower mtDNA quantities than those failing to implant (P=0.007). Importantly, an mtDNA quantity threshold was established, above which implantation was never observed. Subsequently, the predictive value of this threshold was confirmed in an independent blinded prospective study, indicating that abnormal mtDNA levels are present in 30% of non-implanting euploid embryos, but are not seen in embryos forming a viable pregnancy. NGS did not reveal any increase in mutation in blastocysts with elevated mtDNA levels. The results of this study suggest that increased mtDNA may be related to elevated metabolism and are associated with reduced viability, a possibility consistent with the 'quiet embryo' hypothesis. Importantly, the findings suggest a potential role for mitochondria in female reproductive aging and the genesis of aneuploidy. Of clinical significance, we propose that mtDNA content represents a novel biomarker with potential value for in vitro fertilisation

  11. Altered interaction and distribution of glycosaminoglycans and growth factors in mucopolysaccharidosis type I bone disease.

    PubMed

    Kingma, Sandra D K; Wagemans, Tom; IJlst, Lodewijk; Bronckers, Antonius L J J; van Kuppevelt, Toin H; Everts, Vincent; Wijburg, Frits A; van Vlies, Naomi

    2016-07-01

    The mucopolysaccharidoses (MPSs) comprise a group of lysosomal storage disorders characterized by deficient degradation and subsequent accumulation of glycosaminoglycans (GAGs). Progressive bone and joint disease are a major cause of morbidity, and current therapeutic strategies have limited effect on these symptoms. By elucidating pathophysiological mechanisms underlying bone disease, new therapeutic targets may be identified. Longitudinal growth is regulated by interaction between GAGs and growth factors. Because GAGs accumulate in the MPSs, we hypothesized that altered interaction between growth factors and GAGs contribute to the pathogenesis of MPS bone disease. In this study, binding between GAGs from MPS I chondrocytes and fibroblast growth factor 2 (FGF2) was not significantly different from binding of FGF2 to GAGs from control chondrocytes. FGF2 signaling, however, was increased in MPS I chondrocytes after incubation with FGF2, as compared to control chondrocytes. Using bone cultures, we demonstrated decreased growth of WT mouse bones after incubation with FGF2, but no effect on MPS I bone growth. However, MPS I bones showed decreased growth in the presence of GAGs from MPS I chondrocytes. Finally, we demonstrate altered GAG distribution in MPS I chondrocytes, and altered GAG, FGF2 and Indian hedgehog distribution in growth plates from MPS I mice. In summary, our results suggest that altered interaction and distribution of growth factors and accumulated GAGs may contribute to the pathogenesis of MPS bone disease. In the future, targeting growth factor regulation or the interaction between in growth factors and GAGs might be a promising therapeutic strategy for MPS bone disease. PMID:27105565

  12. Altered interaction and distribution of glycosaminoglycans and growth factors in mucopolysaccharidosis type I bone disease.

    PubMed

    Kingma, Sandra D K; Wagemans, Tom; IJlst, Lodewijk; Bronckers, Antonius L J J; van Kuppevelt, Toin H; Everts, Vincent; Wijburg, Frits A; van Vlies, Naomi

    2016-07-01

    The mucopolysaccharidoses (MPSs) comprise a group of lysosomal storage disorders characterized by deficient degradation and subsequent accumulation of glycosaminoglycans (GAGs). Progressive bone and joint disease are a major cause of morbidity, and current therapeutic strategies have limited effect on these symptoms. By elucidating pathophysiological mechanisms underlying bone disease, new therapeutic targets may be identified. Longitudinal growth is regulated by interaction between GAGs and growth factors. Because GAGs accumulate in the MPSs, we hypothesized that altered interaction between growth factors and GAGs contribute to the pathogenesis of MPS bone disease. In this study, binding between GAGs from MPS I chondrocytes and fibroblast growth factor 2 (FGF2) was not significantly different from binding of FGF2 to GAGs from control chondrocytes. FGF2 signaling, however, was increased in MPS I chondrocytes after incubation with FGF2, as compared to control chondrocytes. Using bone cultures, we demonstrated decreased growth of WT mouse bones after incubation with FGF2, but no effect on MPS I bone growth. However, MPS I bones showed decreased growth in the presence of GAGs from MPS I chondrocytes. Finally, we demonstrate altered GAG distribution in MPS I chondrocytes, and altered GAG, FGF2 and Indian hedgehog distribution in growth plates from MPS I mice. In summary, our results suggest that altered interaction and distribution of growth factors and accumulated GAGs may contribute to the pathogenesis of MPS bone disease. In the future, targeting growth factor regulation or the interaction between in growth factors and GAGs might be a promising therapeutic strategy for MPS bone disease.

  13. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport

    PubMed Central

    Kiryu-Seo, Sumiko; Ohno, Nobuhiko; Kidd, Grahame J.; Komuro, Hitoshi; Trapp, Bruce D.

    2010-01-01

    Axonal degeneration contributes to permanent neurological disability in inherited and acquired diseases of myelin. Mitochondrial dysfunction has been proposed as a major contributor to this axonal degeneration. It remains to be determined, however, if myelination, demyelination or remyelination alter the size and distribution of axonal mitochondrial stationary sites or the rates of axonal mitochondrial transport. Using live myelinated rat dorsal root ganglion (DRG) cultures, we investigated whether myelination and lysolecithin-induced demyelination affect axonal mitochondria. Myelination increased the size of axonal stationary mitochondrial sites by 2.3 fold. Following demyelination, the size of axonal stationary mitochondrial sites was increased by an additional 2.2 fold and the transport velocity of motile mitochondria was increased by 47%. These measures returned to the levels of myelinated axons following remyelination. Demyelination induced activating transcription factor (ATF) 3 in DRG neurons. Knockdown of neuronal ATF3 by shRNA abolished the demyelination-induced increase in axonal mitochondrial transport and increased nitrotyrosine immunoreactivity in axonal mitochondria, suggesting that neuronal ATF3 expression and increased mitochondrial transport protect demyelinated axons from oxidative damage. In response to insufficient ATP production, demyelinated axons increase the size of stationary mitochondrial sites and thereby balance ATP production with the increased energy needs of nerve conduction. PMID:20463228

  14. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    PubMed Central

    Swerdlow, Russell H.

    2012-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed. PMID:21902672

  15. Caenorhabditis elegans par2.1/mtssb-1 is essential for mitochondrial DNA replication and its defect causes comprehensive transcriptional alterations including a hypoxia response

    SciTech Connect

    Sugimoto, Tomoko; Mori, Chihiro; Takanami, Takako; Sasagawa, Yohei; Saito, Rumiko; Ichiishi, Eiichiro; Higashitani, Atsushi

    2008-01-01

    DNA polymerase {gamma} and mtSSB are key components of the mtDNA replication machinery. To study the biological influences of defects in mtDNA replication, we used RNAi to deplete the gene for a putative mtSSB, par2.1, in Caenorhabditis elegans. In previous systematic RNAi screens, downregulation of this gene has not caused any clearly defective phenotypes. Here, we continuously fed a dsRNA targeting par2.1 to C. elegans over generations. Seventy-nine percent of F1 progeny produced 60-72 h after feeding grew to adulthood but were completely sterile, with an arrest of germline cell proliferation. Analyses of mtDNA copy number and cell cytology indicated that the sterile hermaphrodites had fewer mitochondria. These results indicated that par2.1 essentially functions for germline cell proliferation through mtDNA replication; we therefore termed it mtssb-1. Comprehensive transcriptional alterations including hypoxia response induction dependent on and independent of hif-1 function, occurred by RNAi depletion of mtssb-1. Treatment with ethidium bromide, which impairs mtDNA replication and transcription, caused similar transcriptional alterations. In addition, the frequency of apoptosis in the germline cells was reduced in fertile progeny with a partial RNAi effect. These suggest that RNAi depletion of C. elegans mtssb-1 is useful as a model system of mitochondrial dysfunction.

  16. The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity.

    PubMed

    Selathurai, Ahrathy; Kowalski, Greg M; Burch, Micah L; Sepulveda, Patricio; Risis, Steve; Lee-Young, Robert S; Lamon, Severine; Meikle, Peter J; Genders, Amanda J; McGee, Sean L; Watt, Matthew J; Russell, Aaron P; Frank, Matthew; Jackowski, Suzanne; Febbraio, Mark A; Bruce, Clinton R

    2015-05-01

    Accumulation of diacylglycerol (DG) in muscle is thought to cause insulin resistance. DG is a precursor for phospholipids, thus phospholipid synthesis could be involved in regulating muscle DG. Little is known about the interaction between phospholipid and DG in muscle; therefore, we examined whether disrupting muscle phospholipid synthesis, specifically phosphatidylethanolamine (PtdEtn), would influence muscle DG content and insulin sensitivity. Muscle PtdEtn synthesis was disrupted by deleting CTP:phosphoethanolamine cytidylyltransferase (ECT), the rate-limiting enzyme in the CDP-ethanolamine pathway, a major route for PtdEtn production. While PtdEtn was reduced in muscle-specific ECT knockout mice, intramyocellular and membrane-associated DG was markedly increased. Importantly, however, this was not associated with insulin resistance. Unexpectedly, mitochondrial biogenesis and muscle oxidative capacity were increased in muscle-specific ECT knockout mice and were accompanied by enhanced exercise performance. These findings highlight the importance of the CDP-ethanolamine pathway in regulating muscle DG content and challenge the DG-induced insulin resistance hypothesis. PMID:25955207

  17. The distribution of protein kinase C in human leukocytes is altered in microgravity.

    PubMed

    Schmitt, D A; Hatton, J P; Emond, C; Chaput, D; Paris, H; Levade, T; Cazenave, J P; Schaffar, L

    1996-12-01

    Protein kinase C (PKC) is an ubiquitous enzyme that mediates intracellular signal transduction in eukaryotes. Jurkat and U937 cells were exposed to microgravity during a Space Shuttle flight and stimulated with a radiolabeled phorbol ester (3H-PDBu) that specifically activates and labels several PKC isoforms. Both the total amount of 3H-PDBu labeling per cell and the relative distribution of labeling between subcellular compartments were altered in microgravity compared to onboard and ground 1 g control samples. The amount of total phorbol ester labeling per cell was increased approximately twofold in microgravity samples when compared with onboard 1 g samples for both cell lines. The subcellular distribution of PKC in the cytosol and nuclear fractions appeared to be correlated with the applied acceleration. In both cell types the relative amount of phorbol ester labeling in the nuclear fraction decreased with applied acceleration, whereas the labeling in cytosolic fraction increased with g level. No significant differences were observed between labeling levels in the membrane fraction in both cell types. Interleukin-1beta synthesis by U937 cells was markedly decreased in microgravity when compared to the onboard 1 g control, suggesting that the observed alterations in PKC distribution may have functional consequences. The results may have important implications for the effect of gravity on cellular signal transduction.

  18. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  19. Inhaled nitric oxide does not alter the longitudinal distribution of pulmonary vascular resistance

    SciTech Connect

    Lindeborg, D.M.; Kavanagh, B.P.; Van Meurs, K.

    1995-01-01

    Inhaled nitric oxide does not alter the longitudinal distribution of pulmonary vascular resistance. Because the effects of inhaled nitric oxide (NO) may be localized to its site of delivery, we studied the effects of inhaled NO on the longitudinal distribution of pulmonary vascular resistance during pulmonary hypertension in perfused rabbit lungs. Before NO administration, pulmonary hypertension was produced by infusion of the thromboxane A{sub 2} mimetic U-46619 in all lungs. Pulmonary vascular resistance was divided into arterial, microvascular, and venous components by arterial and venous occlusion techniques. In the buffer-perfused lung, all doses of inhaled NO (5, 20, and 80 ppm) produced small decreases ({approximately}3 mmHg) in pulmonary arterial pressure (Ppa), with equivalent proportional reductions in all segmental vascular resistances. Similar results were obtained after an extended inhaled NO dose range of 20, 80, and 240 ppm. In the buffer-perfused lung, inhibition of endogenous NO synthesis with N{sup G}-nitro-L-arginine methyl ester (L-NAME) potentiated the effects of U-46619. Subsequent inhaled NO administration produced larger decreases ({approximately} 7 mmHg) in Ppa with equivalent proportional reductions in all segmental vascular resistances. In the blood-perfused lung, L-NAME did not alter baseline pulmonary pressures. Administration of inhaled NO during U-46619-induced pulmonary hypertension produced dose-related decreases in Ppa. The highest dose (80 ppm) of inhaled NO decreased Ppa by 3.5 mmHg, with equivalent proportional reductions in all segmental vascular resistances. We conclude that inhaled NO does not selectively alter the longitudinal distribution of pulmonary vascular resistance and that the magnitude of reduction in total pulmonary vascular resistance in the isolated perfused rabbit lung depends on the endogenous NO synthesis and on the use of buffer or blood as the perfusate. 47 refs., 4 figs., 4 tabs.

  20. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis.

    PubMed

    Sew, Yun Shin; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2016-06-01

    Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis.

  1. Altered mitochondrial DNA copy number contributes to human cancer risk: evidence from an updated meta-analysis

    PubMed Central

    Hu, Liwen; Yao, Xinyue; Shen, Yi

    2016-01-01

    Accumulating epidemiological evidence indicates that the quantitative changes in human mitochondrial DNA (mtDNA) copy number could affect the genetic susceptibility of malignancies in a tumor-specific manner, but the results are still elusive. To provide a more precise estimation on the association between mtDNA copy number and risk of diverse malignancies, a meta-analysis was conducted by calculating the pooled odds ratios (OR) and the 95% confidence intervals (95% CI). A total of 36 case-control studies involving 11,847 cases and 15,438 controls were finally included in the meta-analysis. Overall analysis of all studies suggested no significant association between mtDNA content and cancer risk (OR = 1.044, 95% CI = 0.866–1.260, P = 0.651). Subgroup analyses by cancer types showed an obvious positive association between mtDNA content and lymphoma and breast cancer (OR = 1.645, 95% CI = 1.117–2.421, P = 0.012; OR = 1.721, 95% CI = 1.130–2.622, P = 0.011, respectively), and a negative association for hepatic carcinoma. Stratified analyses by other confounding factors also found increased cancer risk in people with drinking addiction. Further analysis using studies of quartiles found that populations with the highest mtDNA content may be under more obvious risk of melanoma and that Western populations were more susceptible than Asians. PMID:27775013

  2. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis.

    PubMed

    Sew, Yun Shin; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2016-06-01

    Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis. PMID:27208265

  3. Altered distribution of mitochondria in rat soleus muscle fibers after spaceflight

    NASA Technical Reports Server (NTRS)

    Bell, Gordon J.; Martin, Thomas P.; Il'ina-Kakueva, E. I.; Oganov, V. S.; Edgerton, V. R.

    1992-01-01

    The effect of an exposure to microgravity on the distribution of the succinate dehydrogenase (SDH) activity throughout the soleus muscle fibers was investigated by measuring SDH activity throughout the cross section of 20-30 fibers each of the slow-twitch oxidative and fast-twitch oxidative-glycolytic types of fibers in rats exposed to 12.5 days in space aboard Cosmos 1887. It was found that, after the spaceflight, the entire regional distribution of SDH activity was significantly altered (as compared to ground controls) in the slow-twitch oxidative fibers, whereas the fast-twitch oxidative-glycolytic fibers from muscles of flown rats exhibited a significantly lower SDH activity only in their subsarcolemmal region.

  4. Obesity Alters Adipose Tissue Macrophage Iron Content and Tissue Iron Distribution

    PubMed Central

    Orr, Jeb S.; Kennedy, Arion; Anderson-Baucum, Emily K.; Webb, Corey D.; Fordahl, Steve C.; Erikson, Keith M.; Zhang, Yaofang; Etzerodt, Anders; Moestrup, Søren K.; Hasty, Alyssa H.

    2014-01-01

    Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFehi, and the remaining ATMs are referred to as MFelo. In lean mice, ~25% of the ATMs are MFehi; this percentage decreases in obesity owing to the recruitment of MFelo macrophages. Similar to MFelo cells, MFehi ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFehi ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFehi iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFehi ATM phenotype and their reduced capacity to handle iron. PMID:24130337

  5. Molecular Identification of Paramecium bursaria Syngens and Studies on Geographic Distribution using Mitochondrial Cytochrome C Oxidase Subunit I (COI).

    PubMed

    Zagata, Patrycja; Greczek-Stachura, Magdalena; Tarcz, Sebastian; Rautian, Maria

    2015-01-01

    Paramecium bursaria is composed of five syngens that are morphologically indistinguishable but sexually isolated. The aim of the present study was to confirm by molecular methods (analyses of mitochondrial COI) the identification of P. bursaria syngens originating from different geographical locations. Phylograms constructed using both the neighbor-joining and maximum-likelihood methods based on a comparison of 34 sequences of P. bursaria strains and P. multimicronucleatum, P. caudatum and P.calkinsi strains used as outgroups revealed five clusters which correspond to results obtained previously by mating reaction. Our analysis shows the existence of 24 haplotypes for the COI gene sequence in the studied strains. The interspecies haplotype diversity was Hd = 0.967. We confirmed genetic differentiation between strains of P. bursaria and the occurrence of a correlation between geographical distribution and the correspondent syngen. PMID:26103689

  6. Molecular Identification of Paramecium bursaria Syngens and Studies on Geographic Distribution using Mitochondrial Cytochrome C Oxidase Subunit I (COI).

    PubMed

    Zagata, Patrycja; Greczek-Stachura, Magdalena; Tarcz, Sebastian; Rautian, Maria

    2015-01-01

    Paramecium bursaria is composed of five syngens that are morphologically indistinguishable but sexually isolated. The aim of the present study was to confirm by molecular methods (analyses of mitochondrial COI) the identification of P. bursaria syngens originating from different geographical locations. Phylograms constructed using both the neighbor-joining and maximum-likelihood methods based on a comparison of 34 sequences of P. bursaria strains and P. multimicronucleatum, P. caudatum and P.calkinsi strains used as outgroups revealed five clusters which correspond to results obtained previously by mating reaction. Our analysis shows the existence of 24 haplotypes for the COI gene sequence in the studied strains. The interspecies haplotype diversity was Hd = 0.967. We confirmed genetic differentiation between strains of P. bursaria and the occurrence of a correlation between geographical distribution and the correspondent syngen.

  7. The influence of chronic fluorosis on mitochondrial dynamics morphology and distribution in cortical neurons of the rat brain.

    PubMed

    Lou, Di-Dong; Guan, Zhi-Zhong; Liu, Yan-Jie; Liu, Yan-Fei; Zhang, Kai-Lin; Pan, Ji-Gang; Pei, Jin-Jing

    2013-03-01

    The present study was designed to evaluate the effects of chronic fluorosis on the dynamics (including fusion and fission proteins), fragmentation, and distribution of mitochondria in the cortical neurons of the rat brain in an attempt to elucidate molecular mechanisms underlying the brain damage associated with excess accumulation of fluoride. Sixty Sprague-Dawley rats were divided randomly into three groups of 20 each, that is, the untreated control group (drinking water naturally containing <0.5 mg fluoride/l, NaF), the low-fluoride group (whose drinking water was supplemented with 10 mg fluoride/l) and the high-fluoride group (50 mg fluoride/l). After 6 months of exposure, the expression of mitofusin-1 (Mfn1), fission-1 (Fis1), and dynamin-related protein-1 (Drp1) at both the protein and mRNA levels were detected by Western blotting, immunohistochemistry, and real-time PCR, respectively. Moreover, mitochondrial morphology and distribution in neurons were observed by transmission electron or fluorescence microscopy. In the cortices of the brains of rats with chronic fluorosis, the level of Mfn1 protein was clearly reduced, whereas the levels of Fis1 and Drp1 were elevated. The alternations of expression of the mRNAs encoding all three of these proteins were almost the same as the corresponding changes at the protein levels. The mitochondria were fragmented and the redistributed away from the axons of the cortical neurons. These findings indicate that chronic fluorosis induces abnormal mitochondrial dynamics, which might in turn result in a high level of oxidative stress.

  8. Mitochondrial protein alterations in a familial peripheral neuropathy caused by the V144D amino acid mutation in the sphingolipid protein, SPTLC1.

    PubMed

    Stimpson, Scott E; Coorssen, Jens R; Myers, Simon J

    2015-01-01

    Axonal degeneration is the final common path in many neurological disorders. Subsets of neuropathies involving the sensory neuron are known as hereditary sensory neuropathies (HSNs). Hereditary sensory neuropathy type I (HSN-I) is the most common subtype of HSN with autosomal dominant inheritance. It is characterized by the progressive degeneration of the dorsal root ganglion (DRG) with clinical symptom onset between the second or third decade of life. Heterozygous mutations in the serine palmitoyltransferase (SPT) long chain subunit 1 (SPTLC1) gene were identified as the pathogenic cause of HSN-I. Ultrastructural analysis of mitochondria from HSN-I patient cells has displayed unique morphological abnormalities that are clustered to the perinucleus where they are wrapped by the endoplasmic reticulum (ER). This investigation defines a small subset of proteins with major alterations in abundance in mitochondria harvested from HSN-I mutant SPTLC1 cells. Using mitochondrial protein isolates from control and patient lymphoblasts, and a combination of 2D gel electrophoresis, immunoblotting and mass spectrometry, we have shown the increased abundance of ubiquinol-cytochrome c reductase core protein 1, an electron transport chain protein, as well as the immunoglobulin, Ig kappa chain C. The regulation of these proteins may provide a new route to understanding the cellular and molecular mechanisms underlying HSN-I. PMID:25584079

  9. Mitochondrial Carbonic Anhydrase VA Deficiency Resulting from CA5A Alterations Presents with Hyperammonemia in Early Childhood

    PubMed Central

    van Karnebeek, Clara D.; Sly, William S.; Ross, Colin J.; Salvarinova, Ramona; Yaplito-Lee, Joy; Santra, Saikat; Shyr, Casper; Horvath, Gabriella A.; Eydoux, Patrice; Lehman, Anna M.; Bernard, Virginie; Newlove, Theresa; Ukpeh, Henry; Chakrapani, Anupam; Preece, Mary Anne; Ball, Sarah; Pitt, James; Vallance, Hilary D.; Coulter-Mackie, Marion; Nguyen, Hien; Zhang, Lin-Hua; Bhavsar, Amit P.; Sinclair, Graham; Waheed, Abdul; Wasserman, Wyeth W.; Stockler-Ipsiroglu, Sylvia

    2014-01-01

    Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child. PMID:24530203

  10. Bone marrow cell transcripts from Fanconi anaemia patients reveal in vivo alterations in mitochondrial, redox and DNA repair pathways.

    PubMed

    Pagano, Giovanni; Talamanca, Annarita Aiello; Castello, Giuseppe; d'Ischia, Marco; Pallardó, Federico V; Petrović, Sandra; Porto, Beatriz; Tiano, Luca; Zatterale, Adriana

    2013-08-01

    Fanconi anaemia (FA) is a genetic cancer predisposition disorder associated with cytogenetic instability, bone marrow failure and a pleiotropic cellular phenotype, including low thresholds of responses to oxidative stress, cross-linking agents and selected cytokines. This study was aimed at defining the scope of abnormalities in gene expression using the publicly available FA Transcriptome Consortium (FTC) database (Gene Expression Omnibus, 2009 and publicly available as GSE16334). We evaluated the data set that included transcriptomal analyses on RNA obtained from low-density bone marrow cells (BMC) from 20 patients with FA and 11 healthy volunteers, by seeking to identify changes in expression of over 22,000 genes, including a set of genes involved in: (i) bioenergetic pathways; (ii) antioxidant activities; (iii) response to stress and metal-chelating proteins; (iv) inflammation-related cytokines and (v) DNA repair. Ontological analysis of genes expressed at magnitudes of 1.5-fold or greater demonstrated significant suppression of genes in the categories of (i) energy metabolism; (ii) antioxidant activities; and (iii) stress and chelating proteins. Enhanced expression was found for 16 of 26 genes encoding inflammatory cytokines. A set of 20 of 21 transcripts for DNA repair activities were down-regulated; four of these transcripts related to type II topoisomerase. The data provide evidence for alterations in gene regulation of bioenergetic activities, redox-related activities, stress and metal-chelating proteins, and of some selected DNA repair activities in patients with FA.

  11. Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood.

    PubMed

    van Karnebeek, Clara D; Sly, William S; Ross, Colin J; Salvarinova, Ramona; Yaplito-Lee, Joy; Santra, Saikat; Shyr, Casper; Horvath, Gabriella A; Eydoux, Patrice; Lehman, Anna M; Bernard, Virginie; Newlove, Theresa; Ukpeh, Henry; Chakrapani, Anupam; Preece, Mary Anne; Ball, Sarah; Pitt, James; Vallance, Hilary D; Coulter-Mackie, Marion; Nguyen, Hien; Zhang, Lin-Hua; Bhavsar, Amit P; Sinclair, Graham; Waheed, Abdul; Wasserman, Wyeth W; Stockler-Ipsiroglu, Sylvia

    2014-03-01

    Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child. PMID:24530203

  12. Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood.

    PubMed

    van Karnebeek, Clara D; Sly, William S; Ross, Colin J; Salvarinova, Ramona; Yaplito-Lee, Joy; Santra, Saikat; Shyr, Casper; Horvath, Gabriella A; Eydoux, Patrice; Lehman, Anna M; Bernard, Virginie; Newlove, Theresa; Ukpeh, Henry; Chakrapani, Anupam; Preece, Mary Anne; Ball, Sarah; Pitt, James; Vallance, Hilary D; Coulter-Mackie, Marion; Nguyen, Hien; Zhang, Lin-Hua; Bhavsar, Amit P; Sinclair, Graham; Waheed, Abdul; Wasserman, Wyeth W; Stockler-Ipsiroglu, Sylvia

    2014-03-01

    Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child.

  13. PVALB diminishes [Ca2+] and alters mitochondrial features in follicular thyroid carcinoma cells through AKT/GSK3β pathway.

    PubMed

    Mendes, Thais Biude; Nozima, Bruno Heidi; Budu, Alexandre; de Souza, Rodrigo Barbosa; Braga Catroxo, Marcia Helena; Delcelo, Rosana; Gazarini, Marcos Leoni; Cerutti, Janete Maria

    2016-09-01

    We have identified previously a panel of markers (C1orf24, ITM1 and PVALB) that can help to discriminate benign from malignant thyroid lesions. C1orf24 and ITM1 are specifically helpful for detecting a wide range of thyroid carcinomas, and PVALB is particularly valuable for detecting the benign Hürthle cell adenoma. Although these markers may ultimately help patient care, the current understanding of their biological functions remains largely unknown. In this article, we investigated whether PVALB is critical for the acquisition of Hürthle cell features and explored the molecular mechanism underlying the phenotypic changes. Through ectopic expression of PVALB in thyroid carcinoma cell lines (FTC-133 and WRO), we demonstrated that PVALB sequesters free cytoplasmic Ca(2+), which ultimately lowers calcium levels and precludes endoplasmic reticulum (ER) Ca(2+) refilling. These results were accompanied by induced expression of PERK, an ER stress marker. Additionally, forced expression of PVALB reduces Ca(2+) inflow in the mitochondria, which can in turn cause changes in mitochondria morphology, increase mitochondria number and alter subcellular localization. These findings share striking similarity to those observed in Hürthle cell tumors. Moreover, PVALB inhibits cell growth and induces cell death, most likely through the AKT/GSK-3β. Finally, PVALB expression coincides with Ca(2+) deposits in HCA tissues. Our data support the hypothesis that the loss of PVALB plays a role in the pathogenesis of thyroid tumors. PMID:27458244

  14. Assessment of Altered 3D Blood Characteristics in Aortic Disease by Velocity Distribution Analysis

    PubMed Central

    Garcia, Julio; Barker, Alex J; van Ooij, Pim; Schnell, Susanne; Puthumana, Jyothy; Bonow, Robert O; Collins, Jeremy D; Carr, James C; Markl, Michael

    2014-01-01

    Purpose To test the feasibility of velocity distribution analysis for identifying altered 3D flow characteristics in patients with aortic disease based on 4D flow MRI volumetric analysis. Methods Forty patients with aortic (Ao) dilation (mid ascending aortic diameter MAA=40±7 mm, age=56±17 yr, 11 females) underwent cardiovascular MRI. Four groups were retrospectively defined: mild Ao dilation (n=10, MAA<35 mm); moderate Ao dilation (n=10, 3545 mm); Ao dilation+aortic stenosis AS (n=10, MAA>35 mm and peak velocity >2.5m/s). 3D PC-MR angiograms were computed and used to obtain a 3D segmentation of the aorta which was divided into four segments: root, ascending aorta, arch, descending aorta. Radial chart displays were used to visualize multiple parameters representing segmental changes in the 3D velocity distribution associated with aortic disease. Results Changes in the velocity field and geometry between cohorts resulted in distinct hemodynamic patterns for each aortic segment. Disease progression from mild to Ao dilation+AS resulted in significant differences (P<0.05) in flow parameters across cohorts and increased radial chart size for root and ascending aorta segments by 146% and 99%, respectively. Conclusion Volumetric 4D velocity distribution analysis has the potential to identify characteristic changes in regional blood flow patterns in patients with aortic disease. PMID:25252029

  15. Obesity alters adipose tissue macrophage iron content and tissue iron distribution.

    PubMed

    Orr, Jeb S; Kennedy, Arion; Anderson-Baucum, Emily K; Webb, Corey D; Fordahl, Steve C; Erikson, Keith M; Zhang, Yaofang; Etzerodt, Anders; Moestrup, Søren K; Hasty, Alyssa H

    2014-02-01

    Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFe(hi), and the remaining ATMs are referred to as MFe(lo). In lean mice, ~25% of the ATMs are MFe(hi); this percentage decreases in obesity owing to the recruitment of MFe(lo) macrophages. Similar to MFe(lo) cells, MFe(hi) ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFe(hi) ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFe(hi) iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFe(hi) ATM phenotype and their reduced capacity to handle iron.

  16. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  17. Mutations in yeast ARV1 alter intracellular sterol distribution and are complemented by human ARV1.

    PubMed

    Tinkelenberg, A H; Liu, Y; Alcantara, F; Khan, S; Guo, Z; Bard, M; Sturley, S L

    2000-12-29

    Intracellular cholesterol redistribution between membranes and its subsequent esterification are critical aspects of lipid homeostasis that prevent free sterol toxicity. To identify genes that mediate sterol trafficking, we screened for yeast mutants that were inviable in the absence of sterol esterification. Mutations in the novel gene, ARV1, render cells dependent on sterol esterification for growth, nystatin-sensitive, temperature-sensitive, and anaerobically inviable. Cells lacking Arv1p display altered intracellular sterol distribution and are defective in sterol uptake, consistent with a role for Arv1p in trafficking sterol into the plasma membrane. Human ARV1, a predicted sequence ortholog of yeast ARV1, complements the defects associated with deletion of the yeast gene. The genes are predicted to encode transmembrane proteins with potential zinc-binding motifs. We propose that ARV1 is a novel mediator of eukaryotic sterol homeostasis.

  18. Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal.

    PubMed

    Luttikhuizen, P C; Drent, J; Baker, A J

    2003-08-01

    Mitochondrial DNA sequence data for 295 individuals of the marine bivalve Macoma balthica (L.) were collected from 10 sites across the European distribution, and from Alaska. The data were used to infer population subdivision history and estimate current levels of gene flow. Inferred historical biogeography was expected to be congruent with colonization of the Atlantic Ocean from the Pacific Ocean after the opening of the Bering Strait 3.5 Ma. In addition, the last glacial maximum, about 18000 years ago, was expected to have been responsible for most of the present-day distribution of molecular variation within Europe, because the area must have been recolonized after confinement to France and the south of the British Isles during the last glacial maximum. Current gene flow was hypothesized to be high, because the larvae of M. balthica spend 2-5 weeks drifting in the water column. The geographical distribution of one highly diverged haplotype clade was found to be disjunct and was encountered exclusively in samples from the Baltic Sea and Alaska. A molecular clock calibration for marine bivalve cytochrome-c-oxidase I dates this clade as having split off from the other haplotypes 9.8-39 Ma. Multiple colonizations of the Atlantic Ocean from the Pacific by M. balthica may explain the strong differences found between Baltic Sea and other European populations of this species. The sympatric occurrence of the highly diverged mitochondrial lineages in western parts of the Baltic Sea points to secondary admixture. With the use of coalescent analysis, population divergence times for French vs. other non-Baltic European populations ('Atlantic population assemblage') were estimated at a minimum of about 110000 years ago, well before the last glacial maximum 18000 years ago. Signatures of population divergence of M. balthica that appear to have originated during the Pleistocene have thus survived the last glacial maximum. Some of the populations within the Atlantic assemblage

  19. Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal.

    PubMed

    Luttikhuizen, P C; Drent, J; Baker, A J

    2003-08-01

    Mitochondrial DNA sequence data for 295 individuals of the marine bivalve Macoma balthica (L.) were collected from 10 sites across the European distribution, and from Alaska. The data were used to infer population subdivision history and estimate current levels of gene flow. Inferred historical biogeography was expected to be congruent with colonization of the Atlantic Ocean from the Pacific Ocean after the opening of the Bering Strait 3.5 Ma. In addition, the last glacial maximum, about 18000 years ago, was expected to have been responsible for most of the present-day distribution of molecular variation within Europe, because the area must have been recolonized after confinement to France and the south of the British Isles during the last glacial maximum. Current gene flow was hypothesized to be high, because the larvae of M. balthica spend 2-5 weeks drifting in the water column. The geographical distribution of one highly diverged haplotype clade was found to be disjunct and was encountered exclusively in samples from the Baltic Sea and Alaska. A molecular clock calibration for marine bivalve cytochrome-c-oxidase I dates this clade as having split off from the other haplotypes 9.8-39 Ma. Multiple colonizations of the Atlantic Ocean from the Pacific by M. balthica may explain the strong differences found between Baltic Sea and other European populations of this species. The sympatric occurrence of the highly diverged mitochondrial lineages in western parts of the Baltic Sea points to secondary admixture. With the use of coalescent analysis, population divergence times for French vs. other non-Baltic European populations ('Atlantic population assemblage') were estimated at a minimum of about 110000 years ago, well before the last glacial maximum 18000 years ago. Signatures of population divergence of M. balthica that appear to have originated during the Pleistocene have thus survived the last glacial maximum. Some of the populations within the Atlantic assemblage

  20. The fertility restorer genes X and T alter the transcripts of a novel mitochondrial gene implicated in CMS1 in chives (Allium schoenoprasum L.).

    PubMed

    Engelke, T; Tatlioglu, T

    2004-03-01

    A chimeric mitochondrial gene configuration, mainly derived from sequences associated with the essential genes atp9 and atp6, was isolated from the sterility-inducing cytoplasm of the CMS1 system in chives (Allium schoenoprasum L.). This sequence is not found in four other cytoplasm types from chives; however, two copies are present in the mitochondrial DNA of CMS1-inducing cytoplasm, whose 5'-sequences are homologous to those of the atp9 gene. We provide evidence to show that one of the two CMS1-specific copies is actively transcribed, and two transcripts which terminate at the same position but differ in their 5'initiation sites were localized using the RACE technique. These transcripts of 942 and 961 nt, respectively, were confirmed to be the major products of this gene in CMS1 plants by Northern hybridization. However, smaller transcripts were found to accumulate in plants in which fertility had been restored. Restoration of fertility was induced either by the gene X, or the gene T at high temperatures. In (S1) X. genotypes a transcript with an estimated size of 440 nt was detected in all tissues examined. An additional hybridization signal with an estimated size of approximately 850 nt is expressed in temperature-sensitive plants [(S1) xxT.], and the intensity of a minor 350-nt transcript is enhanced. These latter alterations, conditioned by the gene T, occur independently of the growth temperature, but are limited to the flowers; they were not observed in leaves. The CMS1 transcripts are edited at seven positions and contain an ORF with a maximum coding capacity of 780 nt (containing the start codon derived from the atp9 gene in-frame). Use of the third in-frame start codon would result in the synthesis of a protein of a size very close to that of a previously described CMS1-specific protein, which has an apparent molecular weight of 18 kDa. The coding sequence that begins at this third in-frame start codon is also present in the sterility-inducing cytoplasms

  1. Yeast flavohemoglobin, a nitric oxide oxidoreductase, is located in both the cytosol and the mitochondrial matrix: effects of respiration, anoxia, and the mitochondrial genome on its intracellular level and distribution.

    PubMed

    Cassanova, Nina; O'Brien, Kristin M; Stahl, Brett T; McClure, Travis; Poyton, Robert O

    2005-03-01

    Yeast flavohemoglobin, YHb, encoded by the nuclear gene YHB1, has been implicated in both the oxidative and nitrosative stress responses in Saccharomyces cerevisiae. Previous studies have shown that the expression of YHB1 is optimal under normoxic or hyperoxic conditions, yet respiring yeast cells have low levels of reduced YHb pigment as detected by carbon monoxide (CO) photolysis difference spectroscopy of glucose-reduced cells. Here, we have addressed this apparent discrepancy by determining the intracellular location of the YHb protein and analyzing the relationships between respiration, YHb level, and intracellular location. We have found that although intact respiration-proficient cells lack a YHb CO spectral signature, cell extracts from these cells have both a YHb CO spectral signature and nitric oxide (NO) consuming activity. This suggests either that YHb cannot be reduced in vivo or that YHb heme is maintained in an oxidized state in respiring cells. By using an anti-YHb antibody and CO difference spectroscopy and by measuring NO consumption, we have found that YHb localizes to two distinct intracellular compartments in respiring cells, the mitochondrial matrix and the cytosol. Moreover, we have found that the distribution of YHb between these two compartments is affected by the presence or absence of oxygen and by the mitochondrial genome. The findings suggest that YHb functions in oxidative stress indirectly by consuming NO, which inhibits mitochondrial respiration and leads to enhanced production of reactive oxygen species, and that cells can regulate intracellular distribution of YHb in accordance with this function.

  2. Altered systemic bioavailability and organ distribution of azathioprine in methotrexate-induced intestinal mucositis in rats

    PubMed Central

    Karbelkar, Sadaf A.; Majumdar, Anuradha S.

    2016-01-01

    Objective: Intestinal mucositis is a significant problem haunting clinicians for decades. One of the major reasons for its occurrence is high-dose chemotherapy. The study is aimed at investigating effect of intestinal mucositis on pharmacokinetics, organ distribution, and bioavailability of azathioprine (AZA) (6-mercaptopurine). Materials and Methods: Intestinal mucositis was induced with methotrexate (MTX) (2.5 mg/kg). The oral absorption of AZA and 6-mercaptopurine (metabolite) levels were determined in control and MTX-treated rats: ex vivo (noneverted sac technique) and in vivo (pharmacokinetics and organ-distribution) using high-performance liquid chromatography. Immunohistochemistry was conducted to evaluate peptide transporter expression on luminal membrane of small intestine. Results: Intestinal permeation of AZA into systemic circulation of rats was lower after MTX administration, widely found in intestinal segments of mucositis-induced rats leading to decline in systemic bioavailability of AZA. Immunohistochemistry findings indicated diminution of peptide transporter expression representing hampered absorption of drugs absorbed via this transporter. Conclusion: Study outcome has thrown light on altered fate of AZA when administered to individuals with mucositis which suggests modified drug therapy. These findings can further be investigated in different drug classes which might be administered concomitantly in mucositis and study outcome can be further confirmed in mucositis patients in clinical practice also. PMID:27298491

  3. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I.

    PubMed

    Tapia, E; Sánchez-Lozada, L G; García-Niño, W R; García, E; Cerecedo, A; García-Arroyo, F E; Osorio, H; Arellano, A; Cristóbal-García, M; Loredo, M L; Molina-Jijón, E; Hernández-Damián, J; Negrette-Guzmán, M; Zazueta, C; Huerta-Yepez, S; Reyes, J L; Madero, M; Pedraza-Chaverrí, J

    2014-11-01

    The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.

  4. Mitochondrial genome sequencing in Mesolithic North East Europe Unearths a new sub-clade within the broadly distributed human haplogroup C1.

    PubMed

    Der Sarkissian, Clio; Brotherton, Paul; Balanovsky, Oleg; Templeton, Jennifer E L; Llamas, Bastien; Soubrier, Julien; Moiseyev, Vyacheslav; Khartanovich, Valery; Cooper, Alan; Haak, Wolfgang

    2014-01-01

    The human mitochondrial haplogroup C1 has a broad global distribution but is extremely rare in Europe today. Recent ancient DNA evidence has demonstrated its presence in European Mesolithic individuals. Three individuals from the 7,500 year old Mesolithic site of Yuzhnyy Oleni Ostrov, Western Russia, could be assigned to haplogroup C1 based on mitochondrial hypervariable region I sequences. However, hypervariable region I data alone could not provide enough resolution to establish the phylogenetic relationship of these Mesolithic haplotypes with haplogroup C1 mitochondrial DNA sequences found today in populations of Europe, Asia and the Americas. In order to obtain high-resolution data and shed light on the origin of this European Mesolithic C1 haplotype, we target-enriched and sequenced the complete mitochondrial genome of one Yuzhnyy Oleni Ostrov C1 individual. The updated phylogeny of C1 haplogroups indicated that the Yuzhnyy Oleni Ostrov haplotype represents a new distinct clade, provisionally coined "C1f". We show that all three C1 carriers of Yuzhnyy Oleni Ostrov belong to this clade. No haplotype closely related to the C1f sequence could be found in the large current database of ancient and present-day mitochondrial genomes. Hence, we have discovered past human mitochondrial diversity that has not been observed in modern-day populations so far. The lack of positive matches in modern populations may be explained by under-sampling of rare modern C1 carriers or by demographic processes, population extinction or replacement, that may have impacted on populations of Northeast Europe since prehistoric times.

  5. Mitochondrial Genome Sequencing in Mesolithic North East Europe Unearths a New Sub-Clade within the Broadly Distributed Human Haplogroup C1

    PubMed Central

    Der Sarkissian, Clio; Brotherton, Paul; Balanovsky, Oleg; Templeton, Jennifer E. L.; Llamas, Bastien; Soubrier, Julien; Moiseyev, Vyacheslav; Khartanovich, Valery; Cooper, Alan; Haak, Wolfgang

    2014-01-01

    The human mitochondrial haplogroup C1 has a broad global distribution but is extremely rare in Europe today. Recent ancient DNA evidence has demonstrated its presence in European Mesolithic individuals. Three individuals from the 7,500 year old Mesolithic site of Yuzhnyy Oleni Ostrov, Western Russia, could be assigned to haplogroup C1 based on mitochondrial hypervariable region I sequences. However, hypervariable region I data alone could not provide enough resolution to establish the phylogenetic relationship of these Mesolithic haplotypes with haplogroup C1 mitochondrial DNA sequences found today in populations of Europe, Asia and the Americas. In order to obtain high-resolution data and shed light on the origin of this European Mesolithic C1 haplotype, we target-enriched and sequenced the complete mitochondrial genome of one Yuzhnyy Oleni Ostrov C1 individual. The updated phylogeny of C1 haplogroups indicated that the Yuzhnyy Oleni Ostrov haplotype represents a new distinct clade, provisionally coined “C1f”. We show that all three C1 carriers of Yuzhnyy Oleni Ostrov belong to this clade. No haplotype closely related to the C1f sequence could be found in the large current database of ancient and present-day mitochondrial genomes. Hence, we have discovered past human mitochondrial diversity that has not been observed in modern-day populations so far. The lack of positive matches in modern populations may be explained by under-sampling of rare modern C1 carriers or by demographic processes, population extinction or replacement, that may have impacted on populations of Northeast Europe since prehistoric times. PMID:24503968

  6. Glacial history of the North Atlantic marine snail, Littorina saxatilis, inferred from distribution of mitochondrial DNA lineages.

    PubMed

    Panova, Marina; Blakeslee, April M H; Miller, A Whitman; Mäkinen, Tuuli; Ruiz, Gregory M; Johannesson, Kerstin; André, Carl

    2011-01-01

    The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours. PMID:21412417

  7. Glacial history of the North Atlantic marine snail, Littorina saxatilis, inferred from distribution of mitochondrial DNA lineages.

    PubMed

    Panova, Marina; Blakeslee, April M H; Miller, A Whitman; Mäkinen, Tuuli; Ruiz, Gregory M; Johannesson, Kerstin; André, Carl

    2011-01-01

    The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours.

  8. An Inherited Heteroplasmic Mutation in Mitochondrial Gene COI in a Patient with Prostate Cancer Alters Reactive Oxygen, Reactive Nitrogen and Proliferation

    PubMed Central

    Arnold, Rebecca S.; Sun, Qian; Sun, Carrie Q.; Richards, Jendai C.; O'Hearn, Sean; Osunkoya, Adeboye O.; Wallace, Douglas C.; Petros, John A.

    2013-01-01

    Mitochondrial DNA (mtDNA) mutations have been found in many cancers but the physiological derangements caused by such mutations have remained elusive. Prostate cancer is associated with both inherited and somatic mutations in the cytochrome c oxidase (COI) gene. We present a prostate cancer patient-derived rare heteroplasmic mutation of this gene, part of mitochondrial respiratory complex IV. Functional studies indicate that this mutation leads to the simultaneous decrease in cytochrome oxidation, increase in reactive oxygen, and increased reactive nitrogen. These data suggest that mitochondrial DNA mutations resulting in increased reactive oxygen and reactive nitrogen generation may be involved in prostate cancer biology. PMID:23509693

  9. Modified oleic cottonseeds show altered content, composition and tissue-specific distribution of triacylglycerol molecular species.

    PubMed

    Horn, Patrick J; Sturtevant, Drew; Chapman, Kent D

    2014-01-01

    Targeted increases in monounsaturated (oleic acid) fatty acid content of refined cottonseed oil could support improved human nutrition and cardiovascular health. Genetic modifications of cottonseed fatty acid composition have been accomplished using several different molecular strategies. Modification of oleic acid content in cottonseed embryos using a dominant-negative protein approach, while successful in effecting change in the desired fatty acid composition, resulted in reduced oil content and seed viability. Here these changes in fatty acid composition were associated with changes in dominant molecular species of triacylglycerols (TAGs) and their spatial distributions within embryo tissues. A combination of mass spectrometry (MS)-based lipidomics approaches, including MS imaging of seed cryo-sections, revealed that cotton embryos expressing a non-functional allele of a Brassica napus delta-12 desaturase showed altered accumulation of TAG species, especially within cotyledonary tissues. While lipid analysis of seed extracts could demonstrate detailed quantitative changes in TAG species in transgenics, the spatial contribution of metabolite compartmentation could only be visualized by MS imaging. Our results suggest tissue-specific differences in TAG biosynthetic pathways within cotton embryos, and indicate the importance of considering the location of metabolites in tissues in addition to their identification and quantification when developing a detailed view of cellular metabolism.

  10. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity.

    PubMed

    Lei, Shulei; Zavala-Flores, Laura; Garcia-Garcia, Aracely; Nandakumar, Renu; Huang, Yuting; Madayiputhiya, Nandakumar; Stanton, Robert C; Dodds, Eric D; Powers, Robert; Franco, Rodrigo

    2014-09-19

    Parkinson's disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat "hijacks" the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations in

  11. Mitochondrial Mutations in Adenoid Cystic Carcinoma of the Salivary Glands

    PubMed Central

    Tan, Marietta; Smith, Ian M.; Califano, Joseph A.; El-Naggar, Adel K.; Ha, Patrick K.

    2009-01-01

    Background The MitoChip v2.0 resequencing array is an array-based technique allowing for accurate and complete sequencing of the mitochondrial genome. No studies have investigated mitochondrial mutation in salivary gland adenoid cystic carcinomas. Methodology The entire mitochondrial genome of 22 salivary gland adenoid cystic carcinomas (ACC) of salivary glands and matched leukocyte DNA was sequenced to determine the frequency and distribution of mitochondrial mutations in ACC tumors. Principal Findings Seventeen of 22 ACCs (77%) carried mitochondrial mutations, ranging in number from 1 to 37 mutations. A disproportionate number of mutations occurred in the D-loop. Twelve of 17 tumors (70.6%) carried mutations resulting in amino acid changes of translated proteins. Nine of 17 tumors (52.9%) with a mutation carried an amino acid changing mutation in the nicotinamide adenine dinucleotide dehydrogenase (NADH) complex. Conclusions/Significance Mitochondrial mutation is frequent in salivary ACCs. The high incidence of amino acid changing mutations implicates alterations in aerobic respiration in ACC carcinogenesis. D-loop mutations are of unclear significance, but may be associated with alterations in transcription or replication. PMID:20041111

  12. Female genetic distribution bias in mitochondrial genome observed in Parkinson’s Disease patients in northern China

    PubMed Central

    Chu, Qiaohong; Luo, Xiaoguang; Zhan, Xiaoni; Ren, Yan; Pang, Hao

    2015-01-01

    Genetic polymorphisms associated with susceptibility to Parkinson’s disease (PD) have been described in mitochondrial DNA (mtDNA). To explore the potential contribution of mtDNA mutations to the risk of PD in a Chinese population, we examined the linkage relationship between several single nucleotide polymorphisms (SNPs) and haplotypes in mtDNA and PD. We genotyped 5 SNPs located on coding genes using PCR-RFLP analysis. A specific allele 10398G demonstrated an increased risk of PD (OR 1.30; 95% CI 0.95–1.76; P = 0.013). After stratification by gender, the increased risk appeared to be more significant in females (OR 1.91; 95% CI 1.16–3.16; P = 0.001). But the significance only appeared in females under Bonferroni correction. No significant differences were detected for other SNPs (T4336C, G5460A, G9055A, and G13708A). Individual haplotype composed of 4336T-5460G-9055G-10398A-13708G was found to be associated with protective effect regarding PD (P = 0.0025). The haplotypes 4336T-5460G-9055G-10398G-13708G and 4336T-5460G-9055G-10398A-13708G were more significantly associated in females (P = 0.0036 for risk and P = 0.0006 for protective effects). These data suggest that the A10398G and two haplotypes coupled with 10398A or 10398G are closely associated with susceptibility to PD in a northern Chinese population. This association demonstrated a female genetic distribution bias. PMID:26602989

  13. Altered Distribution of Peripheral Blood Memory B Cells in Humans Chronically Infected with Trypanosoma cruzi

    PubMed Central

    Fernández, Esteban R.; Olivera, Gabriela C.; Quebrada Palacio, Luz P.; González, Mariela N.; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L.; Ledesma Patiño, Oscar S.; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans. PMID:25111833

  14. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    PubMed

    Fernández, Esteban R; Olivera, Gabriela C; Quebrada Palacio, Luz P; González, Mariela N; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L; Ledesma Patiño, Oscar S; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  15. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    PubMed

    Fernández, Esteban R; Olivera, Gabriela C; Quebrada Palacio, Luz P; González, Mariela N; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L; Ledesma Patiño, Oscar S; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans. PMID:25111833

  16. Altered Na/Ca exchange distribution in ventricular myocytes from failing hearts

    PubMed Central

    Gadeberg, Hanne C.; Bryant, Simon M.; James, Andrew F.

    2015-01-01

    In mammalian cardiac ventricular myocytes, Ca efflux via Na/Ca exchange (NCX) occurs predominantly at T tubules. Heart failure is associated with disrupted t-tubular structure, but its effect on t-tubular function is less clear. We therefore investigated t-tubular NCX activity in ventricular myocytes isolated from rat hearts ∼18 wk after coronary artery ligation (CAL) or corresponding sham operation (Sham). NCX current (INCX) and l-type Ca current (ICa) were recorded using the whole cell, voltage-clamp technique in intact and detubulated (DT) myocytes; intracellular free Ca concentration ([Ca]i) was monitored simultaneously using fluo-4. INCX was activated and measured during application of caffeine to release Ca from sarcoplasmic reticulum (SR). Whole cell INCX was not significantly different in Sham and CAL myocytes and occurred predominantly in the T tubules in Sham myocytes. CAL was associated with redistribution of INCX and ICa away from the T tubules to the cell surface and an increase in t-tubular INCX/ICa density from 0.12 in Sham to 0.30 in CAL myocytes. The decrease in t-tubular INCX in CAL myocytes was accompanied by an increase in the fraction of Ca sequestered by SR. However, SR Ca content was not significantly different in Sham, Sham DT, and CAL myocytes but was significantly increased by DT of CAL myocytes. In Sham myocytes, there was hysteresis between INCX and [Ca]i, which was absent in DT Sham but present in CAL and DT CAL myocytes. These data suggest altered distribution of NCX in CAL myocytes. PMID:26566728

  17. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.

    PubMed

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V, Oliver C

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov-Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  18. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model

    PubMed Central

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997

  19. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures.

    PubMed

    Wang, Zhen Xiang; Lloyd, Ashley A; Burket, Jayme C; Gourion-Arsiquaud, Samuel; Donnelly, Eve

    2016-03-01

    Heterogeneity of bone tissue properties is emerging as a potential indicator of altered bone quality in pathologic tissue. The objective of this study was to compare the distributions of tissue properties in women with and without histories of fragility fractures using Fourier transform infrared (FTIR) imaging. We extended a prior study that examined the relationship of the mean FTIR properties to fracture risk by analyzing in detail the widths and the tails of the distributions of FTIR properties in biopsies from fracture and non-fracture cohorts. The mineral and matrix properties of cortical and trabecular iliac crest tissue were compared in biopsies from women with a history of fragility fracture (+Fx; n=21, age: mean 54±SD 15y) and with no history of fragility fracture (-Fx; n=12, age: 57±5y). A subset of the patients included in the -Fx group were taking estrogen-plus-progestin hormone replacement therapy (HRT) (-Fx+HRT n=8, age: 58±5y) and were analyzed separately from patients with no history of HRT (-Fx-HRT n=4, age: 56±7y). When the FTIR parameter mean values were examined by treatment group, the trabecular tissue of -Fx-HRT patients had a lower mineral:matrix ratio (M:M) and collagen maturity (XLR) than that of -Fx+HRT patients (-22% M:M, -18% XLR) and +Fx patients (-17% M:M, -18% XLR). Across multiple FTIR parameters, tissue from the -Fx-HRT group had smaller low-tail (5th percentile) values than that from the -Fx+HRT or +Fx groups. In trabecular collagen maturity and crystallinity (XST), the -Fx-HRT group had smaller low-tail values than those in the -Fx+HRT group (-16% XLR, -5% XST) and the +Fx group (-17% XLR, -7% XST). The relatively low values of trabecular mineral:matrix ratio and collagen maturity and smaller low-tail values of collagen maturity and crystallinity observed in the -Fx-HRT group are characteristic of younger tissue. Taken together, our data suggest that the presence of newly formed tissue that includes small/imperfect crystals

  20. Species-specific fine root biomass distribution alters competition in mixed forests under climate change

    NASA Astrophysics Data System (ADS)

    Reyer, Christopher; Gutsch, Martin; Lasch, Petra; Suckow, Felicitas; Sterck, Frank; Mohren, Frits

    2010-05-01

    The importance of mixed forests in European silviculture has increased due to forest conversion policies and multifunctional forest management. Concurrently, evidences for substantial impacts of climate change on forest ecosystems accumulate. Projected drier and warmer conditions alter the water relations of tree species, their growth and ultimately their inter-specific competition in mixed stands. Process-based models are scientific tools to study the impact of climate change on and to deepen the understanding of the functioning of these systems based on ecological mechanisms. They allow for long-term, stand-level studies of forest dynamics which could only be addressed with great difficulty in an experimental or empirical setup. We used the process-based forest model 4C to simulate inter-specific competition in mixed stands of Douglas-fir (Pseudotsuga menziesii) and Common beech (Fagus sylvatica) as well as Scots pine (Pinus sylvestris) and Sessile / Pedunculate oak (Quercus petraea and Quercus robur) under a) historical climate for model verification and b) under climate change scenario realizations of the climate model STAR 2.0 in Brandenburg, Germany. Some of the climate change scenario realizations feature a substantially drier and warmer summer climate which decreases the climatic water balance during the growing season. We assumed species-specific fine root biomass distributions which feature broadleaved fine roots in deeper soil layers and coniferous fine roots in upper soil layers according to several root excavation studies from mixed stands. The stands themselves were constructed from yield tables of the contributing species. The model verification provided good results for the basal area predictions under the historical climate. Under climate change, the number of days when the tree water demand exceeded the soil water supply was higher for the coniferous species than for broadleaved species. Furthermore, after 45 simulation years the basal area

  1. Impact of depositional facies on the distribution of diagenetic alterations in the Devonian shoreface sandstone reservoirs, Southern Ghadamis Basin, Libya

    NASA Astrophysics Data System (ADS)

    Khalifa, Muftah Ahmid; Morad, Sadoon

    2015-11-01

    The middle Devonian, shoreface quartz arenites (present-day burial depths 2833-2786 m) are important oil and gas reservoirs in the Ghadamis Basin, western Libya. This integrated petrographic and geochemical study aims to unravel the impact of depositional facies on distribution of diagenetic alterations and, consequently, related reservoir quality and heterogeneity of the sandstones. Eogenetic alterations include the formation of kaolinite, pseudomatrix, and pyrite. The mesogenetic alterations include cementation by quartz overgrowths, Fe-dolomite/ankerite, and illite, transformation of kaolinite to dickite, illitization of smectite, intergranular quartz dissolution, and stylolitization, and albitization of feldspar. The higher energy of deposition of the coarser-grained upper shoreface sandstones combined with less extensive chemical compaction and smaller amounts of quartz overgrowths account for their better primary reservoir quality compared to the finer-grained, middle-lower shoreface sandstones. The formation of kaolin in the upper and middle shoreface sandstones is attributed to a greater flux of meteoric water. More abundant quartz overgrowths in the middle and lower shoreface is attributed to a greater extent of stylolitization, which was promoted by more abundant illitic clays. This study demonstrated that linking the distribution of diagenetic alterations to depositional facies of shoreface sandstones leads to a better understanding of the impact of these alterations on the spatial and temporal variation in quality and heterogeneity of the reservoirs.

  2. The spatial distribution and chemical heterogeneity of clinoptilolite at Yucca Mountain, Nye County, Nevada: Evidence for polygenetic hypogene alteration

    SciTech Connect

    Livingston, D.E.; Szymanski, J.S.

    1994-01-01

    This part of TRAC`s Annual Report for 1993 summarizes the finding of previous reports on the major element geochemistry of zeolitic alteration of the tuffs at Yucca Mountain and updates the status of work. In this report we examine the spatial distribution of zeolites by stratigraphic units and boreholes and the various types of chemical alteration of clinoptilolite indicated by the data reported in Broxton et al. and Bish and Chipera. The purpose is to evaluate the extent of the metasomatic alteration and to test the hypogene hypothesis of Szymanski. In this regard, it is of prime importance to evaluate whether the metasomatic alteration at Yucca Mountain is due to supergene or hypogene processes. In this report, the term {open_quotes}supergene{close_quotes} denotes alteration and mineralization produced by fluids derived directly from atmospheric precipitation and infiltration through the vadose zone, and the term {open_quotes}hypogene{close_quotes} denotes alteration and mineralization produced by fluids from the phreatic zone regardless of their former location or residence time in the Earth`s crust. This report begins with a review of previous work on the genesis of zeolites of the Nevada Test Site.

  3. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects

    PubMed Central

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg−1) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (P<0.05). NAc DBS effectively improved FST mobility in ACTH-treated animals (P<0.05). No improvement in mobility was observed for sham control animals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  4. Nucleus accumbens deep-brain stimulation efficacy in ACTH-pretreated rats: alterations in mitochondrial function relate to antidepressant-like effects.

    PubMed

    Kim, Y; McGee, S; Czeczor, J K; Walker, A J; Kale, R P; Kouzani, A Z; Walder, K; Berk, M; Tye, S J

    2016-01-01

    Mitochondrial dysfunction has a critical role in the pathophysiology of mood disorders and treatment response. To investigate this, we established an animal model exhibiting a state of antidepressant treatment resistance in male Wistar rats using 21 days of adrenocorticotropic hormone (ACTH) administration (100 μg per day). First, the effect of ACTH treatment on the efficacy of imipramine (10 mg kg(-1)) was investigated alongside its effect on the prefrontal cortex (PFC) mitochondrial function. Second, we examined the mood-regulatory actions of chronic (7 day) high-frequency nucleus accumbens (NAc) deep-brain stimulation (DBS; 130 Hz, 100 μA, 90 μS) and concomitant PFC mitochondrial function. Antidepressant-like responses were assessed in the open field test (OFT) and forced swim test (FST) for both conditions. ACTH pretreatment prevented imipramine-mediated improvement in mobility during the FST (P<0.05). NAc DBS effectively improved FST mobility in ACTH-treated animals (P<0.05). No improvement in mobility was observed for sham control animals (P>0.05). Analyses of PFC mitochondrial function revealed that ACTH-treated animals had decreased capacity for adenosine triphosphate production compared with controls. In contrast, ACTH animals following NAc DBS demonstrated greater mitochondrial function relative to controls. Interestingly, a proportion (30%) of the ACTH-treated animals exhibited heightened locomotor activity in the OFT and exaggerated escape behaviors during the FST, together with general hyperactivity in their home-cage settings. More importantly, the induction of this mania-like phenotype was accompanied by overcompensative increased mitochondrial respiration. Manifestation of a DBS-induced mania-like phenotype in imipramine-resistant animals highlights the potential use of this model in elucidating mechanisms of mood dysregulation. PMID:27327257

  5. Leishmania major Telomerase TERT Protein Has a Nuclear/Mitochondrial Eclipsed Distribution That Is Affected by Oxidative Stress

    PubMed Central

    Campelo, Riward; Díaz Lozano, Isabel; Figarella, Katherine; Osuna, Antonio

    2014-01-01

    In its canonical role the reverse transcriptase telomerase recovers the telomeric repeats that are lost during DNA replication. Other locations and activities have been recently described for the telomerase protein subunit TERT in mammalian cells. In the present work, using biochemistry, molecular biology, and electron microscopy techniques, we found that in the human parasite Leishmania major, TERT (and telomerase activity) shared locations between the nuclear, mitochondrial, and cytoplasmic compartments. Also, some telomerase activity and TERT protein could be found in ∼100-nm nanovesicles. In the mitochondrial compartment, TERT appears to be mainly associated with the kinetoplast DNA. When Leishmania cells were exposed to H2O2, TERT changed its relative abundance and activity between the nuclear and mitochondrial compartments, with the majority of activity residing in the mitochondrion. Finally, overexpression of TERT in Leishmania transfected cells not only increased the parasitic cell growth rate but also increased their resistance to oxidative stress. PMID:25312950

  6. Defects in Mitochondrial Dynamics and Metabolomic Signatures of Evolving Energetic Stress in Mouse Models of Familial Alzheimer's Disease

    PubMed Central

    Trushina, Eugenia; Nemutlu, Emirhan; Zhang, Song; Christensen, Trace; Camp, Jon; Mesa, Janny; Siddiqui, Ammar; Tamura, Yasushi; Sesaki, Hiromi; Wengenack, Thomas M.; Dzeja, Petras P.; Poduslo, Joseph F.

    2012-01-01

    Background The identification of early mechanisms underlying Alzheimer's Disease (AD) and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of different familial AD (FAD) mutations on mitochondrial function, dynamics, and brain energetics. Methods and Findings We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress in three commonly used transgenic mouse models of FAD. Assessment of mitochondrial motility, distribution, dynamics, morphology, and metabolomic profiling revealed the specific effect of each FAD mutation on the development of mitochondrial stress and dysfunction. Inhibition of mitochondrial trafficking was characteristic for embryonic neurons from mice expressing mutant human presenilin 1, PS1(M146L) and the double mutation of human amyloid precursor protein APP(Tg2576) and PS1(M146L) contributing to the increased susceptibility of neurons to excitotoxic cell death. Significant changes in mitochondrial morphology were detected in APP and APP/PS1 mice. All three FAD models demonstrated a loss of the integrity of synaptic mitochondria and energy production. Metabolomic profiling revealed mutation-specific changes in the levels of metabolites reflecting altered energy metabolism and mitochondrial dysfunction in brains of FAD mice. Metabolic biomarkers adequately reflected gender differences similar to that reported for AD patients and correlated well with the biomarkers currently used for diagnosis in humans. Conclusions Mutation-specific alterations in mitochondrial dynamics, morphology and function in FAD mice occurred prior to the onset of memory and neurological phenotype and before the formation of amyloid deposits. Metabolomic signatures of mitochondrial stress and altered energy metabolism indicated

  7. Altered distribution of hippocampal interneurons in the murine Down Syndrome model Ts65Dn.

    PubMed

    Hernández-González, Samuel; Ballestín, Raúl; López-Hidalgo, Rosa; Gilabert-Juan, Javier; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nácher, Juan; Varea, Emilio

    2015-01-01

    Down Syndrome, with an incidence of one in 800 live births, is the most common genetic alteration producing intellectual disability. We have used the Ts65Dn model, that mimics some of the alterations observed in Down Syndrome. This genetic alteration induces an imbalance between excitation and inhibition that has been suggested as responsible for the cognitive impairment present in this syndrome. The hippocampus has a crucial role in memory processing and is an important area to analyze this imbalance. In this report we have analysed, in the hippocampus of Ts65Dn mice, the expression of synaptic markers: synaptophysin, vesicular glutamate transporter-1 and isoform 67 of the glutamic acid decarboxylase; and of different subtypes of inhibitory neurons (Calbindin D-28k, parvalbumin, calretinin, NPY, CCK, VIP and somatostatin). We have observed alterations in the inhibitory neuropil in the hippocampus of Ts65Dn mice. There was an excess of inhibitory puncta and a reduction of the excitatory ones. In agreement with this observation, we have observed an increase in the number of inhibitory neurons in CA1 and CA3, mainly interneurons expressing calbindin, calretinin, NPY and VIP, whereas parvalbumin cell numbers were not affected. These alterations in the number of interneurons, but especially the alterations in the proportion of the different types, may influence the normal function of inhibitory circuits and underlie the cognitive deficits observed in DS.

  8. ChemCam Depth Profiles at Gale Crater to Assess Coating and Alteration Distribution and Chemistry

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Clegg, S. M.; Wiens, R. C.; Maurice, S.; Lanza, N.; Bridges, N.

    2014-12-01

    Coating and rock alteration formation on Mars is constrained by both the availability of water and rock composition. Detection of these materials depends on the both formation rate and the rate of abrasion that these alteration products and coatings experience. ChemCam on the Curiosity rover can investigate coating/alteration formation and preservation by looking at chemical composition as a function of depth into the rock. ChemCam LIBS works by firing a laser focused to a 350 - 550 mm diameter spot that produces plasma from the rock. Spectra of elemental emission lines are recorded from 240-850 nm and used to determine the elemental composition of the rock. A chemical composition is generated from each individual spectrum. Each laser firing penetrates deeper into the rock allowing for a composition as a function of depth to be determined. By comparing geochemical trends from the beginning and end of the observations evidence for coatings and alteration can be assessed by geologic setting and rock type. Previous ChemCam work has identified Li variations (Ollila et al 2014) and MnO coatings (Lanza et al 2014) on a few rocks with high abundances of these elements. However this work is the first systematic assessment of alteration and coatings in the entire data set. From landing until Sol 583 there were 2,610 good quality ChemCam rock and outcrop observations. These measurements were assessed for internal elemental composition variability by the calculation of heterogeneity index. Only 7% (178) had positive internal heterogeneity. However, internal heterogeneity can be due to other factors besides coatings and alteration. Thick soil coverage and differential sampling of materials in coarse-grained rocks also produce positive heterogeneity indexes. The actual number of potential coatings at Gale is significantly lower. For most of Gale, current geochemical alteration rates are slower the rate of abrasion. This result is consistent with limited availability of water in

  9. Exposure to ozone reduces influenza disease severity and alters distribution of influenza viral antigens in murine lungs

    SciTech Connect

    Wolcott, J.A.; Zee, Y.C,; Osebold, J.W.

    1982-09-01

    Exposure to ambient levels of ozone (0.5 ppm) was shown to alter the pathogenesis of respiratory infection after aerosol infection of mice with influenza A virus. A semiquantitative method for determination of the sites of virus replication by direct immunofluorescence indicated that exposure to ozone reduced the involvement of respiratory epithelium in the infectious process and resulted in a less widespread infection of the alveolar parenchyma. Furthermore, the ozone-mediated alteration in viral antigen distribution was consistent with significantly reduced influenza disease mortality and prolonged survival time, but only when the oxidant was present during the course of infection. Reduced disease severity in ozone-exposed animals appeared to be independent of peak pulmonary virus titers, pulmonary interferon titers, and pulmonary and serum-neutralizing antibody titers. These studies suggested that the distribution of influenza virus in the murine lung was a key factor in disease severity.

  10. Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers.

    PubMed

    Aguiar, Paula Fernandes; Magalhães, Sílvia Mourão; Fonseca, Ivana Alice Teixeira; da Costa Santos, Vanessa Batista; de Matos, Mariana Aguiar; Peixoto, Marco Fabrício Dias; Nakamura, Fábio Yuzo; Crandall, Craig; Araújo, Hygor Nunes; Silveira, Leonardo Reis; Rocha-Vieira, Etel; de Castro Magalhães, Flávio; Amorim, Fabiano Trigueiro

    2016-09-01

    This study aims to evaluate the effect of regular post-exercise cold water immersion (CWI) on intramuscular markers of cellular stress response and signaling molecules related to mitochondria biogenesis and exercise performance after 4 weeks of high intensity interval training (HIIT). Seventeen healthy subjects were allocated into two groups: control (CON, n = 9) or CWI (n = 8). Each HIIT session consisted of 8-12 cycling exercise stimuli (90-110 % of peak power) for 60 s followed by 75 s of active recovery three times per week, for 4 weeks (12 HIIT sessions). After each HIIT session, the CWI had their lower limbs immersed in cold water (10 °C) for 15 min and the CON recovered at room temperature. Exercise performance was evaluated before and after HIIT by a 15-km cycling time trial. Vastus lateralis biopsies were obtained pre and 72 h post training. Samples were analyzed for heat shock protein 72 kDa (Hsp72), adenosine monophosphate-activated protein kinase (AMPK), and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) assessed by western blot. In addition, the mRNA expression of heat shock factor-1 (HSF-1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 and 2 (NRF1 and 2), mitochondrial transcription factor A (Tfam), calcium calmodulin-dependent protein kinase 2 (CaMK2) and enzymes citrate synthase (CS), carnitine palmitoyltransferase I (CPT1), and pyruvate dehydrogenase kinase (PDK4) were assessed by real-time PCR. Time to complete the 15-km cycling time trial was reduced with training (p < 0.001), but was not different between groups (p = 0.33). The Hsp72 (p = 0.01), p38 MAPK, and AMPK (p = 0.04) contents increased with training, but were not different between groups (p > 0.05). No differences were observed with training or condition for mRNA expression of PGC-1α (p = 0.31), CPT1 (p = 0.14), CS (p = 0.44), and NRF-2 (p = 0.82). However

  11. Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers.

    PubMed

    Aguiar, Paula Fernandes; Magalhães, Sílvia Mourão; Fonseca, Ivana Alice Teixeira; da Costa Santos, Vanessa Batista; de Matos, Mariana Aguiar; Peixoto, Marco Fabrício Dias; Nakamura, Fábio Yuzo; Crandall, Craig; Araújo, Hygor Nunes; Silveira, Leonardo Reis; Rocha-Vieira, Etel; de Castro Magalhães, Flávio; Amorim, Fabiano Trigueiro

    2016-09-01

    This study aims to evaluate the effect of regular post-exercise cold water immersion (CWI) on intramuscular markers of cellular stress response and signaling molecules related to mitochondria biogenesis and exercise performance after 4 weeks of high intensity interval training (HIIT). Seventeen healthy subjects were allocated into two groups: control (CON, n = 9) or CWI (n = 8). Each HIIT session consisted of 8-12 cycling exercise stimuli (90-110 % of peak power) for 60 s followed by 75 s of active recovery three times per week, for 4 weeks (12 HIIT sessions). After each HIIT session, the CWI had their lower limbs immersed in cold water (10 °C) for 15 min and the CON recovered at room temperature. Exercise performance was evaluated before and after HIIT by a 15-km cycling time trial. Vastus lateralis biopsies were obtained pre and 72 h post training. Samples were analyzed for heat shock protein 72 kDa (Hsp72), adenosine monophosphate-activated protein kinase (AMPK), and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) assessed by western blot. In addition, the mRNA expression of heat shock factor-1 (HSF-1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 and 2 (NRF1 and 2), mitochondrial transcription factor A (Tfam), calcium calmodulin-dependent protein kinase 2 (CaMK2) and enzymes citrate synthase (CS), carnitine palmitoyltransferase I (CPT1), and pyruvate dehydrogenase kinase (PDK4) were assessed by real-time PCR. Time to complete the 15-km cycling time trial was reduced with training (p < 0.001), but was not different between groups (p = 0.33). The Hsp72 (p = 0.01), p38 MAPK, and AMPK (p = 0.04) contents increased with training, but were not different between groups (p > 0.05). No differences were observed with training or condition for mRNA expression of PGC-1α (p = 0.31), CPT1 (p = 0.14), CS (p = 0.44), and NRF-2 (p = 0.82). However

  12. Maternal stress predicts altered biogenesis and the profile of mitochondrial proteins in the frontal cortex and hippocampus of adult offspring rats.

    PubMed

    Głombik, Katarzyna; Stachowicz, Aneta; Ślusarczyk, Joanna; Trojan, Ewa; Budziszewska, Bogusława; Suski, Maciej; Kubera, Marta; Lasoń, Władysław; Wędzony, Krzysztof; Olszanecki, Rafał; Basta-Kaim, Agnieszka

    2015-10-01

    Currently, much attention is focused on the influence of mitochondrial disturbances at the onset of depression. The goal of this study was to investigate the impact of prenatal stress (an animal model of depression) on the mitochondrial biogenesis proteins and mitoproteome profile in the frontal cortex and hippocampus of adult 3-month-old male rats following a prenatal stress procedure. Our results show that rats that were exposed to prenatal stress stimuli displayed depression-like behaviors based on the sucrose preference and elevated plus maze tests. It has been found that the level of the PGC-1α protein was reduced in the frontal cortex and hippocampus of the adult offspring after the prenatal stress procedure. Moreover, in the frontal cortex, the level of the pro-apoptotic protein Bax was up-regulated. Two-dimensional electrophoresis coupled with mass spectrometry showed the statistically significant down-regulation of the mitochondrial ribosomal protein L12 (Mrpl12) and mitochondrial NADH dehydrogenase [ubiquinone] flavoprotein 2 (NDUFV2) as well as the up-regulation of the Tubulin Polymerization Promoting Proteins (Tppp/p25) in the frontal cortex. In contrast, in the hippocampus, the mitochondrial pyruvate dehydrogenase E1 component subunit beta, the voltage-dependent anion-selective channel protein 2 (VDAC2), and the GTP-binding nuclear protein RAN (RAN) were down-regulated and the expression of phosphatidylethanolamine-binding protein 1 (PEBP-1) was enhanced. These findings provide new evidence that stress during pregnancy may lead not only to behavioral deficits, but also to disturbances in the brain mitoproteome profile in adult rat offspring.

  13. Mitochondrial DNA damage and atherosclerosis.

    PubMed

    Yu, Emma P K; Bennett, Martin R

    2014-09-01

    Mitochondria are often regarded as the cellular powerhouses through their ability to generate ATP, the universal fuel for metabolic processes. However, in recent years mitochondria have been recognised as critical regulators of cell death, inflammation, metabolism, and the generation of reactive oxygen species (ROS). Thus, mitochondrial dysfunction directly promotes cell death, inflammation, and oxidative stress and alters metabolism. These are key processes in atherosclerosis and there is now evidence that mitochondrial DNA (mtDNA) damage leads to mitochondrial dysfunction and promotes atherosclerosis directly. In this review we discuss the recent evidence for and mechanisms linking mtDNA defects and atherosclerosis and suggest areas of mitochondrial biology that are potential therapeutic targets.

  14. Alteration of structure and function of ATP synthase and cytochrome c oxidase by lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation.

    PubMed

    Hejzlarová, Kateřina; Kaplanová, Vilma; Nůsková, Hana; Kovářová, Nikola; Ješina, Pavel; Drahota, Zdeněk; Mráček, Tomáš; Seneca, Sara; Houštěk, Josef

    2015-03-15

    Mutations in the MT-ATP6 gene are frequent causes of severe mitochondrial disorders. Typically, these are missense mutations, but another type is represented by the 9205delTA microdeletion, which removes the stop codon of the MT-ATP6 gene and affects the cleavage site in the MT-ATP8/MT-ATP6/MT-CO3 polycistronic transcript. This interferes with the processing of mRNAs for the Atp6 (Fo-a) subunit of ATP synthase and the Cox3 subunit of cytochrome c oxidase (COX). Two cases described so far presented with strikingly different clinical phenotypes-mild transient lactic acidosis or fatal encephalopathy. To gain more insight into the pathogenic mechanism, we prepared 9205delTA cybrids with mutation load ranging between 52 and 99% and investigated changes in the structure and function of ATP synthase and the COX. We found that 9205delTA mutation strongly reduces the levels of both Fo-a and Cox3 proteins. Lack of Fo-a alters the structure but not the content of ATP synthase, which assembles into a labile, ∼60 kDa smaller, complex retaining ATP hydrolytic activity but which is unable to synthesize ATP. In contrast, lack of Cox3 limits the biosynthesis of COX but does not alter the structure of the enzyme. Consequently, the diminished mitochondrial content of COX and non-functional ATP synthase prevent most mitochondrial ATP production. The biochemical effects caused by the 9205delTA microdeletion displayed a pronounced threshold effect above ∼90% mutation heteroplasmy. We observed a linear relationship between the decrease in subunit Fo-a or Cox3 content and the functional presentation of the defect. Therefore we conclude that the threshold effect originated from a gene-protein level. PMID:25588698

  15. Alteration of structure and function of ATP synthase and cytochrome c oxidase by lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation.

    PubMed

    Hejzlarová, Kateřina; Kaplanová, Vilma; Nůsková, Hana; Kovářová, Nikola; Ješina, Pavel; Drahota, Zdeněk; Mráček, Tomáš; Seneca, Sara; Houštěk, Josef

    2015-03-15

    Mutations in the MT-ATP6 gene are frequent causes of severe mitochondrial disorders. Typically, these are missense mutations, but another type is represented by the 9205delTA microdeletion, which removes the stop codon of the MT-ATP6 gene and affects the cleavage site in the MT-ATP8/MT-ATP6/MT-CO3 polycistronic transcript. This interferes with the processing of mRNAs for the Atp6 (Fo-a) subunit of ATP synthase and the Cox3 subunit of cytochrome c oxidase (COX). Two cases described so far presented with strikingly different clinical phenotypes-mild transient lactic acidosis or fatal encephalopathy. To gain more insight into the pathogenic mechanism, we prepared 9205delTA cybrids with mutation load ranging between 52 and 99% and investigated changes in the structure and function of ATP synthase and the COX. We found that 9205delTA mutation strongly reduces the levels of both Fo-a and Cox3 proteins. Lack of Fo-a alters the structure but not the content of ATP synthase, which assembles into a labile, ∼60 kDa smaller, complex retaining ATP hydrolytic activity but which is unable to synthesize ATP. In contrast, lack of Cox3 limits the biosynthesis of COX but does not alter the structure of the enzyme. Consequently, the diminished mitochondrial content of COX and non-functional ATP synthase prevent most mitochondrial ATP production. The biochemical effects caused by the 9205delTA microdeletion displayed a pronounced threshold effect above ∼90% mutation heteroplasmy. We observed a linear relationship between the decrease in subunit Fo-a or Cox3 content and the functional presentation of the defect. Therefore we conclude that the threshold effect originated from a gene-protein level.

  16. Mitochondrial Diseases

    MedlinePlus

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  17. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Sappal, Ravinder; MacDougald, Michelle; Fast, Mark; Stevens, Don; Kibenge, Fred; Siah, Ahmed; Kamunde, Collins

    2015-08-01

    Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20°C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0-20μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I-IV (CI-IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11→20°C) in temperature increased mitochondrial oxidation rates supported by CI-IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI-IV, reduced RCR for all except CII and lowered CI:CII respiration ratio, an indication of decreased OXPHOS efficiency. The effects of Cu were less pronounced but more variable and included inhibition of CII-IV maximal respiration rates and stimulation of both CI and CIII basal respiration rates. Surprisingly, only CII and CIII indices exhibited significant 3-way interactions whereas 2-way interactions of acclimation either with Cu or HRO were portrayed mostly by CIV, and those of

  18. Hydrothermal alteration in Oregon's Newberry Volcano No. 2: fluid chemistry and secondary-mineral distribution

    SciTech Connect

    Keith, T.E.C.; Mariner, R.H.; Bargar, K.E.; Evans, W.C.; Presser, T.S.

    1984-04-01

    Newberry 2 was drilled in the caldera floor of Newberry Volcano, Oregon, by the US Geological Survey during 1979-81. The maximum temperature measured was 265C at the bottom of the hole, 932 m below the surface. Rocks recovered fr9om the drill hole are divided into three intervals on the basis of hydrothermal alteration and mineral deposition: (1) 0-290 m consists of unaltered, largely glassy volcanic material, with present temperatures ranging from 20 to 40C; (2) 290-700 m consists of permeable tuff layers, tuff breccia units, and brecciated and fractured rhyodacitic to dacitic lava flows, with temperatures ranging from 40 to 100C; (3) 700-932 m consists of impermeable andesitic to basaltic lava flows that generally show little effect of alteration, interlayered with permeable hydrothermally altered flow breccia, with temperatures gradually increasing from 100 at 700 m to 265C at 932 m. Hydrothermal alteration throughout the system is controlled by rock permeability, temperature, composition of geothermal fluids, and composition and crystallinity of host rocks. Rock alteration consists mainly of replacement of glass by clay minerals and, locally, zeolites, partial replacement of plagioclase phenocrysts by calcite +/- epidote +/- illite, and whole-rock leaching adjacent to fluids channels. Open-space deposition of hydrothermal minerals in fractures, vesicles, and interbreccia pore space is far more abundant than replacement. A cooling shallow convection system in the upper 700 m is indicated by the occurrence of hydrothermal minerals that were deposited in a slightly higher temperature environment than presently exists. Below 700 m, the heat flow is conductive, and fluid flow is controlled by horizontal lava flows. Homogenization temperatures of secondary quartz fluid inclusions were as high as 370C.

  19. Alteration and ore distribution in the Proterozoic Mines Series, Tenke-Fungurume Cu-Co district, Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Fay, I.; Barton, M. D.

    2012-06-01

    Two sediment-hosted stratiform Cu-Co deposits in the Tenke-Fungurume district of the Central African Copperbelt were examined to evaluate the alteration history of the ore-hosting Mines Series and its implications for ore distribution and processing. Core logging and petrography, focused on lithology and timing relationships, outlined a complex alteration sequence whose earliest features include formation of anhydrite nodules and laths, followed by precipitation of dolomite. Later alteration episodes include at least two silica introductions, accompanied by or alternating with two dolomite introductions into the existing gangue assemblages. One introduction of Cu-Co sulfides accompanied the last episode of dolomite alteration, overprinting an earlier generation of ore whose gangue association was unidentifiable. Sulfides and some carbonates were subsequently modified by supergene oxidation, transport, and reprecipitation to 100-200 m depth. Present-day ore distribution resulted from these successive processes. Ore is concentrated in two shale-dominated units on either side of a cavernous silicified dolomite, which is interpreted as the main conduit for the mineralizing fluids. Sulfide ores precipitated at the redox or sulfidation contacts between this dolomite and the shales. Later, supergene fluids dissolved and moved some of the metals, redepositing them as oxides and carbonates. Solubility differences between Cu and Co in supergene conditions caused them to precipitate separately. Thus, modern ore distribution at Tenke-Fungurume results both from original hypogene lithology- and contact-related precipitation and from supergene oxidation, transport, and Cu-Co decoupling. The supergene fluid flow also redistributed gangue minerals such as dolomite, which has an economically important influence on the processing costs of supergene ores.

  20. Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner.

    PubMed

    Imam, Syed Z; Karahalil, Bensu; Hogue, Barbara A; Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2006-08-01

    Aging is associated with increased susceptibility to neuronal loss and disruption of cerebral function either as a component of senescence, or as a consequence of neurodegenerative disease or stroke. Here we report differential changes in the repair of oxidative DNA damage in various brain regions during aging. We evaluated mitochondrial and nuclear incision activities of oxoguanine DNA glycosylase (OGG1), uracil DNA glycosylase (UDG) and the endonuclease III homologue (NTH1) in the caudate nucleus (CN), frontal cortex (FC), hippocampus (Hip), cerebellum (CE) and brain stem (BS) of 6- and 18-month-old male C57Bl/6 mice. We observed a significant age-dependent decrease in incision activities of all three glycosylases in the mitochondria of all brain regions, whereas variable patterns of changes were seen in nuclei. No age- or region-specific changes were observed in the mitochondrial repair synthesis incorporation of uracil-initiated base-excision repair (BER). We did not observe any age or region dependent differences in levels of BER proteins among the five brain regions. In summary, our data suggest that a decreased efficiency of mitochondrial BER-glycosylases and increased oxidative damage to mitochondrial DNA might contribute to the normal aging process. These data provide a novel characterization of oxidative DNA damage processing in different brain regions implicated in various neurodegenerative disorders, and suggest that this process is regulated in an age-dependent manner. Manipulation of DNA repair mechanisms may provide a strategy to prevent neuronal loss during age-dependent neurodegenerative disorders. PMID:16005114

  1. Pharmacological doses of melatonin induce alterations in mitochondrial mass and potential, bcl-2 levels and K+ currents in UVB-exposed U937 cells.

    PubMed

    Canonico, Barbara; Luchetti, Francesca; Ambrogini, Patrizia; Arcangeletti, Marcella; Betti, Michele; Cesarini, Erica; Lattanzi, Davide; Ciuffoli, Stefano; Palma, Fulvio; Cuppini, Riccardo; Papa, Stefano

    2013-03-01

    Apoptosis is observed in 'actively' dying cells after the exposure to cell stressors such as ultraviolet light irradiation. Since melatonin has been proposed to act under stressful conditions as cell protection factor, in this study we examined the potential of this molecule when used at pharmacological concentrations to control mitochondrial damage and apoptotic signalling of UVB irradiated U937 human leukaemic cells. Moreover, the effect of melatonin treatment on electrophysiological properties and membrane K(+) currents of irradiated U937 cells was investigated as functional aspects relevant to the anti-apoptotic role of melatonin. The general effect is associated with the restoration of mass, number and membrane potential of mitochondria, with a lower caspase activation and bcl-2 upregulation. In the presence of the caspase inhibitor ZVAD-Fmk, melatonin seems to drive UVB stressed cells to follow the mitochondrial intrinsic pathway, interfering just at the mitochondrial level. Moreover, treatment with melatonin, as well as ZVAD-Fmk, prevented the K(+) current reduction observed late following the UVB insult application, by sparing cells from death; this result also indicates that the decrease of K(+) leakage currents could represent a functional feature of apoptotic process in UV-exposed U937 cells.

  2. [Composition and distribution of the mitochondrial lineages of gray whales (Eschirichtius robustus) in the far eastern seas of Russia].

    PubMed

    Meshcherskiĭ, I G; Kuleshova, M A; Litovka, D I; Burkanov, V N; Endrius, R D; Tsidulko, G A; Rozhnov, V V; Il'iashchenko, V Iu

    2015-01-01

    The frequency of occurrence of the mitotypes (control region, cytochrome b gene, and DN2 gene) has been studied for groups of gray whales feeding and growing along Chukotka Peninsula, Koryak Coast, eastern Kamchatka, and Sakhalin Island. The number of the mitotypes decreased dramatically from the northern waters southwards; however, the dominant mitotypes remained the same. Both mitochondrial lineages known for this species might be found for the whales gathering in the reproductive area along the Californian Coast in accordance with the comparison of the published and original data on the haplotypes of the control region. However, it has also been argued that similar sequences of the control region might be found in different mitochondrial genomes, and the analysis of only this site of mtDNA might lead to incorrect conclusions.

  3. Mitochondrial Ultrastructural Alterations and Declined M2 Receptor Density Were Involved in Cardiac Dysfunction in Rats after Long Term Treatment with Autoantibodies against M2 Muscarinic Receptor

    PubMed Central

    Wang, Jin; Wang, Li; Wu, Ye; Wang, Jie; Lv, Tingting; Liu, Huirong

    2015-01-01

    Background Previous studies showed that autoantibodies (M2-AA) against the second extracellular loop of M2 muscarinic receptor (M2AChR-el2) from dilated cardiomyopathy (DCM) serum could induce DCM-like morphological changes in mice hearts. However, the effects of M2-AA on the cardiac function during the process of DCM and the potential mechanisms are not fully known. The present study was designed to dynamically observe the cardiac function, mitochondrial changes, and M2 receptor binding characteristics in rats long-term stimulated with M2-AA in vivo. Methods M2-AA-positive model was established by actively immunizing healthy male Wistar rats with synthetic M2AChR-el2 peptide for 18 months. Meanwhile, vehicle group rats were administrated with physiological saline. The change of mitochondrial membrane potential (ΔΨm) was detected by radionuclide imaging. The ultrastructure of mitochondria was observed under electron microscopy. The M2 receptor binding characteristics were determined by radioactive ligand binding assay. Results After immunization for 12 months, compared with vehicle group, M2AChR-el2-immunized rats showed decreased myocardial contractility and cardiac diastolic function evidenced by declined maximal rate of rise of ventricular pressure and increased left ventricular end-diastolic pressure, respectively. Additionally, mitochondrial swelling and vacuolation were observed. At 18 months, M2AChR-el2-immunized rats manifested significant decreased cardiac systolic and diastolic function and pathological changes such as enlargement of right ventricular cavity and wall thinning; and the mitochondrial damage was aggravated. Furthermore, the M2 receptor maximum binding capacity (Bmax) of the M2AChR-el2-immunized rats significantly decreased, while the M2 receptor dissociation constant (Kd) was increased. Conclusions Our study suggested that long-term stimulation with M2-AA leaded to the ventricular dilatation and gradual deterioration of cardiac dysfunction

  4. 26 CFR 301.6801-1 - Authority for establishment, alteration, and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the law relating to internal revenue. (b) Preparation and distribution of forms, stamps and dies. The... shall provide proper and sufficient adhesive stamps and other stamps or dies for expressing and...

  5. 26 CFR 301.6801-1 - Authority for establishment, alteration, and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the law relating to internal revenue. (b) Preparation and distribution of forms, stamps and dies. The... shall provide proper and sufficient adhesive stamps and other stamps or dies for expressing and...

  6. 26 CFR 301.6801-1 - Authority for establishment, alteration, and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the law relating to internal revenue. (b) Preparation and distribution of forms, stamps and dies. The... shall provide proper and sufficient adhesive stamps and other stamps or dies for expressing and...

  7. 26 CFR 301.6801-1 - Authority for establishment, alteration, and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the law relating to internal revenue. (b) Preparation and distribution of forms, stamps and dies. The... shall provide proper and sufficient adhesive stamps and other stamps or dies for expressing and...

  8. 26 CFR 301.6801-1 - Authority for establishment, alteration, and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the law relating to internal revenue. (b) Preparation and distribution of forms, stamps and dies. The... shall provide proper and sufficient adhesive stamps and other stamps or dies for expressing and...

  9. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    PubMed

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  10. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    PubMed

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  11. Evidence of remediation-induced alteration of subsurface poly- and perfluoroalkyl substance distribution at a former firefighter training area.

    PubMed

    McGuire, Meghan E; Schaefer, Charles; Richards, Trenton; Backe, Will J; Field, Jennifer A; Houtz, Erika; Sedlak, David L; Guelfo, Jennifer L; Wunsch, Assaf; Higgins, Christopher P

    2014-06-17

    Poly- and perfluoroalkyl substances (PFASs) are a class of fluorinated chemicals that are utilized in firefighting and have been reported in groundwater and soil at several firefighter training areas. In this study, soil and groundwater samples were collected from across a former firefighter training area to examine the extent to which remedial activities have altered the composition and spatial distribution of PFASs in the subsurface. Log Koc values for perfluoroalkyl acids (PFAAs), estimated from analysis of paired samples of groundwater and aquifer solids, indicated that solid/water partitioning was not entirely consistent with predictions based on laboratory studies. Differential PFAA transport was not strongly evident in the subsurface, likely due to remediation-induced conditions. When compared to the surface soil spatial distributions, the relative concentrations of perfluorooctanesulfonate (PFOS) and PFAA precursors in groundwater strongly suggest that remedial activities altered the subsurface PFAS distribution, presumably through significant pumping of groundwater and transformation of precursors to PFAAs. Additional evidence for transformation of PFAA precursors during remediation included elevated ratios of perfluorohexanesulfonate (PFHxS) to PFOS in groundwater near oxygen sparging wells.

  12. CCN6 regulates mitochondrial function.

    PubMed

    Patra, Milan; Mahata, Sushil K; Padhan, Deepesh K; Sen, Malini

    2016-07-15

    Despite established links of CCN6, or Wnt induced signaling protein-3 (WISP3), with progressive pseudo rheumatoid dysplasia, functional characterization of CCN6 remains incomplete. In light of the documented negative correlation between accumulation of reactive oxygen species (ROS) and CCN6 expression, we investigated whether CCN6 regulates ROS accumulation through its influence on mitochondrial function. We found that CCN6 localizes to mitochondria, and depletion of CCN6 in the chondrocyte cell line C-28/I2 by using siRNA results in altered mitochondrial electron transport and respiration. Enhanced electron transport chain (ETC) activity of CCN6-depleted cells was reflected by increased mitochondrial ROS levels in association with augmented mitochondrial ATP synthesis, mitochondrial membrane potential and Ca(2+) Additionally, CCN6-depleted cells display ROS-dependent PGC1α (also known as PPARGC1A) induction, which correlates with increased mitochondrial mass and volume density, together with altered mitochondrial morphology. Interestingly, transcription factor Nrf2 (also known as NFE2L2) repressed CCN6 expression. Taken together, our results suggest that CCN6 acts as a molecular brake, which is appropriately balanced by Nrf2, in regulating mitochondrial function. PMID:27252383

  13. Mitochondrial Cardiomyopathies

    PubMed Central

    El-Hattab, Ayman W.; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20–40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  14. Mitochondrial Cardiomyopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  15. Mitochondrial vasculopathy

    PubMed Central

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-01-01

    Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications. PMID:27231520

  16. [Centripetal distribution of body fat, overweight and cardiorespiratory fitness: association with insulin sensitivity and metabolic alterations].

    PubMed

    da Silva, José Luciano T; Barbosa, Décio Sabbatini; de Oliveira, Jair Aparecido; Guedes, Dartagnan Pinto

    2006-12-01

    The purpose of this paper was to investigate associations between the centripetal distribution of the body fat and serum lipid-lipoproteins, blood pressure and the index Homa-IR of insulin resistance, adjusting for indicators of overweight and cardiorespiratory fitness. Eighty-nine voluntaries were analyzed (44 men and 45 women). The centripetal distribution of the body fat was analyzed through waist circumference (CC) and the overweight by the body mass index (BMI). The cardiorespiratory fitness was followed by the estimate VO(2)max by test of walking. After adjusted for BMI values were found significant coefficient of correlation between CC and levels of blood pressure and ApoB in men, and between CC and index Homa-IR and triglycerides in women. After adjusted for VO(2)max values were verified significant correlations between CC and ApoB and index Homa-IR in men, and between CC and index Homa-IR in women. In conclusion, depending on the sex, the quantity and distribution of the body fat can present different actions in the insulin resistance and associated dysfunctions. The cardiorespiratory fitness per se seems not to contribute on the minimization of the association between the centripetal distribution of the body fat and the index Homa-IR; but presents a considerable impact on the association between the centripetal distribution of the body fat and the lipid metabolism and the levels of blood pressure, mainly in men.

  17. BINDING OF THE RESPIRATORY CHAIN INHIBITOR ANTIMYCIN TO THE MITOCHONDRIAL bc1 COMPLEX: A NEW CRYSTAL STRUCTURE REVEALS AN ALTERED INTRAMOLECULAR HYDROGEN-BONDING PATTERN.

    PubMed Central

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2006-01-01

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex. Structure-activity-relationship studies have shown that the N-formylamino-salicylamide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28 Å resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cyt b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the αA helix. PMID:16024040

  18. Altered chromatographic behaviour of mitochondrial ADP/ATP translocase induced by stabilization of the protein by binding of 6'-O-fluorescein-atractyloside.

    PubMed Central

    Smith, Vernon R; Fearnley, Ian M; Walker, John E

    2003-01-01

    Atractyloside (ATR) is a high-affinity specific inhibitor of the mitochondrial ADP/ATP translocase (AAT). The binding of a fluorescent derivative, 6'- O -fluorescein-ATR (FATR), to mitochondria has been characterized. The binding constants obtained are in agreement with previously published values for ATR, demonstrating that FATR is a suitable probe of the AAT. AAT inhibited by FATR (FATR-AAT) was solubilized in dodecyl maltoside and purified by two separate ion-exchange chromatography steps at different pHs, which allowed FATR-AAT to be purified to homogeneity. The presence of the bound fluorescent probe enabled the inhibited AAT to be distinguished from the unliganded protein during chromatography, as they were markedly different in their chromatographic behaviour. The purified FATR-AAT was dimeric and in a single major conformation containing 1 mole FATR per mole of AAT dimer. In contrast, uninhibited AAT was monomeric and conformationally unstable. Use of the fluorescent ATR derivative in the development of the protocol enabled the stable dimeric AAT to be monitored directly and purified more effectively. The purification protocol was repeated using non-derivatized ATR, and highly pure AAT was obtained that was devoid of other members of the mitochondrial carrier family. PMID:14498831

  19. Binding of the Respiratory Chain Inhibitor Antimycin to theMitochondrial bc1 Complex: A New Crystal Structure Reveals an AlteredIntramolecular Hydrogen-Bonding Pattern

    SciTech Connect

    Huang, Li-shar; Cobessi, David; Tung, Eric Y.; Berry, Edward A.

    2005-05-10

    Antimycin A (antimycin), one of the first known and most potent inhibitors of the mitochondrial respiratory chain, binds to the quinone reduction site of the cytochrome bc1 complex.Structure-activity-relationship studies have shown that the N-formylamino-salicyl-amide group is responsible for most of the binding specificity, and suggested that a low pKa for the phenolic OH group and an intramolecular H-bond between that OH and the carbonyl O of the salicylamide linkage are important. Two previous X-ray structures of antimycin bound to vertebrate bc1 complex gave conflicting results. A new structure reported here of the bovine mitochondrial bc1 complex at 2.28Angstrom resolution with antimycin bound, allows us for the first time to reliably describe the binding of antimycin and shows that the intramolecular hydrogen bond described in solution and in the small-molecule structure is replaced by one involving the NH rather than carbonyl O of the amide linkage, with rotation of the amide group relative to the aromatic ring. The phenolic OH and formylamino N form H-bonds with conserved Asp228 of cyt b, and the formylamino O H-bonds via a water molecule to Lys227. A strong density the right size and shape for a diatomic molecule is found between the other side of the dilactone ring and the alpha-A helix.

  20. Treatment with tianeptine induces antidepressive-like effects and alters the neurotrophin levels, mitochondrial respiratory chain and cycle Krebs enzymes in the brain of maternally deprived adult rats.

    PubMed

    Della, Franciela P; Abelaira, Helena M; Réus, Gislaine Z; Santos, Maria Augusta B dos; Tomaz, Débora B; Antunes, Altamir R; Scaini, Giselli; Morais, Meline O S; Streck, Emilio L; Quevedo, João

    2013-03-01

    Maternally deprived rats were treated with tianeptine (15 mg/kg) once a day for 14 days during their adult phase. Their behavior was then assessed using the forced swimming and open field tests. The BDNF, NGF and energy metabolism were assessed in the rat brain. Deprived rats increased the immobility time, but tianeptine reversed this effect and increased the swimming time; the BDNF levels were decreased in the amygdala of the deprived rats treated with saline and the BDNF levels were decreased in the nucleus accumbens within all groups; the NGF was found to have decreased in the hippocampus, amygdala and nucleus accumbens of the deprived rats; citrate synthase was increased in the hippocampus of non-deprived rats treated with tianeptine and the creatine kinase was decreased in the hippocampus and amygdala of the deprived rats; the mitochondrial complex I and II-III were inhibited, and tianeptine increased the mitochondrial complex II and IV in the hippocampus of the non-deprived rats; the succinate dehydrogenase was increased in the hippocampus of non-deprived rats treated with tianeptine. So, tianeptine showed antidepressant effects conducted on maternally deprived rats, and this can be attributed to its action on the neurochemical pathways related to depression.

  1. Zebrafish lacking functional DNA polymerase gamma survive to juvenile stage, despite rapid and sustained mitochondrial DNA depletion, altered energetics and growth

    PubMed Central

    Rahn, Jennifer J.; Bestman, Jennifer E.; Stackley, Krista D.; Chan, Sherine S.L.

    2015-01-01

    DNA polymerase gamma (POLG) is essential for replication and repair of mitochondrial DNA (mtDNA). Mutations in POLG cause mtDNA instability and a diverse range of poorly understood human diseases. Here, we created a unique Polg animal model, by modifying polg within the critical and highly conserved polymerase domain in zebrafish. polg+/− offspring were indistinguishable from WT siblings in multiple phenotypic and biochemical measures. However, polg−/− mutants developed severe mtDNA depletion by one week post-fertilization (wpf), developed slowly and had regenerative defects, yet surprisingly survived up to 4 wpf. An in vivo mtDNA polymerase activity assay utilizing ethidium bromide (EtBr) to deplete mtDNA, showed that polg+/− and WT zebrafish fully recover mtDNA content two weeks post-EtBr removal. EtBr further reduced already low levels of mtDNA in polg−/− animals, but mtDNA content did not recover following release from EtBr. Despite significantly decreased respiration that corresponded with tissue-specific levels of mtDNA, polg−/− animals had WT levels of ATP and no increase in lactate. This zebrafish model of mitochondrial disease now provides unique opportunities for studying mtDNA instability from multiple angles, as polg−/− mutants can survive to juvenile stage, rather than lose viability in embryogenesis as seen in Polg mutant mice. PMID:26519465

  2. Treatment with tianeptine induces antidepressive-like effects and alters the neurotrophin levels, mitochondrial respiratory chain and cycle Krebs enzymes in the brain of maternally deprived adult rats.

    PubMed

    Della, Franciela P; Abelaira, Helena M; Réus, Gislaine Z; Santos, Maria Augusta B dos; Tomaz, Débora B; Antunes, Altamir R; Scaini, Giselli; Morais, Meline O S; Streck, Emilio L; Quevedo, João

    2013-03-01

    Maternally deprived rats were treated with tianeptine (15 mg/kg) once a day for 14 days during their adult phase. Their behavior was then assessed using the forced swimming and open field tests. The BDNF, NGF and energy metabolism were assessed in the rat brain. Deprived rats increased the immobility time, but tianeptine reversed this effect and increased the swimming time; the BDNF levels were decreased in the amygdala of the deprived rats treated with saline and the BDNF levels were decreased in the nucleus accumbens within all groups; the NGF was found to have decreased in the hippocampus, amygdala and nucleus accumbens of the deprived rats; citrate synthase was increased in the hippocampus of non-deprived rats treated with tianeptine and the creatine kinase was decreased in the hippocampus and amygdala of the deprived rats; the mitochondrial complex I and II-III were inhibited, and tianeptine increased the mitochondrial complex II and IV in the hippocampus of the non-deprived rats; the succinate dehydrogenase was increased in the hippocampus of non-deprived rats treated with tianeptine. So, tianeptine showed antidepressant effects conducted on maternally deprived rats, and this can be attributed to its action on the neurochemical pathways related to depression. PMID:23325329

  3. Methyl-Arginine Profile of Brain from Aged PINK1-KO+A53T-SNCA Mice Suggests Altered Mitochondrial Biogenesis.

    PubMed

    Auburger, Georg; Gispert, Suzana; Brehm, Nadine

    2016-01-01

    Hereditary Parkinson's disease can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) or the autosomal recessive deficiency of PINK1. We recently showed that the combination of PINK1-knockout with overexpression of A53T-SNCA in double mutant (DM) mice potentiates phenotypes and reduces survival. Now we studied brain hemispheres of DM mice at age of 18 months in a hypothesis-free approach, employing a quantitative label-free global proteomic mass spectrometry scan of posttranslational modifications focusing on methyl-arginine. The strongest effects were documented for the adhesion modulator CMAS, the mRNA decapping/deadenylation factor PATL1, and the synaptic plasticity mediator CRTC1/TORC1. In addition, an intriguing effect was observed for the splicing factor PSF/SFPQ, known to interact with the dopaminergic differentiation factor NURR1 as well as with DJ-1, the protein responsible for the autosomal recessive PARK7 variant of PD. CRTC1, PSF, and DJ-1 are modulators of PGC1alpha and of mitochondrial biogenesis. This pathway was further stressed by dysregulations of oxygen sensor EGLN3 and of nuclear TMPO. PSF and TMPO cooperate with dopaminergic differentiation factors LMX1B and NURR1. Further dysregulations concerned PRR18, TRIO, HNRNPA1, DMWD, WAVE1, ILDR2, DBNDD1, and NFM. Thus, we report selective novel endogenous stress responses in brain, which highlight early dysregulations of mitochondrial homeostasis and midbrain vulnerability.

  4. Methyl-Arginine Profile of Brain from Aged PINK1-KO+A53T-SNCA Mice Suggests Altered Mitochondrial Biogenesis

    PubMed Central

    Auburger, Georg; Gispert, Suzana

    2016-01-01

    Hereditary Parkinson's disease can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) or the autosomal recessive deficiency of PINK1. We recently showed that the combination of PINK1-knockout with overexpression of A53T-SNCA in double mutant (DM) mice potentiates phenotypes and reduces survival. Now we studied brain hemispheres of DM mice at age of 18 months in a hypothesis-free approach, employing a quantitative label-free global proteomic mass spectrometry scan of posttranslational modifications focusing on methyl-arginine. The strongest effects were documented for the adhesion modulator CMAS, the mRNA decapping/deadenylation factor PATL1, and the synaptic plasticity mediator CRTC1/TORC1. In addition, an intriguing effect was observed for the splicing factor PSF/SFPQ, known to interact with the dopaminergic differentiation factor NURR1 as well as with DJ-1, the protein responsible for the autosomal recessive PARK7 variant of PD. CRTC1, PSF, and DJ-1 are modulators of PGC1alpha and of mitochondrial biogenesis. This pathway was further stressed by dysregulations of oxygen sensor EGLN3 and of nuclear TMPO. PSF and TMPO cooperate with dopaminergic differentiation factors LMX1B and NURR1. Further dysregulations concerned PRR18, TRIO, HNRNPA1, DMWD, WAVE1, ILDR2, DBNDD1, and NFM. Thus, we report selective novel endogenous stress responses in brain, which highlight early dysregulations of mitochondrial homeostasis and midbrain vulnerability. PMID:27034888

  5. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization

    PubMed Central

    Gao, Huile; Yang, Zhi; Zhang, Shuang; Cao, Shijie; Shen, Shun; Pang, Zhiqing; Jiang, Xinguo

    2013-01-01

    Nanoparticles (NPs) were widely used in drugs/probes delivery for improved disease diagnosis and/or treatment. Targeted delivery to cancer cells is a highly attractive application of NPs. However, few studies have been performed on the targeting mechanisms of these ligand-modified delivery systems. Additional studies are needed to understand the transport of nanoparticles in the cancer site, the interactions between nanoparticles and cancer cells, the intracellular trafficking of nanoparticles within the cancer cells and the subcellular destiny and potential toxicity. Interleukin 13 (IL-13) peptide can specifically bind IL-13Rα2, a receptor that is highly expressed on glioma cells but is expressed at low levels on other normal cells. It was shown that the nanoparticels modification with the IL-13 peptide could improve glioma treatment by selectively increasing cellular uptake, facilitating cell internalization, altering the uptake pathway and increasing glioma localization. PMID:23982586

  6. Altered distribution of extracellular matrix proteins in the periodontal ligament of periostin-deficient mice.

    PubMed

    Tabata, Chihiro; Hongo, Hiromi; Sasaki, Muneteru; Hasegawa, Tomoka; de Freitas, Paulo Henrique Luiz; Yamada, Tamaki; Yamamoto, Tomomaya; Suzuki, Reiko; Yamamoto, Tsuneyuki; Oda, Kimimitsu; Li, Minqi; Kudo, Akira; Iida, Junichiro; Amizuka, Norio

    2014-06-01

    Verifying whether periostin affects the distribution of type I collagen, fibronectin and tenascin C in the periodontal ligament (PDL) is important to contribute to a more thorough understanding of that protein's functions. In this study, we have histologically examined incisor PDL of mandibles in 20 week-old male wild-type and periostin-deficient (periostin-/-) mice, by means of type I collagen, fibronectin, tenascin C, proliferating cell nuclear antigen, matrix metallo-proteinase (MMP)-1 and F4/80-positive monocyte/macrophage immunostaining, transmission electron microscopy and quantitative analysis of cell proliferation. Wild-type PDL featured well-arranged layers of collagen bundles intertwined with PDL cells, whose longitudinal axis ran parallel to the collagen fibers. However, cells in the periostin-/- PDL were irregularly distributed among collagen fibrils, which were also haphazardly arranged. Type I collagen and fibronectin reactivity was seen throughout the wild-type PDL, while in the periostin-/- PDL, only focal, uneven staining for these proteins could be seen. Similarly, tenascin C staining was evenly distributed in the wild-type PDL, but hardly seen in the periostin-/- PDL. MMP-1 immunoreactivity was uniformly distributed in the wild-type PDL, but only dotted staining could be discerned in the periostin-/- PDL. F4/80-positive monocyte/macrophages were found midway between tooth- and bone-related regions in the wild-type PDL, a pattern that could not be observed in the periostin-/- PDL. In summary, periostin deficiency may not only cause PDL collagen fibril disorganization, but could also affect the distribution of other major extracellular matrix proteins such as fibronectin and tenascin C.

  7. Fine-Grained Distribution of a Non-Native Resource Can Alter the Population Dynamics of a Native Consumer

    PubMed Central

    2015-01-01

    New interactions with non-native species can alter selection pressures on native species. Here, we examined the effect of the spatial distribution of a non-native species, a factor that determines ecological and evolutionary outcomes but that is poorly understood, particularly on a fine scale. Specifically, we explored a native butterfly population and a non-native plant on which the butterfly oviposits despite the plant’s toxicity to larvae. We developed an individual-based model to describe movement and oviposition behaviors of each butterfly, which were determined by plant distribution and the butterfly's host preference genotype. We estimated the parameter values of the model from rich field data. We simulated various patterns of plant distributions and compared the rates of butterfly population growth and changes in the allele frequency of oviposition preference. Neither the number nor mean area of patches of non-native species affected the butterfly population, whereas plant abundance, patch shape, and distance to the nearest native and non-native patches altered both the population dynamics and genetics. Furthermore, we found a dramatic decrease in population growth rates when we reduced the distance to the nearest native patch from 147 m to 136 m. Thus changes in the non-native resource distribution that are critical to the fate of the native herbivore could only be detected at a fine-grained scale that matched the scale of a female butterfly’s movement. In addition, we found that the native butterfly population was unlikely to be rescued by the exclusion of the allele for acceptance of the non-native plant as a host. This study thus highlights the importance of including both ecological and evolutionary dynamics in analyses of the outcome of species interactions and provides insights into habitat management for non-native species. PMID:26575843

  8. ANT2-defective fibroblasts exhibit normal mitochondrial bioenergetics

    PubMed Central

    Prabhu, Dolly; Goldstein, Amy C.; El-Khoury, Riyad; Rak, Malgorzata; Edmunds, Lia; Rustin, Pierre; Vockley, Jerry; Schiff, Manuel

    2015-01-01

    Adenine nucleotide translocase 2 (ANT2) transports glycolytic ATP across the inner mitochondrial membrane. Patients with ANT2 deletion were recently reported. We aimed at characterizing mitochondrial functions in ANT2-defective fibroblasts. In spite of ANT2 expression in fibroblasts, we observed no difference between ANT2-defective and control fibroblasts for mitochondrial respiration, respiratory chain activities, mitochondrial membrane potential and intracellular ATP levels. This indicates that ANT2 insufficiency does not alter fibroblast basal mitochondrial bioenergetics. PMID:26000237

  9. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina.

    PubMed Central

    Bouhouche, Khaled; Zickler, Denise; Debuchy, Robert; Arnaise, Sylvie

    2004-01-01

    Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR. PMID:15166143

  10. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    of human diseases arising from defects in mitochondrial ion and ROS homeostasis, energy production and morphology [1]. Parkinson´s Disease (PD) is a very good example of this important mitochondrial component on neurodegenerative diseases. Anuradha Yadav, Swati Agrawal, Shashi Kant Tiwari, and Rajnish K. Chaturvedi (CSIR-Indian Institute of Toxicology Research / Academy of Scientific and Innovative Research, India) [6] remark in their review the role of mitochondrial dysfunction in PD with special focus on the role of oxidative stress and bioenergetic deficits. These alterations may have their origin on pathogenic gene mutations in important genes such as DJ-1, -syn, parkin, PINK1 or LRRK2. These mutations, in turn, may cause defects in mitochondrial dynamics (key events like fission/fusion, biogenesis, trafficking in retrograde and anterograde directions, and mitophagy). This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials. They highlight a dual effect of PGC-1α expression on PD prognosis. Whereas a modest expression of this transcriptional co-activator results in positive effects, a moderate to substantial overexpession may have deleterious consequences. As strategies to induce PGC-1α activation, these authors remark the possibility to activate Sirt1 with resveratrol, to use PPAR agonists such as pioglitazone, rosiglitazone, fenofibrate and bezafibrate. Other strategies include the triggering of Nrf2/antioxidant response element (ARE) pathway by triterpenoids (derivatives of oleanolic acid) or by Bacopa monniera, the enhancement of ATP production by carnitine and -lipoic acid. Mitochondrial dysfunctions are the prime source of neurodegenerative diseases and

  11. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    of human diseases arising from defects in mitochondrial ion and ROS homeostasis, energy production and morphology [1]. Parkinson´s Disease (PD) is a very good example of this important mitochondrial component on neurodegenerative diseases. Anuradha Yadav, Swati Agrawal, Shashi Kant Tiwari, and Rajnish K. Chaturvedi (CSIR-Indian Institute of Toxicology Research / Academy of Scientific and Innovative Research, India) [6] remark in their review the role of mitochondrial dysfunction in PD with special focus on the role of oxidative stress and bioenergetic deficits. These alterations may have their origin on pathogenic gene mutations in important genes such as DJ-1, -syn, parkin, PINK1 or LRRK2. These mutations, in turn, may cause defects in mitochondrial dynamics (key events like fission/fusion, biogenesis, trafficking in retrograde and anterograde directions, and mitophagy). This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials. They highlight a dual effect of PGC-1α expression on PD prognosis. Whereas a modest expression of this transcriptional co-activator results in positive effects, a moderate to substantial overexpession may have deleterious consequences. As strategies to induce PGC-1α activation, these authors remark the possibility to activate Sirt1 with resveratrol, to use PPAR agonists such as pioglitazone, rosiglitazone, fenofibrate and bezafibrate. Other strategies include the triggering of Nrf2/antioxidant response element (ARE) pathway by triterpenoids (derivatives of oleanolic acid) or by Bacopa monniera, the enhancement of ATP production by carnitine and -lipoic acid. Mitochondrial dysfunctions are the prime source of neurodegenerative diseases and

  12. Sub-seafloor epidosite alteration: Timing, depth and stratigraphic distribution in the Semail ophiolite, Oman

    NASA Astrophysics Data System (ADS)

    Gilgen, Samuel A.; Diamond, Larryn W.; Mercolli, Ivan

    2016-09-01

    Pervasive epidotization of igneous rocks is a common feature in the ophiolite record of hydrothermally altered oceanic crust. Current genetic models view epidosites as markers of focussed upflow of hydrothermal fluid beneath oceanic spreading ridges. The epidosites are envisaged to form at the base of the sheeted dike complex (SDC) during active plate spreading. Our mapping of the Semail ophiolite in Oman has revealed abundant epidosites in the volcanic sequence, some exceeding 1 km2 in extent. They are more frequent and far larger than the mineralogically identical epidosites in the SDC. We have also found epidosites that traverse the entire SDC from bottom to top. Thus, rather than being restricted to the base of the SDC, as implied by current models, epidosites in fact occur throughout the SDC and dominantly within the overlying volcanic pile. We report the occurrence of 19 epidosite bodies and their crosscutting relations with respect to host lava units, dikes, intrusive stocks and also seafloor umbers. The volcanostratigraphic affiliation of the dikes is identified by their whole-rock and clinopyroxene compositions. The relations set constraints on the timing of epidotization with respect to igneous activity in the ophiolite. At least one of the epidosites in the SDC formed during Lasail off-axis volcanism. Another epidosite in the SDC and many in the volcanic units formed later during post-spreading, Alley and Boninitic Alley supra-subduction zone volcanism. Only permissive, not compelling, evidence allows just two of the epidosites to have formed within the main-stage SDC during or shortly after its emplacement. We conclude that epidotization of the oceanic crust is not necessarily coupled to spreading ridges and that it can occur during fore-arc volcanism. This finding is consistent with evidence from the modern seafloor and it requires a different hydrothermal environment to that traditionally associated with alteration beneath spreading axes. The timing

  13. Alteration of rare earth element distribution as a result of microbial activity and empirical methane injection

    NASA Astrophysics Data System (ADS)

    Castillo, D. J.; Davies, N. W.; Thurber, A. R.; Haley, B. A.; Colwell, F. S.

    2014-12-01

    As a result of warming, methane is being released into the marine environment in areas that have not historically experienced methane input. While methane is a potent greenhouse gas, microbial oxidation of methane within the sediment greatly limits the role of marine methane sources on atmospheric forcing. However, in these areas of new methane release, consumption of methane prior to its release into the atmosphere is a result of the response of the microbial community to this new input of methane. Further, rare earth elements (REEs) are not currently thought to be involved with microbial activity, but this assumption has not been rigorously tested. Here we test that: (1) microbial communities will rapidly respond to the onset of methane emission, and (2) the microbial response to this methane input will impact the distribution of REEs within the sediment. Undisturbed cores sampled from a tidal flat at Yaquina Bay, OR, were brought back to a lab and injected with anoxic seawater (as a control) or anoxic sea water saturated with methane gas for a total of 2 weeks. Aerobic methanotrophs proliferated over this short time period, becoming an abundant member of the microbial community as identified using fatty acid biomarkers. Excitingly, the experimental injection of methane also shifted the distribution of REEs within the sediment, a trend that appeared to follow the microbial response and that was different from the control cores. Further, the lightest REEs appeared to be used more than the heavier ones, supporting that the REEs are being actively used by the microbes. While we focused on identifying the response of those microbes responsible in methane-cycling, we also identified how the entire microbial community shifts as a result of methane input, and correlating with shifts in REE distribution. Here we have empirically demonstrated the rapid response of methanotrophs to the onset of methane emission and that REE distribution within the sediment is likely

  14. Early Disruption of Extracellular Pleiotrophin Distribution Alters Cerebellar Neuronal Circuit Development and Function.

    PubMed

    Hamza, M M; Rey, S A; Hilber, P; Arabo, A; Collin, T; Vaudry, D; Burel, D

    2016-10-01

    The cerebellum is a structure of the central nervous system involved in balance, motor coordination, and voluntary movements. The elementary circuit implicated in the control of locomotion involves Purkinje cells, which receive excitatory inputs from parallel and climbing fibers, and are regulated by cerebellar interneurons. In mice as in human, the cerebellar cortex completes its development mainly after birth with the migration, differentiation, and synaptogenesis of granule cells. These cellular events are under the control of numerous extracellular matrix molecules including pleiotrophin (PTN). This cytokine has been shown to regulate the morphogenesis of Purkinje cells ex vivo and in vivo via its receptor PTPζ. Since Purkinje cells are the unique output of the cerebellar cortex, we explored the consequences of their PTN-induced atrophy on the function of the cerebellar neuronal circuit in mice. Behavioral experiments revealed that, despite a normal overall development, PTN-treated mice present a delay in the maturation of their flexion reflex. Moreover, patch clamp recording of Purkinje cells revealed a significant increase in the frequency of spontaneous excitatory postsynaptic currents in PTN-treated mice, associated with a decrease of climbing fiber innervations and an abnormal perisomatic localization of the parallel fiber contacts. At adulthood, PTN-treated mice exhibit coordination impairment on the rotarod test associated with an alteration of the synchronization gait. Altogether these histological, electrophysiological, and behavior data reveal that an early ECM disruption of PTN composition induces short- and long-term defaults in the establishment of proper functional cerebellar circuit.

  15. Early Disruption of Extracellular Pleiotrophin Distribution Alters Cerebellar Neuronal Circuit Development and Function.

    PubMed

    Hamza, M M; Rey, S A; Hilber, P; Arabo, A; Collin, T; Vaudry, D; Burel, D

    2016-10-01

    The cerebellum is a structure of the central nervous system involved in balance, motor coordination, and voluntary movements. The elementary circuit implicated in the control of locomotion involves Purkinje cells, which receive excitatory inputs from parallel and climbing fibers, and are regulated by cerebellar interneurons. In mice as in human, the cerebellar cortex completes its development mainly after birth with the migration, differentiation, and synaptogenesis of granule cells. These cellular events are under the control of numerous extracellular matrix molecules including pleiotrophin (PTN). This cytokine has been shown to regulate the morphogenesis of Purkinje cells ex vivo and in vivo via its receptor PTPζ. Since Purkinje cells are the unique output of the cerebellar cortex, we explored the consequences of their PTN-induced atrophy on the function of the cerebellar neuronal circuit in mice. Behavioral experiments revealed that, despite a normal overall development, PTN-treated mice present a delay in the maturation of their flexion reflex. Moreover, patch clamp recording of Purkinje cells revealed a significant increase in the frequency of spontaneous excitatory postsynaptic currents in PTN-treated mice, associated with a decrease of climbing fiber innervations and an abnormal perisomatic localization of the parallel fiber contacts. At adulthood, PTN-treated mice exhibit coordination impairment on the rotarod test associated with an alteration of the synchronization gait. Altogether these histological, electrophysiological, and behavior data reveal that an early ECM disruption of PTN composition induces short- and long-term defaults in the establishment of proper functional cerebellar circuit. PMID:26399645

  16. Vaccination against nicotine alters the distribution of nicotine delivered via cigarette smoke inhalation to rats

    PubMed Central

    Pravetoni, M; Keyler, DE; Raleigh, MD; Harris, AC; LeSage, MG; Mattson, CK; Pettersson, S; Pentel, PR

    2011-01-01

    Preclinical models of nicotine vaccine pharmacology have relied on i.v. or s.c. administration of nicotine. Models using cigarette smoke inhalation might more accurately simulate nicotine exposure in smokers. Nicotine vaccine effects were examined in rats using two cigarette smoke exposure models: a 10 minute nose-only exposure (NSE) producing serum nicotine levels equivalent to the nicotine boost from 1 cigarette in a smoker, and a two hour whole-body exposure (WBE) producing serum nicotine levels similar to those associated with regular midday smoking. Vaccination prior to 10 min smoke NSE reduced nicotine distribution to brain by 90%, comparable to its effect on nicotine administered i.v. Vaccination prior to 2 hr smoke WBE reduced nicotine distribution to brain by 35%. The nicotine concentration in broncheoalveolar lavage (BAL) fluid obtained after 2 hr WBE was increased by 230% in vaccinated rats but was also increased in rats passively immunized with a nicotine-specific monoclonal antibody, and so was likely due to transfer of antibody from serum rather than local production at the pulmonary mucosa. Nicotine-specific IgA was not detectable in BAL fluid, but titers in serum were appreciable at 21–25% of the IgG titer and could contribute to vaccine efficacy. Both vaccination and passive immunization are effective in reducing nicotine distribution to brain in rats when nicotine is delivered via inhaled cigarette smoke. These data validate results previously obtained in rodents for nicotine vaccines using i.v. or s.c. nicotine dosing and provide a quantitative method for studying aspects of nicotine exposure which are unique to cigarette smoke inhalation. PMID:21333633

  17. Mitochondrial fission augments capsaicin-induced axonal degeneration.

    PubMed

    Chiang, Hao; Ohno, Nobuhiko; Hsieh, Yu-Lin; Mahad, Don J; Kikuchi, Shin; Komuro, Hitoshi; Hsieh, Sung-Tsang; Trapp, Bruce D

    2015-01-01

    Capsaicin, an agonist of transient receptor potential vanilloid receptor 1, induces axonal degeneration of peripheral sensory nerves and is commonly used to treat painful sensory neuropathies. In this study, we investigated the role of mitochondrial dynamics in capsaicin-induced axonal degeneration. In capsaicin-treated rodent sensory axons, axonal swellings, decreased mitochondrial stationary site length and reduced mitochondrial transport preceded axonal degeneration. Increased axoplasmic Ca(2+) mediated the alterations in mitochondrial length and transport. While sustaining mitochondrial transport did not reduce axonal swellings in capsaicin-treated axons, preventing mitochondrial fission by overexpression of mutant dynamin-related protein 1 increased mitochondrial length, retained mitochondrial membrane potentials and reduced axonal loss upon capsaicin treatment. These results establish that mitochondrial stationary site size significantly affects axonal integrity and suggest that inhibition of Ca(2+)-dependent mitochondrial fission facilitates mitochondrial function and axonal survival following activation of axonal cationic channels.

  18. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury

    PubMed Central

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David LH

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. DOI: http://dx.doi.org/10.7554/eLife.12661.001 PMID:27033551

  19. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury.

    PubMed

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David L H

    2016-04-19

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury.

  20. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury.

    PubMed

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David L H

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. PMID:27033551

  1. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery.

    PubMed

    Terentyuk, Georgy S; Maslyakova, Galina N; Suleymanova, Leyla V; Khlebtsov, Boris N; Kogan, Boris Ya; Akchurin, Garif G; Shantrocha, Alexander V; Maksimova, Irina L; Khlebtsov, Nicolai G; Tuchin, Valery V

    2009-05-01

    Kinetics, biodistribution, and histological studies were performed to evaluate the particle-size effects on the distribution of 15 nm and 50 nm PEG-coated colloidal gold (CG) particles and 160 nm silica/gold nanoshells (NSs) in rats and rabbits. The above nanoparticles (NPs) were used as a model because of their importance for current biomedical applications such as photothermal therapy, optical coherence tomography, and resonance-scattering imaging. The dynamics of NPs circulation in vivo was evaluated after intravenous administration of 15 nm CG NPs to rabbit, and the maximal concentrations of gold were observed 15-30 min after injection. Rats were injected in the tail vein with PEG-coated NPs (about 0.3 mg Au/kg rats). 24 h after injection, the accumulation of gold in different organs and blood was determined by atomic absorption spectroscopy. In accordance with the published reports, we observed 15 nm particles in all organs with rather smooth distribution over liver, spleen and blood. By contrast, the larger NSs were accumulated mainly in the liver and spleen. For rabbits, the biodistribution was similar (72 h after intravenous injection). We report also preliminary data on the light microscopy and TEM histological examination that allows evaluation of the changes in biotissues after gold NPs treatment.

  2. Menstrual cycle distribution of uterine natural killer cells is altered in heavy menstrual bleeding.

    PubMed

    Biswas Shivhare, Sourima; Bulmer, Judith N; Innes, Barbara A; Hapangama, Dharani K; Lash, Gendie E

    2015-11-01

    Heavy menstrual bleeding (HMB) affects 30% of women of reproductive age and significantly interferes with quality of life. Altered endometrial vascular maturation has been reported in HMB and recurrent miscarriage, the latter associated with increased uterine natural killer (uNK) cell numbers. This study compared endometrial leukocyte populations in controls and women with HMB. Formalin-fixed paraffin-embedded endometrial biopsies from controls (without endometrial pathology) and HMB were immunostained for CD14 (macrophages), CD56 (uNK cells), CD83 (dendritic cells), FOXP3 (regulatory T cells/Tregs), CD3 and CD8 (T cells). Leukocyte numbers were analysed as a percentage of total stromal cells in five randomly selected fields of view in the stratum functionalis of each sample. In control women across the menstrual cycle, 2-8% of total stromal cells were CD3(+) cells, 2-4% were CD8(+) T cells and 6-8% were CD14(+) macrophages. Compared with controls, CD3(+) cells were reduced during the mid-secretory phase (4%, P<0.01) and increased in the late secretory phase (12%, P=0.01) in HMB. CD83(+) dendritic cells and FOXP3(+) Tregs were scarce throughout the menstrual cycle in both groups. In controls, 2% of stromal cells in proliferative endometrium were CD56(+) uNK cells, increasing to 17% during the late secretory phase. In HMB, CD56(+) uNK cells were increased in the proliferative (5%, P<0.01) and early secretory (4%, P<0.02) phases, but reduced (10%, P<0.01) in the late secretory phase. This study demonstrates dysregulation of uNK cells in HMB, the functional consequence of which may have an impact on endometrial vascular development and/or endometrial preparation for menstruation.

  3. Mitochondrial dysfunction in heart failure.

    PubMed

    Rosca, Mariana G; Hoppel, Charles L

    2013-09-01

    Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.

  4. Mitochondrial dysfunction in heart failure

    PubMed Central

    Rosca, Mariana G.; Hoppel, Charles L.

    2013-01-01

    Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus, and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cylic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction. PMID:22948484

  5. CFTR activity and mitochondrial function☆

    PubMed Central

    Valdivieso, Angel Gabriel; Santa-Coloma, Tomás A.

    2013-01-01

    Cystic Fibrosis (CF) is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy. PMID:24024153

  6. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo.

    PubMed

    Wagner, Roselyne Y; Luciani, Flavie; Cario-André, Muriel; Rubod, Alain; Petit, Valérie; Benzekri, Laila; Ezzedine, Khaled; Lepreux, Sébastien; Steingrimsson, Eirikur; Taieb, A; Gauthier, Yvon; Larue, Lionel; Delmas, Véronique

    2015-07-01

    Vitiligo is the most common depigmenting disorder resulting from the loss of melanocytes from the basal epidermal layer. The pathogenesis of the disease is likely multifactorial and involves autoimmune causes, as well as oxidative and mechanical stress. It is important to identify early events in vitiligo to clarify pathogenesis, improve diagnosis, and inform therapy. Here, we show that E-cadherin (Ecad), which mediates the adhesion between melanocytes and keratinocytes in the epidermis, is absent from or discontinuously distributed across melanocyte membranes of vitiligo patients long before clinical lesions appear. This abnormality is associated with the detachment of the melanocytes from the basal to the suprabasal layers in the epidermis. Using human epidermal reconstructed skin and mouse models with normal or defective Ecad expression in melanocytes, we demonstrated that Ecad is required for melanocyte adhesiveness to the basal layer under oxidative and mechanical stress, establishing a link between silent/preclinical, cell-autonomous defects in vitiligo melanocytes and known environmental stressors accelerating disease expression. Our results implicate a primary predisposing skin defect affecting melanocyte adhesiveness that, under stress conditions, leads to disappearance of melanocytes and clinical vitiligo. Melanocyte adhesiveness is thus a potential target for therapy aiming at disease stabilization.

  7. A Common Polymorphism in EC-SOD Affects Cardiopulmonary Disease Risk by Altering Protein Distribution

    PubMed Central

    Hartney, John M.; Stidham, Timothy; Goldstrohm, David A.; Oberley-Deegan, Rebecca E.; Weaver, Michael R.; Valnickova-Hansen, Zuzana; Scavenius, Carsten; Benninger, Richard K.P.; Leahy, Katelyn F.; Johnson, Richard; Gally, Fabienne; Kosmider, Beata; Zimmermann, Angela K.; Enghild, Jan J.; Nozik-Grayck, Eva; Bowler, Russell P.

    2014-01-01

    Background The enzyme extracellular superoxide dismutase (EC-SOD; SOD3) is a major antioxidant defense in lung and vasculature. A nonsynonomous single nucleotide polymorphism (SNP) in EC-SOD (rs1799895) leads to an arginine to glycine (Arg->Gly) amino acid substitution at position 213 (R213G) in the heparin-binding domain (HBD). In recent human genetic association studies, this SNP attenuates the risk of lung disease, yet paradoxically increases the risk of cardiovascular disease. Methods and Results Capitalizing on the complete sequence homology between human and mouse in the HBD, we created an analogous R213G SNP knockin mouse. The R213G SNP did not change enzyme activity, but shifted the distribution of EC-SOD from lung and vascular tissue to extracellular fluid (e.g. bronchoalveolar lavage fluid (BALF) and plasma). This shift reduces susceptibility to lung disease (lipopolysaccharide-induced lung injury) and increases susceptibility to cardiopulmonary disease (chronic hypoxic pulmonary hypertension). Conclusions We conclude that EC-SOD provides optimal protection when localized to the compartment subjected to extracellular oxidative stress: thus, the redistribution of EC-SOD from the lung and pulmonary circulation to the extracellular fluids is beneficial in alveolar lung disease but detrimental in pulmonary vascular disease. These findings account for the discrepant risk associated with R213G in humans with lung diseases compared with cardiovascular diseases. PMID:25085920

  8. Timing of ice retreat alters seabird abundances and distributions in the southeast Bering Sea.

    PubMed

    Renner, Martin; Salo, Sigrid; Eisner, Lisa B; Ressler, Patrick H; Ladd, Carol; Kuletz, Kathy J; Santora, Jarrod A; Piatt, John F; Drew, Gary S; Hunt, George L

    2016-09-01

    Timing of spring sea-ice retreat shapes the southeast Bering Sea food web. We compared summer seabird densities and average bathymetry depth distributions between years with early (typically warm) and late (typically cold) ice retreat. Averaged over all seabird species, densities in early-ice-retreat-years were 10.1% (95% CI: 1.1-47.9%) of that in late-ice-retreat-years. In early-ice-retreat-years, surface-foraging species had increased numbers over the middle shelf (50-150 m) and reduced numbers over the shelf slope (200-500 m). Pursuit-diving seabirds showed a less clear trend. Euphausiids and the copepod Calanus marshallae/glacialis were 2.4 and 18.1 times less abundant in early-ice-retreat-years, respectively, whereas age-0 walleye pollock Gadus chalcogrammus near-surface densities were 51× higher in early-ice-retreat-years. Our results suggest a mechanistic understanding of how present and future changes in sea-ice-retreat timing may affect top predators like seabirds in the southeastern Bering Sea.

  9. Timing of ice retreat alters seabird abundances and distributions in the southeast Bering Sea.

    PubMed

    Renner, Martin; Salo, Sigrid; Eisner, Lisa B; Ressler, Patrick H; Ladd, Carol; Kuletz, Kathy J; Santora, Jarrod A; Piatt, John F; Drew, Gary S; Hunt, George L

    2016-09-01

    Timing of spring sea-ice retreat shapes the southeast Bering Sea food web. We compared summer seabird densities and average bathymetry depth distributions between years with early (typically warm) and late (typically cold) ice retreat. Averaged over all seabird species, densities in early-ice-retreat-years were 10.1% (95% CI: 1.1-47.9%) of that in late-ice-retreat-years. In early-ice-retreat-years, surface-foraging species had increased numbers over the middle shelf (50-150 m) and reduced numbers over the shelf slope (200-500 m). Pursuit-diving seabirds showed a less clear trend. Euphausiids and the copepod Calanus marshallae/glacialis were 2.4 and 18.1 times less abundant in early-ice-retreat-years, respectively, whereas age-0 walleye pollock Gadus chalcogrammus near-surface densities were 51× higher in early-ice-retreat-years. Our results suggest a mechanistic understanding of how present and future changes in sea-ice-retreat timing may affect top predators like seabirds in the southeastern Bering Sea. PMID:27651532

  10. Alterations in the molecular weight distribution of proteins in rat brain synaptosomes during aging and centrophenoxine treatment of old rats.

    PubMed

    Nagy, K; Nagy, I

    1984-12-01

    Properly prepared membrane proteins of brain synaptosomes of 2-, 12- and 24-month-old CFY female rats were filtrated on a Sepharose 2B gel. The molecular weight distribution showed an age-dependence: there was a clear shift toward the higher molecular weights in the adult and old rats. The observed alterations reflect an increased cross-linking of the proteins during aging due most probably to the OH free radical damage of the cell components. Centrophenoxine treatment for 2 months reversed this phenomenon in the old animals: the high molecular weight fractions decreased and the lower ones increased in the treated animals as compared to the old, untreated rats. The results support the membrane hypothesis of aging and contribute to a better understanding of the biological effects of centrophenoxine.

  11. FTO Is Increased in Muscle During Type 2 Diabetes, and Its Overexpression in Myotubes Alters Insulin Signaling, Enhances Lipogenesis and ROS Production, and Induces Mitochondrial Dysfunction

    PubMed Central

    Bravard, Amélie; Lefai, Etienne; Meugnier, Emmanuelle; Pesenti, Sandra; Disse, Emmanuel; Vouillarmet, Julien; Peretti, Nöel; Rabasa-Lhoret, Rémi; Laville, Martine; Vidal, Hubert; Rieusset, Jennifer

    2011-01-01

    OBJECTIVE A strong association between genetic variants and obesity was found for the fat mass and obesity-associated gene (FTO). However, few details are known concerning the expression and function of FTO in skeletal muscle of patients with metabolic diseases. RESEARCH DESIGN AND METHODS We investigated basal FTO expression in skeletal muscle from obese nondiabetic subjects and type 1 and type 2 diabetic patients, compared with age-matched control subjects, and its regulation in vivo by insulin, glucose, or rosiglitazone. The function of FTO was further studied in myotubes by overexpression experiments. RESULTS We found a significant increase of FTO mRNA and protein levels in muscle from type 2 diabetic patients, whereas its expression was unchanged in obese or type 1 diabetic patients. Moreover, insulin or glucose infusion during specific clamps did not regulate FTO expression in skeletal muscle from control or type 2 diabetic patients. Interestingly, rosiglitazone treatment improved insulin sensitivity and reduced FTO expression in muscle from type 2 diabetic patients. In myotubes, adenoviral FTO overexpression increased basal protein kinase B phosphorylation, enhanced lipogenesis and oxidative stress, and reduced mitochondrial oxidative function, a cluster of metabolic defects associated with type 2 diabetes. CONCLUSIONS This study demonstrates increased FTO expression in skeletal muscle from type 2 diabetic patients, which can be normalized by thiazolidinedione treatment. Furthermore, in vitro data support a potential implication of FTO in oxidative metabolism, lipogenesis and oxidative stress in muscle, suggesting that it could be involved in the muscle defects that characterize type 2 diabetes. PMID:20943749

  12. APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer's disease.

    PubMed

    Walton, J R; Wang, M-X

    2009-11-01

    Up-regulated expression of amyloid precursor protein (APP) occurs early in the cascade of events that leads to amyloid plaque formation in the human brain. APP gene up-regulation, mediated by activated NF-kappaB, is a response to stress from nM concentrations of aluminum ions, aluminum-disregulated iron ions, reactive-oxygen species, cytokines, and physical trauma. We examined in vivo effects of aluminum on APP in aged rats, obtained from previously-reported longitudinal studies, that chronically ingested aluminum in amounts equivalent to total dietary aluminum levels that Americans routinely ingest. These rats exhibited two outcomes: one group remained cognitively-intact, scoring as well on a memory-discrimination task in old age as in middle age. The other developed cognitive deterioration, obtaining significantly lower mean performance scores in old age than in middle age and exhibiting abnormal behaviors associated with dementia. We compared the expression, distribution and accumulation of APP in hippocampal and cortical tissue of these two rat groups. Compared to results from cognitively-intact rats, hippocampal and cortical tissue from the cognitively-deteriorated rats showed elevated APP gene expression, significantly more dense APP deposits in cytoplasm of neural cells, and APP-immunoreactive neurites that were swollen and varicose. This study shows aluminum routinely derived from chronic oral ingestion, that gradually accumulates in brain regions important for memory-processing, is sufficient to increase APP levels in neural cells of those regions. Aluminum may thus launch the cascade that results in the formation of amyloid plaques in human brain.

  13. Mitochondrial DNA plays an equal role in influencing female and male longevity in centenarians.

    PubMed

    He, Yong-Han; Lu, Xiang; Tian, Jiao-Yang; Yan, Dong-Jing; Li, Yu-Chun; Lin, Rong; Perry, Benjamin; Chen, Xiao-Qiong; Yu, Qin; Cai, Wang-Wei; Kong, Qing-Peng

    2016-10-01

    The mitochondrion is a double membrane-bound organelle which plays important functional roles in aging and many other complex phenotypes. Transmission of the mitochondrial genome in the matrilineal line causes the evolutionary selection sieve only in females. Theoretically, beneficial or neutral variations are more likely to accumulate and be retained in the female mitochondrial genome during evolution, which may be an initial trigger of gender dimorphism in aging. The asymmetry of evolutionary processes between gender could lead to males and females aging in different ways. If so, gender specific variation loads could be an evolutionary result of maternal heritage of mitochondrial genomes, especially in centenarians who live to an extreme age and are considered as good models for healthy aging. Here, we tested whether the mitochondrial variation loads were associated with altered aging patterns by investigating the mtDNA haplogroup distribution and genetic diversity between female and male centenarians. We found no evidence of differences in aging patterns between genders in centenarians. Our results indicate that the evolutionary consequence of gender dimorphism in mitochondrial genomes is not a factor in the altered aging patterns in human, and that mitochondrial DNA contributes equally to longevity in males and females. PMID:27451341

  14. A feasibility study of altered spatial distribution of losses induced by eddy currents in body composition analysis

    PubMed Central

    2010-01-01

    Background Tomographic imaging has revealed that the body mass index does not give a reliable state of overall fitness. However, high measurement costs make the tomographic imaging unsuitable for large scale studies or repeated individual use. This paper reports an experimental investigation of a new electromagnetic method and its feasibility for assessing body composition. The method is called body electrical loss analysis (BELA). Methods The BELA method uses a high-Q parallel resonant circuit to produce a time-varying magnetic field. The Q of the resonator changes when the sample is placed in its coil. This is caused by induced eddy currents in the sample. The new idea in the BELA method is the altered spatial distribution of the electrical losses generated by these currents. The distribution of losses is varied using different excitation frequencies. The feasibility of the method was tested using simplified phantoms. Two of these phantoms were rough estimations of human torso. One had fat in the middle of its volume and saline solution in the outer shell volume. The other had reversed conductivity distributions. The phantoms were placed in the resonator and the change in the losses was measured. Five different excitation frequencies from 100 kHz to 200 kHz were used. Results The rate of loss as a function of frequency was observed to be approximately three times larger for a phantom with fat in the middle of its volume than for one with fat in its outer shell volume. Conclusions At higher frequencies the major signal contribution can be shifted toward outer shell volume. This enables probing the conductivity distribution of the subject by weighting outer structural components. The authors expect that the loss changing rate over frequency can be a potential index for body composition analysis. PMID:21047441

  15. Cancer: Mitochondrial Origins.

    PubMed

    Stefano, George B; Kream, Richard M

    2015-12-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was "sidelined" with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced mitochondrial

  16. Cancer: Mitochondrial Origins

    PubMed Central

    Stefano, George B.; Kream, Richard M.

    2015-01-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was “sidelined” with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced

  17. Mitochondrial calcium uptake.

    PubMed

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  18. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis1[OPEN

    PubMed Central

    2016-01-01

    Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis. PMID:27208265

  19. Investigating complex I deficiency in Purkinje cells and synapses in patients with mitochondrial disease

    PubMed Central

    Chrysostomou, Alexia; Grady, John P.; Laude, Alex; Taylor, Robert W.; Turnbull, Doug M.

    2015-01-01

    Aims Cerebellar ataxia is common in patients with mitochondrial disease, and despite previous neuropathological investigations demonstrating vulnerability of the olivocerebellar pathway in patients with mitochondrial disease, the exact neurodegenerative mechanisms are still not clear. We use quantitative quadruple immunofluorescence to enable precise quantification of mitochondrial respiratory chain protein expression in Purkinje cell bodies and their synaptic terminals in the dentate nucleus. Methods We investigated NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13 protein expression in 12 clinically and genetically defined patients with mitochondrial disease and ataxia and 10 age‐matched controls. Molecular genetic analysis was performed to determine heteroplasmy levels of mutated mitochondrial DNA in Purkinje cell bodies and inhibitory synapses. Results Our data reveal that complex I deficiency is present in both Purkinje cell bodies and their inhibitory synapses which surround dentate nucleus neurons. Inhibitory synapses are fewer and enlarged in patients which could represent a compensatory mechanism. Mitochondrial DNA heteroplasmy demonstrated similarly high levels of mutated mitochondrial DNA in cell bodies and synapses. Conclusions This is the first study to use a validated quantitative immunofluorescence technique to determine complex I expression in neurons and presynaptic terminals, evaluating the distribution of respiratory chain deficiencies and assessing the degree of morphological abnormalities affecting synapses. Respiratory chain deficiencies detected in Purkinje cell bodies and their synapses and structural synaptic changes are likely to contribute to altered cerebellar circuitry and progression of ataxia. PMID:26337858

  20. Rat Liver Mitochondrial Dysfunction Induced by an Organic Arsenical Compound 4-(2-Nitrobenzaliminyl) Phenyl Arsenoxide.

    PubMed

    Jiao, Yuan-Hong; Zhang, Qian; Pan, Ling-Li; Chen, Xin-You; Lei, Ke-Lin; Zhao, Jie; Jiang, Feng-Lei; Liu, Yi

    2015-12-01

    Arsenic is successfully used in cancer chemotherapy and several cancer treatments on account of its apoptogenic effects. However, it is environmentally hazardous with potential for toxicity when distributed in the soil, water, and food, and long exposure to water contaminated with Arsenic may induce cancers. Some research studies have reported that liver is the storage site and an important target organ for Arsenic toxicity. In the present work, a new kind of organic arsenic compound, 4-(2-nitrobenzaliminyl) phenyl arsenoxide (NPA), was synthesized, and its potential involvement of mitochondria was explored. The results presented that the toxicology of NPA, at least in part, mediated mitochondrial function and may thoroughly destroy mitochondrial membrane physiological functions. NPA induced mitochondrial permeability transition pore (mtPTP) opening that induces mitochondrial biochemical abnormalities as evidenced by mitochondrial swelling, mitochondrial membrane potential breakdown, membrane fluidity alterations, and the strikingly remarkable protection of CsA. Meanwhile, both the decreased respiration rate of state 4 and the increased inner membrane H(+) permeabilization revealed that the inner membrane function regarding important energy production chain was destroyed. The toxicity of NPA is due to its interaction with mitochondrial membrane thiol protein. This conclusion is based on the protective effects of RR, DTT, and MBM(+). PMID:26087905

  1. Mitochondrial Myopathy

    MedlinePlus

    ... with ragged-red fibers, and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes. The symptoms of ... riboflavin, coenzyme Q, and carnitine (a specialized amino acid) may provide subjective improvement in fatigue and energy ...

  2. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  3. Mitochondrial Myopathies

    MedlinePlus

    ... line and are therefore called the electron transport chain, and complex V actually churns out ATP, so ... coQ10 , is a component of the electron transport chain, which uses oxygen to manufacture ATP. Some mitochondrial ...

  4. Cybrid Models of Parkinson's Disease Show Variable Mitochondrial Biogenesis and Genotype-Respiration Relationships

    PubMed Central

    Keeney, Paula M.; Dunham, Lisa D.; Quigley, Caitlin K.; Morton, Stephanie L.; Bergquist, Kristen E.; Bennett, James P.

    2009-01-01

    Sporadic Parkinson's disease (sPD) is a nervous system-wide disease that presents with a bradykinetic movement disorder and frequently progresses to include depression and cognitive impairment. Cybrid models of sPD are based on expression of sPD platelet mitochondrial DNA (mtDNA) in neural cells and demonstrate some similarities to sPD brains. In sPD and CTL cybrids we characterized aspects of mitochondrial biogenesis, mtDNA genomics, composition of the respirasome and the relationships among isolated mitochondrial and intact cell respiration. Cybrid mtDNA levels varied and correlated with expression of PGC-1α a transcriptional co-activator regulator of mitochondrial biogenesis. Levels of mtDNA heteroplasmic mutations were asymmetrically distributed across the mitochondrial genome; numbers of heteroplasmies were more evenly distributed. Neither levels nor numbers of heteroplasmies distinguished sPD from CTL. sPD cybrid mitochondrial ETC subunit protein levels were not altered. Isolated mitochondrial complex I respiration rates showed limited correlation with whole cell complex I respiration rates in both sPD and CTL cybrids. Intact cell respiration during the normoxic-anoxic transition yielded Km values for oxygen that directly related to respiration rates in CTL but not in sPD cell lines. Both sPD and CTL cybrid cells are substantially heterogeneous in mitochondrial genomic and physiologic properties. Our results suggest that mtDNA depletion may occur in sPD neurons and could reflect impairment of mitochondrial biogenesis. Cybrids remain a valuable model for some aspects of sPD but their heterogeneity mitigates against a simple designation of sPD phenotype in this cell model. PMID:19815014

  5. Cybrid models of Parkinson's disease show variable mitochondrial biogenesis and genotype-respiration relationships.

    PubMed

    Keeney, Paula M; Dunham, Lisa D; Quigley, Caitlin K; Morton, Stephanie L; Bergquist, Kristen E; Bennett, James P

    2009-12-01

    Sporadic Parkinson's disease (sPD) is a nervous system-wide disease that presents with a bradykinetic movement disorder and frequently progresses to include depression and cognitive impairment. Cybrid models of sPD are based on expression of sPD platelet mitochondrial DNA (mtDNA) in neural cells and demonstrate some similarities to sPD brains. In sPD and CTL cybrids we characterized aspects of mitochondrial biogenesis, mtDNA genomics, composition of the respirasome and the relationships among isolated mitochondrial and intact cell respiration. Cybrid mtDNA levels varied and correlated with expression of PGC-1 alpha, a transcriptional co-activator regulator of mitochondrial biogenesis. Levels of mtDNA heteroplasmic mutations were asymmetrically distributed across the mitochondrial genome; numbers of heteroplasmies were more evenly distributed. Neither levels nor numbers of heteroplasmies distinguished sPD from CTL. sPD cybrid mitochondrial ETC subunit protein levels were not altered. Isolated mitochondrial complex I respiration rates showed limited correlation with whole cell complex I respiration rates in both sPD and CTL cybrids. Intact cell respiration during the normoxic-anoxic transition yielded K(m) values for oxygen that directly related to respiration rates in CTL but not in sPD cell lines. Both sPD and CTL cybrid cells are substantially heterogeneous in mitochondrial genomic and physiologic properties. Our results suggest that mtDNA depletion may occur in sPD neurons and could reflect impairment of mitochondrial biogenesis. Cybrids remain a valuable model for some aspects of sPD but their heterogeneity mitigates against a simple designation of sPD phenotype in this cell model.

  6. Mitochondrial genetics

    PubMed Central

    Chinnery, Patrick Francis; Hudson, Gavin

    2013-01-01

    Introduction In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. Sources of data In this article, a review of the current mitochondrial genetics literature was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). In addition, this review makes use of a growing number of publically available databases including MITOMAP, a human mitochondrial genome database (www.mitomap.org), the Human DNA polymerase Gamma Mutation Database (http://tools.niehs.nih.gov/polg/) and PhyloTree.org (www.phylotree.org), a repository of global mtDNA variation. Areas of agreement The disruption in cellular energy, resulting from defects in mtDNA or defects in the nuclear-encoded genes responsible for mitochondrial maintenance, manifests in a growing number of human diseases. Areas of controversy The exact mechanisms which govern the inheritance of mtDNA are hotly debated. Growing points Although still in the early stages, the development of in vitro genetic manipulation could see an end to the inheritance of the most severe mtDNA disease. PMID:23704099

  7. Adenine nucleotide translocator isoforms 1 and 2 are differently distributed in the mitochondrial inner membrane and have distinct affinities to cyclophilin D.

    PubMed Central

    Vyssokikh, M Y; Katz, A; Rueck, A; Wuensch, C; Dörner, A; Zorov, D B; Brdiczka, D

    2001-01-01

    Different isoforms of the adenine nucleotide translocase (ANT) are expressed in a tissue-specific manner. It was assumed that ANT-1 and ANT-2 co-exist in every single mitochondrion and might be differently distributed within the membrane structures that constitute the peripheral inner membrane or the crista membrane. To discriminate between ANT originating from peripheral or from cristal inner membranes we made use of the fact that complexes between porin, the outer-membrane pore protein, and the ANT can be generated. Such complexes between porin and the ANT in the peripheral inner membrane were induced in rat heart mitochondria and isolated from rat brain and kidney. Using ANT-isotype-specific antibodies and sequence analysis of the N-terminal end, it was discovered that the peripheral inner membrane contained ANT-1 and ANT-2, whereas the cristal membrane contained exclusively ANT-2. Cyclophilin was co-purified with the porin-ANT complexes, whereas it was absent in the crista-derived ANT. This suggested that ANT-1 might have a higher affinity for cyclophilin. This specific intra-mitochondrial distribution of the two ANT isotypes and cyclophilin D suggests specific functions of the peripheral and crista-forming parts of the inner membrane and the two ANT isotypes therein. PMID:11513733

  8. Mitochondrial efficiency and insulin resistance.

    PubMed

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    Insulin resistance, "a relative impairment in the ability of insulin to exert its effects on glucose, protein and lipid metabolism in target tissues," has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PMID:25601841

  9. Glucocorticoid Modulation of Mitochondrial Function in Hepatoma Cells Requires the Mitochondrial Fission Protein Drp1

    PubMed Central

    Hernández-Alvarez, María Isabel; Paz, José C.; Sebastián, David; Muñoz, Juan Pablo; Liesa, Marc; Segalés, Jessica; Palacín, Manuel

    2013-01-01

    Abstract Aims: Glucocorticoids, such as dexamethasone, enhance hepatic energy metabolism and gluconeogenesis partly through changes in mitochondrial function. Mitochondrial function is influenced by the balance between mitochondrial fusion and fission events. However, whether glucocorticoids modulate mitochondrial function through the regulation of mitochondrial dynamics is currently unknown. Results: Here, we report that the effects of dexamethasone on mitochondrial function and gluconeogenesis in hepatoma cells are dependent on the mitochondrial fission protein dynamin-related protein 1 (Drp1). Dexamethasone increased routine oxygen consumption, maximal respiratory capacity, superoxide anion, proton leak, and gluconeogenesis in hepatoma cells. Under these conditions, dexamethasone altered mitochondrial morphology, which was paralleled by a large increase in Drp1 expression, and reduced mitofusin 1 (Mfn1) and Mfn2. In vivo dexamethasone treatment also enhanced Drp1 expression in mouse liver. On the basis of these observations, we analyzed the dependence on the Drp1 function of dexamethasone effects on mitochondrial respiration and gluconeogenesis. We show that the increase in mitochondrial respiration and gluconeogenesis induced by dexamethasone are hampered by the inhibition of Drp1 function. Innovation: Our findings provide the first evidence that the effects of glucocorticoids on hepatic metabolism require the mitochondrial fission protein Drp1. Conclusion: In summary, we demonstrate that the mitochondrial effects of dexamethasone both on mitochondrial respiration and on the gluconeogenic pathway depend on Drp1. Antioxid. Redox Signal. 19, 366–378. PMID:22703557

  10. Supplemental Feeding for Ecotourism Reverses Diel Activity and Alters Movement Patterns and Spatial Distribution of the Southern Stingray, Dasyatis americana

    PubMed Central

    Corcoran, Mark J.; Wetherbee, Bradley M.; Shivji, Mahmood S.; Potenski, Matthew D.; Chapman, Demian D.; Harvey, Guy M.

    2013-01-01

    Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS), Grand Cayman since 1986, with this site becoming one of the world’s most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (p<0.05) smaller 24 hour activity spaces compared to wild conspecifics, staying in close proximity to the ecotourism site; Fed stingrays showed a high degree of overlap in their core activity spaces compared to wild stingrays which were largely solitary in the spaces utilized (72% vs. 3% overlap respectively). Supplemental feeding has strikingly altered movement behavior and spatial distribution of the stingrays, and generated an atypically high density of animals at SCS which could have downstream fitness costs for individuals and potentially broader ecosystem effects. These findings should help environmental managers plan mitigating measures for existing operations, and

  11. Predicting future changes in Muskegon River Watershed game fish distributions under future land cover alteration and climate change scenarios

    USGS Publications Warehouse

    Steen, Paul J.; Wiley, Michael J.; Schaeffer, Jeffrey S.

    2010-01-01

    Future alterations in land cover and climate are likely to cause substantial changes in the ranges of fish species. Predictive distribution models are an important tool for assessing the probability that these changes will cause increases or decreases in or the extirpation of species. Classification tree models that predict the probability of game fish presence were applied to the streams of the Muskegon River watershed, Michigan. The models were used to study three potential future scenarios: (1) land cover change only, (2) land cover change and a 3°C increase in air temperature by 2100, and (3) land cover change and a 5°C increase in air temperature by 2100. The analysis indicated that the expected change in air temperature and subsequent change in water temperatures would result in the decline of coldwater fish in the Muskegon watershed by the end of the 21st century while cool- and warmwater species would significantly increase their ranges. The greatest decline detected was a 90% reduction in the probability that brook trout Salvelinus fontinalis would occur in Bigelow Creek. The greatest increase was a 276% increase in the probability that northern pike Esox lucius would occur in the Middle Branch River. Changes in land cover are expected to cause large changes in a few fish species, such as walleye Sander vitreus and Chinook salmon Oncorhynchus tshawytscha, but not to drive major changes in species composition. Managers can alter stream environmental conditions to maximize the probability that species will reside in particular stream reaches through application of the classification tree models. Such models represent a good way to predict future changes, as they give quantitative estimates of the n-dimensional niches for particular species.

  12. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the southern stingray, Dasyatis americana.

    PubMed

    Corcoran, Mark J; Wetherbee, Bradley M; Shivji, Mahmood S; Potenski, Matthew D; Chapman, Demian D; Harvey, Guy M

    2013-01-01

    Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS), Grand Cayman since 1986, with this site becoming one of the world's most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (p<0.05) smaller 24 hour activity spaces compared to wild conspecifics, staying in close proximity to the ecotourism site; Fed stingrays showed a high degree of overlap in their core activity spaces compared to wild stingrays which were largely solitary in the spaces utilized (72% vs. 3% overlap respectively). Supplemental feeding has strikingly altered movement behavior and spatial distribution of the stingrays, and generated an atypically high density of animals at SCS which could have downstream fitness costs for individuals and potentially broader ecosystem effects. These findings should help environmental managers plan mitigating measures for existing operations, and

  13. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the southern stingray, Dasyatis americana.

    PubMed

    Corcoran, Mark J; Wetherbee, Bradley M; Shivji, Mahmood S; Potenski, Matthew D; Chapman, Demian D; Harvey, Guy M

    2013-01-01

    Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS), Grand Cayman since 1986, with this site becoming one of the world's most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (p<0.05) smaller 24 hour activity spaces compared to wild conspecifics, staying in close proximity to the ecotourism site; Fed stingrays showed a high degree of overlap in their core activity spaces compared to wild stingrays which were largely solitary in the spaces utilized (72% vs. 3% overlap respectively). Supplemental feeding has strikingly altered movement behavior and spatial distribution of the stingrays, and generated an atypically high density of animals at SCS which could have downstream fitness costs for individuals and potentially broader ecosystem effects. These findings should help environmental managers plan mitigating measures for existing operations, and

  14. Extensive Mitochondrial mRNA Editing and Unusual Mitochondrial Genome Organization in Calcaronean Sponges.

    PubMed

    Lavrov, Dennis V; Adamski, Marcin; Chevaldonné, Pierre; Adamska, Maja

    2016-01-11

    One of the unusual features of DNA-containing organelles in general and mitochondria in particular is the frequent occurrence of RNA editing [1]. The term "RNA editing" refers to a variety of mechanistically unrelated biochemical processes that alter RNA sequence during or after transcription [2]. The editing can be insertional, deletional, or substitutional and has been found in all major types of RNAs [3, 4]. Although mitochondrial mRNA editing is widespread in some eukaryotic lineages [5-7], it is rare in animals, with reported cases limited both in their scope and in phylogenetic distribution [8-11] (see also [12]). While analyzing genomic data from calcaronean sponges Sycon ciliatum and Leucosolenia complicata, we were perplexed by the lack of recognizable mitochondrial coding sequences. Comparison of genomic and transcriptomic data from these species revealed the presence of mitochondrial cryptogenes whose transcripts undergo extensive editing. This editing consisted of single or double uridylate (U) insertions in pre-existing short poly(U) tracts. Subsequent analysis revealed the presence of similar editing in Sycon coactum and the loss of editing in Petrobiona massiliana, a hypercalcified calcaronean sponge. In addition, mitochondrial genomes of at least some calcaronean sponges were found to have a highly unusual architecture, with nearly all genes located on individual and likely linear chromosomes. Phylogenetic analysis of mitochondrial coding sequences revealed accelerated rates of sequence evolution in this group. The latter observation presents a challenge for the mutational-hazard hypothesis [13], which posits that mRNA editing should not occur in lineages with an elevated mutation rate.

  15. Mitochondrial toxicity and HIV therapy

    PubMed Central

    White, A.

    2001-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) remain the cornerstone of highly active antiretroviral therapy (HAART) combination regimens. However, it has been known for some time that these agents have the potential to cause varied side effects, many of which are thought to be due to their effects on mitochondria. Mitochondria, the key energy generating organelles in the cell, are unique in having their own DNA, a double stranded circular genome of about 16 000 bases. There is a separate enzyme present inside the cell that replicates mitochondrial DNA, polymerase gamma. NRTIs can affect the function of this enzyme and this may lead to depletion of mitochondrial DNA or qualitative changes. The study of inherited mitochondrial diseases has led to further understanding of the consequences of mutations or depletion in mitochondrial DNA. Key among these is the realisation that there may be substantial heteroplasmy among mitochondria within a given cell, and among cells in a particular tissue. The unpredictable nature of mitochondrial segregation during cellular replication makes it difficult to predict the likelihood of dysfunction in a given tissue. In addition, there is a threshold effect for the expression of mitochondrial dysfunction, both at the mitochondrial and cellular level. Various clinical and in vitro studies have suggested that NRTIs are associated with mitochondrial dysfunction in different tissues, although the weight of evidence is limited in many cases. The heterogeneity in the tissues affected by the different drugs raises interesting questions, and possible explanations include differential distribution or activation of these agents. This article reviews the major recognised toxicities associated with NRTI therapy and evidence for mitochondrial dysfunction in these complications. Data were identified through searching of online databases including Medline and Current Contents for relevant articles, along with abstracts and posters from recent

  16. Redox Regulation of Mitochondrial Function

    PubMed Central

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  17. Altered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts

    PubMed Central

    Bryant, Simon M.; Kong, Cherrie H.T.; Watson, Judy; Cannell, Mark B.; James, Andrew F.; Orchard, Clive H.

    2015-01-01

    In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~ 18 weeks after coronary artery ligation (CAL) or corresponding Sham operation. L-type Ca current (ICa) was recorded using the whole-cell voltage-clamp technique in intact and detubulated myocytes; Ca release at t-tubules was monitored using confocal microscopy with voltage- and Ca-sensitive fluorophores. CAL was associated with cardiac and cellular hypertrophy, decreased ejection fraction, disruption of t-tubule structure and a smaller, slower Ca transient, but no change in ryanodine receptor distribution, L-type Ca channel expression, or ICa density. In Sham myocytes, ICa was located predominantly at the t-tubules, while in CAL myocytes, it was uniformly distributed between the t-tubule and surface membranes. Inhibition of protein kinase A with H-89 caused a greater decrease of t-tubular ICa in CAL than in Sham myocytes; in the presence of H-89, t-tubular ICa density was smaller in CAL than in Sham myocytes. The smaller t-tubular ICa in CAL myocytes was accompanied by increased latency and heterogeneity of SR Ca release at t-tubules, which could be mimicked by decreasing ICa using nifedipine. These data show that CAL decreases t-tubular ICa via a PKA-independent mechanism, thereby impairing Ca release at t-tubules and contributing to the altered excitation–contraction coupling observed in heart failure. PMID:26103619

  18. Mitochondrial Evolution

    PubMed Central

    Gray, Michael W.

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it. PMID:22952398

  19. Differences in the Kinetic of the First Meiotic Division and in Active Mitochondrial Distribution between Prepubertal and Adult Oocytes Mirror Differences in their Developmental Competence in a Sheep Model

    PubMed Central

    Leoni, Giovanni Giuseppe; Palmerini, Maria Grazia; Satta, Valentina; Succu, Sara; Pasciu, Valeria; Zinellu, Angelo; Carru, Ciriaco; Macchiarelli, Guido; Nottola, Stefania Annarita; Naitana, Salvatore; Berlinguer, Fiammetta

    2015-01-01

    Our aim is to verify if oocyte developmental potential is related to the timing of meiotic progression and to mitochondrial distribution and activity using prepubertal and adult oocytes as models of low and high developmental capacity respectively. Prepubertal and adult oocytes were incorporated in an in vitro maturation system to determine meiotic and developmental competence and to assess at different time points kinetic of meiotic maturation, 2D protein electrophoresis patterns, ATP content and mitochondria distribution. Maturation and fertilization rates did not differ between prepubertal and adult oocytes (95.1% vs 96.7% and 66.73% vs 70.62% respectively for prepubertal and adult oocytes). Compared to adults, prepubertal oocytes showed higher parthenogenesis (17.38% vs 2.08% respectively in prepubertals and adults; P<0.01) and polispermy (14.30% vs 2.21% respectively in prepubertals and adults; P<0.01), lower cleavage rates (60.00% vs 67.08% respectively in prepubertals and adults; P<0.05) and blastocyst output (11.94% vs 34.% respectively in prepubertals and adults; P<0.01). Prepubertal oocytes reached MI stage 1 hr later than adults and this delay grows as the first meiotic division proceeds. Simultaneously, the protein pattern was altered since in prepubertal oocytes it fluctuates, dropping and rising to levels similar to adults only at 24 hrs. In prepubertal oocytes ATP rise is delayed and did not reach levels comparable to adult ones. CLSM observations revealed that at MII, in the majority of prepubertal oocytes, the active mitochondria are homogenously distributed, while in adults they are aggregated in big clusters. Our work demonstrates that mitochondria and their functional aggregation during maturation play an active role to provide energy in terms of ATP. The oocyte ATP content determines the timing of the meiotic cycle and the acquisition of developmental competence. Taken together our data suggest that oocytes with low developmental competence

  20. Deconstructing mitochondrial dysfunction in Alzheimer disease.

    PubMed

    García-Escudero, Vega; Martín-Maestro, Patricia; Perry, George; Avila, Jesús

    2013-01-01

    There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

  1. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal-porphyry copper system at Red Mountain, Arizona

    USGS Publications Warehouse

    Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.

    2013-01-01

    Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of

  2. The ins and outs of mitochondrial calcium.

    PubMed

    Finkel, Toren; Menazza, Sara; Holmström, Kira M; Parks, Randi J; Liu, Julia; Sun, Junhui; Liu, Jie; Pan, Xin; Murphy, Elizabeth

    2015-05-22

    Calcium is thought to play an important role in regulating mitochondrial function. Evidence suggests that an increase in mitochondrial calcium can augment ATP production by altering the activity of calcium-sensitive mitochondrial matrix enzymes. In contrast, the entry of large amounts of mitochondrial calcium in the setting of ischemia-reperfusion injury is thought to be a critical event in triggering cellular necrosis. For many decades, the details of how calcium entered the mitochondria remained a biological mystery. In the past few years, significant progress has been made in identifying the molecular components of the mitochondrial calcium uniporter complex. Here, we review how calcium enters and leaves the mitochondria, the growing insight into the topology, stoichiometry and function of the uniporter complex, and the early lessons learned from some initial mouse models that genetically perturb mitochondrial calcium homeostasis.

  3. Mitochondrial stress: balancing friend and foe.

    PubMed

    Runkel, Eva Diana; Baumeister, Ralf; Schulze, Ekkehard

    2014-08-01

    Mitochondria are vital organelles of the aerobic eukaryotic cell. Their dysfunction associates with aging and widespread age-related diseases. To sustain mitochondrial integrity, the cell executes a distinct set of stress-induced protective responses. The mitochondrial unfolded protein response (UPR(mt)) is a response of the cell to mitochondrial damage. The transcription factor ATFS-1 triggers UPR(mt) effector gene expression in the nucleus. The selective exclusion of ATFS-1 from mitochondrial import by stress-induced alterations of the mitochondrial membrane potential is currently discussed as key activation mechanism. Surprisingly, UPR(mt) activation often coincides with a lifespan extension in Caenorhabditis elegans and the same has recently been reported for mammalian cells. This review summarizes the current model of the UPR(mt), its inducers, and its crosstalk with other cellular stress responses. It focuses on the role of mitochondrial function as a regulator of aging and longevity.

  4. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  5. Mitochondrial Structure and Function Are Disrupted by Standard Isolation Methods

    PubMed Central

    Picard, Martin; Taivassalo, Tanja; Ritchie, Darmyn; Wright, Kathryn J.; Thomas, Melissa M.; Romestaing, Caroline; Hepple, Russell T.

    2011-01-01

    Mitochondria regulate critical components of cellular function via ATP production, reactive oxygen species production, Ca2+ handling and apoptotic signaling. Two classical methods exist to study mitochondrial function of skeletal muscles: isolated mitochondria and permeabilized myofibers. Whereas mitochondrial isolation removes a portion of the mitochondria from their cellular environment, myofiber permeabilization preserves mitochondrial morphology and functional interactions with other intracellular components. Despite this, isolated mitochondria remain the most commonly used method to infer in vivo mitochondrial function. In this study, we directly compared measures of several key aspects of mitochondrial function in both isolated mitochondria and permeabilized myofibers of rat gastrocnemius muscle. Here we show that mitochondrial isolation i) induced fragmented organelle morphology; ii) dramatically sensitized the permeability transition pore sensitivity to a Ca2+ challenge; iii) differentially altered mitochondrial respiration depending upon the respiratory conditions; and iv) dramatically increased H2O2 production. These alterations are qualitatively similar to the changes in mitochondrial structure and function observed in vivo after cellular stress-induced mitochondrial fragmentation, but are generally of much greater magnitude. Furthermore, mitochondrial isolation markedly altered electron transport chain protein stoichiometry. Collectively, our results demonstrate that isolated mitochondria possess functional characteristics that differ fundamentally from those of intact mitochondria in permeabilized myofibers. Our work and that of others underscores the importance of studying mitochondrial function in tissue preparations where mitochondrial structure is preserved and all mitochondria are represented. PMID:21512578

  6. Mitochondrial Metabolism in Aging Heart.

    PubMed

    Lesnefsky, Edward J; Chen, Qun; Hoppel, Charles L

    2016-05-13

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  7. Integrated analysis of the involvement of nitric oxide synthesis in mitochondrial proliferation, mitochondrial deficiency and apoptosis in skeletal muscle fibres

    PubMed Central

    Rodrigues, Gabriela Silva; Godinho, Rosely Oliveira; Kiyomoto, Beatriz Hitomi; Gamba, Juliana; Oliveira, Acary Souza Bulle; Schmidt, Beny; Tengan, Célia Harumi

    2016-01-01

    Nitric oxide (NO) is an important signaling messenger involved in different mitochondrial processes but only few studies explored the participation of NO in mitochondrial abnormalities found in patients with genetic mitochondrial deficiencies. In this study we verified whether NO synthase (NOS) activity was altered in different types of mitochondrial abnormalities and whether changes in mitochondrial function and NOS activity could be associated with the induction of apoptosis. We performed a quantitative and integrated analysis of NOS activity in individual muscle fibres of patients with mitochondrial diseases, considering mitochondrial function (cytochrome-c-oxidase activity), mitochondrial content, mitochondrial DNA mutation and presence of apoptotic nuclei. Our results indicated that sarcolemmal NOS activity was increased in muscle fibres with mitochondrial proliferation, supporting the relevance of neuronal NOS in the mitochondrial biogenesis process. Sarcoplasmic NOS activity was reduced in cytochrome-c-oxidase deficient fibres, probably as a consequence of the involvement of NO in the regulation of the respiratory chain. Alterations in NOS activity or mitochondrial abnormalities were not predisposing factors to apoptotic nuclei. Taken together, our results show that NO can be considered a potential molecular target for strategies to increase mitochondrial content and indicate that this approach may not be associated with increased apoptotic events. PMID:26856437

  8. Mitochondrial dysfunction and organophosphorus compounds

    SciTech Connect

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  9. Geographic Patterns of Genetic Variation in a Broadly Distributed Marine Vertebrate: New Insights into Loggerhead Turtle Stock Structure from Expanded Mitochondrial DNA Sequences

    PubMed Central

    Shamblin, Brian M.; Bolten, Alan B.; Abreu-Grobois, F. Alberto; Bjorndal, Karen A.; Cardona, Luis; Carreras, Carlos; Clusa, Marcel; Monzón-Argüello, Catalina; Nairn, Campbell J.; Nielsen, Janne T.; Nel, Ronel; Soares, Luciano S.; Stewart, Kelly R.; Vilaça, Sibelle T.; Türkozan, Oguz; Yilmaz, Can; Dutton, Peter H.

    2014-01-01

    Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting

  10. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: new insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences.

    PubMed

    Shamblin, Brian M; Bolten, Alan B; Abreu-Grobois, F Alberto; Bjorndal, Karen A; Cardona, Luis; Carreras, Carlos; Clusa, Marcel; Monzón-Argüello, Catalina; Nairn, Campbell J; Nielsen, Janne T; Nel, Ronel; Soares, Luciano S; Stewart, Kelly R; Vilaça, Sibelle T; Türkozan, Oguz; Yilmaz, Can; Dutton, Peter H

    2014-01-01

    Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting

  11. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: new insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences.

    PubMed

    Shamblin, Brian M; Bolten, Alan B; Abreu-Grobois, F Alberto; Bjorndal, Karen A; Cardona, Luis; Carreras, Carlos; Clusa, Marcel; Monzón-Argüello, Catalina; Nairn, Campbell J; Nielsen, Janne T; Nel, Ronel; Soares, Luciano S; Stewart, Kelly R; Vilaça, Sibelle T; Türkozan, Oguz; Yilmaz, Can; Dutton, Peter H

    2014-01-01

    Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting

  12. Adaptive Downregulation of Mitochondrial Function in Down Syndrome

    PubMed Central

    Helguera, Pablo; Seiglie, Jaqueline; Rodriguez, Jose; Hanna, Michael; Helguera, Gustavo; Busciglio, Jorge

    2013-01-01

    SUMMARY Mitochondrial dysfunction and oxidative stress are common features of Down syndrome (DS). However, the underlying mechanisms are not known. We investigated the relationship between abnormal energy metabolism and oxidative stress with transcriptional and functional changes in DS cells. Impaired mitochondrial activity correlated with altered mitochondrial morphology. Increasing fusion capacity prevented morphological but not functional alterations in DS mitochondria. Sustained stimulation restored mitochondrial functional parameters but increased ROS production and cell damage, suggesting that reduced DS mitochondrial activity is an adaptive response to avoid injury and preserve basic cellular functions. Network analysis of genes overexpressed in DS cells demonstrated functional integration in pathways involved in energy metabolism and oxidative stress. Thus, while preventing extensive oxidative damage, mitochondrial downregulation may contribute to increased susceptibility of DS individuals to clinical conditions in which altered energy metabolism may play a role such as Alzheimer’s disease, diabetes, and some types of autistic spectrum disorders. PMID:23312288

  13. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    USGS Publications Warehouse

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  14. A Celiac Cellular Phenotype, with Altered LPP Sub-Cellular Distribution, Is Inducible in Controls by the Toxic Gliadin Peptide P31-43

    PubMed Central

    Nanayakkara, Merlin; Kosova, Roberta; Lania, Giuliana; Sarno, Marco; Gaito, Alessandra; Galatola, Martina; Greco, Luigi; Cuomo, Marialaura; Troncone, Riccardo; Auricchio, Salvatore

    2013-01-01

    Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP) gene was identified as strongly associated with CD using genome-wide association studies (GWAS). The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD) and controls, without and with treatment with A-gliadin peptide P31-43. We observed a “CD cellular phenotype” in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis. PMID:24278174

  15. Mitochondrial DNA Damage and its Consequences for Mitochondrial Gene Expression

    PubMed Central

    Cline, Susan D.

    2012-01-01

    How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. PMID:22728831

  16. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  17. Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F

    PubMed Central

    Bosen, Felicitas; Celli, Anna; Crumrine, Debra; vom Dorp, Katharina; Ebel, Philipp; Jastrow, Holger; Dörmann, Peter; Winterhager, Elke; Mauro, Theodora; Willecke, Klaus

    2016-01-01

    The keratitis–ichthyosis–deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome. PMID:26070424

  18. Spatial and temporal dynamics of the cardiac mitochondrial proteome

    PubMed Central

    Lau, Edward; Huang, Derrick; Cao, Quan; Dincer, T. Umut; Black, Caitie M.; Lin, Amanda J.; Lee, Jessica M.; Wang, Ding; Liem, David A.; Lam, Maggie P.Y.; Ping, Peipei

    2015-01-01

    Summary Mitochondrial proteins alter in their composition and quantity drastically through time and space in correspondence to changing energy demands and cellular signaling events. The integrity and permutations of this dynamism are increasingly recognized to impact the functions of the cardiac proteome in health and disease. This article provides an overview on recent advances in defining the spatial and temporal dynamics of mitochondrial proteins in the heart. Proteomics techniques to characterize dynamics on a proteome scale are reviewed and the physiological consequences of altered mitochondrial protein dynamics are discussed. Lastly, we offer our perspectives on the unmet challenges in translating mitochondrial dynamics markers to the clinic. PMID:25752359

  19. Induction of Mitochondrial Changes Associated with Oxidative Stress on Very Long Chain Fatty Acids (C22:0, C24:0, or C26:0)-Treated Human Neuronal Cells (SK-NB-E)

    PubMed Central

    Zarrouk, Amira; Vejux, Anne; Nury, Thomas; El Hajj, Hammam I.; Haddad, Madouda; Cherkaoui-Malki, Mustapha; Riedinger, Jean-Marc; Hammami, Mohamed; Lizard, Gérard

    2012-01-01

    In Alzheimer's disease, lipid alterations point towards peroxisomal dysfunctions. Indeed, a cortical accumulation of saturated very long chain fatty acids (VLCFAs: C22:0, C24:0, C26:0), substrates for peroxisomal β-oxidation, has been found in Alzheimer patients. This study was realized to investigate the effects of VLCFAs at the mitochondrial level since mitochondrial dysfunctions play crucial roles in neurodegeneration. On human neuronal SK-NB-E cells treated with C22:0, C24:0, or C26:0 (0.1–20 μM; 48 h), an inhibition of cell growth and mitochondrial dysfunctions were observed by cell counting with trypan blue, MTT assay, and measurement of mitochondrial transmembrane potential (Δψm) with DiOC6(3). A stimulation of oxidative stress was observed with DHE and MitoSOX used to quantify superoxide anion production on whole cells and at the mitochondrial level, respectively. With C24:0 and C26:0, by Western blotting, lower levels of mitochondrial complexes III and IV were detected. After staining with MitoTracker and by transmission electron microscopy used to study mitochondrial topography, mass and morphology, major changes were detected in VLCFAs treated-cells: modification of the cytoplasmic distribution of mitochondria, presence of large mitochondria, enhancement of the mitochondrial mass. Thus, VLCFAs can be potential risk factors contributing to neurodegeneration by inducing neuronal damages via mitochondrial dysfunctions. PMID:22919440

  20. Distributions of Irritative Zones Are Related to Individual Alterations of Resting-State Networks in Focal Epilepsy

    PubMed Central

    Song, Yinchen; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Lin, Wei-Chiang; Riera, Jorge J.

    2015-01-01

    Alterations in the connectivity patterns of the fMRI-based resting-state networks (RSNs) have been reported in several types of epilepsies. Evidence pointed out these alterations might be associated with the genesis and propagation of interictal epileptiform discharges (IEDs). IEDs also evoke blood-oxygen-level dependent (BOLD) responses, which have been used to delineate irritative zones during preoperative work-up. Therefore, one may expect a relationship between the topology of the IED-evoked BOLD response network and the altered spatial patterns of the RSNs. In this study, we used EEG recordings and fMRI data obtained simultaneously from a chronic model of focal epilepsy in Wistar rats to verify our hypothesis. We found that IED-evoked BOLD response networks comprise both cortical and subcortical structures with a rat-dependent topology. In all rats, IEDs evoke both activation and deactivation types of BOLD responses. Using a Granger causality method, we found that in many cases areas with BOLD deactivation have directed influences on areas with activation (p<0.05). We were able to predict topological properties (i.e., focal/diffused, unilateral/bilateral) of the IED-evoked BOLD response network by performing hierarchical clustering analysis on major spatial features of the RSNs. All these results suggest that IEDs and disruptions in the RSNs found previously in humans may be different manifestations of the same transient events, probably reflecting altered consciousness. In our opinion, the shutdown of specific nodes of the default mode network may cause uncontrollable excitability in other functionally connected brain areas. We conclude that IED-evoked BOLD responses (i.e., activation and deactivation) and alterations of RSNs are intrinsically related, and speculate that an understanding of their interplay is necessary to discriminate focal epileptogenesis and network propagation phenomena across different brain modules via hub-based connectivity. PMID

  1. MITOCHONDRIAL BIOGENESIS IN NEUROSPORA CRASSA

    PubMed Central

    Howell, Neil; Zuiches, Carol A.; Munkres, Kenneth D.

    1971-01-01

    The isolation of a new class of mutants permitting facultative anaerobiosis in Neurospora crassa is described. Backcross analyses to the obligate aerobe prototroph (An-) indicate single nuclear gene inheritance (An-/An+). An+ and An- are indistinguishable in morphology and growth rates under aerobic conditions. Anaerobic growth requires nutritional supplements that are dispensable for aerobic growth. Conidiogenesis, conidial germination, and vegetative growth rate are suppressed by anaerobiosis. An+ mutants produce substantial quantities of ethanol under anaerobic conditions. Anaerobiosis and chloramphenicol both affect mitochondrial enzyme activity and morphology. Chloramphenicol inhibition leads to reduction in cytochrome oxidase and swollen mitochondria with few cristae. Anaerobiosis leads to reduction in both cytochrome oxidase and malate dehydrogenase activities, enlarged mitochondria with fewer cristae, enlarged nuclei, and other alterations in cellular morphology. The fine structure of anaerobically grown cells changes with the time of anaerobic growth. We conclude that either inhibition of mitochondrial membrane synthesis or inhibition of respiration might lead to the observed alterations in mitochondria. PMID:4329155

  2. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    SciTech Connect

    Ogawa, Tetsuhiro Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  3. Maternal inheritance of mitochondrial DNA (mtDNA) in the Pacific oyster (Crassostrea gigas): a preliminary study using mtDNA sequence analysis with evidence of random distribution of MitoTracker-stained sperm mitochondria in fertilized eggs.

    PubMed

    Obata, Mayu; Shimizu, Michiyo; Sano, Natsumi; Komaru, Akira

    2008-03-01

    In many bivalve species, paternal and maternal mitochondrial DNA (mtDNA) from sperm and eggs is transmitted to the offspring. This phenomenon is known as doubly uniparental inheritance (DUI). In these species, sperm mtDNA (M type) is inherited by the male gonad of the offspring. Egg mtDNA (F type) is inherited by both male and female somatic cells and female gonadal cells. In Mytilidae, sperm mitochondria are distributed in the cytoplasm of differentiating male germ cells because they are transmitted to the male gonad. In the present study, we investigated maternal inheritance of mtDNA in the Pacific oyster, Crassostrea gigas. Sequence analysis of two mitochondrial non-coding regions revealed an identical sequence pattern in the gametes and adductor muscle samples taken from six males and five females. To observe whether sperm mitochondria were specifically located in the cytoplasm of differentiating germ cells, their distribution was recorded in C. gigas fertilized eggs by vital staining with MitoTracker Green. Although the 1D blastomere was identified in the cytoplasm of differentiating germ cells, sperm mitochondria were located at the 1D blastomere in only 32% of eggs during the 8-cell stage. Thus, in C. gigas, sperm mitochondria do not specifically locate in the germ cell region at the 1D blastomere. We suggest that the distribution of sperm mitochondria is not associated with germ cell formation in C. gigas. Furthermore, as evidenced by the mtDNA sequences of two non-coding regions, we conclude that mitochondrial DNA is maternally inherited in this species.

  4. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    PubMed Central

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  5. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    PubMed Central

    Zorzano, Antonio; Claret, Marc

    2015-01-01

    Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy (ADOA). Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction. PMID:26113818

  6. Coexpression within Integrated Mitochondrial Pathways Reveals Different Networks in Normal and Chemically Treated Transcriptomes

    PubMed Central

    Chen, Cong; Hyun, Tae Kyung; Han, Xiao; Feng, Zhihui; Li, Yuan; Liu, Xiaolong; Liu, Jiankang

    2014-01-01

    As energy producers, mitochondria play a pivotal role in multiple cellular processes. Although several lines of evidence suggest that differential expression of mitochondrial respiratory complexes (MRCs) has a significant impact on mitochondrial function, the role of integrated MRCs in the whole coexpression network has yet to be revealed. In this study, we construct coexpression networks based on microarray datasets from different tissues and chemical treatments to explore the role of integrated MRCs in the coexpression network and the effects of different chemicals on the mitochondrial network. By grouping MRCs as one seed target, the hypergeometric distribution allowed us to identify genes that are significantly coexpress with whole MRCs. Coexpression among 46 MRC genes (approximately 78% of MRC genes tested) was significant in the normal tissue transcriptome dataset. These MRC genes are coexpressed with genes involved in the categories “muscle system process,” “metabolic process,” and “neurodegenerative disease pathways,” whereas, in the chemically treated tissues, coexpression of these genes mostly disappeared. These results indicate that chemical stimuli alter the normal coexpression network of MRC genes. Taken together, the datasets obtained from the different coexpression networks are informative about mitochondrial biogenesis and should contribute to understanding the side effects of drugs on mitochondrial function. PMID:25089262

  7. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    SciTech Connect

    Palmeira, Carlos M. Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-12-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes.

  8. Distribution of Potential Hydrothermally Altered Rocks in Central Colorado Derived From Landsat Thematic Mapper Data: A Geographic Information System Data Set

    USGS Publications Warehouse

    Knepper, Daniel H.

    2010-01-01

    As part of the Central Colorado Mineral Resource Assessment Project, the digital image data for four Landsat Thematic Mapper scenes covering central Colorado between Wyoming and New Mexico were acquired and band ratios were calculated after masking pixels dominated by vegetation, snow, and terrain shadows. Ratio values were visually enhanced by contrast stretching, revealing only those areas with strong responses (high ratio values). A color-ratio composite mosaic was prepared for the four scenes so that the distribution of potentially hydrothermally altered rocks could be visually evaluated. To provide a more useful input to a Geographic Information System-based mineral resource assessment, the information contained in the color-ratio composite raster image mosaic was converted to vector-based polygons after thresholding to isolate the strongest ratio responses and spatial filtering to reduce vector complexity and isolate the largest occurrences of potentially hydrothermally altered rocks.

  9. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes.

    PubMed

    Wada, Jun; Nakatsuka, Atsuko

    2016-06-01

    The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy. PMID:27339203

  10. Mitochondrial Fusion Is Essential for Steroid Biosynthesis

    PubMed Central

    Cooke, Mariana; Soria, Gastón; Cornejo Maciel, Fabiana; Gottifredi, Vanesa; Podestá, Ernesto J.

    2012-01-01

    Although the contribution of mitochondrial dynamics (a balance in fusion/fission events and changes in mitochondria subcellular distribution) to key biological process has been reported, the contribution of changes in mitochondrial fusion to achieve efficient steroid production has never been explored. The mitochondria are central during steroid synthesis and different enzymes are localized between the mitochondria and the endoplasmic reticulum to produce the final steroid hormone, thus suggesting that mitochondrial fusion might be relevant for this process. In the present study, we showed that the hormonal stimulation triggers mitochondrial fusion into tubular-shaped structures and we demonstrated that mitochondrial fusion does not only correlate-with but also is an essential step of steroid production, being both events depend on PKA activity. We also demonstrated that the hormone-stimulated relocalization of ERK1/2 in the mitochondrion, a critical step during steroidogenesis, depends on mitochondrial fusion. Additionally, we showed that the SHP2 phosphatase, which is required for full steroidogenesis, simultaneously modulates mitochondrial fusion and ERK1/2 localization in the mitochondrion. Strikingly, we found that mitofusin 2 (Mfn2) expression, a central protein for mitochondrial fusion, is upregulated immediately after hormone stimulation. Moreover, Mfn2 knockdown is sufficient to impair steroid biosynthesis. Together, our findings unveil an essential role for mitochondrial fusion during steroidogenesis. These discoveries highlight the importance of organelles’ reorganization in specialized cells, prompting the exploration of the impact that organelle dynamics has on biological processes that include, but are not limited to, steroid synthesis. PMID:23029265

  11. Mitochondrial fusion is essential for steroid biosynthesis.

    PubMed

    Duarte, Alejandra; Poderoso, Cecilia; Cooke, Mariana; Soria, Gastón; Cornejo Maciel, Fabiana; Gottifredi, Vanesa; Podestá, Ernesto J

    2012-01-01

    Although the contribution of mitochondrial dynamics (a balance in fusion/fission events and changes in mitochondria subcellular distribution) to key biological process has been reported, the contribution of changes in mitochondrial fusion to achieve efficient steroid production has never been explored. The mitochondria are central during steroid synthesis and different enzymes are localized between the mitochondria and the endoplasmic reticulum to produce the final steroid hormone, thus suggesting that mitochondrial fusion might be relevant for this process. In the present study, we showed that the hormonal stimulation triggers mitochondrial fusion into tubular-shaped structures and we demonstrated that mitochondrial fusion does not only correlate-with but also is an essential step of steroid production, being both events depend on PKA activity. We also demonstrated that the hormone-stimulated relocalization of ERK1/2 in the mitochondrion, a critical step during steroidogenesis, depends on mitochondrial fusion. Additionally, we showed that the SHP2 phosphatase, which is required for full steroidogenesis, simultaneously modulates mitochondrial fusion and ERK1/2 localization in the mitochondrion. Strikingly, we found that mitofusin 2 (Mfn2) expression, a central protein for mitochondrial fusion, is upregulated immediately after hormone stimulation. Moreover, Mfn2 knockdown is sufficient to impair steroid biosynthesis. Together, our findings unveil an essential role for mitochondrial fusion during steroidogenesis. These discoveries highlight the importance of organelles' reorganization in specialized cells, prompting the exploration of the impact that organelle dynamics has on biological processes that include, but are not limited to, steroid synthesis.

  12. Comparative Mitochondrial Proteomic Analysis of Raji Cells Exposed to Adriamycin

    PubMed Central

    Jiang, Yu-Jie; Sun, Qing; Fang, Xiao-Sheng; Wang, Xin

    2009-01-01

    The antitumor mechanisms of adriamycin (ADR) have been thought to contribute to induction of apoptosis and inefficiency of DNA repair, processes that are to a large extent mediated by mitochondria. This study aimed to investigate characteristics of ADR, including its antineoplastic activity, drug resistance, and unexpected toxicity in non-Hodgkin lymphoma (NHL) Raji cells at the mitochondrial proteomic level. The alterations of the mitochondrial proteome of Raji cells treated with ADR were analyzed by two-dimensional differential in-gel electrophoresis (2D-DIGE) coupled with linear ion trap quadrupole–electrospray ionization tandem mass spectrometry (LTQ-ESI-MS/MS).The altered patterns of three identified proteins were validated by Western blot and analyzed by pathway studio software. The results showed that 34 proteins were downregulated and 3 proteins upregulated in the study group compared with the control group. The differentially expressed proteins distributed their functions in reduction-oxidation reactions, DNA repair, cell cycle regulation, transporters and channels, and oxidative phosphorylation. Furthermore, heat shock protein 70 (HSP70), ATP-binding cassette transporter isoform B6 (ABCB6), and prohibitin (PHB) identified in this study may be closely related to chemoresistance and could serve as potential chemotherapeutic targets for NHL. Collectively, these results suggest that specific mitochondrial proteins are uniquely susceptible to alterations in abundance following exposure to ADR and carry implications for the investigation of therapeutic and prognostic markers. Further studies focusing on these identified proteins will be used to predict treatment response and reverse apoptosis resistance,and to explore drug-combination strategies associated with ADR for NHL therapy. PMID:19209238

  13. Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Johri, Ashu

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Here, we provide a concise overview of the major findings in recent years highlighting the importance of healthy mitochondria for a healthy neuron. PMID:22700435

  14. Alterations in Oral [1-14C] 18:1n-9 Distribution in Lean Wild-Type and Genetically Obese (ob/ob) Mice

    PubMed Central

    Wang, Xinxia; Feng, Jie; Yu, Caihua; Shen, Qingwu W.; Wang, Yizhen

    2015-01-01

    Obesity may result from altered fatty acid (FA) disposal. Altered FA distribution in obese individuals is poorly understood. Lean wild-type C57BL/6J and obese C57BL/6Job/ob mice received an oral dose of [1-14C]18:1n-9 (oleic acid), and the radioactivity in tissues was evaluated at various time points. The 14C concentration decreased rapidly in gastrointestinal tract but gradually increased and peaked at 96 h in adipose tissue, muscle and skin in lean mice. The 14C concentration was constant in adipose tissue and muscle of obese mice from 4h to 168h. 14C-label content in adipose tissue was significantly affected by genotype, whereas muscle 14C-label content was affected by genotype, time and the interaction between genotype and time. There was higher total 14C retention (47.7%) in obese mice than in lean mice (9.0%) at 168 h (P<0.05). The 14C concentrations in the soleus and gastrocnemius muscle were higher in obese mice than in lean mice (P<0.05). Perirenal adipose tissue contained the highest 14C content in lean mice, whereas subcutaneous adipose tissue (SAT) had the highest 14C content and accounted for the largest proportion of total radioactivity among fat depots in obese mice. More lipid radioactivity was recovered as TAG in SAT from obese mice than from lean mice (P<0.05). Gene expression suggested acyl CoA binding protein and fatty acid binding protein are important for FA distribution in adipose tissue and muscle. The FA distribution in major tissues was altered in ob/ob mice, perhaps contributing to obesity. Understanding the disparity in FA disposal between lean and obese mice may reveal novel targets for the treatment and prevention of obesity. PMID:25826747

  15. Alterations in oral [1-(14)C] 18:1n-9 distribution in lean wild-type and genetically obese (ob/ob) mice.

    PubMed

    Wang, Xinxia; Feng, Jie; Yu, Caihua; Shen, Qingwu W; Wang, Yizhen

    2015-01-01

    Obesity may result from altered fatty acid (FA) disposal. Altered FA distribution in obese individuals is poorly understood. Lean wild-type C57BL/6J and obese C57BL/6Job/ob mice received an oral dose of [1-(14)C]18:1n-9 (oleic acid), and the radioactivity in tissues was evaluated at various time points. The (14)C concentration decreased rapidly in gastrointestinal tract but gradually increased and peaked at 96 h in adipose tissue, muscle and skin in lean mice. The (14)C concentration was constant in adipose tissue and muscle of obese mice from 4 h to 168 h. (14)C-label content in adipose tissue was significantly affected by genotype, whereas muscle (14)C-label content was affected by genotype, time and the interaction between genotype and time. There was higher total (14)C retention (47.7%) in obese mice than in lean mice (9.0%) at 168 h (P<0.05). The (14)C concentrations in the soleus and gastrocnemius muscle were higher in obese mice than in lean mice (P<0.05). Perirenal adipose tissue contained the highest (14)C content in lean mice, whereas subcutaneous adipose tissue (SAT) had the highest (14)C content and accounted for the largest proportion of total radioactivity among fat depots in obese mice. More lipid radioactivity was recovered as TAG in SAT from obese mice than from lean mice (P<0.05). Gene expression suggested acyl CoA binding protein and fatty acid binding protein are important for FA distribution in adipose tissue and muscle. The FA distribution in major tissues was altered in ob/ob mice, perhaps contributing to obesity. Understanding the disparity in FA disposal between lean and obese mice may reveal novel targets for the treatment and prevention of obesity.

  16. Cadmium induced inhibition of autophagy is associated with microtubule disruption and mitochondrial dysfunction in primary rat cerebral cortical neurons.

    PubMed

    Wang, Tao; Wang, Qiwen; Song, Ruilong; Zhang, Yajing; Yang, Jinlong; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Zhu, Jiaqiao; Liu, Zongping

    2016-01-01

    Recent studies have reported that mitochondria serve as direct targets for cadmium- (Cd-) induced neuronal toxicity, which can be attenuated by autophagy. The molecular mechanisms' underlying Cd-induced mitochondrial dysfunction and autophagy in neurons are not known. In this study, we studied the upstream signaling pathways induced by Cd-mediated mitochondrial metabolism alterations using primary rat neuron as a model. We found that Cd induced the destruction of microtubules (MTs), and resulted in tau hyper-phosphorylation and decreased acetylated tubulin levels, which were related to a decrease in mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) levels. As a result of taxol disruption, alterations in macroautophagy, like altered cellular distribution of the autophagy-related protein light chain 3 beta (LC3B) and the expression of Atg5 were found compared with Cd group. We found for the first time that MT disruption induced by Cd reduced the levels of autophagy, leading to mitochondrial dysfunction. These observations suggest new therapeutic strategies aimed to activate or ameliorate pro-survival macroautophagy.

  17. Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective.

    PubMed

    Baltensperger, A P; Huettmann, F

    2015-01-01

    Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future.

  18. Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective

    PubMed Central

    Baltensperger, A. P.; Huettmann, F.

    2015-01-01

    Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future. PMID:26207828

  19. Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective.

    PubMed

    Baltensperger, A P; Huettmann, F

    2015-01-01

    Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future. PMID:26207828

  20. Presence of an extra chromosome alters meiotic double-stranded break repair dynamics and MLH1 foci distribution in human oocytes.

    PubMed

    Robles, P; Roig, I; Garcia, R; Brieño-Enríquez, M; Martin, M; Cabero, Ll; Toran, N; Garcia Caldés, M

    2013-03-01

    Studies performed on human trisomic 21 oocytes have revealed that during meiosis, the three homologues 21 synapse and, in some cases, achieve what looks like a trivalent. This implies that meiotic recombination takes place among the three homologous chromosomes 21, and to some extent, crossovers form between them. To see how meiotic recombination is in the presence of an extra chromosome 21, we analyzed the distribution of three recombination markers (γH2AX, RPA, and MLH1) on trisomic 21 oocytes at pachynema and, in particular, on chromosomes 21. Results clearly show how the presence of an extra chromosome 21 alters meiotic recombination progression, leading to the presence of a higher number of early recombination markers at pachynema. Moreover, the distribution on these chromosomes 21 of some of these markers is different in aneuploid oocytes. Finally, there is a substantial increase in the number of MLH1 foci, a marker of most crossovers in mammals, which is related to the number of synapsed chromosomes in pachynema. Thus, bivalents 21 had fewer MLH1 foci than partial or total trivalents, suggesting a close relationship between synapsis and crossover designation. All of the data presented suggest that the presence of an extra chromosome alters meiotic recombination globally in aneuploid human oocytes. PMID:23283390

  1. Altered distribution of regulatory lymphocytes by oral administration of soy-extracts exerts a hepatoprotective effect alleviating immune mediated liver injury, non-alcoholic steatohepatitis and insulin resistance

    PubMed Central

    Khoury, Tawfik; Ben Ya'acov, Ami; Shabat, Yehudit; Zolotarovya, Lidya; Snir, Ram; Ilan, Yaron

    2015-01-01

    AIM: To determine the immune-modulatory and the hepatoprotective effects of oral administration of two soy extracts in immune mediated liver injury and non-alcoholic steatohepatitis (NASH). METHODS: Two soy extracts, M1 and OS, were orally administered to mice with concanavalin A (ConA) immune-mediated hepatitis, to high-fat diet (HFD) mice and to methionine and choline reduced diet combined with HFD mice. Animals were followed for disease and immune biomarkers. RESULTS: Oral administration of OS and M1 had an additive effect in alleviating ConA hepatitis manifested by a decrease in alanine aminotransferase and aspartate aminotransferase serum levels. Oral administration of the OS and M1 soy derived fractions, ameliorated liver injury in the high fat diet model of NASH, manifested by a decrease in hepatic triglyceride levels, improvement in liver histology, decreased serum cholesterol and triglycerides and improved insulin resistance. In the methionine and choline reduced diet combined with the high fat diet model, we noted a decrease in hepatic triglycerides and improvement in blood glucose levels and liver histology. The effects were associated with reduced serum tumor necrosis factor alpha and alteration of regulatory T cell distribution. CONCLUSION: Oral administration of the combination of OS and M1 soy derived extracts exerted an adjuvant effect in the gut-immune system, altering the distribution of regulatory T cells, and alleviating immune mediated liver injury, hyperlipidemia and insulin resistance. PMID:26139990

  2. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups.

    PubMed

    da Costa, Kerry-Ann; Corbin, Karen D; Niculescu, Mihai D; Galanko, Joseph A; Zeisel, Steven H

    2014-07-01

    Effect alleles (alleles with a polymorphism that is associated with the effect being measured) in a small number of single-nucleotide polymorphisms (SNPs) are known to influence the dietary requirement for choline. In this study, we examined a much larger number of SNPs (n=200) in 10 genes related to choline metabolism for associations with development of organ dysfunction (liver or muscle) when 79 humans were fed a low-choline diet. We confirmed that effect alleles in SNPs such as the C allele of PEMT rs12325817 increase the risk of developing organ dysfunction in women when they consume a diet low in choline, and we identified novel effect alleles, such as the C allele of CHKA SNP rs7928739, that alter dietary choline requirements. When fed a low-choline diet, some people presented with muscle damage rather than liver damage; several effect alleles in SLC44A1 (rs7873937, G allele; rs2771040, G; rs6479313, G; rs16924529, A; and rs3199966, C) and one in CHKB (rs1557502, A) were more common in these individuals. This suggests that pathways related to choline metabolism are more important for normal muscle function than previously thought. In European, Mexican, and Asian Americans, and in individuals of African descent, we examined the prevalence of the effect alleles in SNPs that alter choline requirement and found that they are differentially distributed among people of different ethnic and racial backgrounds. Overall, our study has identified novel genetic variants that modulate choline requirements and suggests that the dietary requirement for choline may be different across racial and ethnic groups.-Da Costa, K.-A., Corbin, K. D., Niculescu, M. D., Galanko, J. A., Zeisel, S. H. Identification of new genetic polymorphisms that alter the dietary requirement for choline and vary in their distribution across ethnic and racial groups.

  3. Alcoholic Liver Disease and the Mitochondrial Ribosome

    PubMed Central

    Cahill, Alan; Sykora, Peter

    2009-01-01

    Summary Chronic alcohol consumption has been shown to severely compromise mitochondrial protein synthesis. Hepatic mitochondria isolated from alcoholic animals contain decreased levels of respiratory complexes and display depressed respiration rates when compared to pair-fed controls. One underlying mechanism for this involves ethanol-elicited alterations in the structural and functional integrity of the mitochondrial ribosome. Ethanol feeding results in ribosomal changes that include decreased sedimentation rates, larger hydrodynamic volumes, increased levels of unassociated subunits and changes in the levels of specific ribosomal proteins. The methods presented in this chapter detail how to isolate mitochondrial ribosomes, determine ribosomal activity, separate ribosomes into nucleic acid and protein, and perform two-dimensional nonequilibrium pH gradient electrophoretic polyacrylamide gel electrophoresis to separate and subsequently identify mitochondrial ribosomal proteins. PMID:18369931

  4. Altered distribution and function of natural killer cells in murine and human Niemann-Pick disease type C1.

    PubMed

    Speak, Anneliese O; Te Vruchte, Danielle; Davis, Lianne C; Morgan, Anthony J; Smith, David A; Yanjanin, Nicole M; Simmons, Louise; Hartung, Ralf; Runz, Heiko; Mengel, Eugen; Beck, Michael; Imrie, Jackie; Jacklin, Elizabeth; Wraith, James E; Hendriksz, Christian; Lachmann, Robin; Cognet, Celine; Sidhu, Rohini; Fujiwara, Hideji; Ory, Daniel S; Galione, Antony; Porter, Forbes D; Vivier, Eric; Platt, Frances M

    2014-01-01

    Niemann-Pick type C (NPC) is a neurodegenerative lysosomal storage disorder caused by defects in the lysosomal proteins NPC1 or NPC2. NPC cells are characterized by reduced lysosomal calcium levels and impaired sphingosine transport from lysosomes. Natural killer (NK) cells kill virally infected/transformed cells via degranulation of lysosome-related organelles. Their trafficking from lymphoid tissues into the circulation is dependent on sphingosine-1-phosphate (S1P) gradients, sensed by S1P receptor 5 (S1P5). We hypothesized that NK-cell function and trafficking could be affected in NPC disease due to the combined effects of the lysosomal calcium defect and sphingosine storage. In an NPC1 mouse model, we found the frequency of NK cells was altered and phenocopied S1P5-deficient mice, consistent with defects in S1P levels. NK cells from NPC1 mice also had a defect in cytotoxicity due to a failure in degranulation of cytotoxic granules, which was associated with reduced lysosomal calcium levels. Affected NPC1 patients and NPC1 heterozygote carriers had reduced NK-cell numbers in their blood and showed similar phenotypic and developmental changes to those observed in the NPC1 mouse. These findings highlight the effects of lysosomal storage on the peripheral immune system.

  5. Mitochondrial dynamics in mammalian health and disease.

    PubMed

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy)