Science.gov

Sample records for alters molecular systems

  1. Molecular and Genomic Alterations in Glioblastoma Multiforme.

    PubMed

    Crespo, Ines; Vital, Ana Louisa; Gonzalez-Tablas, María; Patino, María del Carmen; Otero, Alvaro; Lopes, María Celeste; de Oliveira, Catarina; Domingues, Patricia; Orfao, Alberto; Tabernero, Maria Dolores

    2015-07-01

    In recent years, important advances have been achieved in the understanding of the molecular biology of glioblastoma multiforme (GBM); thus, complex genetic alterations and genomic profiles, which recurrently involve multiple signaling pathways, have been defined, leading to the first molecular/genetic classification of the disease. In this regard, different genetic alterations and genetic pathways appear to distinguish primary (eg, EGFR amplification) versus secondary (eg, IDH1/2 or TP53 mutation) GBM. Such genetic alterations target distinct combinations of the growth factor receptor-ras signaling pathways, as well as the phosphatidylinositol 3-kinase/phosphatase and tensin homolog/AKT, retinoblastoma/cyclin-dependent kinase (CDK) N2A-p16(INK4A), and TP53/mouse double minute (MDM) 2/MDM4/CDKN2A-p14(ARF) pathways, in cells that present features associated with key stages of normal neurogenesis and (normal) central nervous system cell types. This translates into well-defined genomic profiles that have been recently classified by The Cancer Genome Atlas Consortium into four subtypes: classic, mesenchymal, proneural, and neural GBM. Herein, we review the most relevant genetic alterations of primary versus secondary GBM, the specific signaling pathways involved, and the overall genomic profile of this genetically heterogeneous group of malignant tumors.

  2. [Colorectal cancer (CCR): genetic and molecular alterations].

    PubMed

    Juárez-Vázquez, Clara Ibet; Rosales-Reynoso, Mónica Alejandra

    2014-01-01

    The aim of this review is to present a genetic and molecular overview of colorectal carcinogenesis (sporadic and hereditary origin) as a multistage process, where there are a number of molecular mechanisms associated with the development of colorectal cancer and genomic instability that allows the accumulation of mutations in proto-oncogenes and tumor suppressor genes, chromosomal instability, and methylation and microsatellite instability, and the involvement of altered expression of microRNAs' prognosis factors.

  3. Molecular multiproxy analysis of ancient root systems suggests strong alteration of deep subsoil organic matter by rhizomicrobial activity

    NASA Astrophysics Data System (ADS)

    Gocke, Martina; Huguet, Arnaud; Derenne, Sylvie; Kolb, Steffen; Wiesenberg, Guido L. B.

    2013-04-01

    Roots have a high potential capacity to store large amounts of CO2 in the subsoil. However, associated with rooting, microorganisms enter the subsoil and might contribute to priming effects of carbon mineralisation in the microbial hotspot rhizosphere. Although these processes are well known for recent surface soils, it remains questionable, if and how microorganisms contribute to priming effects in the subsoil and if these effects can be traced after the roots' lifetime. The current study implies several state-of-the-art techniques like DNA and lipid molecular proxies to trace remains of microbial biomass in ancient root systems. These can provide valuable information if parts of the root and rhizomicrobial biomass are preserved, e.g. by encrustation with secondary carbonate during the root's lifespan or shortly thereafter. At the Late Pleistocene loess-paleosol sequence near Nussloch (SW Germany), rhizoliths (calcified roots) occur highly abundant in the deep subsoil from 1 to 9 m depth and below. They were formed by Holocene woody vegetation. Their size can account for up to several cm in diameter and up to > 1 m length. Rhizoliths and surrounding sediment with increasing distances of up to 10 cm, as well as reference loess without visible root remains were collected at several depth intervals. Samples were analysed for n-fatty acids (FAs) and glycerol dialkyl glycerol tetraethers (GDGTs; membrane lipids from Archaea and some Bacteria), as well as structural diversity based on the RNA gene of the prokaryotic ribosome subunit 16S (16S rRNA). GDGT represent organic remains from microbial biomass, whereas FA comprise both microbial remains and degradation products. 16S rRNA indicates the presence of both living cells and/or cell fragments. Despite the general low RNA contents in the sample set, results pointed to a much higher abundance of bacterial compared to archaeal RNA. The latter occured in notable amounts only in some rhizoliths. This was in part enforced by

  4. [Molecular alterations in melanoma and targeted therapies].

    PubMed

    Mourah, Samia; Lebbé, Céleste

    2014-12-01

    Melanoma is a skin cancer whose incidence is increasing steadily. The recent discovery of frequent and recurrent genetic alterations in cutaneous melanoma allowed a molecular classification of tumors into distinct subgroups, and paved the way for targeted therapy. Several signaling pathways are involved in the progression of this disease with oncogenic mutations affecting signaling pathways: MAPK, PI3K, cAMP and cyclin D1/CDK4. In each of these pathways, several potential therapeutic targets have been identified and specific inhibitors have already been developed and have shown clinical efficacy. The use of these inhibitors is often conditioned by tumors genotyping. In France, melanomas genotyping is supported by the platforms of the National Cancer Institute (INCA), which implemented a national program ensuring access to innovation for personalized medicine. The identification of new targets in melanoma supplies a very active dynamic development of innovative molecules contributing to changing the therapeutic landscape of this pathology.

  5. [Molecular alterations in melanoma and targeted therapies].

    PubMed

    Mourah, Samia; Lebbé, Céleste

    2014-12-01

    Melanoma is a skin cancer whose incidence is increasing steadily. The recent discovery of frequent and recurrent genetic alterations in cutaneous melanoma allowed a molecular classification of tumors into distinct subgroups, and paved the way for targeted therapy. Several signaling pathways are involved in the progression of this disease with oncogenic mutations affecting signaling pathways: MAPK, PI3K, cAMP and cyclin D1/CDK4. In each of these pathways, several potential therapeutic targets have been identified and specific inhibitors have already been developed and have shown clinical efficacy. The use of these inhibitors is often conditioned by tumors genotyping. In France, melanomas genotyping is supported by the platforms of the National Cancer Institute (INCA), which implemented a national program ensuring access to innovation for personalized medicine. The identification of new targets in melanoma supplies a very active dynamic development of innovative molecules contributing to changing the therapeutic landscape of this pathology. PMID:25776766

  6. Molecular gearing systems

    DOE PAGES

    Gakh, Andrei A.; Sachleben, Richard A.; Bryan, Jeff C.

    1997-11-01

    The race to create smaller devices is fueling much of the research in electronics. The competition has intensified with the advent of microelectromechanical systems (MEMS), in which miniaturization is already reaching the dimensional limits imposed by physics of current lithographic techniques. Also, in the realm of biochemistry, evidence is accumulating that certain enzyme complexes are capable of very sophisticated modes of motion. Complex synergistic biochemical complexes driven by sophisticated biomechanical processes are quite common. Their biochemical functions are based on the interplay of mechanical and chemical processes, including allosteric effects. In addition, the complexity of this interplay far exceeds thatmore » of typical chemical reactions. Understanding the behavior of artificial molecular devices as well as complex natural molecular biomechanical systems is difficult. Fortunately, the problem can be successfully resolved by direct molecular engineering of simple molecular systems that can mimic desired mechanical or electronic devices. These molecular systems are called technomimetics (the name is derived, by analogy, from biomimetics). Several classes of molecular systems that can mimic mechanical, electronic, or other features of macroscopic devices have been successfully synthesized by conventional chemical methods during the past two decades. In this article we discuss only one class of such model devices: molecular gearing systems.« less

  7. Molecular gearing systems

    SciTech Connect

    Gakh, Andrei A.; Sachleben, Richard A.; Bryan, Jeff C.

    1997-11-01

    The race to create smaller devices is fueling much of the research in electronics. The competition has intensified with the advent of microelectromechanical systems (MEMS), in which miniaturization is already reaching the dimensional limits imposed by physics of current lithographic techniques. Also, in the realm of biochemistry, evidence is accumulating that certain enzyme complexes are capable of very sophisticated modes of motion. Complex synergistic biochemical complexes driven by sophisticated biomechanical processes are quite common. Their biochemical functions are based on the interplay of mechanical and chemical processes, including allosteric effects. In addition, the complexity of this interplay far exceeds that of typical chemical reactions. Understanding the behavior of artificial molecular devices as well as complex natural molecular biomechanical systems is difficult. Fortunately, the problem can be successfully resolved by direct molecular engineering of simple molecular systems that can mimic desired mechanical or electronic devices. These molecular systems are called technomimetics (the name is derived, by analogy, from biomimetics). Several classes of molecular systems that can mimic mechanical, electronic, or other features of macroscopic devices have been successfully synthesized by conventional chemical methods during the past two decades. In this article we discuss only one class of such model devices: molecular gearing systems.

  8. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.

  9. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573

  10. Sex Speeds Adaptation by Altering the Dynamics of Molecular Evolution

    PubMed Central

    McDonald, Michael J.; Rice, Daniel P.; Desai, Michael M.

    2016-01-01

    Sex and recombination are pervasive throughout nature despite their substantial costs1. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology2,3. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation4. Theory has proposed a number of distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect)5,6 or by separating them from deleterious load (the ruby in the rubbish effect)7,8. Previous experiments confirm that sex can increase the rate of adaptation9–17, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here, we present the first comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573

  11. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Hansen, Christian T.; Goldhammer, Tobias; Bach, Wolfgang; Dittmar, Thorsten

    2016-02-01

    Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural high-temperature hydrothermal systems, DOM is almost completely removed, but the mechanism and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100 and 380 °C over the course of two weeks in artificial seawater, and was then characterised on a molecular level via ultrahigh-resolution Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied. Higher molecular weight and more oxygen rich compounds were preferentially removed, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly altered samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H/C ratio (>1.5). Our results suggest that abiotic hydrothermal alteration of SPE-DOM may already occur at temperatures above 68 °C. Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.

  12. Prognostic Significance of the European LeukemiaNet Standardized System for Reporting Cytogenetic and Molecular Alterations in Adults With Acute Myeloid Leukemia

    PubMed Central

    Mrózek, Krzysztof; Marcucci, Guido; Nicolet, Deedra; Maharry, Kati S.; Becker, Heiko; Whitman, Susan P.; Metzeler, Klaus H.; Schwind, Sebastian; Wu, Yue-Zhong; Kohlschmidt, Jessica; Pettenati, Mark J.; Heerema, Nyla A.; Block, AnneMarie W.; Patil, Shivanand R.; Baer, Maria R.; Kolitz, Jonathan E.; Moore, Joseph O.; Carroll, Andrew J.; Stone, Richard M.; Larson, Richard A.; Bloomfield, Clara D.

    2012-01-01

    Purpose To evaluate the prognostic significance of the international European LeukemiaNet (ELN) guidelines for reporting genetic alterations in acute myeloid leukemia (AML). Patients and Methods We analyzed 1,550 adults with primary AML, treated on Cancer and Leukemia Group B first-line trials, who had pretreatment cytogenetics and, for cytogenetically normal patients, mutational status of NPM1, CEBPA, and FLT3 available. We compared complete remission (CR) rates, disease-free survival (DFS), and overall survival (OS) among patients classified into the four ELN genetic groups (favorable, intermediate-I, intermediate-II, adverse) separately for 818 younger (age < 60 years) and 732 older (age ≥ 60 years) patients. Results The percentages of younger versus older patients in the favorable (41% v 20%; P < .001), intermediate-II (19% v 30%; P < .001), and adverse (22% v 31%; P < .001) genetic groups differed. The favorable group had the best and the adverse group the worst CR rates, DFS, and OS in both age groups. Both intermediate groups had significantly worse outcomes than the favorable but better than the adverse group. Intermediate-I and intermediate-II groups in older patients had similar outcomes, whereas the intermediate-II group in younger patients had better OS but not better CR rates or DFS than the intermediate-I group. The prognostic significance of ELN classification was confirmed by multivariable analyses. For each ELN group, older patients had worse outcomes than younger patients. Conclusion The ELN classification clearly separates the genetic groups by outcome, supporting its use for risk stratification in clinical trials. Because they have different proportions of genetic alterations and outcomes, younger and older patients should be reported separately when using the ELN classification. PMID:22987078

  13. Genetic/molecular alterations of meningiomas and the signaling pathways targeted

    PubMed Central

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Ruiz, Laura; Miranda, David; Sousa, Pablo; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2015-01-01

    Meningiomas are usually considered to be benign central nervous system tumors; however, they show heterogenous clinical, histolopathological and cytogenetic features associated with a variable outcome. In recent years important advances have been achieved in the identification of the genetic/molecular alterations of meningiomas and the signaling pathways involved. Thus, monosomy 22, which is often associated with mutations of the NF2 gene, has emerged as the most frequent alteration of meningiomas; in addition, several other genes (e.g. AKT1, KLF4, TRAF7, SMO) and chromosomes have been found to be recurrently altered often in association with more complex karyotypes and involvement of multiple signaling pathways. Here we review the current knowledge about the most relevant genes involved and the signaling pathways targeted by such alterations. In addition, we summarize those proposals that have been made so far for classification and prognostic stratification of meningiomas based on their genetic/genomic features. PMID:25965831

  14. Expression alterations define unique molecular characteristics of spinal ependymomas

    PubMed Central

    Lourdusamy, Anbarasu; Rahman, Ruman; Grundy, Richard G.

    2015-01-01

    Ependymomas are glial tumors that originate in either intracranial or spinal regions. Although tumors from different regions are histologically similar, they are biologically distinct. We therefore sought to identify molecular characteristics of spinal ependymomas (SEPN) in order to better understand the disease biology of these tumors. Using gene expression profiles of 256 tumor samples, we identified increased expression of 1,866 genes in SEPN when compared to intracranial ependymomas. These genes are mainly related to anterior/posterior pattern specification, response to oxidative stress, glial cell differentiation, DNA repair, and PPAR signalling, and also significantly enriched with cellular senescence genes (P = 5.5 × 10−03). In addition, a high number of significantly down-regulated genes in SEPN are localized to chromosome 22 (81 genes from chr22: 43,325,255 – 135,720,974; FDR = 1.77 × 10−23 and 22 genes from chr22: 324,739 – 32,822,302; FDR = 2.07 × 10−09) including BRD1, EP300, HDAC10, HIRA, HIC2, MKL1, and NF2. Evaluation of NF2 co-expressed genes further confirms the enrichment of chromosome 22 regions. Finally, systematic integration of chromosome 22 genes with interactome and NF2 co-expression data identifies key candidate genes. Our results reveal unique molecular characteristics of SEPN such as altered expression of cellular senescence and chromosome 22 genes. PMID:25909290

  15. Clustering of Molecular Alterations in Gastroesophageal Carcinomas1

    PubMed Central

    Koon, Natalie; Zaika, Alexander; Moskaluk, Christopher A; Frierson, Henry F; Knuutila, Sakari; Powell, Steven M; El-Rifai, Wa'el

    2004-01-01

    Abstract Gene expression levels are regulated at many levels. Integration of genome-wide analyses for the study of DNA and RNA provides a unique tool to detect genetic alterations in the cancer genome. In this study, we generated and integrated DNA amplification data from comparative genomic hybridization (CGH) and serial analyses of gene expression (SAGE) in order to obtain a molecular profile of gastroesophageal junction (GEJ) carcinomas. DNA amplifications mapped to specific chromosomal regions and were frequently seen at 1q, 4q, 5q, 6p, 7p, 8q, 17q, and 20q. Using SAGE, we obtained over 156,432 tags from GEJ adenocarcinomas and normal gastric mucosa. These tags were assigned to UniGene clusters. Chromosomal positions for overexpressed genes were obtained to produce a GEJ carcinoma transcriptome map. A total of 123 genes was significantly overexpressed (more than fivefold; P < .01) in one or more SAGE libraries. This gene overexpression map was integrated and compared to the chromosomal CGH ideogram. Several chromosomal arms that had frequent DNA amplifications showed frequent gene expression alterations such as chromosomes 1 (15 genes), 2 (9 genes), 6 (6 genes), 11 (6 genes), 12 (8 genes), and 17 (13 genes). Despite the relatively large DNA amplification regions, overexpressed genes frequently mapped and clustered to small chromosomal regions at early-replicating (Giemsa light) bands such as 1q21.3 (nine genes), 6p21.3 (five genes), and 17q21 (eight genes). These results provide a comprehensive tool to search for DNA amplifications and overexpressed genes in GEJ carcinoma. The observed phenomenon of the presence of large amplification areas, yet clustering of overexpressed genes to relatively small loci, may suggest a high organization of chromatin and cancer-related genes in the nucleus. PMID:15140403

  16. Sulfide solubilities in Alteration-controlled Systems

    USGS Publications Warehouse

    Hemley, J.J.; Meyer, C.; Hodgson, C.J.; Thatcher, A.B.

    1967-01-01

    Solubilities of sphalerite (ZnS) and galena (PbS) were determined at 300?? to 500??C and 1000 bars total pressure in a chemical environment buffered by silicate mineral equilibria. Chloride solutions and muscovite-bearing assemblages characteristic of hydrothermal wall-rock alteration were used; weak acidities at temperature were therefore involved. The metal concentrations encountered tended to be higher than those observed in high bisulfide-H2S systems at neutral to weakly basic pH used in most previous experimentation; the chemical conditions of the work, although not completely satisfactory, are geologically more realistic than previous experimentation done in the basic-pH region.

  17. Genetic and molecular alterations associated with oral squamous cell cancer (Review).

    PubMed

    Pérez-Sayáns, Mario; Somoza-Martín, José M; Barros-Angueira, Francisco; Reboiras-López, María D; Gándara Rey, José M; García-García, Abel

    2009-12-01

    The development of oral squamous cell cancer (OSCC) is a multistep process involving the accumulation of multiple genetic alterations modulated by genetic pre-disposition and environmental influences such as tobacco and alcohol use, chronic inflammation, and viral infections. All of these factors can lead to a wide range of genetic and molecular alterations that can be detected using a range of molecular studies. The alterations mostly affect two large groups of genes: oncogenes and tumor suppressor genes, which can be either inactivated or overexpressed through mutations, loss of heterozygosity, deletions, or epigenetic modifications such as methylation. Other molecules that are closely associated with tumor pathogenesis and prognosis also exist and warrant further study. Important advances in molecular biology are helping to shed light on oral cancer and thus aiding in the early diagnosis and development of new personalized treatment approaches. The purpose of the review is to explore the genetic and molecular alterations associated with OSCC.

  18. 32 CFR 310.33 - New and altered record systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alterations. (ii) Increases in numbers of individuals due to normal growth are not considered alterations... significantly the scope of population covered (for example, expansion of a system of records covering a...

  19. Chopped molecular beam multiplexing system

    NASA Technical Reports Server (NTRS)

    Adams, Billy R. (Inventor)

    1986-01-01

    The integration of a chopped molecular beam mass spectrometer with a time multiplexing system is described. The chopping of the molecular beam is synchronized with the time intervals by a phase detector and a synchronous motor. Arithmetic means are generated for phase shifting the chopper with respect to the multiplexer. A four channel amplifier provides the capacity to independently vary the baseline and amplitude in each channel of the multiplexing system.

  20. Identification of new molecular alterations in Fatal Familial Insomnia.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatal familial insomnia (FFI) is an autosomal dominant prion disease caused by a D178N mutation in PRNP in combination with methionine (Met) at codon 129 in the mutated allele of the same gene (D178N-129M haplotype). The present study analyzes pathological and molecular features in seven FFI cases c...

  1. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows inventory by difference'' for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  2. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-03-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows ``inventory by difference`` for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  3. Molecular and Cellular Alterations in Down Syndrome: Toward the Identification of Targets for Therapeutics

    PubMed Central

    Créau, Nicole

    2012-01-01

    Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome phenotypes. PMID:22848846

  4. Conformational Transitions in Molecular Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Janke, W.

    2008-11-01

    Proteins are the "work horses" in biological systems. In almost all functions specific proteins are involved. They control molecular transport processes, stabilize the cell structure, enzymatically catalyze chemical reactions; others act as molecular motors in the complex machinery of molecular synthetization processes. Due to their significance, misfolds and malfunctions of proteins typically entail disastrous diseases, such as Alzheimer's disease and bovine spongiform encephalopathy (BSE). Therefore, the understanding of the trinity of amino acid composition, geometric structure, and biological function is one of the most essential challenges for the natural sciences. Here, we glance at conformational transitions accompanying the structure formation in protein folding processes.

  5. Hypertension: renin-angiotensin-aldosterone system alterations.

    PubMed

    Te Riet, Luuk; van Esch, Joep H M; Roks, Anton J M; van den Meiracker, Anton H; Danser, A H Jan

    2015-03-13

    Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension. PMID:25767283

  6. Genetic and Epigenetic Biomarkers of Molecular Alterations in Oral Carcinogenesis.

    PubMed

    Dumache, Raluca; Rogobete, Alexandru Florin; Andreescu, Nicoleta; Puiu, Maria

    2015-01-01

    Worldwide, oral cancers represent the 6th most common type of cancer. Oral squamous cell carcinoma (OSCC), which is the most common type of oral cancer, is present in about 90% of the patients with this malignancy. OSCC presents a survival rate up to 80%, if it is detected in an early stage (T1), but if detected at later stages (T3 - T4) the survival rate decreases to 20 - 30%. Due to these survival rates, it is obvious that there is an urgent need to introduce new molecular biomarkers for the early, noninvasive diagnosis of oral cancers from saliva. These biomarkers will aid in increasing the survival rate of the patients for the long-term. MicroRNAs are part of a class of small, non-coding RNAs that contain 19 - 23 nucleotides. MicroRNAs play an important role in the regulation of biochemical mechanisms, cell proliferation, and other cellular mechanisms in the human body. Recently, due to the developments in the field of molecular genetics, salivary microRNAs became important biomarkers in early detection and monitoring of oral cancers by noninvasive methods. We want to present in this review the most important genetic and epigenetic biomarkers involved in oral carcinogenesis, focusing especially on the salivary microRNAs as biomarkers in early diagnosis of OSCC. PMID:26642697

  7. Molecular links between early energy metabolism alterations and Alzheimer's disease.

    PubMed

    Pedros, Ignacio; Patraca, Ivan; Martinez, Nohora; Petrov, Dmitry; Sureda, Francesc X; Auladell, Carme; Beas-Zarate, Carlos; Folch, Jaume

    2016-01-01

    Recent studies suggest that the neurobiology of Alzheimer's disease (AD) pathology could not be explained solely by an increase in beta-amyloid levels. In fact, success with potential therapeutic drugs that inhibit the generation of beta amyloid has been low. Therefore, due to therapeutic failure in recent years, the scientists are looking for alternative hypotheses to explain the causes of the disease and the cognitive loss. Accordingly, alternative hypothesis propose a link between AD and peripheral metabolic alteration. Then, we review in depth changes related to insulin signalling and energy metabolism in the context of the APPSwe/PS1dE9 (APP/PS1) mice model of AD. We show an integrated view of the changes that occur in the early stages of the amyloidogenic process in the APP/PS1 double transgenic mice model. These early changes affect several key metabolic processes related to glucose uptake and insulin signalling, cellular energy homeostasis, mitochondrial biogenesis and increased Tau phosphorylation by kinase molecules like mTOR and Cdk5.

  8. Antifreeze Glycoproteins Alter the Molecular Scale Surface Morphology of Ice

    NASA Astrophysics Data System (ADS)

    Zepeda, Salvador; Orme, Christine A.; Qiu, Roger; Yeh, Yin

    2003-03-01

    Trematomas borchgrevinki live in the harsh super-cooled waters of the Antarctic. Critical to their survival are antifreeze glycoproteins (AFGPs) that further suppress the freezing temperature of their blood serum in addition to the colligative action of salts found in the ocean. These proteins also modify ice crystal growth habits as well as inhibit recrystallization in polycrystalline ice. To date many other types of antifreeze proteins have been identified in cold weather insects, plants, and other fish, but the exact mechanism is not entirely understood. The mechanism is non-colligative since only a few mg/ml are required for ice crystal growth inhibition and a non-equilibrium melting/freezing point hysteresis is observed. Atomic force microscopy (AFM) can yield a wealth of surface information that can reveal molecular scale information of biomineralization processes. We use AFM to directly probe the surface of ice crystals grown from the vapor in the pure phase and in the presence of growth inhibitors/modifiers, AFGPs. Results show that the AFGPs heavily pin the surface of ice.

  9. Genetically modified animal models recapitulating molecular events altered in human hepatocarcinogenesis.

    PubMed

    Sánchez, Aránzazu; Fabregat, Isabel

    2009-04-01

    New advancements have been made in recent years in the understanding of the molecular mechanisms that govern human liver tumorigenesis. Experimental animal models have been widely used, especially mouse models. In this review we highlight some of the genetically engineered mouse models that have proved to be excellent tools to study the intracellular signalling pathways altered in hepatocarcinogenesis and establish potential correlations with data from humans, with special focus on hepatocellular carcinoma (HCC), the most common type of primary liver cancer. Information obtained from these animal models will help to design future therapeutic approaches to HCC, particularly those that explore drugs that specifically target the altered molecular pathways.

  10. Chronic mild stress alters circadian expressions of molecular clock genes in the liver.

    PubMed

    Takahashi, Kei; Yamada, Tetsuya; Tsukita, Sohei; Kaneko, Keizo; Shirai, Yuta; Munakata, Yuichiro; Ishigaki, Yasushi; Imai, Junta; Uno, Kenji; Hasegawa, Yutaka; Sawada, Shojiro; Oka, Yoshitomo; Katagiri, Hideki

    2013-02-01

    Chronic stress is well known to affect metabolic regulation. However, molecular mechanisms interconnecting stress response systems and metabolic regulations have yet to be elucidated. Various physiological processes, including glucose/lipid metabolism, are regulated by the circadian clock, and core clock gene dysregulation reportedly leads to metabolic disorders. Glucocorticoids, acting as end-effectors of the hypothalamus-pituitary-adrenal (HPA) axis, entrain the circadian rhythms of peripheral organs, including the liver, by phase-shifting core clock gene expressions. Therefore, we examined whether chronic stress affects circadian expressions of core clock genes and metabolism-related genes in the liver using the chronic mild stress (CMS) procedure. In BALB/c mice, CMS elevated and phase-shifted serum corticosterone levels, indicating overactivation of the HPA axis. The rhythmic expressions of core clock genes, e.g., Clock, Npas2, Bmal1, Per1, and Cry1, were altered in the liver while being completely preserved in the hypothalamic suprachiasmatic nuculeus (SCN), suggesting that the SCN is not involved in alterations in hepatic core clock gene expressions. In addition, circadian patterns of glucose and lipid metabolism-related genes, e.g., peroxisome proliferator activated receptor (Ppar) α, Pparγ-1, Pparγ-coactivator-1α, and phosphoenolepyruvate carboxykinase, were also disturbed by CMS. In contrast, in C57BL/6 mice, the same CMS procedure altered neither serum corticosterone levels nor rhythmic expressions of hepatic core clock genes and metabolism-related genes. Thus, chronic stress can interfere with the circadian expressions of both core clock genes and metabolism-related genes in the liver possibly involving HPA axis overactivation. This mechanism might contribute to metabolic disorders in stressful modern societies.

  11. Molecular pathways associated with transcriptional alterations in hyperparathyroidism

    PubMed Central

    LEE, FANG; LEE, JIE-JEN; JAN, WOAN-CHING; WU, CHIH-JEN; CHEN, HAN-HSIANG; CHENG, SHIH-PING

    2016-01-01

    Hyperparathyroidism is characterized by the oversecretion of parathyroid hormone biochemically and increased cell proliferation histologically. Primary and secondary hyperparathyroidism exhibit distinct pathophysiology but share certain common microscopic features. The present study performed the first genome-wide expression analysis directly comparing the expression profile of primary and secondary hyperparathyroidism. Microarray gene expression analyses were performed in parathyroid tissues from 2 primary hyperparathyroidism patients and 3 secondary hyperparathyroidism patients. Unsupervised hierarchical clustering analysis identified two natural subgroups containing different types of hyperparathyroidism. Combined with additional data extracted from a publicly available database, a meta-signature was constructed to represent an intersection of two sets of differential expression profile. Multiple pathways were identified that are aberrantly regulated in hyperparathyroidism. In primary hyperparathyroidism, dysregulated pathways included cell adhesion molecules, peroxisome proliferator-activated receptor signaling pathway, and neuroactive ligand-receptor interaction. Pathways implicated in secondary hyperparathyroidism included tryptophan metabolism, tight junctions, renin-angiotensin system, steroid hormone biosynthesis, and O-glycan biosynthesis. The present study demonstrates that different pathophysiology is associated with differential gene profiling in hyperparathyroidism. Several pathways are involved in parathyroid dysregulation and may be future targets for therapeutic intervention. PMID:27347190

  12. An antilock molecular braking system.

    PubMed

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles. PMID:22853709

  13. Chronic ethanol consumption alters the selective usage of phosphatidylethanolamine molecular species by methyltransferases

    SciTech Connect

    Ellingson, J.S.; Pukys, T.; Rubin, E. )

    1992-01-01

    The authors have examined the effects of chronic ethanol consumption on phospholipid methyltransferases, which may play a special role by synthesizing phosphatidylcholine (PC) molecules containing predominantly polyunsaturated fatty acids. Rat liver microsomes from adenosylmethionine to convert endogenous phoshatidylethanolamine (PE) to radiolabeled PC, which was separated into its individual molecular species by reversed-phase HPLC. To assess the selective usage of PE molecular species for methylation, the authors determined the mole % of the PE molecular species in microsomes from control and ethanol-fed rats. Chronic ethanol consumption increased the selective usage of phospholipid molecular species containing palmitic acid combined with arachidonic acid or docosahexaenoic acid, whereas it did not affect the use of the corresponding stearic acid species. These results suggest that the long term interference with cellular physiology by altering the metabolism of a specific metabolic pool of molecular species is a mechanism by which chronic ethanol consumption could exert adverse effects of the liver.

  14. A mouse model of anxiety molecularly characterized by altered protein networks in the brain proteome.

    PubMed

    Szego, Eva M; Janáky, Tamás; Szabó, Zoltán; Csorba, Attila; Kompagne, Hajnalka; Müller, Géza; Lévay, György; Simor, Attila; Juhász, Gábor; Kékesi, Katalin A

    2010-02-01

    Recently, several attempts have been made to describe changes related to certain anxiety states in the proteome of experimental animal models. However, these studies are restricted by limitations regarding the number and correct identification of separated proteins. Moreover, the application of a systems biology approach to discover the molecular mechanisms of anxiety requires genetically homogenous inbred animal models. Therefore, we developed a novel mouse model of anxiety using a combination of crossbreeding (inbred for 35 generations) and behavioral selection. We found significant changes in 82 proteins in the total brain proteome compared to the control proteome. Thirty-four of these proteins had been previously identified in other anxiety, depression or repeated psychosocial stress studies. The identified proteins are associated with different cellular functions, including synaptic transmission, metabolism, proteolysis, protein biosynthesis and folding, cytoskeletal proteins, brain development and neurogenesis, oxidative stress, signal transduction. Our proteomics data suggest that alterations in serotonin receptor-associated proteins, in the carbohydrate metabolism, in the cellular redox system and in synaptic docking are all involved in anxiety.

  15. General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis

    PubMed Central

    Brown, Emery N.; Purdon, Patrick L.; Van Dort, Christa J.

    2011-01-01

    Placing a patient in a state of general anesthesia is crucial for safely and humanely performing most surgical and many nonsurgical procedures. How anesthetic drugs create the state of general anesthesia is considered a major mystery of modern medicine. Unconsciousness, induced by altered arousal and/or cognition, is perhaps the most fascinating behavioral state of general anesthesia. We perform a systems neuroscience analysis of the altered arousal states induced by five classes of intravenous anesthetics by relating their behavioral and physiological features to the molecular targets and neural circuits at which these drugs are purported to act. The altered states of arousal are sedation-unconsciousness, sedation-analgesia, dissociative anesthesia, pharmaco-logic non-REM sleep, and neuroleptic anesthesia. Each altered arousal state results from the anesthetic drugs acting at multiple targets in the central nervous system. Our analysis shows that general anesthesia is less mysterious than currently believed. PMID:21513454

  16. Physiological and Molecular Assessment of Altered Expression of Hsc70-1 in Arabidopsis. Evidence for Pleiotropic Consequences1

    PubMed Central

    Sung, Dong Yul; Guy, Charles L.

    2003-01-01

    Hsp70s function as molecular chaperones. The protective chaperone activities of hsp70 help to confer tolerance to heat, glucose deprivation, and drought. Overexpression of hsp70s in many organisms correlates with enhanced thermotolerance, altered growth, and development. To better understand the roles of hsp70 proteins in Arabidopsis, the molecular and physiological consequences of altered expression of the major heat shock cognate, Hsc70-1, were analyzed. Extensive efforts to achieve underexpression of Hsc70-1 mRNA using a full-length antisense cDNA resulted in no viable transgenic plants, suggesting that reduced expression is lethal. Constitutive overexpression of Hsc70-1 also appeared to be deleterious to viability, growth, and development because fewer transformants were recovered, and most were dwarfed with altered root systems. Despite being dwarfed, the overexpression plants progressed normally through four selected developmental stages. Heat treatment revealed that Hsc70-1 overexpression plants were more tolerant to heat shock (44°C for 10 min). The elevated basal levels of HSC70-1 in transgenic plants led to delayed heat shock response of several heat shock genes. The data in this study suggest that tight regulation of Hsc70-1 expression is critical for the viability of Arabidopsis and that the functions of HSC70-1 contribute to optimum growth, development, thermotolerance, and regulation of the heat shock response. PMID:12805626

  17. Molecular Spectroscopy of Living Systems

    NASA Astrophysics Data System (ADS)

    Cheng, Ji-Xin

    2016-06-01

    Molecular spectroscopy has been a powerful tool in the study of molecules in gas phase, condensed phase, and at interfaces. The transition from in vitro spectroscopy to spectroscopic imaging of living systems is opening new opportunities to reveal cellular machinery and to enable molecule-based diagnosis (Science 2015, 350: 1054). Such a transition involves more than a simple combination of spectrometry and microscopy. In this presentation, I will discuss the most recent efforts that have pushed the physical limits of spectroscopic imaging in terms of spectral acquisition speed, detection sensitivity, spatial resolution and imaging depth. I will further highlight significant applications in functional analysis of single cells and in label-free detection of diseases.

  18. Molecular and Structural Basis of Inner Core Lipopolysaccharide Alterations in Escherichia coli

    PubMed Central

    Klein, Gracjana; Müller-Loennies, Sven; Lindner, Buko; Kobylak, Natalia; Brade, Helmut; Raina, Satish

    2013-01-01

    It is well established that lipopolysaccharide (LPS) often carries nonstoichiometric substitutions in lipid A and in the inner core. In this work, the molecular basis of inner core alterations and their physiological significance are addressed. A new inner core modification of LPS is described, which arises due to the addition of glucuronic acid on the third heptose with a concomitant loss of phosphate on the second heptose. This was shown by chemical and structural analyses. Furthermore, the gene whose product is responsible for the addition of this sugar was identified in all Escherichia coli core types and in Salmonella and was designated waaH. Its deduced amino acid sequence exhibits homology to glycosyltransferase family 2. The transcription of the waaH gene is positively regulated by the PhoB/R two-component system in a growth phase-dependent manner, which is coordinated with the transcription of the ugd gene explaining the genetic basis of this modification. Glucuronic acid modification was observed in E. coli B, K12, R2, and R4 core types and in Salmonella. We also show that the phosphoethanolamine (P-EtN) addition on heptose I in E. coli K12 requires the product of the ORF yijP, a new gene designated as eptC. Incorporation of P-EtN is also positively regulated by PhoB/R, although it can occur at a basal level without a requirement for any regulatory inducible systems. This P-EtN modification is essential for resistance to a variety of factors, which destabilize the outer membrane like the addition of SDS or challenge to sublethal concentrations of Zn2+. PMID:23372159

  19. Reactions of small molecular systems

    SciTech Connect

    Wittig, C.

    1993-12-01

    This DOE program remains focused on small molecular systems relevant to combustion. Though a number of experimental approaches and machines are available for this research, the authors` activities are centered around the high-n Rydberg time-of-flight (HRTOF) apparatus in this laboratory. One student and one postdoc carry out experiments with this machine and also engage in small intra-group collaborations involving shared equipment. This past year was more productive than the previous two, due to the uninterrupted operation of the HRTOF apparatus. Results were obtained with CH{sub 3}OH, CH{sub 3}SH, Rg-HX complexes, HCOOH, and their deuterated analogs where appropriate. One paper is in print, three have been accepted for publication, and one is under review. Many preliminary results that augur well for the future were obtained with other systems such as HNO{sub 3}, HBr-HI complexes, toluene, etc. Highlights from the past year are presented below that display some of the features of this program.

  20. Mephedrone alters basal ganglia and limbic dynorphin systems.

    PubMed

    German, Christopher L; Alburges, Mario E; Hoonakker, Amanda J; Fleckenstein, Annette E; Hanson, Glen R

    2014-08-25

    Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use. Dynorphin, an opioid neuropeptide and kappa receptor agonist, causes dysphoria and aversion to drug consumption through signaling within the basal ganglia and limbic systems, which is affected by stimulants. This study evaluated how mephedrone alters basal ganglia and limbic system dynorphin content, and the role of DA signaling in these changes. Repeated mephedrone administrations (4 × 25 mg/kg/injection, 2-h intervals) selectively increased dynorphin content throughout the dorsal striatum and globus pallidus, decreased dynorphin content within the frontal cortex, and did not alter dynorphin content within most limbic system structures. Pretreatment with D1 -like (SCH-23380) or D2 -like (eticlopride) antagonists blocked mephedrone-induced changes in dynorphin content in most regions examined, indicating altered dynorphin activity is a consequence of excessive DA signaling. Synapse, 2014. © 2014 Wiley Periodicals, Inc.

  1. Mephedrone alters basal ganglia and limbic dynorphin systems

    PubMed Central

    German, Christopher L.; Alburges, Mario E.; Hoonakker, Amanda J.; Fleckenstein, Annette E.; Hanson, Glen R.

    2014-01-01

    Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use. Dynorphin, an opioid neuropeptide and kappa receptor agonist, causes dysphoria and aversion to drug consumption through signaling within the basal ganglia and limbic systems, which is affected by stimulants. This study evaluated how mephedrone alters basal ganglia and limbic system dynorphin content, and the role of DA signaling in these changes. Repeated mephedrone administrations (4 × 25 mg/kg/injection, 2-h intervals) selectively increased dynorphin content throughout the dorsal striatum and globus pallidus, decreased dynorphin content within the frontal cortex, and did not alter dynorphin content within most limbic system structures. Pre-treatment with D1-like (SCH-23380) or D2-like (eticlopride) antagonists blocked mephedrone-induced changes in dynorphin content in most regions examined, indicating altered dynorphin activity is a consequence of excessive DA signaling. PMID:25155699

  2. Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Vagt, Nicole; Braun, Markus

    -rupting the actomyosin system did not impair the sedimentation of statoliths and did not prevent the activation of gravireceptors. However, experiments in microgravity and inhibitor experiments have demonstrated that the actomyosin system optimizes the statolith-receptor interactions by keeping the sedimented statoliths in motion causing a consistent activation of different gravireceptor molecules. Thereby, a triggered gravitropic signal is created which is the basis for a highly sensitive control and readjustment mechanism. In addition, the results of recent parabolic flight studies on the effects of altered gravity conditions on the gene expres-sion pattern of Arabidopsis seedlings support these findings and provide new insight into the molecular basis of the plants response to different acceleration conditions. The work was financially supported by DLR on behalf of Bundesministerium für Wirtschaft und Technologie (50WB0815).

  3. Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections

    PubMed Central

    Izzo, Francesco; Buonaguro, Franco M.

    2016-01-01

    Chronic infections with hepatitis B (HBV) and hepatitis C viruses (HCV) are the leading cause of cirrhosis and hepatocellular carcinoma (HCC) worldwide. Both viruses encode multifunctional regulatory proteins activating several oncogenic pathways, which induce accumulation of multiple genetic alterations in the infected hepatocytes. Gene mutations in HBV- and HCV-induced HCCs frequently impair the TP53, Wnt/b-catenin, RAS/RAF/MAPK kinase and AKT/mTOR pathways, which represent important anti-cancer targets. In this review, we highlight the molecular mechanisms underlying the pathogenesis of primary liver cancer, with particular emphasis on the host genetic variations identified by high-throughput technologies. In addition, we discuss the importance of genetic alterations, such as mutations in the telomerase reverse transcriptase (TERT) promoter, for the diagnosis, prognosis, and tumor stratification for development of more effective treatment approaches. PMID:26943571

  4. Petroleum alteration by thermochemical sulfate reduction - A comprehensive molecular study of aromatic hydrocarbons and polar compounds

    NASA Astrophysics Data System (ADS)

    Walters, Clifford C.; Wang, Frank C.; Qian, Kuangnan; Wu, Chunping; Mennito, Anthony S.; Wei, Zhibin

    2015-03-01

    Thermochemical sulfate reduction (TSR) alters petroleum composition as it proceeds towards the complete oxidation of hydrocarbons to CO2. The effects of TSR on the molecular and isotopic composition of volatile species are well known; however, the non-volatile higher molecular weight aromatic and polar species have not been well documented. To address this deficiency, a suite of onshore Gulf coast oils and condensates generated from and accumulating in Smackover carbonates was assembled to include samples that experienced varying levels of TSR alteration and in reservoir thermal cracking. The entire molecular composition of aromatic hydrocarbons and NSO species were characterized and semi-quantified using comprehensive GC × GC (FID and CSD) and APPI-FTICR-MS. The concentration of thiadiamondoids is a reliable indicator of the extent of TSR alteration. Once generated by TSR, thiadiamondoids remain thermally stable in all but the most extreme reservoir temperatures (>180 °C). Hydrocarbon concentrations and distributions are influenced by thermal cracking and TSR. With increasing TSR alteration, oils become enriched in monoaromatic hydrocarbons and the distribution of high molecular weight aromatic hydrocarbons shifts towards more condensed species with a decrease in the number of alkyl carbons. Organosulfur compounds are created by the TSR process. In addition to the increase in benzothiophenes and dibenzothiophenes noted in previous studies, TSR generates condensed species containing one or more sulfur atoms that likely are composed of a single or multiple thiophenic cores. We hypothesize that these species are generated from the partial oxidation of PAHs and dealkylation reactions, followed by sulfur incorporation and condensation reactions. The organosulfur species remaining in the TSR altered oils are "proto-solid bitumen" moieties that upon further condensation, oxidation or sulfur incorporation result in highly sulfur enriched solid bitumen, which is

  5. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat

    EPA Science Inventory

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and te...

  6. Distinctive Molecular Genetic Alterations in Sporadic and Familial Adenomatous Polyposis-Associated Pancreatoblastomas

    PubMed Central

    Abraham, Susan C.; Wu, Tsung-Teh; Klimstra, David S.; Finn, Laura S.; Lee, Jae-Hyuk; Yeo, Charles J.; Cameron, John L.; Hruban, Ralph H.

    2001-01-01

    Pancreatoblastomas are unusual malignant neoplasms of the pediatric pancreas that may also rarely affect adults. The molecular pathogenesis of pancreatoblastomas is unknown. They are clinicopathologically distinct from adult pancreatic ductal adenocarcinomas, but their occasional occurrence in patients with Beckwith-Wiedemann syndrome and the case presented here of a pancreatoblastoma in an adult patient with familial adenomatous polyposis (FAP) suggests that they might bear a genetic similarity to other infantile embryonal tumors such as hepatoblastomas. We analyzed a series of nine pancreatoblastomas for mutations common to other embryonal malignancies including somatic alterations in the adenomatous polyposis coli (APC)/β-catenin pathway and chromosome 11p, using immunohistochemistry for β-catenin, 5q and 11p allelic loss assays, and direct DNA sequencing of exon 3 of the β-catenin gene and the mutation cluster region of the APC gene. In addition, we analyzed the pancreatoblastomas for alterations found in adult-type pancreatic ductal adenocarcinomas including mutations in the K-ras oncogene and the p53 and DPC4 tumor suppressor genes, using direct DNA sequencing of exon 1 of K-ras and immunohistochemistry for p53 and Dpc4. Allelic loss on chromosome 11p was the most common genetic alteration in pancreatoblastomas, present in 86% (six of seven informative cases). Molecular alterations in the APC/β-catenin pathway were detected in 67% (six of nine), including five neoplasms with activating mutations of the β-catenin oncogene and the one FAP-associated tumor with biallelic APC inactivation (germline truncating mutation combined with loss of the wild-type allele); seven neoplasms showed abnormal nuclear accumulation of β-catenin protein. In contrast, loss of Dpc4 protein expression was present in only two cases (one diffuse and one focal), and no alterations in the K-ras gene or p53 expression were detected. Our findings indicate that pancreatoblastomas are

  7. Alterations in development of reproductive and endocrine systems of wildlife populations exposed to endocrine-disrupting contaminants.

    PubMed

    Guillette, L J; Gunderson, M P

    2001-12-01

    Wildlife and human populations are affected by contaminants in natural settings. This problem has been a growing concern over the last decade with the realization that various environmental chemicals can alter the development and functioning of endocrine organs, cells and target tissues. Documented disruptions or alterations in reproductive activity, morphology or physiology in wildlife populations have been correlated with contaminant-induced modifications in endocrine system functioning. Alterations of the endocrine system are complex, and not limited to a particular organ or molecular mechanism. For instance, contaminants have been shown to (1) act as hormone receptor agonists or antagonists, (2) alter hormone production at its endocrine source, (3) alter the release of stimulatory or inhibitory hormones from the pituitary or hypothalamus, (4) alter hepatic enzymatic biotransformation of hormones, and (5) alter the concentration or functioning of serum-binding proteins, altering free hormone concentrations in the serum. This review focuses on two of these alterations, altered hormone synthesis and hepatic biotransformation, as a number of recent studies indicate that these actions are important components of endocrine disruption in developing organisms. The possible role of contaminants in altering sex determination mechanisms is also examined.

  8. Dynamical Localization in Molecular Systems.

    NASA Astrophysics Data System (ADS)

    Wang, Xidi

    In the first four chapters of this thesis we concentrate on the Davydov model which describes the vibrational energy quanta of Amide I bonds (C=O bonds on the alpha -helix) coupled to the acoustic phonon modes of the alpha-helix backbone in the form of a Frohlich Hamiltonian. Following a brief introduction in chapter one, in chapter two we formulate the dynamics of vibrational quanta at finite temperature by using coherent state products. The fluctuation-dissipation relation is derived. At zero temperature, in the continuum limit, we recover the original results of Davydov. We also achieve good agreement with numerical simulations. In chapter three, the net contraction of the lattice is calculated exactly at any temperature, and its relation to the so -call "topological stability" of the Davydov soliton is discussed. In the second section of the chapter three we calculate the overtone spectra of crystalline acetanilide (according to some opinions ACN provides experimental evidence for the existence of Davydov solitons). Good agreement with experimental data has been obtained. In chapter four we study the self-trapped vibrational excitations by the Quantum Monte Carlo technique. For a single excitation, the temperature dependence of different physical observables is calculated. The quasi-particle which resembles the Davydov soliton has been found to be fairly narrow using the most commonly used data for the alpha -helix; at temperatures above a few Kelvin, the quasi-particle reaches its smallest limit (extends over three sites), which implies diffusive motion of the small polaron-like quasi-particle at high temperatures. For the multi-excitation case, bound pairs and clusters of excitations are found at low temperatures; they gradually dissociate when the temperature of the system is increased as calculated from the density-density correlation function. In the last chapter of this thesis, we study a more general model of dynamical local modes in molecular systems

  9. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  10. A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke.

    PubMed

    Caine, Sally; Hackett, Mark J; Hou, Huishu; Kumar, Saroj; Maley, Jason; Ivanishvili, Zurab; Suen, Brandon; Szmigielski, Aleksander; Jiang, Zhongxiang; Sylvain, Nicole J; Nichol, Helen; Kelly, Michael E

    2016-07-01

    Stroke is a major global health problem, with the prevalence and economic burden predicted to increase due to aging populations in western society. Following stroke, numerous biochemical alterations occur and damage can spread to nearby tissue. This zone of "at risk" tissue is termed the peri-infarct zone (PIZ). As the PIZ contains tissue not initially damaged by the stroke, it is considered by many as salvageable tissue. For this reason, much research effort has been undertaken to improve the identification of the PIZ and to elucidate the biochemical mechanisms that drive tissue damage in the PIZ in the hope of identify new therapeutic targets. Despite this effort, few therapies have evolved, attributed in part, to an incomplete understanding of the biochemical mechanisms driving tissue damage in the PIZ. Magnetic resonance imaging (MRI) has long been the gold standard to study alterations in gross brain structure, and is frequently used to study the PIZ following stroke. Unfortunately, MRI does not have sufficient spatial resolution to study individual cells within the brain, and reveals little information on the biochemical mechanisms driving tissue damage. MRI results may be complemented with histology or immuno-histochemistry to provide information at the cellular or sub-cellular level, but are limited to studying biochemical markers that can be successfully "tagged" with a stain or antigen. However, many important biochemical markers cannot be studied with traditional MRI or histology/histochemical methods. Therefore, we have developed and applied a multi-modal imaging platform to reveal elemental and molecular alterations that could not previously be imaged by other traditional methods. Our imaging platform incorporates a suite of spectroscopic imaging techniques; Fourier transform infrared imaging, Raman spectroscopic imaging, Coherent anti-stoke Raman spectroscopic imaging and X-ray fluorescence imaging. This approach does not preclude the use of

  11. Molecular alterations in non-small cell lung carcinomas of the young.

    PubMed

    VandenBussche, Christopher J; Illei, Peter B; Lin, Ming-Tseh; Ettinger, David S; Maleki, Zahra

    2014-12-01

    Lung cancer is the leading cause of cancer death in the United States. Gene alterations are significant in lung tumorigenesis, with certain genes (Kristen rat sarcoma viral oncogene homolog (KRAS), epidermal growth factor receptor [EGFR], anaplastic lymphoma kinase [ALK], and B-Raf proto-oncogene, serine/threonine kinase (BRAF)) possessing alterations important in the prognosis and treatment of lung adenocarcinoma. Mutation frequencies are affected by different patient factors, such as smoking history, age, and race. Because most lung cancers occur in patients older than age of 50 years, few studies have examined molecular alterations present in these younger patients. The pathology database was searched for patients age of 50 years or younger with non-small cell lung carcinomas (NSCLCs) tested for EGFR, ALK, KRAS, and/or BRAF alterations. A total of 53 cases were identified. The mean patient age was 44.4 years old, and there were 19 men and 34 women. Of the tumors, 11.6% had ALK rearrangements, 25.5% had KRAS mutations, and 20.0% had EGFR mutations. No BRAF mutations were identified in the 28 cases tested. All but 1 (92% [12/13]) tumor with KRAS mutation were from women patients. A smoking history of greater than 5 pack-years was associated with KRAS mutations and negatively associated with EGFR mutations and ALK translocation. The frequencies of EGFR mutation and ALK translocation in the study cohort are greater than the reported frequencies among NSCLC from adults of all ages in the United States but less than the reported frequencies among NSCLC from East Asian young adults. The frequency of KRAS mutation is significantly greater than what was previously found in young Japanese patients.

  12. NFkappaB signaling related molecular alterations in human neuroblastoma cells after fractionated irradiation.

    PubMed

    Madhusoodhanan, Rakhesh; Natarajan, Mohan; Veeraraghavan, Jamunarani; Herman, Terence S; Jamgade, Ambarish; Singh, Nisha; Aravindan, Natarajan

    2009-07-01

    Radiotherapy has been used as an adjunctive local-control modality for high-risk neuroblastoma. However, relapse due to radioresistance affects the success of radiotherapy. Ascertaining the fractionated radiation (FIR) modulated molecular targets is imperative in targeted molecular therapy. Accordingly, we investigated the (i) expression of genes representing six functional pathways; (ii) NFkappaB DNA-binding activity and (iii) expression of radioresponsive molecules after single dose (10 Gy) radiation (SDR) and FIR (2 Gy x 5) in human neuroblastoma cells. Alterations in gene expression were analyzed using QPCR-profiling, NFkappaB activity using electrophoretic mobility shift assay (EMSA) and pIkappaBalpha using immunoblotting. Modulations in TNFalpha, IL-1alpha, pAKT, IAP1, IAP2, XIAP, survivin, MnSOD, BID, Bak, MyD88 and Vegfc were determined using quantitative real-time PCR (Q-PCR) and immunoblotting. Compared to SDR, FIR significantly induced the expression of 25 genes and completely suppressed another 30 genes. Furthermore, FIR induced NFkappaB-DNA-binding activity and IkappaBalpha phosphorylation. Similarly, we observed an induced expression of IAP1, IAP2, XIAP, Survivin, IL-1alpha, MnSOD, Bid, Bak, MyD88, TNFalpha and pAKT in cells exposed to FIR. The results of the study clearly show distinct differences in the molecular response of cells between SDR and FIR. We identified several potential targets confining to NFkappaB signaling cascade that may affect radio-resistance after FIR. PMID:19436149

  13. High Molecular Weight Barley β-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk

    PubMed Central

    Wang, Yanan; Ames, Nancy P.; Tun, Hein M.; Tosh, Susan M.; Jones, Peter J.; Khafipour, Ehsan

    2016-01-01

    The physiological cholesterol-lowering benefits of β-glucan have been well documented, however, whether modulation of gut microbiota by β-glucan is associated with these physiological effects remains unknown. The objectives of this study were therefore to determine the impact of β-glucan on the composition of gut microbiota in mildly hypercholesterolemic individuals and to identify if the altered microbiota are associated with bioactivity of β-glucan in improving risk factors of cardiovascular disease (CVD). Using a randomized, controlled crossover study design, individuals received for 5-week either a treatment breakfast containing 3 g high molecular weight (HMW), 3 g low molecular weight (LMW), 5 g LMW barley β-glucan, or wheat and rice. The American Heart Association (AHA) diet served as the background diet for all treatment groups. Phases were separated by 4-week washout periods. Fecal samples were collected at the end of each intervention phase and subjected to Illumina sequencing of 16S rRNA genes. Results revealed that at the phylum level, supplementation of 3 g/d HMW β-glucan increased Bacteroidetes and decreased Firmicutes abundances compared to control (P < 0.001). At the genus level, consumption of 3 g/d HMW β-glucan increased Bacteroides (P < 0.003), tended to increase Prevotella (P < 0.1) but decreased Dorea (P < 0.1), whereas diets containing 5 g LMW β-glucan and 3 g LMW β-glucan failed to alter the gut microbiota composition. Bacteroides, Prevotella, and Dorea composition correlated (P < 0.05) with shifts of CVD risk factors, including body mass index, waist circumference, blood pressure, as well as triglyceride levels. Our data suggest that consumption of HMW β-glucan favorably alters the composition of gut microbiota and this altered microbiota profile associates with a reduction of CVD risk markers. Together, our study suggests that β-glucan induced shifts in gut microbiota in a MW-dependent manner and that might be one of the

  14. Monocyte enhancers are highly altered in systemic lupus erythematosus

    PubMed Central

    Shi, Lihua; Zhang, Zhe; Song, Li; Leung, Yiu Tak; Petri, Michelle A; Sullivan, Kathleen E

    2015-01-01

    Objective: Histone modifications set transcriptional competency and can perpetuate pathologic expression patterns. We defined systemic lupus erythematosus (SLE)-specific changes in H3K4me3 and K3K27me3, histone marks of gene activation and repression, respectively. Methods: We used ChIP-seq to define histone modifications in monocytes from SLE patients and controls. Results: Both promoters and enhancers exhibited significant changes in histone methylation in SLE. Regions with differential H3K4me3 in SLE were significantly enriched in potential interferon-related transcription factor binding sites and pioneer transcription factor sites. Conclusion: Enhancer activation defines the character of the cell and our data support extensive disease effects in monocytes, a particularly plastic lineage. Type I interferons not only drive altered gene expression but may also alter the character of the cell through chromatin modifications. PMID:26442457

  15. Genetic and molecular alterations in pancreatic cancer: Implications for personalized medicine

    PubMed Central

    Fang, Yantian; Yao, Qizhi; Chen, Zongyou; Xiang, Jianbin; William, Fisher E.; Gibbs, Richard A.; Chen, Changyi

    2013-01-01

    Recent advances in human genomics and biotechnologies have profound impacts on medical research and clinical practice. Individual genomic information, including DNA sequences and gene expression profiles, can be used for prediction, prevention, diagnosis, and treatment for many complex diseases. Personalized medicine attempts to tailor medical care to individual patients by incorporating their genomic information. In a case of pancreatic cancer, the fourth leading cause of cancer death in the United States, alteration in many genes as well as molecular profiles in blood, pancreas tissue, and pancreas juice has recently been discovered to be closely associated with tumorigenesis or prognosis of the cancer. This review aims to summarize recent advances of important genes, proteins, and microRNAs that play a critical role in the pathogenesis of pancreatic cancer, and to provide implications for personalized medicine in pancreatic cancer. PMID:24172537

  16. Leukemia-Associated Mutations in Nucleophosmin Alter Recognition by CRM1: Molecular Basis of Aberrant Transport

    PubMed Central

    Arregi, Igor; Falces, Jorge; Olazabal-Herrero, Anne; Alonso-Mariño, Marián; Taneva, Stefka G.; Rodríguez, José A.; Urbaneja, María A.; Bañuelos, Sonia

    2015-01-01

    Nucleophosmin (NPM) is a nucleocytoplasmic shuttling protein, normally enriched in nucleoli, that performs several activities related to cell growth. NPM mutations are characteristic of a subtype of acute myeloid leukemia (AML), where mutant NPM seems to play an oncogenic role. AML-associated NPM mutants exhibit altered subcellular traffic, being aberrantly located in the cytoplasm of leukoblasts. Exacerbated export of AML variants of NPM is mediated by the nuclear export receptor CRM1, and due, in part, to a mutationally acquired novel nuclear export signal (NES). To gain insight on the molecular basis of NPM transport in physiological and pathological conditions, we have evaluated the export efficiency of NPM in cells, and present new data indicating that, in normal conditions, wild type NPM is weakly exported by CRM1. On the other hand, we have found that AML-associated NPM mutants efficiently form complexes with CRM1HA (a mutant CRM1 with higher affinity for NESs), and we have quantitatively analyzed CRM1HA interaction with the NES motifs of these mutants, using fluorescence anisotropy and isothermal titration calorimetry. We have observed that the affinity of CRM1HA for these NESs is similar, which may help to explain the transport properties of the mutants. We also describe NPM recognition by the import machinery. Our combined cellular and biophysical studies shed further light on the determinants of NPM traffic, and how it is dramatically altered by AML-related mutations. PMID:26091065

  17. Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations

    PubMed Central

    Araya, Carlos L.; Cenik, Can; Reuter, Jason A.; Kiss, Gert; Pande, Vijay S.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of protein-altering mutations. An improved method would be annotation-independent, sensitive to unknown distributions of functions within proteins, and inclusive of non-coding drivers. We employed density-based clustering methods in 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-coding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated among tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver identification. PMID:26691984

  18. Specific age-related molecular alterations in the cerebellum of Down syndrome mouse models.

    PubMed

    Créau, Nicole; Cabet, Eva; Daubigney, Fabrice; Souchet, Benoit; Bennaï, Soumia; Delabar, Jean

    2016-09-01

    Down syndrome, or trisomy 21, has been modeled with various trisomic and transgenic mice to help understand the consequences of an altered gene dosage in brain development and function. Though Down syndrome has been associated with premature aging, little is known about the molecular and cellular alterations that target brain function. To help identify alterations at specific ages, we analyzed the cerebellum of Ts1Cje mice, trisomic for 77 HSA21 orthologs, at three ages-young (4 months), middle-age (12 months), and old (17 months)-compared to age-matched controls. Quantification of neuronal and glial markers (n=11) revealed increases in GFAP, with an age effect, and S100B, with age and genotype effects. The genotype effect on S100B with age was unexpected as Ts1Cje has only two copies of the S100b gene. Interestingly, the different increase in GFAP observed between Ts1Cje (trisomic segment includes Pcp4 gene) and controls was magnified in TgPCP4 mice (1 extra copy of the human PCP4 gene) at the same age. S100B increase was not found in the TgPCP4 confirming a difference of regulation with aging for GFAP and S100B and excluding the calcium signaling regulator, Pcp4, as a potential candidate for increase of S100B in the Ts1Cje. To understand these differences, comparison of GFAP and S100B immunostainings at young and middle-age were performed. Immunohistochemical detection of differences in GFAP and S100B localization with aging implicate S100B+ oligodendrocytes as a new phenotypic target in this specific aging process. PMID:27297494

  19. Cross-cancer profiling of molecular alterations within the human autophagy interaction network.

    PubMed

    Lebovitz, Chandra B; Robertson, A Gordon; Goya, Rodrigo; Jones, Steven J; Morin, Ryan D; Marra, Marco A; Gorski, Sharon M

    2015-01-01

    Aberrant activation or disruption of autophagy promotes tumorigenesis in various preclinical models of cancer, but whether the autophagy pathway is a target for recurrent molecular alteration in human cancer patient samples is unknown. To address this outstanding question, we surveyed 211 human autophagy-associated genes for tumor-related alterations to DNA sequence and RNA expression levels and examined their association with patient survival outcomes in multiple cancer types with sequence data from The Cancer Genome Atlas consortium. We found 3 (RB1CC1/FIP200, ULK4, WDR45/WIPI4) and one (ATG7) core autophagy genes to be under positive selection for somatic mutations in endometrial carcinoma and clear cell renal carcinoma, respectively, while 29 autophagy regulators and pathway interactors, including previously identified KEAP1, NFE2L2, and MTOR, were significantly mutated in 6 of the 11 cancer types examined. Gene expression analyses revealed that GABARAPL1 and MAP1LC3C/LC3C transcripts were less abundant in breast cancer and non-small cell lung cancers than in matched normal tissue controls; ATG4D transcripts were increased in lung squamous cell carcinoma, as were ATG16L2 transcripts in kidney cancer. Unsupervised clustering of autophagy-associated mRNA levels in tumors stratified patient overall survival in 3 of 9 cancer types (acute myeloid leukemia, clear cell renal carcinoma, and head and neck cancer). These analyses provide the first comprehensive resource of recurrently altered autophagy-associated genes in human tumors, and highlight cancer types and subtypes where perturbed autophagy may be relevant to patient overall survival.

  20. Cross-cancer profiling of molecular alterations within the human autophagy interaction network

    PubMed Central

    Lebovitz, Chandra B; Robertson, A Gordon; Goya, Rodrigo; Jones, Steven J; Morin, Ryan D; Marra, Marco A; Gorski, Sharon M

    2015-01-01

    Aberrant activation or disruption of autophagy promotes tumorigenesis in various preclinical models of cancer, but whether the autophagy pathway is a target for recurrent molecular alteration in human cancer patient samples is unknown. To address this outstanding question, we surveyed 211 human autophagy-associated genes for tumor-related alterations to DNA sequence and RNA expression levels and examined their association with patient survival outcomes in multiple cancer types with sequence data from The Cancer Genome Atlas consortium. We found 3 (RB1CC1/FIP200, ULK4, WDR45/WIPI4) and one (ATG7) core autophagy genes to be under positive selection for somatic mutations in endometrial carcinoma and clear cell renal carcinoma, respectively, while 29 autophagy regulators and pathway interactors, including previously identified KEAP1, NFE2L2, and MTOR, were significantly mutated in 6 of the 11 cancer types examined. Gene expression analyses revealed that GABARAPL1 and MAP1LC3C/LC3C transcripts were less abundant in breast cancer and non-small cell lung cancers than in matched normal tissue controls; ATG4D transcripts were increased in lung squamous cell carcinoma, as were ATG16L2 transcripts in kidney cancer. Unsupervised clustering of autophagy-associated mRNA levels in tumors stratified patient overall survival in 3 of 9 cancer types (acute myeloid leukemia, clear cell renal carcinoma, and head and neck cancer). These analyses provide the first comprehensive resource of recurrently altered autophagy-associated genes in human tumors, and highlight cancer types and subtypes where perturbed autophagy may be relevant to patient overall survival. PMID:26208877

  1. The sympathetic nervous system alterations in human hypertension.

    PubMed

    Grassi, Guido; Mark, Allyn; Esler, Murray

    2015-03-13

    Several articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as promoters and amplifiers of human hypertension. We expand on the role of the sympathetic nervous system in 2 increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves.

  2. Modified oleic cottonseeds show altered content, composition and tissue-specific distribution of triacylglycerol molecular species.

    PubMed

    Horn, Patrick J; Sturtevant, Drew; Chapman, Kent D

    2014-01-01

    Targeted increases in monounsaturated (oleic acid) fatty acid content of refined cottonseed oil could support improved human nutrition and cardiovascular health. Genetic modifications of cottonseed fatty acid composition have been accomplished using several different molecular strategies. Modification of oleic acid content in cottonseed embryos using a dominant-negative protein approach, while successful in effecting change in the desired fatty acid composition, resulted in reduced oil content and seed viability. Here these changes in fatty acid composition were associated with changes in dominant molecular species of triacylglycerols (TAGs) and their spatial distributions within embryo tissues. A combination of mass spectrometry (MS)-based lipidomics approaches, including MS imaging of seed cryo-sections, revealed that cotton embryos expressing a non-functional allele of a Brassica napus delta-12 desaturase showed altered accumulation of TAG species, especially within cotyledonary tissues. While lipid analysis of seed extracts could demonstrate detailed quantitative changes in TAG species in transgenics, the spatial contribution of metabolite compartmentation could only be visualized by MS imaging. Our results suggest tissue-specific differences in TAG biosynthetic pathways within cotton embryos, and indicate the importance of considering the location of metabolites in tissues in addition to their identification and quantification when developing a detailed view of cellular metabolism.

  3. Molecular alterations in gastric cancer with special reference to the early-onset subtype

    PubMed Central

    Skierucha, Małgorzata; Milne, Anya NA; Offerhaus, G Johan A; Polkowski, Wojciech P; Maciejewski, Ryszard; Sitarz, Robert

    2016-01-01

    Currently, gastric cancer (GC) is one of the most frequently diagnosed neoplasms, with a global burden of 723000 deaths in 2012. It is the third leading cause of cancer-related death worldwide. There are numerous possible factors that stimulate the pro-carcinogenic activity of important genes. These factors include genetic susceptibility expressed in a single-nucleotide polymorphism, various acquired mutations (chromosomal instability, microsatellite instability, somatic gene mutations, epigenetic alterations) and environmental circumstances (e.g., Helicobcter pylori infection, EBV infection, diet, and smoking). Most of the aforementioned pathways overlap, and authors agree that a clear-cut pathway for GC may not exist. Thus, the categorization of carcinogenic events is complicated. Lately, it has been claimed that research on early-onset gastric carcinoma (EOGC) and hereditary GC may contribute towards unravelling some part of the mystery of the GC molecular pattern because young patients are less exposed to environmental carcinogens and because carcinogenesis in this setting may be more dependent on genetic factors. The comparison of various aspects that differ and coexist in EOGCs and conventional GCs might enable scientists to: distinguish which features in the pathway of gastric carcinogenesis are modifiable, discover specific GC markers and identify a specific target. This review provides a summary of the data published thus far concerning the molecular characteristics of GC and highlights the outstanding features of EOGC. PMID:26937134

  4. Visualising the molecular alteration of the calcite (104) - water interface by sodium nitrate

    NASA Astrophysics Data System (ADS)

    Hofmann, Sascha; Voïtchovsky, Kislon; Spijker, Peter; Schmidt, Moritz; Stumpf, Thorsten

    2016-02-01

    The reactivity of calcite, one of the most abundant minerals in the earth’s crust, is determined by the molecular details of its interface with the contacting solution. Recently, it has been found that trace concentrations of NaNO3 severely affect calcite’s (104) surface and its reactivity. Here we combine molecular dynamics (MD) simulations, X-ray reflectivity (XR) and in situ atomic force microscopy (AFM) to probe the calcite (104) - water interface in the presence of NaNO3. Simulations reveal density profiles of different ions near calcite’s surface, with NO3- able to reach closer to the surface than CO32- and in higher concentrations. Reflectivity measurements show a structural destabilisation of the (104) surfaces’ topmost atomic layers in NaNO3 bearing solution, with distorted rotation angles of the carbonate groups and substantial displacement of the lattice ions. Nanoscale AFM results confirm the alteration of crystallographic characteristics, and the ability of dissolved NaNO3 to modify the structure of interfacial water was observed by AFM force spectroscopy. Our experiments and simulations consistently evidence a dramatic deterioration of the crystals’ surface, with potentially important implications for geological and industrial processes.

  5. Visualising the molecular alteration of the calcite (104) - water interface by sodium nitrate.

    PubMed

    Hofmann, Sascha; Voïtchovsky, Kislon; Spijker, Peter; Schmidt, Moritz; Stumpf, Thorsten

    2016-01-01

    The reactivity of calcite, one of the most abundant minerals in the earth's crust, is determined by the molecular details of its interface with the contacting solution. Recently, it has been found that trace concentrations of NaNO3 severely affect calcite's (104) surface and its reactivity. Here we combine molecular dynamics (MD) simulations, X-ray reflectivity (XR) and in situ atomic force microscopy (AFM) to probe the calcite (104) - water interface in the presence of NaNO3. Simulations reveal density profiles of different ions near calcite's surface, with NO3(-) able to reach closer to the surface than CO3(2-) and in higher concentrations. Reflectivity measurements show a structural destabilisation of the (104) surfaces' topmost atomic layers in NaNO3 bearing solution, with distorted rotation angles of the carbonate groups and substantial displacement of the lattice ions. Nanoscale AFM results confirm the alteration of crystallographic characteristics, and the ability of dissolved NaNO3 to modify the structure of interfacial water was observed by AFM force spectroscopy. Our experiments and simulations consistently evidence a dramatic deterioration of the crystals' surface, with potentially important implications for geological and industrial processes. PMID:26877225

  6. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer.

    PubMed

    Nosho, Katsuhiko; Sukawa, Yasutaka; Adachi, Yasushi; Ito, Miki; Mitsuhashi, Kei; Kurihara, Hiroyoshi; Kanno, Shinichi; Yamamoto, Itaru; Ishigami, Keisuke; Igarashi, Hisayoshi; Maruyama, Reo; Imai, Kohzoh; Yamamoto, Hiroyuki; Shinomura, Yasuhisa

    2016-01-14

    The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity. Fusobacterium species are part of the human oral and intestinal microbiota. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue. Using 511 colorectal carcinomas from Japanese patients, we assessed the presence of F. nucleatum. Our results showed that the frequency of F. nucleatum positivity in the Japanese colorectal cancer was 8.6% (44/511), which was lower than that in United States cohort studies (13%). Similar to the United States studies, F. nucleatum positivity in Japanese colorectal cancers was significantly associated with microsatellite instability (MSI)-high status. Regarding the immune response in colorectal cancer, high levels of infiltrating T-cell subsets (i.e., CD3+, CD8+, CD45RO+, and FOXP3+ cells) have been associated with better patient prognosis. There is also evidence to indicate that molecular features of colorectal cancer, especially MSI, influence T-cell-mediated adaptive immunity. Concerning the association between the gut microbiome and immunity, F. nucleatum has been shown to expand myeloid-derived immune cells, which inhibit T-cell proliferation and induce T-cell apoptosis in colorectal cancer. This finding indicates that F. nucleatum possesses immunosuppressive activities by inhibiting human T-cell responses. Certain microRNAs are induced during the macrophage inflammatory response and have the ability to regulate host-cell responses to pathogens. MicroRNA-21 increases the levels of IL-10 and prostaglandin E2, which suppress antitumor T-cell-mediated adaptive immunity through the inhibition of the antigen-presenting capacities of dendritic cells and T-cell proliferation in

  7. Radionuclide transport through engineered barrier system alteration products

    SciTech Connect

    Viani, B.E.; Torretto, P.C.; Matzen, S.L.

    1997-12-01

    The primary rationale for studying the transport behavior of radionuclides through the Engineered Barrier system / Near Field Environment (EBS/NFE) is to ascertain whether the material properties of the introduced and altered host rock can significantly affect the transport of radionuclides from the waste container to the far field. The intent of this report is to present data and modeling results that can be used to assess the importance of canister corrosion products and cementitious materials to transport of radionuclides to the far field.

  8. Glycans In The Immune system and The Altered Glycan Theory of Autoimmunity: A Critical Review

    PubMed Central

    Maverakis, Emanual; Kim, Kyoungmi; Shimoda, Michiko; Gershwin, M. Eric; Patel, Forum; Wilken, Reason; Raychaudhuri, Siba; Ruhaak, L. Renee; Lebrilla, Carlito B.

    2015-01-01

    Herein we will review the role of glycans in determining the functionality and specificity of various components of the immune system. Specific topics covered include: the specific glycosylation sites of IgE, IgM, IgD, IgE, IgA, and IgG; how glycans can encode “self” identity by functioning as either danger associated molecular patterns (DAMPs) or self-associated molecular patterns (SAMPs); the role of glycans as markers of protein integrity and age; how the glycocalyx can dictate the migration pattern of immune cells; and how the combination of Fc N-glycans and Ig isotype dictate the effector function of immunoglobulins. We speculate that the latter may be responsible for the well-documented association between alterations of the serum glycome and autoimmunity. Due to technological limitations, the extent of these autoimmune-associated glycan alterations and their role in disease pathophysiology has not been fully elucidated to date. Thus, we also review the current technologies available for glycan analysis, placing an emphasis on Multiple Reaction Monitoring (MRM), a rapid high-throughput technology that has great potential for glycan biomarker research. Finally, we put forth The Altered Glycan Theory of Autoimmunity, which states that each autoimmune disease will have a unique glycan signature characterized by the site-specific relative abundances of individual glycan structures on immune cells and serum proteins, especially the site-specific glycosylation patterns of specific antibody classes and subclasses. PMID:25578468

  9. Chronic Morphine Alters the Presynaptic Protein Profile: Identification of Novel Molecular Targets Using Proteomics and Network Analysis

    PubMed Central

    Abul-Husn, Noura S.; Annangudi, Suresh P.; Ma'ayan, Avi; Ramos-Ortolaza, Dinah L.; Stockton, Steven D.; Gomes, Ivone; Sweedler, Jonathan V.; Devi, Lakshmi A.

    2011-01-01

    Opiates produce significant and persistent changes in synaptic transmission; knowledge of the proteins involved in these changes may help to understand the molecular mechanisms underlying opiate dependence. Using an integrated quantitative proteomics and systems biology approach, we explored changes in the presynaptic protein profile following a paradigm of chronic morphine administration that leads to the development of dependence. For this, we isolated presynaptic fractions from the striata of rats treated with saline or escalating doses of morphine, and analyzed the proteins in these fractions using differential isotopic labeling. We identified 30 proteins that were significantly altered by morphine and integrated them into a protein-protein interaction (PPI) network representing potential morphine-regulated protein complexes. Graph theory-based analysis of this network revealed clusters of densely connected and functionally related morphine-regulated clusters of proteins. One of the clusters contained molecular chaperones thought to be involved in regulation of neurotransmission. Within this cluster, cysteine-string protein (CSP) and the heat shock protein Hsc70 were downregulated by morphine. Interestingly, Hsp90, a heat shock protein that normally interacts with CSP and Hsc70, was upregulated by morphine. Moreover, treatment with the selective Hsp90 inhibitor, geldanamycin, decreased the somatic signs of naloxone-precipitated morphine withdrawal, suggesting that Hsp90 upregulation at the presynapse plays a role in the expression of morphine dependence. Thus, integration of proteomics, network analysis, and behavioral studies has provided a greater understanding of morphine-induced alterations in synaptic composition, and identified a potential novel therapeutic target for opiate dependence. PMID:22043286

  10. Systemic immune system alterations in early stages of Alzheimer's disease.

    PubMed

    Zhang, Rongzhen; Miller, Robert G; Madison, Catherine; Jin, Xia; Honrada, Ronald; Harris, Will; Katz, Jonathan; Forshew, Dallas A; McGrath, Michael S

    2013-03-15

    Immune activation and inflammation play significant roles in the pathogenesis of Alzheimer's disease (AD). To test whether AD patients showed systemic manifestations of inflammation, blood from 41 patients with early stages of AD and 31 aged-match elderly controls were evaluated. Cellular markers for monocyte/macrophage (MO) activation and CD8 T lymphocyte were increased in early AD patients. Expression of monocyte CCR2, the receptor for monocyte chemoattractant protein-1 (MCP-1), was decreased; however, plasma MCP-1 levels were significantly increased and were related to the degree of MO activation in AD. These findings suggest that AD pathogenesis may be influenced by systemic immunologic dysfunction and provides potential immunologic targets for therapeutic intervention.

  11. High susceptibility of neonatal mice to molecular, biochemical and cytogenetic alterations induced by environmental cigarette smoke and light.

    PubMed

    De Flora, Silvio; D'Agostini, Francesco; Balansky, Roumen; Camoirano, Anna; Cartiglia, Cristina; Longobardi, Mariagrazia; Travaini, Giorgia; Steele, Vernon E; Pesce, Carlo; Izzotti, Alberto

    2008-01-01

    Our recent studies have shown that both cigarette smoke and UV-containing light, which are the most widespread and ubiquitous mutagens and carcinogens in the world, cause systemic genotoxic damage in hairless mice. Further studies were designed with the aim of evaluating the induction of genotoxic and carcinogenic effects in Swiss albino mice exposed to smoke and/or light since birth. We observed that a 4-month whole-body exposure of mice to mainstream cigarette smoke, starting at birth, caused an early and potent carcinogenic response in the lung and other organs. Our further experiments showed that exposure of mice to environmental cigarette smoke, during the first 5 weeks of life, resulted in a variety of significant alterations of intermediate biomarkers, including cytogenetic damage in bone marrow and peripheral blood, formation of lipid peroxidation products, increase of bulky DNA adduct levels, induction of oxidative DNA damage, and overexpression of OGG1 gene in lung, stimulation of apoptosis, hyperproliferation and loss of Fhit protein in pulmonary alveolar macrophages and/or bronchial epithelial cells, and early histopathological alterations in the respiratory tract. Moreover, exposure of mice to UV-containing light, mimicking solar irradiation, significantly enhanced oxidative DNA damage and bulky DNA adduct levels in lung, and synergized with smoke in inducing molecular alterations in the respiratory tract. The baseline OGG1 expression in lung was particularly high at birth and decreased in post-weanling mice. Oxidative DNA damage and other investigated end-points exhibited differential patterns in post-weanling mice and adult mice. The findings of these studies provide a mechanistic clue to the general concept that the neonatal period and early stages of life are critical in affecting susceptibility to carcinogens.

  12. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    PubMed

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P

  13. [Metastasis tumors of the central nervous system: molecular biology].

    PubMed

    Bello, M Josefa; González-Gómez, P; Rey, J A

    2004-12-01

    Metastases in the nervous system represent an important and growing problem in the clinical practice, being the cause of a great mortality in the developed countries. This article reviews the few data available on the molecular mechanisms involved in the pathogenesis of these tumours, leading to oncogene activation, inactivation of tumour suppressor genes, not only by the classical mechanisms, but also by the tumour cell epigenetic balance alteration. We conclude that all this knowledge will lead in the future to a better diagnosis, treatment and clinic evolution of these patients.

  14. Reaction dynamics in polyatomic molecular systems

    SciTech Connect

    Miller, W.H.

    1993-12-01

    The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

  15. Prematurely aged children: molecular alterations leading to Hutchinson-Gilford progeria and Werner syndromes.

    PubMed

    Domínguez-Gerpe, Lourdes; Araújo-Vilar, David

    2008-12-01

    Ageing is thought to be a polygenic and stochastic process in which multiple mechanisms operate at the same time. At the level of the individual organism ageing is associated with a progressive deterioration of health and quality of life, sharing common features such as: alopecia and grey hair, loss of audition, macular degeneration, neurodegeneration, cardiovascular diseases, osteoporosis, cataract formation, type-2 diabetes, lipodystrophies; a generally increased susceptibility to infection, autoimmune disorders and diseases such as cancer; and an impaired ability to cope with stress. Recent studies of mechanisms involved in the ageing process are contributing to the identification of genes involved in longevity. Monogenic heritable disorders causing premature ageing, and animal models have contributed to the understanding of some of the characteristic organism-level features associated with human ageing. Werner syndrome and Hutchinson-Gilford progeria syndrome are the best characterized human disorders. Werner syndrome patients have a median life expectancy of 47 years with clinical conditions from the second decade of life. Hutchinson-Gilford progeria syndrome patients die at a median age of 11-13 years with clinical conditions appearing soon after birth. In both syndromes, alterations in specific genes have been identified, with mutations in the WRN and LMNA genes respectively being the most closely associated with each syndrome. Results from molecular studies strongly suggest an increase in DNA damage and cell senescence as the underlying mechanism of pathological premature ageing in these two human syndromes. The same general mechanism has also been observed in human cells undergoing the normal ageing process. In the present article the molecular mechanisms currently proposed for explaining these two syndromes, which may also partly explain the normal ageing process, are reviewed.

  16. Method and Apparatus Providing Deception and/or Altered Operation in an Information System Operating System

    DOEpatents

    Cohen, Fred; Rogers, Deanna T.; Neagoe, Vicentiu

    2008-10-14

    A method and/or system and/or apparatus providing deception and/or execution alteration in an information system. In specific embodiments, deceptions and/or protections are provided by intercepting and/or modifying operation of one or more system calls of an operating system.

  17. Method of molecular specie alteration by nonresonant laser induced dielectric breakdown

    DOEpatents

    Ronn, Avigdor M.

    1980-01-01

    Irradiation of a molecular specie by itself or in the presence of a secondary material at a pressure above a threshold value for the particular system by a laser of predetermined minimum power and having a frequency displaced from an absorption line of the specie causes severance of the weakest bond and a yield of products containing at least one dissociative fragment from said specie. A Rogowski type TEA CO.sub.2 --N.sub.2 --He laser has been used successfully on a wide variety of molecular species. Solid, liquid and gaseous end products have been obtained depending upon the starting materials. When solids have been produced they are in the form of microfine particles or microfine aggregates. A neodymium glass laser has also been used successfully.

  18. Drug-induced and Genetic Alterations in Stress-Responsive Systems: Implications for Specific Addictive Diseases

    PubMed Central

    Zhou, Yan; Proudnikov, Dmitri; Yuferov, Vadim; Kreek, Mary Jeanne

    2009-01-01

    From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review. PMID:19914222

  19. Mephedrone alters basal ganglia and limbic neurotensin systems.

    PubMed

    German, Christopher L; Hoonakker, Amanda H; Fleckenstein, Annette E; Hanson, Glen R

    2014-08-01

    Mephedrone (4-methylmethcathinone) is a synthetic cathinone designer drug that alters pre-synaptic dopamine (DA) activity like many psychostimulants. However, little is known about the post-synaptic dopaminergic impacts of mephedrone. The neuropeptide neurotensin (NT) provides inhibitory feedback for basal ganglia and limbic DA pathways, and post-synaptic D1 -like and D2 -like receptor activity affects NT tissue levels. This study evaluated how mephedrone alters basal ganglia and limbic system NT content and the role of NT receptor activation in drug consumption behavior. Four 25 mg/kg injections of mephedrone increased NT content in basal ganglia (striatum, substantia nigra and globus pallidus) and the limbic regions (nucleus accumbens core), while a lower dosage (5 mg/kg/injection) only increased striatal NT content. Mephedrone-induced increases in basal ganglia NT levels were mediated by D1 -like receptors in the striatum and the substantia nigra by both D1 -like and D2 -like receptors in the globus pallidus. Mephedrone increased substance P content, another neuropeptide, in the globus pallidus, but not in the dorsal striatum or substantia nigra. Finally, the NT receptor agonist PD149163 blocked mephedrone self-administration, suggesting reduced NT release, as indicated by increased tissue levels, likely contributing to patterns of mephedrone consumption.

  20. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes.

    PubMed

    Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo

    2016-01-01

    With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential "keystone" genes, defined as either "hubs" or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  1. Molecular Pathways: Pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett’s esophagus

    PubMed Central

    Yang, Liying; Francois, Fritz; Pei, Zhiheng

    2013-01-01

    Esophageal adenocarcinoma is preceded by the development of reflux-related intestinal metaplasia or Barrett’s esophagus which is a response to inflammation of the esophageal squamous mucosa, reflux esophagitis. Gastroesophageal reflux impairs the mucosal barrier in the distal esophagus, allowing chronic exposure of the squamous epithelium to the diverse microbial ecosystem or microbiome, and inducing chronic inflammation. The esophageal microbiome is altered in both esophagitis and Barrett's esophagus, characterized by a significant decrease in Gram-positive bacteria and an increase in Gram-negative bacteria in esophagitis and Barrett's esophagus. Lipopolysaccharides (LPS), a major structure of the outer membrane in Gram-negative bacteria, can up-regulate gene expression of proinflammatory cytokines via activation of the TLR4 and NF-kB pathway. The potential impact of LPS on reflux esophagitis may be through relaxation of the lower esophageal sphincter via iNOS and by delaying gastric emptying via COX-2. Chronic inflammation may be play a critical role in the progression from benign to malignant esophageal disease. Therefore analysis of the pathways leading to chronic inflammation in the esophagus may help to identify biomarkers in Barrett's esophagus patients for neoplastic progression and provide insight into molecular events suitable for therapeutic intervention in prevention of esophageal adenocarcinoma development in patients with reflux esophagitis and Barrett's esophagus. PMID:22344232

  2. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes

    PubMed Central

    Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo

    2016-01-01

    With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020

  3. THE SYMPATHETIC NERVOUS SYSTEM ALTERATIONS IN HUMAN HYPERTENSION

    PubMed Central

    Grassi, Guido; Mark, Allyn; Esler, Murray

    2015-01-01

    A number of articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as “promoters” and “amplifiers” of human hypertension. We expand on the role of the sympathetic nervous system in two increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves. PMID:25767284

  4. Developing accurate molecular mechanics force fields for conjugated molecular systems.

    PubMed

    Do, Hainam; Troisi, Alessandro

    2015-10-14

    A rapid method to parameterize the intramolecular component of classical force fields for complex conjugated molecules is proposed. The method is based on a procedure of force matching with a reference electronic structure calculation. It is particularly suitable for those applications where molecular dynamics simulations are used to generate structures that are therefore analysed by electronic structure methods, because it is possible to build force fields that are consistent with electronic structure calculations that follow classical simulations. Such applications are commonly encountered in organic electronics, spectroscopy of complex systems and photobiology (e.g. photosynthetic systems). We illustrate the method by parameterizing the force fields of a molecule used in molecular semiconductors (2,2-dicyanovinyl-capped S,N-heteropentacene or DCV-SN5), a polymeric semiconductor (thieno[3,2-b]thiophene-diketopyrrolopyrrole TT-DPP) and a chromophore embedded in a protein environment (15,16-dihydrobiliverdin or DBV) where several hundreds of parameters need to be optimized in parallel.

  5. Thermodynamics of Organic Compound Alteration in Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Shock, E. L.

    2005-12-01

    Organic compounds enter hydrothermal systems through infiltrating surface waters, zones of microbial productivity in the subsurface, extracts of organic matter in surrounding host rocks, and abiotic synthesis. Owing to variations in pH, oxidation state, composition, temperature, and pressure throughout the changing pathways of fluid migration over the duration of the system, organic compounds from all of these sources are introduced to conditions where their relative stabilities and reactivities can be dramatically transformed. If those transformations were predictable, then the extent to which organic alteration reactions have occurred could be used to reveal flowpaths and histories of hydrothermal systems. Speciation and mass transfer calculations permit some insight into the underlying thermodynamic driving forces that result in organic compound alteration. As an example, the speciation of many geochemist's canonical organic matter: CH2O depends strongly on oxidation state, temperature, and total concentration of dissolved organic matter. Calculations show that at oxidation states buffered by iron-bearing mineral assemblages, organic acids dominate the speciation of CH2O throughout hydrothermal systems, with acetic acid (itself equivalent to 2 CH2O by bulk composition) and propanoic acid generally the most abundant compounds. However, at more reduced conditions, which may prevail in organic-rich iron-poor sediments, the drive is to form ketones and especially alcohols at the expense of organic acids. The distribution of organic carbon among the various members of these compound classes is strongly dependent on the total concentration of dissolved organic matter. As an example, at a bulk concentration equivalent to average dissolved organic matter in seawater (45μm), the dominant alcohols at 100°C are small compounds like ethanol and 1-propanol. In contrast, at a higher bulk concentration of 500μm, there is a drive to shift large percentages of dissolved

  6. Central administration of ghrelin alters emotional responses in rats: behavioural, electrophysiological and molecular evidence.

    PubMed

    Hansson, C; Haage, D; Taube, M; Egecioglu, E; Salomé, N; Dickson, S L

    2011-04-28

    The orexigenic and pro-obesity hormone ghrelin targets key hypothalamic and mesolimbic circuits involved in energy balance, appetite and reward. Given that such circuits are closely integrated with those regulating mood and cognition, we sought to determine whether chronic (>2 weeks) CNS exposure to ghrelin alters anxiety- and depression-like behaviour in rats as well as some physiological correlates. Rats bearing chronically implanted i.c.v. catheters were treated with ghrelin (10 μg/d) or vehicle for 4 weeks. Tests used to assess anxiety- and depression-like behaviour were undertaken during weeks 3-4 of the infusion. These revealed an increase in anxiety- and depression-like behaviour in the ghrelin-treated rats relative to controls. At the end of the 4-week infusion, brains were removed and the amygdala dissected for subsequent qPCR analysis that revealed changes in expression of a number of genes representing key systems implicated in these behavioural changes. Finally, given the key role of the dorsal raphe serotonin system in emotional reactivity, we examined the electrophysiological response of dorsal raphe neurons after a ghrelin challenge, and found mainly inhibitory responses in this region. We demonstrate that the central ghrelin signalling system is involved in emotional reactivity in rats, eliciting pro-anxiety and pro-depression effects and have begun to explore novel target systems for ghrelin that may be of importance for these effects.

  7. Molecular Relaxations in Constrained Nanoscale Systems

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel B., Jr.

    Current engineering challenges in the areas of energy, gas separation and photonics demand novel materials that are cognitively engineered at the molecular level, with a view toward replacing the conventional trial and error approach to materials development. Cognitive molecular engineering of organic materials demands the incorporation of internal constraints (inherent to molecular architecture) and external constraints (stemming from interactions with system boundaries) to obtain desired material properties. Both types of constraints affect intrinsic relaxation behavior in a material, which dictates thermal and viscoelastic material properties. The challenge, then, is to quantify the influence of constraints on relaxation behavior with a view toward producing a 'toolbox' for molecular engineering. In this work, local atomic force microscopy based thermomechanical measurements, paired with dielectric spectroscopy, kinetic models and molecular dynamic simulation are used to explore the effect of constraints on the relaxation behavior of model lubricants, amorphous polymers, and organic non-linear optical (NLO) materials. The impact of interfacial constraints on the inter- and intramolecular relaxation processes were investigated in lubricating model systems from fast relaxing simple monolayers to sluggishly unwinding complex polymer systems. At the free surface of amorphous polystyrene, apparent Arrhenius-type surface and subsurface activation energies were found where dissipation is a discrete function of loading, indicating sensitivity to surface and subsurface mobilities. Finally, in organic NLO systems, constraints in the form of self assembling dendritic groups are introduced to provide both sufficient mobility for alignment of their constituent chromophores and limited mobility for long-term alignment stability. Relaxation activation energies for NLO materials were deduced for these self assembling glassy chromophores, resulting in a first toolbox to guide

  8. MOLECULAR BONDING SYSTEM - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This document presents an evaluation of the Molecular Bonding System (MBS) and its ability to chemically stabilize three metals-contaminated wstes/soils during a SITe demo. The MBS process treated approximately 500 tons each of soil/Fill, Slag, and Miscellaneous Smelter Waste wit...

  9. 32 CFR Appendix B to Part 323 - Criteria for New and Altered Record Systems

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alterations. b. Increases in numbers of individuals due to normal growth are not considered alterations unless... scope of population covered (for example, expansion of a system of records covering a single...

  10. The Effectiveness of Natural Diarylheptanoids against Trypanosoma cruzi: Cytotoxicity, Ultrastructural Alterations and Molecular Modeling Studies

    PubMed Central

    Sueth-Santiago, Vitor; Moraes, Julliane de B. B.; Sobral Alves, Eliomara Sousa; Vannier-Santos, Marcos André; Freire-de-Lima, Célio G.; Castro, Rosane N.; Mendes-Silva, Gustavo Peron; Del Cistia, Catarina de Nigris; Magalhães, Luma Godoy; Andricopulo, Adriano Defini; Sant´Anna, Carlos Mauricio R.; Decoté-Ricardo, Debora; Freire de Lima, Marco Edilson

    2016-01-01

    Curcumin (CUR) is the major constituent of the rhizomes of Curcuma longa and has been widely investigated for its chemotherapeutic properties. The well-known activity of CUR against Leishmania sp., Trypanosoma brucei and Plasmodium falciparum led us to investigate its activity against Trypanosoma cruzi. In this work, we tested the cytotoxic effects of CUR and other natural curcuminoids on different forms of T. cruzi, as well as the ultrastructural changes induced in epimastigote form of the parasite. CUR was verified as the curcuminoid with more significant trypanocidal properties (IC50 10.13 μM on epimastigotes). Demethoxycurcumin (DMC) was equipotent to CUR (IC50 11.07 μM), but bisdemethoxycurcumin (BDMC) was less active (IC50 45.33 μM) and cyclocurcumin (CC) was inactive. In the experiment with infected murine peritoneal macrophages all diarylheptanoids were more active than the control in the inhibition of the trypomastigotes release. The electron microscopy images showed ultrastructural changes associated with the cytoskeleton of the parasite, indicating tubulin as possible target of CUR in T. cruzi. The results obtained by flow cytometry analysis of DNA content of the parasites treated with natural curcuminoids suggested a mechanism of action on microtubules related to the paclitaxel`s mode of action. To better understand the mechanism of action highlighted by electron microscopy and flow cytometry experiments we performed the molecular docking of natural curcuminoids on tubulin of T. cruzi in a homology model and the results obtained showed that the observed interactions are in accordance with the IC50 values found, since there CUR and DMC perform similar interactions at the binding site on tubulin while BDMC do not realize a hydrogen bond with Lys163 residue due to the absence of methoxyl groups. These results indicate that trypanocidal properties of CUR may be related to the cytoskeletal alterations. PMID:27658305

  11. Molecular-beam gas-sampling system

    NASA Technical Reports Server (NTRS)

    Young, W. S.; Knuth, E. L.

    1972-01-01

    A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.

  12. Altered neurotransmission in the mesolimbic reward system of Girk mice.

    PubMed

    Arora, Devinder; Haluk, Desirae M; Kourrich, Saïd; Pravetoni, Marco; Fernández-Alacid, Laura; Nicolau, Joel C; Luján, Rafael; Wickman, Kevin

    2010-09-01

    Mice lacking the Girk2 subunit of G protein-gated inwardly rectifying K+ (Girk) channels exhibit dopamine-dependent hyperactivity and elevated responses to drugs that stimulate dopamine neurotransmission. The dopamine-dependent phenotypes seen in Girk2(-/-) mice could reflect increased intrinsic excitability of or diminished inhibitory feedback to midbrain dopamine neurons, or secondary adaptations triggered by Girk2 ablation. We addressed these possibilities by evaluating Girk(-/-) mice in behavioral, electrophysiological, and cell biological assays centered on the mesolimbic dopamine system. Despite differences in the contribution of Girk1 and Girk2 subunits to Girk signaling in midbrain dopamine neurons, Girk1(-/-) and Girk2(-/-) mice exhibited comparable baseline hyperactivities and enhanced responses to cocaine. Girk ablation also correlated with altered afferent input to dopamine neurons in the ventral tegmental area. Dopamine neurons from Girk1(-/-) and Girk2(-/-) mice exhibited elevated glutamatergic neurotransmission, paralleled by increased synaptic levels of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate glutamate receptors. In addition, synapse density, alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor levels, and glutamatergic neurotransmission were elevated in medium spiny neurons of the nucleus accumbens from Girk1(-/-) and Girk2(-/-) mice. We conclude that dopamine-dependent phenotypes in Girk2(-/-) mice are not solely attributable to a loss of Girk signaling in dopamine neurons, and likely involve secondary adaptations facilitating glutamatergic signaling in the mesolimbic reward system. PMID:20557431

  13. Altered signaling in systemic juvenile idiopathic arthritis monocytes.

    PubMed

    Macaubas, Claudia; Wong, Elizabeth; Zhang, Yujuan; Nguyen, Khoa D; Lee, Justin; Milojevic, Diana; Shenoi, Susan; Stevens, Anne M; Ilowite, Norman; Saper, Vivian; Lee, Tzielan; Mellins, Elizabeth D

    2016-02-01

    Systemic juvenile idiopathic arthritis (sJIA) is characterized by systemic inflammation and arthritis. Monocytes are implicated in sJIA pathogenesis, but their role in disease is unclear. The response of sJIA monocytes to IFN may be dysregulated. We examined intracellular signaling in response to IFN type I (IFNα) and type II (IFNγ) in monocytes during sJIA activity and quiescence, in 2 patient groups. Independent of disease activity, monocytes from Group 1 (collected between 2002 and 2009) showed defective STAT1 phosphorylation downstream of IFNs, and expressed higher transcript levels of SOCS1, an inhibitor of IFN signaling. In the Group 2 (collected between 2011 and 2014), monocytes of patients with recent disease onset were IFNγ hyporesponsive, but in treated, quiescent subjects, monocytes were hyperresponsive to IFNγ. Recent changes in medication in sJIA may alter the IFN hyporesponsiveness. Impaired IFN/pSTAT1 signaling is consistent with skewing of sJIA monocytes away from an M1 phenotype and may contribute to disease pathology.

  14. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction.

    PubMed

    Ahmed, R G

    2016-09-01

    Because bisphenol A (BPA) has been detected in animals, the aim of this study was to investigate the possible effects of maternal BPA exposure on the fetal endocrine system (thyroid-adipokine axis). BPA (20 or 40 μg/kg body weight) was orally administered to pregnant rats from gestation day (GD) 1-20. In both treated groups, the dams and their fetuses had lower serum thyroxine (T4) and triiodothyronine (T3) levels, and higher thyrotropin (TSH) level than control dams and fetuses at GD 20. Some histopathological changes in fetal thyroid glands were observed in both maternal BPA groups at embryonic day (ED) 20, including fibroblast proliferation, hyperplasia, luminal obliteration, oedema, and degeneration. These disorders resulted in the suppression of fetal serum growth hormone (GH), insulin growth factor-1 (IGF1) and adiponectin (ADP) levels, and the elevation of fetal serum leptin, insulin and tumor necrosis factor-alpha (TNFα) levels in both treated groups with respect to control. The depraved effects of both treated groups were associated with reduced maternal and fetal body weight compared to the control group. These alterations were dose dependent. Thus, BPA might penetrate the placental barrier and perturb the fetal thyroid adipokine axis to influence fat metabolism and the endocrine system. PMID:27326465

  15. Network Clustering Revealed the Systemic Alterations of Mitochondrial Protein Expression

    PubMed Central

    Koo, Hyun-Jung; Park, Wook-Ha; Yang, Jae-Seong; Yu, Myeong-Hee; Kim, Sanguk; Pak, Youngmi Kim

    2011-01-01

    The mitochondrial protein repertoire varies depending on the cellular state. Protein component modifications caused by mitochondrial DNA (mtDNA) depletion are related to a wide range of human diseases; however, little is known about how nuclear-encoded mitochondrial proteins (mt proteome) changes under such dysfunctional states. In this study, we investigated the systemic alterations of mtDNA-depleted (ρ0) mitochondria by using network analysis of gene expression data. By modularizing the quantified proteomics data into protein functional networks, systemic properties of mitochondrial dysfunction were analyzed. We discovered that up-regulated and down-regulated proteins were organized into two predominant subnetworks that exhibited distinct biological processes. The down-regulated network modules are involved in typical mitochondrial functions, while up-regulated proteins are responsible for mtDNA repair and regulation of mt protein expression and transport. Furthermore, comparisons of proteome and transcriptome data revealed that ρ0 cells attempted to compensate for mtDNA depletion by modulating the coordinated expression/transport of mt proteins. Our results demonstrate that mt protein composition changed to remodel the functional organization of mitochondrial protein networks in response to dysfunctional cellular states. Human mt protein functional networks provide a framework for understanding how cells respond to mitochondrial dysfunctions. PMID:21738461

  16. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction.

    PubMed

    Ahmed, R G

    2016-09-01

    Because bisphenol A (BPA) has been detected in animals, the aim of this study was to investigate the possible effects of maternal BPA exposure on the fetal endocrine system (thyroid-adipokine axis). BPA (20 or 40 μg/kg body weight) was orally administered to pregnant rats from gestation day (GD) 1-20. In both treated groups, the dams and their fetuses had lower serum thyroxine (T4) and triiodothyronine (T3) levels, and higher thyrotropin (TSH) level than control dams and fetuses at GD 20. Some histopathological changes in fetal thyroid glands were observed in both maternal BPA groups at embryonic day (ED) 20, including fibroblast proliferation, hyperplasia, luminal obliteration, oedema, and degeneration. These disorders resulted in the suppression of fetal serum growth hormone (GH), insulin growth factor-1 (IGF1) and adiponectin (ADP) levels, and the elevation of fetal serum leptin, insulin and tumor necrosis factor-alpha (TNFα) levels in both treated groups with respect to control. The depraved effects of both treated groups were associated with reduced maternal and fetal body weight compared to the control group. These alterations were dose dependent. Thus, BPA might penetrate the placental barrier and perturb the fetal thyroid adipokine axis to influence fat metabolism and the endocrine system.

  17. Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity

    NASA Technical Reports Server (NTRS)

    Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.

  18. The impact of systemic cortical alterations on perception

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng

    2011-12-01

    Perception is the process of transmitting and interpreting sensory information, and the primary somatosensory (SI) area in the human cortex is the main sensory receptive area for the sensation of touch. The elaborate neuroanatomical connectivity that subserves the neuronal communication between adjacent and near-adjacent regions within sensory cortex has been widely recognized to be essential to normal sensory function. As a result, systemic cortical alterations that impact the cortical regional interaction, as associated with many neurological disorders, are expected to have significant impact on sensory perception. Recently, our research group has developed a novel sensory diagnostic system that employs quantitative sensory testing methods and is able to non-invasively assess central nervous system healthy status. The intent of this study is to utilize quantitative sensory testing methods that were designed to generate discriminable perception to objectively and quantitatively assess the impacts of different conditions on human sensory information processing capacity. The correlation between human perceptions with observations from animal research enables a better understanding of the underlying neurophysiology of human perception. Additional findings on different subject populations provide valuable insight of the underlying mechanisms for the development and maintenance of different neurological diseases. During the course of the study, several protocols were designed and utilized. And this set of sensory-based perceptual metrics was employed to study the effects of different conditions (non-noxious thermal stimulation, chronic pain stage, and normal aging) on sensory perception. It was found that these conditions result in significant deviations of the subjects' tactile information processing capacities from normal values. Although the observed shift of sensory detection sensitivity could be a result of enhanced peripheral activity, the changes in the effects

  19. Molecular aging of the mammalian vestibular system.

    PubMed

    Brosel, Sonja; Laub, Christoph; Averdam, Anne; Bender, Andreas; Elstner, Matthias

    2016-03-01

    Dizziness and imbalance frequently affect the elderly and contribute to falls and frailty. In many geriatric patients, clinical testing uncovers a dysfunction of the vestibular system, but no specific etiology can be identified. Neuropathological studies have demonstrated age-related degeneration of peripheral and central vestibular neurons, but the molecular mechanisms are poorly understood. In contrast, recent studies into age-related hearing loss strongly implicate mitochondrial dysfunction, oxidative stress and apoptotic cell death of cochlear hair cells. While some data suggest that analogous biological pathomechanisms may underlie vestibular dysfunction, actual proof is missing. In this review, we summarize the available data on the molecular causes of vestibular dysfunction. PMID:26739358

  20. Relaxation time in disordered molecular systems

    SciTech Connect

    Rocha, Rodrigo P.; Freire, José A.

    2015-05-28

    Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.

  1. Internal density functional theory of molecular systems

    NASA Astrophysics Data System (ADS)

    Nalewajski, Roman F.

    1984-08-01

    A thermodynamiclike theory of internal equilibrium and constrained equilibrium states of individual molecular systems is formulated, based on the Legendre transformed density functional theory (LT DFT). The molecular system (nonrelativistic, field free, Born-Oppenheimer or non-Born-Oppenheimer) is treated as the closed composite thermodynamic system, consisting of very small, rigid (open) subsystems (simple systems) containing a multi-(m)-component charged fluid in the presence of an external field. The generalized Levy constrained search construction of various ``thermodynamic'' potentials of LT DFT is given and the local Maxwell relations are derived. The reduction of various second-order partial functional derivatives (system sensitivities) in terms of few independent, basic kernels is described, using the Jacobian determinants technique. The qualitative implications for the basic kernels of the theory, from the Maxwell relations and stability criteria (generalized Le Châtelier and Le Châtelier-Braun principles) are systematically examined. Finally, possible applications of the general formalism in the thermodynamic analysis of the chemical bond, molecular stability, and chemical reactivity are identified.

  2. Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction.

    PubMed

    Kumagai, Yoshito; Pi, Jingbo

    2004-08-01

    Accumulated epidemiological studies have suggested that prolonged exposure of humans to arsenic in drinking water is associated with vascular diseases. The exact mechanism of how this occurs currently unknown. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), plays a crucial role in the vascular system. Decreased availability of biologically active NO in the endothelium is implicated in the pathophysiology of several vascular diseases and inhibition of eNOS by arsenic is one of the proposed mechanism s for arsenic-induced vascular diseases. In addition, during exposure to arsenic, overproduction of reactive oxygen species (ROS) can occur, resulting in oxidative stress, which is another major risk factor for vascular dysfunction. The molecular basis for decreased NO levels and increased oxidative stress during arsenic exposure is poorly understood. In this article, evidence for arsenic-mediated alteration in NO production and oxidative stress is reviewed. The results of a cross-sectional study in an endemic area of chronic arsenic poisoning and experimental animal studies to elucidate a potential mechanism for the impairment of NO formation and oxidative stress caused by prolonged exposure to arsenate in the drinking water are also reviewed.

  3. Global detection of molecular changes reveals concurrent alteration of several biological pathways in nonsmall cell lung cancer cells

    PubMed Central

    Ju, Z.; Kapoor, M.; Newton, K; Cheon, K.; Ramaswamy, A.; Lotan, R.; Strong, L. C.; Koo, J. S.

    2006-01-01

    To identify the molecular changes that occur in non-small cell lung carcinoma (NSCLC), we compared the gene expression profile of the NCI-H292 (H292) NSCLC cell line with that of normal human tracheobronchial epithelial (NHTBE) cells. The NHTBE cells were grown in a three-dimensional organotypic culture system that permits maintenance of the normal pseudostratified mucociliary phenotype characteristic of bronchial epithelium in vivo. Microarray analysis using the Affymetrix oligonucleotide chip U95Av2 revealed that 1,683 genes showed a > 1.5-fold change in expression in the H292 cell line relative to the NHTBE cells. Specifically, 418 genes were downregulated and 1,265 were upregulated in the H292 cells. The expression data for selected genes were validated in several different NSCLC cell lines using quantitative real-time PCR and Western analysis. Further analysis of the differentially expressed genes indicated that WNT responses, apoptosis, cell cycle regulation and cell proliferation were significantly altered in the H292 cells. Functional analysis using fluorescence-activated cell sorting confirmed concurrent changes in the activity of these pathways in the H292 line. These findings show that (1) NSCLC cells display deregulation of the WNT, apoptosis, proliferation and cell cycle pathways, as has been found in many other types of cancer cells, and (2) that organotypically cultured NHTBE cells can be used as a reference to identify genes and pathways that are differentially expressed in tumor cells derived from bronchogenic epithelium. PMID:16049682

  4. Altered B cell receptor signaling in human systemic lupus erythematosus

    PubMed Central

    Jenks, Scott A.; Sanz, Iñaki

    2009-01-01

    Regulation of B cell receptor signaling is essential for the development of specific immunity while retaining tolerance to self. Systemic lupus erythematosus (SLE) is characterized by a loss of B cell tolerance and the production of anti-self antibodies. Accompanying this break down in tolerance are alterations in B cell receptor signal transduction including elevated induced calcium responses and increased protein phosphorylation. Specific pathways that negatively regulate B cell signaling have been shown to be impaired in some SLE patients. These patients have reduced levels of the kinase Lyn in lipid raft microdomains and this reduction is inversely correlated with increased CD45 in lipid rafts. Function and expression of the inhibitory immunoglobulin receptor FcγRIIB is also reduced in Lupus IgM- CD27+ memory cells. Because the relative contribution of different memory and transitional B cell subsets can be abnormal in SLE patients, we believe studies targeted to well defined B cell subsets will be necessary to further our understanding of signaling abnormalities in SLE. Intracellular flow cytometric analysis of signaling is a useful approach to accomplish this goal. PMID:18723129

  5. 76 FR 4451 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Altered System of Records AGENCY: Executive Systems and Fellowship Staff, Atlanta Human Resources Center... Services proposes to alter System of Records, 09-20-0112, ``Fellowship Program and Guest Researcher Records...-0112, ``, Fellowship Program and Guest Researcher Records, HHS/CDC/AHRC.'' This system is utilized...

  6. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    PubMed

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  7. Energy pooling upconversion in organic molecular systems.

    PubMed

    LaCount, Michael D; Weingarten, Daniel; Hu, Nan; Shaheen, Sean E; van de Lagemaat, Jao; Rumbles, Garry; Walba, David M; Lusk, Mark T

    2015-04-30

    A combination of molecular quantum electrodynamics, perturbation theory, and ab initio calculations was used to create a computational methodology capable of estimating the rate of three-body singlet upconversion in organic molecular assemblies. The approach was applied to quantify the conditions under which such relaxation rates, known as energy pooling, become meaningful for two test systems, stilbene-fluorescein and hexabenzocoronene-oligothiophene. Both exhibit low intramolecular conversion, but intermolecular configurations exist in which pooling efficiency is at least 90% when placed in competition with more conventional relaxation pathways. For stilbene-fluorescein, the results are consistent with data generated in an earlier experimental investigation. Exercising these model systems facilitated the development of a set of design rules for the optimization of energy pooling. PMID:25793313

  8. Intelligent systems for the molecular biologist

    SciTech Connect

    Brutlag, D.L.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. In this paper, one objective is to identify properties of DNA sequences that determine their function, by computer-aided statistical analysis and to accurately predict its function, given a new sequence. A related problem is to predict protein structure and function from the sequence.

  9. Helical packing of needles from functionally altered Shigella type III secretion systems.

    PubMed

    Cordes, Frank S; Daniell, Sarah; Kenjale, Roma; Saurya, Saroj; Picking, Wendy L; Picking, William D; Booy, Frank; Lea, Susan M; Blocker, Ariel

    2005-11-25

    Gram-negative bacteria commonly interact with eukaryotic host cells using type III secretion systems (TTSSs or secretons), which comprise cytoplasmic, transmembrane and extracellular domains. The extracellular domain is a hollow needle-like structure protruding 60 nm beyond the bacterial surface. The TTSS is activated to transfer bacterial proteins directly into a host cell only upon physical contact with the target cell. We showed previously that the monomer of the Shigella flexneri needle, MxiH, assembles into a helical structure with parameters similar to those defining the architecture of the extracellular components of bacterial flagella. By analogy with flagella, which are known to exist in different helical states, we proposed that changes in the helical packing of the needle might be used to sense host cell contact. Here, we show that, on the contrary, mutations within MxiH that lock the TTSS into altered secretion states do not detectably alter the helical packing of needles. This implies that either: (1) host cell contact is signalled through the TTSS via helical changes in the needle that are significantly smaller than those linked to structural changes in the flagellar filament and therefore too small to be detected by our analysis methods or (2) that signal transduction in this system occurs via a novel molecular mechanism. PMID:16243352

  10. Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility.

    PubMed

    Guerrero-Bosagna, Carlos; Savenkova, Marina; Haque, Md Muksitul; Nilsson, Eric; Skinner, Michael K

    2013-01-01

    Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell) that influences the onset of a specific disease (male infertility). A gestating female rat (F0 generation) was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, enhanced spermatogenic cell apoptosis was observed. The Sertoli cells provide the physical and nutritional support for the spermatogenic cells. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific cellular pathways were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR) modified. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell) epigenome and transcriptome that correlates with adult onset disease (male infertility). The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility.

  11. Understanding parity violation in molecular systems.

    PubMed

    Faglioni, Francesco; Lazzeretti, Paolo

    2002-01-01

    Parity-violation energy (E(PV)) due to weak nuclear interactions between nucleons and electrons in chiral molecular systems provides a fundamental tool to verify our understanding of electronic behavior in complex systems. We used both a relativistic and a nonrelativistic approach to study a number of simple molecules and analyze the corresponding E(PV) in terms of intuitive electrodynamic concepts. We developed a qualitative model to predict the sign of E(PV) and its behavior against selected geometric distortions. Our model provides a valuable tool to screen large sets of molecules and select interesting candidates for more expensive investigations. PMID:11800715

  12. Molecular aspects of DNA splicing system

    NASA Astrophysics Data System (ADS)

    Yusof, Yuhani; Lim, Wen Li; Goode, T. Elizabeth; Sarmin, Nor Haniza; Heng, Fong Wan; Wahab, Mohd Firdaus Abd

    2015-05-01

    The pioneer model of deoxyribonucleic acid (DNA) splicing system in a framework of Formal Language Theory was introduced by Head that led to the existence of other models of splicing system, namely Paun, Pixton and Yusof-Goode. These entire models are inspired by the molecular biological process of DNA splicing. Hence, this paper focuses on the translucent DNA splicing process, particularly on the generated language. Starting with some preliminaries in a limit graph, this paper also provides the experimental design with the predicted and actual result.

  13. Alterations in the molecular weight distribution of proteins in rat brain synaptosomes during aging and centrophenoxine treatment of old rats.

    PubMed

    Nagy, K; Nagy, I

    1984-12-01

    Properly prepared membrane proteins of brain synaptosomes of 2-, 12- and 24-month-old CFY female rats were filtrated on a Sepharose 2B gel. The molecular weight distribution showed an age-dependence: there was a clear shift toward the higher molecular weights in the adult and old rats. The observed alterations reflect an increased cross-linking of the proteins during aging due most probably to the OH free radical damage of the cell components. Centrophenoxine treatment for 2 months reversed this phenomenon in the old animals: the high molecular weight fractions decreased and the lower ones increased in the treated animals as compared to the old, untreated rats. The results support the membrane hypothesis of aging and contribute to a better understanding of the biological effects of centrophenoxine.

  14. 76 FR 4485 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Altered System of Records AGENCY: Division of Global Migration and Quarantine, National Center for the...), Division of Global Migration and Quarantine, National Center for the Preparedness, Detection, and...

  15. Accounting for intra-molecular vibrational modes in open quantum system description of molecular systems.

    PubMed

    Roden, Jan; Strunz, Walter T; Whaley, K Birgitta; Eisfeld, Alexander

    2012-11-28

    Electronic-vibrational dynamics in molecular systems that interact with an environment involve a large number of degrees of freedom and are therefore often described by means of open quantum system approaches. A popular approach is to include only the electronic degrees of freedom into the system part and to couple these to a non-Markovian bath of harmonic vibrational modes that is characterized by a spectral density. Since this bath represents both intra-molecular and external vibrations, it is important to understand how to construct a spectral density that accounts for intra-molecular vibrational modes that couple further to other modes. Here, we address this problem by explicitly incorporating an intra-molecular vibrational mode together with the electronic degrees of freedom into the system part and using the Fano theory for a resonance coupled to a continuum to derive an "effective" bath spectral density, which describes the contribution of intra-molecular modes. We compare this effective model for the intra-molecular mode with the method of pseudomodes, a widely used approach in simulation of non-Markovian dynamics. We clarify the difference between these two approaches and demonstrate that the respective resulting dynamics and optical spectra can be very different.

  16. Long-term variation in above and belowground plant inputs alters soil organic matter biogeochemistry at the molecular-level

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Pisani, O.; Lin, L.; Lun, O.; Simpson, A.; Lajtha, K.; Nadelhoffer, K. J.

    2015-12-01

    The long-term fate of soil carbon reserves with global environmental change remains uncertain. Shifts in moisture, altered nutrient cycles, species composition, or rising temperatures may alter the proportions of above and belowground biomass entering soil. However, it is unclear how long-term changes in plant inputs may alter the composition of soil organic matter (SOM) and soil carbon storage. Advanced molecular techniques were used to assess SOM composition in mineral soil horizons (0-10 cm) after 20 years of Detrital Input and Removal Treatment (DIRT) at the Harvard Forest. SOM biomarkers (solvent extraction, base hydrolysis and cupric (II) oxide oxidation) and both solid-state and solution-state nuclear magnetic resonance (NMR) spectroscopy were used to identify changes in SOM composition and stage of degradation. Microbial activity and community composition were assessed using phospholipid fatty acid (PLFA) analysis. Doubling aboveground litter inputs decreased soil carbon content, increased the degradation of labile SOM and enhanced the sequestration of aliphatic compounds in soil. The exclusion of belowground inputs (No roots and No inputs) resulted in a decrease in root-derived components and enhanced the degradation of leaf-derived aliphatic structures (cutin). Cutin-derived SOM has been hypothesized to be recalcitrant but our results show that even this complex biopolymer is susceptible to degradation when inputs entering soil are altered. The PLFA data indicate that changes in soil microbial community structure favored the accelerated processing of specific SOM components with littler manipulation. These results collectively reveal that the quantity and quality of plant litter inputs alters the molecular-level composition of SOM and in some cases, enhances the degradation of recalcitrant SOM. Our study also suggests that increased litterfall is unlikely to enhance soil carbon storage over the long-term in temperate forests.

  17. Phonon Overlaps in Molecular Quantum Dot Systems

    NASA Astrophysics Data System (ADS)

    Chang, Connie; Sethna, James

    2004-03-01

    We model the amplitudes and frequencies of the vibrational sidebands for the new molecular quantum dot systems. We calculate the Franck-Condon phonon overlaps in the 3N-dimensional configuration sapce. We solve the general case where the vibrational frequencies and eigenmodes change during the transition. We perform PM3 and DFT calculations for the case of the dumb bell-shaped C140 molecule. We find that the strongest amplitudes are associated with the 11 meV stretch mode, in agreement with experiment. The experimental amplitudes vary from molecule to molecule; indicating that the molecular overlaps are environment dependent. We explore overlaps in the presence of external electric fields from image charges and counter ions.

  18. Polyneuropathy in neurofibromatosis 2: clinical findings, molecular genetics and neuropathological alterations in sural nerve biopsy specimens.

    PubMed

    Hagel, Christian; Lindenau, Matthias; Lamszus, Katrin; Kluwe, Lan; Stavrou, Dimitrios; Mautner, Victor-Felix

    2002-08-01

    Neurofibromatosis 2 (NF2) is an autosomal dominant disease characterised by development of tumours in the central and peripheral nervous system. Some NF2 patients develop acro-distal sensory motor polyneuropathy that can hardly be explained by the tumour burden alone. In the present study eight sural nerve biopsy specimens from seven NF2 patients suffering from polyneuropathy were investigated, data including clinical course of the disease, electrophysiological findings, teased fibre preparations, histopathological, morphometric, immunohistochemical, electron microscopic and molecular genetic findings. All patients suffered from distal symmetric reflex loss, symmetrical stocking-like hypalgesia and hypesthesia and loss of vibration sense later followed by a slowly progressive distal muscle atrophy and paresis. Sural nerve biopsy specimens revealed a pathological reduction of nerve fibre density correlating with age. In addition, diffuse proliferation of Schwann cells was observed in five of eight biopsies, and small endoneurial tumourlets of schwannomas and perineuriomas were found in two of eight and one of eight samples, respectively. Ki-67 labelling revealed a slight endoneurial proliferative activity in three cases. Schwann cell onion bulbs with or without central myelinated axon were seen in two cases. The findings suggest an axonopathy of multifactorial origin resulting not only from gross tumour growth but, in addition, from small endoneurial tumourlets, diffuse proliferation of Schwann cells and proliferation of perineurial cells. PMID:12111361

  19. Alteration mineralogy of the Dixie Valley geothermal system, Nevada

    SciTech Connect

    Lutz, S.J.; Moore, J.N.; Benoit, D.

    1996-12-31

    Petrographic studies along the Stillwater fault zone in Dixie Valley, Nevada document a variety of overlapping alteration assemblages that represent different physical and chemical conditions. At depth in the northern portion of the Dixie Valley geothermal field, wairakite, illite-smectite, and chalcedonic quartz are present in the hanging wall where measured, static and flowing temperatures are close to 248{degrees}C. Although the presence of wairakite is consistent with the observed temperatures, both the illite-smectite and chalcedonic quartz suggest lower temperature conditions. In outcrop, samples from the footwall of the Stillwater fault contain quartz, kaolin, smectite, dolomite, biotite, and epidote. Crosscutting relationships indicate that quartz and kaolin postdate formation of older biotite and epidote veins. The superposition of lower temperature assemblages (kaolin, dolomite, smectite) upon higher temperature minerals (biotite, epidote) characterizes the alteration in the footwall, whereas, the superposition of higher temperature minerals (wairakite) upon lower temperature phases (chalcedonic quartz, illite-smectite) is characteristic of the alteration in the geothermal reservoir within the hanging wall. This retrograde and prograde progression of alteration should be expected along this active normal fault as the footwall is uplifted and exhumed through time, and simultaneously, the hanging wall is down dropped.

  20. 32 CFR 310.33 - New and altered record systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... notice. (see § 310.32(f)). (3) An alteration of how the records are organized or the manner in which the... such as tape devices, disk devices, card readers, printers, and similar devices to an existing IT... (Legislative Affairs), Department of Defense. (3) The DPO prepares and sends a transmittal letter that...

  1. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  2. Microelectromechanical systems integrating molecular spin crossover actuators

    NASA Astrophysics Data System (ADS)

    Manrique-Juarez, Maria D.; Rat, Sylvain; Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2016-08-01

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H2B(pz)2)2(phen)] (H2B(pz)2 = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δfr = -0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  3. Electromagnetically induced gain in molecular systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Nandini; Patel, C. Kumar N.

    2009-12-01

    We report electromagnetically induced gain in a highly degenerate two-level rotational vibrational molecular system. Using two photon (Raman-type) interaction with right and left circularly polarized pump and probe waves, the Zeeman coherence is established within the manifold of degenerate sublevels belonging to a rotational vibrational eigenstate. We analytically and numerically calculate the third-order nonlinear optical susceptibility for a Doppler-broadened molecular transition for an arbitrary high rotational angular momentum (J≥20) . It is shown that for a Q -type open transition, a weak probe will experience an electromagnetically induced gain in presence of a strong copropagating pump wave. The inversionless gain originates due to cancellation of absorption from the interference of the coupled Λ - and V-type excitation channels in an N -type configuration. A detailed analysis of the optical susceptibility as a function of Doppler detuning explains how the gain bands are generated in a narrow transparency window from the overlapping contributions of different velocity groups. It is shown that the orientation dependent coherent interaction in presence of a strong pump induces narrow resonances for the probe susceptibility. The locations, intensity, and sign (positive or negative susceptibility) of these resonances are decided by the frequency detuning of the Doppler group and the strength of the coupling field. The availability of high power tunable quantum cascade lasers covering a spectral region from about 4 to 12μm opens up the possibility of investigating the molecular vibrational rotational transitions for a variety of coherent effects.

  4. Molecular Marker Systems for Oenothera Genetics

    PubMed Central

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G.; Greiner, Stephan

    2008-01-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome–genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9·8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed. PMID:18791241

  5. Advances in molecular genetic systems in malaria.

    PubMed

    de Koning-Ward, Tania F; Gilson, Paul R; Crabb, Brendan S

    2015-06-01

    Robust tools for analysing gene function in Plasmodium parasites, which are the causative agents of malaria, are being developed at an accelerating rate. Two decades after genetic technologies for use in Plasmodium spp. were first described, a range of genetic tools are now available. These include conditional systems that can regulate gene expression at the genome, transcriptional or protein level, as well as more sophisticated tools for gene editing that use piggyBac transposases, integrases, zinc-finger nucleases or the CRISPR-Cas9 system. In this Review, we discuss the molecular genetic systems that are currently available for use in Plasmodium falciparum and Plasmodium berghei, and evaluate the advantages and limitations of these tools. We examine the insights that have been gained into the function of genes that are important during the blood stages of the parasites, which may help to guide the development and improvement of drug therapies and vaccines.

  6. ONTOGENETIC ALTERATIONS IN MOLECULAR AND STRUCTURAL CORRELATES OF DENDRITIC GROWTH FOLLOWING DEVELOPMENTAL EXPOSURE TO POLYCHLORINATED BIPHENYLS.

    EPA Science Inventory

    This is the first report showing both molecular and structural changes in brain following developmental exposure to a neurotoxicant. It is known that perinatal exposure to a neurotoxicant, polychlorinated biphenyls (PCBs), is associated with decreased IQ scores, impaired learnin...

  7. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat.

    PubMed

    Riffle, Brandy W; Klinefelter, Gary R; Cooper, Ralph L; Winnik, Witold M; Swank, Adam; Jayaraman, Saro; Suarez, Juan; Best, Deborah; Laws, Susan C

    2014-08-01

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and testis (intact) proteomes in rats after 3 days of exposure. The adrenal accounted for most of the serum progesterone and all of the corticosterone increases in intact and castrated males. Serum luteinizing hormone, androstenedione, and testosterone in intact males shared a non-monotonic response suggesting transition from an acute stimulatory to a latent inhibitory response to exposure. Eight adrenal proteins were significantly altered with dose. There were unique proteomic changes between the adrenals of intact and castrated males. Six testis proteins in intact males had non-monotonic responses that significantly correlated with serum testosterone. Different dose-response curves for steroids and proteins in the adrenal and testis reveal novel adverse outcome pathways in intact and castrated male rats.

  8. Systems Pharmacology in Small Molecular Drug Discovery.

    PubMed

    Zhou, Wei; Wang, Yonghua; Lu, Aiping; Zhang, Ge

    2016-01-01

    Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity), target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level.

  9. Systems Pharmacology in Small Molecular Drug Discovery

    PubMed Central

    Zhou, Wei; Wang, Yonghua; Lu, Aiping; Zhang, Ge

    2016-01-01

    Drug discovery is a risky, costly and time-consuming process depending on multidisciplinary methods to create safe and effective medicines. Although considerable progress has been made by high-throughput screening methods in drug design, the cost of developing contemporary approved drugs did not match that in the past decade. The major reason is the late-stage clinical failures in Phases II and III because of the complicated interactions between drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug. There is a growing hope that systems-level consideration may provide a new perspective to overcome such current difficulties of drug discovery and development. The systems pharmacology method emerged as a holistic approach and has attracted more and more attention recently. The applications of systems pharmacology not only provide the pharmacodynamic evaluation and target identification of drug molecules, but also give a systems-level of understanding the interaction mechanism between drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity), target fishing and network pharmacology facilitates the discovery of small molecular drugs at the system level. PMID:26901192

  10. Microgravity-induced alterations in signal transduction in cells of the immune system

    NASA Astrophysics Data System (ADS)

    Paulsen, Katrin; Thiel, Cora; Timm, Johanna; Schmidt, Peter M.; Huber, Kathrin; Tauber, Svantje; Hemmersbach, Ruth; Seibt, Dieter; Kroll, Hartmut; Grote, Karl-Heinrich; Zipp, Frauke; Schneider-Stock, Regine; Cogoli, Augusto; Hilliger, Andre; Engelmann, Frank; Ullrich, Oliver

    2010-11-01

    Since decades it is known that the activity of cells of the immune system is severely dysregulated in microgravity, however, the underlying molecular aspects have not been elucidated yet. The identification of gravity-sensitive molecular mechanisms in cells of the immune system is an important and indispensable prerequisite for the development of counteractive measures to prevent or treat disturbed immune cell function of astronauts during long-term space missions. Moreover, their sensitivity to altered gravity renders immune cells an ideal model system to understand if and how gravity on Earth is required for normal mammalian cell function and signal transduction. We investigated the effect of simulated weightlessness (2D clinostat) and of real microgravity (parabolic flights) on key signal pathways in a human monocytic and a T lymphocyte cell line. We found that cellular responses to microgravity strongly depend on the cell-type and the conditions in which the cells are subjected to microgravity. In Jurkat T cells, enhanced phosphorylation of the MAP kinases ERK-1/2, MEK and p38 and inhibition of nuclear translocation of NF-kB were the predominant responses to simulated weightlessness, in either stimulated or non-stimulated cells. In contrast, non-stimulated monocytic U937 cells responded to simulated weightlessness with enhanced overall tyrosine-phosphorylation and activation of c-jun, whereas PMA-stimulated U937 cells responded the opposite way with reduced tyrosine-phosphorylation and reduced activation of c-jun, compared with PMA-stimulated 1 g controls. P53 protein was phosphorylated rapidly in microgravity. The identification of gravi-sensitive mechanisms in cells of the immune system will not only enable us to understand and prevent the negative effects of long time exposure to microgravity on Astronauts, but could also lead to novel therapeutic targets in general.

  11. Energy transformation in molecular electronic systems

    SciTech Connect

    Kasha, M.

    1985-07-25

    Our new optical pumping spectroscopy (steady state, and double-laser pulse) allows the production and study of the unstable rare tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole (model for biological purines), 3-hydroxyflavone (model for plant flavones), lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worth of industrial development. The excited and highly reactive singlet molecular oxygen species /sup 1/..delta../sub g/) has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of tris - dibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on ..pi..-electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved. 18 refs., 4 figs.

  12. Energy transformation in molecular electronic systems

    NASA Astrophysics Data System (ADS)

    Kasha, M.

    1985-07-01

    Our new optical pumping spectroscopy allows the production and study of the unstable rate tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole 3-hydroxyflavone, lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worthy of industrial development. The excited and highly reactive singlet molecular oxygen species (1) DELTA sub g has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of trisdibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on (PI)--electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved.

  13. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L. L.

    2003-10-01

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.

  14. Orthogonal photoswitching in a multifunctional molecular system

    PubMed Central

    Lerch, Michael M.; Hansen, Mickel J.; Velema, Willem A.; Szymanski, Wiktor; Feringa, Ben L.

    2016-01-01

    The wavelength-selective, reversible photocontrol over various molecular processes in parallel remains an unsolved challenge. Overlapping ultraviolet-visible spectra of frequently employed photoswitches have prevented the development of orthogonally responsive systems, analogous to those that rely on wavelength-selective cleavage of photo-removable protecting groups. Here we report the orthogonal and reversible control of two distinct types of photoswitches in one solution, that is, a donor–acceptor Stenhouse adduct (DASA) and an azobenzene. The control is achieved by using three different wavelengths of irradiation and a thermal relaxation process. The reported combination tolerates a broad variety of differently substituted photoswitches. The presented system is also extended to an intramolecular combination of photoresponsive units. A model application for an intramolecular combination of switches is presented, in which the DASA component acts as a phase-transfer tag, while the azobenzene moiety independently controls the binding to α-cyclodextrin. PMID:27401266

  15. Renal molecular mechanisms underlying altered Na+ handling and genesis of hypertension during adulthood in prenatally undernourished rats.

    PubMed

    Vieira-Filho, Leucio D; Cabral, Edjair V; Farias, Juliane S; Silva, Paulo A; Muzi-Filho, Humberto; Vieyra, Adalberto; Paixão, Ana D O

    2014-06-14

    In the present study, we investigated the development of hypertension in prenatally undernourished adult rats, including the mechanisms that culminate in dysfunctions of molecular signalling in the kidney. Dams were fed a low-protein multideficient diet throughout gestation with or without α-tocopherol during lactation. The time course of hypertension development followed in male offspring was correlated with alterations in proximal tubule Na+-ATPase activity, expression of angiotensin II (Ang II) receptors, and activity of protein kinases C and A. After the establishment of hypertension, Ang II levels, cyclo-oxygenase 2 (COX-2) and NADPH oxidase subunit expression, lipid peroxidation and macrophage infiltration were examined in renal tissue. Lipid peroxidation in undernourished rats, which was very intense at 60 d, decreased at 90 d and returned to control values by 150 d. During the prehypertensive phase, prenatally undernourished rats exhibited elevated renal Na+-ATPase activity, type 2 Ang II receptor down-regulation and altered protein kinase A:protein kinase C ratio. Stable late hypertension coexisted with highly elevated levels of Ang II-positive cells in the cortical tubulointerstitium, enhanced increase in the expression of p47phox (NADPH oxidase regulatory subunit), marked down-regulation of COX-2 expression, expanded plasma volume and decreased creatinine clearance. These alterations were reduced when the dams were given α-tocopherol during lactation. The offspring of well-nourished dams treated with α-tocopherol exhibited most of the alterations encountered in the offspring of undernourished dams not treated with α-tocopherol. Thus, alterations in proximal tubule Na+ transport, subcellular signalling pathways and reactive oxygen species handling in renal tissue underpin the development of hypertension. PMID:24661554

  16. Molecular Genetic Alteration of Plant Respiration (Silencing and Overexpression of Alternative Oxidase in Transgenic Tobacco).

    PubMed Central

    Vanlerberghe, G. C.; Vanlerberghe, A. E.; McIntosh, L.

    1994-01-01

    The alternative oxidase (AOX) of plant mitochondria is encoded by the nuclear gene Aox1. Sense and antisense DNA constructs of Nicotiana tabacum Aox1 were introduced into tobacco, and transgenic plants with both increased and decreased levels of mitochondrial AOX protein were identified. Suspension cells derived from wild-type and transgenic plants were grown in heterotrophic batch culture. Transgenic cells with increased AOX protein had an increased capacity for cyanide-resistant, salicylhydroxamic acid-sensitive respiration compared to wild-type cells, whereas transgenic cells with decreased AOX protein had a decreased capacity for such respiration. Thus, genetic alteration of the level of AOX protein was sufficient to alter the capacity for electron transport through the alternative pathway. Under our standard growth conditions, "antisense" cells with dramatically reduced levels of AOX protein had growth and respiration rates similar to the wild type. However, whereas wild-type cells were able to grow under conditions that severely suppressed cytochrome pathway activity, antisense cells could not survive this treatment. This suggests that a critical function of AOX may be to support respiration when the cytochrome pathway is impaired. The much higher level of AOX protein in "sense" cells compared to the wild type did not appreciably alter the steady-state partitioning of electrons between the cytochrome path and the alternative pathway in vivo, suggesting that this partitioning may be subject to additional regulatory factors. PMID:12232424

  17. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    NASA Technical Reports Server (NTRS)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  18. Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks

    PubMed Central

    Wolff, Gretchen; Duncan, Marilyn J.

    2013-01-01

    Shifting the onset of light, acutely or chronically, can profoundly affect responses to infection, tumor progression, development of metabolic disease, and mortality in mammals. To date, the majority of phase-shifting studies have focused on acute exposure to a shift in the timing of the light cycle, whereas the consequences of chronic phase shifts alone on molecular rhythms in peripheral tissues such as skeletal muscle have not been studied. In this study, we tested the effect of chronic phase advance on the molecular clock mechanism in two phenotypically different skeletal muscles. The phase advance protocol (CPA) involved 6-h phase advances (earlier light onset) every 4 days for 8 wk. Analysis of the molecular clock, via bioluminescence recording, in the soleus and flexor digitorum brevis (FDB) muscles and lung demonstrated that CPA advanced the phase of the rhythm when studied immediately after CPA. However, if the mice were placed into free-running conditions (DD) for 2 wk after CPA, the molecular clock was not phase shifted in the two muscles but was still shifted in the lung. Wheel running behavior remained rhythmic in CPA mice; however, the endogenous period length of the free-running rhythm was significantly shorter than that of control mice. Core body temperature, cage activity, and heart rate remained rhythmic throughout the experiment, although the onset of the rhythms was significantly delayed with CPA. These results provide clues that lifestyles associated with chronic environmental desynchrony, such as shift work, can have disruptive effects on the molecular clock mechanism in peripheral tissues, including both types of skeletal muscle. Whether this can contribute, long term, to increased incidence of insulin resistance/metabolic disease requires further study. PMID:23703115

  19. Alterations in the Striatal Dopamine System During Intravenous Methamphetamine Exposure: Effects of Contingent and Noncontingent Administration

    PubMed Central

    Laćan, Goran; Hadamitzky, Martin; Kuczenski, Ronald; Melega, William P.

    2014-01-01

    The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a ‘humanized’ plasma METH half life, or by intravenous self-administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7–1.5 μM. Animals were sacrificed during their last METH administration for autoradiography assessment using [3H]ligands and D2 agonist-induced [35S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15–20%) and [35S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal’s total intake was similar within and across three 24 h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans. PMID:23417852

  20. Alterations in the striatal dopamine system during intravenous methamphetamine exposure: effects of contingent and noncontingent administration.

    PubMed

    Laćan, Goran; Hadamitzky, Martin; Kuczenski, Ronald; Melega, William P

    2013-08-01

    The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long-term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a "humanized" plasma METH half life or by intravenous self-administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7 and 1.5 µM. Animals were sacrificed during their last METH administration for autoradiography assessment using [³H]ligands and D2 agonist-induced [³⁵S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15-20%) and [³⁵S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal's total intake was similar within and across three 24-h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans.

  1. Glycogene Expression Alterations Associated with Pancreatic Cancer Epithelial-Mesenchymal Transition in Complementary Model Systems

    PubMed Central

    Maupin, Kevin A.; Sinha, Arkadeep; Eugster, Emily; Miller, Jeremy; Ross, Julianna; Paulino, Vincent; Keshamouni, Venkateshwar G.; Tran, Nhan; Berens, Michael; Webb, Craig; Haab, Brian B.

    2010-01-01

    Background The ability to selectively detect and target cancer cells that have undergone an epithelial-mesenchymal transition (EMT) may lead to improved methods to treat cancers such as pancreatic cancer. The remodeling of cellular glycosylation previously has been associated with cell differentiation and may represent a valuable class of molecular targets for EMT. Methodology/Principal Findings As a first step toward investigating the nature of glycosylation alterations in EMT, we characterized the expression of glycan-related genes in three in-vitro model systems that each represented a complementary aspect of pancreatic cancer EMT. These models included: 1) TGFβ-induced EMT, which provided a look at the active transition between states; 2) a panel of 22 pancreatic cancer cell lines, which represented terminal differentiation states of either epithelial-like or mesenchymal-like; and 3) actively-migrating and stationary cells, which provided a look at the mechanism of migration. We analyzed expression data from a list of 587 genes involved in glycosylation (biosynthesis, sugar transport, glycan-binding, etc.) or EMT. Glycogenes were altered at a higher prevalence than all other genes in the first two models (p<0.05 and <0.005, respectively) but not in the migration model. Several functional themes were shared between the induced-EMT model and the cell line panel, including alterations to matrix components and proteoglycans, the sulfation of glycosaminoglycans; mannose receptor family members; initiation of O-glycosylation; and certain forms of sialylation. Protein-level changes were confirmed by Western blot for the mannose receptor MRC2 and the O-glycosylation enzyme GALNT3, and cell-surface sulfation changes were confirmed using Alcian Blue staining. Conclusions/Significance Alterations to glycogenes are a major component of cancer EMT and are characterized by changes to matrix components, the sulfation of GAGs, mannose receptors, O-glycosylation, and specific

  2. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    PubMed

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds.

  3. Structural alterations in a component of cytochrome c oxidase and molecular evolution of pathogenic Neisseria in humans.

    PubMed

    Aspholm, Marina; Aas, Finn Erik; Harrison, Odile B; Quinn, Diana; Vik, Ashild; Viburiene, Raimonda; Tønjum, Tone; Moir, James; Maiden, Martin C J; Koomey, Michael

    2010-08-19

    Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb(3) oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host.

  4. Molecular imaging as a guide for the treatment of central nervous system disorders.

    PubMed

    Kim, Euitae; Howes, Oliver D; Kapur, Shitij

    2013-09-01

    Molecular imaging techniques have a number of advantages for research into the pathophysiology and treatment of central nervous system (CNS) disorders. Firstly, they provide a noninvasive means of characterizing physiological processes in the living brain, enabling molecular alterations to be linked to clinical changes. Secondly, the pathophysiological target in a given CNS disorder can be measured in animal models and in experimental human models in the same way, which enables translational research. Moreover, as molecular imaging facilitates the detection of functional change which precedes gross pathology, it is particularly useful for the early diagnosis and treatment of CNS disorders. This review considers the application of molecular imaging to CNS disorders focusing on its potential to inform the development and evaluation of treatments. We focus on schizophrenia, Parkinson's disease, depression, and dementia as major CNS disorders. We also review the potential of molecular imaging to guide new drug development for CNS disorders.

  5. Molecular imaging as a guide for the treatment of central nervous system disorders.

    PubMed

    Kim, Euitae; Howes, Oliver D; Kapur, Shitij

    2013-09-01

    Molecular imaging techniques have a number of advantages for research into the pathophysiology and treatment of central nervous system (CNS) disorders. Firstly, they provide a noninvasive means of characterizing physiological processes in the living brain, enabling molecular alterations to be linked to clinical changes. Secondly, the pathophysiological target in a given CNS disorder can be measured in animal models and in experimental human models in the same way, which enables translational research. Moreover, as molecular imaging facilitates the detection of functional change which precedes gross pathology, it is particularly useful for the early diagnosis and treatment of CNS disorders. This review considers the application of molecular imaging to CNS disorders focusing on its potential to inform the development and evaluation of treatments. We focus on schizophrenia, Parkinson's disease, depression, and dementia as major CNS disorders. We also review the potential of molecular imaging to guide new drug development for CNS disorders. PMID:24174903

  6. 32 CFR Appendix F to Part 310 - Format for New or Altered System Report

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... assurances that the new or altered system does not duplicate any existing Component systems, DoD-wide systems.... Provide assurances that any records contained in the system that are disclosed outside the DoD shall be... Privacy Act of 1974 1. System identifier and name: NSLRB 01, entitled “The National Security...

  7. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  8. The Cerebral Surfactant System and Its Alteration in Hydrocephalic Conditions

    PubMed Central

    Friedrich, Benjamin; Bernhard, Matthias K.; Gebauer, Corinna; Dieckow, Julia; Gawlitza, Matthias; Pirlich, Mandy; Saur, Dorothee; Bräuer, Lars; Bechmann, Ingo; Hoffmann, Karl-Titus; Mahr, Cynthia V.; Nestler, Ulf; Preuß, Matthias

    2016-01-01

    Introduction Pulmonary Surfactant reduces surface tension in the terminal airways thus facilitating breathing and contributes to host’s innate immunity. Surfactant Proteins (SP) A, B, C and D were recently identified as inherent proteins of the CNS. Aim of the study was to investigate cerebrospinal fluid (CSF) SP levels in hydrocephalus patients compared to normal subjects. Patients and Methods CSF SP A-D levels were quantified using commercially available ELISA kits in 126 patients (0–84 years, mean 39 years). 60 patients without CNS pathologies served as a control group. Hydrocephalus patients were separated in aqueductal stenosis (AQS, n = 24), acute hydrocephalus without aqueductal stenosis (acute HC w/o AQS, n = 16) and idiopathic normal pressure hydrocephalus (NPH, n = 20). Furthermore, six patients with pseudotumor cerebri were investigated. Results SP A—D are present under physiological conditions in human CSF. SP-A is elevated in diseases accompanied by ventricular enlargement (AQS, acute HC w/o AQS) in a significant manner (0.67, 1.21 vs 0.38 ng/ml in control, p<0.001). SP-C is also elevated in hydrocephalic conditions (AQS, acute HC w/o AQS; 0.87, 1.71 vs. 0.48 ng/ml in controls, p<0.001) and in Pseudotumor cerebri (1.26 vs. 0.48 ng/ml in controls, p<0.01). SP-B and SP-D did not show significant alterations. Conclusion The present study confirms the presence of SPs in human CSF. There are significant changes of SP-A and SP-C levels in diseases affecting brain water circulation and elevation of intracranial pressure. Cause of the alterations, underlying regulatory mechanisms, as well as diagnostic and therapeutic consequences of cerebral SP’s requires further thorough investigations. PMID:27656877

  9. Molecular optical air data system (MOADS)

    NASA Astrophysics Data System (ADS)

    Tchoryk, Peter, Jr.; Watkins, Christopher B.; Lindemann, Scott K.; Hays, Paul B.; Nardell, Carl A.

    2001-09-01

    The Molecular Optical Air Data System (MOADS) is a compact optical instrument that can directly measure wind speed and direction, density, and temperature of the air surrounding an aircraft. From these measurements, a complete set of air data products can be determined. Single-axis wind tunnel testing of wind speed and density has just been completed for the current prototype. These wind tunnel measurements have shown that the current prototype meets wind speed accuracy predictions and initial results from density testing indicate a high level of correlation with absolute pressure transducer measurements. A preliminary design for the next generation instrument, the Joint Optical Air Data System (JOADS), has been completed and is intended to meet Joint Striker Fighter (JSF) requirements. Work is also underway to evaluate the application of MOADS to Unmanned Air Vehicles (UAVs), Reusable Launch Vehicles (RLVs), helicopters and weapon systems. Extensions of MOADS technology to wind shear, gust alleviation, and clear air turbulence detection for commercial aircraft are also being pursued. The basic instrument operation, preliminary ground testing (wind tunnel) results, comparison of these results to simulations, next generation instrument capabilities, and plans for a flight demonstration are discussed.

  10. Multiple molecular alterations of FHIT in betel-associated oral carcinoma.

    PubMed

    Chang, Kuo-Wei; Kao, Shou-Yen; Tzeng, Reuo-Jar; Liu, Chung-Ji; Cheng, Ann-Joy; Yang, Shun-Chun; Wong, Yong-Kie; Lin, Shu-Chun

    2002-03-01

    To determine the alterations of the FHIT (fragile histidine triad) gene in oral squamous cell carcinoma (OSCC), this study examined mutation, promoter methylation, mRNA transcription, and protein expression of FHIT in OSCC associated mostly with the use of betel and/or tobacco. Analyses of the coding exons (exons 5-9) identified a deletion of one base in intron 4 in one tumour and a deletion of exon 7 in two tumours. Using bisulphite genomic sequencing, 28% of the informative subjects exhibited promoter methylation. An aberrant FHIT transcript spanning from exon 3 to exon 10, which was verified by RT-PCR analysis, was identified in 36% of the OSCC subjects, 50% of the oral pre-invasive lesions, and 5% of the non-cancerous match tissue. An abnormal immunohistochemical level of Fhit was detected in 41% of OSCC subjects. A statistically significant association was found between aberrant transcription of the FHIT gene and an abnormal level of Fhit immunoreactivity. The results indicated that alteration of FHIT is a frequent occurrence in OSCC and thus suggests that the aberrance in FHIT transcription could be an early event of oral carcinogenesis. PMID:11857493

  11. Molecular alterations in tumorigenic human bronchial and breast epithelial cells induced by high let radiation

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Zhao, Y. L.; Roy, D.; Piao, C. Q.; Calaf, G.; Hall, E. J.

    Carcinogenesis is a multi-stage process with sequence of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer. In the present study, immortalized human bronchial (BEP2D) and breast (MCF-10F) cells were irradiated with graded doses of either 150 keV/μm alpha particles or 1 GeV/nucleon 56Fe ions. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Cell fusion studies indicated that radiation-induced tumorigenic phenotype in BEP2D cells could be completely suppressed by fusion with non-tumorigenic BEP2D cells. The differential expressions of known genes between tumorigenic bronchial and breast cells induced by alpha particles and their respective control cultures were compared using cDNA expression array. Among the 11 genes identified to be differentially expressed in BEP2D cells, three ( DCC, DNA-PK and p21 CIPI) were shown to be consistently down-regulated by 2 to 4 fold in all the 5 tumor cell lines examined. In contrast, their expressions in the fusion cell lines were comparable to control BEP2D cells. Similarly, expression levels of a series of genes were found to be altered in a step-wise manner among tumorigenic MCF-10F cells. The results are highly suggestive that functional alterations of these genes may be causally related to the carcinogenic process.

  12. 78 FR 64196 - Privacy Act Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ..., Biographical Files (78 FR 171). In that notice, the Department announced its intent to amend that system of..., Biographical Files. The notice of proposed amendment to this system of records was published in the Federal..., Biographical Files and Social Networks. The amendment serves to modify the system of records by...

  13. DNA Ends Alter the Molecular Composition and Localization of Ku Multicomponent Complexes*

    PubMed Central

    Adelmant, Guillaume; Calkins, Anne S.; Garg, Brijesh K.; Card, Joseph D.; Askenazi, Manor; Miron, Alex; Sobhian, Bijan; Zhang, Yi; Nakatani, Yoshihiro; Silver, Pamela A.; Iglehart, J. Dirk; Marto, Jarrod A.; Lazaro, Jean-Bernard

    2012-01-01

    The Ku heterodimer plays an essential role in non-homologous end-joining and other cellular processes including transcription, telomere maintenance and apoptosis. While the function of Ku is regulated through its association with other proteins and nucleic acids, the specific composition of these macromolecular complexes and their dynamic response to endogenous and exogenous cellular stimuli are not well understood. Here we use quantitative proteomics to define the composition of Ku multicomponent complexes and demonstrate that they are dramatically altered in response to UV radiation. Subsequent biochemical assays revealed that the presence of DNA ends leads to the substitution of RNA-binding proteins with DNA and chromatin associated factors to create a macromolecular complex poised for DNA repair. We observed that dynamic remodeling of the Ku complex coincided with exit of Ku and other DNA repair proteins from the nucleolus. Microinjection of sheared DNA into live cells as a mimetic for double strand breaks confirmed these findings in vivo. PMID:22535209

  14. Molecular alterations resulting from frameshift mutations in peripheral myelin protein 22: implications for neuropathy severity.

    PubMed

    Johnson, J S; Roux, K J; Fletcher, B S; Fortun, J; Notterpek, L

    2005-12-15

    Alterations in peripheral myelin protein 22 (PMP22) expression are associated with a heterogeneous group of hereditary demyelinating peripheral neuropathies. Two mutations at glycine 94, a single guanine insertion or deletion in PMP22, result in different reading frameshifts and, consequently, an extended G94fsX222 or a truncated G94fsX110 protein, respectively. Both of these autosomal dominant mutations alter the second half of PMP22 and yet are linked to clinical phenotypes with distinct severities. The G94fsX222 is associated with hereditary neuropathy with liability to pressure palsies, whereas G94fsX110 causes severe neuropathy diagnosed as Dejerine-Sottas disease or Charcot-Marie-Tooth disease type IA. To investigate the subcellular changes associated with the G94 frameshift mutations, we expressed epitope-tagged forms in primary rat Schwann cells. Biochemical and immunolabeling studies indicate that, unlike the wild-type protein, which is targeted for the plasma membrane, frameshift PMP22s are retained in the cell, prior to reaching the medial Golgi compartment. Similar to Wt-PMP22, both frameshift mutants are targeted for proteasomal degradation and accumulate in detergent-insoluble, ubiquitin-containing aggregates upon inhibition of this pathway. The extended frameshift PMP22 shows the ability to form spontaneous aggregates in the absence of proteasome inhibition. On the other hand, Schwann cells expressing the truncated protein proliferate at a significantly higher rate than Schwann cells expressing the wild-type or the extended PMP22. In summary, these results suggest that a greater potential for PMP22 aggregation is associated with a less severe phenotype, whereas dysregulation of Schwann cell proliferation is linked to severe neuropathy. PMID:16273544

  15. 78 FR 23811 - Privacy Act of 1974; Proposed New Routine Uses and System of Records Alterations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... accounting reports. Authority for maintenance of the system: Sections 205(a), 205(j), 208, 811, 1631(a), and..., Accounting and Reporting, 60-0094, and Prisoner Update Processing System, 60-0269. Systems exempted from... ADMINISTRATION Privacy Act of 1974; Proposed New Routine Uses and System of Records Alterations AGENCY:...

  16. Cell Cycle Control and Adhesion Molecule Expression in Cells of the Immune System are Sensitive to Altered Gravity

    NASA Astrophysics Data System (ADS)

    Ullrich, O.; Paulsen, K.; Thiel, C.; Herrmann, K.; Sang, C.; Han, G.; Hemmersbach, R.; von der Wiesche, M.; Kroll, H.; Zhuang, F.; Grote, K. H.; Cogoli, A.; Zipp, F.; Engelmann, F.

    2008-06-01

    Life on earth developed in the presence and under the constant influence of gravity. Thus, it is a fundamental biological question, whether gravity is required for cellular functions and signal transduction in mammalian cells. Since the first Spacelab-Mission 20 years ago, it is known that activation and function of T lymphocytes is severely suppressed in microgravity, but the underlying molecular mechanisms are not elucidated. Experiments have been performed using ground-based facilities such as fast-rotating clinostat and hyper-g-centrifuges, and real microgravity provided by parabolic flights. We found that 1.) cells of the immune system responded cell type specifically to altered gravity, 2.) microgravity induced a multitude of initial alterations in signal transduction, whereas 3.) hypergravity of 1.8g did not induce any changes of the pathways tested, and that 4.) most of the initially altered pathways in microgravity adapted to "normal" levels within 15min. However, some pathways remained altered and could explain cell cycle arrest of T lymphocytes as observed in several long-term space experiments.

  17. Does glimepiride alter the pharmacokinetics of sildenafil citrate in diabetic nephropathy animals: investigating mechanism of interaction by molecular modeling studies.

    PubMed

    Tripathi, Alok Shiomurti; Timiri, Ajay Kumar; Mazumder, Papiya Mitra; Chandewar, Anil

    2015-10-01

    The present study evaluates possible drug interactions between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ)-induced diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction based on molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg kg(-1), i.p.) and was confirmed by assessing blood and urine biochemical parameters 28 days after induction. Selected DN animals were used to explore the drug interaction between GLIM (0.5 mg kg(-1), p.o.) and SIL (2.5 mg kg(-1), p.o.) on the 29th and 70th day of the protocol. Possible drug interaction was assessed by evaluating the plasma drug concentration using HPLC-UV and changes in biochemical parameters in blood and urine were also determined. The mechanism of the interaction was postulated from the results of a molecular modeling study using the Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in blood and urine biochemical parameters in STZ-treated groups. The concentration of SIL increased significantly (P < 0.001) in rat plasma when co-administered with GLIM on the 70th day of the protocol. Molecular modeling revealed important interactions with rat serum albumin and CYP2C9. GLIM has a strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL, whereas for CYP2C9, GLIM forms a stronger hydrogen bond than SIL with polar contacts and hydrophobic interactions. The present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals, and the mechanism is supported by molecular modeling studies. PMID:26428531

  18. Computer modeling of properties of complex molecular systems

    SciTech Connect

    Kulkova, E.Yu.; Khrenova, M.G.; Polyakov, I.V.

    2015-03-10

    Large molecular aggregates present important examples of strongly nonhomogeneous systems. We apply combined quantum mechanics / molecular mechanics approaches that assume treatment of a part of the system by quantum-based methods and the rest of the system with conventional force fields. Herein we illustrate these computational approaches by two different examples: (1) large-scale molecular systems mimicking natural photosynthetic centers, and (2) components of prospective solar cells containing titan dioxide and organic dye molecules. We demonstrate that modern computational tools are capable to predict structures and spectra of such complex molecular aggregates.

  19. Targeted molecular profiling of rare genetic alterations in colorectal cancer using next-generation sequencing.

    PubMed

    Jauhri, Mayank; Bhatnagar, Akanksha; Gupta, Satish; Shokeen, Yogender; Minhas, Sachin; Aggarwal, Shyam

    2016-10-01

    Mutation frequencies of common genetic alterations in colorectal cancer have been in the spotlight for many years. This study highlights few rare somatic mutations, which possess the attributes of a potential CRC biomarker yet are often neglected. Next-generation sequencing was performed over 112 tumor samples to detect genetic alterations in 31 rare genes in colorectal cancer. Mutations were detected in 26/31 (83.9 %) uncommon genes, which together contributed toward 149 gene mutations in 67/112 (59.8 %) colorectal cancer patients. The most frequent mutations include KDR (19.6 %), PTEN (17 %), FBXW7 (10.7 %), SMAD4 (10.7 %), VHL (8 %), KIT (8 %), MET (7.1 %), ATM (6.3 %), CTNNB1 (4.5 %) and CDKN2A (4.5 %). RB1, ERBB4 and ERBB2 mutations were persistent in 3.6 % patients. GNAS, FGFR2 and FGFR3 mutations were persistent in 1.8 % patients. Ten genes (EGFR, NOTCH1, SMARCB1, ABL1, STK11, SMO, RET, GNAQ, CSF1R and FLT3) were found mutated in 0.9 % patients. Lastly, no mutations were observed in AKT, HRAS, MAP2K1, PDGFR and JAK2. Significant associations were observed between VHL with tumor site, ERBB4 and SMARCB1 with tumor invasion, CTNNB1 with lack of lymph node involvement and CTNNB1, FGFR2 and FGFR3 with TNM stage. Significantly coinciding mutation pairs include PTEN and SMAD4, PTEN and KDR, EGFR and RET, EGFR and RB1, FBXW7 and CTNNB1, KDR and FGFR2, FLT3 and CTNNB1, RET and RB1, ATM and SMAD4, ATM and CDKN2A, ERBB4 and SMARCB1. This study elucidates few potential colorectal cancer biomarkers, specifically KDR, PTEN, FBXW7 and SMAD4, which are found mutated in more than 10 % patients. PMID:27568332

  20. [Alterations of the integument of fattening pigs in different housing systems].

    PubMed

    Mayer, C; Hauser, R

    2001-04-01

    Alterations of the integument of fattening pigs were investigated on a total of eleven farms with the following housing systems: "Krieger" system, fully slatted floors, partially slatted floors and kennel housing systems. For this purpose, the alterations of the integument of the animals were visually assessed at different times during fattening. In addition, spot investigations were carried out on three farms with deep litter systems. In the non-littered systems, significantly more changes at the limbs were observed than in the littered systems. The least damages occurred in the deep litter system. Similar as with cattle, soft and deformable lying areas seem to be a prerequisite for the prevention of such alterations. With respect to injuries caused by tailbiting, apart from possibilities of activity, other parameters such as air quality and space availability also play an important role. PMID:11344943

  1. Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rats.

    PubMed

    Brown, A A; Xu, T; Arroyo, E J; Levinson, S R; Brophy, P J; Peles, E; Scherer, S S

    2001-07-15

    We examined the organization of the molecular components of the nodal region in spontaneously diabetic BB-Wistar rats. Frozen sections and teased fibers from the sciatic nerves were immunostained for nodal (voltage-gated Na(+) channels, ankyrin(G), and ezrin), paranodal (contactin, Caspr, and neurofascin 155 kDa), and juxtaparanodal (Caspr2, the Shaker-type K(+) channels Kv1.1 and Kv1.2, and their associated subunit Kvbeta2) proteins. All of these proteins were properly localized in myelinated fibers from rats that had been diabetic for 15-44 days, compared to age-matched, nondiabetic animals. These results demonstrate that the axonal membrane is not reorganized, so nodal reorganization is not likely to be the cause of nerve conduction slowing in this animal model of acute diabetes. PMID:11438983

  2. Molecular impact surface textured implants (MISTI) alter beneficially breast capsule formation at 36 months.

    PubMed

    Ersek, R A

    1991-01-01

    Since the development of smooth silicone breast implants in 1962, over two million women throughout the world have opted for breast augmentation surgery. While initially successful, smooth implants are prone to developing surrounding scar capsules that may harden and contract--resulting in discomfort, weakening of the shell with rupture, unsightliness, and patient dissatisfaction. This phenomenon has been shown to occur in as much as 70% of implanted patients over time. Our work on the texturing of implantable prosthesis material (published in 1968), and subsequent discoveries, has led us to the development of textured silicone breast implants. Because the host interface is altered by the texture, collagen fibrils select a formation that is multiplanar which results in thinner, more pliable capsules that are more resilient and less likely to contract. At 18 months (August, 1989), with 116 implants, all remain soft, after an additional 18 months follow-up, for a total of 36 months maximum and 18 months minimum. The long-term performance of these implants must await the availability of further clinical data.

  3. Review on intermediate filaments of the nervous system and their pathological alterations.

    PubMed

    Lépinoux-Chambaud, Claire; Eyer, Joël

    2013-07-01

    Intermediate filaments (IFs) of the nervous system, including neurofilaments, α-internexin, glial fibrillary acidic protein, synemin, nestin, peripherin and vimentin, are finely expressed following elaborated cell, tissue and developmental specific patterns. A common characteristic of several neurodegenerative diseases is the abnormal accumulation of neuronal IFs in cell bodies or along the axon, often associated with impairment of the axonal transport and degeneration of neurons. In this review, we also present several perturbations of IF metabolism and organization associated with neurodegenerative disorders. Such modifications could represent strong markers of neuronal damages. Moreover, recent data suggest that IFs represent potential biomarkers to determine the disease progression or the differential stages of a neuronal disorder. Finally, recent investigations on IF expression and function in cancer provide evidence that they may be useful as markers, or targets of brain tumours, especially high-grade glioma. A better knowledge of the molecular mechanisms of IF alterations, combined to neuroimaging, is essential to improve diagnosis and therapeutic strategies of such neurodegenerative diseases and glioma.

  4. Altered MCM protein levels and autophagic flux in aged and systemic sclerosis dermal fibroblasts.

    PubMed

    Dumit, Verónica I; Küttner, Victoria; Käppler, Jakob; Piera-Velazquez, Sonsoles; Jimenez, Sergio A; Bruckner-Tuderman, Leena; Uitto, Jouni; Dengjel, Jörn

    2014-09-01

    Aging is a common risk factor of many disorders. With age, the level of insoluble extracellular matrix increases leading to increased stiffness of a number of tissues. Matrix accumulation can also be observed in fibrotic disorders, such as systemic sclerosis (SSc). Although the intrinsic aging process in skin is phenotypically distinct from SSc, here we demonstrate similar behavior of aged and SSc skin fibroblasts in culture. We have used quantitative proteomics to characterize the phenotype of dermal fibroblasts from healthy subjects of various ages and from patients with SSc. Our results demonstrate that proteins involved in DNA and RNA processing decrease with age and in SSc, whereas those involved in mitochondrial and other metabolic processes behave the opposite. Specifically, minichromosome maintenance (MCM) helicase proteins are less abundant with age and SSc, and they exhibit an altered subcellular distribution. We observed that lower levels of MCM7 correlate with reduced cell proliferation, lower autophagic capacity, and higher intracellular protein abundance phenotypes of aged and SSc cells. In addition, we show that SSc fibroblasts exhibit higher levels of senescence compared with their healthy counterparts, suggesting further similarities between the fibrotic disorder and the aging process. Hence, at the molecular level, SSc fibroblasts exhibit intrinsic characteristics of fibroblasts from aged skin.

  5. Molecular alterations in areas generating fast ripples in an animal model of temporal lobe epilepsy.

    PubMed

    Winden, Kellen D; Bragin, Anatol; Engel, Jerome; Geschwind, Dan H

    2015-06-01

    The molecular basis of epileptogenesis is poorly characterized. Studies in humans and animal models have identified an electrophysiological signature that precedes the onset of epilepsy, which has been termed fast ripples (FRs) based on its frequency. Multiple lines of evidence implicate regions generating FRs in epileptogenesis, and FRs appear to demarcate the seizure onset zone, suggesting a role in ictogenesis as well. We performed gene expression analysis comparing areas of the dentate gyrus that generate FRs to those that do not generate FRs in a well-characterized rat model of epilepsy. We identified a small cohort of genes that are differentially expressed in FR versus non-FR brain tissue and used quantitative PCR to validate some of those that modulate neuronal excitability. Gene expression network analysis demonstrated conservation of gene co-expression between non-FR and FR samples, but examination of gene connectivity revealed changes that were most pronounced in the cm-40 module, which contains several genes associated with synaptic function and the differentially expressed genes Kcna4, Kcnv1, and Npy1r that are down-regulated in FRs. We then demonstrate that the genes within the cm-40 module are regulated by seizure activity and enriched for the targets of the RNA binding protein Elavl4. Our data suggest that seizure activity induces co-expression of genes associated with synaptic transmission and that this pattern is attenuated in areas displaying FRs, implicating the failure of this mechanism in the generation of FRs. PMID:25818007

  6. Septic Shock in Advanced Age: Transcriptome Analysis Reveals Altered Molecular Signatures in Neutrophil Granulocytes

    PubMed Central

    Vieira da Silva Pellegrina, Diogo; Severino, Patricia; Vieira Barbeiro, Hermes; Maziero Andreghetto, Flávia; Tadeu Velasco, Irineu; Possolo de Souza, Heraldo; Machado, Marcel Cerqueira César; Reis, Eduardo Moraes; Pinheiro da Silva, Fabiano

    2015-01-01

    Sepsis is one of the highest causes of mortality in hospitalized people and a common complication in both surgical and clinical patients admitted to hospital for non-infectious reasons. Sepsis is especially common in older people and its incidence is likely to increase substantially as a population ages. Despite its increased prevalence and mortality in older people, immune responses in the elderly during septic shock appear similar to that in younger patients. The purpose of this study was to conduct a genome-wide gene expression analysis of circulating neutrophils from old and young septic patients to better understand how aged individuals respond to severe infectious insult. We detected several genes whose expression could be used to differentiate immune responses of the elderly from those of young people, including genes related to oxidative phosphorylation, mitochondrial dysfunction and TGF-β signaling, among others. Our results identify major molecular pathways that are particularly affected in the elderly during sepsis, which might have a pivotal role in worsening clinical outcomes compared with young people with sepsis. PMID:26047321

  7. EVI1-rearranged acute myeloid leukemias are characterized by distinct molecular alterations

    PubMed Central

    Lavallée, Vincent-Philippe; Gendron, Patrick; Lemieux, Sébastien; D’Angelo, Giovanni; Hébert, Josée

    2015-01-01

    The genetic and transcriptional signature of EVI1 (ecotropic viral integration site 1)-rearranged (EVI1-r) acute myeloid leukemias (AMLs) remains poorly defined. We performed RNA sequencing of 12 EVI1-r AMLs and compared the results with those of other AML subtypes (n = 139) and normal CD34+ cells (n = 17). Results confirm high frequencies of RAS and other activated signaling mutations (10/12 AMLs) and identify new recurrent mutations in splicing factors (5/12 AMLs in SF3B1 and 2/12 AMLs in U2AF1), IKZF1 (3/12 AMLs), and TP53 (3/12 AMLs). Mutations in IKZF1, a gene located on chromosome 7, and monosomy 7 are mutually exclusive in this disease. Moreover IKZF1 expression is halved in monosomy 7 leukemias. EVI-r AMLs are also characterized by a unique transcriptional signature with high expression levels of MECOM, PREX2, VIP, MYCT1, and PAWR. Our results suggest that EVI1-r AMLs could be molecularly defined by specific transcriptomic anomalies and a hitherto unseen mutational pattern. Larger patient cohorts will better determine the frequency of these events. PMID:25331116

  8. EVI1-rearranged acute myeloid leukemias are characterized by distinct molecular alterations.

    PubMed

    Lavallée, Vincent-Philippe; Gendron, Patrick; Lemieux, Sébastien; D'Angelo, Giovanni; Hébert, Josée; Sauvageau, Guy

    2015-01-01

    The genetic and transcriptional signature of EVI1 (ecotropic viral integration site 1)-rearranged (EVI1-r) acute myeloid leukemias (AMLs) remains poorly defined. We performed RNA sequencing of 12 EVI1-r AMLs and compared the results with those of other AML subtypes (n = 139) and normal CD34(+) cells (n = 17). Results confirm high frequencies of RAS and other activated signaling mutations (10/12 AMLs) and identify new recurrent mutations in splicing factors (5/12 AMLs in SF3B1 and 2/12 AMLs in U2AF1), IKZF1 (3/12 AMLs), and TP53 (3/12 AMLs). Mutations in IKZF1, a gene located on chromosome 7, and monosomy 7 are mutually exclusive in this disease. Moreover IKZF1 expression is halved in monosomy 7 leukemias. EVI-r AMLs are also characterized by a unique transcriptional signature with high expression levels of MECOM, PREX2, VIP, MYCT1, and PAWR. Our results suggest that EVI1-r AMLs could be molecularly defined by specific transcriptomic anomalies and a hitherto unseen mutational pattern. Larger patient cohorts will better determine the frequency of these events. PMID:25331116

  9. The Diagnostic Use of Immunohistochemical Surrogates for Signature Molecular Genetic Alterations in Gliomas.

    PubMed

    Tanboon, Jantima; Williams, Erik A; Louis, David N

    2016-01-01

    A number of key mutations that affect treatment and prognosis have been identified in human gliomas. Two major ways to identify these mutations in a tumor sample are direct interrogation of the mutated DNA itself and immunohistochemistry to assess the effects of the mutated genes on proteins. Immunohistochemistry is an affordable, robust, and widely available technology that has been in place for decades. For this reason, the use of immunohistochemical approaches to assess molecular genetic changes has become an essential component of state-of-the-art practice. In contrast, even though DNA sequencing technologies are undergoing rapid development, many medical centers do not have access to such methodologies and may be thwarted by the relatively high costs of sending out such tests to reference laboratories. This review summarizes the current experience using immunohistochemistry of glioma samples to identify mutations in IDH1, TP53, ATRX, histone H3 genes, BRAF, EGFR, MGMT, CIC, and FUBP1 as well as guidelines for prudent use of DNA sequencing as a supplemental method. PMID:26671986

  10. Reduced molecular size and altered disaccharide composition of cerebral chondroitin sulfate upon Alzheimer's pathogenesis in mice.

    PubMed

    Zhang, Zui; Ohtake-Niimi, Shiori; Kadomatsu, Kenji; Uchimura, Kenji

    2016-08-01

    Alzheimer's disease (AD) is a progressive disorder leading to cognitive impairment and neuronal loss. Cerebral extracellular accumulation and deposition of amyloid ß plaques is a pathological hallmark of AD. Chondroitin sulfate (CS) is an extracellular component abundant in the brain. CS is a sulfated glycosaminoglycan covalently attached to a core protein, forming chondroitin sulfate proteoglycan. The structure of CS is heterogeneous with sulfation modification and elongation of the chain. The structural diversity of CS allows it to play various roles in the brain. Increasing evidence has shown that CS promotes aggregation of amyloid ß peptides into higher-order species such as insoluble amyloid ß fibrils. Difficulties in the structural analysis of brain CS, as well as its heterogeneity, limit the study of potential roles of CS in AD pathology. Here we established a microanalysis method with reversed-phase ion-pair high performance liquid chromatography and found that CS in the brains of Tg2576 AD model mice show a lower molecular size and an increased ratio of CS-B motif di-sulfated disaccharide. Our findings provide insight into the structural changes of cerebral CS upon Alzheimer's pathogenesis. PMID:27578913

  11. Current Management Strategies in Breast Cancer by Targeting Key Altered Molecular Players

    PubMed Central

    Ali, Shazia; Mondal, Neelima; Choudhry, Hani; Rasool, Mahmood; Pushparaj, Peter N.; Khan, Mohammad A.; Mahfooz, Maryam; Sami, Ghufrana A.; Jarullah, Jummanah; Ali, Ashraf; Jamal, Mohammad S.

    2016-01-01

    Breast cancer is the second largest disease affecting women worldwide. It remains the most frequently reported and leading cause of death among women in both developed and developing countries. Tamoxifen and raloxifene are commonly used selective estrogen receptor modulators for treatment of breast cancer in women with high risk, although resistance occurs by tamoxifen after 5 years of therapy and both drugs cause uterine cancer and thromboembolic events. Aromatase inhibitors (AIs) are one of the optional modes used for breast cancer treatment. The combination of AIs along with tamoxifen can also be beneficial. Various therapeutic agents from different sources are being studied, which further need to be improved for potential outcome. For this, clinical trials based on large number of patients with optimal dose and lesser side effects have to be more in practice. Despite the clinical trials going on, there is need of better molecular models, which can identify high risk population, new agents with better benefit having less side effects, and improved biomarkers for treating breast cancer. PMID:26973813

  12. Cellular and molecular alterations in human epithelial cells transformed by high let radiation

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Piao, C. Q.; Sutter, T.; Willey, J. C.; Suzuki, K.

    An understanding of the radiobiological effects of high LET radiation is essential for human risk estimation and radiation protection. In the present study, we show that a single, 30 cGy dose of 150 keV/mum ^4He ions can malignantly transform human papillomavirus immortalized human bronchial epithelial [BEP2D] cells. Transformed cells produce progressively growing tumors in nude mice. The transformation frequency by the single dose of alpha particles is estimated to be approximately 4 x 10^-7. Based on the average cross-sectional area of BEP2D cells, it can be calculated that a mean traversal of 1.4 particles per cell is sufficient to induce tumorigenic conversion of these cells 3 to 4 months post-irradiation. Tumorigenic BEP2D cells overexpress mutated p53 tumor suppressor oncoproteins in addition to the cell cycle control gene cyclin D1 and D2. This model provides an opportunity to study the cellular and molecular changes at the various stages in radiation carcinogenesis involving human cells.

  13. Altered signalling and gene expression associated with the immune system and the inflammatory response in obesity.

    PubMed

    Gil, Angel; María Aguilera, Concepción; Gil-Campos, Mercedes; Cañete, Ramón

    2007-10-01

    White adipose tissue functions not only as an energy store but also as an important endocrine organ and is involved in the regulation of many pathological processes. The obese state is characterised by a low-grade systemic inflammation, mainly a result of increased adipocyte as well as fat resident- and recruited-macrophage activity. In the past few years, various products of adipose tissue including adipokines and cytokines have been characterised and a number of pathways linking adipose tissue metabolism with the immune system have been identified. In obesity, the pro- and anti-inflammatory effects of adipokines and cytokines through intracellular signalling pathways mainly involve the nuclear factor kappa B (NF-kappaB) and the Jun N-terminal kinase (JNK) systems as well as the I kappa B kinase beta (IKK-beta). Mitogen-activated protein kinase (MAPK) and extracellular-signal-regulated kinase (ERK) pathways, which lead to signal transducer and activator of transcription 3 (STAT3) activation, are also important in the production of pro-inflammatory cytokines. Obesity increases the expression of leptin and other cytokines, as well as some macrophage and inflammatory markers, and decreases adiponectin expression in adipose tissue. A number of cytokines, e.g. tumour necrosis factor alpha (TNF-alpha) and monocyte chemotactic protein 1 (MCP-1), and some pro-inflammatory interleukins, leuckocyte antigens, chemochines, surface adhesion molecules and metalloproteases are up-regulated whereas other factors are down-regulated. The present paper will focus on the molecular mechanisms linking obesity and inflammation with emphasis on the alteration of signalling and gene expression in adipose cell components.

  14. Molecular classification of thyroid lesions by combined testing for miRNA gene expression and somatic gene alterations.

    PubMed

    Wylie, Dennis; Beaudenon-Huibregtse, Sylvie; Haynes, Brian C; Giordano, Thomas J; Labourier, Emmanuel

    2016-04-01

    Multiple molecular markers contribute to the pathogenesis of thyroid cancer and can provide valuable information to improve disease diagnosis and patient management. We performed a comprehensive evaluation of miRNA gene expression in diverse thyroid lesions (n = 534) and developed predictive models for the classification of thyroid nodules, alone or in combination with genotyping. Expression profiling by reverse transcription-quantitative polymerase chain reaction in surgical specimens (n = 257) identified specific miRNAs differentially expressed in 17 histopathological categories. Eight supervised machine learning algorithms were trained to discriminate benign from malignant lesions and evaluated for accuracy and robustness. The selected models showed invariant area under the receiver operating characteristic curve (AUC) in cross-validation (0.89), optimal AUC (0.94) in an independent set of preoperative thyroid nodule aspirates (n = 235), and classified 92% of benign lesions as low risk/negative and 92% of malignant lesions as high risk/positive. Surgical and preoperative specimens were further tested for the presence of 17 validated oncogenic gene alterations in the BRAF, RAS, RET or PAX8 genes. The miRNA-based classifiers complemented and significantly improved the diagnostic performance of the 17-mutation panel (p < 0.001 for McNemar's tests). In a subset of resected tissues (n = 54) and in an independent set of thyroid nodules with indeterminate cytology (n = 42), the optimized ThyraMIR Thyroid miRNA Classifier increased diagnostic sensitivity by 30-39% and correctly classified 100% of benign nodules negative by the 17-mutation panel. In contrast, testing with broad targeted next-generation sequencing panels decreased diagnostic specificity by detecting additional mutations of unknown clinical significance in 19-39% of benign lesions. Our results demonstrate that, independent of mutational status, miRNA expression profiles are strongly

  15. Visualising the molecular alteration of the calcite (104) – water interface by sodium nitrate

    PubMed Central

    Hofmann, Sascha; Voïtchovsky, Kislon; Spijker, Peter; Schmidt, Moritz; Stumpf, Thorsten

    2016-01-01

    The reactivity of calcite, one of the most abundant minerals in the earth’s crust, is determined by the molecular details of its interface with the contacting solution. Recently, it has been found that trace concentrations of NaNO3 severely affect calcite’s (104) surface and its reactivity. Here we combine molecular dynamics (MD) simulations, X-ray reflectivity (XR) and in situ atomic force microscopy (AFM) to probe the calcite (104) – water interface in the presence of NaNO3. Simulations reveal density profiles of different ions near calcite’s surface, with NO3− able to reach closer to the surface than CO32− and in higher concentrations. Reflectivity measurements show a structural destabilisation of the (104) surfaces’ topmost atomic layers in NaNO3 bearing solution, with distorted rotation angles of the carbonate groups and substantial displacement of the lattice ions. Nanoscale AFM results confirm the alteration of crystallographic characteristics, and the ability of dissolved NaNO3 to modify the structure of interfacial water was observed by AFM force spectroscopy. Our experiments and simulations consistently evidence a dramatic deterioration of the crystals’ surface, with potentially important implications for geological and industrial processes. PMID:26877225

  16. Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: implications for Down syndrome.

    PubMed

    Mouton-Liger, François; Sahún, Ignasi; Collin, Thibault; Lopes Pereira, Patricia; Masini, Debora; Thomas, Sophie; Paly, Evelyne; Luilier, Sabrina; Même, Sandra; Jouhault, Quentin; Bennaï, Soumia; Beloeil, Jean-Claude; Bizot, Jean-Charles; Hérault, Yann; Dierssen, Mara; Créau, Nicole

    2014-03-01

    PCP4/PEP19 is a modulator of Ca(2+)-CaM signaling. In the brain, it is expressed in a very specific pattern in postmitotic neurons. In particular, Pcp4 is highly expressed in the Purkinje cell, the sole output neuron of the cerebellum. PCP4, located on human chromosome 21, is present in three copies in individuals with Down syndrome (DS). In a previous study using a transgenic mouse model (TgPCP4) to evaluate the consequences of 3 copies of this gene, we found that PCP4 overexpression induces precocious neuronal differentiation during mouse embryogenesis. Here, we report combined analyses of the cerebellum at postnatal stages (P14 and adult) in which we identified age-related molecular, electrophysiological, and behavioral alterations in the TgPCP4 mouse. While Pcp4 overexpression at P14 induces an earlier neuronal maturation, at adult stage it induces increase in cerebellar CaMK2alpha and in cerebellar LTD, as well as learning impairments. We therefore propose that PCP4 contributes significantly to the development of Down syndrome phenotypes through molecular and functional changes.

  17. Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: implications for Down syndrome.

    PubMed

    Mouton-Liger, François; Sahún, Ignasi; Collin, Thibault; Lopes Pereira, Patricia; Masini, Debora; Thomas, Sophie; Paly, Evelyne; Luilier, Sabrina; Même, Sandra; Jouhault, Quentin; Bennaï, Soumia; Beloeil, Jean-Claude; Bizot, Jean-Charles; Hérault, Yann; Dierssen, Mara; Créau, Nicole

    2014-03-01

    PCP4/PEP19 is a modulator of Ca(2+)-CaM signaling. In the brain, it is expressed in a very specific pattern in postmitotic neurons. In particular, Pcp4 is highly expressed in the Purkinje cell, the sole output neuron of the cerebellum. PCP4, located on human chromosome 21, is present in three copies in individuals with Down syndrome (DS). In a previous study using a transgenic mouse model (TgPCP4) to evaluate the consequences of 3 copies of this gene, we found that PCP4 overexpression induces precocious neuronal differentiation during mouse embryogenesis. Here, we report combined analyses of the cerebellum at postnatal stages (P14 and adult) in which we identified age-related molecular, electrophysiological, and behavioral alterations in the TgPCP4 mouse. While Pcp4 overexpression at P14 induces an earlier neuronal maturation, at adult stage it induces increase in cerebellar CaMK2alpha and in cerebellar LTD, as well as learning impairments. We therefore propose that PCP4 contributes significantly to the development of Down syndrome phenotypes through molecular and functional changes. PMID:24291518

  18. Altered T-cell function in schizophrenia: a cellular model to investigate molecular disease mechanisms.

    PubMed

    Craddock, Rachel M; Lockstone, Helen E; Rider, David A; Wayland, Matthew T; Harris, Laura J W; McKenna, Peter J; Bahn, Sabine

    2007-01-01

    may affect the ability of patient cells to respond to stimulation. Functional profiling showed prominent transcript changes in categories pertaining to cell cycle machinery, intracellular signalling, oxidative stress and metabolism. Intriguingly, chromosomal location analysis of genes significantly altered between schizophrenia and controls revealed clusters at 1p36, 1q42 and 6p22, which have previously been identified as strong susceptibility loci for schizophrenia.

  19. Low molecular weight components of pollen alter bronchial epithelial barrier functions.

    PubMed

    Blume, Cornelia; Swindle, Emily J; Gilles, Stefanie; Traidl-Hoffmann, Claudia; Davies, Donna E

    2015-01-01

    The bronchial epithelium plays a key role in providing a protective barrier against many environmental substances of anthropogenic or natural origin which enter the lungs during breathing. Appropriate responses to these agents are critical for regulation of tissue homeostasis, while inappropriate responses may contribute to disease pathogenesis. Here, we compared epithelial barrier responses to different pollen species, characterized the active pollen components and the signaling pathways leading to epithelial activation. Polarized bronchial cells were exposed to extracts of timothy grass (Phleum pratense), ragweed (Ambrosia artemisifolia), mugwort (Artemisia vulgaris), birch (Betula alba) and pine (Pinus sylvestris) pollens. All pollen species caused a decrease in ionic permeability as monitored trans-epithelial electrical resistance (TER) and induced polarized release of mediators analyzed by ELISA, with grass pollen showing the highest activity. Ultrafiltration showed that the responses were due to components <3kDa. However, lipid mediators, including phytoprostane E1, had no effect on TER, and caused only modest induction of mediator release. Reverse-phase chromatography separated 2 active fractions: the most hydrophilic maximally affected cytokine release whereas the other only affected TER. Inhibitor studies revealed that JNK played a more dominant role in regulation of barrier permeability in response to grass pollen exposure, whereas ERK and p38 controlled cytokine release. Adenosine and the flavonoid isorhamnetin present in grass pollen contributed to the overall effect on airway epithelial barrier responses. In conclusion, bronchial epithelial barrier functions are differentially affected by several low molecular weight components released by pollen. Furthermore, ionic permeability and innate cytokine production are differentially regulated. PMID:26451347

  20. Charged Particle Alterations of Surfaces in the Solar System

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1995-01-01

    The surfaces of 'airless' bodies in the solar system are exposed to the ambient plasma, micrometeorites, and the solar UV. The effects of these space weathering agents on surfaces in the solar system has been studied in this project. In the last three years work was carried out on volatile depletion at Mars, on sputtering of the lunar surface, on absorption by implanted S in vapor-deposited H2O and its relevance to observations of Europa's surface in the UV, and on the spectral changes produced on irradiating SO2 and its possible relevance to Io. In addition, the role of plasma-induced charging of E-ring grains was evaluated because of its relevance to E-ring particle source and the lifetime of the E-ring. Finally, the detection of sputtered material from Dione by the CAPS instrument on CASSINI was evaluated as a tool for analysis of satellite surface composition, and the role of sputtering on the ambient OH in the vicinity of the ice satellites and the E-ring was evaluated.

  1. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders

    PubMed Central

    2012-01-01

    Gastrointestinal symptoms and altered blood phospholipid profiles have been reported in patients with autism spectrum disorders (ASD). Most of the phospholipid analyses have been conducted on the fatty acid composition of isolated phospholipid classes following hydrolysis. A paucity of information exists on how the intact phospholipid molecular species are altered in ASD. We applied ESI/MS to determine how brain and blood intact phospholipid species were altered during the induction of ASD-like behaviors in rats following intraventricular infusions with the enteric bacterial metabolite propionic acid. Animals were infused daily for 8 days, locomotor activity assessed, and animals killed during the induced behaviors. Propionic acid infusions increased locomotor activity. Lipid analysis revealed treatment altered 21 brain and 30 blood phospholipid molecular species. Notable alterations were observed in the composition of brain SM, diacyl mono and polyunsaturated PC, PI, PS, PE, and plasmalogen PC and PE molecular species. These alterations suggest that the propionic acid rat model is a useful tool to study aberrations in lipid metabolism known to affect membrane fluidity, peroxisomal function, gap junction coupling capacity, signaling, and neuroinflammation, all of which may be associated with the pathogenesis of ASD. PMID:22747852

  2. Altered Striatocerebellar Metabolism and Systemic Inflammation in Parkinson's Disease

    PubMed Central

    Chen, Hsiu-Ling; Tsai, Nai-Wen

    2016-01-01

    Parkinson's disease (PD) is the most second common neurodegenerative movement disorder. Neuroinflammation due to systemic inflammation and elevated oxidative stress is considered a major factor promoting the pathogenesis of PD, but the relationship of structural brain imaging parameters to clinical inflammatory markers has not been well studied. Our aim was to evaluate the association of magnetic resonance spectroscopy (MRS) measures with inflammatory markers. Blood samples were collected from 33 patients with newly diagnosed PD and 30 healthy volunteers. MRS data including levels of N-acetylaspartate (NAA), creatine (Cre), and choline (Cho) were measured in the bilateral basal ganglia and cerebellum. Inflammatory markers included plasma nuclear DNA, plasma mitochondrial DNA, and apoptotic leukocyte levels. The Cho/Cre ratio in the dominant basal ganglion, the dominant basal ganglia to cerebellum ratios of two MRS parameters NAA/Cre and Cho/Cre, and levels of nuclear DNA, mitochondrial DNA, and apoptotic leukocytes were significantly different between PD patients and normal healthy volunteers. Significant positive correlations were noted between MRS measures and inflammatory marker levels. In conclusion, patients with PD seem to have abnormal levels of inflammatory markers in the peripheral circulation and deficits in MRS measures in the dominant basal ganglion and cerebellum. PMID:27688826

  3. Altered Striatocerebellar Metabolism and Systemic Inflammation in Parkinson's Disease

    PubMed Central

    Chen, Hsiu-Ling; Tsai, Nai-Wen

    2016-01-01

    Parkinson's disease (PD) is the most second common neurodegenerative movement disorder. Neuroinflammation due to systemic inflammation and elevated oxidative stress is considered a major factor promoting the pathogenesis of PD, but the relationship of structural brain imaging parameters to clinical inflammatory markers has not been well studied. Our aim was to evaluate the association of magnetic resonance spectroscopy (MRS) measures with inflammatory markers. Blood samples were collected from 33 patients with newly diagnosed PD and 30 healthy volunteers. MRS data including levels of N-acetylaspartate (NAA), creatine (Cre), and choline (Cho) were measured in the bilateral basal ganglia and cerebellum. Inflammatory markers included plasma nuclear DNA, plasma mitochondrial DNA, and apoptotic leukocyte levels. The Cho/Cre ratio in the dominant basal ganglion, the dominant basal ganglia to cerebellum ratios of two MRS parameters NAA/Cre and Cho/Cre, and levels of nuclear DNA, mitochondrial DNA, and apoptotic leukocytes were significantly different between PD patients and normal healthy volunteers. Significant positive correlations were noted between MRS measures and inflammatory marker levels. In conclusion, patients with PD seem to have abnormal levels of inflammatory markers in the peripheral circulation and deficits in MRS measures in the dominant basal ganglion and cerebellum.

  4. Altered Nitric Oxide System in Cardiovascular and Renal Diseases

    PubMed Central

    Bae, Eun Hui; Ma, Seong Kwon; Kim, Soo Wan

    2016-01-01

    Nitric oxide (NO) is synthesized by a family of NO synthases (NOS), including neuronal, inducible, and endothelial NOS (n/i/eNOS). NO-mediated effects can be beneficial or harmful depending on the specific risk factors affecting the disease. In hypertension, the vascular relaxation response to acetylcholine is blunted, and that to direct NO donors is maintained. A reduction in the activity of eNOS is mainly responsible for the elevation of blood pressure, and an abnormal expression of iNOS is likely to be related to the progression of vascular dysfunction. While eNOS/nNOS-derived NO is protective against the development of atherosclerosis, iNOS-derived NO may be proatherogenic. eNOS-derived NO may prevent the progression of myocardial infarction. Myocardial ischemia/reperfusion injury is significantly enhanced in eNOS-deficient animals. An important component of heart failure is the loss of coronary vascular eNOS activity. A pressure-overload may cause severer left ventricular hypertrophy and dysfunction in eNOS null mice than in wild-type mice. iNOS-derived NO has detrimental effects on the myocardium. NO plays an important role in regulating the angiogenesis and slowing the interstitial fibrosis of the obstructed kidney. In unilateral ureteral obstruction, the expression of eNOS was decreased in the affected kidney. In triply n/i/eNOS null mice, nephrogenic diabetes insipidus developed along with reduced aquaporin-2 abundance. In chronic kidney disease model of subtotal-nephrectomized rats, treatment with NOS inhibitors decreased systemic NO production and induced left ventricular systolic dysfunction (renocardiac syndrome). PMID:27231671

  5. Molecular and Physiological Mechanisms of Membrane Receptor Systems Functioning

    PubMed Central

    Severin, E.S.; Savvateeva, M.V.

    2011-01-01

    Molecular physiology is a new interdisciplinary field of knowledge that looks into how complicated biological systems function. The living cell is a relatively simple, but at the same time very sophisticated biological system. After the sequencing of the human genome, molecular physiology has endeavored to investigate the systems of cellular interactions at a completely new level based on knowledge of the spatial organization and functions of receptors, their ligands, and protein-protein interactions. In recent years, the achievements in molecular physiology have centered on the study of sensor reception mechanisms and intercellular data transfer, as well as the immune system physiology, amongst other processes. PMID:22649671

  6. 75 FR 13076 - Privacy Act of 1974; Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... Register on February 21, 2006 (71 FR 8839) is amended as below. The system of records entitled COMMERCE... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Privacy Act of 1974; Altered System of Records AGENCY: U.S. Census Bureau, Department of Commerce....

  7. α-Cell Dysfunctions and Molecular Alterations in Male Insulinopenic Diabetic Mice Are Not Completely Corrected by Insulin.

    PubMed

    Dusaulcy, Rodolphe; Handgraaf, Sandra; Heddad-Masson, Mounia; Visentin, Florian; Vesin, Christian; Reimann, Franck; Gribble, Fiona; Philippe, Jacques; Gosmain, Yvan

    2016-02-01

    Glucagon and α-cell dysfunction are critical in the development of hyperglycemia during diabetes both in humans and rodents. We hypothesized that α-cell dysfunction leading to dysregulated glucagon secretion in diabetes is due to both a lack of insulin and intrinsic defects. To characterize α-cell dysfunction in diabetes, we used glucagon-Venus transgenic male mice and induced insulinopenic hyperglycemia by streptozotocin administration leading to alterations of glucagon secretion. We investigated the in vivo impact of insulinopenic hyperglycemia on glucagon-producing cells using FACS-sorted α-cells from control and diabetic mice. We demonstrate that increased glucagonemia in diabetic mice is mainly due to increases of glucagon release and biosynthesis per cell compared with controls without changes in α-cell mass. We identified genes coding for proteins involved in glucagon biosynthesis and secretion, α-cell differentiation, and potential stress markers such as the glucagon, Arx, MafB, cMaf, Brain4, Foxa1, Foxa3, HNF4α, TCF7L2, Glut1, Sglt2, Cav2.1, Cav2.2, Nav1.7, Kir6.2/Sur1, Pten, IR, NeuroD1, GPR40, and Sumo1 genes, which were abnormally regulated in diabetic mice. Importantly, insulin treatment partially corrected α-cell function and expression of genes coding for proglucagon, or involved in glucagon secretion, glucose transport and insulin signaling but not those coding for cMAF, FOXA1, and α-cell differentiation markers as well as GPR40, NEUROD1, CAV2.1, and SUMO1. Our results indicate that insulinopenic diabetes induce marked α-cell dysfunction and molecular alteration, which are only partially corrected by in vivo insulin treatment. PMID:26696123

  8. Molecular dynamics simulations highlight structural and functional alterations in deafness–related M34T mutation of connexin 26

    PubMed Central

    Zonta, Francesco; Buratto, Damiano; Cassini, Chiara; Bortolozzi, Mario; Mammano, Fabio

    2014-01-01

    Mutations of the GJB2 gene encoding the connexin 26 (Cx26) gap junction protein, which is widely expressed in the inner ear, are the primary cause of hereditary non-syndromic hearing loss in several populations. The deafness–associated single amino acid substitution of methionine 34 (M34) in the first transmembrane helix (TM1) with a threonine (T) ensues in the production of mutant Cx26M34T channels that are correctly synthesized and assembled in the plasma membrane. However, mutant channels overexpressed in HeLa cells retain only 11% of the wild type unitary conductance. Here we extend and rationalize those findings by comparing wild type Cx26 (Cx26WT) and Cx26M34T mutant channels in silico, using molecular dynamics simulations. Our results indicate that the quaternary structure of the Cx26M34T hemichannel is altered at the level of the pore funnel due to the disruption of the hydrophobic interaction between M34 and tryptophan 3 (W3) in the N–terminal helix (NTH). Our simulations also show that external force stimuli applied to the NTHs can detach them from the inner wall of the pore more readily in the mutant than in the wild type hemichannel. These structural alterations significantly increase the free energy barrier encountered by permeating ions, correspondingly decreasing the unitary conductance of the Cx26M34T hemichannel. Our results accord with the proposal that the mutant resides most of the time in a low conductance state. However, the small displacement of the NTHs in our Cx26M34T hemichannel model is not compatible with the formation of a pore plug as in the related Cx26M34A mutant. PMID:24624091

  9. Context-Induced Reinstatement of Methamphetamine Seeking Is Associated with Unique Molecular Alterations in Fos-Expressing Dorsolateral Striatum Neurons

    PubMed Central

    Rubio, F. Javier; Liu, Qing-Rong; Li, Xuan; Cruz, Fabio C.; Leão, Rodrigo M.; Warren, Brandon L.; Kambhampati, Sarita; Babin, Klil R.; McPherson, Kylie B.; Cimbro, Raffaello; Bossert, Jennifer M.; Shaham, Yavin

    2015-01-01

    Context-induced reinstatement of drug seeking is a well established animal model for assessing the neural mechanisms underlying context-induced drug relapse, a major factor in human drug addiction. Neural activity in striatum has previously been shown to contribute to context-induced reinstatement of heroin, cocaine, and alcohol seeking, but not yet for methamphetamine seeking. In this study, we found that context-induced reinstatement of methamphetamine seeking increased expression of the neural activity marker Fos in dorsal but not ventral striatum. Reversible inactivation of neural activity in dorsolateral but not dorsomedial striatum using the GABA agonists muscimol and baclofen decreased context-induced reinstatement. Based on our previous findings that Fos-expressing neurons play a critical role in conditioned drug effects, we assessed whether context-induced reinstatement was associated with molecular alterations selectively induced within context-activated Fos-expressing neurons. We used fluorescence-activated cell sorting to isolate reinstatement-activated Fos-positive neurons from Fos-negative neurons in dorsal striatum and used quantitative PCR to assess gene expression within these two populations of neurons. Context-induced reinstatement was associated with increased expression of the immediate early genes Fos and FosB and the NMDA receptor subunit gene Grin2a in only Fos-positive neurons. RNAscope in situ hybridization confirmed that Grin2a, as well as Grin2b, expression were increased in only Fos-positive neurons from dorsolateral, but not dorsomedial, striatum. Our results demonstrate an important role of dorsolateral striatum in context-induced reinstatement of methamphetamine seeking and that this reinstatement is associated with unique gene alterations in Fos-expressing neurons. PMID:25855177

  10. ToF–SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse

    PubMed Central

    deGhetaldi, Kristin; Wiggins, Marcie B.; Buckley, Barbara; Baade, Brian; Mass, Jennifer L.; Beebe, Thomas P.

    2016-01-01

    Time-of-flight secondary ion mass spectrometry (ToF–SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF–SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment–binder interactions. In this study, ToF–SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905–1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF–SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting’s complex restoration history. ToF–SIMS’s ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM–EDX, and SR-FTIR. The relatively high sensitivity offered by ToF–SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium

  11. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse

    NASA Astrophysics Data System (ADS)

    Voras, Zachary E.; deGhetaldi, Kristin; Wiggins, Marcie B.; Buckley, Barbara; Baade, Brian; Mass, Jennifer L.; Beebe, Thomas P.

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as

  12. Novel molecular targets in the treatment of systemic lupus erythematosus

    PubMed Central

    Crispín, JoséC; Tsokos, George C.

    2009-01-01

    T cells from patients with systemic lupus erythematosus (SLE) display a number of biochemical abnormalities which include altered expression of key signaling molecules, heightened calcium responses, and skewed expression of transcription factors. These defects are involved in the altered behavior of SLE T cells and are probably central in the disease pathogenesis. The aim of this communication is to review the defects that have been consistently documented in SLE T cells, highlighting molecules and pathways that represent therapeutic targets. PMID:18190888

  13. Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors

    PubMed Central

    Celestino, Ricardo; Lima, Jorge; Faustino, Alexandra; Vinagre, João; Máximo, Valdemar; Gouveia, António; Soares, Paula; Manuel Lopes, José

    2013-01-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, disclosing somatic KIT, PDGFRA and BRAF mutations. Loss of function of succinate dehydrogenase (SDH) complex is an alternative molecular mechanism in GISTs, namely in carriers of germline mutations of the SDH complex that develop Carney–Stratakis dyad characterized by multifocal GISTs and multicentric paragangliomas (PGLs). We studied a series of 25 apparently sporadic primary wild-type (WT) KIT/PDGFRA/BRAF GISTs occurring in patients without personal or familial history of PGLs, re-evaluated clinicopathological features and analyzed molecular alterations and immunohistochemistry expression of SDH complex. As control, we used a series of well characterized 49 KIT/PDGFRA/BRAF-mutated GISTs. SDHB expression was absent in 20% and SDHB germline mutations were detected in 12% of WT GISTs. Germline SDHB mutations were significantly associated to younger age at diagnosis. A significant reduction in SDHB expression in WT GISTs was found when compared with KIT/PDGFRA/BRAF-mutated GISTs. No significant differences were found when comparing DOG-1 and c-KIT expression in WT, SDHB-mutated and KIT/PDGFRA/BRAF-mutated GISTs. Our results confirm the occurrence of germline SDH genes mutations in isolated, apparently sporadic WT GISTs. WT KIT/PDGFRA/BRAF GISTs without SDHB or SDHA/SDHB expression may correspond to Carney–Stratakis dyad or Carney triad. Most importantly, the possibility of PGLs (Carney–Stratakis dyad) and/or pulmonary chondroma (Carney triad) should be addressed in these patients and their kindred. PMID:22948025

  14. Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors.

    PubMed

    Celestino, Ricardo; Lima, Jorge; Faustino, Alexandra; Vinagre, João; Máximo, Valdemar; Gouveia, António; Soares, Paula; Lopes, José Manuel

    2013-05-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, disclosing somatic KIT, PDGFRA and BRAF mutations. Loss of function of succinate dehydrogenase (SDH) complex is an alternative molecular mechanism in GISTs, namely in carriers of germline mutations of the SDH complex that develop Carney-Stratakis dyad characterized by multifocal GISTs and multicentric paragangliomas (PGLs). We studied a series of 25 apparently sporadic primary wild-type (WT) KIT/PDGFRA/BRAF GISTs occurring in patients without personal or familial history of PGLs, re-evaluated clinicopathological features and analyzed molecular alterations and immunohistochemistry expression of SDH complex. As control, we used a series of well characterized 49 KIT/PDGFRA/BRAF-mutated GISTs. SDHB expression was absent in 20% and SDHB germline mutations were detected in 12% of WT GISTs. Germline SDHB mutations were significantly associated to younger age at diagnosis. A significant reduction in SDHB expression in WT GISTs was found when compared with KIT/PDGFRA/BRAF-mutated GISTs. No significant differences were found when comparing DOG-1 and c-KIT expression in WT, SDHB-mutated and KIT/PDGFRA/BRAF-mutated GISTs. Our results confirm the occurrence of germline SDH genes mutations in isolated, apparently sporadic WT GISTs. WT KIT/PDGFRA/BRAF GISTs without SDHB or SDHA/SDHB expression may correspond to Carney-Stratakis dyad or Carney triad. Most importantly, the possibility of PGLs (Carney-Stratakis dyad) and/or pulmonary chondroma (Carney triad) should be addressed in these patients and their kindred. PMID:22948025

  15. 41 CFR 51-9.502 - Federal Register notice of establishment of new system or alteration of existing system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Representatives, and the Office of Management and Budget do not object to the establishment of a new system of... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Federal Register notice of establishment of new system or alteration of existing system. 51-9.502 Section 51-9.502...

  16. Phenotypic and Molecular Alterations in the Mammary Tissue of R-Spondin1 Knock-Out Mice during Pregnancy

    PubMed Central

    Chadi, Sead; Polyte, Jacqueline; Lefevre, Lucas; Castille, Johan; Ehanno, Aude; Laubier, Johann; Jaffrézic, Florence; Le Provost, Fabienne

    2016-01-01

    R-spondin1 (Rspo1) is a member of a secreted protein family which has pleiotropic functions in development and stem cell growth. Rspo1 knock-out mice are sex-reversed, but some remain sub-fertile, so they fail to nurse their pups. A lack of Rspo1 expression in the mammary gland results in an absence of duct side-branching development and defective alveolar formation. The aim of this study was to characterize the phenotypic and molecular alterations of mammary gland due to Rspo1 knock-out. Using the transcriptional profiling of mammary tissues, we identified misregulated genes in the mammary gland of Rspo1 knock-out mice during pregnancy. A stronger expression of mesenchymal markers was observed, without modifications to the structure of mammary epithelial tissue. Mammary epithelial cell immunohistochemical analysis revealed a persistence of virgin markers, which signify a delay in cell differentiation. Moreover, serial transplantation experiments showed that Rspo1 is associated with a regenerative potential of mammary epithelial cell control. Our finding also highlights the negatively regulated expression of Rspo1’s partners, Lgr4 and RNF43, in the mammary gland during pregnancy. Moreover, we offer evidence that Tgf-β signalling is modified in the absence of Rspo1. Taken together, our results show an abrupt halt or delay to mammary development during pregnancy due to the loss of a further differentiated function. PMID:27611670

  17. Phenotypic and Molecular Alterations in the Mammary Tissue of R-Spondin1 Knock-Out Mice during Pregnancy.

    PubMed

    Chadi, Sead; Polyte, Jacqueline; Lefevre, Lucas; Castille, Johan; Ehanno, Aude; Laubier, Johann; Jaffrézic, Florence; Le Provost, Fabienne

    2016-01-01

    R-spondin1 (Rspo1) is a member of a secreted protein family which has pleiotropic functions in development and stem cell growth. Rspo1 knock-out mice are sex-reversed, but some remain sub-fertile, so they fail to nurse their pups. A lack of Rspo1 expression in the mammary gland results in an absence of duct side-branching development and defective alveolar formation. The aim of this study was to characterize the phenotypic and molecular alterations of mammary gland due to Rspo1 knock-out. Using the transcriptional profiling of mammary tissues, we identified misregulated genes in the mammary gland of Rspo1 knock-out mice during pregnancy. A stronger expression of mesenchymal markers was observed, without modifications to the structure of mammary epithelial tissue. Mammary epithelial cell immunohistochemical analysis revealed a persistence of virgin markers, which signify a delay in cell differentiation. Moreover, serial transplantation experiments showed that Rspo1 is associated with a regenerative potential of mammary epithelial cell control. Our finding also highlights the negatively regulated expression of Rspo1's partners, Lgr4 and RNF43, in the mammary gland during pregnancy. Moreover, we offer evidence that Tgf-β signalling is modified in the absence of Rspo1. Taken together, our results show an abrupt halt or delay to mammary development during pregnancy due to the loss of a further differentiated function.

  18. Phenotypic and Molecular Alterations in the Mammary Tissue of R-Spondin1 Knock-Out Mice during Pregnancy.

    PubMed

    Chadi, Sead; Polyte, Jacqueline; Lefevre, Lucas; Castille, Johan; Ehanno, Aude; Laubier, Johann; Jaffrézic, Florence; Le Provost, Fabienne

    2016-01-01

    R-spondin1 (Rspo1) is a member of a secreted protein family which has pleiotropic functions in development and stem cell growth. Rspo1 knock-out mice are sex-reversed, but some remain sub-fertile, so they fail to nurse their pups. A lack of Rspo1 expression in the mammary gland results in an absence of duct side-branching development and defective alveolar formation. The aim of this study was to characterize the phenotypic and molecular alterations of mammary gland due to Rspo1 knock-out. Using the transcriptional profiling of mammary tissues, we identified misregulated genes in the mammary gland of Rspo1 knock-out mice during pregnancy. A stronger expression of mesenchymal markers was observed, without modifications to the structure of mammary epithelial tissue. Mammary epithelial cell immunohistochemical analysis revealed a persistence of virgin markers, which signify a delay in cell differentiation. Moreover, serial transplantation experiments showed that Rspo1 is associated with a regenerative potential of mammary epithelial cell control. Our finding also highlights the negatively regulated expression of Rspo1's partners, Lgr4 and RNF43, in the mammary gland during pregnancy. Moreover, we offer evidence that Tgf-β signalling is modified in the absence of Rspo1. Taken together, our results show an abrupt halt or delay to mammary development during pregnancy due to the loss of a further differentiated function. PMID:27611670

  19. Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin.

    PubMed

    Ziebell, Angela; Gracom, Kristen; Katahira, Rui; Chen, Fang; Pu, Yunqiao; Ragauskas, Art; Dixon, Richard A; Davis, Mark

    2010-12-10

    The lignin content of biomass can impact the ease and cost of biomass processing. Lignin reduction through breeding and genetic modification therefore has potential to reduce costs in biomass-processing industries (e.g. pulp and paper, forage, and lignocellulosic ethanol). We investigated compositional changes in two low-lignin alfalfa (Medicago sativa) lines with antisense down-regulation of p-coumarate 3-hydroxylase (C3H) or hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (HCT). We investigated whether the difference in reactivity during lignification of 4-coumaryl alcohol (H) monomers versus the naturally dominant sinapyl alcohol and coniferyl alcohol lignin monomers alters the lignin structure. Sequential base extraction readily reduced the H monomer content of the transgenic lines, leaving a residual lignin greatly enriched in H subunits; the extraction profile highlighted the difference between the control and transgenic lines. Gel permeation chromatography of isolated ball-milled lignin indicated significant changes in the weight average molecular weight distribution of the control versus transgenic lines (CTR1a, 6000; C3H4a, 5500; C3H9a, 4000; and HCT30a, 4000).

  20. Competition Effect in Atomic-Molecular System

    NASA Technical Reports Server (NTRS)

    Jia, Suotang; Qin, Lijuan; Qian, Zuliang; Wang, Zugeng; Wang, Gang; Zhou, Guosheng

    1996-01-01

    The competition effects among the processes of atomic ionization, optical pumped stimulated radiation (OPSR), four-wave frequency mixing (FWFM) and molecular stimulated diffuse band radiation at the atomic two-photon resonance of 3S approaches 4D in Na2 - Na mixture were observed. The dip at the two-photon resonance in the excitation spectrum for the diffuse-band radiation was interpreted as suppression of population in 4D state.

  1. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland

    NASA Astrophysics Data System (ADS)

    Bell, Robin-Marie; Kolb, Jochen; Waight, Tod Earle; Bagas, Leon; Thomsen, Tonny B.

    2016-07-01

    Nalunaq is an orogenic, high gold grade deposit situated on the Nanortalik Peninsula, South Greenland. Mineralisation is hosted in shear zone-controlled quartz veins, located in fine- and medium-grained amphibolite. The deposit was the site of Greenland's only operating metalliferous mine until its closure in 2014, having produced 10.67 t of gold. This study uses a combination of field investigation, petrography and U/Pb zircon and titanite geochronology to define a multi-stage hydrothermal alteration system at Nalunaq. A clinopyroxene-plagioclase-garnet(-sulphide) alteration zone (CPGZ) developed in the Nanortalik Peninsula, close to regional peak metamorphism and prior to gold-quartz vein formation. The ca. 1783-1762-Ma gold-quartz veins are hosted in reactivated shear zones with a hydrothermal alteration halo of biotite-arsenopyrite-sericite-actinolite-pyrrhotite(-chlorite-plagioclase-löllingite-tourmaline-titanite), which is best developed in areas of exceptionally high gold grades. Aplite dykes dated to ca. 1762 Ma cross-cut the gold-quartz veins, providing a minimum age for mineralisation. A hydrothermal calcite-titanite alteration assemblage is dated to ca. 1766 Ma; however, this alteration is highly isolated, and as a result, its field relationships are poorly constrained. The hydrothermal alteration and mineralisation is cut by several generations of ca. 1745-Ma biotite granodiorite accompanied by brittle deformation. A ca. 1745-Ma lower greenschist facies hydrothermal epidote-calcite-zoisite alteration assemblage with numerous accessory minerals forms halos surrounding the late-stage fractures. The contrasting hydrothermal alteration styles at Nalunaq indicate a complex history of exhumation from amphibolite facies conditions to lower greenschist facies conditions in an orogenic belt which resembles modern Phanerozoic orogens.

  2. 77 FR 1073 - Privacy Act of 1974; Report of an Altered System of Records, Including Addition of Routine Uses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... HUMAN SERVICES Food and Drug Administration Privacy Act of 1974; Report of an Altered System of Records, Including Addition of Routine Uses to an Existing System of Records; Bioresearch Monitoring Information System AGENCY: Food and Drug Administration, HHS. ACTION: Notice of an altered system of records....

  3. Study of adaptation to altered gravity through systems analysis of motor control

    NASA Astrophysics Data System (ADS)

    Fox, R. A.; Daunton, N. G.; Corcoran, M. L.

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  4. Improved molecular sorbent trap for high-vacuum systems

    NASA Technical Reports Server (NTRS)

    Knechtel, E. D.; Pitts, W. C.

    1971-01-01

    Closed cycle refrigeration loop in which trays holding molecular sorbent are made to serve as cooling baffles improves the performance of high vacuum systems. High performance is obtained with almost no decrease in pumping speed.

  5. 76 FR 4438 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Altered System of Records AGENCY: Divisions of Tuberculosis Elimination, National Center for HIV, STD and... Treatment of Tuberculosis and other Mycobacterioses HHS/CDC/NCHSTP.'' HHS is proposing to add the following.... These records will be maintained by the Division of Tuberculosis Elimination, National Center for...

  6. 76 FR 4440 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Altered System of Records AGENCY: Division of Tuberculosis Elimination, National Center for HIV, STD and... for Tuberculosis and other Mycobacterioses, HHS/CDC/NCHSTP.'' HHS is proposing to add the following.... These records will be maintained by the Division of Tuberculosis Elimination, National Center for...

  7. 75 FR 57806 - Privacy Act of 1974; Report of an Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... HUMAN SERVICES Health Resources and Services Administration Privacy Act of 1974; Report of an Altered System of Records AGENCY: Department of Health and Human Services (HHS), Health Resources and Services... requirements of the Privacy Act of 1974, the Health Resources and Services Administration (HRSA) is...

  8. 75 FR 34755 - Privacy Act; Proposed Alteration to Existing Systems of Records, Single Family Mortgage Asset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Mortgage Asset Recovery Technology (SMART/A80H) AGENCY: Office of the Chief Information Officer, HUD..., this notice supersedes previous notice published at 73 FR 41105 on July 17, 2008. DATES: Effective Date... amended, notice is given of an alteration to the Department's Office of Housing records system, SMART,...

  9. 76 FR 4478 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Human Services (HHS) Centers for Disease Control and Prevention (CDC) National Center for HIV, STD and... HUMAN SERVICES Centers for Disease Control and Prevention Privacy Act of 1974; Report of Modified or Altered System of Records AGENCY: National Center for HIV, STD and TB Prevention (NCHSTP), Department...

  10. 32 CFR Appendix B to Part 323 - Criteria for New and Altered Record Systems

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Criteria for New and Altered Record Systems B Appendix B to Part 323 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DEFENSE LOGISTICS AGENCY PRIVACY PROGRAM Pt. 323, App. B Appendix B...

  11. 32 CFR Appendix B to Part 323 - Criteria for New and Altered Record Systems

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Criteria for New and Altered Record Systems B Appendix B to Part 323 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DEFENSE LOGISTICS AGENCY PRIVACY PROGRAM Pt. 323, App. B Appendix B...

  12. 32 CFR Appendix F to Part 310 - Format for New or Altered System Report

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; 5 U.S.C. 9902(m), Labor Management Relations in the Department of Defense; and 5 CFR 9901.907... 32 National Defense 2 2014-07-01 2014-07-01 false Format for New or Altered System Report F Appendix F to Part 310 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY...

  13. 32 CFR Appendix F to Part 310 - Format for New or Altered System Report

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; 5 U.S.C. 9902(m), Labor Management Relations in the Department of Defense; and 5 CFR 9901.907... 32 National Defense 2 2013-07-01 2013-07-01 false Format for New or Altered System Report F Appendix F to Part 310 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY...

  14. 76 FR 4436 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ...The Department of Health and Human Services proposes to alter System of Records, 09-20-0055, ``Administrative Files for Research/ Demonstration and Training Grants, and Cooperative Agreements Applications, HHS/CDC/PGO.'' HHS is proposing to add the following Breach Response Routine Use Language to comply with the Office of Management and Budget (OMB) Memoranda (M) 07-16, Safeguarding Against......

  15. 76 FR 4471 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ...The Department of Health and Human Services proposes to alter System of Records, 09-20-0154, ``Medical and Laboratory Studies, HHS/ CDC/NIOSH.'' HHS is proposing to add the following Breach Response Routine Use Language to comply with the Office of Management and Budget (OMB) Memoranda (M) 07-16, Safeguarding Against and responding to the Breach of Personally Identifiable Information: To......

  16. 76 FR 4462 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Altered System of Records AGENCY: Office of Workforce and Career Development (OWCD), Department of Health... maintained by the Office of Workforce and Career Development (OWCD). DATES: Comments must be received on or... Prevention (CDC) Office of Workforce and Career Development (OWCD) Epidemic Intelligence Service...

  17. 44 CFR 6.72 - Effective date of new system of records or alteration of an existing system of records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Effective date of new system of records or alteration of an existing system of records. 6.72 Section 6.72 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL IMPLEMENTATION OF...

  18. 44 CFR 6.71 - Federal Register notice of establishment of new system or alteration of existing system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Federal Register notice of establishment of new system or alteration of existing system. 6.71 Section 6.71 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL IMPLEMENTATION OF...

  19. Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1

    PubMed Central

    Dawson, N; Kurihara, M; Thomson, D M; Winchester, C L; McVie, A; Hedde, J R; Randall, A D; Shen, S; Seymour, P A; Hughes, Z A; Dunlop, J; Brown, J T; Brandon, N J; Morris, B J; Pratt, J A

    2015-01-01

    Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the prefrontal cortex (PFC) and reticular thalamus along with a reorganization of functional brain network connectivity that included compromised hippocampal–PFC connectivity. Altered hippocampal–PFC connectivity in Disc1tr Hemi mice was confirmed by electrophysiological analysis, with Disc1tr Hemi mice showing a reduced probability of presynaptic neurotransmitter release in the monosynaptic glutamatergic hippocampal CA1–PFC projection. Glutamate system dysfunction in Disc1tr Hemi mice was further supported by the attenuated cerebral metabolic response to the NMDA receptor (NMDAR) antagonist ketamine and decreased hippocampal expression of NMDAR subunits 2A and 2B in these animals. These data show that the Disc1 truncation in Disc1tr Hemi mice induces a range of translationally relevant endophenotypes underpinned by glutamate system dysfunction and altered brain connectivity. PMID:25989143

  20. Peptide-Based Technologies to Alter Adenoviral Vector Tropism: Ways and Means for Systemic Treatment of Cancer

    PubMed Central

    Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.

    2014-01-01

    Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364

  1. Genetic Ablation of Calcium-independent Phospholipase A2γ Leads to Alterations in Hippocampal Cardiolipin Content and Molecular Species Distribution, Mitochondrial Degeneration, Autophagy, and Cognitive Dysfunction*

    PubMed Central

    Mancuso, David J.; Kotzbauer, Paul; Wozniak, David F.; Sims, Harold F.; Jenkins, Christopher M.; Guan, Shaoping; Han, Xianlin; Yang, Kui; Sun, Gang; Malik, Ibrahim; Conyers, Sara; Green, Karen G.; Schmidt, Robert E.; Gross, Richard W.

    2009-01-01

    Genetic ablation of calcium-independent phospholipase A2γ (iPLA2γ) results in profound alterations in hippocampal phospholipid metabolism and mitochondrial phospholipid homeostasis resulting in enlarged and degenerating mitochondria leading to autophagy and cognitive dysfunction. Shotgun lipidomics demonstrated multiple alterations in hippocampal lipid metabolism in iPLA2γ−/− mice including: 1) a markedly elevated hippocampal cardiolipin content with an altered molecular species composition characterized by a shift to shorter chain length molecular species; 2) alterations in both choline and ethanolamine glycerophospholipids, including a decreased plasmenylethanolamine content; 3) increased oxidized phosphatidylethanolamine molecular species; and 4) an increased content of ceramides. Electron microscopic examination demonstrated the presence of enlarged heteromorphic lamellar structures undergoing degeneration accompanied by the presence of ubiquitin positive spheroid inclusion bodies. Purification of these enlarged heteromorphic lamellar structures by buoyant density centrifugation and subsequent SDS-PAGE and proteomics identified them as degenerating mitochondria. Collectively, these results identify the obligatory role of iPLA2γ in neuronal mitochondrial lipid metabolism and membrane structure demonstrating that iPLA2γ loss of function results in a mitochondrial neurodegenerative disorder characterized by degenerating mitochondria, autophagy, and cognitive dysfunction. PMID:19840936

  2. Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method

    SciTech Connect

    Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S

    2014-10-16

    The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree–Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.

  3. Efficient molecular dynamics simulations of multiple radical center systems based on the fragment molecular orbital method.

    PubMed

    Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S

    2014-10-16

    The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree-Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.

  4. Difference of carboxybetaine and oligo(ethylene glycol) moieties in altering hydrophobic interactions: a molecular simulation study.

    PubMed

    Shao, Qing; White, Andrew D; Jiang, Shaoyi

    2014-01-01

    Polycarboxybetaine and poly(ethylene glycol) materials resist nonspecific protein adsorption but differ in influencing biological functions such as enzymatic activity. To investigate this difference, we studied the influence of carboxybetaine and oligo(ethylene glycol) moieties on hydrophobic interactions using molecular simulations. We employed a model system composed of two non-polar plates and studied the potential of mean force of plate-plate association in carboxybetaine, (ethylene glycol)4, and (ethylene glycol)2 solutions using well-tempered metadynamics simulations. Water, trimethylamine N-oxide, and urea solutions were used as reference systems. We analyzed the variation of the potential of mean force in various solutions to study how carboxybetaine and oligo(ethylene glycol) moieties influence the hydrophobic interactions. To study the origin of their influence, we analyzed the normalized distributions of moieties and water molecules using molecular dynamics simulations. The simulation results showed that oligo(ethylene glycol) moieties repel water molecules away from the non-polar plates and weaken the hydrophobic interactions. Carboxybetaine moieties do not repel water molecules away from the plates and therefore do not influence the hydrophobic interactions.

  5. Interactive analysis of systems biology molecular expression data

    PubMed Central

    Zhang, Mingwu; Ouyang, Qi; Stephenson, Alan; Kane, Michael D; Salt, David E; Prabhakar, Sunil; Burgner, John; Buck, Charles; Zhang, Xiang

    2008-01-01

    Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe) in growth media (an ionomics dataset). This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology. PMID:18312669

  6. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease.

    PubMed

    Ding, Jingzhong; Reynolds, Lindsay M; Zeller, Tanja; Müller, Christian; Lohman, Kurt; Nicklas, Barbara J; Kritchevsky, Stephen B; Huang, Zhiqing; de la Fuente, Alberto; Soranzo, Nicola; Settlage, Robert E; Chuang, Chia-Chi; Howard, Timothy; Xu, Ning; Goodarzi, Mark O; Chen, Y-D Ida; Rotter, Jerome I; Siscovick, David S; Parks, John S; Murphy, Susan; Jacobs, David R; Post, Wendy; Tracy, Russell P; Wild, Philipp S; Blankenberg, Stefan; Hoeschele, Ina; Herrington, David; McCall, Charles E; Liu, Yongmei

    2015-10-01

    Obesity is linked to type 2 diabetes (T2D) and cardiovascular diseases; however, the underlying molecular mechanisms remain unclear. We aimed to identify obesity-associated molecular features that may contribute to obesity-related diseases. Using circulating monocytes from 1,264 Multi-Ethnic Study of Atherosclerosis (MESA) participants, we quantified the transcriptome and epigenome. We discovered that alterations in a network of coexpressed cholesterol metabolism genes are a signature feature of obesity and inflammatory stress. This network included 11 BMI-associated genes related to sterol uptake (↑LDLR, ↓MYLIP), synthesis (↑SCD, FADS1, HMGCS1, FDFT1, SQLE, CYP51A1, SC4MOL), and efflux (↓ABCA1, ABCG1), producing a molecular profile expected to increase intracellular cholesterol. Importantly, these alterations were associated with T2D and coronary artery calcium (CAC), independent from cardiometabolic factors, including serum lipid profiles. This network mediated the associations between obesity and T2D/CAC. Several genes in the network harbored C-phosphorus-G dinucleotides (e.g., ABCG1/cg06500161), which overlapped Encyclopedia of DNA Elements (ENCODE)-annotated regulatory regions and had methylation profiles that mediated the associations between BMI/inflammation and expression of their cognate genes. Taken together with several lines of previous experimental evidence, these data suggest that alterations of the cholesterol metabolism gene network represent a molecular link between obesity/inflammation and T2D/CAC.

  7. Morphological and molecular characterisation of fungal populations possibly involved in the biological alteration of stones in historical buildings.

    PubMed

    Scrano, L; Boccone, L Fraddosio; Bufo, S A; Carrieri, R; Lahoz, E; Crescenzi, A

    2012-01-01

    The deterioration process of historical building is progressive and irreversible, and the timing and mode of impact are different depending on the characteristics of building materials used, local microclimate, air pollution, presence of specific flora and fauna. The chemical and microbiological characterisation of building materials is mandatory in preventing and eventually recovering degradation effects. Ideally, the analysis of structural stones should be complete, efficient, rapid, and non destructive when dealing with a precious or unique construction. The investigation has been performed on a private historical building made using calcarenite stones and sited between the archaeological site of Lavello, a little town located in the Basilicata Region (South Italy), and the industrial area surrounding this town. To study in progress the degradation of stone materials, a new building sample (ca. 1 m3) was constructed by using the same stones (33 x 15cm), collected from a local quarry. The intact calcarenite stone was characterised by using different methods of surface analysis (XRD, XPS, SEM), and exposed to outdoor conditions. The analyses of the stone material were repeated after three and six months to early evaluate the progression of alterations and the forward modifications of calcarenite structure. After only three months of the new building sample exposure, the adopted analytical methods were able to provide a series of data, which allowed the assessment of the incipient modification of the stone surfaces. The degradation appeared worsened performing the same observations on sixth month replicates, suggesting that environmental conditions modified the structure and the compactness of stones and favoured the biological colonization of surfaces especially in the South-East direction of prevailing winds. For this reason the presence of fungi on the stones' surface was investigated and a morphological and molecular characterization of sampled fungi was

  8. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    NASA Astrophysics Data System (ADS)

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2016-02-01

    Purpose: Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a "priming" dose of protons on the cardiac cellular and molecular response to a "challenge" dose of 56Fe in a mouse model. Methods: Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results: Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions: This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions.

  9. Testing the mechanisms by which source-sink dynamics alter competitive outcomes in a model system.

    PubMed

    Fox, Jeremy W

    2007-09-01

    Dispersal among sites can affect within-site competitive outcomes via source-sink dynamics. Source-sink dynamics are thought to affect competitive outcomes primarily via spatial subsidies: by redistributing individuals from sources to sinks, source-sink dynamics can alter competitive outcomes in both sources and sinks. However, dispersal also can affect competitive outcomes via demography modification, which occurs when dispersal alters the parameters governing species' per capita demographic rates. For instance, dispersal of exploitative competitors might cause extinction of some of the resources for which competition occurs, thereby altering the competition coefficients. I used protist microcosms as a model system to test whether spatial subsidies alone could explain the effects of source-sink dynamics on competitive outcomes. I examined the long-term outcome of exploitative competition among three bacterivorous ciliate protists in microcosms of high enrichment (sources) and low enrichment (sinks) in both the presence and the absence of dispersal. Dispersal altered competitive outcomes. Fitting mathematical models to the population dynamics revealed that spatial subsidies were insufficient to account for the effects of dispersal. Fitting alternative models strongly suggested that demography modification was an important determinant of competitive outcomes. These results provide the first evidence that dispersal does not simply redistribute competitors but can alter their per capita demographic rates.

  10. Effects of chemical alteration on fracture mechanical properties in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Callahan, O. A.; Eichhubl, P.; Olson, J. E.

    2015-12-01

    Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture

  11. Molecular genetic alterations in endometrioid carcinomas of the ovary: similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas.

    PubMed

    Catasús, Lluis; Bussaglia, Elena; Rodrguez, Ingrid; Gallardo, Alberto; Pons, Cristina; Irving, Julie A; Prat, Jaime

    2004-11-01

    Endometrioid carcinomas of the ovary closely resemble their uterine counterparts. It has been suggested that the former tumors have the same molecular alterations (microsatellite instability [MSI], PTEN, and beta-catenin) described in endometrioid carcinomas of the uterus. We analyzed 55 ovarian carcinomas, including 22 endometrioid, 18 clear cell, and 15 mixed types. MSI was detected in 5 of 39 cases (13%). MLH1 promoter hypermethylation was identified in 2 of the 5 MSI-positive tumors. PTEN was mutated in 5 of 54 cases (9%); of these, 3 had MSI and exhibited frameshift mutations in short-coding mononucleotide repeats. Beta-catenin nuclear expression was detected in 11 of 54 cases (20%) by immunostaining; of these, 7 exhibited CTNNB1 gene mutations. These alterations were found more frequently in endometrioid carcinomas than in tumors of the other 2 groups. Among the former tumors, MSI was detected in 3 of 17 cases (17.5%); PTEN mutations, in 3 of 21 (14%); and beta-catenin, in 8 of 21 (38%). The molecular alterations were found more often in tumors associated with endometriosis than in tumors without endometriosis. Six endometrioid tumors demonstrating matrix metalloproteinase-7 (MMP-7) immunoreactivity with nuclear accumulation of beta-catenin had good outcomes, in contrast to poor outcomes in 7 of 9 predominantly nonendometrioid tumors demonstrating expression of MMP-7 only. We found a similar frequency of beta-catenin abnormalities but lower rates of MSI and PTEN alterations than in uterine endometrioid carcinomas. Alterations in beta-catenin and PTEN genes, as well as MSI, are frequent in low-stage ovarian carcinomas of endometrioid type that have a favorable prognosis.

  12. Probing Interactions in Complex Molecular Systems through Ordered Assembly

    SciTech Connect

    De Yoreo, J J; Bartelt, M C; Orme, C A; Villacampa, A; Weeks, B L; Miller, A E

    2002-01-31

    Emerging from the machinery of epitaxial science and chemical synthesis, is a growing emphasis on development of self-organized systems of complex molecular species. The nature of self-organization in these systems spans the continuum from simple crystallization of large molecules such as dendrimers and proteins, to assembly into large organized networks of nanometer-scale structures such as quantum dots or nanoparticles. In truth, self-organization in complex molecular systems has always been a central feature of many scientific disciplines including fields as diverse as structural biology, polymer science and geochemistry. But over the past decade, changes in those fields have often been marked by the degree to which researchers are using molecular-scale approaches to understand the hierarchy of structures and processes driven by this ordered assembly. At the same time, physical scientists have begun to use their knowledge of simple atomic and molecular systems to fabricate synthetic self-organized systems. This increasing activity in the field of self-organization is testament to the success of the physical and chemical sciences in building a detailed understanding of crystallization and epitaxy in simple atomic and molecular systems, one that is soundly rooted in thermodynamics and chemical kinetics. One of the fundamental challenges of chemistry and materials science in the coming decades is to develop a similarly well-founded physical understanding of assembly processes in complex molecular systems. Over the past five years, we have successfully used in situ atomic force microscopy (AFM) to investigate the physical controls on single crystal epitaxy from solutions for a wide range of molecular species. More recently, we have combined this method with grazing incidence X-ray diffraction and kinetic Monte Carlo modeling in order to relate morphology to surface atomic structure and processes. The purpose of this proposal was to extend this approach to assemblies

  13. [Psychosocial stress induces molecular and structural alterations in the brain - How animal experiments help to understand pathomechanisms of depressive illnesses].

    PubMed

    Fuchs, E; Flügge, G

    2001-01-01

    Affective disorders are accompanied by central nervous changes that may lead to diseases of brain and peripheral organs. To gain an insight into neurobiological mechanisms that underlie such diseases we are studying tree shrews (Tupaia belangeri). This animal model is based on the fact that male tree shrews are very territorial and that under laboratory conditions, two males establish a clear social rank order with a dominant and a subordinate animal. In the visual presence of the dominant, the subordinate shows all typical signs of stress with pronounced activation of the hypothalamic-pituitary-adrenal axis and of the sympathetic nervous system. If there are daily confrontations with the dominant during a time period of several weeks, the subordinate experiences chronic psychosocial stress. Tree shrews can be regarded as a suitable animal model to investigate the neurobiological basis of affective disorders since (1) behavioral and endocrine symptoms of subordinates resemble those of depressive patients, (2) antidepressant treatments lead to an improvement of symptoms, and (3) also in humans chronic stress can lead to depression. Using this model we showed that chronic stress induces changes in the morphology of hippocampal pyramidal neurons, affects neurogenesis in the hippocampal formation, and changes the expression of glucocorticoid, serotonergic and noradrenergic receptors in the brain. These changes depend on the duration of the stress period with some of the alterations being reversible whereas others persist during a longer time period. Since the above receptors modulate neuronal activity, the stress induced alterations lead to an impairment of neuronal activity in distinct brain regions.

  14. Molecular Evolution: The Perplexing Diversity of Mitochondrial RNA Editing Systems.

    PubMed

    Sloan, Daniel B; Wu, Zhiqiang

    2016-01-11

    New analysis of rapidly evolving mitochondrial genomes in calcaronean sponges has demonstrated that accurate gene expression requires systematic nucleotide insertion throughout RNA transcripts, altering previous views that RNA editing systems are difficult to maintain in genomes with high mutation rates. PMID:26766226

  15. Impact of DNA mismatch repair system alterations on human fertility and related treatments*

    PubMed Central

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation. PMID:26739522

  16. Impact of DNA mismatch repair system alterations on human fertility and related treatments.

    PubMed

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  17. Engineering and Assembly of Protein Modules into Functional Molecular Systems.

    PubMed

    Hirschi, Stephan; Stauffer, Mirko; Harder, Daniel; Müller, Daniel J; Meier, Wolfgang; Fotiadis, Dimitrios

    2016-01-01

    Synthetic biology approaches range from the introduction of unique features into organisms to the assembly of isolated biomacromolecules or synthetic building blocks into artificial biological systems with biomimetic or completely novel functionalities. Simple molecular systems can be based on containers on the nanoscale that are equipped with tailored functional modules for various applications in healthcare, industry or biological and medical research. The concept, or vision, of assembling native or engineered proteins and/or synthetic components as functional modules into molecular systems is discussed. The main focus is laid on the engineering of energizing modules generating chemical energy, transport modules using this energy to translocate molecules between compartments of a molecular system, and catalytic modules (bio-)chemically processing the molecules. Further key aspects of this discourse are possible approaches for the assembly of simple nanofactories and their applications in biotechnology and medical health. PMID:27363367

  18. A molecular dynamics study of polymer/graphene interfacial systems

    SciTech Connect

    Rissanou, Anastassia N.; Harmandaris, Vagelis

    2014-05-15

    Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.

  19. STALK : an interactive virtual molecular docking system.

    SciTech Connect

    Levine, D.; Facello, M.; Hallstrom, P.; Reeder, G.; Walenz, B.; Stevens, F.; Univ. of Illinois

    1997-04-01

    Several recent technologies-genetic algorithms, parallel and distributed computing, virtual reality, and high-speed networking-underlie a new approach to the computational study of how biomolecules interact or 'dock' together. With the Stalk system, a user in a virtual reality environment can interact with a genetic algorithm running on a parallel computer to help in the search for likely geometric configurations.

  20. Volatiles on solar system objects: Carbon dioxide on Iapetus and aqueous alteration in CM chondrites

    NASA Astrophysics Data System (ADS)

    Palmer, Eric Edward

    2009-12-01

    Volatiles are critical in understanding the history of the solar system. We conducted two case studies intended to further this understanding. First, we analyzed the presence of CO2 on Iapetus. Second, we evaluated aqueous alteration in CM chondrites. We studied the distribution, stability and production of CO2 on Saturn's moon Iapetus. We determined that CO2 is concentrated exclusively on Iapetus' dark material with an effective thickness of 31 nm. The total CO2 on Iapetus' surface is 2.3x108 kg. However, CO2 should not be present because it has a limited residence time on the surface of Iapetus. Our thermal calculations and modeling show that CO2 in the form of frost will not remain on Iapetus' surface beyond a few hundred years. Thus, it must be complexed with dark material. However, photodissociation will destroy the observed inventory in ˜1/2 an Earth year. The lack of thermal and radiolytic stability requires an active source. We conducted experiments showing UV radiation generates CO2 under Iapetus-like conditions. We created a simulated regolith by mixing crushed water ice with isotopically labeled carbon. We then irradiated it with UV light at low temperature and pressure, producing 1.1x1015 parts m-2 s-1. Extrapolating to Iapetus, photolysis could generate 8.4x107 kg y-1, which makes photolytic production a good candidate for the source of the CO2 detected on Iapetus. We also studied the aqueous alteration of metal-bearing assemblages in CM chondrites. We examined Murchison, Cold Bokkeveld, Nogoya, and Murray using microscopy, electron microprobe analysis and scanning electron microscopy. Alteration on CM meteorites occurred within at least three microchemical environments: S-rich water, Si-rich water and water without substantial reactive components. Kamacite alters into tochilinite, cronstedtite, or magnetite. Sulfur associated alteration can form accessory minerals: P-rich sulfides, eskolaite and schreibersite. Additionally, we determined that there

  1. Local and systemic biochemical alterations induced by Bothrops atrox snake venom in mice.

    PubMed

    de Souza, Carlos At; Kayano, Anderson M; Setúbal, Sulamita S; Pontes, Adriana S; Furtado, Juliana L; Kwasniewski, Fábio H; Zaqueo, Kayena D; Soares, Andreimar M; Stábeli, Rodrigo G; Zuliani, Juliana P

    2012-01-01

    The local and systemic alterations induced by Bothrops atrox snake venom (BaV) injection in mice were studied. BaV induced superoxide production by migrated neutrophils, mast cell degranulation and phagocytosis by macrophages. Moreover, BaV caused hemorrhage in dorsum of mice after 2hr post- injection. Three hours post-injection in gastrocnemius muscle, we also observed myonecrosis, which was assessed by the determination of serum and tissue CK besides the release of urea, but not creatinine and uric acid, indicating kidney alterations. BaV also induced the release of LDH and transaminases (ALT and AST) indicating tissue and liver abnormalities. In conclusion, the data indicate that BaV induces events of local and systemic importance. PMID:23487552

  2. Local and systemic biochemical alterations induced by Bothrops atrox snake venom in mice.

    PubMed

    de Souza, Carlos At; Kayano, Anderson M; Setúbal, Sulamita S; Pontes, Adriana S; Furtado, Juliana L; Kwasniewski, Fábio H; Zaqueo, Kayena D; Soares, Andreimar M; Stábeli, Rodrigo G; Zuliani, Juliana P

    2012-01-01

    The local and systemic alterations induced by Bothrops atrox snake venom (BaV) injection in mice were studied. BaV induced superoxide production by migrated neutrophils, mast cell degranulation and phagocytosis by macrophages. Moreover, BaV caused hemorrhage in dorsum of mice after 2hr post- injection. Three hours post-injection in gastrocnemius muscle, we also observed myonecrosis, which was assessed by the determination of serum and tissue CK besides the release of urea, but not creatinine and uric acid, indicating kidney alterations. BaV also induced the release of LDH and transaminases (ALT and AST) indicating tissue and liver abnormalities. In conclusion, the data indicate that BaV induces events of local and systemic importance.

  3. Local and systemic biochemical alterations induced by Bothrops atrox snake venom in mice

    PubMed Central

    de Souza, Carlos AT; Kayano, Anderson M; Setúbal, Sulamita S; Pontes, Adriana S; Furtado, Juliana L; Kwasniewski, Fábio H; Zaqueo, Kayena D; Soares, Andreimar M; Stábeli, Rodrigo G; Zuliani, Juliana P

    2012-01-01

    The local and systemic alterations induced by Bothrops atrox snake venom (BaV) injection in mice were studied. BaV induced superoxide production by migrated neutrophils, mast cell degranulation and phagocytosis by macrophages. Moreover, BaV caused hemorrhage in dorsum of mice after 2hr post- injection. Three hours post-injection in gastrocnemius muscle, we also observed myonecrosis, which was assessed by the determination of serum and tissue CK besides the release of urea, but not creatinine and uric acid, indicating kidney alterations. BaV also induced the release of LDH and transaminases (ALT and AST) indicating tissue and liver abnormalities. In conclusion, the data indicate that BaV induces events of local and systemic importance. PMID:23487552

  4. Impaired sense of smell and altered olfactory system in RAG-1(-∕-) immunodeficient mice.

    PubMed

    Rattazzi, Lorenza; Cariboni, Anna; Poojara, Ridhika; Shoenfeld, Yehuda; D'Acquisto, Fulvio

    2015-01-01

    Immune deficiencies are often associated with a number of physical manifestations including loss of sense of smell and an increased level of anxiety. We have previously shown that T and B cell-deficient recombinase activating gene (RAG-1)(-∕-) knockout mice have an increased level of anxiety-like behavior and altered gene expression involved in olfaction. In this study, we expanded these findings by testing the structure and functional development of the olfactory system in RAG-1 (-∕-) mice. Our results show that these mice have a reduced engagement in different types of odors and this phenotype is associated with disorganized architecture of glomerular tissue and atrophy of the main olfactory epithelium. Most intriguingly this defect manifests specifically in adult age and is not due to impairment in the patterning of the olfactory neuron staining at the embryo stage. Together these findings provide a formerly unreported biological evidence for an altered function of the olfactory system in RAG-1 (-∕-) mice.

  5. 32 CFR Appendix C to Part 323 - Instructions for Preparation of Reports to New or Altered Systems

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the existing DLA procedural or exemption rules (32 CFR part 323) are required for this proposed system... or Altered Systems C Appendix C to Part 323 National Defense Department of Defense (Continued) OFFICE.... 323, App. C Appendix C to Part 323—Instructions for Preparation of Reports to New or Altered...

  6. System and method for altering the tack of materials using an electrohydraulic discharge

    SciTech Connect

    Banerjee, Sujit; Corcoran, Howard

    2003-01-01

    A system and method for altering the tack of a material, namely a polymer used as an adhesive, also known as stickies, or pitch. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater.

  7. System and method for altering the tack of materials using an electrohydraulic discharge

    SciTech Connect

    Banerjee, Sujit; Corcoran, Howard

    2007-11-13

    A system and method for altering the tack of a material, namely a polymer used as an adhesive, also known as stickies, or pitch. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater.

  8. 76 FR 4469 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ...The Department of Health and Human Services proposes to alter System of Records, 09-20-0153, ``Mortality Studies in Coal Mining, Metal and Non-metal Mining and General Industry, HHS/CDC/NIOSH.'' HHS is proposing to add the following Breach Response Routine Use Language to comply with the Office of Management and Budget (OMB) Memoranda (M) 07-16, Safeguarding Against and responding to the......

  9. 76 FR 4456 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ...The Department of Health and Human Services proposes to alter System of Records, 09-20-0118, ``Study at Work Sites Where Agents Suspected of Being Occupational Hazards Exist, HHS/CDC/NIOSH.'' HHS is proposing to add the following Breach Response Routine Use Language to comply with the Office of Management and Budget (OMB) Memoranda (M) 07- 16, Safeguarding Against and responding to the Breach......

  10. 76 FR 4454 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ...The Department of Health and Human Services proposes to alter System of Records, 09-20-0117, ``Medical and Test Record Results of Individuals Involved in NIOSH Laboratory Studies, HHS/CDC/NIOSH.'' HHS is proposing to add the following Breach Response Routine Use Language to comply with the Office of Management and Budget (OMB) Memoranda (M) 07-16, Safeguarding Against and responding to the......

  11. 76 FR 4466 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ...The Department of Health and Human Services proposes to alter System of Records, 09-20-0149, ``Morbidity Studies in Coal Mining, Metal and Non-metal Mining and General Industry, HHS/CDC/NIOSH.'' HHS is proposing to add the following Breach Response Routine Use Language to comply with the Office of Management and Budget (OMB) Memoranda (M) 07-16, Safeguarding Against and Responding to the......

  12. Spin selectivity effect in achiral molecular systems

    NASA Astrophysics Data System (ADS)

    Guo, Ai-Min; Pan, Ting-Rui; Fang, Tie-Feng; Xie, X. C.; Sun, Qing-Feng

    2016-10-01

    Recently, chiral-induced spin selectivity has been attracting intense interest. Here, we report a theoretical study of spin-dependent electron transport in achiral nanotubes contacted by nonmagnetic leads. Our results reveal that by properly connecting to the leads, the achiral nanotubes can present a pronounced spin filtering phenomenon even if the spin-orbit coupling is very weak. In addition, the spin selectivity effect holds for various achiral nanotubes with different radii and is still significant in the presence of strong disorder and dephasing. These findings open new opportunities of using achiral molecules in spintronic applications and could motivate further studies on spin transport along achiral systems.

  13. Continuous-terahertz-wave molecular imaging system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Zhang, Liangliang; Wu, Tong; Wang, Ruixue; Zuo, Shasha; Wu, Dong; Zhang, Cunlin; Zhang, Jue; Fang, Jing

    2016-07-01

    Molecular imaging techniques are becoming increasingly important in biomedical research and potentially in clinical practice. We present a continuous-terahertz (THz)-wave molecular imaging system for biomedical applications, in which an infrared (IR) laser is integrated into a 0.2-THz reflection-mode continuous-THz-wave imaging system to induce surface plasmon polaritons on the nanoparticles and further improve the intensity of the reflected signal from the water around the nanoparticles. A strong and rapid increment of the reflected THz signal in the nanoparticle solution upon the IR laser irradiation is demonstrated, using either gold or silver nanoparticles. This low-cost, simple, and stable continuous-THz-wave molecular imaging system is suitable for miniaturization and practical imaging applications; in particular, it shows great promise for cancer diagnosis and nanoparticle drug-delivery monitoring.

  14. Pseudorotational Dynamics of Small Molecular Systems

    NASA Astrophysics Data System (ADS)

    Hagelberg, Frank

    2001-03-01

    A variety of dynamic effects related to the pseudorotation of triatomic singly charged species is explored using the Electron Nuclear Dynamics(END)Theory. The concepts relevant to the motion studied are developed through the analysis of the simplest polyatomic molecule, namely H3+. It is shown that the limiting situation of circular pseudorotation is unattainable for this case. This observation is explained by the anisotropy of the ground state potential energy surface caused by the interaction between the D3h ground state of the molecule and its twofold degenerate first excited state. Further, pseudorotational motion is demonstrated to induce a rotational mode which in turn couples the two shape oscillation modes by action of the Coriolis force. Analogous phenomena are found for Li3+. The Jahn-Teller system C3+ exhibits a range of new motional effects. Particularly, a characteristic frequency shift between the two shape oscillation modes is obtained, resulting from the anisotropy in the curvature of the C2v minimum of C3+. The Jahn-Teller parameters of the system are determined from Electron Nuclear Dynamics simulations.

  15. Developing a free-space fluorescence molecular tomography system

    NASA Astrophysics Data System (ADS)

    Ding, Yichen; Zhai, Xiaohui; Wang, Guohe; Ren, Qiushi; Li, Changhui

    2014-09-01

    Fluorescence molecular tomography (FMT) gains increasing interests in deep tissue imaging. Here we report a novel FMT system setup with full angel projections. In this system, a tungsten-halogen lamp is applied as illumination, while a scientific complementary metal oxide semiconductor (sCMOS) is used as a detecting device. With a unique line-pattern illumination and a high sensitivity sCMOS, our FMT system can complete data acquisition over 36 perspective angles along the animal within 10 minutes. We also employ a novel transparent animal bed, which is suitable to hold the animal for long time experiments. Both phantom and in vivo animal experiments have been studied, and our results demonstrate this FMT system has a great potential for small animal study. In addition, our design allows this FMT system to be easily applied in either stand-alone fluorescent systems or combined with other molecular imaging methods.

  16. Molecular targeting of the lymphovascular system for imaging and therapy.

    PubMed

    Schöder, Heiko; Glass, Edwin C; Pecking, Alain P; Harness, Jay K; Wallace, Anne M; Hirnle, Peter; Alberini, Jean L; Vilain, Didier; Larson, Steven M; Hoh, Carl K; Vera, David R

    2006-06-01

    Progress toward targeting cancer cells is a multi-disciplinary endeavor. In addition to the surgical and oncology specialties, radiologists collaborate with mathematicians, computer scientists, and physicists, in a constant effort to incrementally improve upon the current imaging modalities. Recently, radiologists have formed collaborations with molecular biologists and chemists in order to develop molecular agents that target cancer cells via receptor-substrate or specific physiochemical interactions. In this review, we summarize selected efforts toward molecular targeting of the lymphovascular system. Standard imaging modalities, positron emission tomography, single photon emission tomography, and ultrasound, are reviewed as well as, the targeted introduction of substances for endolymphatic therapy. We also review the current status of sentinel lymph node mapping with radiocolloids and the application of molecular targeting for the development of a radiopharmaceutical specifically designed for sentinel lymph node mapping.

  17. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development

    PubMed Central

    Caldwell, Katharine E.; Labrecque, Matthew T.; Solomon, Benjamin R.; Ali, Abdulmehdi; Allan, Andrea M.

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50 ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  18. Design theory and performance of cryogenic molecular adsorption refrigeration systems

    NASA Technical Reports Server (NTRS)

    Hartwig, W. H.; Woltman, A. W.; Masson, J. P.

    1978-01-01

    Closed-cycle operation of molecular adsorption refrigeration systems (MARS) has been demonstrated by using thermally cycled zeolites to adsorb and desorb various gases under pressures of 20-60 atm. This paper develops three aspects of the design theory: the physical theory of molecular adsorption of small molecules such as A, N2, N2O and NH3, the design relations for closed-cycle flow for three or more compressors, and the coefficient of performance. This work is intended to demonstrate nonmechanical gas compression for various cryogenic gases than can compete with mechanical systems with a different mix of advantages and disadvantages.

  19. Metal nanoelectrodes for molecular transistor and investigation of electron transport in molecular systems

    NASA Astrophysics Data System (ADS)

    Suyatin, D. B.; Soldatov, E. S.; Maximov, Ivan; Montelius, Lars; Samuelson, Lars; Khomutov, G. B.; Gubin, S. P.; Sergeev-Cherenkov, A. N.

    2002-06-01

    Gold nanoelectrodes with gaps of less than 10 nm were formed by conventional E-beam lithography on silicon substrates covered by Al2O3. Molecular films were deposited on the electrodes by Langmuir-Shaefer technique. The I-V curves of such systems show a suppressed conductance indicating a correlated electron tunnelling through the system. All measurements were made at room temperature.

  20. Metal nanoelectrodes for molecular transistor and investigation of electron transport in molecular systems

    NASA Astrophysics Data System (ADS)

    Suyatin, D. B.; Soldatov, E. S.; Maximov, Ivan; Montelius, Lars; Samuelson, Lars; Khomutov, G. B.; Gubin, S. P.; Sergeev-Cherenkov, A. N.

    2003-06-01

    Gold nanoelectrodes with gaps of less than 10 nm were formed by conventional E-beam lithography on silicon substrates covered by Al2O3. Molecular films were deposited on the electrodes by Langmuir-Shaefer technique. The I-V curves of such systems show a suppressed conductance indicating a correlated electron tunnelling through the system. All measurements were made at room temperature.

  1. Lipidomic Analysis of the Retina in a Rat Model of Smith-Lemli-Opitz Syndrome: Alterations in Docosahexaenoic Acid Content of Phospholipid Molecular Species

    PubMed Central

    Ford, David A.; Monda, Julie K.; Brush, Richard S.; Anderson, Robert E.; Richards, Michael J.; Fliesler, Steven J.

    2009-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is a complex hereditary disease caused by an enzymatic defect in the last step of cholesterol biosynthesis. Progressive retinal degeneration occurs in an AY9944-induced rat model of SLOS, with biochemical and electroretinographic hallmarks comparable to the human disease. We evaluated alterations in the non-sterol lipid components of the retina in this model, compared to age-matched controls, using lipidomic analysis. The levels of 16:0–22:6 and 18:0–22:6 phosphatidylcholine molecular species in retinas were less by >50% and >33%, respectively, in rats treated for either two or three months with AY9944. Relative to controls, AY9944 treatment resulted in >60% less di-22:6 and >15% less 18:0–22:6 phosphatidylethanolamine molecular species. The predominant phosphatidylserine molecular species in control retinas were 18:0–22:6 and di-22:6; notably, AY9944 treatment resulted in >80% less di-22:6 phosphatidylserine, relative to controls. Remarkably, these changes occurred in the absence of n3 fatty acid deficiency in plasma or liver. Thus, the retinal lipidome is globally altered in the SLOS rat model, relative to control rats, with the most profound changes being less phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine molecular species containing docosahexaenoic acid (22:6). These findings suggest that SLOS may involve additional metabolic compromise beyond the primary enzymatic defect in the cholesterol pathway. PMID:18182048

  2. FINE AMBIENT AIR PARTICULAR MATTER EXPOSURE INDUCES MOLECULAR ALTERATIONS INDICATIVE OF CARDIOVASCULAR DISEASE PROGRESSION IN ATHEROSCLEROTIC SUSCEPTIBLE MICE

    EPA Science Inventory

    Epidemiological, clinical, and toxicological studies have demonstrated that exposure to ambient air particulate matter (PM) can alter cardiovascular function and may influence cardiovascular disease (CVD). It has been shown that exposure to concentrated ambient air particles (CA...

  3. Mineral formation and redox-sensitive trace elements in a near-surface hydrothermal alteration system

    SciTech Connect

    Gehring, A.U. |; Schosseler, P.M.; Weidler, P.G.

    1999-07-01

    A recent hydrothermal mudpool at the southwestern slope of the Rincon de la Vieja volcano in Northwest Costa Rica exhibits an argillic alteration system formed by intense interaction of sulfuric acidic fluids with wall rock materials. Detailed mineralogical analysis revealed an assemblage with kaolinite, alunite, and opal-C as the major mineral phases. Electron paramagnetic resonance spectroscopy (EPR) showed 3 different redox-sensitive cations associated with the mineral phases, Cu{sup +} is structure-bound in opal-C, whereas VO{sup 2+} and Fe{sup 3+} are located in the kaolinite structure. The location of the redox-sensitive cations in different minerals of the assemblage is indicative of different chemical conditions. The formation of the alteration products can be described schematically as a 2-step process. In a first step alunite and opal-C were precipitated in a fluid with slightly reducing conditions and a low chloride availability. The second step is characterized by a decrease in K{sup +} activity and subsequent formation of kaolinite under weakly oxidizing to oxidizing redox conditions as indicated by structure-bound VO{sup 2+} and Fe{sup 3+}. The detection of paramagnetic trace elements structure-bound in mineral phases by EPR provide direct information about the prevailing redox conditions during alteration and can, therefore, be used as additional insight into the genesis of the hydrothermal, near-surface system.

  4. Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas

    PubMed Central

    Braggio, Esteban; Van Wier, Scott; Ojha, Juhi; McPhail, Ellen; Asmann, Yan W.; Egan, Jan; da Silva, Jackline Ayres; Schiff, David; Lopes, M Beatriz; Decker, Paul A; Valdez, Riccardo; Tibes, Raoul; Eckloff, Bruce; Witzig, Thomas E.; Stewart, A Keith; Fonseca, Rafael; O’Neill, Brian Patrick

    2015-01-01

    Purpose Primary central nervous system lymphoma (PCNSL) is an aggressive non-Hodgkin lymphoma confined to the CNS. Whether there is a PCNSL-specific genomic signature and, if so, how it differs from systemic diffuse large B-cell lymphoma (DLBCL) is uncertain. Experimental design We performed a comprehensive genomic study of tumor samples from 19 immunocompetent PCNSL patients. Testing comprised array-comparative genomic hybridization and whole exome sequencing. Results Biallelic inactivation of TOX and PRKCD were recurrently found in PCNSL but not in systemic DLBCL, suggesting a specific role in PCNSL pathogenesis. Additionally, we found a high prevalence of MYD88 mutations (79%) and CDKN2A biallelic loss (60%). Several genes recurrently affected in PCNSL were common with systemic DLBCL, including loss of TNFAIP3, PRDM1, GNA13, TMEM30A, TBL1XR1, B2M, CD58, activating mutations of CD79B, CARD11 and translocations IgH-BCL6. Overall, BCR/TLR/NF-κB pathways were altered in >90% of PNCSL, highlighting its value for targeted therapeutic approaches. Furthermore, integrated analysis showed enrichment of pathways associated with immune response, proliferation, apoptosis, and lymphocyte differentiation. Conclusions In summary, genome-wide analysis uncovered novel recurrent alterations, including TOX and PRKCD, helping to differentiate PCNSL from systemic DLBCL and related lymphomas. PMID:25991819

  5. Anastrozole and everolimus in advanced gynecologic and breast malignancies: activity and molecular alterations in the PI3K/AKT/mTOR pathway

    PubMed Central

    Wheler, Jennifer J.; Moulder, Stacy L.; Naing, Aung; Janku, Filip; Piha-Paul, Sarina A.; Falchook, Gerald S.; Zinner, Ralph; Tsimberidou, Apostolia M.; Fu, Siqing; Hong, David S.; Atkins, Johnique T.; Yelensky, Roman; Stephens, Philip J.; Kurzrock, Razelle

    2014-01-01

    Background: Since PI3K/AKT/mTOR pathway activation diminishes the effects of hormone therapy, combining aromatase inhibitors (anatrozole) with mTOR inhibitors (everolimus) was investigated. Patients and Methods: We evaluated anastrozole and everolimus in 55 patients with metastatic estrogen (ER) and/or progesterone receptor (PR)-positive breast and gynecologic tumors. Endpoints were safety, antitumor activity and molecular correlates. Results: Full doses of anastrozole (1 mg PO daily) and everolimus (10 mg PO daily) were well tolerated. Twelve of 50 evaluable patients (24%) (median = 3 prior therapies) achieved stable disease (SD) ≥ 6 months/partial response (PR)/complete response (CR) (n = 5 (10%) with PR/CR): 9 of 32 (28%) with breast cancer (n=5 (16%) with PR/CR); 2 of 10 (20%), ovarian cancer; and 1 of 6 (17%), endometrial cancer. Six of 22 patients (27%) with molecular alterations in the PI3K/AKT/mTOR pathway achieved SD ≥ 6 months/PR/CR. Six of 8 patients (75%) with SD ≥ 6 months/PR/CR with molecular testing demonstrated at least one alteration in the PI3K/AKT/mTOR pathway: mutations in PIK3CA (n=3) and AKT1 (n=1) or PTEN loss (n=3). All three responders (CR (n = 1); PR (n=2)) who had next generation sequencing demonstrated additional alterations: amplifications in CCNE1, IRS2, MCL1, CCND1, FGFR1 and MYC and a rearrangement in PRKDC. Conclusions: Combination anastrozole and everolimus is well tolerated at full approved doses, and is active in heavily-pretreated patients with ER and/or PR-positive breast, ovarian and endometrial cancers. Responses were observed in patients with multiple molecular aberrations. Clinical Trails Included: NCT01197170 PMID:24912489

  6. Diversity of CRISPR-Cas immune systems and molecular machines.

    PubMed

    Barrangou, Rodolphe

    2015-01-01

    Bacterial adaptive immunity hinges on CRISPR-Cas systems that provide DNA-encoded, RNA-mediated targeting of exogenous nucleic acids. A plethora of CRISPR molecular machines occur broadly in prokaryotic genomes, with a diversity of Cas nucleases that can be repurposed for various applications.

  7. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System.

    PubMed

    Okaty, Benjamin W; Freret, Morgan E; Rood, Benjamin D; Brust, Rachael D; Hennessy, Morgan L; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N; Dymecki, Susan M

    2015-11-18

    Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance.

  8. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    PubMed

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

  9. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. PMID:26554040

  10. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation.

  11. Next steps in obesity prevention: altering early life systems to support healthy parents, infants, and toddlers.

    PubMed

    Nader, Philip R; Huang, Terry T-K; Gahagan, Sheila; Kumanyika, Shiriki; Hammond, Ross A; Christoffel, Katherine Kaufer

    2012-06-01

    There is an urgent need for effective, sustainable child obesity prevention strategies. Progress toward this goal requires strengthening current approaches to add a component that addresses pregnancy onward. Altering early-life systems that promote intergenerational transmission of obesity holds promise for interrupting the continuing cycle of the obesity epidemic. A 2011 Institute of Medicine (IOM) report emphasizes the need for interventions early in life to prevent obesity. A 2010 IOM report called for addressing gaps in existing obesity research evidence by using a systems perspective, simultaneously addressing interacting obesity promoting factors in multiple sectors and at multiple societal levels. A review of evidence from basic science, prevention, and systems research supports an approach that (1) begins at the earliest stages of development, and (2) uses a systems framework to simultaneously implement health behavior and environmental changes in communities. PMID:22799545

  12. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    PubMed Central

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583

  13. Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension.

    PubMed

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E; Tapia, Edilia; Osorio, Horacio; Arellano-Buendía, Abraham S; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Correa, Francisco; Zazueta, Cecilia; Johnson, Richard J; Lozada, Laura-Gabriela Sánchez

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  14. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons.

    PubMed

    Fick, Laura J; Fick, Gordon H; Belsham, Denise D

    2011-09-30

    The control of energy homeostasis within the hypothalamus is under the regulated control of homeostatic hormones, nutrients and the expression of neuropeptides that alter feeding behavior. Elevated levels of palmitate, a predominant saturated fatty acid in diet and fatty acid biosynthesis, alter cellular function. For instance, a key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. To determine these mechanisms we used an immortalized, clonal, hypothalamic cell line, mHypoE-44, to demonstrate that palmitate directly alters the expression of molecular clock components, by increasing Bmal1 and Clock, or by decreasing Per2, and Rev-erbα, their mRNA levels and altering their rhythmic period within individual neurons. We found that these neurons endogenously express the orexigenic neuropeptides NPY and AgRP, thus we determined that palmitate administration alters the mRNA expression of these neuropeptides as well. Palmitate treatment causes a significant increase in NPY mRNA levels and significantly alters the phase of rhythmic expression. We explored the link between AMPK and the expression of neuropeptide Y using the AMPK inhibitor compound C and the AMP analog AICAR. AMPK inhibition decreased NPY mRNA. AICAR also elevated basal NPY, but prevented the palmitate-mediated increase in NPY mRNA levels. We postulate that this palmitate-mediated increase in NPY and AgRP synthesis may initiate a detrimental positive feedback loop leading to increased energy consumption.

  15. Preparation of Low Molecular Weight Gelatin Using Microwave Discharge Electrodeless Lamp/TiO2 Photocatalyst Hybrid System.

    PubMed

    Lee, Do-Jin; Kim, Hangun; Park, Young-Kwon; Kim, Byung Hoon; Lee, Heon; Jungf, Sana-Chul

    2016-02-01

    In this study, an MDEL/TiO2 photocatalyst hybrid system was applied to the production of low molecular weight gelatin. The molecular weight of produed gelatin decreased with increasing microwave intensity and increasing treatment time. The abscission of the chemical bonds between the con- stituents of gelatin by photocatalytic reaction did not alter the characteristics of gelatin. Formation of any by-products due to side reaction was not observed. It is suggested that gelatin was depolymerized by hydroxyl radicals produced during the MDEL/TiO2 photochemical reaction. PMID:27433727

  16. Social isolation impairs adult neurogenesis in the limbic system and alters behaviors in female prairie voles.

    PubMed

    Lieberwirth, Claudia; Liu, Yan; Jia, Xixi; Wang, Zuoxin

    2012-09-01

    Disruptions in the social environment, such as social isolation, are distressing and can induce various behavioral and neural changes in the distressed animal. We conducted a series of experiments to test the hypothesis that long-term social isolation affects brain plasticity and alters behavior in the highly social prairie vole (Microtus ochrogaster). In Experiment 1, adult female prairie voles were injected with a cell division marker, 5-bromo-2'-deoxyuridine (BrdU), and then same-sex pair-housed (control) or single-housed (isolation) for 6 weeks. Social isolation reduced cell proliferation, survival, and neuronal differentiation and altered cell death in the dentate gyrus of the hippocampus and the amygdala. In addition, social isolation reduced cell proliferation in the medial preoptic area and cell survival in the ventromedial hypothalamus. These data suggest that long-term social isolation affects distinct stages of adult neurogenesis in specific limbic brain regions. In Experiment 2, isolated females displayed higher levels of anxiety-like behaviors in both the open field and elevated plus maze tests and higher levels of depression-like behavior in the forced swim test than controls. Further, isolated females showed a higher level of affiliative behavior than controls, but the two groups did not differ in social recognition memory. Together, our data suggest that social isolation not only impairs cell proliferation, survival, and neuronal differentiation in limbic brain areas, but also alters anxiety-like, depression-like, and affiliative behaviors in adult female prairie voles. These data warrant further investigation of a possible link between altered neurogenesis within the limbic system and behavioral changes.

  17. Sulfated Low Molecular Weight Lignins, Allosteric Inhibitors of Coagulation Proteinases via the Heparin Binding Site, Significantly Alter the Active Site of Thrombin and Factor Xa Compared to Heparin

    PubMed Central

    Henry, Brian L.; Desai, Umesh R.

    2014-01-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  18. Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin.

    PubMed

    Henry, Brian L; Desai, Umesh R

    2014-11-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  19. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    PubMed Central

    Dopico, Alex M.; Bukiya, Anna N.; Martin, Gilles E.

    2014-01-01

    In most tissues, the function of Ca2+- and voltage-gated K+ (BK) channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (Ca2+i), BK subunit composition and post-translational modifications, and the channel's lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1) subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus), acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophyseal axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction. PMID:25538625

  20. From molecular classification to targeted therapeutics: the changing face of systemic therapy in metastatic gastroesophageal cancer.

    PubMed

    Murphy, Adrian; Kelly, Ronan J

    2015-01-01

    Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1) or mismatch repair genes (Lynch syndrome) were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician's therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients.

  1. From Molecular Classification to Targeted Therapeutics: The Changing Face of Systemic Therapy in Metastatic Gastroesophageal Cancer

    PubMed Central

    Kelly, Ronan J.

    2015-01-01

    Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1) or mismatch repair genes (Lynch syndrome) were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician's therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients. PMID:25784931

  2. Bringing light into the dark triplet space of molecular systems.

    PubMed

    Ge, Jing; Zhang, Qun; Jiang, Jun; Geng, Zhigang; Jiang, Shenlong; Fan, Kaili; Guo, Zhenkun; Hu, Jiahua; Chen, Zongwei; Chen, Yang; Wang, Xiaoping; Luo, Yi

    2015-05-21

    A molecule or a molecular system always consists of excited states of different spin multiplicities. With conventional optical excitations, only the (bright) states with the same spin multiplicity of the ground state could be directly reached. How to reveal the dynamics of excited (dark) states remains the grand challenge in the topical fields of photochemistry, photophysics, and photobiology. For a singlet-triplet coupled molecular system, the (bright) singlet dynamics can be routinely examined by conventional femtosecond pump-probe spectroscopy. However, owing to the involvement of intrinsically fast decay channels such as intramolecular vibrational redistribution and internal conversion, it is very difficult, if not impossible, to single out the (dark) triplet dynamics. Herein, we develop a novel strategy that uses an ultrafast broadband white-light continuum as a excitation light source to enhance the probability of intersystem crossing, thus facilitating the population flow from the singlet space to the triplet space. With a set of femtosecond time-reversed pump-probe experiments, we report on a proof-of-concept molecular system (i.e., the malachite green molecule) that the pure triplet dynamics can be mapped out in real time through monitoring the modulated emission that occurs solely in the triplet space. Significant differences in excited-state dynamics between the singlet and triplet spaces have been observed. This newly developed approach may provide a useful tool for examining the elusive dark-state dynamics of molecular systems and also for exploring the mechanisms underlying molecular luminescence/photonics and solar light harvesting.

  3. System and method for altering characteristics of materials using an electrohydraulic discharge

    DOEpatents

    Banerjee, Sujit

    2003-06-03

    System and method for oxidizing contaminants to alter specific properties, such as tack, of contaminants. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater. An electrical discharge in the liquid medium oxidizes materials, which may be dissolved or suspended therein, such as stickies, pitch, sulfide, ink, toner, and other substances, thereby reducing tack, odor, and/or zeta potential, as well as producing other desirable effect.

  4. Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles

    NASA Technical Reports Server (NTRS)

    Lowery, Mary Sue

    1998-01-01

    Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.

  5. Determination of characteristic alterations of the mass transfer process of thermodynamically nonequilibrium hydrocarbon systems

    SciTech Connect

    Ramazanova, E.E.; Nurmamedova, Z.A.

    1997-06-01

    The results of research on hydrocarbon mixture sorption in porous medium showed that adsorbent activity with regard to separate components of a gas mixture changes in partial dependence on pressure. The alteration of vented gas content will take place not only in gas condensate fields, when this effect is conditioned by the losses of condensate in the stratum, but also in gas fields, by methods connected with desorption processes. At the same time, gas composition is the basis for different process calculations, such as separation, gas transport, gas filtration in porous medium, and others. Thus the determination of characteristic alterations of gas mixture composition in thermodynamically nonequilibrium hydrocarbon systems mass transfer process becomes important. The binary (methane + pentane) and tricomponent (methane + butane + pentane) systems composed of individual gases of high purity have been researched. Then with help of mathematical methods of experimental data processing the moment of the more characteristic changes of the mass transfer process was discovered. Processing of experimental data for tricomponent system by statistical differentiation allowed the discovery of a pressure below of which lightening of the vented gas was observed.

  6. The altered gravity effect on proliferative system of two-day pea germs

    NASA Astrophysics Data System (ADS)

    Artemenko, O. A.

    The study of clinorotation effect on proliferative system sensibility of plants is very important for understanding and future investigations of their development characteristics and for examination of cell cycle regulation molecular mechanisms. Determination of two-day pea germ mitotic activity of cells, correlation of mitosis phase and DNA content point to decrease of these parameters under clinorotation during the first 12 hours of the factor influence. Cell cycle stabilization after 12 hours of the experiment show high adaptation capacity of plant proliferative system.

  7. ANN expert system screening for illicit amphetamines using molecular descriptors

    NASA Astrophysics Data System (ADS)

    Gosav, S.; Praisler, M.; Dorohoi, D. O.

    2007-05-01

    The goal of this study was to develop and an artificial neural network (ANN) based on computed descriptors, which would be able to classify the molecular structures of potential illicit amphetamines and to derive their biological activity according to the similarity of their molecular structure with amphetamines of known toxicity. The system is necessary for testing new molecular structures for epidemiological, clinical, and forensic purposes. It was built using a database formed by 146 compounds representing drugs of abuse (mainly central stimulants, hallucinogens, sympathomimetic amines, narcotics and other potent analgesics), precursors, or derivatized counterparts. Their molecular structures were characterized by computing three types of descriptors: 38 constitutional descriptors (CDs), 69 topological descriptors (TDs) and 160 3D-MoRSE descriptors (3DDs). An ANN system was built for each category of variables. All three networks (CD-NN, TD-NN and 3DD-NN) were trained to distinguish between stimulant amphetamines, hallucinogenic amphetamines, and nonamphetamines. A selection of variables was performed when necessary. The efficiency with which each network identifies the class identity of an unknown sample was evaluated by calculating several figures of merit. The results of the comparative analysis are presented.

  8. Hybrid Metaheuristic Approach for Nonlocal Optimization of Molecular Systems.

    PubMed

    Dresselhaus, Thomas; Yang, Jack; Kumbhar, Sadhana; Waller, Mark P

    2013-04-01

    Accurate modeling of molecular systems requires a good knowledge of the structure; therefore, conformation searching/optimization is a routine necessity in computational chemistry. Here we present a hybrid metaheuristic optimization (HMO) algorithm, which combines ant colony optimization (ACO) and particle swarm optimization (PSO) for the optimization of molecular systems. The HMO implementation meta-optimizes the parameters of the ACO algorithm on-the-fly by the coupled PSO algorithm. The ACO parameters were optimized on a set of small difluorinated polyenes where the parameters exhibited small variance as the size of the molecule increased. The HMO algorithm was validated by searching for the closed form of around 100 molecular balances. Compared to the gradient-based optimized molecular balance structures, the HMO algorithm was able to find low-energy conformations with a 87% success rate. Finally, the computational effort for generating low-energy conformation(s) for the phenylalanyl-glycyl-glycine tripeptide was approximately 60 CPU hours with the ACO algorithm, in comparison to 4 CPU years required for an exhaustive brute-force calculation. PMID:26583559

  9. Molecular marker systems in insects: current trends and future avenues.

    PubMed

    Behura, Susanta K

    2006-10-01

    Insects comprise the largest species composition in the entire animal kingdom and possess a vast undiscovered genetic diversity and gene pool that can be better explored using molecular marker techniques. Current trends of application of DNA marker techniques in diverse domains of insect ecological studies show that mitochondrial DNA (mtDNA), microsatellites, random amplified polymorphic DNA (RAPD), expressed sequence tags (EST) and amplified fragment length polymorphism (AFLP) markers have contributed significantly for progresses towards understanding genetic basis of insect diversity and for mapping medically and agriculturally important genes and quantitative trait loci in insect pests. Apart from these popular marker systems, other novel approaches including transposon display, sequence-specific amplification polymorphism (S-SAP), repeat-associated polymerase chain reaction (PCR) markers have been identified as alternate marker systems in insect studies. Besides, whole genome microarray and single nucleotide polymorphism (SNP) assays are becoming more popular to screen genome-wide polymorphisms in fast and cost effective manner. However, use of such methodologies has not gained widespread popularity in entomological studies. The current study highlights the recent trends of applications of molecular markers in insect studies and explores the technological advancements in molecular marker tools and modern high throughput genotyping methodologies that may be applied in entomological researches for better understanding of insect ecology at molecular level.

  10. Easy creation of polymeric systems for molecular dynamics with Assemble!

    NASA Astrophysics Data System (ADS)

    Degiacomi, Matteo T.; Erastova, Valentina; Wilson, Mark R.

    2016-05-01

    We present Assemble!, a program greatly simplifying the preparation of molecular dynamics simulations of polymeric systems. The program is controlled either via command line or an intuitive Graphical User Interface, and runs on all major operating systems. Assemble! allows the creation of a desired system of polymer chains from constituent monomers, packs the chains into a box according to the required concentration and returns all the files needed for simulation with Gromacs. We illustrate the capabilities of Assemble! by demonstrating the easy preparation of a 300 monomers-long polyisoprene in hexane, and a heterogeneous mixture of polybutadiene.

  11. Accelerated Superposition State Molecular Dynamics for Condensed Phase Systems.

    PubMed

    Ceotto, Michele; Ayton, Gary S; Voth, Gregory A

    2008-04-01

    An extension of superposition state molecular dynamics (SSMD) [Venkatnathan and Voth J. Chem. Theory Comput. 2005, 1, 36] is presented with the goal to accelerate timescales and enable the study of "long-time" phenomena for condensed phase systems. It does not require any a priori knowledge about final and transition state configurations, or specific topologies. The system is induced to explore new configurations by virtue of a fictitious (free-particle-like) accelerating potential. The acceleration method can be applied to all degrees of freedom in the system and can be applied to condensed phases and fluids. PMID:26620930

  12. Cross linking molecular systems to form ultrathin dielectric layers

    NASA Astrophysics Data System (ADS)

    Feng, Danqin

    Dehydrogenation leads to cross linking of polymer or polymer like formation in very different systems: self-assembled monolayers and in closo -carboranes leading to the formation of semiconducting and dielectric boron carbide. We find evidence of intermolecular interactions for a self-assembled monolayer (SAM) formed from a large molecular adsorbate, [1,1';4',1"-terphenyl]-4,4"-dimethanethiol, from the dispersion of the molecular orbitals with changing the wave vector k and from the changes with temperature. With the formation self assembled molecular (SAM) layer, the molecular orbitals hybridize to electronic bands, with indications of significant band dispersion of the unoccupied molecular orbitals. Although organic adsorbates and thin films are generally regarded as "soft" materials, the effective Debye temperature, indicative of the dynamic motion of the lattice normal to the surface, can be very high, e.g. in the multilayer film formed from [1,1'-biphenyl]-4,4'-dimethanethiol (BPDMT). Depending on molecular orientation, the effective Debye temperature can be comparable to that of graphite due to the 'stiffness' of the benzene rings, but follows the expected Debye-Waller behavior for the core level photoemission intensities with temperature. This is not always the case. We find that a monomolecular film formed from [1,1';4',1"-terphenyl]-4,4"-dimethanethiol deviates from Debye-Waller temperature behavior and is likely caused by temperature dependent changes in molecular orientation. We also find evidence for the increase in dielectric character with polymerization (cross-linking) in spite of the decrease in the HOMO-LUMO gap upon irradiation of TPDMT. The changes in the HOMO-LUMO gap, with cross-linking, are roughly consistent with the band dispersion. The decomposition and cross-linking processes are also accompanied by changes in molecular orientation. The energetics of the three isomeric carborane cage compounds [ closo-1,2-orthocarborane, closo-1

  13. Cryogenic molecular separation system for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Suzuki, K.; Nagatsu, K.; Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ramzdorf, A. Yu.; Nakao, M.; Hojo, S.; Wakui, T.; Noda, K.

    2015-12-01

    A 11C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. In the ISOL system, 11CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive 12CH4 gases, which can simulate the chemical characteristics of 11CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  14. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    PubMed Central

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  15. Chronic venlafaxine treatment fails to alter the levels of galanin system transcripts in normal rats.

    PubMed

    Petschner, Peter; Juhasz, Gabriella; Tamasi, Viola; Adori, Csaba; Tothfalusi, Laszlo; Hökfelt, Tomas; Bagdy, Gyorgy

    2016-06-01

    It is widely accepted that efficacy and speed of current antidepressants' therapeutic effect are far from optimal. Thus, there is a need for the development of antidepressants with new mechanisms of action. The neuropeptide galanin and its receptors (GalR1, GalR2 and GalR3) are among the promising targets. However, it is not clear whether or not the galanin system is involved in the antidepressant effect exerted by the currently much used inhibitors of the reuptake of serotonin and/or noradrenaline. To answer this question we administered the selective serotonin and noradrenaline reuptake inhibitor (SNRI) venlafaxine (40mg/kg/day via osmotic minipumps) to normal rats and examined the levels of the transcripts for galanin and GalR1-3 after a 3-week venlafaxine treatment in the dorsal raphe, hippocampus and frontal cortex. These areas are known to be involved in the effects of antidepressants and in depression itself. Venlafaxine failed to alter the expression of any of the galanin system genes in these areas. Our results show that one of the most efficient, currently used SNRIs does not alter transcript levels of galanin or its three receptors in normal rats. These findings suggest that the pro- and antidepressive-like effects of galanin reported in animal experiments may employ a novel mechanism(s).

  16. Plasma proteomic profiles from disease-discordant monozygotic twins suggest that molecular pathways are shared in multiple systemic autoimmune diseases*

    PubMed Central

    2011-01-01

    Introduction Although systemic autoimmune diseases (SAID) share many clinical and laboratory features, whether they also share some common features of pathogenesis remains unclear. We assessed plasma proteomic profiles among different SAID for evidence of common molecular pathways that could provide insights into pathogenic mechanisms shared by these diseases. Methods Differential quantitative proteomic analyses (one-dimensional reverse-phase liquid chromatography-mass spectrometry) were performed to assess patterns of plasma protein expression. Monozygotic twins (four pairs discordant for systemic lupus erythematosus, four pairs discordant for juvenile idiopathic arthritis and two pairs discordant for juvenile dermatomyositis) were studied to minimize polymorphic gene effects. Comparisons were also made to 10 unrelated, matched controls. Results Multiple plasma proteins, including acute phase reactants, structural proteins, immune response proteins, coagulation and transcriptional factors, were differentially expressed similarly among the different SAID studied. Multivariate Random Forest modeling identified seven proteins whose combined altered expression levels effectively segregated affected vs. unaffected twins. Among these seven proteins, four were also identified in univariate analyses of proteomic data (syntaxin 17, α-glucosidase, paraoxonase 1, and the sixth component of complement). Molecular pathway modeling indicated that these factors may be integrated through interactions with a candidate plasma biomarker, PON1 and the pro-inflammatory cytokine IL-6. Conclusions Together, these data suggest that different SAID may share common alterations of plasma protein expression and molecular pathways. An understanding of the mechanisms leading to the altered plasma proteomes common among these SAID may provide useful insights into their pathogeneses. PMID:22044644

  17. Interactive display of molecular models using a microcomputer system

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  18. Extending Molecular Theory to Steady-State Diffusing Systems

    SciTech Connect

    FRINK,LAURA J. D.; SALINGER,ANDREW G.; THOMPSON,AIDAN P.

    1999-10-22

    Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.

  19. Alterations in the hippocampal endocannabinoid system in diet-induced obese mice

    PubMed Central

    Massa, Federico; Mancini, Giacomo; Schmidt, Helmut; Steindel, Frauke; Mackie, Ken; Angioni, Carlo; Oliet, Stéphane H.R.; Geisslinger, Gerd; Lutz, Beat

    2010-01-01

    The endocannabinoid (eCB) system plays central roles in the regulation of food intake and energy expenditure. Its alteration in activity contributes to the development and maintenance of obesity. Stimulation of the cannabinoid receptor type 1 (CB1 receptor) increases feeding, enhances reward aspects of eating and promotes lipogenesis, while its blockade decreases appetite, sustains weight loss, increases insulin sensitivity, and alleviates dysregulation of lipid metabolism. The hypothesis has been put forward that the eCB system is over-active in obesity. Hippocampal circuits are not directly involved in the neuronal control of food intake and appetite, but they play important roles in hedonic aspects of eating. We investigated the possibility whether or not diet-induced obesity (DIO) alters the functioning of the hippocampal eCB system. We found that levels of the two eCBs, 2-arachidonoyl glycerol (2-AG) and anandamide, were increased in the hippocampus from DIO mice, with a concomitant increase of the 2-AG synthesizing enzyme diacylglycerol lipase-α and increased CB1 receptor immunoreactivity in CA1 and CA3 regions, while CB1 receptor agonist-induced GTPγS binding was unchanged. eCB-mediated synaptic plasticity was changed in the CA1 region, as depolarization-induced suppression of inhibition (DSI) and long-term depression of inhibitory synapses (I-LTD) were enhanced. Functionality of CB1 receptors in GABAergic neurons was furthermore revealed, as mice specifically lacking CB1 receptors on this neuronal population were partly resistant to DIO. Our results showed that DIO-induced changes in the eCB system does not affect only tissues directly involved in the metabolic regulation, but also brain regions mediating hedonic aspects of eating and influencing cognitive processes. PMID:20445053

  20. The Auditory Corticocollicular System: Molecular and Circuit-Level Considerations

    PubMed Central

    Stebbings, Kevin A.; Lesicko, Alexandria M.H.; Llano, Daniel A.

    2014-01-01

    We live in a world imbued with a rich mixture of complex sounds. Successful acoustic communication requires the ability to extract meaning from those sounds, even when degraded. One strategy used by the auditory system is to harness high-level contextual cues to modulate the perception of incoming sounds. An ideal substrate for this process is the massive set of top-down projections emanating from virtually every level of the auditory system. In this review, we provide a molecular and circuit-level description of one of the largest of these pathways: the auditory corticocollicular pathway. While its functional role remains to be fully elucidated, activation of this projection system can rapidly and profoundly change the tuning of neurons in the inferior colliculus. Several specific issues are reviewed. First, we describe the complex heterogeneous anatomical organization of the corticocollicular pathway, with particular emphasis on the topography of the pathway. We also review the laminar origin of the corticocollicular projection and discuss known physiological and morphological differences between subsets of corticocollicular cells. Finally, we discuss recent findings about the molecular micro-organization of the inferior colliculus and how it interfaces with corticocollicular termination patterns. Given the assortment of molecular tools now available to the investigator, it is hoped that his review will help guide future research on the role of this pathway in normal hearing. PMID:24911237

  1. The auditory corticocollicular system: molecular and circuit-level considerations.

    PubMed

    Stebbings, Kevin A; Lesicko, Alexandria M H; Llano, Daniel A

    2014-08-01

    We live in a world imbued with a rich mixture of complex sounds. Successful acoustic communication requires the ability to extract meaning from those sounds, even when degraded. One strategy used by the auditory system is to harness high-level contextual cues to modulate the perception of incoming sounds. An ideal substrate for this process is the massive set of top-down projections emanating from virtually every level of the auditory system. In this review, we provide a molecular and circuit-level description of one of the largest of these pathways: the auditory corticocollicular pathway. While its functional role remains to be fully elucidated, activation of this projection system can rapidly and profoundly change the tuning of neurons in the inferior colliculus. Several specific issues are reviewed. First, we describe the complex heterogeneous anatomical organization of the corticocollicular pathway, with particular emphasis on the topography of the pathway. We also review the laminar origin of the corticocollicular projection and discuss known physiological and morphological differences between subsets of corticocollicular cells. Finally, we discuss recent findings about the molecular micro-organization of the inferior colliculus and how it interfaces with corticocollicular termination patterns. Given the assortment of molecular tools now available to the investigator, it is hoped that his review will help guide future research on the role of this pathway in normal hearing.

  2. Intrinsic noise alters the frequency spectrum of mesoscopic oscillatory chemical reaction systems

    PubMed Central

    Ramaswamy, Rajesh; Sbalzarini, Ivo F.

    2011-01-01

    Mesoscopic oscillatory reaction systems, for example in cell biology, can exhibit stochastic oscillations in the form of cyclic random walks even if the corresponding macroscopic system does not oscillate. We study how the intrinsic noise from molecular discreteness influences the frequency spectrum of mesoscopic oscillators using as a model system a cascade of coupled Brusselators away from the Hopf bifurcation. The results show that the spectrum of an oscillator depends on the level of noise. In particular, the peak frequency of the oscillator is reduced by increasing noise, and the bandwidth increased. Along a cascade of coupled oscillators, the peak frequency is further reduced with every stage and also the bandwidth is reduced. These effects can help understand the role of noise in chemical oscillators and provide fingerprints for more reliable parameter identification and volume measurement from experimental spectra. PMID:22545192

  3. Radiofrequency radiation alters the immune system. II. Modulation of in vivo lymphocyte circulation

    SciTech Connect

    Liburdy, R.P.

    1980-07-01

    In vivo lymphocyte circulation was significantly altered in mice exposed to whole-body radiofrequency radiation (RFR). In vivo lymphocyte circulation was followed by quantitating activity of sodium chromate-51-labeled lymphocytes in the lung, spleen, liver, and bone marrow of animals at different times after iv spleen lymphocyte injection. Immediately after cell injection, animals were exposed to 2.6-GHz RFR (CW) at 25 or 5 mW/cm/sup 2/ (3.8 W/kg) for 1 h. At 1,6, and 24 h aftr lymphocyte injection target organs were removed, weighed, and counted. Sham RFR, warm-air, and steroid-treated groups were included as controls. Hyperthermic RFR exposure (25 mW/cm/sup 2/, 2.0/sup 0/C increase in core temperature) led to a 37% reduction in lymphocytes leaving the lung to migrate into the spleen. In addition, a threefold increse in spleen lymphocytes entering the bone marrow occurred. Significantly, this pattern was also observed in the steroid-treated group; nonthermogenic RFR exposure (5 mWcm/sup 2/) and warm-air exposures did not lead to altered lymphocyte traffic. These results support the idea that steroid release associated with thermal stress and the process of thermoregulation is a significant operatnt factor responsible for RFR effects on the immune system.

  4. Altered architecture and functional consequences of the mesolimbic dopamine system in cannabis dependence.

    PubMed

    Spiga, Saturnino; Lintas, Alessandra; Migliore, Michele; Diana, Marco

    2010-07-01

    Cannabinoid withdrawal produces a hypofunction of mesencephalic dopamine neurons that impinge upon medium spiny neurons (MSN) of the forebrain. After chronic treatment with two structurally different cannabinoid agonists, Delta(9)-tetrahydrocannabinol and CP55 940 (CP) rats were withdrawn spontaneously and pharmacologically with the CB1 antagonist SR141716A (SR). In these two conditions, evaluation of tyrosine hydroxylase (TH)-positive neurons revealed significant morphometrical reductions in the ventrotegmental area but not substantia nigra pars compacta of withdrawn rats. Similarly, confocal analysis of Golgi-Cox-stained sections of the nucleus accumbens revealed a decrease in the shell, but not the core, of the spines' density of withdrawn rats. Administration of the CB1 antagonist SR to control rats, provoked structural abnormalities reminiscent of those observed in withdrawal conditions and support the regulatory role of cannabinoids in neurogenesis, axonal growth and synaptogenesis by acting as eu-proliferative signals through the CB1 receptors. Further, these measures were incorporated into a realistic computational model that predicts a strong reduction in the excitability of morphologically altered MSN, yielding a significant reduction in action potential output. These pieces of evidence support the tenet that withdrawal from addictive compounds alters functioning of the mesolimbic system and provide direct morphological evidence for functional abnormalities associated with cannabinoid dependence at the level of dopaminergic neurons and their postsynaptic counterpart and are coherent with recent hypothesis underscoring a hypodopaminergic state as a distinctive feature of the 'addicted brain'.

  5. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.

    PubMed

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-07-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  6. Clay alteration of volcaniclastic material in a submarine geothermal system, Bay of Plenty, New Zealand

    NASA Astrophysics Data System (ADS)

    Hocking, Michael W. A.; Hannington, Mark D.; Percival, Jeanne B.; Stoffers, Peter; Schwarz-Schampera, Ulrich; de Ronde, C. E. J.

    2010-04-01

    The Calypso Hydrothermal Vent Field (CHVF) is located along an offshore extension of the Taupo Volcanic Zone (TVZ), an area of abundant volcanism and geothermal activity on the North Island of New Zealand. The field occurs within a northeast-trending submarine depression on the continental shelf approximately 10-15 km southwest of the White Island volcano in the Bay of Plenty. The graben has been partially filled by tephra from regional subaerial volcanic eruptions, and active hydrothermal venting occurs at several locations along its length. The vents occur at water depths of 160 to 190 m and have temperatures up to 201 °C. Recovered samples from the vent field include variably cemented and veined volcaniclastic sediments containing an assemblage of clay minerals, amorphous silica, barite, As-Sb-Hg sulfides, and abundant native sulfur. The volcanic glass has been altered primarily to montmorillonite and mixed-layer illite-montmorillonite; illite, and possibly minor talc and mixed-layer chlorite-smectite or chlorite-vermiculite are also present. A hydrothermal versus diagenetic origin for the smectite is indicated by the presence of both illite and mixed-layer clays and by the correlation between the abundance of clay minerals and the abundance of native sulfur in the samples. The mineralization and alteration of the volcanic host rocks are similar to that observed in near-neutral pH geothermal systems on land in the TVZ (e.g., Broadlands-Ohaaki). However, the clay minerals in the CHVF have a higher concentration of Mg in the dioctahedral layer and a higher interlayer Na content than clay minerals from Broadlands-Ohaaki, reflecting the higher concentrations of Mg and Na in seawater compared to meteoric water. Minerals formed at very low pH (e.g., kaolinite and alunite), typical of steam-heated acid-sulfate type alteration in the TVZ geothermal environment, were not found. Mixing with seawater likely prevented the formation of such low-pH mineral assemblages. The

  7. Modeling acclimatization by hybrid systems: condition changes alter biological system behavior models.

    PubMed

    Assar, Rodrigo; Montecino, Martín A; Maass, Alejandro; Sherman, David J

    2014-07-01

    In order to describe the dynamic behavior of a complex biological system, it is useful to combine models integrating processes at different levels and with temporal dependencies. Such combinations are necessary for modeling acclimatization, a phenomenon where changes in environmental conditions can induce drastic changes in the behavior of a biological system. In this article we formalize the use of hybrid systems as a tool to model this kind of biological behavior. A modeling scheme called strong switches is proposed. It allows one to take into account both minor adjustments to the coefficients of a continuous model, and, more interestingly, large-scale changes to the structure of the model. We illustrate the proposed methodology with two applications: acclimatization in wine fermentation kinetics, and acclimatization of osteo-adipo differentiation system linking stimulus signals to bone mass.

  8. Review and application of group theory to molecular systems biology

    PubMed Central

    2011-01-01

    In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer. PMID:21696623

  9. Molecular genetic system for regenerative studies using newts.

    PubMed

    Hayashi, Toshinori; Yokotani, Naoki; Tane, Shoji; Matsumoto, Akira; Myouga, Ayumi; Okamoto, Mitsumasa; Takeuchi, Takashi

    2013-02-01

    Urodele newts have the remarkable capability of organ regeneration, and have been used as a unique experimental model for more than a century. However, the mechanisms underlying regulation of the regeneration are not well understood, and gene functions in particular remain largely unknown. To elucidate gene function in regeneration, molecular genetic analyses are very powerful. In particular, it is important to establish transgenic or knockout (mutant) lines, and systematically cross these lines to study the functions of the genes. In fact, such systems have been developed for other vertebrate models. However, there is currently no experimental model system using molecular genetics for newt regenerative research due to difficulties with respect to breeding newts in the laboratory. Here, we show that the Iberian ribbed newt (Pleurodeles waltl) has outstanding properties as a laboratory newt. We developed conditions under which we can obtain a sufficient number and quality of eggs throughout the year, and shortened the period required for sexual maturation from 18 months to 6 months. In addition, P. waltl newts are known for their ability, like other newts, to regenerate various tissues. We revealed that their ability to regenerate various organs is equivalent to that of Japanese common newts. We also developed a method for efficient transgenesis. These studies demonstrate that P. waltl newts are a suitable model animal for analysis of regeneration using molecular genetics. Establishment of this experimental model will enable us to perform comparable studies using these newts and other vertebrate models.

  10. Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.

    PubMed

    Vujica, Suncica; Zelmer, Christina; Panatala, Radhakrishnan; Lim, Roderick Y H

    2016-01-01

    Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles. PMID:27363369

  11. Nucleocytoplasmic Transport: A Paradigm for Molecular Logistics in Artificial Systems.

    PubMed

    Vujica, Suncica; Zelmer, Christina; Panatala, Radhakrishnan; Lim, Roderick Y H

    2016-01-01

    Artificial organelles, molecular factories and nanoreactors are membrane-bound systems envisaged to exhibit cell-like functionality. These constitute liposomes, polymersomes or hybrid lipo-polymersomes that display different membrane-spanning channels and/or enclose molecular modules. To achieve more complex functionality, an artificial organelle should ideally sustain a continuous influx of essential macromolecular modules (i.e. cargoes) and metabolites against an outflow of reaction products. This would benefit from the incorporation of selective nanopores as well as specific trafficking factors that facilitate cargo selectivity, translocation efficiency, and directionality. Towards this goal, we describe how proteinaceous cargoes are transported between the nucleus and cytoplasm by nuclear pore complexes and the biological trafficking machinery in living cells (i.e. nucleocytoplasmic transport). On this basis, we discuss how biomimetic control may be implemented to selectively import, compartmentalize and accumulate diverse macromolecular modules against concentration gradients in artificial organelles.

  12. Molecular dynamics evaluation of self-diffusion in Yukawa systems

    NASA Astrophysics Data System (ADS)

    Ohta, H.; Hamaguchi, S.

    2000-11-01

    Self-diffusion coefficients of Yukawa systems in the fluid phase are obtained from molecular dynamics simulations in a wide range of the thermodynamical parameters. The Yukawa system is a collection of particles interacting through Yukawa (i.e., screened Coulomb) potentials, which may serve as a model for charged dust particles in a plasma or colloidal particles in electrolytes. The self-diffusion coefficients are found to follow a simple scaling law with respect to the system temperature, which is consistent with the universal scaling (i.e., temperature scaling independent of the ratio of interparticle distance to screening length) observed by Robbins et al. [J. Chem. Phys. 88, 3286 (1988)] if the fluid system is near solidification. Also discussed is the velocity autocorrelation function, which is in part used to determine the self-diffusion coefficients through the Green-Kubo formula.

  13. [Molecular hyperspectral imaging (MHSI) system and application in biochemical medicine].

    PubMed

    Liu, Hong-Ying; Li, Qing-Li; Wang, Yi-Ting; Liu, Jin-Gao; Xue, Yong-Qi

    2011-10-01

    A novel molecular hyperspectral imaging (MHSI) system based on AOTF (acousto-optic tunable filters) was presented. The system consists of microscope, AOTF-based spectrometer, matrix CCD, image collection card and computer. The spectral range of the MHSI is from 550 to 1 000 nm. The spectral resolution is less than 2 nm, and the spatial resolution is about 0.3 microm. This paper has also presented that spectral curves extracted from the corrected hyperspectral data of the sample, which have been preprocessed by the gray correction coefficient, can more truly represent biochemical characteristic of the sample. The system can supply not only single band images in the visible range, but also spectrum curve of random pixel of sample image. This system can be widely used in various fields of biomedicine, clinical medicine, material science and microelectronics. PMID:22250515

  14. Localization of specialized intestinal metaplasia and the molecular alterations in Barrett esophagus in a Japanese population: an analysis of biopsy samples based on the "Seattle" biopsy protocol.

    PubMed

    Fukui, Shota; Watari, Jiro; Tomita, Toshihiko; Yamasaki, Takahisa; Okugawa, Takuya; Kondo, Takashi; Kono, Tomoaki; Tozawa, Katsuyuki; Ikehara, Hisatomo; Ohda, Yoshio; Oshima, Tadayuki; Fukui, Hirokazu; Das, Kiron M; Miwa, Hiroto

    2016-05-01

    It remains unclear why Barrett esophagus (BE)-associated adenocarcinoma (EAC) frequently occurs in the 0 to 3 o'clock area of the BE. The aims of this study were to clarify the localization of specialized intestinal metaplasia (SIM) as a precancerous lesion and of molecular alterations among different locations using 4-quadrant biopsies based on the "Seattle" protocol. We prospectively evaluated microsatellite instability; methylation status at the APC, CDKN2A, hMLH1, RUNX3, and MGMT genes; the immunoreactivity of the monoclonal antibody Das-1 for the colonic phenotype; and Ki-67 staining in 10 early EACs and 128 biopsy samples from 32 BE patients. Among the molecular changes, only APC gene hypermethylation was an independent predictive marker of EAC (odds ratio, 24.4; P = .01). SIM was more frequently identified in the 0 to 3 o'clock quadrant than in the 6 to 9 o'clock quadrant (P = .08). The Ki-67 index was higher in SIM than in the columnar-lined epithelium (CLE) without goblet cells (P < .0001) and in both SIM and CLE with Das-1 reactivity than in those without (P = .04 and P = .06, respectively). Furthermore, the index was relatively higher in the 0 to 3 o'clock quadrant than in the 6 to 9 o'clock quadrant in cases with Das-1 reactivity. RUNX3 methylation was more frequently found in SIM than in CLE (P = .04), whereas the incidence of the other biomarkers did not show a significant difference between the 0 to 3 o'clock and 6 to 9 o'clock areas, nor between SIM and CLE. SIM with Das-1 reactivity, but not molecular alterations, in the 0 to 3 o'clock quadrant may have higher proliferative activity compared to the other areas of the BE. PMID:27067780

  15. In Search of Concomitant Alterations of Dopaminergic and Neurotensinergic Systems in Stress Conditions.

    PubMed

    Rodríguez de Lores Arnaiz, Georgina; Antonelli, Marta C

    2016-02-01

    The aim of the present article is to review experimental evidence which suggest joint involvement of both the dopaminergic and neurotensinergic systems in stress conditions. At present, the concept of stress refers to an environmental demand exceeding the normal regulatory ability of an organism, particularly during unpredictable and uncontrollable situations. Chronic stress yields devastating effects including cognitive and working memory dysfunctions, for which neurotransmission mediated by the catecholamines dopamine and noradrenaline is crucial. Catecholamine synthesis depends on the rate-limiting enzyme, tyrosine hydroxylase, whose expression is associated with working memory and the response to chronic stress. Neurotensin is a tridecapeptide widely distributed in the nervous system, at both central and peripheral levels, which behaves as a neurotransmitter or neuromodulator. It mediates diverse biological actions including reward, locomotion, pain modulation and stress. Neurotensin and its high affinity NTS1 receptor are densely localized in areas that process emotion (amygdala nucleus), cognition (such as hippocampal nuclei and cortical areas) and the response to stress (hypothalamic nucleus). Experimental evidence indicates a crosstalk between the dopaminergic and the neurotensinergic systems either from an anatomical or a biochemical point of view. It is suggested that a concomitant alteration of dopaminergic and neurotensinergic systems takes place in diverse stress conditions.

  16. Application to processing system using intra-molecular BRET

    NASA Astrophysics Data System (ADS)

    Otsuji, Tomomi; Okuda-Ashitaka, Emiko; Kojima, Satoshi; Akiyama, Hidehumi; Ito, Seiji; Ohmiya, Yoshihiro

    2003-07-01

    Luciferases are used as the reporter gene for promoter activity, whereas a green fluorescent protein (GFP) is used as marker for cellular function and localization. Recently, bioluminescence resonance energy transfer (BRET) between luciferase and YFP is used for analysis of inter-molecular reaction such as ligand-receptor in the living cells. The neuropeptides nocistatin (NST) and nociceptin/orphanin FQ (Noc/OFQ) are derived from the same precursor protein, while NST exhibits antagonism against Noc/OFQ-actions. In this study, we attempt an intra-molecular BRET system for monitoring dynamic biological process of the production of NST and Noc/OFQ in the living cells. At first, we constructed a fusion protein (Rluc-GFP) covalently linking luciferase (Renilla luciferase; Rluc) to Aequorea GFP as an intra-molecular BRET partner. Furthermore, we inserted constructs of mouse NST and Noc/OFQ (Rluc-m-GFP) or bovine NST and Noc/OFQ (Rluc-b-GFP) containing a proteolytic cleavage motif (Lys-Arg) within Rluc-GFP. When these constructions were transfected into Cos7 cells, all fusion proteins had luciferase activity and specific fluorescence. Luminescence spectra of Rluc-GFP, Rluc-m-GFP and Rluc-b-GFP fusion proteins with DeepBlueC as a substrate showed two peaks centered at 400 nm and 510 nm, whereas Rluc showed one peak centered at 400 nm. These results indicate that the proteolytic cleavage motif inserted fusion proteins between luciferase and GFP are available for intra-molecular BRET systems at first step.

  17. Pathogenesis of Bone Alterations in Gaucher Disease: The Role of Immune System

    PubMed Central

    Mucci, Juan Marcos; Rozenfeld, Paula

    2015-01-01

    Gaucher, the most prevalent lysosomal disorder, is an autosomal recessive inherited disorder due to a deficiency of glucocerebrosidase. Glucocerebrosidase deficiency leads to the accumulation of glucosylceramide primarily in cells of mononuclear-macrophage lineage. Clinical alterations are visceral, hematological, and skeletal. Bone disorder in Gaucher disease produces defects on bone metabolism and structure and patients suffer from bone pain and crisis. Skeletal problems include osteopenia, osteoporosis, osteolytic lesions, and osteonecrosis. On the other hand a chronic stimulation of the immune system is a well-accepted hallmark in this disease. In this review we summarize the latest findings in the mechanisms leading to the bone pathology in Gaucher disease in relationship with the proinflammatory state. PMID:26064996

  18. Neuropsychological evaluation for detecting alterations in the central nervous system after chemical exposure.

    PubMed

    Bolla, K I

    1996-08-01

    Individuals with multiple chemical sensitivity (MCS) report decreased attention/concentration, memory loss, disorientation, confusion, fatigue, depression, irritability, decreased libido, sleep disturbances, headaches, and weakness. These neurobehavioral symptoms represent possible alterations in the central nervous system (CNS). The evaluation of neurobehavioral functioning using neuropsychological techniques provides an indirect method for determining the integrity of the CNS. However, caution must be used in interpreting neuropsychological test results, since this technique is extremely sensitive but is not specific. Clinically significant aberrant test performance may be noted after chemical exposure as well as with other diseases of the CNS. In addition, neuropsychiatric conditions such as anxiety and depression are often manifested as cognitive difficulties that are similar in pattern to the cognitive dysfunction caused by toxic chemicals. Herein, limitations and cautions in the interpretations of neuropsychological test results are discussed. PMID:8921555

  19. Alteration in male reproductive system in experimental cholestasis: roles for opioids and nitric oxide overproduction.

    PubMed

    Kiani, Samira; Valizadeh, Behzad; Hormazdi, Bahram; Samadi, Hoda; Najafi, Tahereh; Samini, Morteza; Dehpour, Ahmad R

    2009-08-01

    Cirrhosis is associated with impairment of the male reproductive system, hypogonadism and feminization. It is important to rule out whether the impairment in the reproductive system exists earlier in the course of cholestatic liver disease to target effective therapies at the best time point. In this study we investigated the role of endogenous opioid and nitric oxide system in alterations of the reproductive system in male rats. We performed sham or bile duct ligation surgery on male Sprague-Dawley rats and treated the animals for seven days with saline, naltrexone, an opioid receptor blocker (20 mg/kg) and N (G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor (10 mg/kg). We then evaluated the plasma level of testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH), sperm count and motility as well as biomarkers of cholestasis and nitric oxide productions. The results showed that following cholestasis, total testosterone level decrease and LH level increase in plasma of cholestatic rats and treatment with L-NAME and naltrexone could improve the plasma level of testosterone. Naltrexone could decrease the elevated level of LH in cholestatic animals. In addition, the weight of seminal vesicles and prostate significantly decreased in cholestasis as compared to the control group and treatment with L-NAME and naltrexone could improve the weights of the two organs in cholestasis. Our results demonstrate for the first time that the male reproductive system is impaired early in cholestasis and that endogenous opioid and nitric oxide system contribute to these impairments in the early course of the disease. PMID:19445924

  20. Systemic Sclerosis Patients Present Alterations in the Expression of Molecules Involved in B-Cell Regulation

    PubMed Central

    Soto, Lilian; Ferrier, Ashley; Aravena, Octavio; Fonseca, Elianet; Berendsen, Jorge; Biere, Andrea; Bueno, Daniel; Ramos, Verónica; Aguillón, Juan Carlos; Catalán, Diego

    2015-01-01

    The activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naive, and memory B-cell subpopulations from systemic sclerosis patients. To achieve this, blood samples were drawn from 31 systemic sclerosis patients and 53 healthy individuals. Surface expression of CD86, MHC II, CD19, CD21, CD40, CD22, Siglec 10, CD35, and FcγRIIB was determined by flow cytometry. IL-10 production was evaluated by intracellular flow cytometry from isolated B cells. Soluble IL-6 and IL-10 levels were measured by ELISA from supernatants of stimulated B cells. Systemic sclerosis patients exhibit an increased frequency of transitional and naive B cells related to memory B cells compared with healthy controls. Transitional and naive B cells from patients express higher levels of CD86 and FcγRIIB than healthy donors. Also, B cells from patients show high expression of CD19 and CD40, whereas memory cells from systemic sclerosis patients show reduced expression of CD35. CD19 and CD35 expression levels associate with different autoantibody profiles. IL-10+ B cells and secreted levels of IL-10 were markedly reduced in patients. In conclusion, systemic sclerosis patients show alterations in the expression of molecules involved in B-cell regulation. These abnormalities may be determinant in the B-cell hyperactivation observed in systemic sclerosis. PMID:26483788

  1. Altering shoppers' supermarket purchases to fit nutritional guidelines: An interactive information system

    PubMed Central

    Winett, Richard A.; Geller, E. Scott; Mundy, Laurie L.; Moore, John F.; Wagner, Jana L.; Hite, Lee A.; Leahy, Michael; Neubauer, Tamara E.; Walberg, Janet L.; Walker, W. Bruce; Lombard, David

    1991-01-01

    This study reports the results of one effort to help supermarket shoppers alter food purchases to make purchases (and meals) that are lower in fat and higher in fiber. A prototype interactive information system using instructional video programs, feedback on purchases with specific goals for change, weekly programs, and the ability to track user interactions and intended purchases was evaluated. The major dependent measure was users' actual food purchases as derived from participants' highly detailed supermarket receipts. After a 5- to 7-week baseline phase, participants were randomly assigned to an experimental or control condition for the 7- to 8-week intervention phase. A follow-up phase began 5 to 8 weeks after participants completed the intervention and discontinued use of the system. The results indicated that experimental participants, when compared to control participants, decreased high fat purchases and increased high fiber purchases during intervention, with evidence for some maintenance of effect in follow-up. Plans for increasing the use and impact of the system are discussed. ImagesFigure 1 PMID:1647387

  2. Does Acupuncture Alter Pain-related Functional Connectivity of the Central Nervous System? A Systematic Review.

    PubMed

    Villarreal Santiago, María; Tumilty, Steve; Mącznik, Aleksandra; Mani, Ramakrishnan

    2016-08-01

    Acupuncture has been studied for several decades to establish evidence-based clinical practice. This systematic review aims to evaluate evidence for the effectiveness of acupuncture in influencing the functional connectivity of the central nervous system in patients with musculoskeletal pain. A systematic search of the literature was conducted to identify studies in which the central response of acupuncture in patients with musculoskeletal pain was evaluated by neuroimaging techniques. Databases searched were AMED, CINAHL, Cochrane Library, EMBASE, MEDLINE, PEDro, Pubmed, SCOPUS, SPORTDiscuss, and Web of Science. Included studies were assessed by two independent reviewers for their methodological quality by using the Downs and Black questionnaire and for their levels of completeness and transparency in reporting acupuncture interventions by using Standards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) criteria. Seven studies met the inclusion criteria. Three studies were randomized controlled trials (RCTs) and four studies were nonrandomized controlled trials (NRCTs). The neuroimaging techniques used were functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Positive effects on the functional connectivity of the central nervous system more consistently occurred during long-term acupuncture treatment. The results were heterogeneous from a descriptive perspective; however, the key findings support acupuncture's ability to alter pain-related functional connectivity in the central nervous system in patients with musculoskeletal pain.

  3. Does Acupuncture Alter Pain-related Functional Connectivity of the Central Nervous System? A Systematic Review.

    PubMed

    Villarreal Santiago, María; Tumilty, Steve; Mącznik, Aleksandra; Mani, Ramakrishnan

    2016-08-01

    Acupuncture has been studied for several decades to establish evidence-based clinical practice. This systematic review aims to evaluate evidence for the effectiveness of acupuncture in influencing the functional connectivity of the central nervous system in patients with musculoskeletal pain. A systematic search of the literature was conducted to identify studies in which the central response of acupuncture in patients with musculoskeletal pain was evaluated by neuroimaging techniques. Databases searched were AMED, CINAHL, Cochrane Library, EMBASE, MEDLINE, PEDro, Pubmed, SCOPUS, SPORTDiscuss, and Web of Science. Included studies were assessed by two independent reviewers for their methodological quality by using the Downs and Black questionnaire and for their levels of completeness and transparency in reporting acupuncture interventions by using Standards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) criteria. Seven studies met the inclusion criteria. Three studies were randomized controlled trials (RCTs) and four studies were nonrandomized controlled trials (NRCTs). The neuroimaging techniques used were functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). Positive effects on the functional connectivity of the central nervous system more consistently occurred during long-term acupuncture treatment. The results were heterogeneous from a descriptive perspective; however, the key findings support acupuncture's ability to alter pain-related functional connectivity in the central nervous system in patients with musculoskeletal pain. PMID:27555221

  4. The system of molecular clouds in the Gould Belt

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.

    2016-08-01

    Based on high-latitude molecular clouds with highly accurate distance estimates taken from the literature, we have redetermined the parameters of their spatial orientation. This systemcan be approximated by a 350 × 235 × 140 pc ellipsoid inclined by the angle i = 17° ± 2° to the Galactic plane with the longitude of the ascending node l Ω = 337° ± 1°. Based on the radial velocities of the clouds, we have found their group velocity relative to the Sun to be ( u 0, v 0, w 0) = (10.6, 18.2, 6.8) ± (0.9, 1.7, 1.5) km s-1. The trajectory of the center of the molecular cloud system in the past in a time interval of ~60 Myr has been constructed. Using data on masers associated with low-mass protostars, we have calculated the space velocities of the molecular complexes in Orion, Taurus, Perseus, and Ophiuchus. Their motion in the past is shown to be not random.

  5. Characterizing Warm Molecular Hydrogen in Active Star-Forming Systems

    NASA Astrophysics Data System (ADS)

    Rangwala, Naseem

    2014-10-01

    Herschel observations of nearby star-forming galaxies have determined that the warm component of the molecular gas traced by the high-J CO lines dominates the luminosity (~90% of the total CO luminosity) and hence the energetics of the molecular ISM. At the temperatures (T = 300 - 2000 K) and densities (n_H < 1E6 per cubic cm) typically found in our survey, H2 emission is the dominant gas coolant, much more important than CO. A fundamental assumption of all analyses of CO emission has been that CO emission traces H2 over the entire range of physical conditions in the observed sources. However, a direct observational comparison of spatial distributions and kinematics of CO and H2 has never been made for the warm molecular gas. We propose to observe the warm H2, in S(1) and S(2) transitions, with the SOFIA-EXES instrument in a diverse sample of star-forming systems: NGC 253 (starburst nucleus), NGC 6240 (luminous infrared galaxy), NGC 1068 (Seyfert-2), and SgrB2(M)/(N) (Galactic hot cores). The primary goal is to compare these measurements with the warm CO (J = 6-5 transition) observed with the Atacama Large Millimeter Array (ALMA) to investigate differences in the kinematics and spatial distributions (for the extended targets) of the two molecules and thereby confirm whether CO is a reliable tracer of H2 in the warm gas.

  6. Magnetic hysteresis in a lanthanide molecular magnet dimer system

    NASA Astrophysics Data System (ADS)

    Atkinson, James; Cebulka, Rebecca; Del Barco, Enrique; Roubeau, Olivier; Velasco, Veronica; Barrios, Leo; Aromi, Guillem

    Molecular magnets present a wonderful means for studying the dynamics of spin. Often synthesized as a crystal lattice of identical systems, ensemble measurements enable thorough detailing of the internal degrees of freedom. Here we present the results of characterization performed on a dimer system, CeTm(HL)2(H2L)NO3pyH2O (L = ligand, C45H31O15N3), consisting of two lanthanide spins (Cerium and Thulium) with expected local axial anisotropies tilted with respect to each other. Microwave EPR spectroscopy at low temperature reveals hysteresis in observed absorption features, with angle dependence studies indicating the presence of several ``easy axis'' orientations. We attempt to understand this system through modelling via a spin Hamiltonian, and to determine the strength and nature of the coupling between the lanthanide centers. This research was funded through NSF Grant # 24086159.

  7. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  8. BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests

    NASA Astrophysics Data System (ADS)

    Pacelli, Claudia; Selbmann, Laura; Zucconi, Laura; De Vera, Jean-Pierre; Rabbow, Elke; Horneck, Gerda; de la Torre, Rosa; Onofri, Silvano

    2016-04-01

    The search for traces of extinct or extant life in extraterrestrial environments is one of the main goals for astrobiologists; due to their ability to withstand stress producing conditions, extremophiles are perfect candidates for astrobiological studies. The BIOMEX project aims to test the ability of biomolecules and cell components to preserve their stability under space and Mars-like conditions, while at the same time investigating the survival capability of microorganisms. The experiment has been launched into space and is being exposed on the EXPOSE-R2 payload, outside of the International Space Station (ISS) over a time-span of 1.5 years. Along with a number of other extremophilic microorganisms, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 has been included in the experiment. Before launch, dried colonies grown on Lunar and Martian regolith analogues were exposed to vacuum, irradiation and temperature cycles in ground based experiments (EVT1 and EVT2). Cultural and molecular tests revealed that the fungus survived on rock analogues under space and simulated Martian conditions, showing only slight ultra-structural and molecular damage.

  9. Bis-pyrene-labeled molecular beacon: a monomer-excimer switching probe for the detection of DNA base alteration.

    PubMed

    Yamana, Kazushige; Ohshita, Yoshikazu; Fukunaga, Yudai; Nakamura, Mitsunobu; Maruyama, Atsushi

    2008-01-01

    A new bis-pyrene-labeled oligonucleotide probe (BP-probe) has been designed for the detection of a single base mismatch in single strand (ss) DNA as a target. The sequence of BP-probe was chosen to form stem-loop structure similar to a molecular beacon (MB-probe), yielding bis-pyrene-labeled molecular beacon (BP-MB-probe). Partially double stranded (ds) BP-MB-probes were prepared by complexation with oligonucleotides whose sequences are complementary to the loop segment but not to the stem and exchangeable with the target DNA. The partially ds BP-MB-probes were shown to exhibit monomer fluorescence as major fluorescence, while the ss BP-MB-probe in the stem-loop form displays strong excimer fluorescence. The strand exchange reactions between partially ds BP-MB-probe and target ss DNA in the presence of cationic comb-type copolymer as a catalyst were monitored by the excimer fluorescence changes. The existence of a mismatched base can be determined by the slower PASE rates compared with fully matched DNA.

  10. How alkali metal ion binding alters the conformation preferences of gramicidin A: a molecular dynamics and ion mobility study.

    PubMed

    Chen, Liuxi; Gao, Yi Qin; Russell, David H

    2012-01-12

    Here, we present a systematic study combing electrospray ionization-ion mobility experiments and an enhanced sampling molecular dynamics, specifically integrated tempering sampling molecular dynamics simulations (ITS-MDS), to explore the conformations of alkali metal ion (Na, K, and Cs) adducts of gramicidin A (GA) in vacuo. Folding simulation is performed to obtain inherent conformational preferences of neutral GA to provide insights about how the binding of metal ions influences the intrinsic conformations of GA. The comparison between conformations of neutral GA and alkali metal ion adducts reveals a high degree of structural similarity, especially between neutral GA and [GA + Na](+); however, the structural similarities decrease as ionic radius of the metal increases. Collision cross section (CCS) profiles for [GA + Na](+) and [GA + Cs](+) ions obtained from by ITS-MDS compare favorably with the experimental CCS, but there are significant differences from CCS profiles for [GA + K](+) ions. Such discrepancies between the calculated and measured CCS profiles for [GA + K](+) are discussed in terms of limitations in the simulation force field as well as possible size-dependent coordination of the [GA + K](+) ion complex.

  11. A complex systems approach to computational molecular biology

    SciTech Connect

    Lapedes, A. |

    1993-09-01

    We report on the containing research program at Santa Fe Institute that applies complex systems methodology to computational molecular biology. Two aspects are stressed here are the use of co-evolving adaptive neutral networks for determining predictable protein structure classifications, and the use of information theory to elucidate protein structure and function. A ``snapshot`` of the current state of research in these two topics is presented, representing the present state of two major research thrusts in the program of Genetic Data and Sequence Analysis at the Santa Fe Institute.

  12. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  13. A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling.

    PubMed

    Wieczorek, Dagmar; Bögershausen, Nina; Beleggia, Filippo; Steiner-Haldenstätt, Sabine; Pohl, Esther; Li, Yun; Milz, Esther; Martin, Marcel; Thiele, Holger; Altmüller, Janine; Alanay, Yasemin; Kayserili, Hülya; Klein-Hitpass, Ludger; Böhringer, Stefan; Wollstein, Andreas; Albrecht, Beate; Boduroglu, Koray; Caliebe, Almuth; Chrzanowska, Krystyna; Cogulu, Ozgur; Cristofoli, Francesca; Czeschik, Johanna Christina; Devriendt, Koenraad; Dotti, Maria Teresa; Elcioglu, Nursel; Gener, Blanca; Goecke, Timm O; Krajewska-Walasek, Malgorzata; Guillén-Navarro, Encarnación; Hayek, Joussef; Houge, Gunnar; Kilic, Esra; Simsek-Kiper, Pelin Özlem; López-González, Vanesa; Kuechler, Alma; Lyonnet, Stanislas; Mari, Francesca; Marozza, Annabella; Mathieu Dramard, Michèle; Mikat, Barbara; Morin, Gilles; Morice-Picard, Fanny; Ozkinay, Ferda; Rauch, Anita; Renieri, Alessandra; Tinschert, Sigrid; Utine, G Eda; Vilain, Catheline; Vivarelli, Rossella; Zweier, Christiane; Nürnberg, Peter; Rahmann, Sven; Vermeesch, Joris; Lüdecke, Hermann-Josef; Zeschnigk, Michael; Wollnik, Bernd

    2013-12-20

    Chromatin remodeling complexes are known to modify chemical marks on histones or to induce conformational changes in the chromatin in order to regulate transcription. De novo dominant mutations in different members of the SWI/SNF chromatin remodeling complex have recently been described in individuals with Coffin-Siris (CSS) and Nicolaides-Baraitser (NCBRS) syndromes. Using a combination of whole-exome sequencing, NGS-based sequencing of 23 SWI/SNF complex genes, and molecular karyotyping in 46 previously undescribed individuals with CSS and NCBRS, we identified a de novo 1-bp deletion (c.677delG, p.Gly226Glufs*53) and a de novo missense mutation (c.914G>T, p.Cys305Phe) in PHF6 in two individuals diagnosed with CSS. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex implicating dysfunction of a second chromatin remodeling complex in the pathogenesis of CSS-like phenotypes. Altogether, we identified mutations in 60% of the studied individuals (28/46), located in the genes ARID1A, ARID1B, SMARCB1, SMARCE1, SMARCA2, and PHF6. We show that mutations in ARID1B are the main cause of CSS, accounting for 76% of identified mutations. ARID1B and SMARCB1 mutations were also found in individuals with the initial diagnosis of NCBRS. These individuals apparently belong to a small subset who display an intermediate CSS/NCBRS phenotype. Our proposed genotype-phenotype correlations are important for molecular screening strategies.

  14. Systems biology analysis of the proteomic alterations induced by MPP(+), a Parkinson's disease-related mitochondrial toxin.

    PubMed

    Monti, Chiara; Bondi, Heather; Urbani, Andrea; Fasano, Mauro; Alberio, Tiziana

    2015-01-01

    Parkinson's disease (PD) is a complex neurodegenerative disease whose etiology has not been completely characterized. Many cellular processes have been proposed to play a role in the neuronal damage and loss: defects in the proteosomal activity, altered protein processing, increased reactive oxygen species burden. Among them, the involvement of a decreased activity and an altered disposal of mitochondria is becoming more and more evident. The mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)), an inhibitor of complex I, has been widely used to reproduce biochemical alterations linked to PD in vitro and its precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), to induce a Parkinson-like syndrome in vivo. Therefore, we performed a meta-analysis of the literature of all the proteomic investigations of neuronal alterations due to MPP(+) treatment and compared it with our results obtained with a mitochondrial proteomic analysis of SH-SY5Y cells treated with MPP(+). By using open-source bioinformatics tools, we identified the biochemical pathways and the molecular functions mostly affected by MPP(+), i.e., ATP production, the mitochondrial unfolded stress response, apoptosis, autophagy, and, most importantly, the synapse funcionality. Eventually, we generated protein networks, based on physical or functional interactions, to highlight the relationships among the molecular actors involved. In particular, we identified the mitochondrial protein HSP60 as the central hub in the protein-protein interaction network. As a whole, this analysis clarified the cellular responses to MPP(+), the specific mitochondrial proteome alterations induced and how this toxic model can recapitulate some pathogenetic events of PD.

  15. Alterations in central monoamine systems after postnatal lead acetate treatment in rats

    SciTech Connect

    Luthman, J. Univ. of Colorado Health Sciences Center, Denver, CO ); Lindqvist, E.; Olson, L. ); Gerhardt, G.A.; Hoffer, B.H. )

    1994-04-01

    The present study was undertaken to investigate the effect of postnatal lead exposure on central monoamine systems. Newborn male Sprague-Dawley rats were given 1 or 8 mg/kg lead acetate intraperitoneally for 20 days postnatally. Two groups of control rats received sodium acetate, or sodium acetate in oversized litters to compensate for lead-induced malnutrition in the high lead dose group, while nontreated animals also served as controls. At Day 21 or 51 regional tissue levels of monoamines were determined using HPLC techniques. No major changes were seen after the lead exposures in the levels of dopamine, noradrenaline, and serotonin, or metabolites of dopamine and serotonin, when compared to respective control groups. On the other hand, in the control group given sodium acetate in oversized litters some alterations of the monoamine levels were observed in frontal cortex and striatum at Day 21 compared to controls. At Day 51, the striatal homovanillic acid and 5-hydroxyindoleacetic acid levels were higher in the low lead dose group compared to those in the controls, No other changes in the monoamine levels were seen at Day 51. At 50-70 days postnatally, potassium-stimulated dopamine overflow was studied in striatum with in vivo chronoamperometry. In the high lead dose group the amplitudes of signals were lower in both the dorsal and ventral striatum compared to the controls, while no difference was seen in the clearance time of dopamine. The capacity of the dopamine terminals to respond to repeated stimulation was not affected by the lead exposure. Thus, the steady-state levels of monoamines were essentially unaltered after postnatal lead exposure in rats, while functional aspects of striatal dopamine transmission were affected after exposure to the higher dose of lead. These findings support the hypothesis that lead-induced changes in motor skills and exploratory behavior may be related to altered dopamine neurotransmission. 77 refs., 3 figs., 2 tabs.

  16. Toxoplasma gondii Infections Alter GABAergic Synapses and Signaling in the Central Nervous System

    PubMed Central

    Brooks, Justin M.; Carrillo, Gabriela L.; Su, Jianmin; Lindsay, David S.; Blader, Ira J.

    2015-01-01

    ABSTRACT During infections with the protozoan parasite Toxoplasma gondii, gamma-aminobutyric acid (GABA) is utilized as a carbon source for parasite metabolism and also to facilitate parasite dissemination by stimulating dendritic-cell motility. The best-recognized function for GABA, however, is its role in the nervous system as an inhibitory neurotransmitter that regulates the flow and timing of excitatory neurotransmission. When this pathway is altered, seizures develop. Human toxoplasmosis patients suffer from seizures, suggesting that Toxoplasma interferes with GABA signaling in the brain. Here, we show that while excitatory glutamatergic presynaptic proteins appeared normal, infection with type II ME49 Toxoplasma tissue cysts led to global changes in the distribution of glutamic acid decarboxylase 67 (GAD67), a key enzyme that catalyzes GABA synthesis in the brain. Alterations in GAD67 staining were not due to decreased expression but rather to a change from GAD67 clustering at presynaptic termini to a more diffuse localization throughout the neuropil. Consistent with a loss of GAD67 from the synaptic terminals, Toxoplasma-infected mice develop spontaneous seizures and are more susceptible to drugs that induce seizures by antagonizing GABA receptors. Interestingly, GABAergic protein mislocalization and the response to seizure-inducing drugs were observed in mice infected with type II ME49 but not type III CEP strain parasites, indicating a role for a polymorphic parasite factor(s) in regulating GABAergic synapses. Taken together, these data support a model in which seizures and other neurological complications seen in Toxoplasma-infected individuals are due, at least in part, to changes in GABAergic signaling. PMID:26507232

  17. Altered MicroRNA Expression Is Associated with Tumor Grade, Molecular Background and Outcome in Childhood Infratentorial Ependymoma

    PubMed Central

    Zakrzewska, Magdalena; Fendler, Wojciech; Zakrzewski, Krzysztof; Sikorska, Beata; Grajkowska, Wiesława; Dembowska-Bagińska, Bożenna; Filipek, Iwona; Stefańczyk, Łukasz; Liberski, Paweł P.

    2016-01-01

    Background Ependymal tumors are the third most common group of brain tumors in children, accounting for about 10% of all primary brain neoplasms. According to the current WHO classification, they comprise four entities with the most frequent ependymoma and anaplastic ependymoma. The most of pediatric tumors are located within the posterior fossa, with a tendency to infiltrate the vital brain structures. This limits surgical resection and poses a considerable clinical problem. Moreover, there are no appropriate outcome prognostic factors besides the extent of surgical resection. Despite definition of molecular subgroups, the majority of childhood ependymomas present a balanced genome, which makes it difficult to establish molecular prognostic factors. Methods The purpose of our study was to explore whether miRNA expression could be used as prognostic markers in pediatric infratentorial ependymomas. We also performed a mRNA expression pattern analysis of NELL2 and LAMA2 genes, with immunohistochemical illustrations of representative cases. The miRNA and mRNA expression was measured in 53 pediatric infratentorial ependymomas using a real-time quantitative PCR. Results Three miRNAs were shown to efficiently differentiate between grade II and III ependymomas: miR-17-5p, miR-19a-3p, and miR-106b-5p. Survival analysis showed that the probabilities of overall (p = 0.036) and event-free survival (p = 0.002) were reduced with higher than median miRNA expression levels of miR-17-5p. Using multivariate analysis adjusted for patient's age, sex, tumor grade and localization, we showed statistically significant associations with event-free survival (p = 0004) and borderline statistical significance with overall survival (p = 0.057) for miR-17-5p. Correlation analysis of miR-19a, miR-17-5p, miR-106b revealed that their expression levels were significantly correlated with EZH2 expression, suggested marker of PFA ependymomas. Furthermore, lower expression level of LAMA2 mRNA was

  18. Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide.

    PubMed

    Sima, Anders A F; Zhang, Weixian; Li, Zhen-Guo; Murakawa, Yuichi; Pierson, Christopher R

    2004-06-01

    To explore the molecular abnormalities underlying the degeneration of the node of Ranvier, a characteristic aberration of type 1 diabetic neuropathy, we examined in type 1 BB/Wor and type 2 BBZDR/Wor rats changes in expression of key molecules that make up the nodal and paranodal apparatus of peripheral nerve. Their posttranslational modifications were examined in vitro. Their responsiveness to restored insulin action was examined in type 1 animals replenished with proinsulin C-peptide. In sciatic nerve, the expression of contactin, receptor protein tyrosine phosphatase beta, and the Na(+)-channel beta(1) subunit, paranodal caspr and nodal ankyrin(G) was unaltered in 2-month type 1 diabetic BB/Wor rats but significantly decreased after 8 months of diabetes. These abnormalities were prevented by C-peptide administered to type 1 BB/Wor rats and did not occur in duration- and hyperglycemia-matched type 2 BBZDR/Wor rats. The expression of the alpha-Na(+)-channel subunit was unaltered. In SH-SY5Y cells, only the combination of insulin and C-peptide normalized posttranslational O-linked N-acetylglucosamine modifications and maximized serine phosphorylation of ankyrin(G) and p85 binding to caspr. The beneficial effects of C-peptide resulted in significant normalization of the nerve conduction deficits. These data describe for the first time the progressive molecular aberrations underlying nodal and paranodal degenerative changes in type 1 diabetic neuropathy and demonstrate that they are preventable by insulinomimetic C-peptide. PMID:15161761

  19. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    NASA Astrophysics Data System (ADS)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  20. Molecular basis of alpha-methyltryptophan resistance in amt-1, a mutant of Arabidopsis thaliana with altered tryptophan metabolism.

    PubMed Central

    Kreps, J A; Ponappa, T; Dong, W; Town, C D

    1996-01-01

    A mutant of Arabidopsis thaliana, amt-1, was previously selected for resistance to growth inhibition by the tryptophan analog alpha-methyltryptophan. This mutant had elevated tryptophan levels and exhibited higher anthranilate synthase (AS) activity that showed increased resistance to feedback inhibition by tryptophan. In this study, extracts of the mutant callus exhibited higher AS activity than wild-type callus when assayed with either glutamine or ammonium sulfate as amino donor, thus suggesting that elevated AS activity in the mutant was due to an alteration in the alpha subunit of the enzyme. The mutant also showed cross-resistance to 5-methylanthranilate and 6-methylanthranilate and mapped to chromosome V at or close to ASA1 (a gene encoding the AS alpha subunit). ASA1 mRNA and protein levels were similar in mutant and wild-type leaf extracts. Levels of ASA1 mRNA and protein were also similar in callus cultures of mutant and wild type, although the levels in callus were higher than in leaf tissue. Sequencing of the ASA1 gene from amt-1 revealed a G to A transition relative to the wild-type gene that would result in the substitution of an asparagine residue in place of aspartic acid at position 341 in the predicted amino acid sequence of the ASA1 protein. The mutant allele in strain amt-1 has been renamed trp5-1. PMID:8934623

  1. Molecular evaluation of a spearmint mutant altered in the expression of limonene hydroxylases that direct essential oil monoterpene biosynthesis.

    PubMed

    Bertea, Cinzia; Schalk, Michel; Mau, Christopher J D; Karp, Frank; Wildung, Mark R; Croteau, Rodney

    2003-12-01

    Gamma irradiation of Scotch spearmint created a mutant line, 643-10-74, which has an altered essential oil reminiscent of peppermint because the monoterpene metabolites in the oil glands of the mutant are predominantly oxygenated at the C3 position of the p-menthane ring instead of the C6 position normally found in spearmint. The limonene hydroxylase genes responsible for directing the regiochemistry of oxygenation were cloned from Scotch spearmint and mutant 643 and expressed in Escherichia coli. The limonene bydroxylase from the wild-type parent hydroxylated the C6 position while the enzyme from the mutant oxygenated the C3 position. Comparison of the amino acid sequences with other limonene hydroxylases showed that the mutant enzyme was more closely related to the peppermint limonene-3-hydroxylases than to the spearmint limonene-6-hydroxylases. Because of the sequence differences between the Scotch spearmint and mutant 643 limonene hydroxylases, it is most likely that the mutation did not occur within the structural gene for limonene hydroxylase but rather at a regulatory site within the genome that controls the expression of one or the other regiospecific variants.

  2. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    PubMed

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.

  3. Altered systemic bioavailability and organ distribution of azathioprine in methotrexate-induced intestinal mucositis in rats

    PubMed Central

    Karbelkar, Sadaf A.; Majumdar, Anuradha S.

    2016-01-01

    Objective: Intestinal mucositis is a significant problem haunting clinicians for decades. One of the major reasons for its occurrence is high-dose chemotherapy. The study is aimed at investigating effect of intestinal mucositis on pharmacokinetics, organ distribution, and bioavailability of azathioprine (AZA) (6-mercaptopurine). Materials and Methods: Intestinal mucositis was induced with methotrexate (MTX) (2.5 mg/kg). The oral absorption of AZA and 6-mercaptopurine (metabolite) levels were determined in control and MTX-treated rats: ex vivo (noneverted sac technique) and in vivo (pharmacokinetics and organ-distribution) using high-performance liquid chromatography. Immunohistochemistry was conducted to evaluate peptide transporter expression on luminal membrane of small intestine. Results: Intestinal permeation of AZA into systemic circulation of rats was lower after MTX administration, widely found in intestinal segments of mucositis-induced rats leading to decline in systemic bioavailability of AZA. Immunohistochemistry findings indicated diminution of peptide transporter expression representing hampered absorption of drugs absorbed via this transporter. Conclusion: Study outcome has thrown light on altered fate of AZA when administered to individuals with mucositis which suggests modified drug therapy. These findings can further be investigated in different drug classes which might be administered concomitantly in mucositis and study outcome can be further confirmed in mucositis patients in clinical practice also. PMID:27298491

  4. Studying the Impact of Spaceflight Environment on Immune Functions Using New Molecular Diagnostics System

    NASA Astrophysics Data System (ADS)

    Cohen, Luchino

    Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.

  5. Alcoholism: a systems approach from molecular physiology to addictive behavior.

    PubMed

    Spanagel, Rainer

    2009-04-01

    Alcohol consumption is an integral part of daily life in many societies. The benefits associated with the production, sale, and use of alcoholic beverages come at an enormous cost to these societies. The World Health Organization ranks alcohol as one of the primary causes of the global burden of disease in industrialized countries. Alcohol-related diseases, especially alcoholism, are the result of cumulative responses to alcohol exposure, the genetic make-up of an individual, and the environmental perturbations over time. This complex gene x environment interaction, which has to be seen in a life-span perspective, leads to a large heterogeneity among alcohol-dependent patients, in terms of both the symptom dimensions and the severity of this disorder. Therefore, a reductionistic approach is not very practical if a better understanding of the pathological processes leading to an addictive behavior is to be achieved. Instead, a systems-oriented perspective in which the interactions and dynamics of all endogenous and environmental factors involved are centrally integrated, will lead to further progress in alcohol research. This review adheres to a systems biology perspective such that the interaction of alcohol with primary and secondary targets within the brain is described in relation to the behavioral consequences. As a result of the interaction of alcohol with these targets, alterations in gene expression and synaptic plasticity take place that lead to long-lasting alteration in neuronal network activity. As a subsequent consequence, alcohol-seeking responses ensue that can finally lead via complex environmental interactions to an addictive behavior.

  6. INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY (ISMB)

    SciTech Connect

    Debra Goldberg; Matthew Hibbs; Lukas Kall; Ravikumar Komandurglayavilli; Shaun Mahony; Voichita Marinescu; Itay Mayrose; Vladimir Minin; Yossef Neeman; Guy Nimrod; Marian Novotny; Stephen Opiyo; Elon Portugaly; Tali Sadka; Noboru Sakabe; Indra Sarkar; Marc Schaub; Paul Shafer; Olena Shmygelska; Gregory Singer; Yun Song; Bhattacharya Soumyaroop; Michael Stadler; Pooja Strope; Rong Su; Yuval Tabach; Hongseok Tae; Todd Taylor; Michael Terribilini; Asha Thomas; Nam Tran; Tsai-Tien Tseng; Akshay Vashist; Parthiban Vijaya; Kai Wang; Ting Wang; Lai Wei; Yong Woo; Chunlei Wu; Yoshihiro Yamanishi; Changhui Yan; Jack Yang; Mary Yang; Ping Ye; Miao Zhang

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on “intelligent systems” and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  7. Genomic profiling of microRNAs and proteomics reveals an early molecular alteration associated with tumorigenesis induced by MC-LR in mice.

    PubMed

    Zhao, Yanyan; Xie, Ping; Fan, Huihui

    2012-01-01

    Studies have demonstrated that microcystins (MCs) can act as potential carcinogens and have caused serious risk to public environmental health. The molecular mechanisms of MC-induced susceptibility to carcinogenesis are largely unknown. In this study, we performed for the first time a comprehensive analysis of changes in microRNAs (miRNAs) and proteins expression in livers of mice treated with MC-LR. Utilizing microarray and two-dimensional gel electrophoresis (2-DE) analysis, we identified 37 miRNAs and 42 proteins significantly altered. Many aberrantly expressed miRNAs were related to various cancers (e.g., miR-125b, hepatocellular carcinoma; miR-21, leukemia; miR-16, chronic lymphocytic leukemia; miR-192, pituitary adenomas; miR-199a-3p, ovarian cancer; miR-34a, pancreatic cancer). Several miRNAs (e.g., miR-34a, miR-21) and proteins (e.g., TGM2, NDRG2) that play crucial roles in liver tumorigenesis were first found to be affected by MC-LR in mouse liver. MC-LR also altered the expression of a number of miRNAs and proteins involved in several pathways related to tumorigenesis, such as glutathione metabolism, VEGF signaling, and MAPK signaling pathway. Integration of post-transcriptomics, proteomics, and transcriptomics reveals that the networks miRNAs and their potential target genes and proteins involved in had a close association with carcinogenesis. These results provide an early molecular mechanism for liver tumorigenesis induced by MCs.

  8. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells

    PubMed Central

    Umazume, Takeshi; Thomas, William M.; Campbell, Sabrina; Aluri, Hema; Thotakura, Suharika; Zoukhri, Driss; Makarenkova, Helen P.

    2015-01-01

    Purpose The adult lacrimal gland (LG) is highly regenerative and is able to repair itself even after substantial damage; however, this ability to regenerate is lost with the development of dry eye conditions in chronically inflamed LGs.This study compares changes in the cell adhesion and cell matrix molecules and stem cell transcription factors in the LGs of healthy mice and of two mouse models of Sjögren's syndrome: nonobese diabetic (NOD) and MRL-lpr/lpr (MRL/lpr) mice during the early stage of inflammation. Methods The LGs from 12- to 13-week-old female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for quantitative (q) RT-PCR and qRT-PCR Arrays, histology, immunohistochemistry, and Western blotting. Results The extracellular matrix (ECM) and adhesion molecules RT2-PCR array combined with protein expression data revealed changes in the expression of integrins, matrix metalloproteinases, and other molecules, which are associated largely with invasion, attachment, and expansion of the lymphocytic cells, whereas changes in the stem cell transcription factors revealed substantial decrease in expression of transcription factors associated with epithelial stem/progenitor cell lineage. Conclusions We concluded that the expression of several important ECM components is significantly deregulated in the LG of two murine models of Sjögren's syndrome, suggesting an alteration of the epithelial stem/progenitor cell niche. This may result in profound effects on localization, activation, proliferation, and differentiation of the LG stem/progenitor cells and, therefore, LG regeneration. PMID:26747770

  9. Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs

    PubMed Central

    Dong, E; Tueting, P; Matrisciano, F; Grayson, D R; Guidotti, A

    2016-01-01

    We have recently reported that mice born from dams stressed during pregnancy (PRS mice), in adulthood, have behavioral deficits reminiscent of behaviors observed in schizophrenia (SZ) and bipolar (BP) disorder patients. Furthermore, we have shown that the frontal cortex (FC) and hippocampus of adult PRS mice, like that of postmortem chronic SZ patients, are characterized by increases in DNA-methyltransferase 1 (DNMT1), ten-eleven methylcytosine dioxygenase 1 (TET1) and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Here, we show that the behavioral deficits and the increased 5MC and 5HMC at glutamic acid decarboxylase 67 (Gad1), reelin (Reln) and brain-derived neurotrophic factor (Bdnf) promoters and the reduced expression of the messenger RNAs (mRNAs) and proteins corresponding to these genes in FC of adult PRS mice is reversed by treatment with clozapine (5 mg kg−1 twice a day for 5 days) but not by haloperidol (1 mg kg−1 twice a day for 5 days). Interestingly, clozapine had no effect on either the behavior, promoter methylation or the expression of these mRNAs and proteins when administered to offspring of nonstressed pregnant mice. Clozapine, but not haloperidol, reduced the elevated levels of DNMT1 and TET1, as well as the elevated levels of DNMT1 binding to Gad1, Reln and Bdnf promoters in PRS mice suggesting that clozapine, unlike haloperidol, may limit DNA methylation by interfering with DNA methylation dynamics. We conclude that the PRS mouse model may be useful preclinically in screening for the potential efficacy of antipsychotic drugs acting on altered epigenetic mechanisms. Furthermore, PRS mice may be invaluable for understanding the etiopathogenesis of SZ and BP disorder and for predicting treatment responses at early stages of the illness allowing for early detection and remedial intervention. PMID:26756904

  10. Fragmented Molecular Orbital with Diffusion Monte Carlo for large molecular systems

    NASA Astrophysics Data System (ADS)

    Benali, Anouar; Pruitt, Spencer R.; Fedorov, Dmitri G.

    Performing accurate quantum mechanics (QM) calculations on larger and larger systems, while maintaining a high level of accuracy is an ongoing effort in many ab initio fields. Many different attempts have been made to develop highly scalable and accurate methods. The fragment molecular orbital (FMO) method is an ab initio method capable of taking advantage of modern supercomputers, such as the Blue Gene Q system Mira at the Argonne National Laboratory Leadership Computing Facility (ALCF). FMO is based on dividing molecules into fragments and performing ab initio calculations on fragments, their dimers and, optionally, trimers. This decomposition makes it possible to perform QM calculations of real size biological molecules. In contrast to many other fragment-based methods, the effect of the environment is rigorously accounted for by computing the electrostatic potential (ESP) due to remaining fragments that are not explicitly included in a given monomer, dimer, or trimer calculation. The use of highly accurate levels of theory, such as Diffusion Monte Carlo (DMC-QMC), in conjunction with FMO allows for the goal of highly scalable and accurate all electron calculations demonstrated in this study, on a variety of relevant systems (H2O)[3-6] and protein using GAMESS and QMCPACK.

  11. Reduced molecular size and altered disaccharide composition of cerebral chondroitin sulfate upon Alzheimer’s pathogenesis in mice

    PubMed Central

    Zhang, Zui; Ohtake-Niimi, Shiori; Kadomatsu, Kenji; Uchimura, Kenji

    2016-01-01

    ABSTRACT Alzheimer’s disease (AD) is a progressive disorder leading to cognitive impairment and neuronal loss. Cerebral extracellular accumulation and deposition of amyloid ß plaques is a pathological hallmark of AD. Chondroitin sulfate (CS) is an extracellular component abundant in the brain. CS is a sulfated glycosaminoglycan covalently attached to a core protein, forming chondroitin sulfate proteoglycan. The structure of CS is heterogeneous with sulfation modification and elongation of the chain. The structural diversity of CS allows it to play various roles in the brain. Increasing evidence has shown that CS promotes aggregation of amyloid ß peptides into higher-order species such as insoluble amyloid ß fibrils. Difficulties in the structural analysis of brain CS, as well as its heterogeneity, limit the study of potential roles of CS in AD pathology. Here we established a microanalysis method with reversed-phase ion-pair high performance liquid chromatography and found that CS in the brains of Tg2576 AD model mice show a lower molecular size and an increased ratio of CS-B motif di-sulfated disaccharide. Our findings provide insight into the structural changes of cerebral CS upon Alzheimer’s pathogenesis. PMID:27578913

  12. 2,5-hexanedione altered the degradation of low-molecular-weight neurofilament in rat nerve tissues.

    PubMed

    Song, Fuyong; Zhang, Qingguo; Kou, Ruirui; Zou, Chaoshuang; Gao, Yuan; Xie, Keqin

    2012-12-01

    Occupational exposure to n-hexane produces a central-peripheral distal axonopathy, which is characterized by giant axonal swellings filled with neurofilaments (NFs). To investigate the change of NFs degradation and their possible role in n-hexane neuropathy, adult male Wistar rats were administered intraperitoneally at a dosage of 400 mg/kg/day 2,5-hexanedione (2,5-HD) for 4 weeks. The time course of low-molecular-weight neurofilament (NF-L) degradation and autophagy-related protein in rat sciatic nerves and spinal cords was determined by Western blotting. The results demonstrated that the administration of 2,5-HD inhibited NF-L degradation to an undetectable level in sciatic nerves. Furthermore, a significant reduction of NF-L degradation in spinal cords was observed in the early stage of 2,5-HD exposure. In the meantime, 2,5-HD significantly decreased the level of Beclin-1, a key autophagy-regulated protein in sciatic nerves of rats while increased the level of P62, a selective substrate of autophagy degrading pathway, which indicated a dysfunctional autophagy in rat nerve tissues. Collectively, our findings suggested that the inhibition of autophagy by 2,5-HD might be responsible for the reduction of NF-L degradation in rat sciatic nerves, and involved in the pathogenesis of 2,5-HD-induced axonopathy.

  13. Theoretical study of nanostructures and molecular electronic systems

    NASA Astrophysics Data System (ADS)

    Mehrez, Hatem

    Research studies on systems with reduced size and dimensionality have attracted great attention for the past two decades. This is mainly driven by industrial development, which demands the fabrication of new, small, well-controlled devices as well as the desire to understand quantum effects which manifest in these small structures. In this thesis we theoretically investigate quantum coherent transport properties of nano structures in the form of molecular electronic systems. Our approach is based on Landauer-Buttiker transport theory. However, the details of the method depend on the interaction complexity. We have carried out detailed analysis on finite length carbon nanotubes based magnetic tunnel junction using tight binding atomic model and Green's function approach. This device shows clear spin valve effect even when contacted with the same ferro-magnetic material with a long spin scattering length. In addition to this, transport at the atomic level is highly affected by the molecular states resulting in conductance oscillation of finite size arm-chair carbon nanotube as a function of its length. When short carbon nanotubes are weakly contacted to external leads, they act as quantum dots with strong interaction at the molecular scale. To analyse these systems, we have developed a many-body wave function formalism which include spin degeneracy. This approach clearly shows the strong dependence of the device electronic response on the number of electrons already inside the tube. Finally, we have carried out ab initio analysis based on Density Functional Theory within Local Density Approximations to investigate the current-voltage (I-V) characteristics of various gold nanowires. Our results demonstrate that transport properties of these systems crucially depend on the electronic properties of the scattering region, the leads, and most importantly the interaction of the scattering region with the leads. For ideal, clean Au contacts, the theoretical results indicate

  14. Abstinence from chronic cocaine self-administration alters striatal dopamine systems in rhesus monkeys.

    PubMed

    Beveridge, Thomas J R; Smith, Hilary R; Nader, Michael A; Porrino, Linda J

    2009-04-01

    Although dysregulation within the dopamine (DA) system is a hallmark feature of chronic cocaine exposure, the question of whether these alterations persist into abstinence remains largely unanswered. Nonhuman primates represent an ideal model in which to assess the effects of abstinence on the DA system following chronic cocaine exposure. In this study, male rhesus monkeys self-administered cocaine (0.3 mg/kg per injection, 30 reinforcers per session) under a fixed-interval 3-min schedule for 100 days followed by either 30 or 90 days abstinence. This duration of cocaine self-administration has been previously shown to decrease DA D2-like receptor densities and increase levels of D1-like receptors and DA transporters (DAT). Responding by control monkeys was maintained by food presentation under an identical protocol and the same abstinence periods. [(3)H]SCH 23390 binding to DA D1 receptors following 30 days of abstinence was significantly higher in all portions of the striatum, compared to control animals, whereas [(3)H]raclopride binding to DA D2 receptors was not different between groups. [(3)H]WIN 35 428 binding to DAT was also significantly higher throughout virtually all portions of the dorsal and ventral striatum following 30 days of abstinence. Following 90 days of abstinence, however, levels of DA D1 receptors and DAT were not different from control values. Although these results indicate that there is eventual recovery of the separate elements of the DA system, they also highlight the dynamic nature of these components during the initial phases of abstinence from chronic cocaine self-administration. PMID:18769473

  15. Time of Formation and Chemical Alteration of Planetesimals, Icy Satellites, and Dwarf Planets in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Castillo-Rogez, J.; Johnson, T.; Matson, D.; Vance, S.; Choukroun, M.; Lunine, J.

    2009-05-01

    We consider various scenarios for the early chronology of outer solar system icy objects (e.g., planetesimals, satellites, dwarf planets) depending on the time at which these objects formed with respect to the production of calcium-aluminum inclusions. The latter is our time of reference for computing the amount of short-lived radioisotopes accreted in these objects. We especially focus on hydrothermal activity that could have taken place in icy planetesimals and the consequences on the early history of bigger objects depending on the time and duration of accretion, i.e. whether or not short-lived radioisotopes were still in significant abundance in planetesimals when icy satellites and dwarf planets formed. Chemical alteration as a result of 26Al-triggered differentiation has been studied in the case of meteorite parent bodies, but the consequences of such a phenomenon in the case of outer Solar system objects has not been thoroughly addressed. However, various recent observations suggest that the outer Solar system could have formed in a few My after the beginning of the Solar system. In such conditions meteorite parent bodies and icy objects (from planetesimals to large icy objects) could have had a similar early history. Early melting is accompanied by hydrothermal circulation and resulting aqueous alteration and redistribution of major elements between the rock phase and the volatile phase. This can result in partial hydration of the silicate phase, formation of salt compounds in small objects from which molecular hydrogen can easily escape, as well as leaching of long-lived radioisotopes from the rock phase. Melting can also result in the destabilization of clathrate hydrates and thus degassing of major species predicted by cosmochemical models, with implications for the diversity of compositions of planetesimals in the early outer Solar System. We consider several classes of planetesimals, characterized by their size, time of formation, initial rock mass

  16. Molecular intercommunication between the complement and coagulation systems.

    PubMed

    Amara, Umme; Flierl, Michael A; Rittirsch, Daniel; Klos, Andreas; Chen, Hui; Acker, Barbara; Brückner, Uwe B; Nilsson, Bo; Gebhard, Florian; Lambris, John D; Huber-Lang, Markus

    2010-11-01

    The complement system as well as the coagulation system has fundamental clinical implications in the context of life-threatening tissue injury and inflammation. Associations between both cascades have been proposed, but the precise molecular mechanisms remain unknown. The current study reports multiple links for various factors of the coagulation and fibrinolysis cascades with the central complement components C3 and C5 in vitro and ex vivo. Thrombin, human coagulation factors (F) XIa, Xa, and IXa, and plasmin were all found to effectively cleave C3 and C5. Mass spectrometric analyses identified the cleavage products as C3a and C5a, displaying identical molecular weights as the native anaphylatoxins C3a and C5a. Cleavage products also exhibited robust chemoattraction of human mast cells and neutrophils, respectively. Enzymatic activity for C3 cleavage by the investigated clotting and fibrinolysis factors is defined in the following order: FXa > plasmin > thrombin > FIXa > FXIa > control. Furthermore, FXa-induced cleavage of C3 was significantly suppressed in the presence of the selective FXa inhibitors fondaparinux and enoxaparin in a concentration-dependent manner. Addition of FXa to human serum or plasma activated complement ex vivo, represented by the generation of C3a, C5a, and the terminal complement complex, and decreased complement hemolytic serum activity that defines exact serum concentration that results in complement-mediated lysis of 50% of sensitized sheep erythrocytes. Furthermore, in plasma from patients with multiple injuries (n = 12), a very early appearance and correlation of coagulation (thrombin-antithrombin complexes) and the complement activation product C5a was found. The present data suggest that coagulation/fibrinolysis proteases may act as natural C3 and C5 convertases, generating biologically active anaphylatoxins, linking both cascades via multiple direct interactions in terms of a complex serine protease system.

  17. Molecular Characterization of a Lysozyme Gene and Its Altered Expression Profile in Crowded Beet Webworm (Loxostege sticticalis).

    PubMed

    Kong, Hailong; Lv, Min; Mao, Nian; Wang, Cheng; Cheng, Yunxia; Zhang, Lei; Jiang, Xingfu; Luo, Lizhi

    2016-01-01

    There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the molecular mechanism remains unclear. Our previous study demonstrated that the antibacterial activity of lysozyme is important for this process in the beet webworm Loxostege sticticalis. In this study, a lysozyme cDNA from L. sticticalis was cloned and characterized. The full-length cDNA is 1078 bp long and contains an open reading frame of 426 bp that encodes 142 amino acids. The deduced protein possesses structural characteristics of a typical c-type lysozyme and clusters with c-type lysozymes from other Lepidoptera. LsLysozyme was found to be expressed throughout all developmental stages, showing the highest level in pupae. LsLysozyme was also highly expressed in the midgut and fat body. Elevated LsLysozyme expression was observed in L. sticticalis larvae infected by Beauveria bassiana and in larvae reared under crowding conditions. In addition, the expression level of LsLysozyme in infected larvae reared at a density of 10 larvae per jar was significantly higher compared to those reared at a density of l or 30 larvae per jar. These results suggest that larval crowding affects the gene expression profile of this lysozyme. This study provides additional insight into the expression of an immune-associated lysozyme gene and helps us to better understand the immune response of L. sticticalis under crowding conditions. PMID:27575006

  18. Molecular Characterization of a Lysozyme Gene and Its Altered Expression Profile in Crowded Beet Webworm (Loxostege sticticalis)

    PubMed Central

    Kong, Hailong; Lv, Min; Mao, Nian; Wang, Cheng; Cheng, Yunxia; Zhang, Lei; Jiang, Xingfu; Luo, Lizhi

    2016-01-01

    There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the molecular mechanism remains unclear. Our previous study demonstrated that the antibacterial activity of lysozyme is important for this process in the beet webworm Loxostege sticticalis. In this study, a lysozyme cDNA from L. sticticalis was cloned and characterized. The full-length cDNA is 1078 bp long and contains an open reading frame of 426 bp that encodes 142 amino acids. The deduced protein possesses structural characteristics of a typical c-type lysozyme and clusters with c-type lysozymes from other Lepidoptera. LsLysozyme was found to be expressed throughout all developmental stages, showing the highest level in pupae. LsLysozyme was also highly expressed in the midgut and fat body. Elevated LsLysozyme expression was observed in L. sticticalis larvae infected by Beauveria bassiana and in larvae reared under crowding conditions. In addition, the expression level of LsLysozyme in infected larvae reared at a density of 10 larvae per jar was significantly higher compared to those reared at a density of l or 30 larvae per jar. These results suggest that larval crowding affects the gene expression profile of this lysozyme. This study provides additional insight into the expression of an immune-associated lysozyme gene and helps us to better understand the immune response of L. sticticalis under crowding conditions. PMID:27575006

  19. Mitochondrial (Dys)function in Adipocyte (De)differentiation and Systemic Metabolic Alterations

    PubMed Central

    De Pauw, Aurélia; Tejerina, Silvia; Raes, Martine; Keijer, Jaap; Arnould, Thierry

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissues, the importance of mitochondrial activity in the differentiation or the dedifferentiation programs of adipose cells and in systemic metabolic alterations has not been extensively reviewed previously. Here, we address the crucial role of mitochondrial functions during adipogenesis and in mature adipocytes and discuss the cellular responses of white adipocytes to mitochondrial activity impairment. In addition, we discuss the increase in scientific knowledge regarding mitochondrial functions in the last 10 years and the recent suspicion of mitochondrial dysfunction in several 21st century epidemics (ie, obesity and diabetes), as well as in lipodystrophy found in HIV-treated patients, which can contribute to the development of new therapeutic strategies targeting adipocyte mitochondria. PMID:19700756

  20. Altered central nervous system processing of baroreceptor input following hindlimb unloading in rats

    NASA Technical Reports Server (NTRS)

    Moffitt, J. A.; Schadt, J. C.; Hasser, E. M.

    1999-01-01

    The effect of cardiovascular deconditioning on central nervous system processing of baroreceptor afferent activity was evaluated following 14 days of hindlimb unloading (HU). Inactin-anesthetized rats were instrumented with catheters, renal sympathetic nerve electrodes, and aortic depressor nerve electrodes for measurement of mean arterial pressure, heart rate, renal sympathetic nerve activity (RSNA), and aortic depressor nerve activity (ADNA). Baroreceptor and baroreflex functions were assessed during infusion of phenylephrine and sodium nitroprusside. Central processing of baroreceptor afferent input was evaluated by linear regression relating RSNA to ADNA. The maximum baroreflex-elicited increase in RSNA was significantly reduced in HU rats (122 +/- 3.8 vs. 144 +/- 4.9% of baseline RSNA), whereas ADNA was not altered. The slope (-0.18 +/- 0.04 vs. -0.40 +/- 0.04) and y-intercept (121 +/- 3.2 vs. 146 +/- 4.3) of the linear regression relating increases in efferent RSNA to decreases in afferent ADNA during hypotension were significantly reduced in HU rats. There were no differences during increases in arterial pressure. Results demonstrate that the attenuation in baroreflex-mediated increases in RSNA following HU is due to changes in central processing of baroreceptor afferent information rather than aortic baroreceptor function.

  1. Frequent Gene Products and Molecular Pathways Altered in Prostate Cancer– and Metastasis-Initiating Cells and Their Progenies and Novel Promising Multitargeted Therapies

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K

    2011-01-01

    Recent gene expression profiling analyses and gain- and loss-of-function studies performed with distinct prostate cancer (PC) cell models indicated that the alterations in specific gene products and molecular pathways often occur in PC stem/progenitor cells and their progenies during prostate carcinogenesis and metastases at distant sites, including bones. Particularly, the sustained activation of epidermal growth factor receptor (EGFR), hedgehog, Wnt/β-catenin, Notch, hyaluronan (HA)/CD44 and stromal cell–derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) during the epithelial-mesenchymal transition (EMT) process may provide critical functions for PC progression to locally invasive, metastatic and androgen-independent disease states and treatment resistance. Moreover, an enhanced glycolytic metabolism in PC stem/progenitor cells and their progenies concomitant with the changes in their local microenvironment, including the induction of tumor hypoxia and release of diverse soluble factors by tumor myofibroblasts, also may promote the tumor growth, angiogenesis and metastases. More particularly, these molecular transforming events may cooperate to upregulate Akt, nuclear factor (NF)-κB, hypoxia-inducible factors (HIFs) and stemness gene products such as Oct3/4, Sox2, Nanog and Bmi-1 in PC cells that contribute to their acquisition of high self-renewal, tumorigenic and invasive capacities and survival advantages during PC progression. Consequently, the molecular targeting of these deregulated gene products in the PC- and metastasis-initiating cells and their progenies represent new promising therapeutic strategies of great clinical interest for eradicating the total PC cell mass and improving current antihormonal treatments and docetaxel-based chemotherapies, thereby preventing disease relapse and the death of PC patients. PMID:21607288

  2. A computational kinetic model of diffusion for molecular systems.

    PubMed

    Teo, Ivan; Schulten, Klaus

    2013-09-28

    Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.

  3. Dynamical magnetic anisotropy in spin--1 molecular systems

    NASA Astrophysics Data System (ADS)

    Ruiz-Tijerina, David; Cornaglia, Pablo; Balseiro, Carlos; Ulloa, Sergio

    2012-02-01

    We study electronic transport through a deformable spin-1 molecular system in a break junction setup, under the influence of a local vibrational mode. Our study shows that the magnetic anisotropy, which arises due to stretching along the transport axis[Science 328 1370 (2010)], is renormalized by the interactions with vibrations. The coupling induces additional spin--asymmetric hybridizations that contribute to the net molecular anisotropy. We show that the low temperature physics of such device can be described by an anisotropic Kondo model (J> J), with a magnetic anisotropy term, ANetSz^2, negative at zero stretching. A quantum phase transition (QPT) is explored by stretching the molecule, driving ANet into positive values, and changing the character of the device from a non--Fermi--liquid (NFL) to a Fermi liquid (FL) ground state. This transition can be directly observed through the zero--bias conductance, which we find to be finite for negative anisotropy, zero for positive anisotropy, and to reach the unitary limit at ANet 0. At that point, an underscreened spin-1 Kondo ground state appears due to the restitution of the spin-1 triplet degeneracy.

  4. Quantum mechanical molecular dynamics studies of chemical systems

    NASA Astrophysics Data System (ADS)

    Pavese, Marc

    Methods for including quantum mechanical effects in molecular dynamics (MD) simulations are discussed in this thesis. The thesis focuses on the path integral centroid molecular dynamics (CMD) algorithm. This algorithm is first described and then used in simulations of low temperature para-hydrogen, and also in simulations of the excess proton in water clusters and in the bulk. The CMD method allows one to include the effects of nuclear quantization approximately while still maintaining a quasi-classical, trajectory based, description of the dynamics. The effects of quantization of the electronic degrees of freedom are also discussed. These effects are usually taken into account implicitly through parameterized potential functions. However, methods for including the quantum electronic degrees of freedom explicitly in a MD simulation are also discussed in this thesis. Most notably, the Car-Parrinello method, which combines density functional theory (DFT) with MD, is employed with the CMD algorithm. This yields a method which takes explicit account of the quantum electrons and nuclei. Thus, this work represents one feasible approach for considering the quantum nature of all the degrees of freedom of the system while still maintaining an MD framework. In the concluding remarks, future directions and possibilities for this type of approach are discussed.

  5. Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems.

    PubMed

    Zhu, You-Liang; Lu, Zhong-Yuan; Milano, Giuseppe; Shi, An-Chang; Sun, Zhao-Yan

    2016-04-14

    To achieve simulations on large spatial and temporal scales with high molecular chemical specificity, a hybrid particle-field method was proposed recently. This method is developed by combining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has been validated by successfully predicting the experimentally observable properties of several systems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the MD-SCF framework. In this scheme, charged molecules are interacting with the external fields that are self-consistently determined from the charge densities. This method is validated by comparing the structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as examples, the enhancement of immiscibility between the ion-dissolving block and the inert block by doping lithium salts into the copolymer is examined by using the MD-SCF method. By employing GPU-acceleration, the high performance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation study of many problems involving polyelectrolytes. PMID:27001709

  6. Water Velocity and Bioturbation Alter Sediment Resuspension and Biogeochemistry in an Experimental Freshwater Mesocosm System

    NASA Astrophysics Data System (ADS)

    Spivak, A.; Vanni, M. J.

    2010-12-01

    Processes such as bioturbation and resuspension can affect organic matter decomposition by altering sediment redox conditions. Increased oxygen availability may, in turn, affect remineralization rates and larger scale processes such as benthic-pelagic coupling. However, relatively few studies have explicitly tested the simultaneous effects of bioturbation and water velocity on benthic biogeochemistry and sediment resuspension. Using a mesocosm system we conducted two experiments testing the effects of bioturbator identity on particulate and dissolved nutrient dynamics before and after a resuspension event (i.e. water velocity held constant at 0.12 m s-1 for 2 hr; Expt. 1) and rates of sediment resuspension with increasing water velocity (0.00 - 0.20 m s-1; Expt. 2). We manipulated bioturbator identity across four levels as sediments were undisturbed (control), manually punctured (2% of surface area), or disturbed by one of two fish species, either bluegill or catfish. For Expt. 1, the bioturbation treatments were applied for several days and measurements were made before and after the resuspension event. Initially, water column chlorophyll and total suspended sediment (TSS) concentrations were highest in the catfish treatments. Bioturbator identity did not affect the stoichiometry of TSS as strongly; C:N was unaffected by our treatments while N:P was lowest in the disturbed treatments. After the resuspension event, there was no difference in TSS concentrations or stoichiometric ratios across the bioturbation treatments. Dissolved nutrient flux rates were insensitive to the bioturbation treatments and were more strongly influenced by the resuspension event. For instance, sediment NO3- fluxes were negative (i.e. net flux into sediments) until after the resuspension event when they became positive. In Expt. 2, we gradually increased water velocity from 0.00 - 0.20 m s-1 and measured TSS concentrations only. TSS was initially highest in catfish treatments and lowest in

  7. Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine.

    PubMed

    Schütze, K; Pösl, H; Lahr, G

    1998-07-01

    The UV-laser microbeam has been established as a valuable tool in a wide area of molecular biology as well as in medical research and applications. This system allows to cut or fuse microscopically small specimen. An important application of the cutting laser is laser microbeam microdissection (LMM) combined with laser pressure catapulting (LPC), which allows to procure single cells or small homogeneous cell areas for subsequent molecular analysis in an entirely "non-contact" manner. With LMM minute tissue areas, single cells or chromosomes are microdissected and separated from their surroundings. Subsequently, LPC ejects the dissectates directly into the cap of a sample tube without any mechanical contact. This enables the rapid procurement of homogeneous specimen from less than one up to several hundreds of micrometers in diameter without encroachment of the adjacent region. The mRNA information of the selected specimen as well as of the remaining probe are well preserved, as demonstrated with laser isolated samples from a routinely prepared tissue section of a differentiated colorectal adenocarcinoma. Reverse transcription of specific mRNA coding for cytoplasmic beta-actin and subsequent hemi-nested PCR amplification was not impaired. Any kind of tissue, as well as single cells from different sources and even subcellular structures can be captured using this laser method. Wherever homogeneous samples are required to analyze cell or chromosome-specific genetic alterations such as in cancer research or prenatal diagnosis this unique and rapid laser micropreparation method will become a key technology of great value.

  8. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation

    NASA Technical Reports Server (NTRS)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim

    2003-01-01

    A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain

  9. Wfs1-deficient mice display altered function of serotonergic system and increased behavioral response to antidepressants

    PubMed Central

    Visnapuu, Tanel; Raud, Sirli; Loomets, Maarja; Reimets, Riin; Sütt, Silva; Luuk, Hendrik; Plaas, Mario; Kõks, Sulev; Volke, Vallo; Alttoa, Aet; Harro, Jaanus; Vasar, Eero

    2013-01-01

    It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT) and noradrenaline (NA) reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioral despair. The tail suspension test (TST) and forced swimming test (FST) were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT) were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 min to brightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states. PMID:23914152

  10. Artificial Klebsiella pneumoniae biofilm model mimicking in vivo system: altered morphological characteristics and antibiotic resistance.

    PubMed

    Singla, Saloni; Harjai, Kusum; Chhibber, Sanjay

    2014-04-01

    The purpose of this study was to develop a biofilm model of Klebsiella pneumoniae B5055, mimicking in vivo biofilm system so as to determine susceptibility of different phases of biofilm to antibiotics by three-dimensional analysis. Artificial mature biofilm of K. pneumoniae was made on black, polycarbonate membranes. Biofilm structure was visualized by scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM). Viable count method, CLSM and SEM analysis confirmed that mature, uniform and viable biofilms can be formed on the polycarbonate membranes by this method. The three-dimensional heterogeneity of biofilm was confirmed on the basis of results of CLSM, which is an important characteristics of in vivo biofilm system. Staining with the LIVE/DEAD BacLight viability kit and acridine orange suggested that the center of biofilm had more inactive cells compared with actively dividing cells on the periphery. Amikacin at a concentration of 40 μg ml⁻¹ was effective against younger biofilm whereas ineffective against older biofilm that showed sparsely populated dead cells using the BacLight viability staining kit. Role of altered morphological characteristics toward increased antibiotic susceptibility was also studied for different phases of K. pneumoniae biofilm by CLSM and light microscopy. Thickness of biofilm increased from 0.093 to 0.231 mm with time. So, both heterogeneity and thickness of the biofilm are likely to influence the ineffectiveness of amikacin in older biofilm. The present model holds considerable clinical relevance and may be useful for evaluating the efficacy of antimicrobial agent on bacterial biofilms in vitro.

  11. Congenital foot deformation alters the topographic organization in the primate somatosensory system.

    PubMed

    Liao, Chia-Chi; Qi, Hui-Xin; Reed, Jamie L; Miller, Daniel J; Kaas, Jon H

    2016-01-01

    Limbs may fail to grow properly during fetal development, but the extent to which such growth alters the nervous system has not been extensively explored. Here we describe the organization of the somatosensory system in a 6-year-old monkey (Macaca radiata) born with a deformed left foot in comparison to the results from a normal monkey (Macaca fascicularis). Toes 1, 3, and 5 were missing, but the proximal parts of toes 2 and 4 were present. We used anatomical tracers to characterize the patterns of peripheral input to the spinal cord and brainstem, as well as between thalamus and cortex. We also determined the somatotopic organization of primary somatosensory area 3b of both hemispheres using multiunit electrophysiological recording. Tracers were subcutaneously injected into matching locations of each foot to reveal their representations within the lumbar spinal cord, and the gracile nucleus (GrN) of the brainstem. Tracers injected into the representations of the toes and plantar pads of cortical area 3b labeled neurons in the ventroposterior lateral nucleus (VPL) of the thalamus. Contrary to the orderly arrangement of the foot representation throughout the lemniscal pathway in the normal monkey, the plantar representation of the deformed foot was significantly expanded and intruded into the expected representations of toes in the spinal cord, GrN, VPL, and area 3b. We also observed abnormal representation of the intact foot in the ipsilateral spinal cord and contralateral area 3b. Thus, congenital malformation influences the somatotopic representation of the deformed as well as the intact foot.

  12. Transcriptome Alterations Following Developmental Atrazine Exposure in Zebrafish Are Associated with Disruption of Neuroendocrine and Reproductive System Function, Cell Cycle, and Carcinogenesis

    PubMed Central

    Freeman, Jennifer L.

    2013-01-01

    Atrazine, a herbicide commonly applied to agricultural areas and a common contaminant of potable water supplies, is implicated as an endocrine-disrupting chemical (EDC) and potential carcinogen. Studies show that EDCs can cause irreversible changes in tissue formation, decreased reproductive potential, obesity, and cancer. The U.S. Environmental Protection Agency considers an atrazine concentration of ≤ 3 ppb in drinking water safe for consumption. The specific adverse human health effects associated with a developmental atrazine exposure and the underlying genetic mechanisms of these effects are not well defined. In this study, zebrafish embryos were exposed to a range of atrazine concentrations to establish toxicity. Morphological, transcriptomic, and protein alterations were then assessed at 72h postfertilization following developmental atrazine exposure at 0, 0.3, 3, or 30 ppb. A significant increase in head length was observed in all three atrazine treatments. Transcriptomic profiles revealed 21, 62, and 64 genes with altered expression in the 0.3, 3, and 30 ppb atrazine treatments, respectively. Altered genes were associated with neuroendocrine and reproductive system development, function, and disease; cell cycle control; and carcinogenesis. There was a significant overlap (42 genes) between the 3 and 30 ppb differentially expressed gene lists, with two of these genes (CYP17A1 and SAMHD1) present in all three atrazine treatments. Increased transcript levels were translated to significant upregulation in protein expression. Overall, this study identifies genetic and molecular targets altered in response to a developmental atrazine exposure to further define the biological pathways and mechanisms of toxicity. PMID:23358194

  13. Mixing-Induced Anisotropic Correlations in Molecular Crystalline Systems

    NASA Astrophysics Data System (ADS)

    Aufderheide, A.; Broch, K.; Novák, J.; Hinderhofer, A.; Nervo, R.; Gerlach, A.; Banerjee, R.; Schreiber, F.

    2012-10-01

    We investigate the structure of mixed thin films composed of pentacene and diindenoperylene using x-ray reflectivity and grazing incidence x-ray diffraction. For equimolar mixtures we observe vanishing in-plane order coexisting with an excellent out-of-plane order, a yet unreported disordering behavior in binary mixtures of organic semiconductors, which are crystalline in their pure form. One approach to rationalize our findings is to introduce an anisotropic interaction parameter in the framework of a mean field model. By comparing the structural properties with those of other mixed systems, we discuss the effects of sterical compatibility and chemical composition on the mixing behavior, which adds to the general understanding of interactions in molecular mixtures.

  14. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis

  15. Systemic inflammation alters central 5-HT function as determined by pharmacological MRI

    PubMed Central

    Couch, Yvonne; Martin, Chris J.; Howarth, Clare; Raley, Josie; Khrapitchev, Alexandre A.; Stratford, Michael; Sharp, Trevor; Sibson, Nicola R.; Anthony, Daniel C.

    2013-01-01

    Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg). Further groups of rats were pre-treated with the bacterial lipopolysaccharide (LPS; 0.5 mg/kg), to induce systemic inflammation, or the selective 5-HT2A receptor antagonist MDL100907 prior to fenfluramine. The resultant phMRI data were investigated further through measurements of cortical 5-HT release (microdialysis), and vascular responsivity, as well as a more thorough investigation of the role of the 5-HT2A receptor in sickness behaviour. Fenfluramine evoked a positive BOLD response in the motor cortex (+ 15.9 ± 2%) and a negative BOLD response in the dorsal raphe nucleus (− 9.9 ± 4.2%) and nucleus accumbens (− 7.7 ± 5.3%). In all regions, BOLD responses to fenfluramine were significantly attenuated by pre-treatment with LPS (p < 0.0001), but neurovascular coupling remained intact, and fenfluramine-evoked 5-HT release was not affected. However, increased expression of the 5-HT2A receptor mRNA and decreased 5-HT2A-dependent behaviour (wet-dog shakes) was a feature of the LPS treatment and may underpin the altered phMRI signal. MDL100907 (0.5 mg/kg), 5-HT2A antagonist, significantly reduced the BOLD responses to fenfluramine in all three regions (p < 0.0001) in a similar manner to LPS. Together these results suggest that systemic inflammation decreases brain 5-HT activity as assessed by phMRI. However, these effects do not appear to be mediated by changes in 5-HT release, but are associated with changes in 5-HT2A-receptor-mediated downstream signalling pathways. PMID:23473937

  16. Cholinotrophic basal forebrain system alterations in 3xTg-AD transgenic mice.

    PubMed

    Perez, Sylvia E; He, Bin; Muhammad, Nadeem; Oh, Kwang-Jin; Fahnestock, Margaret; Ikonomovic, Milos D; Mufson, Elliott J

    2011-02-01

    The cholinotrophic system, which is dependent upon nerve growth factor and its receptors for survival, is selectively vulnerable in Alzheimer's disease (AD). But, virtually nothing is known about how this deficit develops in relation to the hallmark lesions of this disease, amyloid plaques and tau containing neurofibrillary tangles. The vast majority of transgenic models of AD used to evaluate the effect of beta amyloid (Aβ) deposition upon the cholinotrophic system over-express the amyloid precursor protein (APP). However, nothing is known about how this system is affected in triple transgenic (3xTg)-AD mice, an AD animal model displaying Aβ plaque- and tangle-like pathology in the cortex and hippocampus, which receive extensive cholinergic innervation. We performed a detailed morphological and biochemical characterization of the cholinotrophic system in young (2-4 months), middle-aged (13-15 months) and old (18-20 months) 3xTg-AD mice. Cholinergic neuritic swellings increased in number and size with age, and were more conspicuous in the hippocampal-subicular complex in aged female than in 3xTg-AD male mice. Stereological analysis revealed a reduction in choline acetyltransferase (ChAT) positive cells in the medial septum/vertical limb of the diagonal band of Broca in aged 3xTg-AD mice. ChAT enzyme activity levels decreased significantly in the hippocampus of middle-aged 3xTg-AD mice compared to age-matched non-transgenic (or wild type) mice. ProNGF protein levels increased in the cortex of aged 3xTg-AD mice, whereas TrkA protein levels were reduced in a gender-dependent manner in aged mutant mice. In contrast, p75(NTR) protein cortical levels were stable but increased in the hippocampus of aged 3xTg-AD mice. These data demonstrate that cholinotrophic alterations in 3xTg-AD mice are age- and gender-dependent and more pronounced in the hippocampus, a structure more severely affected by Aβ plaque pathology. PMID:20937383

  17. 78 FR 63211 - Privacy Act of 1974; Report of an Altered CMS System of Records Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... FR 8538 (February 6, 2013) and amended and published at 78 FR 32256 (May 29, 2013). The alterations... sharing ministry; (7) employer information; (8) status as a veteran; (9) pregnancy status; (10)...

  18. Molecular composition of the endocannabinoid system at glutamatergic synapses.

    PubMed

    Katona, István; Urbán, Gabriella M; Wallace, Matthew; Ledent, Catherine; Jung, Kwang-Mook; Piomelli, Daniele; Mackie, Ken; Freund, Tamás F

    2006-05-24

    Endocannabinoids play central roles in retrograde signaling at a wide variety of synapses throughout the CNS. Although several molecular components of the endocannabinoid system have been identified recently, their precise location and contribution to retrograde synaptic signaling is essentially unknown. Here we show, by using two independent riboprobes, that principal cell populations of the hippocampus express high levels of diacylglycerol lipase alpha (DGL-alpha), the enzyme involved in generation of the endocannabinoid 2-arachidonoyl-glycerol (2-AG). Immunostaining with two independent antibodies against DGL-alpha revealed that this lipase was concentrated in heads of dendritic spines throughout the hippocampal formation. Furthermore, quantification of high-resolution immunoelectron microscopic data showed that this enzyme was highly compartmentalized into a wide perisynaptic annulus around the postsynaptic density of axospinous contacts but did not occur intrasynaptically. On the opposite side of the synapse, the axon terminals forming these excitatory contacts were found to be equipped with presynaptic CB1 cannabinoid receptors. This precise anatomical positioning suggests that 2-AG produced by DGL-alpha on spine heads may be involved in retrograde synaptic signaling at glutamatergic synapses, whereas CB1 receptors located on the afferent terminals are in an ideal position to bind 2-AG and thereby adjust presynaptic glutamate release as a function of postsynaptic activity. We propose that this molecular composition of the endocannabinoid system may be a general feature of most glutamatergic synapses throughout the brain and may contribute to homosynaptic plasticity of excitatory synapses and to heterosynaptic plasticity between excitatory and inhibitory contacts.

  19. Motor-Iconicity of Sign Language Does Not Alter the Neural Systems Underlying Tool and Action Naming

    ERIC Educational Resources Information Center

    Emmorey, Karen; Grabowski, Thomas; McCullough, Stephen; Damasio, Hannah; Ponto, Laurie; Hichwa, Richard; Bellugi, Ursula

    2004-01-01

    Positron emission tomography was used to investigate whether the motor-iconic basis of certain forms in American Sign Language (ASL) partially alters the neural systems engaged during lexical retrieval. Most ASL nouns denoting tools and ASL verbs referring to tool-based actions are produced with a handshape representing the human hand holding a…

  20. A high pressure modulated molecular beam mass spectrometric sampling system

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.

    1977-01-01

    The current state of understanding of free-jet high pressure sampling is critically reviewed and modifications of certain theoretical and empirical considerations are presented. A high pressure, free-jet expansion, modulated molecular beam, mass spectrometric sampling apparatus was constructed and this apparatus is described in detail. Experimental studies have demonstrated that the apparatus can be used to sample high temperature systems at pressures up to one atmosphere. Condensible high temperature gaseous species have been routinely sampled and the mass spectrometric detector has provided direct identification of sampled species. System sensitivity is better than one tenth of a part per million. Experimental results obtained with argon and nitrogen beams are presented and compared to theoretical predictions. These results and the respective comparison are taken to indicate acceptable performance of the sampling apparatus. Results are also given for two groups of experiments related to hot corrosion studies. The formation of gaseous sodium sulfate in doped methane-oxygen flames was characterized and the oxidative vaporization of metals was studied in an atmospheric pressure flowing gas system to which gaseous salt partial pressures were added.

  1. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.

    PubMed

    Banno, Taisuke; Toyota, Taro

    2015-06-30

    Unique dynamics using inanimate molecular assemblies have drawn a great amount of attention for demonstrating prebiomimetic molecular systems. For the construction of an organized logic combining two fundamental dynamics of life, we demonstrate here a molecular system that exhibits both division and self-propelled motion using oil droplets. The key molecule of this molecular system is a novel cationic surfactant containing a five-membered acetal moiety, and the molecular system can feed the self-propelled oil droplet composed of a benzaldehyde derivative and an alkanol. The division dynamics of the self-propelled oil droplets were observed through the hydrolysis of the cationic surfactant in bulk solution. The mechanism of the current dynamics is argued to be based on the supply of "fresh" oil components in the moving oil droplets, which is induced by the Marangoni instability. We consider this molecular system to be a prototype of self-reproducing inanimate molecular assembly exhibiting self-propelled motion.

  2. Genome-wide molecular characterization of central nervous system primitive neuroectodermal tumor and pineoblastoma

    PubMed Central

    Miller, Suzanne; Rogers, Hazel A.; Lyon, Paul; Rand, Vikki; Adamowicz-Brice, Martyna; Clifford, Steven C.; Hayden, James T.; Dyer, Sara; Pfister, Stefan; Korshunov, Andrey; Brundler, Marie-Anne; Lowe, James; Coyle, Beth; Grundy, Richard G.

    2011-01-01

    Central nervous system primitive neuroectodermal tumor (CNS PNET) and pineoblastoma are highly malignant embryonal brain tumors with poor prognoses. Current therapies are based on the treatment of pediatric medulloblastoma, even though these tumors are distinct at both the anatomical and molecular level. CNS PNET and pineoblastoma have a worse clinical outcome than medulloblastoma; thus, improved therapies based on an understanding of the underlying biology of CNS PNET and pineoblastoma are needed. To this end, we characterized the genomic alterations of 36 pediatric CNS PNETs and 8 pineoblastomas using Affymetrix single nucleotide polymorphism arrays. Overall, the majority of CNS PNETs contained a greater degree of genomic imbalance than pineoblastomas, with gain of 19p (8 [27.6%] of 29), 2p (7 [24.1%] of 29), and 1q (6 [20.7%] of 29) common events in primary CNS PNETs. Novel gene copy number alterations were identified and corroborated by Genomic Identification of Significant Targets In Cancer (GISTIC) analysis: gain of PCDHGA3, 5q31.3 in 62.1% of primary CNS PNETs and all primary pineoblastomas and FAM129A, 1q25 in 55.2% of primary CNS PNETs and 50% of primary pineoblastomas. Comparison of our GISTIC data with publically available data for medulloblastoma confirmed these CNS PNET–specific copy number alterations. With use of the collection of 5 primary and recurrent CNS PNET pairs, we found that gain of 2p21 was maintained at relapse in 80% of cases. Novel gene copy number losses included OR4C12, 11p11.12 in 48.2% of primary CNS PNETs and 50% of primary pineoblastomas. Loss of CDKN2A/B (9p21.3) was identified in 14% of primary CNS PNETs and was significantly associated with older age among children (P = .05). CADPS, 3p14.2 was lost in 27.6% of primary CNS PNETs and was associated with poor prognosis (P = .043). This genome-wide analysis revealed the marked molecular heterogeneity of CNS PNETs and enabled the identification of novel genes and clinical

  3. Molecular tailoring of interfaces for thin film on substrate systems

    NASA Astrophysics Data System (ADS)

    Grady, Martha Elizabeth

    Thin film on substrate systems appear most prevalently within the microelectronics industry, which demands that devices operate in smaller and smaller packages with greater reliability. The reliability of these multilayer film systems is strongly influenced by the adhesion of each of the bimaterial interfaces. During use, microelectronic components undergo thermo-mechanical cycling, which induces interfacial delaminations leading to failure of the overall device. The ability to tailor interfacial properties at the molecular level provides a mechanism to improve thin film adhesion, reliability and performance. This dissertation presents the investigation of molecular level control of interface properties in three thin film-substrate systems: photodefinable polyimide films on passivated silicon substrates, self-assembled monolayers at the interface of Au films and dielectric substrates, and mechanochemically active materials on rigid substrates. For all three materials systems, the effect of interfacial modifications on adhesion is assessed using a laser-spallation technique. Laser-induced stress waves are chosen because they dynamically load the thin film interface in a precise, noncontacting manner at high strain rates and are suitable for both weak and strong interfaces. Photodefinable polyimide films are used as dielectrics in flip chip integrated circuit packages to reduce the stress between silicon passivation layers and mold compound. The influence of processing parameters on adhesion is examined for photodefinable polyimide films on silicon (Si) substrates with three different passivation layers: silicon nitride (SiNx), silicon oxynitride (SiOxNy), and the native silicon oxide (SiO2). Interfacial strength increases when films are processed with an exposure step as well as a longer cure cycle. Additionally, the interfacial fracture energy is assessed using a dynamic delamination protocol. The high toughness of this interface (ca. 100 J/m2) makes it difficult

  4. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    SciTech Connect

    Gorski, R.A.

    1986-12-01

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatization of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period.

  5. Genomic Alteration in Head and Neck Squamous Cell Carcinoma (HNSCC) Cell Lines Inferred from Karyotyping, Molecular Cytogenetics, and Array Comparative Genomic Hybridization.

    PubMed

    Singchat, Worapong; Hitakomate, Ekarat; Rerkarmnuaychoke, Budsaba; Suntronpong, Aorarat; Fu, Beiyuan; Bodhisuwan, Winai; Peyachoknagul, Surin; Yang, Fengtang; Koontongkaew, Sittichai; Srikulnath, Kornsorn

    2016-01-01

    Genomic alteration in head and neck squamous cell carcinoma (HNSCC) was studied in two cell line pairs (HN30-HN31 and HN4-HN12) using conventional C-banding, multiplex fluorescence in situ hybridization (M-FISH), and array comparative genomic hybridization (array CGH). HN30 and HN4 were derived from primary lesions in the pharynx and base of tongue, respectively, and HN31 and HN12 were derived from lymph-node metastatic lesions belonging to the same patients. Gain of chromosome 1, 7, and 11 were shared in almost all cell lines. Hierarchical clustering revealed that HN31 was closely related to HN4, which shared eight chromosome alteration cases. Large C-positive heterochromatins were found in the centromeric region of chromosome 9 in HN31 and HN4, which suggests complex structural amplification of the repetitive sequence. Array CGH revealed amplification of 7p22.3p11.2, 8q11.23q12.1, and 14q32.33 in all cell lines involved with tumorigenesis and inflammation genes. The amplification of 2p21 (SIX3), 11p15.5 (H19), and 11q21q22.3 (MAML2, PGR, TRPC6, and MMP family) regions, and deletion of 9p23 (PTPRD) and 16q23.1 (WWOX) regions were identified in HN31 and HN12. Interestingly, partial loss of PTPRD (9p23) and WWOX (16q23.1) genes was identified in HN31 and HN12, and the level of gene expression tended to be the down-regulation of PTPRD, with no detectable expression of the WWOX gene. This suggests that the scarcity of PTPRD and WWOX genes might have played an important role in progression of HNSCC, and could be considered as a target for cancer therapy or a biomarker in molecular pathology.

  6. Genomic Alteration in Head and Neck Squamous Cell Carcinoma (HNSCC) Cell Lines Inferred from Karyotyping, Molecular Cytogenetics, and Array Comparative Genomic Hybridization.

    PubMed

    Singchat, Worapong; Hitakomate, Ekarat; Rerkarmnuaychoke, Budsaba; Suntronpong, Aorarat; Fu, Beiyuan; Bodhisuwan, Winai; Peyachoknagul, Surin; Yang, Fengtang; Koontongkaew, Sittichai; Srikulnath, Kornsorn

    2016-01-01

    Genomic alteration in head and neck squamous cell carcinoma (HNSCC) was studied in two cell line pairs (HN30-HN31 and HN4-HN12) using conventional C-banding, multiplex fluorescence in situ hybridization (M-FISH), and array comparative genomic hybridization (array CGH). HN30 and HN4 were derived from primary lesions in the pharynx and base of tongue, respectively, and HN31 and HN12 were derived from lymph-node metastatic lesions belonging to the same patients. Gain of chromosome 1, 7, and 11 were shared in almost all cell lines. Hierarchical clustering revealed that HN31 was closely related to HN4, which shared eight chromosome alteration cases. Large C-positive heterochromatins were found in the centromeric region of chromosome 9 in HN31 and HN4, which suggests complex structural amplification of the repetitive sequence. Array CGH revealed amplification of 7p22.3p11.2, 8q11.23q12.1, and 14q32.33 in all cell lines involved with tumorigenesis and inflammation genes. The amplification of 2p21 (SIX3), 11p15.5 (H19), and 11q21q22.3 (MAML2, PGR, TRPC6, and MMP family) regions, and deletion of 9p23 (PTPRD) and 16q23.1 (WWOX) regions were identified in HN31 and HN12. Interestingly, partial loss of PTPRD (9p23) and WWOX (16q23.1) genes was identified in HN31 and HN12, and the level of gene expression tended to be the down-regulation of PTPRD, with no detectable expression of the WWOX gene. This suggests that the scarcity of PTPRD and WWOX genes might have played an important role in progression of HNSCC, and could be considered as a target for cancer therapy or a biomarker in molecular pathology. PMID:27501229

  7. Genomic Alteration in Head and Neck Squamous Cell Carcinoma (HNSCC) Cell Lines Inferred from Karyotyping, Molecular Cytogenetics, and Array Comparative Genomic Hybridization

    PubMed Central

    Rerkarmnuaychoke, Budsaba; Suntronpong, Aorarat; Fu, Beiyuan; Bodhisuwan, Winai; Peyachoknagul, Surin; Yang, Fengtang; Koontongkaew, Sittichai; Srikulnath, Kornsorn

    2016-01-01

    Genomic alteration in head and neck squamous cell carcinoma (HNSCC) was studied in two cell line pairs (HN30-HN31 and HN4-HN12) using conventional C-banding, multiplex fluorescence in situ hybridization (M-FISH), and array comparative genomic hybridization (array CGH). HN30 and HN4 were derived from primary lesions in the pharynx and base of tongue, respectively, and HN31 and HN12 were derived from lymph-node metastatic lesions belonging to the same patients. Gain of chromosome 1, 7, and 11 were shared in almost all cell lines. Hierarchical clustering revealed that HN31 was closely related to HN4, which shared eight chromosome alteration cases. Large C-positive heterochromatins were found in the centromeric region of chromosome 9 in HN31 and HN4, which suggests complex structural amplification of the repetitive sequence. Array CGH revealed amplification of 7p22.3p11.2, 8q11.23q12.1, and 14q32.33 in all cell lines involved with tumorigenesis and inflammation genes. The amplification of 2p21 (SIX3), 11p15.5 (H19), and 11q21q22.3 (MAML2, PGR, TRPC6, and MMP family) regions, and deletion of 9p23 (PTPRD) and 16q23.1 (WWOX) regions were identified in HN31 and HN12. Interestingly, partial loss of PTPRD (9p23) and WWOX (16q23.1) genes was identified in HN31 and HN12, and the level of gene expression tended to be the down-regulation of PTPRD, with no detectable expression of the WWOX gene. This suggests that the scarcity of PTPRD and WWOX genes might have played an important role in progression of HNSCC, and could be considered as a target for cancer therapy or a biomarker in molecular pathology. PMID:27501229

  8. Encapsulated membrane proteins: A simplified system for molecular simulation.

    PubMed

    Lee, Sarah C; Khalid, Syma; Pollock, Naomi L; Knowles, Tim J; Edler, Karen; Rothnie, Alice J; R T Thomas, Owen; Dafforn, Timothy R

    2016-10-01

    Over the past 50years there has been considerable progress in our understanding of biomolecular interactions at an atomic level. This in turn has allowed molecular simulation methods employing full atomistic modelling at ever larger scales to develop. However, some challenging areas still remain where there is either a lack of atomic resolution structures or where the simulation system is inherently complex. An area where both challenges are present is that of membranes containing membrane proteins. In this review we analyse a new practical approach to membrane protein study that offers a potential new route to high resolution structures and the possibility to simplify simulations. These new approaches collectively recognise that preservation of the interaction between the membrane protein and the lipid bilayer is often essential to maintain structure and function. The new methods preserve these interactions by producing nano-scale disc shaped particles that include bilayer and the chosen protein. Currently two approaches lead in this area: the MSP system that relies on peptides to stabilise the discs, and SMALPs where an amphipathic styrene maleic acid copolymer is used. Both methods greatly enable protein production and hence have the potential to accelerate atomic resolution structure determination as well as providing a simplified format for simulations of membrane protein dynamics. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26946242

  9. EDITORIAL: 18th European Conference on Dynamics of Molecular Systems 18th European Conference on Dynamics of Molecular Systems

    NASA Astrophysics Data System (ADS)

    Varandas, A. J. C.

    2011-08-01

    This special section of Comments on Atomic, Molecular and Optical Physics (CAMOP) in Physica Scripta collects some of the papers that have been presented at the 18th European Conference on Dynamics of Molecular Systems MOLEC 2010 held in September 2010 in Curia, Portugal, as part of a series of biennial MOLEC conferences. This started in 1976 in Trento, Italy, and has continued, visiting 17 cities in 11 countries, namely Denmark, The Netherlands, Israel, France, Italy, Germany, Czech Republic, Spain, United Kingdom, Turkey and Russia. Following the MOLEC tradition, the scientific programme of the Curia meeting focused on experimental and theoretical studies of molecular interactions, collision dynamics, spectroscopy, and related fields. It included invited speakers from 22 countries, who were asked to summarize the problems reported in their presentations with the objective of revealing the current thinking of leading researchers in atomic, molecular and optical physics. It is hoped that their authoritative contributions presented in this CAMOP special section will also appeal to non-specialists through their clear and broad introductions to the field as well as references to the accessible literature. This CAMOP special section comprises ten contributions, which cover theoretical studies on the electronic structure of molecules and clusters as well as dynamics of elastic, inelastic and reactive encounters between atoms, molecules, ions, clusters and surfaces. Specifically, it includes electronic structure calculations using the traditional coupled-cluster method (Barreto et al 028111), the electron-attached equation-of-motion coupled cluster method (Hansen et al 028110), the diffusion Monte Carlo method (López-Durán et al 028107) and the path-integral Monte Carlo method (Barragán et al 028109). The contributions on molecular dynamics include on-the-fly quasi-classical trajectories on a five-atom molecule (Yu 028104), quantum reaction dynamics on triatomics

  10. Progressive alterations of central nervous system structure and function are caused by charged particle radiation

    NASA Astrophysics Data System (ADS)

    Nelson, G. A.; Cns Nscor Team

    severity of the disease-associated pathological changes. The third goal is to quantify molecular markers that underly cellular and system changes. The team will quantify the frequency and structural spectrum of mutations in hippocampal samples using the E. coli β -galactosidase gene present in a transgenic mouse's tissues. Finally, by using transcription profiling hybridization, the status of a set of 96 genes involved in cytokine signaling during inflammation will be assessed.

  11. Theoretical Studies of the Relaxation Matrix for Molecular Systems

    NASA Astrophysics Data System (ADS)

    Ma, Qiancheng; Boulet, C.

    2016-06-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements resulting from applying the isolated line approximation. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the energy corrected sudden (ECS) and the infinite order sudden (IOS) models are commonly used. Recently, we have found that in developing this semi-classical line shape theory, to rely on the isolated line approximation is not necessary. By eliminating this unjustified assumption, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism that enables one not only to reduce uncertainties for calculated half-widths and shifts, but also to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism for Raman and infrared spectra of linear and asymmetric-top molecules. Recently, the method has been extended into symmetric-tops with inverse symmetry such as the NH3 molecule. Our calculated half-widths of NH3 lines in the νb{1} and the pure

  12. Design of optimal collimation for dedicated molecular breast imaging systems

    SciTech Connect

    Weinmann, Amanda L.; Hruska, Carrie B.; O'Connor, Michael K.

    2009-03-15

    Molecular breast imaging (MBI) is a functional imaging technique that uses specialized small field-of-view gamma cameras to detect the preferential uptake of a radiotracer in breast lesions. MBI has potential to be a useful adjunct method to screening mammography for the detection of occult breast cancer. However, a current limitation of MBI is the high radiation dose (a factor of 7-10 times that of screening mammography) associated with current technology. The purpose of this study was to optimize the gamma camera collimation with the aim of improving sensitivity while retaining adequate resolution for the detection of sub-10-mm lesions. Square-hole collimators with holes matched to the pixilated cadmium zinc telluride detector elements of the MBI system were designed. Data from MBI patient studies and parameters of existing dual-head MBI systems were used to guide the range of desired collimator resolutions, source-to-collimator distances, pixel sizes, and collimator materials that were examined. General equations describing collimator performance for a conventional gamma camera were used in the design process along with several important adjustments to account for the specialized imaging geometry of the MBI system. Both theoretical calculations and a Monte Carlo model were used to measure the geometric efficiency (or sensitivity) and resolution of each designed collimator. Results showed that through optimal collimation, collimator sensitivity could be improved by factors of 1.5-3.2, while maintaining a collimator resolution of either {<=}5 or {<=}7.5 mm at a distance of 3 cm from the collimator face. These gains in collimator sensitivity permit an inversely proportional drop in the required dose to perform MBI.

  13. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  14. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  15. Neurodevelopmental alcohol exposure elicits long-term changes to gene expression that alter distinct molecular pathways dependent on timing of exposure

    PubMed Central

    2013-01-01

    Background Maternal alcohol consumption is known to adversely affect fetal neurodevelopment. While it is known that alcohol dose and timing play a role in the cognitive and behavioral changes associated with prenatal alcohol exposure, it is unclear what developmental processes are disrupted that may lead to these phenotypes. Methods Mice (n=6 per treatment per developmental time) were exposed to two acute doses of alcohol (5 g/kg) at neurodevelopmental times representing the human first, second, or third trimester equivalent. Mice were reared to adulthood and changes to their adult brain transcriptome were assessed using expression arrays. These were then categorized based on Gene Ontology annotations, canonical pathway associations, and relationships to interacting molecules. Results The results suggest that ethanol disrupts biological processes that are actively occurring at the time of exposure. These include cell proliferation during trimester one, cell migration and differentiation during trimester two, and cellular communication and neurotransmission during trimester three. Further, although ethanol altered a distinct set of genes depending on developmental timing, many of these show interrelatedness and can be associated with one another via ‘hub’ molecules and pathways such as those related to huntingtin and brain-derived neurotrophic factor. Conclusions These changes to brain gene expression represent a ‘molecular footprint’ of neurodevelopmental alcohol exposure that is long-lasting and correlates with active processes disrupted at the time of exposure. This study provides further support that there is no neurodevelopmental time when alcohol cannot adversely affect the developing brain. PMID:23497526

  16. Formation, Alteration and Delivery of Exogenous High Molecular Weight Organic Compounds: Objectives of the Tanpopo Mission from the Point of View of Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; K. Sarker, Palash; Ono, Keisuke; Kawamoto, Yukinori; Obayashi, Yumiko; Kaneko, Takeo; Yoshida, Satoshi; Mita, Hajime; Yabuta, Hikaru; Yamagishi, Akihiko

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as carbonaceous chondrites and comets. Amino acids have been confirmed in extracts from carbonaceous chondrites and cometary dusts. It was suggested that these organics were formed in quite cold environments. We irradiated possible interstellar media, such as a frozen mixture of methanol, ammonia and water, with high-energy particles. Amino acid precursors with high molecular weights were detected in the irradiated products. Such complex amino acid precursors are much more stable than free amino acids against radiation, and heat. It is suggested that interplanetary dust particles (IDPs) brought much more organics than meteorites and comets. However, characteristics of organic compounds in IDPs are little known, since they have been collected only in terrestrial biosphere. We are planning the Tanpopo Mission, where IDPs would be collected in aerogel equipped on the Exposure Facility of the International Space Station. In addition, amino acids and their relating compounds would be exposed to space environments to see their possible alteration processes.

  17. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    PubMed

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus.

  18. Soil Warming Alters the Nitrogen Cycle: Ecosystem Implications and Feedbacks to the Climate System

    NASA Astrophysics Data System (ADS)

    Butler, S. M.; Melillo, J. M.; Johnson, J. E.; Mohan, J. E.; Steudler, P. A.; Bowles, F. P.

    2008-12-01

    Increases in soil temperatures associated with global warming have the potential to accelerate nitrogen turnover in soils, which could alter other biogeochemical processes and eventually affect the structure of these forests. Over the past five years we have been studying soil and plant responses to soil warming in large plots in a deciduous stand at Harvard Forest in central Massachusetts. We have heated the soil 5°C above ambient and measured nitrogen cycling parameters including in situ net nitrogen mineralization and nitrification, nitrogen leaching and nitrous oxide (N2O) fluxes. We have also measured various aspects of the carbon cycle including soil respiration and carbon accumulation in vegetation. Over the first five years of the study, we observed a mean annual increase in the net nitrogen mineralized in the warmed plot of 23.8 kg N ha-1. While nitrification rates were low throughout the five years in the control plot, they increased in the warmed plot to account for over 25% of the total net nitrogen mineralized in year five. The increase in nitrogen mineralization stimulated tree growth and carbon storage in woody tissue in the warmed plot. The increased carbon storage in the trees compensated for more than half of the carbon lost from the soils due to accelerated decay of soil organic matter and so reduced the magnitude of the positive feedback to the climate system due to soil warming. We hypothesize that the increase in nitrification we observed will eventually "open" the nitrogen cycle and make gaseous and solution losses more likely. To date, however, we have measured no major losses of nitrous oxide or solution losses of nitrate in response to soil warming. Trees with the capacity to use nitrate may have a competitive advantage in a warmer world. Nitrate-using plants have an inducible enzyme that transforms nitrate to ammonium, a key building block for producing essential amino acids and proteins. Studies by our research group and by others have

  19. Dietary bovine lactoferrin alters mucosal and systemic immune cell responses in neonatal piglets.

    PubMed

    Comstock, Sarah S; Reznikov, Elizabeth A; Contractor, Nikhat; Donovan, Sharon M

    2014-04-01

    Lactoferrin (LF) is a multifunctional immune protein found at high concentrations in human milk. Herein, the effect of dietary bovine LF (bLF) on mucosal and systemic immune development was investigated. Colostrum-deprived piglets were fed formula containing 130 [control (Ctrl)], 367 (LF1), or 1300 (LF3) mg of bLF/(kg body weight · d). To provide passive immunity, sow serum was provided orally during the first 36 h of life. Blood, spleen, mesenteric lymph node (MLN), and ascending colon (Asc) contents were collected on day 7 (n = 10-14/group) and day 14 (n = 10-12/group). Immune cell populations were quantified by flow cytometry and immunoglobulins (Igs) were measured by ELISA. Additionally, immune cells were isolated from spleen and MLNs (n = 7/group) on day 7 and stimulated ex vivo with phytohemagglutinin or lipopolysaccharide (LPS) ± LF for 72 h. Secreted cytokine concentrations were quantified by multiplex assay. Lymphocyte populations [cluster determinant (CD)4, CD8, and natural killer cells] developed normally and were unaffected by dietary bLF. LF3 piglets tended to have 1.4 to 2 times more serum IgG than Ctrl piglets (P = 0.07) or LF1 piglets (P = 0.03), but IgA in Asc contents was unaffected by bLF. Asc IgA was 4 times higher on day 14 than day 7. Spleen cells from LF3 piglets produced 2 times more interleukin (IL)-10 and tumor necrosis factor (TNF)-α ex vivo than those from Ctrl or LF1 piglets. MLN cells from LF1 and LF3 piglets produced 40% more IL-10 and tended to produce 40% more IL-6 (P = 0.05) than those from Ctrl piglets. However, ex vivo bLF did not affect the cytokine response of spleen or MLN cells to LPS. In summary, dietary bLF alters the capacity of MLN and spleen immune cells to respond to stimulation, supporting a role for LF in the initiation of protective immune responses in these immunologically challenged neonates. PMID:24553692

  20. Short-term Hydropower Reservoir Operations in Chile's Central Interconnected System: Tradeoffs between Hydrologic Alteration and Economic Performance

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.

    2011-12-01

    Hydropower accounts for about 50% of the installed capacity in Chile's Central Interconnected System (CIS) and new developments are envisioned in the near future. Large projects involving reservoirs are perceived negatively by the general public. In terms of operations, hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and operations at each level affect different environmental processes. Due to its ability to quickly and inexpensively respond to short-term changes in demand, hydropower reservoirs often are operated to provide power during periods of peak demand. This operational scheme, known as hydropeaking, changes the hydrologic regime by altering the rate and frequency of changes in flow magnitude on short time scales. To mitigate impacts on downstream ecosystems, operational constraints -typically minimum instream flows and maximum ramping rates- are imposed on hydropower plants. These operational restrictions limit reduce operational flexibility and can reduce the economic value of energy generation by imposing additional costs on the operation of interconnected power systems. Methods to predict the degree of hydrologic alteration rely on statistical analyses of instream flow time series. Typically, studies on hydrologic alteration use historical operational records for comparison between pre- and post-dam conditions. Efforts to assess hydrologic alteration based on future operational schemes of reservoirs are scarce. This study couples two existing models: a mid-term operations planning and a short-term economic dispatch to simulate short-term hydropower reservoir operations under different future scenarios. Scenarios of possible future configurations of the Chilean CIS are defined with emphasis on the introduction of non-conventional renewables (particularly wind energy) and large hydropower projects in Patagonia. Both models try to reproduce the actual decision making process in the Chilean Central Interconnected System

  1. Molecular characteristics of phosphoenolpyruvate: mannose phosphotransferase system in Streptococcus bovis.

    PubMed

    Asanuma, Narito; Yoshii, Takahiro; Hino, Tsuneo

    2004-07-01

    To elucidate the regulatory mechanism of catabolite control in Streptococcus bovis, we investigated the molecular properties and gene expression of the mannose-specific phosphoenolpyruvate (PEP)-dependent sugar: phosphotransferase system (PTS). The mannose PTS gene cluster (man) was found to comprise a gene encoding enzyme (E) II AB (manL) and genes encoding EIIC (manM), EIID (manN), and a putative regulator (manO). The gene cluster (man operon) was transcribed from one transcriptional start site, which was located 40 bp upstream of the manL start codon. However, two transcriptional start sites were found between manN and manO in primer extension analysis, and the manO may be transcribed independently from the man operon. The man operon and manO were constitutively transcribed without being affected by culture conditions, such as the sugar supplied (glucose, galactose, fructose, maltose, lactose, sucrose, or mannose), growth rate, or pH. PMID:15297922

  2. Molecular mechanisms of autophagy in the cardiovascular system.

    PubMed

    Gatica, Damián; Chiong, Mario; Lavandero, Sergio; Klionsky, Daniel J

    2015-01-30

    Autophagy is a catabolic recycling pathway triggered by various intra- or extracellular stimuli that is conserved from yeast to mammals. During autophagy, diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been characterized widely in cardiomyocytes, cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells. In all cases, a window of optimal autophagic activity seems to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. Here, we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease.

  3. Inducibility of a molecular bioreporter system by heavy metals

    SciTech Connect

    Klimowski, L.; Rayms-Keller, A.; Olson, K.E.; Yang, R.S.H.; Tessari, J.; Carlson, J.; Beaty, B.

    1996-02-01

    The authors have developed a molecular bioreporter model for detecting an invertebrate response to heavy metals in streams. The bioreporter system, pMt2-luc, utilizes a Drosophila melanogaster metallothionein promoter to regulate luciferase expression in stably transformed mosquito cells.The LucC5 clone, which was isolated from pMt2-luc transformed, hygromycin-resistant C6/36 (Aedes albopictus) cells, demonstrated a 12-fold increase in luciferase-specific activity 48 h after exposure to 13 ppm copper (Cu). In addition to Cu, exposure of LucC5 cells to 19 ppm lead (Pb) or 3 ppm mercury (Hg) for 48 h induced luciferase expression threefold and fourfold, respectively. Exposures of up to 30 ppm arsenic (As), 8 ppm cadmium (Cd), 7 ppm chromium (Cr), or 5 ppm nickel (Ni) had no effect on luciferase induction. LucC5 cells exposed to metal mixtures of 13 ppm Cu and 19 ppm Pb yielded an additive response with a 14-fold increase in luciferase expression. When organic chemicals such as phenol (3 ppm) were mixed with 13 ppm Cu, 19 ppm Pb, or 3 ppm Hg a significant reduction in luciferase activity was noted. Additionally, atomic absorption spectroscopy suggested that two of the metals, Cu and Pb, show marked differences in accumulation within the LucC5 cell line.

  4. Fast electronic structure methods for strongly correlated molecular systems

    NASA Astrophysics Data System (ADS)

    Head-Gordon, Martin; Beran, Gregory J. O.; Sodt, Alex; Jung, Yousung

    2005-01-01

    A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given.

  5. The roles of integration in molecular systems biology.

    PubMed

    O'Malley, Maureen A; Soyer, Orkun S

    2012-03-01

    A common way to think about scientific practice involves classifying it as hypothesis- or data-driven. We argue that although such distinctions might illuminate scientific practice very generally, they are not sufficient to understand the day-to-day dynamics of scientific activity and the development of programmes of research. One aspect of everyday scientific practice that is beginning to gain more attention is integration. This paper outlines what is meant by this term and how it has been discussed from scientific and philosophical points of view. We focus on methodological, data and explanatory integration, and show how they are connected. Then, using some examples from molecular systems biology, we will show how integration works in a range of inquiries to generate surprising insights and even new fields of research. From these examples we try to gain a broader perspective on integration in relation to the contexts of inquiry in which it is implemented. In today's environment of data-intensive large-scale science, integration has become both a practical and normative requirement with corresponding implications for meta-methodological accounts of scientific practice. We conclude with a discussion of why an understanding of integration and its dynamics is useful for philosophy of science and scientific practice in general.

  6. Early molecular adsorbents recirculating system treatment of Amanita mushroom poisoning.

    PubMed

    Kantola, Taru; Kantola, Teemu; Koivusalo, Anna-Maria; Höckerstedt, Krister; Isoniemi, Helena

    2009-10-01

    Acute poisoning due to ingestion of hepatotoxic Amanita sp. mushrooms can result in a spectrum of symptoms, from mild gastrointestinal discomfort to life-threatening acute liver failure. With conventional treatment, Amanita phalloides mushroom poisoning carries a substantial risk of mortality and many patients require liver transplantation. The molecular adsorbent recirculating system (MARS) is an artificial liver support system that can partly compensate for the detoxifying function of the liver by removing albumin-bound and water-soluble toxins from blood. This treatment has been used in acute liver failure to enable native liver recovery and as a bridging treatment to liver transplantation. The aim of the study is to evaluate the outcome of 10 patients with Amanita mushroom poisoning who were treated with MARS. The study was a retrospectively analyzed case series. Ten adult patients with accidental Amanita poisoning of varying severity were treated in a liver disease specialized intensive care unit from 2001 to 2007. All patients received MARS treatment and standard medical therapy for mushroom poisoning. The demographic, laboratory, and clinical data from each patient were recorded upon admission. The one-year survival and need for liver transplantation were documented. The median times from mushroom ingestion to first-aid at a local hospital and to MARS treatment were 18 h (range 14-36 h) and 48 h (range 26-78 h), respectively. All 10 patients survived longer than one year. One patient underwent a successful liver transplantation. No serious adverse side-effects were observed with the MARS treatment. In conclusion, MARS treatment seems to offer a safe and effective treatment option in Amanita mushroom poisoning.

  7. Methamphetamine alters blood brain barrier protein expression in mice, facilitating central nervous system infection by neurotropic Cryptococcus neoformans.

    PubMed

    Eugenin, Eliseo A; Greco, Jade M; Frases, Susana; Nosanchuk, Joshua D; Martinez, Luis R

    2013-08-15

    Methamphetamine (METH) is a drug of abuse that is a potent and highly addictive central nervous system (CNS) stimulant. The blood brain barrier (BBB) is a unique interface that in part functions to prevent microbial invasion of the CNS. The effects of METH on brain vasculature have not been studied extensively. We hypothesized that METH alters the BBB integrity, increasing susceptibility to CNS infection. Using a murine model of METH administration, we demonstrated that METH alters BBB integrity and modifies the expression of tight junction and adhesion molecules. Additionally, we showed that BBB disruption accelerates transmigration of the neurotropic fungus Cryptococcus neoformans into the brain parenchyma after systemic infection. Furthermore, METH-treated mice displayed increased mortality as compared to untreated animals. Our findings provide novel evidence of the impact of METH abuse on the integrity of the cells that comprise the BBB and protect the brain from infection.

  8. Methamphetamine Alters Blood Brain Barrier Protein Expression in Mice, Facilitating Central Nervous System Infection by Neurotropic Cryptococcus neoformans

    PubMed Central

    Eugenin, Eliseo A.; Greco, Jade M.; Frases, Susana; Nosanchuk, Joshua D.; Martinez, Luis R.

    2013-01-01

    Methamphetamine (METH) is a drug of abuse that is a potent and highly addictive central nervous system (CNS) stimulant. The blood brain barrier (BBB) is a unique interface that in part functions to prevent microbial invasion of the CNS. The effects of METH on brain vasculature have not been studied extensively. We hypothesized that METH alters the BBB integrity, increasing susceptibility to CNS infection. Using a murine model of METH administration, we demonstrated that METH alters BBB integrity and modifies the expression of tight junction and adhesion molecules. Additionally, we showed that BBB disruption accelerates transmigration of the neurotropic fungus Cryptococcus neoformans into the brain parenchyma after systemic infection. Furthermore, METH-treated mice displayed increased mortality as compared to untreated animals. Our findings provide novel evidence of the impact of METH abuse on the integrity of the cells that comprise the BBB and protect the brain from infection. PMID:23532099

  9. Fluids in early stage hydrothermal alteration of high-sulfidation epithermal systems: A view from the Vulcano active hydrothermal system (Aeolian Island, Italy)

    NASA Astrophysics Data System (ADS)

    Boyce, Adrian J.; Fulignati, Paolo; Sbrana, Alessandro; Fallick, Anthony E.

    2007-10-01

    High-sulfidation (HS) epithermal systems have elements in common with passively degassing volcanoes associated with high T, acid fumarole fields or acid crater lakes. They are considered to form in two stages, the first of which involves advanced argillic alteration resulting from intense, strongly acidic fluid-rock interaction. The La Fossa hydrothermal system (Vulcano Island) represents a classic example of such an active HS system and can be considered as a modern analogue of this early stage of alteration, resulting in a core of intense silicic (90-95% pure SiO 2) alteration surrounded by alunitic alteration zones. This paper focuses on a geochemical and stable isotope study of the surficial alteration facies of Vulcano - particularly the horizon characterized by strong silicic alteration - and on deep seated xenoliths ejected during the last eruption of La Fossa volcano (1888-90) that can be considered as representative of fragments of the deep conduit system of La Fossa volcano. Using directly measured temperatures at the sites of sampling, we have calculated fluid composition in isotopic equilibrium with the alteration products. The large range of measured silica δ18O (12.3 to 29‰) reflects the wide range of formation temperatures (80-240 °C). The fluid compositions calculated for intense silicic alteration vary from - 0.9 to + 6.5‰. These are significantly heavier than local meteoric water (- 6‰), and are consistent with derivation from the condensation of high-temperature fumarolic gases, dominated by magmatic fluids and rich in acid gases (SO 2, H 2S, HCl, HF), into shallow groundwaters of meteoric origin, with dynamically variable ratios of fumarolic steam/meteoric water. The calculated δ18O and δD of water in equilibrium with alunite also suggest the mixing of magmatic and meteoric waters for the fluids involved in the genesis of advanced argillic alteration facies. The calculated δ18O of water in equilibrium with hedenbergitic clinopyroxene

  10. Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias.

    PubMed

    Hartman, Matthew E; Liu, Yonggang; Zhu, Wei-Zhong; Chien, Wei-Ming; Weldy, Chad S; Fishman, Glenn I; Laflamme, Michael A; Chin, Michael T

    2014-07-01

    CHF1/Hey2 is a Notch-responsive basic helix-loop-helix transcription factor involved in cardiac development. Common variants in Hey2 are associated with Brugada syndrome. We hypothesized that absence of CHF1/Hey2 would result in abnormal cellular electrical activity, altered cardiac conduction system (CCS) development, and increased arrhythmogenesis. We isolated neonatal CHF/Hey2-knockout (KO) cardiac myocytes and measured action potentials and ion channel subunit gene expression. We also crossed myocardial-specific CHF1/Hey2-KO mice with cardiac conduction system LacZ reporter mice and stained for conduction system tissue. We also performed ambulatory ECG monitoring for arrhythmias and heart rate variability. Neonatal cardiomyocytes from CHF1/Hey2-KO mice demonstrate a 50% reduction in action potential dV/dT, a 50-75% reduction in SCN5A, KCNJ2, and CACNA1C ion channel subunit gene expression, and an increase in delayed afterdepolarizations from 0/min to 12/min. CHF1/Hey2 cKO CCS-lacZ mice have a ∼3-fold increase in amount of CCS tissue. Ambulatory ECG monitoring showed no difference in cardiac conduction, arrhythmias, or heart rate variability. Wild-type cells or animals were used in all experiments. CHF1/Hey2 may contribute to Brugada syndrome by influencing the expression of SCN5A and formation of the cardiac conduction system, but its absence does not cause baseline conduction defects or arrhythmias in the adult mouse.-Hartman, M. E., Liu, Y., Zhu, W.-Z., Chien, W.-M., Weldy, C. S., Fishman, G. I., Laflamme, M. A., Chin, M. T. Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias.

  11. Molecular photoionization studies of nucleobases and correlated systems

    SciTech Connect

    Poliakoff, Erwin D.

    2015-03-11

    We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.

  12. Nanoparticle inhalation alters systemic arteriolar vasoreactivity through sympathetic and cyclooxygenase-mediated pathways

    PubMed Central

    Knuckles, Travis L.; Yi, Jinghai; Frazer, David G.; Leonard, Howard D.; Chen, Bean T.; Castranova, Vince; Nurkiewicz, Timothy R.

    2016-01-01

    The widespread increase in the production and use of nanomaterials has increased the potential for nanoparticle exposure; however, the biological effects of nanoparticle inhalation are poorly understood. Rats were exposed to nanosized titanium dioxide aerosols (10 µg lung burden); at 24 h post-exposure, the spinotrapezius muscle was prepared for intravital microscopy. Nanoparticle exposure did not alter perivascular nerve stimulation (PVNS)-induced arteriolar constriction under normal conditions; however, adrenergic receptor inhibition revealed a more robust effect. Nanoparticle inhalation reduced arteriolar dilation in response to active hyperaemia (AH). In both PVNS and AH experiments, nitric oxide synthase (NOS) inhibition affected only controls. Whereas cyclooxygenase (COX) inhibition only attenuated AH-induced arteriolar dilation in nanoparticle-exposed animals. This group displayed an enhanced U46619 constriction and attenuated iloprost-induced dilation. Collectively, these studies indicate that nanoparticle exposure reduces microvascular NO bioavailability and alters COX-mediated vasoreactivity. Furthermore, the enhanced adrenergic receptor sensitivity suggests an augmented sympathetic responsiveness. PMID:21830860

  13. The molecular branching ratio method for calibration of optical systems in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1972-01-01

    The intensity distribution of bands belonging to six molecular band systems is discussed with special emphasis on their usefulness for intensity calibration of optical systems in the vacuum ultraviolet (1000A Lambda 3000A). The theory of molecular band intensities is outlined and the technique of measuring the spectral response curve is described. Several methods for establishing an absolute intensity calibration are discussed.

  14. Persistent behavioral impairments and alterations of brain dopamine system after early postnatal administration of thimerosal in rats.

    PubMed

    Olczak, Mieszko; Duszczyk, Michalina; Mierzejewski, Pawel; Meyza, Ksenia; Majewska, Maria Dorota

    2011-09-30

    The neurotoxic organomercurial thimerosal (THIM), used for decades as vaccine preservative, is a suspected factor in the pathogenesis of some neurodevelopmental disorders. Previously we showed that neonatal administration of THIM at doses equivalent to those used in infant vaccines or higher, causes lasting alterations in the brain opioid system in rats. Here we investigated neonatal treatment with THIM (at doses 12, 240, 1440 and 3000 μg Hg/kg) on behaviors, which are characteristically altered in autism, such as locomotor activity, anxiety, social interactions, spatial learning, and on the brain dopaminergic system in Wistar rats of both sexes. Adult male and female rats, which were exposed to the entire range of THIM doses during the early postnatal life, manifested impairments of locomotor activity and increased anxiety/neophobia in the open field test. In animals of both sexes treated with the highest THIM dose, the frequency of prosocial interactions was reduced, while the frequency of asocial/antisocial interactions was increased in males, but decreased in females. Neonatal THIM treatment did not significantly affect spatial learning and memory. THIM-exposed rats also manifested reduced haloperidol-induced catalepsy, accompanied by a marked decline in the density of striatal D₂ receptors, measured by immunohistochemical staining, suggesting alterations to the brain dopaminergic system. Males were more sensitive than females to some neurodisruptive/neurotoxic actions of THIM. These data document that early postnatal THIM administration causes lasting neurobehavioral impairments and neurochemical alterations in the brain, dependent on dose and sex. If similar changes occur in THIM/mercurial-exposed children, they could contribute do neurodevelopmental disorders. PMID:21549155

  15. Systemic Inhibition of Canonical Notch Signaling Results in Sustained Callus Inflammation and Alters Multiple Phases of Fracture Healing

    PubMed Central

    Dishowitz, Michael I.; Mutyaba, Patricia L.; Takacs, Joel D.; Barr, Andrew M.; Engiles, Julie B.; Ahn, Jaimo; Hankenson, Kurt D.

    2013-01-01

    The Notch signaling pathway is an important regulator of embryological bone development, and many aspects of development are recapitulated during bone repair. We have previously reported that Notch signaling components are upregulated during bone fracture healing. However, the significance of the Notch pathway in bone regeneration has not been described. Therefore, the objective of this study was to determine the importance of Notch signaling in regulating bone fracture healing by using a temporally controlled inducible transgenic mouse model (Mx1-Cre;dnMAMLf/-) to impair RBPjκ-mediated canonical Notch signaling. The Mx1 promoter was synthetically activated resulting in temporally regulated systemic dnMAML expression just prior to creation of bilateral tibial fractures. This allowed for mice to undergo unaltered embryological and post-natal skeletal development. Results showed that systemic Notch inhibition prolonged expression of inflammatory cytokines and neutrophil cell inflammation, and reduced the proportion of cartilage formation within the callus at 10 days-post-fracture (dpf) Notch inhibition did not affect early bone formation at 10dpf, but significantly altered bone maturation and remodeling at 20dpf. Increased bone volume fraction in dnMAML fractures, which was due to a moderate decrease in callus size with no change in bone mass, coincided with increased trabecular thickness but decreased connectivity density, indicating that patterning of bone was altered. Notch inhibition decreased total osteogenic cell density, which was comprised of more osteocytes rather than osteoblasts. dnMAML also decreased osteoclast density, suggesting that osteoclast activity may also be important for altered fracture healing. It is likely that systemic Notch inhibition had both direct effects within cell types as well as indirect effects initiated by temporally upstream events in the fracture healing cascade. Surprisingly, Notch inhibition did not alter cell proliferation

  16. Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma

    PubMed Central

    Iqbal, J; Greiner, TC; Patel, K; Dave, BJ; Smith, L; Ji, J; Wright, G; Sanger, WG; Pickering, DL; Jain, S; Horsman, DE; Shen, Y; Fu, K; Weisenburger, DD; Hans, CP; Campo, E; Gascoyne, RD; Rosenwald, A; Jaffe, ES; Delabie, J; Rimsza, L; Ott, G; Müller-Hermelink, HK; Connors, JM; Vose, JM; McKeithan, T; Staudt, LM; Chan, WC

    2008-01-01

    Gene expression profiling of diffuse large B-cell lymphoma (DLBCL) has revealed biologically and prognostically distinct subgroups: germinal center B-cell-like (GCB), activated B-cell-like (ABC) and primary mediastinal (PM) DLBCL. The BCL6 gene is often translocated and/or mutated in DLBCL. Therefore, we examined the BCL6 molecular alterations in these DLBCL subgroups, and their impact on BCL6 expression and BCL6 target gene repression. BCL6 translocations at the major breakpoint region (MBR) were detected in 25 (18.8%) of 133 DLBCL cases, with a higher frequency in the PM (33%) and ABC (24%) subgroups than in the GCB (10%) subgroup. Translocations at the alternative breakpoint region (ABR) were detected in five (6.4%) of 78 DLBCL cases, with three cases in ABC and one case each in the GCB and the unclassifiable subgroups. The translocated cases involved IgH and non-IgH partners in about equal frequency and were not associated with different levels of BCL6 mRNA and protein expression. BCL6 mutations were detected in 61% of DLBCL cases, with a significantly higher frequency in the GCB and PM subgroups (> 70%) than in the ABC subgroup (44%). Exon-1 mutations were mostly observed in the GCB subgroup. The repression of known BCL6 target genes correlated with the level of BCL6 mRNA and protein expression in GCB and ABC subgroups but not with BCL6 translocation and intronic mutations. No clear inverse correlation between BCL6 expression and p53 expression was observed. Patients with higher BCL6 mRNA or protein expression had a significantly better overall survival. The biological role of BCL6 in translocated cases where repression of known target genes is not demonstrated is intriguing and warrants further investigation. PMID:17625604

  17. Molecular genetic alterations in egfr CA-SSR-1 microsatellite and egfr copy number changes are associated with aggressiveness in thymoma

    PubMed Central

    Conti, Salvatore; Gallo, Enzo; Sioletic, Stefano; Facciolo, Francesco; Palmieri, Giovannella; Lauriola, Libero; Evoli, Amelia; Martucci, Robert; Di Benedetto, Anna; Novelli, Flavia; Giannarelli, Diana; Deriu, Gloria; Granone, Pierluigi; Ottaviano, Margaret; Muti, Paola; Pescarmona, Edoardo

    2016-01-01

    Background The key role of egfr in thymoma pathogenesis has been questioned following the failure in identifying recurrent genetic alterations of egfr coding sequences and relevant egfr amplification rate. We investigated the role of the non-coding egfr CA simple sequence repeat 1 (CA-SSR-1) in a thymoma case series. Methods We used sequencing and egfr-fluorescence in situ hybridization (FISH) to genotype 43 thymomas; (I) for polymorphisms and somatic loss of heterozygosity of the non-coding egfr CA-SSR-1 microsatellite and (II) for egfr gene copy number changes. Results We found two prevalent CA-SSR-1 genotypes: a homozygous 16 CA repeat and a heterozygous genotype, bearing alleles with 16 and 20 CA repeats. The average combined allele length was correlated with tumor subtype: shorter sequences were significantly associated with the more aggressive WHO thymoma subtype group including B2/B3, B3 and B3/C histotypes. Four out of 29 informative cases analysed for somatic CA-SSR-1 loss of heterozygosity showed allelic imbalance (AI), 3/4 with loss of the longer allele. By egfr-FISH analysis, 9 out of 33 cases were FISH positive. Moreover, the two integrated techniques demonstrated that 3 out of 4 CA-SSR-1-AI positive cases with short allele relative prevalence showed significantly low or high chromosome 7 “polysomy”/increased gene copy number by egfr-FISH. Conclusions Our molecular and genetic and follow up data indicated that CA-SSR-1-allelic imbalance with short allele relative prevalence significantly correlated with EGFR 3+ immunohistochemical score, increased egfr Gene Copy Number, advanced stage and with relapsing/metastatic behaviour in thymomas. PMID:27076933

  18. 41 CFR 51-9.503 - Effective date of new systems of records or alteration of an existing system of records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Effective date of new... Contracts and Property Management Other Provisions Relating to Public Contracts COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED 9-PRIVACY ACT RULES 9.5-Report on New Systems and Alteration...

  19. Realizing molecular pixel system for full-color fluorescence reproduction: RGB-emitting molecular mixture free from energy transfer crosstalk.

    PubMed

    Kwon, Ji Eon; Park, Sanghyuk; Park, Soo Young

    2013-07-31

    A full-color molecular pixel system is realized for the first time using simple mixtures composed of RGB-emitting excited-state intramolecular proton transfer (ESIPT) dyes, each of which has delicately tailored Stokes shift and independent emission capability completely free from energy transfer crosstalk between them. It is demonstrated that the whole range of emission colors enclosed within the RGB color triangle on the CIE 1931 diagram is predictable and conveniently reproducible from the RGB molecular pixels not only in the solution but also in the polymer film. It must be noted that mixing ratios to reproduce the desired color coordinates can be precisely calculated on the basis of additive color theory according to their molecular pixel behavior. PMID:23876082

  20. Realizing molecular pixel system for full-color fluorescence reproduction: RGB-emitting molecular mixture free from energy transfer crosstalk.

    PubMed

    Kwon, Ji Eon; Park, Sanghyuk; Park, Soo Young

    2013-07-31

    A full-color molecular pixel system is realized for the first time using simple mixtures composed of RGB-emitting excited-state intramolecular proton transfer (ESIPT) dyes, each of which has delicately tailored Stokes shift and independent emission capability completely free from energy transfer crosstalk between them. It is demonstrated that the whole range of emission colors enclosed within the RGB color triangle on the CIE 1931 diagram is predictable and conveniently reproducible from the RGB molecular pixels not only in the solution but also in the polymer film. It must be noted that mixing ratios to reproduce the desired color coordinates can be precisely calculated on the basis of additive color theory according to their molecular pixel behavior.

  1. Search for germline alterations in CDKN2A/ARF and CDK4 of 42 Jewish melanoma families with or without neural system tumours.

    PubMed

    Marian, C; Scope, A; Laud, K; Friedman, E; Pavlotsky, F; Yakobson, E; Bressac-de Paillerets, B; Azizi, E

    2005-06-20

    To gain insight into the molecular mechanisms involved in the inherited predisposition to melanoma and associated neural system tumours, 42 Jewish, mainly Ashkenazi, melanoma families with or without neural system tumours were genotyped for germline point mutations and genomic deletions at the CDKN2A/ARF and CDK4 loci. CDKN2A/ARF deletion detection was performed using D9S1748, an intragenic microsatellite marker. Allele dosage at the p14ARF locus was analysed by quantitative real-time PCR employing a TaqMan probe that anneals specifically to exon 1beta of the p14ARF gene. For detecting point mutations, dHPLC and direct sequencing of the coding sequences of CDKN2A/ARF and CDK4 was used. No germline alterations in any of the tested genes were detected among the families under study. We conclude that in the majority of Ashkenazi Jewish families, the genes tested are unlikely to be implicated in the predisposition to melanoma and associated neural system tumours.

  2. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    PubMed

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  3. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    SciTech Connect

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  4. Encapsulation altered starch digestion: toward developing starch-based delivery systems.

    PubMed

    Janaswamy, Srinivas

    2014-01-30

    Starch is an abundant biomaterial that forms a vital energy source for humans. Altering its digestion, e.g. increasing the proportions of slowly digestible starch (SDS) and resistant starch (RS), would revolutionize starch utility in addressing a number of health issues related to glucose absorption, glycemic index and colon health. The research reported in this article is based on my hypothesis that water channels present in the B-type starch crystalline matrix, particularly in tuber starches, can embed guest molecules such as nutraceuticals, drugs, flavor compounds and vitamins leading to altered starch digestion. Toward this goal, potato starch has been chosen as the model tuber starch, and ibuprofen, benzocaine, sulfapyridine, curcumin, thymol and ascorbic acid as model guest molecules. X-ray powder diffraction and FT-IR analyses clearly suggest the incorporation of guest molecules in the water channels of potato starch. Furthermore, the in vitro digestion profiles of complexes are intriguing with major variations occurring after 60 min of starch digestion and finally at 120 min. These changes are concomitantly reflected in the SDS and RS amounts, with about 24% decrease in SDS for benzocaine complex and 6% increase in RS for ibuprofen complex, attesting the ability of guest molecule encapsulation in modulating the digestion properties of potato starch. Overall, this research provides an elegant opportunity for the design and development of novel starch-based stable carriers that not only bestow tailored glucose release rates but could also transport health promoting and disease preventing compounds.

  5. Charged-particle induced alterations of surfaces in the outer solar system

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1991-01-01

    Researchers calculated the plasma bombardment profiles of the surfaces of the icy Saturnian satellites in order to interpret reflection spectra and the effect of charged particles on the surfaces (mantles) of Pluto and of comets in the Oort cloud. Pluto's exposure to cosmic rays results in a slow alteration of the reflectance if the methane condensed on its surface. The UV absorbed in the atmosphere can produce precipitates. The researchers showed that, depending on the rates of the competing regolith processes and rates for replenishment of the methane, the surface can appear bright, red, or dark. Using laboratory data, they showed that the amount of darkening occurring in one orbit is small. Therefore, transport, burial, and re-exposure of organic sediments must control the reflectance, and the average reflectance is established by the radiation altered species accumulated over many orbits with the observed spatial, and possible temporal, differences in albedo due to transport. The cosmic rays, although producing changes in reflectance slowly, do so inevitably. Therefore, the fact that the surface is not dark everywhere implies that it is active and the exposure rates vs. depth into the surface of Pluto can be used to constrain turnover rates. Comets in the Oort cloud experience similar rates.

  6. Molecular profiles to biology and pathways: a systems biology approach.

    PubMed

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  7. Actinide geochemistry: from the molecular level to the real system.

    PubMed

    Geckeis, Horst; Rabung, Thomas

    2008-12-12

    Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due

  8. Actinide geochemistry: from the molecular level to the real system.

    PubMed

    Geckeis, Horst; Rabung, Thomas

    2008-12-12

    Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid-liquid interface reactions to obtain molecular level speciation insight. We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto gamma-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S-O-An(III)(OH)x(2-x)(H2O)5-x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions. The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide-colloid interaction. Kinetic stabilization of colloid bound actinides can be due

  9. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Roy, Raktim; Phani Shilpa, P.; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level.

  10. A polycation-chaperoned in-stem molecular beacon system.

    PubMed

    Asanuma, Hiroyuki; Osawa, Takuya; Kashida, Hiromu; Fujii, Taiga; Liang, Xingguo; Niwa, Kosuke; Yoshida, Yasuko; Shimada, Naohiko; Maruyama, Atsushi

    2012-02-01

    In the presence of poly(L-lysine)-graft-dextran, an in-stem molecular beacon involving three perylene-anthraquinone pairs in the stem region had a signal/background ratio of as high as 570. Response speed was also remarkable; equilibrium was attained within 5 minutes after addition of substrate DNA at 20 °C.

  11. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice

    PubMed Central

    Poroyko, Valeriy A.; Carreras, Alba; Khalyfa, Abdelnaby; Khalyfa, Ahamed A.; Leone, Vanessa; Peris, Eduard; Almendros, Isaac; Gileles-Hillel, Alex; Qiao, Zhuanhong; Hubert, Nathaniel; Farré, Ramon; Chang, Eugene B.; Gozal, David

    2016-01-01

    Chronic sleep fragmentation (SF) commonly occurs in human populations, and although it does not involve circadian shifts or sleep deprivation, it markedly alters feeding behaviors ultimately promoting obesity and insulin resistance. These symptoms are known to be related to the host gut microbiota. Mice were exposed to SF for 4 weeks and then allowed to recover for 2 weeks. Taxonomic profiles of fecal microbiota were obtained prospectively, and conventionalization experiments were performed in germ-free mice. Adipose tissue insulin sensitivity and inflammation, as well as circulating measures of inflammation, were assayed. Effect of fecal water on colonic epithelial permeability was also examined. Chronic SF-induced increased food intake and reversible gut microbiota changes characterized by the preferential growth of highly fermentative members of Lachnospiraceae and Ruminococcaceae and a decrease of Lactobacillaceae families. These lead to systemic and visceral white adipose tissue inflammation in addition to altered insulin sensitivity in mice, most likely via enhanced colonic epithelium barrier disruption. Conventionalization of germ-free mice with SF-derived microbiota confirmed these findings. Thus, SF-induced metabolic alterations may be mediated, in part, by concurrent changes in gut microbiota, thereby opening the way for gut microbiome-targeted therapeutics aimed at reducing the major end-organ morbidities of chronic SF. PMID:27739530

  12. [Alterations of calcium, magnesium, and zinc in essential hypertension:their relation to the renin-angiotensin-aldosterone system].

    PubMed

    García Zozaya, J L; Padilla Viloria, M

    1997-11-01

    Based on our studies at the Hypertension research unit, we have found that the renin-angiotensin aldosterone. System (RAAS) undergoes several changes being the following the most relevant: Low plasma renin concentration (LPRC), while the plasma Aldosterone concentration is high (HPAC). At the same time we found calcium metabolism alterations: High urine calcium excretion, low serum ionic calcium and high PTH level. This alterations are more evident if the elder patient become hypertensive. We have found this changes in several groups in our community: black, ancient, obese and diabetic patients; who more often suffer hypertension and they must be followed up closely. In this group there are the sodium dependent hypertensive and they are the one who can get beneficial effects from the low salt diet and high calcium intake. When we studied the low plasma renin hypertensive we found the calcium changes mentioned before in ancient patient, as well as, high urine Zinc excretion. When we gave and oral calcium supplement to these patients, we saw that the calcium and Zinc alterations mentioned before were corrected. The high plasma renin concentration hypertensive patients showed low serum magnesium concentration and high urine magnesium excretion. A brief comment on the possible role of oxidative stress on essential hypertension is made. PMID:9471228

  13. Parasite-induced alteration of odour responses in an amphipod-acanthocephalan system.

    PubMed

    Stone, Charles F; Moore, Janice

    2014-11-01

    Odour-related behaviours in aquatic invertebrates are important and effective anti-predator behaviours. Parasites often alter invertebrate host behaviours to increase transmission to hosts. This study investigated the responses of the amphipod Hyalella azteca when presented with two predator chemical cues: (i) alarm pheromones produced by conspecifics and (ii) kairomones produced by a predatory Green Sunfish (Lepomis cyanellus). We compared the responses of amphipods uninfected and infected with the acanthocepalan parasite Leptorhynchiodes thecatus. Uninfected amphipods reduced activity and increased refuge use after detecting both the alarm pheromones and predator kairomones. Infected amphipods spent significantly more time being active and less time on the refuge than uninfected amphipods, and behaved as if they had not detected the chemical stimulus. Therefore, L. thecatus infections disrupt the amphipods' anti-predator behaviours and likely make their hosts more susceptible to predation. PMID:25200352

  14. Alcohol abuse and smoking alter inflammatory mediator production by pulmonary and systemic immune cells.

    PubMed

    Gaydos, Jeanette; McNally, Alicia; Guo, Ruixin; Vandivier, R William; Simonian, Philip L; Burnham, Ellen L

    2016-03-15

    Alcohol use disorders (AUDs) and tobacco smoking are associated with an increased predisposition for community-acquired pneumonia and the acute respiratory distress syndrome. Mechanisms are incompletely established but may include alterations in response to pathogens by immune cells, including alveolar macrophages (AMs) and peripheral blood mononuclear cells (PBMCs). We sought to determine the relationship of AUDs and smoking to expression of IFNγ, IL-1β, IL-6, and TNFα by AMs and PBMCs from human subjects after stimulation with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). AMs and PBMCs from healthy subjects with AUDs and controls, matched on smoking, were cultured with LPS (1 μg/ml) or LTA (5 μg/ml) in the presence and absence of the antioxidant precursor N-acetylcysteine (10 mM). Cytokines were measured in cell culture supernatants. Expression of IFNγ, IL-1β, IL-6, and TNFα in AMs and PBMCs was significantly increased in response to stimulation with LPS and LTA. AUDs were associated with augmented production of proinflammatory cytokines, particularly IFNγ and IL-1β, by AMs and PBMCs in response to LPS. Smoking diminished the impact of AUDs on AM cytokine expression. Expression of basal AM and PBMC Toll-like receptors-2 and -4 was not clearly related to differences in cytokine expression; however, addition of N-acetylcysteine with LPS or LTA led to diminished AM and PBMC cytokine secretion, especially among current smokers. Our findings suggest that AM and PBMC immune cell responses to LPS and LTA are influenced by AUDs and smoking through mechanisms that may include alterations in cellular oxidative stress.

  15. Altered parasympathetic nervous system regulation of the sinoatrial node in Akita diabetic mice.

    PubMed

    Krishnaswamy, Pooja S; Egom, Emmanuel E; Moghtadaei, Motahareh; Jansen, Hailey J; Azer, John; Bogachev, Oleg; Mackasey, Martin; Robbins, Courtney; Rose, Robert A

    2015-05-01

    Cardiovascular autonomic neuropathy (CAN) is a serious complication of diabetes mellitus that impairs autonomic regulation of heart rate (HR). This has been attributed to damage to the nerves that modulate spontaneous pacemaker activity in the sinoatrial node (SAN). Our objective was to test the hypothesis that impaired parasympathetic regulation of HR in diabetes is due to reduced responsiveness of the SAN to parasympathetic agonists. We used the Akita mouse model of type 1 diabetes to study the effects of the parasympathetic agonist carbachol (CCh) on SAN function using intracardiac programmed stimulation, high resolution optical mapping and patch-clamping of SAN myocytes. CCh decreased HR by 30% and increased corrected SAN recovery time (cSNRT) by 123% in wildtype mice. In contrast, CCh only decreased HR by 12%, and only increased cSNRT by 37% in Akita mice. These alterations were due to smaller effects of CCh on SAN electrical conduction and spontaneous action potential firing in isolated SAN myocytes. Voltage clamp experiments demonstrate that the acetylcholine-activated K(+) current (IKACh) is reduced in Akita SAN myocytes due to enhanced desensitization and faster deactivation kinetics. These IKACh alterations were normalized by treating Akita SAN myocytes with PI(3,4,5)P3 or an inhibitor of regulator of G-protein signaling 4 (RGS4). There was no difference in the effects of CCh on the hyperpolarization-activated current (If) between wildtype and Akita mice. Our study demonstrates that Akita diabetic mice demonstrate impaired parasympathetic regulation of HR and SAN function due to reduced responses of the SAN to parasympathetic agonists. Our experiments demonstrate a key role for insulin-dependent phosphoinositide 3-kinase (PI3K) signaling in the parasympathetic dysfunction seen in the SAN in diabetes. PMID:25754673

  16. Hydrothermal alteration in an exhumed crustal fault zone: geochemical mobility in the Caleta Coloso Fault, Atacama Fault System, Northern Chile

    NASA Astrophysics Data System (ADS)

    Arancibia, G.; Fujita, K.; Hoshino, K.; Mitchell, T. M.; Cembrano, J. M.; Gomila, R.; Morata, D.; Faulkner, D. R.; Rempe, M.

    2013-12-01

    Fault zones must be considered as complex and heterogeneous systems, with areas of high permeability that alternate with very low permeability bands. Strike-slip fault zones play an important role in fluid migration in the crust, and exhumed faults can provide insights into the interrelationships of deformation mechanisms, fluid-rock interactions and bulk chemical redistributions. We determined the mineral chemistry and whole-rock geochemistry of the damage zone and fault core of the Caleta Coloso Fault, a complex major crustal scale strike-slip fault in Northern Chile, in order to constrain the physical and chemical conditions of fluids that lead to strong hydrothermal alteration. Caleta Coloso Fault consists of variably altered protocataclasites, cataclasites and discrete bands of ultracataclasite derived from a protolith of Jurassic tonalite. Hydrothermal alteration associated with fault-related fluid flow is characterized by a very low-grade association composed by chlorite, epidote, albite, quartz and calcite. Chlorite thermometry indicates T-values in the range of 284 to 352 °C (average temperature of 323 °C) and no differences in mineral composition or T-values were observed among different cataclastic rock types. Mass balance and volume change calculations document that the major chemical mobility was observed in protocataclasite, whereas cataclasite and ultracataclasite show smaller changes. This suggests that fluid flow and chemical alteration post-dated the faulting, when the protocataclasite was relatively permeable and the cataclasite and ultracataclasite acted as a barrier for fluid flow having a very low permeability due to extreme grain size reduction during cataclasis.

  17. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal-porphyry copper system at Red Mountain, Arizona

    USGS Publications Warehouse

    Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.

    2013-01-01

    Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of

  18. Systemic and Vascular Alterations in Rat models Exposed to Libby Amphibole

    EPA Science Inventory

    Acute pulmonary injury and chronic diseases can impact systemic vasculature and extra pulmonary organ systems due to the hemodynamic properties of the pulmonary capillary network that allows mediators to release into the circulation. Exposure to Libby amphibole (LA) is associated...

  19. 76 FR 4435 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... physicians as qualified to interpret X-rays using the ILO system of classification for pneumoconiosis. This... purpose of this system is certify physicians as qualified to interpret X-rays using the ILO system of... coal operators and X-ray facilities so that they may contact physicians to do work for them....

  20. 32 CFR Appendix F to Part 310 - Format for New or Altered System Report

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; 5 U.S.C. 9902(m), Labor Management Relations in the Department of Defense; and 5 CFR 9901.907... proposed for the system ; 4. Authority for maintenance of the System; 5. Probable or potential effects on the privacy of individuals; 6. Is the system, in whole or part, being maintained by a contractor;...

  1. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    ERIC Educational Resources Information Center

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  2. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    ERIC Educational Resources Information Center

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  3. Molecular-Flow Properties of RIB Type Vapor-Transport Systems Using a Fast-Valve

    SciTech Connect

    Alton, Gerald D; Bilheux, Hassina Z; Zhang, Y.; Liu, Yuan

    2014-01-01

    The advent of the fast-valve device, described previously, permits measurement of molecular-flow times of chemically active or inactive gaseous species through radioactive ion beam (RIB) target ion source systems, independent of size, geometry and materials of construction. Thus, decay losses of short-half-life RIBs can be determined for a given target/vapor-transport system in advance of on-line operation, thereby ascertaining the feasibility of the system design for successful processing of a given isotope. In this article, molecular-flow-time theory and experimentally measured molecular-flow time data are given for serial- and parallel-coupled Ta metal RIB vapor-transport systems similar to those used at ISOL based RIB facilities. In addition, the effect of source type on the molecular-flow time properties of a given system is addressed, and a chemical passivation method for negating surface adsorption enthalpies for chemically active gaseous species on Ta surfaces is demonstrated.

  4. Method for photo-altering a biological system to improve biological effect

    DOEpatents

    Hill, Richard A.; Doiron, Daniel R.; Crean, David H.

    2000-08-01

    Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.

  5. Alterations in the histaminergic system in Alzheimer's disease: a postmortem study.

    PubMed

    Shan, Ling; Bossers, Koen; Unmehopa, Unga; Bao, Ai-Min; Swaab, Dick F

    2012-11-01

    Histamine is produced by the hypothalamic tuberomamillary nucleus (TMN). We studied its involvement in Alzheimer's disease (AD) by in situ hybridization of histidine decarboxylase (HDC), the key enzyme of histamine production, in 9 AD patients and 9 controls. Additionally, messenger (m) RNA levels of the 4 histamine receptors (H(1-4)R) and of the enzyme involved in histamine metabolism, histamine methyltransferase (HMT), were determined by quantitative polymerase chain reaction (qPCR) in the prefrontal cortex (PFC) in the course of AD (n = 49). Moreover, alterations in glia markers were studied. HDC-mRNA levels in the TMN were unchanged in AD, despite of the reduced number of Nissl-stained neurons (p = 0.001). However, a decrease in HDC-mRNA was observed in its medial part (mTMN; p = 0.047). In the course of AD only females had increased prefrontal cortex expression of histamine receptor-3 (H(3)R) (p = 0.007) and histamine methyltransferase-mRNA (p = 0.011) and of the glia markers, glial fibrillary acidic protein-mRNA, vimentin-mRNA and proteolipid protein-mRNA. These findings indicate the presence of regional changes in the TMN that are at least partly gender-dependent.

  6. WI-38 cell long-term quiescence model system: a valuable tool to study molecular events that regulate growth.

    PubMed

    Soprano, K J

    1994-04-01

    A number of cell culture model systems have been used to study the regulation of cell cycle progression at the molecular level. In this paper we describe the WI-38 cell long-term quiescence model system. By modulating the length of time that WI-38 cells are density arrested, it is possible to proportionately alter the length of the prereplicative or G-1 phase which the cell traverses after growth factor stimulation in preparation for entry into DNA synthesis. Through studies aimed at understanding the cause and molecular nature of the prolongation of the prereplicative phase, we have determined that gene expression plays an important role in establishing growth factor "competence" and that once the cell becomes "competent" there is a defined order to the molecular events that follow during the remainder of G-1. More specifically, we have determined that the prolongation represents a delay in the ability of long term quiescent cells to become fully "competent" to respond to growth factors which regulate progression through G-1 into S. This prolongation appears to occur as a result of changes during long term quiescence in the ability of immediate early G-1 specific genes (such as c-myc) to activate the expression of early G-1 specific genes (such as ornithine decarboxylase). While ODC is the first and thus far only growth associated gene identified as a target of c-myc (and the Myc/Max protein complex), it is likely that further studies in this model system will reveal other early G-1 growth regulatory genes. We anticipate that future follow-up studies in this model system will provide additional valuable information about the function of growth-regulatory genes in controlling growth factor responsiveness and cell cycle progression.

  7. Molecular systems evaluation of oligomerogenic APPE693Q and fibrillogenic APPKM670/671NL/PSEN1Δexon9 mouse models identifies shared molecular features with human Alzheimer’s brain molecular pathology

    PubMed Central

    Readhead, Ben; Haure-Mirande, Jean-Vianney; Zhang, Bin; Haroutunian, Vahram; Gandy, Sam; Schadt, Eric E.; Dudley, Joel T.; Ehrlich, Michelle E.

    2016-01-01

    Identification and characterization of molecular mechanisms that connect genetic risk factors to initiation and evolution of disease pathophysiology represent major goals and opportunities for improving therapeutic and diagnostic outcomes in Alzheimer’s disease (AD). Integrative genomic analysis of the human AD brain transcriptome holds potential for revealing novel mechanisms of dysfunction that underlie the onset and/or progression of the disease. We performed an integrative genomic analysis of brain tissue derived transcriptomes measured from two lines of mice expressing distinct mutant AD-related proteins. The first line expresses oligomerogenic mutant APPE693Q inside neurons, leading to accumulation of amyloid beta (Aβ) oligomers and behavioral impairment, but never develops parenchymal fibrillar amyloid deposits. The second line expresses APPKM670/671NL/PSEN1Δexon9 in neurons and accumulates fibrillar Aβ amyloid and amyloid plaques accompanied by neuritic dystrophy and behavioral impairment. We performed RNA-sequencing analyses of dentate gyrus and entorhinal cortex from each line and from wild type mice. We then performed an integrative genomic analysis to identify dysregulated molecules and pathways, comparing transgenic mice with wild type controls as well as to each other. We also compared these results with datasets derived from human AD brain. Differential gene and exon expression analysis revealed pervasive alterations in APP/Aβ metabolism, epigenetic control of neurogenesis, cytoskeletal organization, and extracellular matrix regulation. Comparative molecular analysis converged on FMR1 (Fragile X Mental Retardation-1), an important negative regulator of APP translation and oligomerogenesis in the post-synaptic space. Integration of these transcriptomic results with human postmortem AD gene networks, differential expression and differential splicing signatures identified significant similarities in pathway dysregulation, including extracellular

  8. 76 FR 4446 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Tuberculosis Follow-up Program, HHS/CDC/NCHSTP.'' HHS is proposing to add the following Breach Response Routine...-20-0103, ``Alien Tuberculosis Follow-up Program, HHS/CDC/ NCHSTP.'' To provide a record system for the surveillance and periodic medical evaluation of immigrant aliens with tuberculosis. This System...

  9. Inorganic fertilizer and poultry-litter manure amendments alter the soil microbial communities in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of agricultural land management practices on soil prokaryotic diversity are not well described. We investigated three land usage systems (row cropped, ungrazed pasture, and cattle-grazed pasture) and two fertilizer systems (inorganic fertilizer or IF and poultry-litter or PL) and compare...

  10. 76 FR 77575 - Privacy Act of 1974; Report of an Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... by the system to include all applicants for Volunteer service with Peace Corps Response. The second... apply for Peace Corps Response Volunteer service and to ] record resulting actions taken on the... covered by the system: All applicants for Volunteer service with the Peace Corps Response. Purpose:...

  11. 75 FR 5606 - Privacy Act of 1974; Report of an Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... the Division of Student Loans and Scholarships (DSLS). The system includes information on student and...), HHS/HRSA/BHPr. Security Classification: None. System Location: The Division of Student Loans and... (42 U.S.C. 292q), Health Professions Student Loan; Section 835 of the Public Health Service Act (42...

  12. 76 FR 4452 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... System of Records, 09-20-0113, ``Epidemic Investigation Case Records, HHS/CDC/NCID.'' HHS is proposing to... System of Records, No. 09-20-0113, ``Epidemic Investigation Case Records, HHS/CDC/NCID.'' The record...) Centers for Disease Control and Prevention (CDC) National Center for Infectious Diseases (NCID)...

  13. 76 FR 4460 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... records in this System are stored in Coordinating Office for Global Health Local Area Network (LAN) files... area. Procedural Safeguards--Protection for computerized records on the COGH Local Area Network (LAN... and Information Systems.'' Data maintained on the COGH LAN is in compliance with OMB Circular...

  14. Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields.

    PubMed

    Vaughan, Timothy E; Weaver, James C

    2005-05-01

    We describe an approach to aiding the design and interpretation of experiments involving biological effects of weakly interacting electromagnetic fields that range from steady (dc) to microwave frequencies. We propose that if known biophysical mechanisms cannot account for an inferred, underlying molecular change signal-to-noise ratio, (S/N)gen, of a observed result, then there are two interpretation choices: (1) there is an unknown biophysical mechanism with stronger coupling between the field exposure and the ongoing biochemical process, or (2) the experiment is responding to something other than the field exposure. Our approach is based on classical detection theory, the recognition that weakly interacting fields cannot break chemical bonds, and the consequence that such fields can only alter rates of ongoing, metabolically driven biochemical reactions, and transport processes. The approach includes both fundamental chemical noise (molecular shot noise) and other sources of competing chemical change, to be compared quantitatively to the field induced change for the basic case that the field alters a single step in a biochemical network. Consistent with pharmacology and toxicology, we estimate the molecular dose (mass associated with field induced molecular change per mass tissue) resulting from illustrative low frequency field exposures for the biophysical mechanism of voltage gated channels. For perspective, we then consider electric field-mediated delivery of small molecules across human skin and into individual cells. Specifically, we consider the examples of iontophoretic and electroporative delivery of fentanyl through skin and electroporative delivery of bleomycin into individual cells. The total delivered amount corresponds to a molecular change signal and the delivery variability corresponds to generalized chemical noise. Viewed broadly, biological effects due to nonionizing fields may include animal navigation, medical applications, and environmental

  15. Improved metabolic health alters host metabolism in parallel with changes in systemic xeno-metabolites of gut origin.

    PubMed

    Campbell, Caitlin; Grapov, Dmitry; Fiehn, Oliver; Chandler, Carol J; Burnett, Dustin J; Souza, Elaine C; Casazza, Gretchen A; Gustafson, Mary B; Keim, Nancy L; Newman, John W; Hunter, Gary R; Fernandez, Jose R; Garvey, W Timothy; Harper, Mary-Ellen; Hoppel, Charles L; Meissen, John K; Take, Kohei; Adams, Sean H

    2014-01-01

    Novel plasma metabolite patterns reflective of improved metabolic health (insulin sensitivity, fitness, reduced body weight) were identified before and after a 14-17 wk weight loss and exercise intervention in sedentary, obese insulin-resistant women. To control for potential confounding effects of diet- or microbiome-derived molecules on the systemic metabolome, sampling was during a tightly-controlled feeding test week paradigm. Pairwise and multivariate analysis revealed intervention- and insulin-sensitivity associated: (1) Changes in plasma xeno-metabolites ("non-self" metabolites of dietary or gut microbial origin) following an oral glucose tolerance test (e.g. higher post-OGTT propane-1,2,3-tricarboxylate [tricarballylic acid]) or in the overnight-fasted state (e.g., lower γ-tocopherol); (2) Increased indices of saturated very long chain fatty acid elongation capacity; (3) Increased post-OGTT α-ketoglutaric acid (α-KG), fasting α-KG inversely correlated with Matsuda index, and altered patterns of malate, pyruvate and glutamine hypothesized to stem from improved mitochondrial efficiency and more robust oxidation of glucose. The results support a working model in which improved metabolic health modifies host metabolism in parallel with altering systemic exposure to xeno-metabolites. This highlights that interpretations regarding the origins of peripheral blood or urinary "signatures" of insulin resistance and metabolic health must consider the potentially important contribution of gut-derived metabolites toward the host's metabolome. PMID:24416208

  16. Impaired sense of smell and altered olfactory system in RAG-1−∕− immunodeficient mice

    PubMed Central

    Rattazzi, Lorenza; Cariboni, Anna; Poojara, Ridhika; Shoenfeld, Yehuda; D'Acquisto, Fulvio

    2015-01-01

    Immune deficiencies are often associated with a number of physical manifestations including loss of sense of smell and an increased level of anxiety. We have previously shown that T and B cell-deficient recombinase activating gene (RAG-1)−∕− knockout mice have an increased level of anxiety-like behavior and altered gene expression involved in olfaction. In this study, we expanded these findings by testing the structure and functional development of the olfactory system in RAG-1−∕− mice. Our results show that these mice have a reduced engagement in different types of odors and this phenotype is associated with disorganized architecture of glomerular tissue and atrophy of the main olfactory epithelium. Most intriguingly this defect manifests specifically in adult age and is not due to impairment in the patterning of the olfactory neuron staining at the embryo stage. Together these findings provide a formerly unreported biological evidence for an altered function of the olfactory system in RAG-1−∕− mice. PMID:26441494

  17. Improved Metabolic Health Alters Host Metabolism in Parallel with Changes in Systemic Xeno-Metabolites of Gut Origin

    PubMed Central

    Fiehn, Oliver; Chandler, Carol J.; Burnett, Dustin J.; Souza, Elaine C.; Casazza, Gretchen A.; Gustafson, Mary B.; Keim, Nancy L.; Newman, John W.; Hunter, Gary R.; Fernandez, Jose R.; Garvey, W. Timothy; Harper, Mary-Ellen; Hoppel, Charles L.; Meissen, John K.; Take, Kohei; Adams, Sean H.

    2014-01-01

    Novel plasma metabolite patterns reflective of improved metabolic health (insulin sensitivity, fitness, reduced body weight) were identified before and after a 14–17 wk weight loss and exercise intervention in sedentary, obese insulin-resistant women. To control for potential confounding effects of diet- or microbiome-derived molecules on the systemic metabolome, sampling was during a tightly-controlled feeding test week paradigm. Pairwise and multivariate analysis revealed intervention- and insulin-sensitivity associated: (1) Changes in plasma xeno-metabolites (“non-self” metabolites of dietary or gut microbial origin) following an oral glucose tolerance test (e.g. higher post-OGTT propane-1,2,3-tricarboxylate [tricarballylic acid]) or in the overnight-fasted state (e.g., lower γ-tocopherol); (2) Increased indices of saturated very long chain fatty acid elongation capacity; (3) Increased post-OGTT α-ketoglutaric acid (α-KG), fasting α-KG inversely correlated with Matsuda index, and altered patterns of malate, pyruvate and glutamine hypothesized to stem from improved mitochondrial efficiency and more robust oxidation of glucose. The results support a working model in which improved metabolic health modifies host metabolism in parallel with altering systemic exposure to xeno-metabolites. This highlights that interpretations regarding the origins of peripheral blood or urinary “signatures” of insulin resistance and metabolic health must consider the potentially important contribution of gut-derived metabolites toward the host's metabolome. PMID:24416208

  18. Altered TNF-Alpha, Glucose, Insulin and Amino Acids in Islets Langerhans Cultured in a Microgravity Model System

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Leeper-Woodford, Sandra K.; Hashemi, Brian B.; Smith, Scott M.; Sams, Clarence F.

    2001-01-01

    The present studies were designed to determine effects of a microgravity model system upon lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha (TNF-alpha) activity and indices of insulin and fuel homeostasis of pancreatic islets of Langerhans. Islets (1726+/-1 17,150 u IEU) from Wistar Furth rats were treated as: 1) HARV (High Aspect Ratio Vessel cell culture) , 2) HARV plus LPS, 3) static culture, 4) static culture plus LPS. TNF-alpha (L929 cytotoxicity assay) was significantly increased in LPS-induced HARV and static cultures, yet the increase was more pronounced in the static culture group (p<0.05). A decrease in insulin concentration was demonstrated in the LPS stimulated HARV culture (p<0.05). We observed a greater glucose concentration and increased disappearance of arginine in islets cultured in HARVs. While nitrogenous compound analysis indicated a ubiquitous reliance upon glutamine in all experimental groups, arginine was converted to ornithine at a two-fold greater rate in the islets cultured in the HARV microgravity model system (p<0.05). These studies demonstrate alterations in LPS induced TNF-alpha production of pancreatic islets of Langerhans, favoring a lesser TNF activity in the HARV. These alterations in fuel homeostasis may be promulgated by gravity averaged cell culture methods or by three dimensional cell assembly.

  19. Improved metabolic health alters host metabolism in parallel with changes in systemic xeno-metabolites of gut origin.

    PubMed

    Campbell, Caitlin; Grapov, Dmitry; Fiehn, Oliver; Chandler, Carol J; Burnett, Dustin J; Souza, Elaine C; Casazza, Gretchen A; Gustafson, Mary B; Keim, Nancy L; Newman, John W; Hunter, Gary R; Fernandez, Jose R; Garvey, W Timothy; Harper, Mary-Ellen; Hoppel, Charles L; Meissen, John K; Take, Kohei; Adams, Sean H

    2014-01-01

    Novel plasma metabolite patterns reflective of improved metabolic health (insulin sensitivity, fitness, reduced body weight) were identified before and after a 14-17 wk weight loss and exercise intervention in sedentary, obese insulin-resistant women. To control for potential confounding effects of diet- or microbiome-derived molecules on the systemic metabolome, sampling was during a tightly-controlled feeding test week paradigm. Pairwise and multivariate analysis revealed intervention- and insulin-sensitivity associated: (1) Changes in plasma xeno-metabolites ("non-self" metabolites of dietary or gut microbial origin) following an oral glucose tolerance test (e.g. higher post-OGTT propane-1,2,3-tricarboxylate [tricarballylic acid]) or in the overnight-fasted state (e.g., lower γ-tocopherol); (2) Increased indices of saturated very long chain fatty acid elongation capacity; (3) Increased post-OGTT α-ketoglutaric acid (α-KG), fasting α-KG inversely correlated with Matsuda index, and altered patterns of malate, pyruvate and glutamine hypothesized to stem from improved mitochondrial efficiency and more robust oxidation of glucose. The results support a working model in which improved metabolic health modifies host metabolism in parallel with altering systemic exposure to xeno-metabolites. This highlights that interpretations regarding the origins of peripheral blood or urinary "signatures" of insulin resistance and metabolic health must consider the potentially important contribution of gut-derived metabolites toward the host's metabolome.

  20. Synthesis of Charge Transfer Dyes for Use as Molecular Sensors in Biological Systems

    NASA Technical Reports Server (NTRS)

    Christie, Joseph J.

    2003-01-01

    This is a continuation of last year's project to synthesize tetraaryl substituted benzodifurans for use as molecular probes in biological systems. The project will involve the synthesis and chemical characterization of dyes and precursor molecules.

  1. Alterations of hydraulic soil properties influenced by land-use changes and agricultural management systems

    NASA Astrophysics Data System (ADS)

    Weninger, Thomas; Kreiselmeier, Janis; Chandrasekhar, Parvathy; Jülich, Stefan; Schwärzel, Kai; Schwen, Andreas

    2016-04-01

    Estimation and modeling of soil water movement and the hydrologic balance of soils requires sound knowledge about hydraulic soil properties (HSP). The soil water characteristics, the hydraulic conductivity function and the pore size distribution (PSD) are commonly used instruments for the mathematical representation of HSP. Recent research highlighted the temporal variability of these functions caused by meteorological or land-use influences. State of the art modeling software for the continuous simulation of soil water movement uses a stationary approach for the HSP which means that their time dependent alterations and the subsequent effects on soil water balance is not considered. Mathematical approaches to describe the evolution of PSD are nevertheless known, but there is a lack of sound data basis for parameter estimation. Based on extensive field and laboratory measurements at 5 locations along a climatic gradient across Austria and Germany, this study will quantify short-term changes in HSP, detect driving forces and introduce a method to predict the effects of soil and land management actions on the soil water balance. Amongst several soil properties, field-saturated and unsaturated hydraulic conductivities will be determined using a hood infiltration experiments in the field as well as by evaporation and dewpoint potentiometer method in the lab. All measurements will be carried out multiple times over a span of 2 years which will allow a detailed monitoring of changes in HSP. Experimental sites where we expect significant inter-seasonal changes will be equipped with sensors for soil moisture and matric potential. The choice of experimental field sites follows the intention to involve especially the effects of tillage operations, different cultivation strategies, microclimatically effective structures and land-use changes. The international project enables the coverage of a broad range of soil types as well as climate conditions and hence will have broad

  2. Molecular methods for studying the Cryphonectria parasitica - hypovirus experimental system.

    PubMed

    Dawe, Angus L; Mu, Rong; Rivera, Gloricelys; Salamon, Joanna A

    2011-01-01

    The interaction of the filamentous fungal plant pathogen Cryphonectria parasitica with its virulence-attenuating viruses provides a unique platform to explore the molecular biology and genetics of virus-host interactions. Following the development of transformation procedures for this fungus, subsequent advances include infectious cDNA clones of several members of the Hypoviridae and an imminently complete fungal genome project. Presented here are basic protocols for growth of the organism and the extraction of DNA, RNA, and protein. Additionally, two further protocols are provided for investigations of host protein phosphorylation and for viral genome secondary structure.

  3. 76 FR 4443 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... sprinkler system, automatic sensors (e.g., water, heat, smoke, etc.) are installed, and portable fire... computer tapes and/or other magnetic media. Additional safeguards may be built into the program by...

  4. 76 FR 4449 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Road buildings. The computer room is protected by an automatic sprinkler system, automatic sensors (e.g... removed from Privacy Act computer tapes and/or other magnetic media. Additional safeguards may be...

  5. 76 FR 4480 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... sprinkler system, numerous automatic sensors (e.g., water, heat, smoke, etc.) are installed, and a proper... tapes. To avoid inadvertent data disclosure, when erasing computer tapes and/ or other magnetic...

  6. 76 FR 4458 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... automatic sprinkler system, numerous automatic sensors (e.g., water, heat, smoke, etc.) are installed, and a... removed from Privacy Act computer tapes and/or other magnetic media. Additional safeguards may be...

  7. Systemic and Vascular Alterations in Healthy and Cardiovascular Compromised Rats Exposed to Libby Amphibole

    EPA Science Inventory

    Rationale: Acute pulmonary injury and chronic disease can impact systemic vasculature because the lung capillary network can release inflammogenic and vasoactive mediators into the circulation. Occupational exposure to Libby amphibole (LA) type asbestos is associated with increas...

  8. Systemic inflammation alters satellite glial cell function and structure. A possible contribution to pain.

    PubMed

    Blum, E; Procacci, P; Conte, V; Hanani, M

    2014-08-22

    Local peripheral injury activates satellite glial cells (SGCs) in sensory ganglia, which may contribute to chronic pain. We hypothesized that systemic inflammation affects sensory ganglia like local injury. We induced systemic inflammation in mice by injecting lipopolysaccharide (LPS) intraperitoneally, and characterized SGCs and neurons in dorsal root ganglia (DRG), using dye injection, calcium imaging, electron microscopy (EM), immunohistochemistry, and electrical recordings. Several days post-LPS, SGCs were activated, and dye coupling among SGCs increased 3-4.5-fold. EM showed abnormal growth of SGC processes and the formation of new gap junctions. Sensitivity of SGCs to ATP increased twofold, and neuronal excitability was augmented. Blocking gap junctions reduced pain behavior in LPS-treated mice. Thus, changes in DRG due to systemic inflammation are similar to those due to local injury, which may explain the pain in sickness behavior and in other systemic diseases.

  9. 76 FR 4483 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... agents. II. Authority for Maintenance of the System Public Health Security and Bioterrorism Preparedness and Response Act of 2002 and the Agricultural Bioterrorism Protection Act of 2002 (Pub. L....

  10. Ascending monoaminergic systems alterations in Alzheimer's disease. translating basic science into clinical care.

    PubMed

    Trillo, Ludwig; Das, Devsmita; Hsieh, Wayne; Medina, Brian; Moghadam, Sarah; Lin, Bill; Dang, Van; Sanchez, Martha Millan; De Miguel, Zurine; Ashford, J Wesson; Salehi, Ahmad

    2013-09-01

    Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD. PMID:23707776

  11. Molecular systems governing leaf growth: from genes to networks.

    PubMed

    González, Nathalie; Inzé, Dirk

    2015-02-01

    Arabidopsis leaf growth consists of a complex sequence of interconnected events involving cell division and cell expansion, and requiring multiple levels of genetic regulation. With classical genetics, numerous leaf growth regulators have been identified, but the picture is far from complete. With the recent advances made in quantitative phenotyping, the study of the quantitative, dynamic, and multifactorial features of leaf growth is now facilitated. The use of high-throughput phenotyping technologies to study large numbers of natural accessions or mutants, or to screen for the effects of large sets of chemicals will allow for further identification of the additional players that constitute the leaf growth regulatory networks. Only a tight co-ordination between these numerous molecular players can support the formation of a functional organ. The connections between the components of the network and their dynamics can be further disentangled through gene-stacking approaches and ultimately through mathematical modelling. In this review, we describe these different approaches that should help to obtain a holistic image of the molecular regulation of organ growth which is of high interest in view of the increasing needs for plant-derived products.

  12. Molecular solid-state inverter-converter system

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1973-01-01

    A modular approach for aerospace electrical systems has been developed, using lightweight high efficiency pulse width modulation techniques. With the modular approach, a required system is obtained by paralleling modules. The modular system includes the inverters and converters, a paralleling system, and an automatic control and fault-sensing protection system with a visual annunciator. The output is 150 V dc, or a low distortion three phase sine wave at 120 V, 400 Hz. Input power is unregulated 56 V dc. Each module is rated 2.5 kW or 3.6 kVA at 0.7 power factor.

  13. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.

    PubMed

    Cho, Yeonchoo; Cho, Woo Jong; Youn, Il Seung; Lee, Geunsik; Singh, N Jiten; Kim, Kwang S

    2014-11-18

    CONSPECTUS: In chemical and biological systems, various interactions that govern the chemical and physical properties of molecules, assembling phenomena, and electronic transport properties compete and control the microscopic structure of materials. The well-controlled manipulation of each component can allow researchers to design receptors or sensors, new molecular architectures, structures with novel morphology, and functional molecules or devices. In this Account, we describe the structures and electronic and spintronic properties of π-molecular systems that are important for controlling the architecture of a variety of carbon-based systems. Although DFT is an important tool for describing molecular interactions, the inability of DFT to accurately represent dispersion interactions has made it difficult to properly describe π-interactions. However, the recently developed dispersion corrections for DFT have allowed us to include these dispersion interactions cost-effectively. We have investigated noncovalent interactions of various π-systems including aromatic-π, aliphatic-π, and non-π systems based on dispersion-corrected DFT (DFT-D). In addition, we have addressed the validity of DFT-D compared with the complete basis set (CBS) limit values of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and Møller-Plesset second order perturbation theory (MP2). The DFT-D methods are still unable to predict the correct ordering in binding energies within the benzene dimer and the cyclohexane dimer. Nevertheless, the overall DFT-D predicted binding energies are in reasonable agreement with the CCSD(T) results. In most cases, results using the B97-D3 method closely reproduce the CCSD(T) results with the optimized energy-fitting parameters. On the other hand, vdW-DF2 and PBE0-TS methods estimate the dispersion energies from the calculated electron density. In these approximations, the interaction energies around the equilibrium

  14. Stromatolitic knobs in Storr's Lake (San Salvador, Bahamas): a model system for formation and alteration of laminae.

    PubMed

    Dupraz, C; Fowler, A; Tobias, C; Visscher, P T

    2013-11-01

    The initial lamination in young, metabolically active Scytonema knobs developing in Storr's Lake (Bahamas) results from the iterative succession of two different stages of microbial growth at the top of this microbialite. Stage 1 is dominated by vertically oriented cyanobacterial filaments and is characterized by a high porosity of the fabric. Stage 2 shows a higher microbial density with the filaments oriented horizontally and with higher carbonate content. The more developed, dense microbial community associated with Stage 2 of the Scytonema knobs rapidly degrades extracellular organic matter (EOM) and coupled to this, precipitates carbonate. The initial nucleation forms high-Mg calcite nanospheroids that progressively replace the EOM. No precipitation is observed within the thick sheath of the Scytonema filaments, possibly because of strong cross-linking of calcium and EOM (forming EOM-Ca-EOM complexes), which renders Ca unavailable for carbonate nucleation (inhibition process). Eventually, organominerals precipitate and form an initial lamina through physicochemical and microbial processes, including high rates of photosynthetic activity that lead to (13) C-enriched DIC available for initial nucleation. As this lamina moves downward by the iterative production of new laminae at the top of the microbialite, increased heterotrophic activity further alters the initial mineral product at depth. Although some rare relic preservation of 'Stage 1-Stage 2' laminae in subfossil knobs exists, the very fine primary lamination is considerably altered and almost completely lost when the knobs develop into larger and more complex morphologies due to the increased accommodation space and related physicochemical and/or biological alteration. Despite considerable differences in microstructure, the emerging ecological model of community succession leading to laminae formation described here for the Scytonema knobs can be applied to the formation of coarse-grained, open marine

  15. Prenatal exposure to interleukin-6 results in hypertension and alterations in the renin–angiotensin system of the rat

    PubMed Central

    Samuelsson, Anne-Maj; Alexanderson, Camilla; Mölne, Johan; Haraldsson, Börje; Hansell, Peter; Holmäng, Agneta

    2006-01-01

    Cytokines are emerging as important in developmental processes. They may induce alterations in normal gene expression patterns, activate angiotensinogen transcription, or alter expression of the renin–angiotensin system (RAS). To determine whether prenatal exposure to interleukin-6 (IL-6) influences gene expression of the intrarenal RAS and contributes to renal dysfunction and hypertension in adulthood, we exposed female rats to IL-6 early (EIL-6 females) and late (LIL-6 females) in pregnancy and analysed blood pressure in the offspring at 5–20 weeks of age. Renal fluid and electrolyte excretion was assessed in clearance experiments, mRNA expression by real-time PCR, and protein levels by Western blot. Systolic pressure was increased at 5 weeks in IL-6 females and at 11 weeks in males. Circulatory RAS levels were increased in all IL-6 females, but angiotensin-1-converting enzyme (ACE) activity was increased only in LIL-6 females. LIL-6 males and IL-6 females showed decreased urinary flow rate and urinary sodium and potassium excretion. Dopamine excretion was decreased IL-6 females. In adult renal cortex, renin expression was increased in all IL-6 females, but angiotensinogen mRNA was increased only in LIL-6 females; AT1 receptor (AT1-R) mRNA and protein levels were increased in LIL-6 females, whereas AT2 receptor (AT2-R) levels were decreased in LIL-6 females and EIL-6 males. In adult renal medulla, AT1-R protein levels were increased in LIL-6 females, and AT2-R mRNA and protein levels were decreased in EIL-6 males and LIL-6 females. Prenatal IL-6 exposure may cause hypertension by altering the renal and circulatory RAS and renal fluid and electrolyte excretion, especially in females. PMID:16825309

  16. Classical molecular simulations of complex industrially-important systems on the Intel Paragon

    SciTech Connect

    Cochran, H.D.; LoCascio, P.F.; Cummings, P.T.

    1996-06-01

    Advances in parallel supercomputing now make possible molecular-based engineering and science calculations that will soon revolutionize many technologies, such as those involving polymers and those involving aqueous electrolytes. We have developed a suite of message-passing codes for classical molecular simulation of such complex fluids and amorphous materials and have completed a number of demonstration calculations of problems of scientific and technological importance with each. In this overview paper we will outline the techniques for classical molecular simulation of these industrially-important systems on the Inter Paragon and we will summarize some of the important scientific and technical results of the varied applications, including the following: (1) Parallel codes for quatemion dynamics using techniques for handling long-range Coulombic forces allow study of ion pairing in supercritical aqueous electrolyte solutions. Ion pairing lies at the heart of technological problems with corrosion and solids deposition in industrial processes utilizing high temperature water. (2) Non-equilibrium, multiple time step molecular dynamics lets us investigate the rheology of molecular fluids. Such calculations enable the molecular-based design of new synthetic lubricants of importance in the automotive engines of the future. (3) Chain molecule Monte Carlo simulations in the Gibbs ensemble now permit calculation of phase equilibrium of long-chain molecular systems. With complementary equilibrium molecular dynamics (with multiple time steps) we have been able to gain fundamental insight into the technologically-important problem of liquid-liquid phase separation in polymer blends.

  17. Systems biology for molecular life sciences and its impact in biomedicine.

    PubMed

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  18. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier.

    PubMed

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-06-04

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based "rocking chair" type battery.

  19. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    PubMed Central

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-01-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery. PMID:26043147

  20. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    NASA Astrophysics Data System (ADS)

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-06-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery.

  1. Environmental pollutants and alterations in the reproductive system in wild male mink (Neovison vison) from Sweden.

    PubMed

    Persson, Sara; Magnusson, Ulf

    2015-02-01

    The wild American mink, a semi-aquatic top predator, is exposed to high levels of environmental pollutants that may affect its reproductive system. In this study, the reproductive organs from 101 wild male mink collected in Sweden were examined during necropsy. Potential associations between various variables of the reproductive system and fat concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dichlorodiphenyldichloroethylene (p,p'-DDE) and other organochlorine pesticides and liver concentrations of perfluoroalkyl acids (PFAAs) were investigated using multiple regression models. The anogenital distance was negatively associated (p<0.05) with concentration of p,p'-DDE and some PFAAs (perfluorooctane sulfonate (PFOS), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA) and ∑PFAA). Penis length was positively associated with PCB 28, PCB 47/48, PCB 52 and PCB 110 (p<0.05), and some of these congeners were also associated with baculum length and penis weight. In contrast, penile length tended (p<0.1) to be shorter in mink with high concentrations of p,p'-DDE. These data may help to improve the understanding of how environmental pollution affects male reproduction in both wildlife and humans. Overall, the study suggests endocrine disrupting effects in wild mink and identifies potentially important pollutants in the complex mixture of contaminants in the environment. In addition, the results suggest that the variables of the reproductive system of male mink used in this study are good candidates for use as indicators of environmental pollution affecting the mammalian reproductive system.

  2. 77 FR 4004 - Privacy Act of 1974; Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ..., the Social Security Administration, the Selective Service System, and the U.S. Postal Service... Business Enterprises Survey Records notice published in the Federal Register on November 1, 2002 (67 FR... including, the Departments of Agriculture, Education, Health and Human Services, Homeland Security,...

  3. Targeting the-Dopaminergic Nervous System: Altering Behavior in Larval Zebrafish

    EPA Science Inventory

    Zebrafish (Dania rerio) are becoming an important model system in studying the effects of environmental chemicals on behavior. In order to develop a rapid in vivo screen to prioritize toxic chemicals, we have begun assessing the acute locomotor effects of drugs that act on the do...

  4. 75 FR 5094 - Privacy Act of 1974; Report of an Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... INFORMATION CONTACT: Judy Rodgers, Chief, Health Education Assistance Loan Program, Division of Student Loans... the Division of Student Loans and Scholarships in room 9-105, Parklawn Building, 5600 Fishers Lane...). SECURITY CLASSIFICATION: None. SYSTEM LOCATION: Division of Student Loans and Scholarships, Bureau...

  5. 76 FR 47190 - Privacy Act of 1974; Report of Modified or Altered System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Prescription Drug (MARx) System, No. 09-70-4001,'' last modified at 70 FR 60530 (October 18, 2005). CMS... party administrators, employers, self-insurers, managed care organizations, and other supplemental... companies, third party administrators (TPA), employers, self-insurers, managed care organizations,...

  6. 78 FR 32256 - Privacy Act of 1974; Report of an Altered CMS System of Records Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ..., Privacy Policy and Compliance Group, Office of E-Health Standards & Services, Offices of Enterprise... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND... System of Records Notice AGENCY: Centers for Medicare & Medicaid Services (CMS), Department of Health...

  7. Cover crops alter phosphorus soil fractions and organic matter accumulation in a Peruvian cacao agroforestry system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many tropical soils, excessive weathering of primary minerals confounded by intense agricultural production has resulted in the depletion of organic matter and plant available forms of phosphorus (P). Long-term growth of cover crops in tropical agroforestry systems have been shown to influence nu...

  8. Windblown soil surface characteristics altered by oilseeds in a wheat-fallow cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oilseeds are integral to the production of biofuels and diversifying rainfed cropping systems in the Pacific Northwest United States (PNW). However, there is evidence to suggest greater potential for wind erosion when growing oilseeds in wheat rotations. Little is known concerning the impact of grow...

  9. Soil characteristics and associated wind erosion potential altered by oilseeds in wheat-based cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oilseeds are integral to the production of biofuels and diversifying rainfed cropping systems in the Pacific Northwest. However, there is evidence to suggest greater potential for wind erosion when growing oilseeds in wheat-based rotations when tillage is used during fallow. Little is known concerni...

  10. 77 FR 4000 - Privacy Act of 1974; Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE RIN... Commerce. ACTION: Notice of Amendment, Privacy Act System of Records: COMMERCE/ CENSUS-6, Population Census... 1974, as amended, Title 5 United States Code (U.S.C.) 552a(e)(4) and (11); and Office of Management...

  11. 76 FR 4431 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... January 25, 2011 Part II Department of Health and Human Services Centers for Disease Control and... Register / Vol. 76, No. 16 / Tuesday, January 25, 2011 / Notices#0;#0; ] DEPARTMENT OF HEALTH AND HUMAN... System of Records AGENCY: Department of Health and Human Services (DHHS). ACTION: Notification...

  12. Cocaine Self-Administration Alters the Relative Effectiveness of Multiple Memory Systems during Extinction

    ERIC Educational Resources Information Center

    Gabriele, Amanda; Setlow, Barry; Packard, Mark G.

    2009-01-01

    Rats were trained to run a straight-alley maze for an oral cocaine or sucrose vehicle solution reward, followed by either response or latent extinction training procedures that engage neuroanatomically dissociable "habit" and "cognitive" memory systems, respectively. In the response extinction condition, rats performed a runway approach response…

  13. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system.

    PubMed

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Nieto-Jacobo, María Fernanda; Simpson, June; Herrera-Estrella, Luis

    2002-05-01

    The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 microM), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability.

  14. Two Molecular Information Processing Systems Based on Catalytic Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Stojanovic, Milan

    Mixtures of molecules are capable of powerful information processing [1]. This statement is in the following way self-evident: it is a hierarchically organized complex mixture of molecules that is formulating it to other similarly organized mixtures of molecules. By making such a statement I am not endorsing the extreme forms of reductionism; rather, I am making what I think is a small first step towards harnessing information processing prowess of molecules and, hopefully, overcoming some limitations of more traditional computing paradigms. There are different ideas on how to understand and use molecular information processing abilities and I will list some below. My list is far from inclusive, and delineations are far from clear-cut; whenever available, I will provide examples from our research efforts. I should stress, for a computer science audience that I am a chemist. Thus, my approach may have much different focus and mathematical rigor, then if it would be taken by a computer scientist.

  15. System among the corticosteroids: specificity and molecular dynamics

    PubMed Central

    Brookes, Jennifer C.; Galigniana, Mario D.; Harker, Anthony H.; Stoneham, A. Marshall; Vinson, Gavin P.

    2012-01-01

    Understanding how structural features determine specific biological activities has often proved elusive. With over 161 000 steroid structures described, an algorithm able to predict activity from structural attributes would provide manifest benefits. Molecular simulations of a range of 35 corticosteroids show striking correlations between conformational mobility and biological specificity. Thus steroid ring A is important for glucocorticoid action, and is rigid in the most specific (and potent) examples, such as dexamethasone. By contrast, ring C conformation is important for the mineralocorticoids, and is rigid in aldosterone. Other steroids that are less specific, or have mixed functions, or none at all, are more flexible. One unexpected example is 11-deoxycorticosterone, which the methods predict (and our activity studies confirm) is not only a specific mineralocorticoid, but also has significant glucocorticoid activity. These methods may guide the design of new corticosteroid agonists and antagonists. They will also have application in other examples of ligand–receptor interactions. PMID:21613285

  16. Pervasive, high temperature hydrothermal alteration in the RN-17B drill core, Reykjanes Geothermal System-Iceland Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Schiffman, P.; Marks, N. E.; Reed, M. H.; Elders, W. A.; Fridleifsson, G. O.

    2010-12-01

    burial at T<300 is replaced by more calcic plagioclase at higher temperature. Texturally, hydrothermal anorthite (An90-98) and pargasite (up to 13.5 wt % Al2O3) appear to have grown at the expense of earlier formed epidote + chlorite + actinolite. Measured downhole temperature at 2800m in RN-17B following reequilibration was 320°C, although amphibole-plagioclase geothermometry imply that anorthite + pargasite, if in equilibrium, should have formed at much higher temperatures. The differences in extent and intensity of alteration inferred from examination of cuttings compared to drill core indicate that selective recovery and mixing of cuttings from multiple depths may be a larger problem than presently appreciated. Previous work has shown that the Reykjanes geothermal system has evolved from a meteoric water-dominated system to higher salinity system dominated by seawater-recharge. The paragenetic relationships that are discernible in the core hopefully will allow us to quantify the alteration processes related to the change in salinity.

  17. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses.

    PubMed

    Tashakori-Sabzevar, Faezeh; Mohajeri, Seyed Ahmad

    2015-05-01

    Recently, significant advances have been made in order to optimize drug delivery to ocular tissues. The main problems in ocular drug delivery are poor bioavailability and uncontrollable drug delivery of conventional ophthalmic preparations (e.g. eye drops). Hydrogels have been investigated since 1965 as new ocular drug delivery systems. Increase of hydrogel loading capacity, optimization of drug residence time on the ocular surface and biocompatibility with the eye tissue has been the main focus of previous studies. Molecular imprinting technology provided the opportunity to fulfill the above-mentioned objectives. Molecularly imprinted soft contact lenses (SCLs) have high potentials as novel drug delivery systems for the treatment of eye disorders. This technique is used for the preparation of polymers with specific binding sites for a template molecule. Previous studies indicated that molecular imprinting technology could be successfully applied for the preparation of SCLs as ocular drug delivery systems. Previous research, particularly in vivo studies, demonstrated that molecular imprinting is a versatile and effective method in optimizing the drug release behavior and enhancing the loading capacity of SCLs as new ocular drug delivery systems. This review highlights various potentials of molecularly imprinted contact lenses in enhancing the drug-loading capacity and controlling the drug release, compared to other ocular drug delivery systems. We have also studied the effects of contributing factors such as the type of comonomer, template/functional monomer molar ratio, crosslinker concentration in drug-loading capacity, and the release properties of molecularly imprinted hydrogels.

  18. Including Quantum Effects in the Dynamics of Complex (i.e., Large)Molecular Systems

    SciTech Connect

    Miller, William H.

    2006-04-27

    The development in the 1950's and 60's of crossed molecular beam methods for studying chemical reactions at the single-collision molecular level stimulated the need and desire for theoretical methods to describe these and other dynamical processes in molecular systems. Chemical dynamics theory has made great strides in the ensuing decades, so that methods are now available for treating the quantum dynamics of small molecular systems essentially completely. For the large molecular systems that are of so much interest nowadays (e.g. chemical reactions in solution, in clusters, in nano-structures, in biological systems, etc.), however, the only generally available theoretical approach is classical molecular dynamics (MD) simulations. Much effort is currently being devoted to the development of approaches for describing the quantum dynamics of these complex systems. This paper reviews some of these approaches, especially the use of semiclassical approximations for adding quantum effects to classical MD simulations, also showing some new versions that should make these semiclassical approaches even more practical and accurate.

  19. It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease.

    PubMed

    Tramutola, Antonella; Di Domenico, Fabio; Barone, Eugenio; Perluigi, Marzia; Butterfield, D Allan

    2016-01-01

    Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of "aberrant" proteins results from both the increased occurrence of damage and the decreased efficiency of degradative systems. One of the most important cellular proteolytic systems responsible for the removal of oxidized proteins in the cytosol and in the nucleus is the proteasomal system. Several studies have demonstrated the impairment of the proteasome in AD thus suggesting a direct link between accumulation of oxidized/misfolded proteins and reduction of this clearance system. In this review we discuss the impairment of the proteasome system as a consequence of oxidative stress and how this contributes to AD neuropathology. Further, we focus the attention on the oxidative modifications of a key component of the ubiquitin-proteasome pathway, UCHL1, which lead to the impairment of its activity.

  20. It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease

    PubMed Central

    Tramutola, Antonella; Di Domenico, Fabio; Barone, Eugenio; Perluigi, Marzia; Butterfield, D. Allan

    2016-01-01

    Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency of degradative systems. One of the most important cellular proteolytic systems responsible for the removal of oxidized proteins in the cytosol and in the nucleus is the proteasomal system. Several studies have demonstrated the impairment of the proteasome in AD thus suggesting a direct link between accumulation of oxidized/misfolded proteins and reduction of this clearance system. In this review we discuss the impairment of the proteasome system as a consequence of oxidative stress and how this contributes to AD neuropathology. Further, we focus the attention on the oxidative modifications of a key component of the ubiquitin-proteasome pathway, UCHL1, which lead to the impairment of its activity. PMID:26881020