Sample records for alters molecular systems

  1. Molecular and Genomic Alterations in Glioblastoma Multiforme.

    PubMed

    Crespo, Ines; Vital, Ana Louisa; Gonzalez-Tablas, María; Patino, María del Carmen; Otero, Alvaro; Lopes, María Celeste; de Oliveira, Catarina; Domingues, Patricia; Orfao, Alberto; Tabernero, Maria Dolores

    2015-07-01

    In recent years, important advances have been achieved in the understanding of the molecular biology of glioblastoma multiforme (GBM); thus, complex genetic alterations and genomic profiles, which recurrently involve multiple signaling pathways, have been defined, leading to the first molecular/genetic classification of the disease. In this regard, different genetic alterations and genetic pathways appear to distinguish primary (eg, EGFR amplification) versus secondary (eg, IDH1/2 or TP53 mutation) GBM. Such genetic alterations target distinct combinations of the growth factor receptor-ras signaling pathways, as well as the phosphatidylinositol 3-kinase/phosphatase and tensin homolog/AKT, retinoblastoma/cyclin-dependent kinase (CDK) N2A-p16(INK4A), and TP53/mouse double minute (MDM) 2/MDM4/CDKN2A-p14(ARF) pathways, in cells that present features associated with key stages of normal neurogenesis and (normal) central nervous system cell types. This translates into well-defined genomic profiles that have been recently classified by The Cancer Genome Atlas Consortium into four subtypes: classic, mesenchymal, proneural, and neural GBM. Herein, we review the most relevant genetic alterations of primary versus secondary GBM, the specific signaling pathways involved, and the overall genomic profile of this genetically heterogeneous group of malignant tumors. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Hansen, Christian T.; Goldhammer, Tobias; Bach, Wolfgang; Dittmar, Thorsten

    2016-02-01

    Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural high-temperature hydrothermal systems, DOM is almost completely removed, but the mechanism and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100 and 380 °C over the course of two weeks in artificial seawater, and was then characterised on a molecular level via ultrahigh-resolution Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied. Higher molecular weight and more oxygen rich compounds were preferentially removed, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly altered samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H/C ratio (>1.5). Our results suggest that abiotic hydrothermal alteration of SPE-DOM may already occur at temperatures above 68 °C. Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.

  3. Systemic mast cell activation disease: the role of molecular genetic alterations in pathogenesis, heritability and diagnostics

    PubMed Central

    Haenisch, Britta; Nöthen, Markus M; Molderings, Gerhard J

    2012-01-01

    Despite increasing understanding of its pathophysiology, the aetiology of systemic mast cell activation disease (MCAD) remains largely unknown. Research has shown that somatic mutations in kinases are necessary for the establishment of a clonal mast cell population, in particular mutations in the tyrosine kinase Kit and in enzymes and receptors with crucial involvement in the regulation of mast cell activity. However, other, as yet undetermined, abnormalities are necessary for the manifestation of clinical disease. The present article reviews molecular genetic research into the identification of disease-associated genes and their mutational alterations. The authors also present novel data on familial systemic MCAD and review the associated literature. Finally, the importance of understanding the molecular basis of inherited mutations in terms of diagnostics and therapy is emphasized. PMID:22957768

  4. Molecular Alteration of Marine Dissolved Organic Matter under Experimental Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Hawkes, J. A.; Hansen, C. T.; Goldhammer, T.; Bach, W.; Dittmar, T.

    2016-02-01

    Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural hydrothermal systems, DOM is almost completely removed, but the mechanism, kinetics and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100-380 °C over the course of two weeks in artificial seawater, and was then characterized on a molecular level via ultrahigh-resolution mass spectrometry (FTICRMS & Orbitrap). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied, which can likely be extrapolated down to temperatures around 68 °C. Higher molecular weight and more oxygen rich compounds were preferentially degraded, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly degraded samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H:C ratio (>1.5). Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.

  5. Molecular alterations and biomarkers in colorectal cancer

    PubMed Central

    Grady, William M.; Pritchard, Colin C.

    2013-01-01

    The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer genetics is leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing colorectal cancers for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor (EGFR). In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of colorectal cancer and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers). PMID:24178577

  6. Molecular techniques and genetic alterations in head and neck cancer

    PubMed Central

    Ha, Patrick K; Chang, Steven S; Glazer, Chad A; Califano, Joseph A; Sidransky, David

    2009-01-01

    It is well known that cellular DNA alterations can lead to the formation of cancer, and there has been much discovery in the pathways involved in the development of head and neck squamous cell carcinoma (HNSCC). With novel genome-wide molecular assays, our ability to detect these abnormalities has increased. We now have a better understanding of the molecular complexity of HNSCC, but there is still much research to be done. In this review, we discuss the well described genetic alterations and touch on the newer findings, as well as some of the future directions of head and neck cancer research. PMID:18674960

  7. MOLECULAR ALTERATIONS IN GLIOBLASTOMA: POTENTIAL TARGETS FOR IMMUNOTHERAPY

    PubMed Central

    Haque, Azizul; Banik, Naren L.; Ray, Swapan K.

    2015-01-01

    Glioblastoma is the most common and deadly brain tumor, possibly arising from genetic and epigenetic alterations in normal astroglial cells. Multiple cytogenetic, chromosomal, and genetic alterations have been identified in glioblastoma, with distinct expression of antigens (Ags) and biomarkers that may alter therapeutic potential of this aggressive cancer. Current therapy consists of surgical resection, followed by radiation therapy and chemotherapy. In spite of these treatments, the prognosis for glioblastoma patients is poor. Although recent studies have focused on the development of novel immunotherapeutics against glioblastoma, little is known about glioblastoma specific immune responses. A better understanding of the molecular interactions among glioblastoma tumors, host immune cells, and the tumor microenvironment may give rise to novel integrated approaches for the simultaneous control of tumor escape pathways and the activation of antitumor immune responses. This review provides a detailed overview concerning genetic alterations in glioblastoma, their effects on Ag and biomarker expression and the future design of chemoimmunotherapeutics against glioblastoma. PMID:21199773

  8. Genetic and molecular alterations across medulloblastoma subgroups.

    PubMed

    Skowron, Patryk; Ramaswamy, Vijay; Taylor, Michael D

    2015-10-01

    Medulloblastoma is the most common malignant brain tumour diagnosed in children. Over the last few decades, advances in radiation and chemotherapy have significantly improved the odds of survival. Nevertheless, one third of all patients still succumb to their disease, and many long-term survivors are afflicted with neurocognitive sequelae. Large-scale multi-institutional efforts have provided insight into the transcriptional and genetic landscape of medulloblastoma. Four distinct subgroups of medulloblastoma have been identified, defined by distinct transcriptomes, genetics, demographics and outcomes. Integrated genomic profiling of each of these subgroups has revealed distinct genetic alterations, driving pathways and in some instances cells of origin. In this review, we highlight, in a subgroup-specific manner, our current knowledge of the genetic and molecular alterations in medulloblastoma and underscore the possible avenues for future therapeutic intervention.

  9. Molecular and cellular alterations in Down syndrome: toward the identification of targets for therapeutics.

    PubMed

    Créau, Nicole

    2012-01-01

    Down syndrome is a complex disease that has challenged molecular and cellular research for more than 50 years. Understanding the molecular bases of morphological, cellular, and functional alterations resulting from the presence of an additional complete chromosome 21 would aid in targeting specific genes and pathways for rescuing some phenotypes. Recently, progress has been made by characterization of brain alterations in mouse models of Down syndrome. This review will highlight the main molecular and cellular findings recently described for these models, particularly with respect to their relationship to Down syndrome phenotypes.

  10. General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis

    PubMed Central

    Brown, Emery N.; Purdon, Patrick L.; Van Dort, Christa J.

    2011-01-01

    Placing a patient in a state of general anesthesia is crucial for safely and humanely performing most surgical and many nonsurgical procedures. How anesthetic drugs create the state of general anesthesia is considered a major mystery of modern medicine. Unconsciousness, induced by altered arousal and/or cognition, is perhaps the most fascinating behavioral state of general anesthesia. We perform a systems neuroscience analysis of the altered arousal states induced by five classes of intravenous anesthetics by relating their behavioral and physiological features to the molecular targets and neural circuits at which these drugs are purported to act. The altered states of arousal are sedation-unconsciousness, sedation-analgesia, dissociative anesthesia, pharmaco-logic non-REM sleep, and neuroleptic anesthesia. Each altered arousal state results from the anesthetic drugs acting at multiple targets in the central nervous system. Our analysis shows that general anesthesia is less mysterious than currently believed. PMID:21513454

  11. Genomic alterations and molecular subtypes of gastric cancers in Asians.

    PubMed

    Ye, Xiang S; Yu, Chunping; Aggarwal, Amit; Reinhard, Christoph

    2016-05-09

    Gastric cancer (GC) is a highly heterogenic disease, and it is the second leading cause of cancer death in the world. Common chemotherapies are not very effective for GC, which often presents as an advanced or metastatic disease at diagnosis. Treatment options are limited, and the prognosis for advanced GCs is poor. The landscape of genomic alterations in GCs has recently been characterized by several international cancer genome programs, including studies that focused exclusively on GCs in Asians. These studies identified major recurrent driver mutations and provided new insights into the mutational heterogeneity and genetic profiles of GCs. An analysis of gene expression data by the Asian Cancer Research Group (ACRG) further uncovered four distinct molecular subtypes with well-defined clinical features and their intersections with actionable genetic alterations to which targeted therapeutic agents are either already available or under clinical development. In this article, we review the ACRG GC project. We also discuss the implications of the genetic and molecular findings from various GC genomic studies with respect to developing more precise diagnoses and treatment approaches for GCs.

  12. Cell phone use and parotid salivary gland alterations: no molecular evidence.

    PubMed

    de Souza, Fabrício T A; Correia-Silva, Jeane F; Ferreira, Efigênia F; Siqueira, Elisa C; Duarte, Alessandra P; Gomez, Marcus Vinícius; Gomez, Ricardo S; Gomes, Carolina C

    2014-07-01

    The association between cell phone use and the development of parotid tumors is controversial. Because there is unequivocal evidence that the microenvironment is important for tumor formation, we investigated in the parotid glands whether cell phone use alters the expression of gene products related to cellular stress. We used the saliva produced by the parotid glands of 62 individuals to assess molecular alterations compatible with cellular stress, comparing the saliva from the gland exposed to cell phone radiation (ipsilateral) to the saliva from the opposite, unexposed parotid gland (contralateral) of each individual. We compared salivary flow, total protein concentration, p53, p21, reactive oxygen species (ROS), and salivary levels of glutathione (GSH), heat shock proteins 27 and 70, and IgA between the ipsilateral and contralateral parotids. No difference was found for any of these parameters, even when grouping individuals by period of cell phone use in years or by monthly average calls in minutes. We provide molecular evidence that the exposure of parotid glands to cell phone use does not alter parotid salivary flow, protein concentration, or levels of proteins of genes that are directly or indirectly affected by heat-induced cellular stress. ©2014 American Association for Cancer Research.

  13. Role of altered coagulation-fibrinolytic system in the pathophysiology of diabetic retinopathy.

    PubMed

    Behl, Tapan; Velpandian, Thirumurthy; Kotwani, Anita

    2017-05-01

    The implications of altered coagulation-fibrinolytic system in the pathophysiology of several vascular disorders, such as stroke and myocardial infarction, have been well researched upon and established. However, its role in the progression of diabetic retinopathy has not been explored much. Since a decade, it is known that hyperglycemia is associated with a hypercoagulated state and the various impairments it causes are well acknowledged as independent risk factors for the development of cardiovascular diseases. But recent studies suggest that the hypercoagulative state and diminished fibrinolytic responses might also alter retinal homeostasis and induce several deleterious molecular changes in retinal cells which aggravate the already existing hyperglycemia-induced pathological conditions and thereby lead to the progression of diabetic retinopathy. The major mediators of coagulation-fibrinolytic system whose concentration or activity get altered during hyperglycemia include fibrinogen, antithrombin-III (AT-III), plasminogen activator inhibitor-1 (PAI-1) and von Willebrand factor (vWF). Inhibiting the pathways by which these altered mediators get involved in the pathophysiology of diabetic retinopathy can serve as potential targets for the development of an adjuvant novel alternative therapy for diabetic retinopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Low molecular weight heparin restores antithrombin III activity from hyperglycemia induced alterations.

    PubMed

    Ceriello, A; Marchi, E; Palazzni, E; Quatraro, A; Giugliano, D

    1990-01-01

    Alteration of antithrombin III (ATIII) activity, glycemia level dependent, exists in diabetes mellitus. In this study the ability of a low molecular weight heparin (LMWH) (Fluxum, Alfa-Wassermann S.p.A., Bologna, Italy), as well as unfractioned héparin, to preserve ATIII activity from glucose-induced alterations, both in vitro and in vivo, is reported. The subcutaneous and intravenous LMWH and heparin administration increases basal depressed ATIII activity in diabetic patients. Heparin shows an equivalent effect on both anti-IIa and anti-Xa activity of ATIII, while LMWH is more effective in preserving the anti-Xa activity. Similarity, heparin preserves ATIII activity from hyperglycemia-induced alterations, during hyperglycemic clamp, and LMWH infusion is able to preserve a significant amount of anti-Xa activity from glucose-induced alterations. Since diabetic patients show a high incidence of thrombotic accidents, LMWH appears to be a promising innovation for the prevention of diabetic thrombophylia.

  15. The long tail of molecular alterations in non-small cell lung cancer: a single-institution experience of next-generation sequencing in clinical molecular diagnostics.

    PubMed

    Fumagalli, Caterina; Vacirca, Davide; Rappa, Alessandra; Passaro, Antonio; Guarize, Juliana; Rafaniello Raviele, Paola; de Marinis, Filippo; Spaggiari, Lorenzo; Casadio, Chiara; Viale, Giuseppe; Barberis, Massimo; Guerini-Rocco, Elena

    2018-03-13

    Molecular profiling of advanced non-small cell lung cancers (NSCLC) is essential to identify patients who may benefit from targeted treatments. In the last years, the number of potentially actionable molecular alterations has rapidly increased. Next-generation sequencing allows for the analysis of multiple genes simultaneously. To evaluate the feasibility and the throughput of next-generation sequencing in clinical molecular diagnostics of advanced NSCLC. A single-institution cohort of 535 non-squamous NSCLC was profiled using a next-generation sequencing panel targeting 22 actionable and cancer-related genes. 441 non-squamous NSCLC (82.4%) harboured at least one gene alteration, including 340 cases (63.6%) with clinically relevant molecular aberrations. Mutations have been detected in all but one gene ( FGFR1 ) of the panel. Recurrent alterations were observed in KRAS , TP53 , EGFR , STK11 and MET genes, whereas the remaining genes were mutated in <5% of the cases. Concurrent mutations were detected in 183 tumours (34.2%), mostly impairing KRAS or EGFR in association with TP53 alterations. The study highlights the feasibility of targeted next-generation sequencing in clinical setting. The majority of NSCLC harboured mutations in clinically relevant genes, thus identifying patients who might benefit from different targeted therapies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Development of Assays for Detecting Significant Prostate Cancer Based on Molecular Alterations Associated with Cancer in Non-Neoplastic Prostate Tissue

    DTIC Science & Technology

    2016-12-01

    Award Number: W81XWH-11-1-0744 TITLE: Development of Assays for Detecting Significant Prostate Cancer Based on Molecular Alterations Associated...Significant Prostate Cancer Based on Molecular Alterations Associated with Cancer in Non- Neoplastic Prostate Tissue 5b. GRANT NUMBER 10623678 5c...Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to develop molecular models to

  17. Tumors of the Testis: Morphologic Features and Molecular Alterations.

    PubMed

    Howitt, Brooke E; Berney, Daniel M

    2015-12-01

    This article reviews the most frequently encountered tumor of the testis; pure and mixed malignant testicular germ cell tumors (TGCT), with emphasis on adult (postpubertal) TGCTs and their differential diagnoses. We additionally review TGCT in the postchemotherapy setting, and findings to be integrated into the surgical pathology report, including staging of testicular tumors and other problematic issues. The clinical features, gross pathologic findings, key histologic features, common differential diagnoses, the use of immunohistochemistry, and molecular alterations in TGCTs are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Molecular characterization of colorectal adenomas with and without malignancy reveals distinguishing genome, transcriptome and methylome alterations.

    PubMed

    Druliner, Brooke R; Wang, Panwen; Bae, Taejeong; Baheti, Saurabh; Slettedahl, Seth; Mahoney, Douglas; Vasmatzis, Nikolaos; Xu, Hang; Kim, Minsoo; Bockol, Matthew; O'Brien, Daniel; Grill, Diane; Warner, Nathaniel; Munoz-Gomez, Miguel; Kossick, Kimberlee; Johnson, Ruth; Mouchli, Mohamad; Felmlee-Devine, Donna; Washechek-Aletto, Jill; Smyrk, Thomas; Oberg, Ann; Wang, Junwen; Chia, Nicholas; Abyzov, Alexej; Ahlquist, David; Boardman, Lisa A

    2018-02-16

    The majority of colorectal cancer (CRC) arises from precursor lesions known as polyps. The molecular determinants that distinguish benign from malignant polyps remain unclear. To molecularly characterize polyps, we utilized Cancer Adjacent Polyp (CAP) and Cancer Free Polyp (CFP) patients. CAPs had tissues from the residual polyp of origin and contiguous cancer; CFPs had polyp tissues matched to CAPs based on polyp size, histology and dysplasia. To determine whether molecular features distinguish CAPs and CFPs, we conducted Whole Genome Sequencing, RNA-seq, and RRBS on over 90 tissues from 31 patients. CAPs had significantly more mutations, altered expression and hypermethylation compared to CFPs. APC was significantly mutated in both polyp groups, but mutations in TP53, FBXW7, PIK3CA, KIAA1804 and SMAD2 were exclusive to CAPs. We found significant expression changes between CAPs and CFPs in GREM1, IGF2, CTGF, and PLAU, and both expression and methylation alterations in FES and HES1. Integrative analyses revealed 124 genes with alterations in at least two platforms, and ERBB3 and E2F8 showed aberrations specific to CAPs across all platforms. These findings provide a resource of molecular distinctions between polyps with and without cancer, which have the potential to enhance the diagnosis, risk assessment and management of polyps.

  19. Molecular gearing systems

    DOE PAGES

    Gakh, Andrei A.; Sachleben, Richard A.; Bryan, Jeff C.

    1997-11-01

    The race to create smaller devices is fueling much of the research in electronics. The competition has intensified with the advent of microelectromechanical systems (MEMS), in which miniaturization is already reaching the dimensional limits imposed by physics of current lithographic techniques. Also, in the realm of biochemistry, evidence is accumulating that certain enzyme complexes are capable of very sophisticated modes of motion. Complex synergistic biochemical complexes driven by sophisticated biomechanical processes are quite common. Their biochemical functions are based on the interplay of mechanical and chemical processes, including allosteric effects. In addition, the complexity of this interplay far exceeds thatmore » of typical chemical reactions. Understanding the behavior of artificial molecular devices as well as complex natural molecular biomechanical systems is difficult. Fortunately, the problem can be successfully resolved by direct molecular engineering of simple molecular systems that can mimic desired mechanical or electronic devices. These molecular systems are called technomimetics (the name is derived, by analogy, from biomimetics). Several classes of molecular systems that can mimic mechanical, electronic, or other features of macroscopic devices have been successfully synthesized by conventional chemical methods during the past two decades. In this article we discuss only one class of such model devices: molecular gearing systems.« less

  20. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.

  1. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations and DNA methylation profiling.

    PubMed

    Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk

    2018-06-11

    In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.

  2. Hypergravity-induced altered behavior in Drosophila

    NASA Astrophysics Data System (ADS)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  3. Cooperative genomic alteration network reveals molecular classification across 12 major cancer types

    PubMed Central

    Zhang, Hongyi; Deng, Yulan; Zhang, Yong; Ping, Yanyan; Zhao, Hongying; Pang, Lin; Zhang, Xinxin; Wang, Li; Xu, Chaohan; Xiao, Yun; Li, Xia

    2017-01-01

    The accumulation of somatic genomic alterations that enables cells to gradually acquire growth advantage contributes to tumor development. This has the important implication of the widespread existence of cooperative genomic alterations in the accumulation process. Here, we proposed a computational method HCOC that simultaneously consider genetic context and downstream functional effects on cancer hallmarks to uncover somatic cooperative events in human cancers. Applying our method to 12 TCGA cancer types, we totally identified 1199 cooperative events with high heterogeneity across human cancers, and then constructed a pan-cancer cooperative alteration network. These cooperative events are associated with genomic alterations of some high-confident cancer drivers, and can trigger the dysfunction of hallmark associated pathways in a co-defect way rather than single alterations. We found that these cooperative events can be used to produce a prognostic classification that can provide complementary information with tissue-of-origin. In a further case study of glioblastoma, using 23 cooperative events identified, we stratified patients into molecularly relevant subtypes with a prognostic significance independent of the Glioma-CpG Island Methylator Phenotype (GCIMP). In summary, our method can be effectively used to discover cancer-driving cooperative events that can be valuable clinical markers for patient stratification. PMID:27899621

  4. Race-specific molecular alterations correlate with differential outcomes for black and white endometrioid endometrial cancer patients.

    PubMed

    Bateman, Nicholas W; Dubil, Elizabeth A; Wang, Guisong; Hood, Brian L; Oliver, Julie M; Litzi, Tracy A; Gist, Glenn D; Mitchell, David A; Blanton, Brian; Phippen, Neil T; Tian, Chunqiao; Zahn, Christopher M; Cohn, David E; Havrilesky, Laura J; Berchuck, Andrew; Shriver, Craig D; Darcy, Kathleen M; Hamilton, Chad A; Conrads, Thomas P; Maxwell, G Larry

    2017-10-15

    The objective of this study was to identify molecular alterations associated with disease outcomes for white and black patients with endometrioid endometrial cancer (EEC). EEC samples from black (n = 17) and white patients (n = 13) were analyzed by proteomics (liquid chromatography-tandem mass spectrometry) and transcriptomics (RNA-seq). Coordinate alterations were validated with RNA-seq data from black (n = 49) and white patients (n = 216). Concordantly altered candidates were further tested for associations with race-specific progression-free survival (PFS) in black (n = 64) or white patients (n = 267) via univariate and multivariate Cox regression modeling and log-rank testing. Discovery analyses revealed significantly altered candidate proteins and transcripts between black and white patients, suggesting modulation of tumor cell viability in black patients and cell death signaling in black and white patients. Eighty-nine candidates were validated as altered between these patient cohorts, and a subset significantly correlated with differential PFS. White-specific PFS candidates included serpin family A member 4 (SERPINA4; hazard ratio [HR], 0.89; Wald P value = .02), integrin subunit α3 (ITGA3; HR, 0.76; P = .03), and Bet1 Golgi vesicular membrane trafficking protein like (BET1L; HR, 0.48; P = .04). Black-specific PFS candidates included family with sequence similarity 228 member B (FAM228B; HR, 0.13; P = .001) and HEAT repeat containing 6 (HEATR6; HR, 4.94; P = .047). Several candidates were also associated with overall survival (SERPINA4 and ITGA3) as well as PFS independent of disease stage, grade and myometrial invasion (SERPINA4, BET1L and FAM228B). This study has identified and validated molecular alterations in tumors from black and white EEC patients, including candidates significantly associated with altered disease outcomes within these patient cohorts. Cancer 2017;123:4004-12. © 2017 American Cancer Society. © 2017 American Cancer Society.

  5. [Metastasis tumors of the central nervous system: molecular biology].

    PubMed

    Bello, M Josefa; González-Gómez, P; Rey, J A

    2004-12-01

    Metastases in the nervous system represent an important and growing problem in the clinical practice, being the cause of a great mortality in the developed countries. This article reviews the few data available on the molecular mechanisms involved in the pathogenesis of these tumours, leading to oncogene activation, inactivation of tumour suppressor genes, not only by the classical mechanisms, but also by the tumour cell epigenetic balance alteration. We conclude that all this knowledge will lead in the future to a better diagnosis, treatment and clinic evolution of these patients.

  6. Drug-induced and genetic alterations in stress-responsive systems: Implications for specific addictive diseases.

    PubMed

    Zhou, Yan; Proudnikov, Dmitri; Yuferov, Vadim; Kreek, Mary Jeanne

    2010-02-16

    From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor, and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants, and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin, and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Altered interregional molecular associations of the serotonin transporter in attention deficit/hyperactivity disorder assessed with PET.

    PubMed

    Vanicek, Thomas; Kutzelnigg, Alexandra; Philippe, Cecile; Sigurdardottir, Helen L; James, Gregory M; Hahn, Andreas; Kranz, Georg S; Höflich, Anna; Kautzky, Alexander; Traub-Weidinger, Tatjana; Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus; Kasper, Siegfried; Lanzenberger, Rupert

    2017-02-01

    Altered serotonergic neurotransmission has been found to cause impulsive and aggressive behavior, as well as increased motor activity, all exemplifying key symptoms of ADHD. The main objectives of this positron emission tomography (PET) study were to investigate the serotonin transporter binding potential (SERT BP ND ) in patients with ADHD and to assess associations of SERT BP ND between the brain regions. 25 medication-free patients with ADHD (age ± SD; 32.39 ± 10.15; 10 females) without any psychiatric comorbidity and 25 age and sex matched healthy control subjects (33.74 ± 10.20) were measured once with PET and the highly selective and specific radioligand [ 11 C]DASB. SERT BP ND maps in nine a priori defined ROIs exhibiting high SERT binding were compared between groups by means of a linear mixed model. Finally, adopted from structural and functional connectivity analyses, we performed correlational analyses using regional SERT binding potentials to examine molecular interregional associations between all selected ROIs. We observed significant differences in the interregional correlations between the precuneus and the hippocampus in patients with ADHD compared to healthy controls, using SERT BP ND of the investigated ROIs (P < 0.05; Bonferroni corrected). When correlating SERT BP ND and age in the ADHD and the healthy control group, we confirmed an age-related decline in brain SERT binding in the thalamus and insula (R 2  = 0.284, R 2  = 0.167, Ps < 0.05; Bonferroni corrected). The results show significantly different interregional molecular associations of the SERT expression for the precuneus with hippocampus in patients with ADHD, indicating presumably altered functional coupling. Altered interregional coupling between brain regions might be a sensitive approach to demonstrate functional and molecular alterations in psychiatric conditions. Hum Brain Mapp 38:792-802, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley

  8. Accounting for intra-molecular vibrational modes in open quantum system description of molecular systems.

    PubMed

    Roden, Jan; Strunz, Walter T; Whaley, K Birgitta; Eisfeld, Alexander

    2012-11-28

    Electronic-vibrational dynamics in molecular systems that interact with an environment involve a large number of degrees of freedom and are therefore often described by means of open quantum system approaches. A popular approach is to include only the electronic degrees of freedom into the system part and to couple these to a non-Markovian bath of harmonic vibrational modes that is characterized by a spectral density. Since this bath represents both intra-molecular and external vibrations, it is important to understand how to construct a spectral density that accounts for intra-molecular vibrational modes that couple further to other modes. Here, we address this problem by explicitly incorporating an intra-molecular vibrational mode together with the electronic degrees of freedom into the system part and using the Fano theory for a resonance coupled to a continuum to derive an "effective" bath spectral density, which describes the contribution of intra-molecular modes. We compare this effective model for the intra-molecular mode with the method of pseudomodes, a widely used approach in simulation of non-Markovian dynamics. We clarify the difference between these two approaches and demonstrate that the respective resulting dynamics and optical spectra can be very different.

  9. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  10. High Molecular Weight Barley β-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk

    PubMed Central

    Wang, Yanan; Ames, Nancy P.; Tun, Hein M.; Tosh, Susan M.; Jones, Peter J.; Khafipour, Ehsan

    2016-01-01

    The physiological cholesterol-lowering benefits of β-glucan have been well documented, however, whether modulation of gut microbiota by β-glucan is associated with these physiological effects remains unknown. The objectives of this study were therefore to determine the impact of β-glucan on the composition of gut microbiota in mildly hypercholesterolemic individuals and to identify if the altered microbiota are associated with bioactivity of β-glucan in improving risk factors of cardiovascular disease (CVD). Using a randomized, controlled crossover study design, individuals received for 5-week either a treatment breakfast containing 3 g high molecular weight (HMW), 3 g low molecular weight (LMW), 5 g LMW barley β-glucan, or wheat and rice. The American Heart Association (AHA) diet served as the background diet for all treatment groups. Phases were separated by 4-week washout periods. Fecal samples were collected at the end of each intervention phase and subjected to Illumina sequencing of 16S rRNA genes. Results revealed that at the phylum level, supplementation of 3 g/d HMW β-glucan increased Bacteroidetes and decreased Firmicutes abundances compared to control (P < 0.001). At the genus level, consumption of 3 g/d HMW β-glucan increased Bacteroides (P < 0.003), tended to increase Prevotella (P < 0.1) but decreased Dorea (P < 0.1), whereas diets containing 5 g LMW β-glucan and 3 g LMW β-glucan failed to alter the gut microbiota composition. Bacteroides, Prevotella, and Dorea composition correlated (P < 0.05) with shifts of CVD risk factors, including body mass index, waist circumference, blood pressure, as well as triglyceride levels. Our data suggest that consumption of HMW β-glucan favorably alters the composition of gut microbiota and this altered microbiota profile associates with a reduction of CVD risk markers. Together, our study suggests that β-glucan induced shifts in gut microbiota in a MW-dependent manner and that might be one of the

  11. Crack cocaine inhalation induces schizophrenia-like symptoms and molecular alterations in mice prefrontal cortex.

    PubMed

    Areal, Lorena Bianchine; Herlinger, Alice Laschuk; Pelição, Fabrício Souza; Martins-Silva, Cristina; Pires, Rita Gomes Wanderley

    2017-08-01

    Crack cocaine (crack) addiction represents a major social and health burden, especially seeing as users are more prone to engage in criminal and violent acts. Crack users show a higher prevalence of psychiatric comorbidities - particularly antisocial personality disorders - when compared to powder cocaine users. They also develop cognitive deficits related mainly to executive functions, including working memory. It is noteworthy that stimulant drugs can induce psychotic states, which appear to mimic some symptoms of schizophrenia among users. Social withdraw and executive function deficits are, respectively, negative and cognitive symptoms of schizophrenia mediated by reduced dopamine (DA) tone in the prefrontal cortex (PFC) of patients. That could be explained by an increased expression of D2R short isoform (D2S) in the PFC of such patients and/or by hypofunctioning NMDA receptors in this region. Reduced DA tone has already been described in the PFC of mice exposed to crack smoke. Therefore, it is possible that behavioral alterations presented by crack users result from molecular and biochemical neuronal alterations akin to schizophrenia. Accordingly, we found that upon crack inhalation mice have shown decreased social interaction and working memory deficits analogous to schizophrenia's symptoms, along with increased D2S/D2L expression ratio and decreased expression of NR1, NR2A and NR2B NMDA receptor subunits in the PFC. Herein we propose two possible mechanisms to explain the reduced DA tone in the PFC elicited by crack consumption in mice, bringing also the first direct evidence that crack use may result in schizophrenia-like neurochemical, molecular and behavioral alterations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. TP53 alterations in pancreatic acinar cell carcinoma: new insights into the molecular pathology of this rare cancer.

    PubMed

    La Rosa, Stefano; Bernasconi, Barbara; Frattini, Milo; Tibiletti, Maria Grazia; Molinari, Francesca; Furlan, Daniela; Sahnane, Nora; Vanoli, Alessandro; Albarello, Luca; Zhang, Lizhi; Notohara, Kenji; Casnedi, Selenia; Chenard, Marie-Pierre; Adsay, Volkan; Asioli, Sofia; Capella, Carlo; Sessa, Fausto

    2016-03-01

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) are poorly understood and have been reported as being different from those in ductal adenocarcinomas. Loss of TP53 gene function in the pathogenesis of ACCs is controversial since contradictory findings have been published. A comprehensive analysis of the different possible genetic and epigenetic mechanisms leading to TP53 alteration in ACC has never been reported and hence the role of TP53 in the pathogenesis and/or progression of ACC remains unclear. We investigated TP53 alterations in 54 tumor samples from 44 patients, including primary and metastatic ACC, using sequencing analysis, methylation-specific multiplex ligation probe amplification, fluorescence in situ hybridization, and immunohistochemistry. TP53 mutations were found in 13 % of primary ACCs and in 31 % of metastases. Primary ACCs and metastases showed the same mutational profile, with the exception of one case, characterized by a wild-type sequence in the primary carcinoma and a mutation in the corresponding metastasis. FISH analysis revealed deletion of the TP53 region in 53 % of primary ACCs and in 50 % of metastases. Promoter hypermethylation was found in one case. The molecular alterations correlated well with the immunohistochemical findings. A statistically significant association was found between the combination of mutation of one allele and loss of the other allele of TP53 and worse survival.

  13. Buprenorphine Alters Inflammatory and Oxidative Stress Molecular Markers in Arthritis

    PubMed Central

    Hitchon, Carol

    2017-01-01

    Buprenorphine is recommended for use as an analgesic in animal models including in murine models of collagen-induced arthritis (CIA). However, the effect of buprenorphine on the expression of disease-associated biomarkers is not well defined. We examined the effect of buprenorphine administration on disease progression and the expression of inflammatory and oxidative stress markers, in a murine model of CIA. Buprenorphine administration altered the expression of cytokines, IFN-γ, IL-6, and MMP-3, and oxidative markers, for example, iNOS, superoxide dismutase (SOD1), and catalase (CAT), in the CIA mice. As buprenorphine is an analgesic, we further monitored the association of expression of these biomarkers with pain scores in a human cohort of early rheumatoid arthritis (RA). Serum MMP-3 levels and blood mRNA expression of antioxidants sod1 and cat correlated with pain scores in the RA cohort. We have demonstrated that administration of buprenorphine alters the expression of inflammatory and oxidative stress-related molecular markers in a murine model of CIA. This caveat needs to be considered in animal experiments using buprenorphine as an analgesic, as it can be a confounding factor in murine studies used for prediction of response to therapy. Furthermore, the antioxidant enzymes that showed an association with pain scores in the human cohort may be explored as biomarkers for pain in future studies. PMID:28572711

  14. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    PubMed

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  15. The display of molecular models with the Ames Interactive Modeling System (AIMS)

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Hart, J.; Burt, S. K.; Macelroy, R. D.

    1982-01-01

    A visualization of molecular models can lead to a clearer understanding of the models. Sophisticated graphics devices supported by minicomputers make it possible for the chemist to interact with the display of a very large model, altering its structure. In addition to user interaction, the need arises also for other ways of displaying information. These include the production of viewgraphs, film presentation, as well as publication quality prints of various models. To satisfy these needs, the display capability of the Ames Interactive Modeling System (AIMS) has been enhanced to provide a wide range of graphics and plotting capabilities. Attention is given to an overview of the AIMS system, graphics hardware used by the AIMS display subsystem, a comparison of graphics hardware, the representation of molecular models, graphics software used by the AIMS display subsystem, the display of a model obtained from data stored in molecule data base, a graphics feature for obtaining single frame permanent copy displays, and a feature for producing multiple frame displays.

  16. Can Molecular Hippocampal Alterations Explain Behavioral ...

    EPA Pesticide Factsheets

    Studies in both humans and animals have shown that prenatal stress can alter cognitive function and other neurological behaviors in adult offspring. One possible underlying mechanism for this may lie with alterations in hippocampal gene expression. The present study examined genotypical outcomes in adult male and female offspring of rats exposed to variable stress during pregnancy. Dams (n=15/treatment) were subjected to several non-chemical stressors including intermittent noise, light, crowding, restraint, and altered circadian lighting, from gestational day (GD) 13 to 20. Tail blood was drawn on GD 12, 16 and 20 to verify a stress response. Corticosterone levels were not different between the stressed and non-stressed dams on GD12 but was significantly increased in stressed dams on GD 16 and 20 compared to controls. Dams gave birth on GD22 (postnatal day or PND 0). Several behavioral tests were used to assess the cognitive and behavioral phenotype of the offspring from PND 49 through 86, including the Morris water maze and novel object recognition. Male and female stressed offspring showed reduced reversal learning on the Morris water maze and stressed females did not show a significant preference for the novel object (57 ± 8%) while control females did (71 ± 3%). This indicates altered cognition in prenatally stressed offspring. On PND 91-92, offspring were necropsied and hippocampal tissue was collected. Genotypic outcomes of prenatal stress w

  17. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat

    EPA Science Inventory

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and te...

  18. Altered expression pattern of molecular factors involved in colonic smooth muscle functions: an immunohistochemical study in patients with diverticular disease.

    PubMed

    Mattii, Letizia; Ippolito, Chiara; Segnani, Cristina; Battolla, Barbara; Colucci, Rocchina; Dolfi, Amelio; Bassotti, Gabrio; Blandizzi, Corrado; Bernardini, Nunzia

    2013-01-01

    The pathogenesis of diverticular disease (DD) is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs) have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD. By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs. The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors. This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease.

  19. Preparation of Low Molecular Weight Gelatin Using Microwave Discharge Electrodeless Lamp/TiO2 Photocatalyst Hybrid System.

    PubMed

    Lee, Do-Jin; Kim, Hangun; Park, Young-Kwon; Kim, Byung Hoon; Lee, Heon; Jungf, Sana-Chul

    2016-02-01

    In this study, an MDEL/TiO2 photocatalyst hybrid system was applied to the production of low molecular weight gelatin. The molecular weight of produed gelatin decreased with increasing microwave intensity and increasing treatment time. The abscission of the chemical bonds between the con- stituents of gelatin by photocatalytic reaction did not alter the characteristics of gelatin. Formation of any by-products due to side reaction was not observed. It is suggested that gelatin was depolymerized by hydroxyl radicals produced during the MDEL/TiO2 photochemical reaction.

  20. The relationship of quantitative nuclear morphology to molecular genetic alterations in the adenoma-carcinoma sequence of the large bowel.

    PubMed Central

    Mulder, J. W.; Offerhaus, G. J.; de Feyter, E. P.; Floyd, J. J.; Kern, S. E.; Vogelstein, B.; Hamilton, S. R.

    1992-01-01

    The relationship of abnormal nuclear morphology to molecular genetic alterations that are important in colorectal tumorigenesis is unknown. Therefore, Feulgen-stained isolated nuclei from 22 adenomas and 42 carcinomas that had been analyzed for ras gene mutations and allelic deletions on chromosomes 5q, 18q, and 17p were characterized by computerized image analysis. Both nuclear area and the nuclear shape factor representing irregularity correlated with adenoma-carcinoma progression (r = 0.57 and r = 0.52, P < 0.0001), whereas standard nuclear texture, a parameter of chromatin homogeneity, was inversely correlated with progression (r = -0.80, P < 0.0001). The nuclear parameters were strongly interrelated (P < 0.0005). In multivariate analysis, the nuclear parameters were predominantly associated with adenoma-carcinoma progression (P < or = 0.0001) and were not influenced significantly by the individual molecular genetic alterations. Nuclear texture, however, was inversely correlated with fractional allelic loss, a global measure of genetic changes, in carcinomas (r = -0.39, P = 0.011). The findings indicate that nuclear morphology in colorectal neoplasms is strongly related to tumor progression. Nuclear morphology and biologic behavior appear to be influenced by accumulated alterations in cancer-associated genes. Images Figure 1 PMID:1357973

  1. Altered Circadian Timing System-Mediated Non-Dipping Pattern of Blood Pressure and Associated Cardiovascular Disorders in Metabolic and Kidney Diseases

    PubMed Central

    Nishiyama, Akira

    2018-01-01

    The morning surge in blood pressure (BP) coincides with increased cardiovascular (CV) events. This strongly suggests that an altered circadian rhythm of BP plays a crucial role in the development of CV disease (CVD). A disrupted circadian rhythm of BP, such as the non-dipping type of hypertension (i.e., absence of nocturnal BP decline), is frequently observed in metabolic disorders and chronic kidney disease (CKD). The circadian timing system, controlled by the central clock in the suprachiasmatic nucleus of the hypothalamus and/or by peripheral clocks in the heart, vasculature, and kidneys, modulates the 24 h oscillation of BP. However, little information is available regarding the molecular and cellular mechanisms of an altered circadian timing system-mediated disrupted dipping pattern of BP in metabolic disorders and CKD that can lead to the development of CV events. A more thorough understanding of this pathogenesis could provide novel therapeutic strategies for the management of CVD. This short review will address our and others’ recent findings on the molecular mechanisms that may affect the dipping pattern of BP in metabolic dysfunction and kidney disease and its association with CV disorders. PMID:29385702

  2. The immune system which adversely alter thyroid functions: a review on the concept of autoimmunity.

    PubMed

    Mansourian, Azad Reza

    2010-08-15

    The immune system protect individual from many pathogens exists within our environment and in human body, by destroying them through molecular and cellular mechanism of B and T cells of immune system. Autoimmunity is an adverse relation of immune system against non- foreign substances leaving behind either alters the normal function or destroying the tissue involved. Autoimmunity occur in genetically predispose persons with familial connections. The autoimmunity to the thyroid gland mainly consists of Hashimato thyroiditis and Grave's disease, the two end of spectrum in thyroid function of hypo and hyperactivity, respectively. The thyroid stimulating hormone receptor, thyroglobuline, enzymes of thyroid hormones synthesis are targeted by autoantibodies and cell- mediated reactions. The aim of this review is to explore the studies reported on the autoimmunity to the thyroid gland.

  3. Long-term variation in above and belowground plant inputs alters soil organic matter biogeochemistry at the molecular-level

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Pisani, O.; Lin, L.; Lun, O.; Simpson, A.; Lajtha, K.; Nadelhoffer, K. J.

    2015-12-01

    The long-term fate of soil carbon reserves with global environmental change remains uncertain. Shifts in moisture, altered nutrient cycles, species composition, or rising temperatures may alter the proportions of above and belowground biomass entering soil. However, it is unclear how long-term changes in plant inputs may alter the composition of soil organic matter (SOM) and soil carbon storage. Advanced molecular techniques were used to assess SOM composition in mineral soil horizons (0-10 cm) after 20 years of Detrital Input and Removal Treatment (DIRT) at the Harvard Forest. SOM biomarkers (solvent extraction, base hydrolysis and cupric (II) oxide oxidation) and both solid-state and solution-state nuclear magnetic resonance (NMR) spectroscopy were used to identify changes in SOM composition and stage of degradation. Microbial activity and community composition were assessed using phospholipid fatty acid (PLFA) analysis. Doubling aboveground litter inputs decreased soil carbon content, increased the degradation of labile SOM and enhanced the sequestration of aliphatic compounds in soil. The exclusion of belowground inputs (No roots and No inputs) resulted in a decrease in root-derived components and enhanced the degradation of leaf-derived aliphatic structures (cutin). Cutin-derived SOM has been hypothesized to be recalcitrant but our results show that even this complex biopolymer is susceptible to degradation when inputs entering soil are altered. The PLFA data indicate that changes in soil microbial community structure favored the accelerated processing of specific SOM components with littler manipulation. These results collectively reveal that the quantity and quality of plant litter inputs alters the molecular-level composition of SOM and in some cases, enhances the degradation of recalcitrant SOM. Our study also suggests that increased litterfall is unlikely to enhance soil carbon storage over the long-term in temperate forests.

  4. Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability.

    PubMed

    Huffman, Kim M; Jessee, Ryan; Andonian, Brian; Davis, Brittany N; Narowski, Rachel; Huebner, Janet L; Kraus, Virginia B; McCracken, Julie; Gilmore, Brian F; Tune, K Noelle; Campbell, Milton; Koves, Timothy R; Muoio, Deborah M; Hubal, Monica J; Kraus, William E

    2017-01-23

    To identify molecular alterations in skeletal muscle in rheumatoid arthritis (RA) that may contribute to ongoing disability in RA. Persons with seropositive or erosive RA (n = 51) and control subjects matched for age, gender, race, body mass index (BMI), and physical activity (n = 51) underwent assessment of disease activity, disability, pain, physical activity and thigh muscle biopsies. Muscle tissue was used for measurement of pro-inflammatory markers, transcriptomics, and comprehensive profiling of metabolic intermediates. Groups were compared using mixed models. Bivariate associations were assessed with Spearman correlation. Compared to controls, patients with RA had 75% greater muscle concentrations of IL-6 protein (p = 0.006). In patients with RA, muscle concentrations of inflammatory markers were positively associated (p < 0.05 for all) with disease activity (IL-1β, IL-8), disability (IL-1β, IL-6), pain (IL-1β, TNF-α, toll-like receptor (TLR)-4), and physical inactivity (IL-1β, IL-6). Muscle cytokines were not related to corresponding systemic cytokines. Prominent among the gene sets differentially expressed in muscles in RA versus controls were those involved in skeletal muscle repair processes and glycolytic metabolism. Metabolic profiling revealed 46% higher concentrations of pyruvate in muscle in RA (p < 0.05), and strong positive correlation between levels of amino acids involved in fibrosis (arginine, ornithine, proline, and glycine) and disability (p < 0.05). RA is accompanied by broad-ranging molecular alterations in skeletal muscle. Analysis of inflammatory markers, gene expression, and metabolic intermediates linked disease-related disruptions in muscle inflammatory signaling, remodeling, and metabolic programming to physical inactivity and disability. Thus, skeletal muscle dysfunction might contribute to a viscous cycle of RA disease activity, physical inactivity, and disability.

  5. Agent-Based Modeling in Molecular Systems Biology.

    PubMed

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-07-01

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  6. Genetic and molecular alterations in pancreatic cancer: implications for personalized medicine.

    PubMed

    Fang, Yantian; Yao, Qizhi; Chen, Zongyou; Xiang, Jianbin; William, Fisher E; Gibbs, Richard A; Chen, Changyi

    2013-10-31

    Recent advances in human genomics and biotechnologies have profound impacts on medical research and clinical practice. Individual genomic information, including DNA sequences and gene expression profiles, can be used for prediction, prevention, diagnosis, and treatment for many complex diseases. Personalized medicine attempts to tailor medical care to individual patients by incorporating their genomic information. In a case of pancreatic cancer, the fourth leading cause of cancer death in the United States, alteration in many genes as well as molecular profiles in blood, pancreas tissue, and pancreas juice has recently been discovered to be closely associated with tumorigenesis or prognosis of the cancer. This review aims to summarize recent advances of important genes, proteins, and microRNAs that play a critical role in the pathogenesis of pancreatic cancer, and to provide implications for personalized medicine in pancreatic cancer.

  7. Viral haemorrhagic fever and vascular alterations.

    PubMed

    Aleksandrowicz, P; Wolf, K; Falzarano, D; Feldmann, H; Seebach, J; Schnittler, H

    2008-02-01

    Pathogenesis of viral haemorrhagic fever (VHF) is closely associated with alterations of the vascular system. Among the virus families causing VHF, filoviruses (Marburg and Ebola) are the most fatal, and will be focused on here. After entering the body, Ebola primarily targets monocytes/macrophages and dendritic cells. Infected dendritic cells are largely impaired in their activation potency, likely contributing to the immune suppression that occurs during filovirus infection. Monocytes/macrophages, however, immediately activate after viral contact and release reasonable amounts of cytokines that target the vascular system, particularly the endothelial cells. Some underlying molecular mechanisms such as alteration of the vascular endothelial cadherin/catenin complex, tyrosine phosphorylation, expression of cell adhesion molecules, tissue factor and the effect of soluble viral proteins released from infected cells to the blood stream will be discussed.

  8. Distinct Histopathologic and Molecular Alterations in Inflammatory Bowel Disease-Associated Intestinal Adenocarcinoma: c-MYC Amplification is Common and Associated with Mucinous/Signet Ring Cell Differentiation.

    PubMed

    Hartman, Douglas J; Binion, David G; Regueiro, Miguel D; Miller, Caitlyn; Herbst, Cameron; Pai, Reetesh K

    2018-05-17

    Chronic idiopathic inflammatory bowel disease (IBD) is a significant risk factor for the development of intestinal adenocarcinoma. The underlying molecular alterations in IBD-associated intestinal adenocarcinoma remain largely unknown. We compared the clinicopathologic and molecular features of 35 patients with 47 IBD-associated intestinal adenocarcinomas with a consecutive series of 451 patients with sporadic colorectal carcinoma identified at our institution and published data on sporadic colorectal carcinoma. c-MYC amplification was the most frequent molecular alteration identified in 33% of IBD-associated intestinal adenocarcinoma that is a significantly higher frequency than in sporadic colorectal carcinoma (8%) (P = 0.0001). Compared to sporadic colorectal carcinoma, IBD-associated intestinal adenocarcinomas more frequently demonstrated mucinous differentiation (60% vs 25%, P < 0.001) and signet ring cell differentiation (28% vs 4%, P < 0.001). Mucinous and signet ring cell differentiation were significantly associated with the presence of c-MYC amplification (both with P < 0.05). HER2 positivity (11%), KRAS exon 2 or 3 mutation (10%), and IDH1 mutation (7%) were less commonly observed in IBD-associated intestinal adenocarcinoma. There was an association between poor survival and HER2 status with 3 of 4 patients having HER2-positive adenocarcinoma dead of disease at last clinical follow-up; however, no statistically significant survival effect was identified for any of the molecular alterations identified. We demonstrate that IBD-associated intestinal adenocarcinomas have a high frequency of c-MYC amplification that is associated with mucinous and signet ring cell differentiation. Many of the identified molecular alterations have potential therapeutic relevance, including HER2 amplification, IDH1 mutation, and low frequency KRAS mutation.

  9. Chopped molecular beam multiplexing system

    NASA Technical Reports Server (NTRS)

    Adams, Billy R. (Inventor)

    1986-01-01

    The integration of a chopped molecular beam mass spectrometer with a time multiplexing system is described. The chopping of the molecular beam is synchronized with the time intervals by a phase detector and a synchronous motor. Arithmetic means are generated for phase shifting the chopper with respect to the multiplexer. A four channel amplifier provides the capacity to independently vary the baseline and amplitude in each channel of the multiplexing system.

  10. Cross-cancer profiling of molecular alterations within the human autophagy interaction network

    PubMed Central

    Lebovitz, Chandra B; Robertson, A Gordon; Goya, Rodrigo; Jones, Steven J; Morin, Ryan D; Marra, Marco A; Gorski, Sharon M

    2015-01-01

    Aberrant activation or disruption of autophagy promotes tumorigenesis in various preclinical models of cancer, but whether the autophagy pathway is a target for recurrent molecular alteration in human cancer patient samples is unknown. To address this outstanding question, we surveyed 211 human autophagy-associated genes for tumor-related alterations to DNA sequence and RNA expression levels and examined their association with patient survival outcomes in multiple cancer types with sequence data from The Cancer Genome Atlas consortium. We found 3 (RB1CC1/FIP200, ULK4, WDR45/WIPI4) and one (ATG7) core autophagy genes to be under positive selection for somatic mutations in endometrial carcinoma and clear cell renal carcinoma, respectively, while 29 autophagy regulators and pathway interactors, including previously identified KEAP1, NFE2L2, and MTOR, were significantly mutated in 6 of the 11 cancer types examined. Gene expression analyses revealed that GABARAPL1 and MAP1LC3C/LC3C transcripts were less abundant in breast cancer and non-small cell lung cancers than in matched normal tissue controls; ATG4D transcripts were increased in lung squamous cell carcinoma, as were ATG16L2 transcripts in kidney cancer. Unsupervised clustering of autophagy-associated mRNA levels in tumors stratified patient overall survival in 3 of 9 cancer types (acute myeloid leukemia, clear cell renal carcinoma, and head and neck cancer). These analyses provide the first comprehensive resource of recurrently altered autophagy-associated genes in human tumors, and highlight cancer types and subtypes where perturbed autophagy may be relevant to patient overall survival. PMID:26208877

  11. Molecular Inversion Probe Analysis of Gene Copy Alterations Reveals Distinct Categories of Colorectal Carcinoma

    PubMed Central

    Ji, Hanlee; Kumm, Jochen; Zhang, Michael; Farnam, Kyle; Salari, Keyan; Faham, Malek; Ford, James M.; Davis, Ronald W.

    2006-01-01

    Genomic instability is a major feature of neoplastic development in colorectal carcinoma and other cancers. Specific genomic instability events, such as deletions in chromosomes and other alterations in gene copy number, have potential utility as biologically relevant prognostic biomarkers. For example, genomic deletions on chromosome arm 18q are an indicator of colorectal carcinoma behavior and potentially useful as a prognostic indicator. Adapting a novel genomic technology called molecular inversion probes which can determine gene copy alterations, such as genomic deletions, we designed a set of probes to interrogate several hundred individual exons of >200 cancer genes with an overall distribution covering all chromosome arms. In addition, >100 probes were designed in close proximity of microsatellite markers on chromosome arm 18q. We analyzed a set of colorectal carcinoma cell lines and primary colorectal tumor samples for gene copy alterations and deletion mutations in exons. Based on clustering analysis, we distinguished the different categories of genomic instability among the colorectal cancer cell lines. Our analysis of primary tumors uncovered several distinct categories of colorectal carcinoma, each with specific patterns of 18q deletions and deletion mutations in specific genes. This finding has potential clinical ramifications given the application of 18q loss of heterozygosity events as a potential indicator for adjuvant treatment in stage II colorectal carcinoma. PMID:16912164

  12. Engineering Molecular Immunity Against Plant Viruses.

    PubMed

    Zaidi, Syed Shan-E-Ali; Tashkandi, Manal; Mahfouz, Magdy M

    2017-01-01

    Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections. © 2017 Elsevier Inc. All rights reserved.

  13. 32 CFR 310.33 - New and altered record systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system will be reinstated or reused, the system may not be operated (i.e., information collected or used... direct access is an alteration. (ii) Software applications, such as operating systems and system... capacity of the current operating system and existing security is preserved. (vi) The connecting of two or...

  14. 32 CFR 310.33 - New and altered record systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system will be reinstated or reused, the system may not be operated (i.e., information collected or used... direct access is an alteration. (ii) Software applications, such as operating systems and system... capacity of the current operating system and existing security is preserved. (vi) The connecting of two or...

  15. 32 CFR 310.33 - New and altered record systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system will be reinstated or reused, the system may not be operated (i.e., information collected or used... direct access is an alteration. (ii) Software applications, such as operating systems and system... capacity of the current operating system and existing security is preserved. (vi) The connecting of two or...

  16. 32 CFR 310.33 - New and altered record systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system will be reinstated or reused, the system may not be operated (i.e., information collected or used... direct access is an alteration. (ii) Software applications, such as operating systems and system... capacity of the current operating system and existing security is preserved. (vi) The connecting of two or...

  17. 32 CFR 310.33 - New and altered record systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system will be reinstated or reused, the system may not be operated (i.e., information collected or used... direct access is an alteration. (ii) Software applications, such as operating systems and system... capacity of the current operating system and existing security is preserved. (vi) The connecting of two or...

  18. Molecular alterations in acute myeloid leukemia and their clinical and therapeutical implications.

    PubMed

    Infante, María Stefania; Piris, Miguel Ángel; Hernández-Rivas, José Ángel

    2018-06-09

    Acute myeloid leukaemia is the most common form of acute leukaemia, and its incidence increases with age. The disease derives from a transformed multipotent malignant haematopoietic stem cell that acquires consequent genomic alterations. The identification of recurrent cytogenetic anomalies associated with different patterns of acute myeloid leukaemia clinical presentation has led to the incorporation of genetic markers in clinical decision-making. In addition, the observation that these anomalies may mark therapeutic responses and relapse and survival rates have been incorporated into the World Health Organisation's recent molecular classification and stratification and the European Leukaemia Net, with the aim of creating prognostic categories that help rationalise better diagnosis, prognosis, re-evaluation of the disease and the combination of therapeutic protocols in order to increase the survival rate of these patients. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  19. Proposed alteration of images of molecular orbitals obtained using a scanning tunneling microscope as a probe of electron correlation.

    PubMed

    Toroz, Dimitrios; Rontani, Massimo; Corni, Stefano

    2013-01-04

    Scanning tunneling spectroscopy (STS) allows us to image single molecules decoupled from the supporting substrate. The obtained images are routinely interpreted as the square moduli of molecular orbitals, dressed by the mean-field electron-electron interaction. Here we demonstrate that the effect of electron correlation beyond the mean field qualitatively alters the uncorrelated STS images. Our evidence is based on the ab initio many-body calculation of STS images of planar molecules with metal centers. We find that many-body correlations alter significantly the image spectral weight close to the metal center of the molecules. This change is large enough to be accessed experimentally, surviving to molecule-substrate interactions.

  20. Environmentally Induced Epigenetic Transgenerational Inheritance of Altered Sertoli Cell Transcriptome and Epigenome: Molecular Etiology of Male Infertility

    PubMed Central

    Guerrero-Bosagna, Carlos; Savenkova, Marina; Haque, Md. Muksitul; Nilsson, Eric; Skinner, Michael K.

    2013-01-01

    Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell) that influences the onset of a specific disease (male infertility). A gestating female rat (F0 generation) was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, enhanced spermatogenic cell apoptosis was observed. The Sertoli cells provide the physical and nutritional support for the spermatogenic cells. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific cellular pathways were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR) modified. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell) epigenome and transcriptome that correlates with adult onset disease (male infertility). The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility. PMID:23555832

  1. Spatial and mineralogic variation of Na-Ca alteration in Laramide porphyry systems of Arizona

    NASA Astrophysics Data System (ADS)

    Runyon, S.; Seedorff, E.; Barton, M. D.; Mazdab, F. K.; Lecumberri-Sanchez, P.; Steele-MacInnis, M.

    2017-12-01

    Na-Ca alteration is characterized by the metasomatic addition of Ca ± Na and the loss of K. Minor volumes of Na-Ca alteration in Laramide porphyry systems develops from 3 to 8 km paleodepth. Mineral assemblages, mineral compositions, hydrogen isotopes, whole-rock analyses, and reconnaissance fluid inclusion characteristics have been documented for Na-Ca alteration in Laramide porphyry systems such as Tea Cup and Sierrita. Volumetrically minor Na-Ca alteration in Laramide porphyry systems documented in this study commonly takes the form of one of three mineral assemblages: albite-epidote-chlorite, Na-plagioclase-actinolite ± epidote, and garnet- or diopside-stable Na-plagioclase-actinolite ± epidote. These different Na-Ca mineral assemblages have broad spatial relationships, from shallow albite-chlorite-epidote to deeper Na-plagioclase-actinolite within a given district. Hydrogen isotope data on Na-Ca alteration minerals shows consistently distinct δD compositions of Na-Ca alteration minerals compared to igneous minerals in a given district. Further, calculated hydrogen isotope composition of fluids in equilibrium with Na-Ca alteration minerals are consistently enriched in δD compared to magmatic-hydrothermal fluids. Whole-rock analyses show consistent losses of K and variable addition of Na and Ca across different Na-Ca alteration assemblages. Na-Ca alteration has been well documented associated with the Jurassic arc. Previous studies demonstrated through mass balance, timing and spatial relationships, isotopic, and fluid inclusion studies that Na-Ca alteration associated with the Jurassic arc likely formed from the circulation of external, highly saline, non-magmatic fluids (e.g., Battles and Barton, 1995; Dilles et al., 1995). Na-Ca alteration documented in Laramide systems is generally similar to Na-Ca alteration documented along the Jurassic arc in mineral assemblages, compositions, and timing, but the volume of Na-Ca alteration in the Laramide systems is

  2. Alteration of the endocannabinoid system in mouse brain during prion disease.

    PubMed

    Petrosino, S; Ménard, B; Zsürger, N; Di Marzo, V; Chabry, J

    2011-03-17

    Prion diseases are neurodegenerative disorders characterized by deposition of the pathological prion protein (PrPsc) within the brain of affected humans and animals. Microglial cell activation is a common feature of prion diseases; alterations of various neurotransmitter systems and neurotransmission have been also reported. Owing to its ability to modulate both neuroimmune responses and neurotransmission, it was of interest to study the brain endocannabinoid system in a prion-infected mouse model. The production of the endocannabinoid, 2-arachidonoyglycerol (2-AG), was enhanced 10 weeks post-infection, without alteration of the other endocannabinoid, anandamide. The CB2 receptor expression was up-regulated in brains of prion-infected mice as early as 10 weeks and up to 32 weeks post-infection whereas the mRNAs of other cannabinoid receptors (CBRs) remain unchanged. The observed alterations of the endocannabinoid system were specific for prion infection since no significant changes were observed in the brain of prion-resistant mice, that is, mice devoid of the Prnp gene. Our study highlights important alterations of the endocannabinoid system during early stages of the disease long before the clinical signs of the disease. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L. L.

    2003-10-01

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.

  4. Structural alterations in a component of cytochrome c oxidase and molecular evolution of pathogenic Neisseria in humans.

    PubMed

    Aspholm, Marina; Aas, Finn Erik; Harrison, Odile B; Quinn, Diana; Vik, Ashild; Viburiene, Raimonda; Tønjum, Tone; Moir, James; Maiden, Martin C J; Koomey, Michael

    2010-08-19

    Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb(3) oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host.

  5. Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations

    PubMed Central

    Araya, Carlos L.; Cenik, Can; Reuter, Jason A.; Kiss, Gert; Pande, Vijay S.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of protein-altering mutations. An improved method would be annotation-independent, sensitive to unknown distributions of functions within proteins, and inclusive of non-coding drivers. We employed density-based clustering methods in 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-coding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated among tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver identification. PMID:26691984

  6. Peptide-Based Technologies to Alter Adenoviral Vector Tropism: Ways and Means for Systemic Treatment of Cancer

    PubMed Central

    Reetz, Julia; Herchenröder, Ottmar; Pützer, Brigitte M.

    2014-01-01

    Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors. PMID:24699364

  7. 78 FR 64196 - Privacy Act Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... DEPARTMENT OF COMMERCE [Docket No. 130730666-3877-02] Privacy Act Altered System of Records AGENCY: Department of Commerce. ACTION: Notice; Commerce/Department-20, Biographical Files. SUMMARY: The Department of Commerce (Commerce) publishes this notice to announce the effective date of a Privacy Act System...

  8. Origin and Evolutionary Alteration of the Mitochondrial Import System in Eukaryotic Lineages.

    PubMed

    Fukasawa, Yoshinori; Oda, Toshiyuki; Tomii, Kentaro; Imai, Kenichiro

    2017-07-01

    Protein transport systems are fundamentally important for maintaining mitochondrial function. Nevertheless, mitochondrial protein translocases such as the kinetoplastid ATOM complex have recently been shown to vary in eukaryotic lineages. Various evolutionary hypotheses have been formulated to explain this diversity. To resolve any contradiction, estimating the primitive state and clarifying changes from that state are necessary. Here, we present more likely primitive models of mitochondrial translocases, specifically the translocase of the outer membrane (TOM) and translocase of the inner membrane (TIM) complexes, using scrutinized phylogenetic profiles. We then analyzed the translocases' evolution in eukaryotic lineages. Based on those results, we propose a novel evolutionary scenario for diversification of the mitochondrial transport system. Our results indicate that presequence transport machinery was mostly established in the last eukaryotic common ancestor, and that primitive translocases already had a pathway for transporting presequence-containing proteins. Moreover, secondary changes including convergent and migrational gains of a presequence receptor in TOM and TIM complexes, respectively, likely resulted from constrained evolution. The nature of a targeting signal can constrain alteration to the protein transport complex. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Molecular Pathogenesis and Diagnostic, Prognostic and Predictive Molecular Markers in Sarcoma.

    PubMed

    Mariño-Enríquez, Adrián; Bovée, Judith V M G

    2016-09-01

    Sarcomas are infrequent mesenchymal neoplasms characterized by notable morphological and molecular heterogeneity. Molecular studies in sarcoma provide refinements to morphologic classification, and contribute diagnostic information (frequently), prognostic stratification (rarely) and predict therapeutic response (occasionally). Herein, we summarize the major molecular mechanisms underlying sarcoma pathogenesis and present clinically useful diagnostic, prognostic and predictive molecular markers for sarcoma. Five major molecular alterations are discussed, illustrated with representative sarcoma types, including 1. the presence of chimeric transcription factors, in vascular tumors; 2. abnormal kinase signaling, in gastrointestinal stromal tumor; 3. epigenetic deregulation, in chondrosarcoma, chondroblastoma, and other tumors; 4. deregulated cell survival and proliferation, due to focal copy number alterations, in dedifferentiated liposarcoma; 5. extreme genomic instability, in conventional osteosarcoma as a representative example of sarcomas with highly complex karyotype. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Conformational Transitions in Molecular Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Janke, W.

    2008-11-01

    Proteins are the "work horses" in biological systems. In almost all functions specific proteins are involved. They control molecular transport processes, stabilize the cell structure, enzymatically catalyze chemical reactions; others act as molecular motors in the complex machinery of molecular synthetization processes. Due to their significance, misfolds and malfunctions of proteins typically entail disastrous diseases, such as Alzheimer's disease and bovine spongiform encephalopathy (BSE). Therefore, the understanding of the trinity of amino acid composition, geometric structure, and biological function is one of the most essential challenges for the natural sciences. Here, we glance at conformational transitions accompanying the structure formation in protein folding processes.

  11. Modulation by metformin of molecular and histopathological alterations in the lung of cigarette smoke-exposed mice

    PubMed Central

    Izzotti, Alberto; Balansky, Roumen; D'Agostini, Francesco; Longobardi, Mariagrazia; Cartiglia, Cristina; Micale, Rosanna T; La Maestra, Sebastiano; Camoirano, Anna; Ganchev, Gancho; Iltcheva, Marietta; Steele, Vernon E; De Flora, Silvio

    2014-01-01

    The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Exposure of mice to smoke for 4 months, starting at birth, induced a systemic clastogenic damage, formation of DNA adducts, oxidative DNA damage, and extensive downregulation of microRNAs in lung after 10 weeks. Preneoplastic lesions were detectable after 7.5 months in both lung and urinary tract along with lung tumors, both benign and malignant. Modulation by metformin of 42 of 1281 pulmonary microRNAs in smoke-free mice highlighted a variety of mechanisms, including modulation of AMPK, stress response, inflammation, NFκB, Tlr9, Tgf, p53, cell cycle, apoptosis, antioxidant pathways, Ras, Myc, Dicer, angiogenesis, stem cell recruitment, and angiogenesis. In smoke-exposed mice, metformin considerably decreased DNA adduct levels and oxidative DNA damage, and normalized the expression of several microRNAs. It did not prevent smoke-induced lung tumors but inhibited preneoplastic lesions in both lung and kidney. In conclusion, metformin was able to protect the mouse lung from smoke-induced DNA and microRNA alterations and to inhibit preneoplastic lesions in lung and kidney but failed to prevent lung adenomas and malignant tumors induced by this complex mixture. PMID:24683044

  12. Molecular networks related to the immune system and mitochondria are targets for the pesticide dieldrin in the zebrafish (Danio rerio) central nervous system.

    PubMed

    Cowie, Andrew M; Sarty, Kathleena I; Mercer, Angella; Koh, Jin; Kidd, Karen A; Martyniuk, Christopher J

    2017-03-22

    The objectives of this study were to determine the behavioral and molecular responses in the adult zebrafish (Danio rerio) central nervous system (CNS) following a dietary exposure to the pesticide dieldrin. Zebrafish were fed pellets spiked with 0.03, 0.15, or 1.8μg/g dieldrin for 21days. Behavioral analysis revealed no difference in exploratory behaviors or those related to anxiety. Transcriptional networks for T-cell aggregation and selection were decreased in expression suggesting an immunosuppressive effect of dieldrin, consistent with other studies investigating organochlorine pesticides. Processes related to oxidative phosphorylation were also differentially affected by dieldrin. Quantitative proteomics (iTRAQ) using a hybrid quadrupole-Orbitrap identified 226 proteins that were different following one or more doses. These proteins included ATP synthase subunits (mitochondrial) and hypoxia up-regulated protein 1 which were decreased and NADH dehydrogenases (mitochondrial) and signal recognition particle 9 which were up-regulated. Thus, proteins affected were functionally associated with the mitochondria and a protein network analysis implicated Parkinson's disease (PD) and Huntington's disease as diseases associated with altered proteins. Molecular networks related to mitochondrial dysfunction and T-cell regulation are hypothesized to underlie the association between dieldrin and PD. These data contribute to a comprehensive transcriptomic and proteomic biomarker framework for pesticide exposures and neurodegenerative diseases. Dieldrin is a persistent organochlorine pesticide that has been associated with human neurodegenerative disease such as Parkinson's disease. Dieldrin is ranked 18th on the 2015 U.S. Agency for Toxic Substances and Disease Registry and continues to be a pesticide of concern for human health. Transcriptomics and quantitative proteomics (ITRAQ) were employed to characterize the molecular networks in the central nervous system that are

  13. Emerging insights into the molecular and cellular basis of glioblastoma

    PubMed Central

    Dunn, Gavin P.; Rinne, Mikael L.; Wykosky, Jill; Genovese, Giannicola; Quayle, Steven N.; Dunn, Ian F.; Agarwalla, Pankaj K.; Chheda, Milan G.; Campos, Benito; Wang, Alan; Brennan, Cameron; Ligon, Keith L.; Furnari, Frank; Cavenee, Webster K.; Depinho, Ronald A.; Chin, Lynda; Hahn, William C.

    2012-01-01

    Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that “glioblastoma” represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions. PMID:22508724

  14. A Molecular atlas of Xenopus respiratory system development.

    PubMed

    Rankin, Scott A; Thi Tran, Hong; Wlizla, Marcin; Mancini, Pamela; Shifley, Emily T; Bloor, Sean D; Han, Lu; Vleminckx, Kris; Wert, Susan E; Zorn, Aaron M

    2015-01-01

    Respiratory system development is regulated by a complex series of endoderm-mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. In this study, we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1+ respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/β-catenin, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using several functional experiments we refine the epistatic relationships among FGF, Wnt, and BMP signaling in early Xenopus respiratory system development. We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between embryonic days 8.5 and 10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development. © 2014 Wiley Periodicals, Inc.

  15. Method of molecular specie alteration by nonresonant laser induced dielectric breakdown

    DOEpatents

    Ronn, Avigdor M.

    1980-01-01

    Irradiation of a molecular specie by itself or in the presence of a secondary material at a pressure above a threshold value for the particular system by a laser of predetermined minimum power and having a frequency displaced from an absorption line of the specie causes severance of the weakest bond and a yield of products containing at least one dissociative fragment from said specie. A Rogowski type TEA CO.sub.2 --N.sub.2 --He laser has been used successfully on a wide variety of molecular species. Solid, liquid and gaseous end products have been obtained depending upon the starting materials. When solids have been produced they are in the form of microfine particles or microfine aggregates. A neodymium glass laser has also been used successfully.

  16. Alteration minerals in impact-generated hydrothermal systems - Exploring host rock variability

    NASA Astrophysics Data System (ADS)

    Schwenzer, Susanne P.; Kring, David A.

    2013-09-01

    Impact-generated hydrothermal systems have been previously linked to the alteration of Mars’ crust and the production of secondary mineral assemblages seen from orbit. The sensitivity of the resultant assemblages has not yet been evaluated as a function of precursor primary rock compositions. In this work, we use thermochemical modeling to explore the variety of minerals that could be produced by altering several known lithologies based on martian meteorite compositions. For a basaltic host rock lithology (Dhofar 378, Humphrey) the main alteration phases are feldspar, zeolite, pyroxene, chlorite, clay (nontronite, kaolinite), and hematite; for a lherzolithic host rock lithology (LEW 88516) the main alteration phases are amphibole, serpentine, chlorite, clay (nontronite, kaolinite), and hematite; and for an ultramafic host rock lithology (Chassigny) the main minerals are secondary olivine, serpentine, magnetite, quartz, and hematite. These assemblages and proportions of phases in each of those cases depend on W/R and temperature. Integrating geologic, hydrologic and alteration mineral evidence, we have developed a model to illustrate the distribution of alteration assemblages that occur in different levels of an impact structure. At the surface, hot, hydrous alteration affects the ejecta and melt sheet producing clay and chlorite. Deeper in the subsurface and depending on the permeability of the rock, a variety of minerals - smectite, chlorite, serpentine, amphiboles and hematite - are produced in a circulating hydrothermal system. These modeled mineral distributions should assist with interpretation of orbital observations and help guide surface exploration by rovers and sample return assets.

  17. Microbial Life Driving Low-Temperature Basalt Alteration in the Subsurface: Decoupling Abiotic Processes from Biologically-Mediated Rock Alteration

    NASA Astrophysics Data System (ADS)

    Moore, R.; Lecoeuvre, A.; Stephant, S.; Dupraz, S.; Ranchou-Peyruse, M.; Ranchou-Peyruse, A.; Gérard, E.; Ménez, B.

    2017-12-01

    Microorganisms are involved with specific rock alteration processes in the deep subsurface. It is a challenge to link any contribution microbial life may have on rock alteration with specific functions or phyla because many alteration features and secondary minerals produced by metabolic processes can also produce abiotically. Here, two flow-through experiments were designed to mimic the circulation of a CO2-rich fluid through crystalline basalt. In order to identify microbially-mediated alteration and be able to link it with specific metabolisms represented in the subsurface, a relatively fresh crystalline basalt substrate was subsampled, sterilized and used as the substrate for both experiments. In one experiment, the substrate was left sterile, and in the other it was inoculated with an enrichment culture derived from the same aquifer as the rock substrate. Initial results show that the inoculum contained Proteobacteria and Firmicutes, which have diverse metabolic potentials. Fluid and rock analyses before, during, and after the experiments show that mineralogy, fluid chemistry, and dissolution processes differ between the sterile and inoculated systems. In the inoculated experiment iron-rich orthopyroxenes were preferentially dissolved while in the sterile system clinopyroxenes and plagioclases both exhibited a higher degree of dissolution. Additionally, the patterns of CO2 consumption and production over the duration of both experiments is different. This suggest that in a low-temperature basalt system with microorganisms CO2 is either consumed to produce biomass, or that carbonates are produced and then subsequently preserved. This suite of results combined with molecular ecology analyses can be used to conclude that in low-temperature basalts microorganisms play an intrinsic role in rock alteration.

  18. Implications of recent research on microstructure modifications, through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, metabolic characteristics and nutrition in cool-climate cereal grains and other types of seeds with advanced molecular techniques.

    PubMed

    Ying, Yuguang; Zhang, Huihua; Yu, Peiqiang

    2018-02-16

    The cutting-edge synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy have recently been developed. These novel techniques are able to reveal structure features at cellular and molecular levels with the tested tissues being intact. However, to date, the advanced techniques are unfamiliar or unknown to food and feed scientists and have not been used to study the molecular structure changes in cool-climate cereal grain seeds and other types of bio-oil and bioenergy seeds. This article aims to provide some recent research in cool-climate cereal grains and other types of seeds on molecular structures and metabolic characteristics of carbohydrate and protein, and implication of microstructure modification through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, and nutrition with advanced molecular techniques- synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy in the areas of (1) Inherent microstructure of cereal grain seeds; (2) The nutritional values of cereal grains; (3) Impact and modification of heat-related processing to cereal grain; (4) Conventional nutrition evaluation methodology; (5) Synchrotron radiation-based and globar-sourced vibrational (micro)-spectroscopy for molecular structure study and molecular thermal stability and mobility, and (6) Recent molecular spectroscopic technique applications in research on raw, traits altered and processed cool-climate cereal grains and other types of seeds. The information described in this article gives better insights of research progress and update in cool-climate cereal grains and other seeds with advanced molecular techniques.

  19. Alterations of Dermal Connective Tissue Collagen in Diabetes: Molecular Basis of Aged-Appearing Skin

    PubMed Central

    Argyropoulos, Angela J.; Robichaud, Patrick; Balimunkwe, Rebecca Mutesi; Fisher, Gary J.; Hammerberg, Craig; Yan, Yan

    2016-01-01

    Alterations of the collagen, the major structural protein in skin, contribute significantly to human skin connective tissue aging. As aged-appearing skin is more common in diabetes, here we investigated the molecular basis of aged-appearing skin in diabetes. Among all known human matrix metalloproteinases (MMPs), diabetic skin shows elevated levels of MMP-1 and MMP-2. Laser capture microdissection (LCM) coupled real-time PCR indicated that elevated MMPs in diabetic skin were primarily expressed in the dermis. Furthermore, diabetic skin shows increased lysyl oxidase (LOX) expression and higher cross-linked collagens. Atomic force microscopy (AFM) further indicated that collagen fibrils were fragmented/disorganized, and key mechanical properties of traction force and tensile strength were increased in diabetic skin, compared to intact/well-organized collagen fibrils in non-diabetic skin. In in vitro tissue culture system, multiple MMPs including MMP-1 and MM-2 were induced by high glucose (25 mM) exposure to isolated primary human skin dermal fibroblasts, the major cells responsible for collagen homeostasis in skin. The elevation of MMPs and LOX over the years is thought to result in the accumulation of fragmented and cross-linked collagen, and thus impairs dermal collagen structural integrity and mechanical properties in diabetes. Our data partially explain why old-looking skin is more common in diabetic patients. PMID:27104752

  20. The effects of ecstasy on neurotransmitter systems: a review on the findings of molecular imaging studies.

    PubMed

    Vegting, Yosta; Reneman, Liesbeth; Booij, Jan

    2016-10-01

    Ecstasy is a commonly used psychoactive drug with 3,4-methylenedioxymethamphetamine (MDMA) as the main content. Importantly, it has been suggested that use of MDMA may be neurotoxic particularly for serotonergic (5-hydroxytryptamine (5-HT)) neurons. In the past decades, several molecular imaging studies examined directly in vivo the effects of ecstasy/MDMA on neurotransmitter systems. The objective of the present study is to review the effects of ecstasy/MDMA on neurotransmitter systems as assessed by molecular imaging studies in small animals, non-human primates and humans. A search in PubMed was performed. Eighty-eight articles were found on which inclusion and exclusion criteria were applied. Thirty-three studies met the inclusion criteria; all were focused on the 5-HT or dopamine (DA) system. Importantly, 9 out of 11 of the animal studies that examined the effects of MDMA on 5-HT transporter (SERT) availability showed a significant loss of binding potential. In human studies, this was the case for 14 out of 16 studies, particularly in heavy users. In abstinent users, significant recovery of SERT binding was found over time. Most imaging studies in humans that focused on the DA system did not find any significant effect of ecstasy/MDMA use. Preclinical and clinical molecular imaging studies on the effects of ecstasy/MDMA use/administration on neurotransmitter systems show quite consistent alterations of the 5-HT system. Particularly, in human studies, loss of SERT binding was observed in heavy ecstasy users, which might reflect 5-HT neurotoxicity, although alternative explanations (e.g. down-regulation of the SERT) cannot be excluded.

  1. Method and Apparatus Providing Deception and/or Altered Operation in an Information System Operating System

    DOEpatents

    Cohen, Fred; Rogers, Deanna T.; Neagoe, Vicentiu

    2008-10-14

    A method and/or system and/or apparatus providing deception and/or execution alteration in an information system. In specific embodiments, deceptions and/or protections are provided by intercepting and/or modifying operation of one or more system calls of an operating system.

  2. High sensitivity optical molecular imaging system

    NASA Astrophysics Data System (ADS)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  3. Molecular pathology and age estimation.

    PubMed

    Meissner, Christoph; Ritz-Timme, Stefanie

    2010-12-15

    Over the course of our lifetime a stochastic process leads to gradual alterations of biomolecules on the molecular level, a process that is called ageing. Important changes are observed on the DNA-level as well as on the protein level and are the cause and/or consequence of our 'molecular clock', influenced by genetic as well as environmental parameters. These alterations on the molecular level may aid in forensic medicine to estimate the age of a living person, a dead body or even skeletal remains for identification purposes. Four such important alterations have become the focus of molecular age estimation in the forensic community over the last two decades. The age-dependent accumulation of the 4977bp deletion of mitochondrial DNA and the attrition of telomeres along with ageing are two important processes at the DNA-level. Among a variety of protein alterations, the racemisation of aspartic acid and advanced glycation endproducs have already been tested for forensic applications. At the moment the racemisation of aspartic acid represents the pinnacle of molecular age estimation for three reasons: an excellent standardization of sampling and methods, an evaluation of different variables in many published studies and highest accuracy of results. The three other mentioned alterations often lack standardized procedures, published data are sparse and often have the character of pilot studies. Nevertheless it is important to evaluate molecular methods for their suitability in forensic age estimation, because supplementary methods will help to extend and refine accuracy and reliability of such estimates. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Effect of Heating Method on Alteration of Protein Molecular Structure in Flaxseed: Relationship with Changes in Protein Subfraction Profile and Digestion in Dairy Cows.

    PubMed

    Ahmad Khan, Nazir; Booker, Helen; Yu, Peiqiang

    2015-02-04

    This study evaluated the effect of heating methods on alteration of protein molecular structure in flaxseed (Linum usitatissimum L.) in relation to changes in protein subfraction profile and digestion in dairy cows. Seeds from two flaxseed varieties, sampled from two replicate plots at two locations, were evaluated. The seeds were either maintained in their raw state or heated in an air-draft oven (dry heating) or autoclave (moist heating) for 60 min at 120 °C or by microwave irradiation (MIR) for 5 min. Compared to raw seeds, moist heating decreased (P < 0.05) soluble protein (SP) content [56.5 ± 5.55 to 25.9 ± 6.16% crude protein (CP)] and increased (P < 0.05) rumen undegraded protein (RUP) content (36.0 ± 5.19 to 46.9 ± 2.72% CP) and intestinal digestibility of RUP (61.0 ± 2.28 to 63.8 ± 2.67% RUP). Dry heating did not alter (P > 0.05) the protein subfraction profile and rumen degradation kinetics, whereas MIR increased (P < 0.05) the RUP content from 36.0 ± 5.19 to 40.4 ± 4.67% CP. The MIR and dry heating did not alter (P > 0.05) the amide I to amide II ratio, but moist heating decreased (P < 0.05) both the amide I to amide II ratio and α-helix-to-β-sheet ratio. Regression equations based on protein molecular spectral intensities provided high prediction power for estimation of heat-induced changes in SP (R 2 = 0.62), RUP (R 2 = 0.71), and intestinal digestibility of RUP (R 2 = 0.72). Overall, heat-induced changes in protein nutritive value and digestion were strongly associated with heat-induced alteration in protein molecular structures.

  5. Chronic ethanol intake leads to structural and molecular alterations in the rat endometrium.

    PubMed

    Martinez, Marcelo; Milton, Flora A; Pinheiro, Patricia Fernanda F; Almeida-Francia, Camila C D; Cagnon-Quitete, Valeria H A; Tirapelli, Luiz F; Padovani, Carlos Roberto; Chuffa, Luiz Gustavo A; Martinez, Francisco Eduardo

    2016-05-01

    We described the effects of low- and high-dose ethanol intake on the structure and apoptosis signaling of the uterine endometrium of UChA and UChB rats (animals with voluntary ethanol consumption). Thirty adult female rats, 90 days old, were divided into three groups (n = 10/group): UChA rats fed with 10% (v/v) ethanol ad libitum (free choice for water or ethanol) drinking < 1.9 g/kg/day; UChB rats fed with 10% (v/v) ethanol ad libitum (free choice for water or ethanol) drinking from 2 to 5 g/kg/day; control rats without ethanol (only water). After 120 days of treatment, rats displaying estrus were euthanized. Uterine epithelial cells of the UCh rats showed dilated cisterns of the rough endoplasmic reticulum, presence of lipid droplets, altered nuclear chromatin, and disrupted mitochondria. The UCh rats exhibited intense atrophied epithelial cells with smaller areas and perimeters of cytoplasm and nuclei. The endometrium of UChA rats showed higher levels of caspase-3 while Xiap and Bcl2 varied from moderate to weak. Both UChA and UChB rats exhibited a stronger immunoreaction to Ki-67 and IGFR-1 on epithelial and stromal cells. Chronic ethanol intake leads to structural and molecular alterations in the uterine endometrium of UCh rats, regardless of low- or high-dose consumption, promoting reproductive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Molecular Genetic Characterization of Mutagenesis Using a Highly Sensitive Single-Stranded DNA Reporter System in Budding Yeast.

    PubMed

    Chan, Kin

    2018-01-01

    Mutations are permanent alterations to the coding content of DNA. They are starting material for the Darwinian evolution of species by natural selection, which has yielded an amazing diversity of life on Earth. Mutations can also be the fundamental basis of serious human maladies, most notably cancers. In this chapter, I describe a highly sensitive reporter system for the molecular genetic analysis of mutagenesis, featuring controlled generation of long stretches of single-stranded DNA in budding yeast cells. This system is ~100- to ~1000-fold more susceptible to mutation than conventional double-stranded DNA reporters, and is well suited for generating large mutational datasets to investigate the properties of mutagens.

  7. Ultraviolet-Based Pathogen Inactivation Systems: Untangling the Molecular Targets Activated in Platelets

    PubMed Central

    Schubert, Peter; Johnson, Lacey; Marks, Denese C.; Devine, Dana V.

    2018-01-01

    Transfusions of platelets are an important cornerstone of medicine; however, recipients may be subject to risk of adverse events associated with the potential transmission of pathogens, especially bacteria. Pathogen inactivation (PI) technologies based on ultraviolet illumination have been developed in the last decades to mitigate this risk. This review discusses studies of platelet concentrates treated with the current generation of PI technologies to assess their impact on quality, PI capacity, safety, and clinical efficacy. Improved safety seems to come with the cost of reduced platelet functionality, and hence transfusion efficacy. In order to understand these negative impacts in more detail, several molecular analyses have identified signaling pathways linked to platelet function that are altered by PI. Because some of these biochemical alterations are similar to those seen arising in the context of routine platelet storage lesion development occurring during blood bank storage, we lack a complete picture of the contribution of PI treatment to impaired platelet functionality. A model generated using data from currently available publications places the signaling protein kinase p38 as a central player regulating a variety of mechanisms triggered in platelets by PI systems. PMID:29868586

  8. Effects of chemical alteration on fracture mechanical properties in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Callahan, O. A.; Eichhubl, P.; Olson, J. E.

    2015-12-01

    Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture

  9. A computerized system for portrayal of landscape alterations

    Treesearch

    A. E. Stevenson; J. A. Conley; J. B. Carey

    1979-01-01

    The growing public awareness of and participation in the visual resource decision process has stimulated interest to find improved means of accurately and realistically displaying proposed alterations. The traditional artist renderings often lack the accuracy and objectivity needed for critical decisions. One approach, using computer graphics, led to the MOSAIC system...

  10. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma.

    PubMed

    Liu, Y J; Shen, D; Yin, X; Gavine, P; Zhang, T; Su, X; Zhan, P; Xu, Y; Lv, J; Qian, J; Liu, C; Sun, Y; Qian, Z; Zhang, J; Gu, Y; Ni, X

    2014-03-04

    Gastric cancer (GC) is a leading cause of cancer deaths worldwide. Since the approval of trastuzumab, targeted therapies are emerging as promising treatment options for the disease. This study aimed to explore the molecular segmentation of several known therapeutics targets, human epidermal growth factor receptor 2 (HER2), MET and fibroblast growth factor receptor 2 (FGFR2), within GC using clinically approved or investigational kits and scoring criteria. Knowledge of how these markers are segmented in the same cohort of GC patients could improve future clinical trial designs. Using immunohistochemistry (IHC) and FISH methods, overexpression and amplification of HER2, FGFR2 and MET were profiled in a cohort of Chinese GC samples. The correlations between anti-tumour sensitivity and the molecular segments of HER2, MET and FGFR2 alterations were further tested in a panel of GC cell lines and the patient-derived GC xenograft (PDGCX) model using the targeted inhibitors. Of 172 GC patients, positivity for HER2, MET and FGFR2 alternations was found in 23 (13.4%), 21 (12.2%) and 9 (5.2%) patients, respectively. Positivity for MET was found in 3 of 23 HER2-positive GC patients. Co-positivity for FGFR2 and MET was found in 1 GC patient, and amplification of the two genes was found in different tumour cells. Our study in a panel of GC cell lines showed that in most cell lines, amplification or high expression of a particular molecular marker was mutually exclusive and in vitro sensitivity to the targeted agents lapatinib, PD173074 and crizotinib was only observed in cell lines with the corresponding high expression of the drugs' target protein. SGC031, an MET-positive PDGCX mouse model, responded to crizotinib but not to lapatinib or PD173074. Human epidermal growth factor receptor 2, MET and FGFR2 oncogenic driver alterations (gene amplification and overexpression) occur in three largely distinct molecular segments in GC. A significant proportion of HER2-negative patients

  11. Study of lnter-Molecular Dynamics within Alkylsiloxane Self-Assembled Monolayer and Elastomer Systems

    NASA Astrophysics Data System (ADS)

    Roman, Michael

    In this work, molecular motion, and in particular, glassy relaxations are studied in two novel experimental systems. Both experimental systems offer a significant degree of control over molecule-molecule, or group-group (where group refers to a portion of a molecule), interactions by controlling density and the type of inter-molecular interaction. Both systems have rigid elements that decrease the tendency of bulk materials to spontaneously change their density with temperature. Thus, density can be maintained and controlled and the effect of density and temperature can be (at least in part) de-convolved. The goal of this work is to experimentally observe the transition from simple, local relaxations to glassy dynamics as density is increased and to understand how this transition differs as the inter-molecular interactions are altered. In both approaches, the system is fabricated from individual parts where the nature, spacing, and particular arrangement of the parts can be controlled and the resultant changes in molecular motion can be observed. Building up a custom system from parts enables fundamental investigation into the glass transition (as discussed above) and also makes possible the development of materials that have engineered responses as a function of temperature. As a short-hand, we refer to the two systems as the monolayer or SAM (short for Self-Assembled Monolayer) and elastomer approaches. In Chapters 4-7 we discuss results from the monolayer approach. Chapter 8 summarizes results from the elastomer approach. In particular, Chapter 4 introduces you to dielectric spectroscopy and briefly summarizes the previous work by former students in the Clarke group which identified the local and glass relaxations in silane monolayers of substituted alkyl chains as analogous to the local and glassy relaxations in polymeric systems containing phase segregated alkyl chains, and similar to the local and glass modes in poly(ethylene). The remainder of Chapter 4

  12. 75 FR 60763 - Privacy Act of 1974; Report of an Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Privacy Act of 1974; Report of an Altered System of Records AGENCY: Department of Health and Human Services (HHS), Health Resources and Services Administration (HRSA). ACTION: Notice of an Altered System of Records (SOR...

  13. 75 FR 57806 - Privacy Act of 1974; Report of an Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Health Resources and Services Administration Privacy Act of 1974; Report of an Altered System of Records AGENCY: Department of Health and Human Services (HHS), Health Resources and Services Administration (HRSA). ACTION: Notice of an Altered System of Records (SOR...

  14. Altered molecular profile in thyroid cancers from patients affected by the Three Mile Island nuclear accident.

    PubMed

    Goldenberg, David; Russo, Mariano; Houser, Kenneth; Crist, Henry; Derr, Jonathan B; Walter, Vonn; Warrick, Joshua I; Sheldon, Kathryn E; Broach, James; Bann, Darrin V

    2017-07-01

    In 1979, Three Mile Island (TMI) nuclear power plant experienced a partial meltdown with release of radioactive material. The effects of the accident on thyroid cancer (TC) in the surrounding population remain unclear. Radiation-induced TCs have a lower incidence of single nucleotide oncogenic driver mutations and higher incidence of gene fusions. We used next generation sequencing (NGS) to identify molecular signatures of radiation-induced TC in a cohort of TC patients residing near TMI during the time of the accident. Case series. We identified 44 patients who developed papillary thyroid carcinoma between 1974 and 2014. Patients who developed TC between 1984 and 1996 were at risk for radiation-induced TC, patients who developed TC before 1984 or after 1996 were the control group. We used targeted NGS of paired tumor and normal tissue from each patient to identify single nucleotide oncogenic driver mutations. Oncogenic gene fusions were identified using quantitative reverse transcription polymerase chain reaction. We identified 15 patients in the at-risk group and 29 patients in the control group. BRAF V600E mutations were identified in 53% patients in the at-risk group and 83% patients in the control group. The proportion of patients with BRAF mutations in the at-risk group was significantly lower than predicted by the The Cancer Genome Atlas cohort. Gene fusion or somatic copy number alteration drivers were identified in 33% tumors in the at-risk group and 14% of tumors in the control group. Findings were consistent with observations from other radiation-exposed populations. These data raise the possibility that radiation released from TMI may have altered the molecular profile of TC in the population surrounding TMI. 4 Laryngoscope, 127:S1-S9, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Study of adaptation to altered gravity through systems analysis of motor control.

    PubMed

    Fox, R A; Daunton, N G; Corcoran, M L

    1998-01-01

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  16. Study of adaptation to altered gravity through systems analysis of motor control

    NASA Astrophysics Data System (ADS)

    Fox, R. A.; Daunton, N. G.; Corcoran, M. L.

    Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.

  17. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    NASA Astrophysics Data System (ADS)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  18. 76 FR 4443 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... located nearby. The computer room is protected by an automatic sprinkler system, automatic sensors (e.g... 1974; Report of Modified or Altered System of Records AGENCY: National Center for HIV, STD and TB... Services (DHHS). ACTION: Notification of Proposed Altered System of Records. SUMMARY: The Department of...

  19. Impact of DNA mismatch repair system alterations on human fertility and related treatments.

    PubMed

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  20. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System

    PubMed Central

    Okaty, Benjamin W.; Freret, Morgan E.; Rood, Benjamin D.; Brust, Rachael D.; Hennessy, Morgan L.; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N.; Dymecki, Susan M.

    2016-01-01

    Summary Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-Seq to deconstruct the mouse 5HT system at multiple levels of granularity—from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal: principles underlying system organization, novel 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers new subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. PMID:26549332

  1. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    NASA Technical Reports Server (NTRS)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  2. Medulloblastoma in the Molecular Era

    PubMed Central

    Miranda Kuzan-Fischer, Claudia; Juraschka, Kyle; Taylor, Michael D.

    2018-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood and remains a major cause of cancer related mortality in children. Significant scientific advancements have transformed the understanding of medulloblastoma, leading to the recognition of four distinct clinical and molecular subgroups, namely wingless (WNT), sonic hedgehog, group 3, and group 4. Subgroup classification combined with the recognition of subgroup specific molecular alterations has also led to major changes in risk stratification of medulloblastoma patients and these changes have begun to alter clinical trial design, in which the newly recognized subgroups are being incorporated as individualized treatment arms. Despite these recent advancements, identification of effective targeted therapies remains a challenge for several reasons. First, significant molecular heterogeneity exists within the four subgroups, meaning this classification system alone may not be sufficient to predict response to a particular therapy. Second, the majority of novel agents are currently tested at the time of recurrence, after which significant selective pressures have been exerted by radiation and chemotherapy. Recent studies demonstrate selection of tumor sub-clones that exhibit genetic divergence from the primary tumor, exist within metastatic and recurrent tumor populations. Therefore, tumor resampling at the time of recurrence may become necessary to accurately select patients for personalized therapy. PMID:29742881

  3. Medulloblastoma in the Molecular Era.

    PubMed

    Miranda Kuzan-Fischer, Claudia; Juraschka, Kyle; Taylor, Michael D

    2018-05-01

    Medulloblastoma is the most common malignant brain tumor of childhood and remains a major cause of cancer related mortality in children. Significant scientific advancements have transformed the understanding of medulloblastoma, leading to the recognition of four distinct clinical and molecular subgroups, namely wingless (WNT), sonic hedgehog, group 3, and group 4. Subgroup classification combined with the recognition of subgroup specific molecular alterations has also led to major changes in risk stratification of medulloblastoma patients and these changes have begun to alter clinical trial design, in which the newly recognized subgroups are being incorporated as individualized treatment arms. Despite these recent advancements, identification of effective targeted therapies remains a challenge for several reasons. First, significant molecular heterogeneity exists within the four subgroups, meaning this classification system alone may not be sufficient to predict response to a particular therapy. Second, the majority of novel agents are currently tested at the time of recurrence, after which significant selective pressures have been exerted by radiation and chemotherapy. Recent studies demonstrate selection of tumor sub-clones that exhibit genetic divergence from the primary tumor, exist within metastatic and recurrent tumor populations. Therefore, tumor resampling at the time of recurrence may become necessary to accurately select patients for personalized therapy.

  4. Molecular genetic heterogeneity in undifferentiated endometrial carcinomas.

    PubMed

    Rosa-Rosa, Juan M; Leskelä, Susanna; Cristóbal-Lana, Eva; Santón, Almudena; López-García, Ma Ángeles; Muñoz, Gloria; Pérez-Mies, Belen; Biscuola, Michele; Prat, Jaime; Esther, Oliva E; Soslow, Robert A; Matias-Guiu, Xavier; Palacios, Jose

    2016-11-01

    Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumors, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well-differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole-exome sequencing of the endometrioid and undifferentiated components, as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: (a) hypermutated tumors with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); (b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); (c) high copy number alterations (copy-number high) tumors group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%); and (d) low copy number alterations (copy-number low) tumors with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group, whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumors. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumors, which may have prognostic value.

  5. Molecular genetic heterogeneity in undifferentiated endometrial carcinomas

    PubMed Central

    Rosa-Rosa, J.M.; Leskelä, S.; Cristóbal-Lana, E.; Santón, A.; López-García, M.A.; Muñoz, G.; Pérez-Mies, B.; Biscuola, M; Prat, J.; Oliva, E.; Soslow, R.A.; Matias-Guiu, X.; Palacios, J.

    2017-01-01

    Undifferentiated and dedifferentiated endometrial carcinomas are rare and highly aggressive subtypes of uterine cancer, not well characterized at a molecular level. To investigate whether dedifferentiated carcinomas carry molecular genetic alterations similar to those of pure undifferentiated carcinomas, and to gain insight into the pathogenesis of these tumours, we selected a cohort of 18 undifferentiated endometrial carcinomas, 8 of them with a well differentiated endometrioid carcinoma component (dedifferentiated endometrioid carcinomas), and studied them by immunohistochemistry and massive parallel and Sanger sequencing. Whole exome sequencing of the endometrioid and undifferentiated components as well as normal myometrium, was also carried out in one case. According to The Cancer Genome Atlas classification, we distributed 95% of the undifferentiated carcinomas in this series as follows: a) hypermutated tumours with loss of any mismatch repair protein expression and microsatellite instability (eight cases, 45%); b) ultramutated carcinomas carrying mutations in the exonuclease domain of POLE (two cases, 11%); c) high copy number alterations (copy-number high) tumours group exhibiting only TP53 mutations and high number of alterations detected by FISH (two cases, 11%) ; and d) low copy number alterations (copy-number low) tumours with molecular alterations typical of endometrioid endometrial carcinomas (five cases, 28%). Two of the latter cases, however, also had TP53 mutations and higher number of alterations detected by FISH and could have progressed to a copy-number high phenotype. Most dedifferentiated carcinomas belonged to the hypermutated group whereas pure undifferentiated carcinomas shared molecular genetic alterations with copy-number low or copy-number high tumours. These results indicate that undifferentiated and dedifferentiated endometrial carcinomas are molecularly heterogeneous tumours, which may have prognostic value. PMID:27491810

  6. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.

    PubMed

    Rose, Amy E; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega Y Saenz de Miera, Eleazar C; Medicherla, Ratna; Christos, Paul J; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-04-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathologic, and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (6.0; Affymetrix) with gene expression array (U133A 2.0; Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N = 114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, and ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P < 0.05; Spearman's rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene MTAP (methylthioadenosine phosphorylase) in SSM resulted in reduced cell growth. The differential expression of another metabolic-related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level by using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM.

  7. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression

    PubMed Central

    Rose, Amy E.; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega y Saenz de Miera, Eleazar C.; Medicherla, Ratna; Christos, Paul J.; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-01-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathological and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (SNP 6.0, Affymetrix) with gene expression array (U133A 2.0, Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N=114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P<0.05, Spearman’s rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene methylthioadenosine phosphorylase (MTAP) in SSM resulted in reduced cell growth. The differential expression of another metabolic related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM. PMID:21343389

  8. Molecular-beam gas-sampling system

    NASA Technical Reports Server (NTRS)

    Young, W. S.; Knuth, E. L.

    1972-01-01

    A molecular beam mass spectrometer system for rocket motor combustion chamber sampling is described. The history of the sampling system is reviewed. The problems associated with rocket motor combustion chamber sampling are reported. Several design equations are presented. The results of the experiments include the effects of cooling water flow rates, the optimum separation gap between the end plate and sampling nozzle, and preliminary data on compositions in a rocket motor combustion chamber.

  9. Studying the Impact of Spaceflight Environment on Immune Functions Using New Molecular Diagnostics System

    NASA Astrophysics Data System (ADS)

    Cohen, Luchino

    Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.

  10. Molecular Spintronics: Theory of Spin-Dependent Electron Transport in Fe/BDT/Fe Molecular Wire Systems

    NASA Astrophysics Data System (ADS)

    Dalgleish, Hugh; Kirczenow, George

    2004-03-01

    Metal/Molecule/Metal junction systems forming molecular wires are currently the focus of intense study. Recently, spin-dependent electron transport in molecular wires with magnetic Ni electrodes has been studied theoretically, and spin-valve effects have been predicted.* Here we explore theoretically another magnetic molecular wire system, namely, ferromagnetic Fe nano-contacts bridged with 1,4-benzene-dithiolate (BDT). We estimate the essential structural and electronic parameters for this system based on ab initio density functional calculations (DFT) for some simple model systems involving thiol groups and Fe clusters as well as semi-empirical considerations and the known electronic structure of bulk Fe. We then use Lippmann-Schwinger and Green's function techniques together with the Landauer formalism to study spin-dependent transport. *E. G. Emberly and G. Kirczenow, Chem. Phys. 281, 311 (2002); R. Pati, L. Senapati, P.M. Ajayan and S.K. Nayak, Phys. Rev. B68, 100407 (2003).

  11. Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models

    NASA Astrophysics Data System (ADS)

    Sud, Dhruv; Zhong, Wei; Beer, David G.; Mycek, Mary-Ann

    2006-05-01

    A fluorescence lifetime imaging microscopy (FLIM) method was developed and applied to investigate metabolic function in living human normal esophageal (HET-1) and Barrett’s adenocarcinoma (SEG-1) cells. In FLIM, image contrast is based on fluorophore excited state lifetimes, which reflect local biochemistry and molecular activity. Unique FLIM system attributes, including variable ultrafast time gating (≥ 200 ps), wide spectral tunability (337.1 - 960 nm), large temporal dynamic range (≥ 600 ps), and short data acquisition and processing times (15 s), enabled the study of two key molecules consumed at the termini of the oxidative phosphorylation pathway, NADH and oxygen, in living cells under controlled and calibrated environmental conditions. NADH is an endogenous cellular fluorophore detectable in living human tissues that has been shown to be a quantitative biomarker of dysplasia in the esophagus. Lifetime calibration of an oxygen-sensitive, ruthenium-based cellular stain enabled in vivo oxygen level measurements with a resolution of 8 μM over the entire physiological range (1 - 300 μM). Starkly higher intracellular oxygen and NADH levels in living SEG-1 vs. HET-1 cells were detected by FLIM and attributed to altered metabolic pathways in malignant cells.

  12. Systems biology for molecular life sciences and its impact in biomedicine.

    PubMed

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  13. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System.

    PubMed

    Okaty, Benjamin W; Freret, Morgan E; Rood, Benjamin D; Brust, Rachael D; Hennessy, Morgan L; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N; Dymecki, Susan M

    2015-11-18

    Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Can Molecular Hippocampal Alterations Explain Behavioral Differences in Prenatally Stressed Rats?

    EPA Science Inventory

    Studies in both humans and animals have shown that prenatal stress can alter cognitive function and other neurological behaviors in adult offspring. One possible underlying mechanism for this may lie with alterations in hippocampal gene expression. The present study examined geno...

  15. Molecular pathogenesis and mechanisms of thyroid cancer

    PubMed Central

    Xing, Mingzhao

    2013-01-01

    Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. PMID:23429735

  16. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. ARID1B alterations identify aggressive tumors in neuroblastoma.

    PubMed

    Lee, Soo Hyun; Kim, Jung-Sun; Zheng, Siyuan; Huse, Jason T; Bae, Joon Seol; Lee, Ji Won; Yoo, Keon Hee; Koo, Hong Hoe; Kyung, Sungkyu; Park, Woong-Yang; Sung, Ki W

    2017-07-11

    Targeted panel sequencing was performed to determine molecular targets and biomarkers in 72 children with neuroblastoma. Frequent genetic alterations were detected in ALK (16.7%), BRCA1 (13.9%), ATM (12.5%), and PTCH1 (11.1%) in an 83-gene panel. Molecular targets for targeted therapy were identified in 16 of 72 patients (22.2%). Two-thirds of ALK mutations were known to increase sensitivity to ALK inhibitors. Sequence alterations in ARID1B were identified in 5 of 72 patients (6.9%). Four of five ARID1B alterations were detected in tumors of high-risk patients. Two of five patients with ARID1B alterations died of disease progression. Relapse-free survival was lower in patients with ARID1B alterations than in those without (p = 0.01). In analysis confined to high-risk patients, 3-year overall survival was lower in patients with an ARID1B alteration (33.3 ± 27.2%) or MYCN amplification (30.0 ± 23.9%) than in those with neither ARID1B alteration nor MYCN amplification (90.5 ± 6.4%, p = 0.05). These results provide possibilities for targeted therapy and a new biomarker identifying a subgroup of neuroblastoma patients with poor prognosis.

  18. 76 FR 4460 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... proposes to alter System of Records, 09-20-0137, ``Passport File, HHS/CDC/COGH.'' HHS is proposing to add... excepted. SUPPLEMENTARY INFORMATION: COGH proposes to alter System of Records, No. 09-20-0137, ``Passport File, HHS/CDC/COGH.'' To show status of passports of CDC employees who travel to foreign countries on...

  19. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    PubMed

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P

  20. Molecular multiproxy analysis of ancient root systems suggests strong alteration of deep subsoil organic matter by rhizomicrobial activity

    NASA Astrophysics Data System (ADS)

    Gocke, Martina; Huguet, Arnaud; Derenne, Sylvie; Kolb, Steffen; Wiesenberg, Guido L. B.

    2013-04-01

    Roots have a high potential capacity to store large amounts of CO2 in the subsoil. However, associated with rooting, microorganisms enter the subsoil and might contribute to priming effects of carbon mineralisation in the microbial hotspot rhizosphere. Although these processes are well known for recent surface soils, it remains questionable, if and how microorganisms contribute to priming effects in the subsoil and if these effects can be traced after the roots' lifetime. The current study implies several state-of-the-art techniques like DNA and lipid molecular proxies to trace remains of microbial biomass in ancient root systems. These can provide valuable information if parts of the root and rhizomicrobial biomass are preserved, e.g. by encrustation with secondary carbonate during the root's lifespan or shortly thereafter. At the Late Pleistocene loess-paleosol sequence near Nussloch (SW Germany), rhizoliths (calcified roots) occur highly abundant in the deep subsoil from 1 to 9 m depth and below. They were formed by Holocene woody vegetation. Their size can account for up to several cm in diameter and up to > 1 m length. Rhizoliths and surrounding sediment with increasing distances of up to 10 cm, as well as reference loess without visible root remains were collected at several depth intervals. Samples were analysed for n-fatty acids (FAs) and glycerol dialkyl glycerol tetraethers (GDGTs; membrane lipids from Archaea and some Bacteria), as well as structural diversity based on the RNA gene of the prokaryotic ribosome subunit 16S (16S rRNA). GDGT represent organic remains from microbial biomass, whereas FA comprise both microbial remains and degradation products. 16S rRNA indicates the presence of both living cells and/or cell fragments. Despite the general low RNA contents in the sample set, results pointed to a much higher abundance of bacterial compared to archaeal RNA. The latter occured in notable amounts only in some rhizoliths. This was in part enforced by

  1. From Molecular Biology to Clinical Trials: Toward Personalized Colorectal Cancer Therapy.

    PubMed

    Palma, Sabina; Zwenger, Ariel O; Croce, María V; Abba, Martín C; Lacunza, Ezequiel

    2016-06-01

    During the past years, molecular studies through high-throughput technologies have led to the confirmation of critical alterations in colorectal cancer (CRC) and the discovery of some new ones, including mutations, DNA methylations, and structural chromosomal changes. These genomic alterations might act in concert to dysregulate specific signaling pathways that normally exert their functions on critical cell phenotypes, including the regulation of cellular metabolism, proliferation, differentiation, and survival. Targeted therapy against key components of altered signaling pathways has allowed an improvement in CRC treatment. However, a significant percentage of patients with CRC and metastatic CRC will not benefit from these targeted therapies and will be restricted to systemic chemotherapy. Mechanisms of resistance have been associated with specific gene alterations. To fully understand the nature and significance of the genetic and epigenetic defects in CRC that might favor a tumor evading a given therapy, much work remains. Therefore, a dynamic link between basic molecular research and preclinical studies, which ultimately constitute the prelude to standardized therapies, is very important to provide better and more effective treatments against CRC. We present an updated revision of the main molecular features of CRC and their associated therapies currently under study in clinical trials. Moreover, we performed an unsupervised classification of CRC clinical trials with the aim of obtaining an overview of the future perspectives of preclinical studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Vagt, Nicole; Braun, Markus

    -rupting the actomyosin system did not impair the sedimentation of statoliths and did not prevent the activation of gravireceptors. However, experiments in microgravity and inhibitor experiments have demonstrated that the actomyosin system optimizes the statolith-receptor interactions by keeping the sedimented statoliths in motion causing a consistent activation of different gravireceptor molecules. Thereby, a triggered gravitropic signal is created which is the basis for a highly sensitive control and readjustment mechanism. In addition, the results of recent parabolic flight studies on the effects of altered gravity conditions on the gene expres-sion pattern of Arabidopsis seedlings support these findings and provide new insight into the molecular basis of the plants response to different acceleration conditions. The work was financially supported by DLR on behalf of Bundesministerium für Wirtschaft und Technologie (50WB0815).

  3. Distributed information system on molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Bykov, A. D.; Fazliev, A. Z.; Kozodoev, A. V.; Privezentsev, A. I.; Sinitsa, L. N.; Tonkov, M. V.; Filippov, N. N.; Tretyakov, M. Yu.

    2006-12-01

    The urgency of creating the information-computational systems (ICS) on molecular spectroscopy follows from the circumstance that for some molecules the number of calculated energy levels counts hundreds of thousands, and the number of spectral lines sometimes reaches hundreds of millions. Publication of such data volumes in regular journals is inappropriate. Comparison of different calculated spectral characteristics or their comparison with experimental data beyond computer processing is hopeless. We find information systems to be an adequate form for holding such data volumes and a toolkit for handling them. Correct digital data processing requires appropriate sets of metadata arranged in the form of ontology of molecular spectroscopy. Our information system provides the data on spectral line parameters, water molecule energy levels, and absorption coefficients. Within this distributed IS one can solve two types of problems: manipulation with data and calculation of spectral functions. Among the latest experimental data in the IS there are data obtained at the Institute of Applied Physics RAS. To calculate the absorption coefficients for the molecules of carbonic acid gas, we take into consideration spectral line interference.

  4. Molecular characterization of immortalized normal and dysplastic oral cell lines.

    PubMed

    Dickman, Christopher T D; Towle, Rebecca; Saini, Rajan; Garnis, Cathie

    2015-05-01

    Cell lines have been developed for modeling cancer and cancer progression. The molecular background of these cell lines is often unknown to those using them to model disease behaviors. As molecular alterations are the ultimate drivers of cell phenotypes, having an understanding of the molecular make-up of these systems is critical for understanding the disease biology modeled. Six immortalized normal, one immortalized dysplasia, one self-immortalized dysplasia, and two primary normal cell lines derived from oral tissues were analyzed for DNA copy number changes and changes in both mRNA and miRNA expression using SMRT-v.2 genome-wide tiling comparative genomic hybridization arrays, Agilent Whole Genome 4x44k expression arrays, and Exiqon V2.M-RT-PCR microRNA Human panels. DNA copy number alterations were detected in both normal and dysplastic immortalized cell lines-as well as in the single non-immortalized dysplastic cell line. These lines were found to have changes in expression of genes related to cell cycle control as well as alterations in miRNAs that are deregulated in clinical oral squamous cell carcinoma tissues. Immortal lines-whether normal or dysplastic-had increased disruption in expression relative to primary lines. All data are available as a public resource. Molecular profiling experiments have identified DNA, mRNA, and miRNA alterations for a panel of normal and dysplastic oral tissue cell lines. These data are a valuable resource to those modeling diseases of the oral mucosa, and give insight into the selection of model cell lines and the interpretation of data from those lines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. A molecular dynamics study of polymer/graphene interfacial systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rissanou, Anastassia N.; Harmandaris, Vagelis

    2014-05-15

    Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.

  6. Genomic and Epigenomic Alterations in Cancer.

    PubMed

    Chakravarthi, Balabhadrapatruni V S K; Nepal, Saroj; Varambally, Sooryanarayana

    2016-07-01

    Multiple genetic and epigenetic events characterize tumor progression and define the identity of the tumors. Advances in high-throughput technologies, like gene expression profiling, next-generation sequencing, proteomics, and metabolomics, have enabled detailed molecular characterization of various tumors. The integration and analyses of these high-throughput data have unraveled many novel molecular aberrations and network alterations in tumors. These molecular alterations include multiple cancer-driving mutations, gene fusions, amplification, deletion, and post-translational modifications, among others. Many of these genomic events are being used in cancer diagnosis, whereas others are therapeutically targeted with small-molecule inhibitors. Multiple genes/enzymes that play a role in DNA and histone modifications are also altered in various cancers, changing the epigenomic landscape during cancer initiation and progression. Apart from protein-coding genes, studies are uncovering the critical regulatory roles played by noncoding RNAs and noncoding regions of the genome during cancer progression. Many of these genomic and epigenetic events function in tandem to drive tumor development and metastasis. Concurrent advances in genome-modulating technologies, like gene silencing and genome editing, are providing ability to understand in detail the process of cancer initiation, progression, and signaling as well as opening up avenues for therapeutic targeting. In this review, we discuss some of the recent advances in cancer genomic and epigenomic research. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. pysimm: A Python Package for Simulation of Molecular Systems

    NASA Astrophysics Data System (ADS)

    Fortunato, Michael; Colina, Coray

    pysimm, short for python simulation interface for molecular modeling, is a python package designed to facilitate the structure generation and simulation of molecular systems through convenient and programmatic access to object-oriented representations of molecular system data. This poster presents core features of pysimm and design philosophies that highlight a generalized methodology for incorporation of third-party software packages through API interfaces. The integration with the LAMMPS simulation package is explained to demonstrate this methodology. pysimm began as a back-end python library that powered a cloud-based application on nanohub.org for amorphous polymer simulation. The extension from a specific application library to general purpose simulation interface is explained. Additionally, this poster highlights the rapid development of new applications to construct polymer chains capable of controlling chain morphology such as molecular weight distribution and monomer composition.

  8. Molecular dynamics coupled with a virtual system for effective conformational sampling.

    PubMed

    Hayami, Tomonori; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi

    2018-07-15

    An enhanced conformational sampling method is proposed: virtual-system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free-energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. Asbestos-Induced Cellular and Molecular Alteration of Immunocompetent Cells and Their Relationship with Chronic Inflammation and Carcinogenesis

    PubMed Central

    Matsuzaki, Hidenori; Maeda, Megumi; Lee, Suni; Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Hayashi, Hiroaki; Yamamoto, Shoko; Hatayama, Tamayo; Kojima, Yoko; Tabata, Rika; Kishimoto, Takumi; Hiratsuka, Junichi; Otsuki, Takemi

    2012-01-01

    Asbestos causes lung fibrosis known as asbestosis as well as cancers such as malignant mesothelioma and lung cancer. Asbestos is a mineral silicate containing iron, magnesium, and calcium with a core of SiO2. The immunological effect of silica, SiO2, involves the dysregulation of autoimmunity because of the complications of autoimmune diseases found in silicosis. Asbestos can therefore cause alteration of immunocompetent cells to result in a decline of tumor immunity. Additionally, due to its physical characteristics, asbestos fibers remain in the lung, regional lymph nodes, and the pleural cavity, particularly at the opening sites of lymphatic vessels. Asbestos can induce chronic inflammation in these areas due to the production of reactive oxygen/nitrogen species. As a consequence, immunocompetent cells can have their cellular and molecular features altered by chronic and recurrent encounters with asbestos fibers, and there may be modification by the surrounding inflammation, all of which eventually lead to decreased tumor immunity. In this paper, the brief results of our investigation regarding reduction of tumor immunity of immunocompetent cells exposed to asbestos in vitro are discussed, as are our findings concerned with an investigation of chronic inflammation and analyses of peripheral blood samples derived from patients with pleural plaque and mesothelioma that have been exposed to asbestos. PMID:22500091

  10. Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.

    PubMed

    Banno, Taisuke; Toyota, Taro

    2015-06-30

    Unique dynamics using inanimate molecular assemblies have drawn a great amount of attention for demonstrating prebiomimetic molecular systems. For the construction of an organized logic combining two fundamental dynamics of life, we demonstrate here a molecular system that exhibits both division and self-propelled motion using oil droplets. The key molecule of this molecular system is a novel cationic surfactant containing a five-membered acetal moiety, and the molecular system can feed the self-propelled oil droplet composed of a benzaldehyde derivative and an alkanol. The division dynamics of the self-propelled oil droplets were observed through the hydrolysis of the cationic surfactant in bulk solution. The mechanism of the current dynamics is argued to be based on the supply of "fresh" oil components in the moving oil droplets, which is induced by the Marangoni instability. We consider this molecular system to be a prototype of self-reproducing inanimate molecular assembly exhibiting self-propelled motion.

  11. Multichannel perimetric alterations in systemic lupus erythematosus treated with hydroxychloroquine.

    PubMed

    Piñero, David P; Monllor, Begoña; Camps, Vicente J; de Fez, Dolores

    Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease of unknown etiology with many clinical manifestations. We report the first case of SLE in which visual alterations were evaluated with multichannel perimetry. Some achromatic and color vision alterations may be present in SLE, especially when treated with hydroxychloroquine. The sensitivity losses detected in the chromatic channels in the central zone of the visual field were consistent with the results of the FM 100 Hue color test. Likewise, the multichannel perimetry detected sensitivity losses in the parafoveal area for both chromatic channels, especially for the blue-yellow. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  12. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  13. Alterations in the Striatal Dopamine System During Intravenous Methamphetamine Exposure: Effects of Contingent and Noncontingent Administration

    PubMed Central

    Laćan, Goran; Hadamitzky, Martin; Kuczenski, Ronald; Melega, William P.

    2014-01-01

    The continuing spread of methamphetamine (METH) abuse has stimulated research aimed at understanding consequences of its prolonged exposure. Alterations in nigrostriatal dopamine (DA) system parameters have been characterized in experimental studies after discontinuation of long term METH but fewer studies have included similar assessments during METH exposure. Here, we report METH plasma pharmacokinetics and striatal DA system alterations in rat after noncontingent and contingent METH administration for 7.5 weeks. Escalating METH exposure was delivered by dynamic infusion (DI) that incorporated a ‘humanized’ plasma METH half life, or by intravenous self-administration (IVSA) that included binge intakes. Kinetic modeling of DI and IVSA for 24 h periods during the final week of METH exposure showed that plasma METH levels remained between 0.7–1.5 μM. Animals were sacrificed during their last METH administration for autoradiography assessment using [3H]ligands and D2 agonist-induced [35S]GTPγS binding. DA transporter binding was decreased (DI, 34%; IVSA, 15%) while vesicular monoamine transporter binding and substantia nigra DA cell numbers were unchanged. Decreases were measured for D2 receptor (DI and IVSA, 15–20%) and [35S]GTPγS binding (DI, 35%; IVSA, 18%). These similar patterns of DI and IVSA associated decreases in striatal DA markers reflect consequences of cumulative METH exposure and not the drug delivery method. For METH IVSA, individual differences were observed, yet each animal’s total intake was similar within and across three 24 h binges. IVSA rodent models may be useful for identifying molecular mechanisms that are associated with METH binges in humans. PMID:23417852

  14. Genetic alterations in hepatocellular carcinoma: An update

    PubMed Central

    Niu, Zhao-Shan; Niu, Xiao-Jun; Wang, Wen-Hong

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Although recent advances in therapeutic approaches for treating HCC have improved the prognoses of patients with HCC, this cancer is still associated with a poor survival rate mainly due to late diagnosis. Therefore, a diagnosis must be made sufficiently early to perform curative and effective treatments. There is a need for a deeper understanding of the molecular mechanisms underlying the initiation and progression of HCC because these mechanisms are critical for making early diagnoses and developing novel therapeutic strategies. Over the past decade, much progress has been made in elucidating the molecular mechanisms underlying hepatocarcinogenesis. In particular, recent advances in next-generation sequencing technologies have revealed numerous genetic alterations, including recurrently mutated genes and dysregulated signaling pathways in HCC. A better understanding of the genetic alterations in HCC could contribute to identifying potential driver mutations and discovering novel therapeutic targets in the future. In this article, we summarize the current advances in research on the genetic alterations, including genomic instability, single-nucleotide polymorphisms, somatic mutations and deregulated signaling pathways, implicated in the initiation and progression of HCC. We also attempt to elucidate some of the genetic mechanisms that contribute to making early diagnoses of and developing molecularly targeted therapies for HCC. PMID:27895396

  15. Ewing sarcoma: a chronicle of molecular pathogenesis.

    PubMed

    Kim, Sang Kyum; Park, Yong-Koo

    2016-09-01

    Sarcomas have traditionally been classified according to their chromosomal alterations regardless of whether they accompany simple or complex genetic changes. Ewing sarcoma, a classic small round cell bone tumor, is a well-known mesenchymal malignancy that results from simple sarcoma-specific genetic alterations. The genetic alterations are translocations between genes of the TET/FET family (TLS/FUS, EWSR1, and TAF15) and genes of the E26 transformation-specific (ETS) family. In this review, we intend to summarize a chronicle of molecular findings of Ewing sarcoma including recent advances and explain resultant molecular pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. 32 CFR Appendix C to Part 323 - Instructions for Preparation of Reports to New or Altered Systems

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or Altered Systems C Appendix C to Part 323 National Defense Department of Defense (Continued) OFFICE.... 323, App. C Appendix C to Part 323—Instructions for Preparation of Reports to New or Altered Systems... activities that are the sources, recipients, or users of the information in the system. C. Supporting...

  17. Molecular chaperones in Parkinson's disease--present and future.

    PubMed

    Ebrahimi-Fakhari, Darius; Wahlster, Lara; McLean, Pamela J

    2011-01-01

    Parkinson's disease, like many other neurodegenerative disorders, is characterized by the progressive accumulation of pathogenic protein species and the formation of intracellular inclusion bodies. The cascade by which the small synaptic protein α-synuclein misfolds to form distinctive protein aggregates, termed Lewy bodies and Lewy neurites, has been the subject of intensive research for more than a decade. Genetic and pathological studies in Parkinson's disease patients as well as experimental studies in disease models have clearly established altered protein metabolism as a key element in the pathogenesis of Parkinson's disease. Alterations in protein metabolism include misfolding and aggregation, post-translational modification and dysfunctional degradation of cytotoxic protein species. Protein folding and re-folding are both mediated by a highly conserved network of molecules, called molecular chaperones and co-chaperones. In addition to the regulatory role in protein folding, molecular chaperone function is intimately associated with pathways of protein degradation, such as the ubiquitin-proteasome system and the autophagy-lysosomal pathway, to effectively remove irreversibly misfolded proteins. Because of the central role of molecular chaperones in maintaining protein homeostasis, we herein review our current knowledge on the involvement of molecular chaperones and co-chaperones in Parkinson's disease. We further discuss the capacity of molecular chaperones to prevent or modulate neurodegeneration, an important concept for future neuroprotective strategies and summarize the current progress in preclinical studies in models of Parkinson's disease and other neurodegenerative disorders. Finally we include a discussion on the future potential of using molecular chaperones as a disease modifying therapy.

  18. Enhanced sampling techniques in molecular dynamics simulations of biological systems.

    PubMed

    Bernardi, Rafael C; Melo, Marcelo C R; Schulten, Klaus

    2015-05-01

    Molecular dynamics has emerged as an important research methodology covering systems to the level of millions of atoms. However, insufficient sampling often limits its application. The limitation is due to rough energy landscapes, with many local minima separated by high-energy barriers, which govern the biomolecular motion. In the past few decades methods have been developed that address the sampling problem, such as replica-exchange molecular dynamics, metadynamics and simulated annealing. Here we present an overview over theses sampling methods in an attempt to shed light on which should be selected depending on the type of system property studied. Enhanced sampling methods have been employed for a broad range of biological systems and the choice of a suitable method is connected to biological and physical characteristics of the system, in particular system size. While metadynamics and replica-exchange molecular dynamics are the most adopted sampling methods to study biomolecular dynamics, simulated annealing is well suited to characterize very flexible systems. The use of annealing methods for a long time was restricted to simulation of small proteins; however, a variant of the method, generalized simulated annealing, can be employed at a relatively low computational cost to large macromolecular complexes. Molecular dynamics trajectories frequently do not reach all relevant conformational substates, for example those connected with biological function, a problem that can be addressed by employing enhanced sampling algorithms. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Molecular alterations in endometrial and ovarian clear cell carcinomas: clinical impacts of telomerase reverse transcriptase promoter mutation.

    PubMed

    Huang, Hsien-Neng; Chiang, Ying-Cheng; Cheng, Wen-Fang; Chen, Chi-An; Lin, Ming-Chieh; Kuo, Kuan-Ting

    2015-02-01

    Recently, mutations of telomerase reverse transcriptase (TERT) promoter were found in several types of cancer. A few reports demonstrate TERT promoter mutations in ovarian clear cell carcinomas but endometrial clear cell carcinoma has not been studied. The aims of this study were to compare differences of molecular alterations and clinical factors, and identify their prognostic impact in endometrial and ovarian clear cell carcinomas. We evaluated mutations of the TERT promoter and PIK3CA, expression of ARID1A, and other clinicopathological factors in 56 ovarian and 14 endometrial clear cell carcinomas. We found that TERT promoter mutations were present in 21% (3/14) of endometrial clear cell carcinomas and 16% (9/56) of ovarian clear cell carcinomas. Compared with ovarian clear cell carcinomas, endometrial clear cell carcinomas showed older mean patient age (P<0.001), preserved ARID1A immunoreactivity (P=0.017) and infrequent PIK3CA mutation (P=0.025). In ovarian clear cell carcinomas, TERT promoter mutations were correlated with patient age >45 (P=0.045) and preserved ARID1A expression (P=0.003). In cases of endometrial clear cell carcinoma, TERT promoter mutations were not statistically associated with any other clinicopathological factors. In ovarian clear cell carcinoma patients with early FIGO stage (stages I and II), TERT promoter mutation was an independent prognostic factor and correlated with a shorter disease-free survival and overall survival (P=0.015 and 0.009, respectively). In recurrent ovarian clear cell carcinoma patients with early FIGO stage, TERT promoter mutations were associated with early relapse within 6 months (P=0.018). We concluded that TERT promoter mutations were present in endometrial and ovarian clear cell carcinomas. Distinct molecular alteration patterns in endometrial and ovarian clear cell carcinomas implied different processes of tumorigenesis in these morphologically similar tumors. In ovarian clear cell carcinoma of early FIGO

  20. Treatment Algorithms Based on Tumor Molecular Profiling: The Essence of Precision Medicine Trials.

    PubMed

    Le Tourneau, Christophe; Kamal, Maud; Tsimberidou, Apostolia-Maria; Bedard, Philippe; Pierron, Gaëlle; Callens, Céline; Rouleau, Etienne; Vincent-Salomon, Anne; Servant, Nicolas; Alt, Marie; Rouzier, Roman; Paoletti, Xavier; Delattre, Olivier; Bièche, Ivan

    2016-04-01

    With the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials. © The Author 2015. Published by Oxford University Press.

  1. Copy Number Alterations and Methylation in Ewing's Sarcoma

    PubMed Central

    Jahromi, Mona S.; Jones, Kevin B.; Schiffman, Joshua D.

    2011-01-01

    Ewing's sarcoma is the second most common bone malignancy affecting children and young adults. The prognosis is especially poor in metastatic or relapsed disease. The cell of origin remains elusive, but the EWS-FLI1 fusion oncoprotein is present in the majority of cases. The understanding of the molecular basis of Ewing's sarcoma continues to progress slowly. EWS-FLI1 affects gene expression, but other factors must also be at work such as mutations, gene copy number alterations, and promoter methylation. This paper explores in depth two molecular aspects of Ewing's sarcoma: copy number alterations (CNAs) and methylation. While CNAs consistently have been reported in Ewing's sarcoma, their clinical significance has been variable, most likely due to small sample size and tumor heterogeneity. Methylation is thought to be important in oncogenesis and balanced karyotype cancers such as Ewing's, yet it has received only minimal attention in prior studies. Future CNA and methylation studies will help to understand the molecular basis of this disease. PMID:21437220

  2. Alterations in mtDNA, gastric carcinogenesis and early diagnosis.

    PubMed

    Rodrigues-Antunes, S; Borges, B N

    2018-05-26

    Gastric cancer remains one of the most prevalent cancers in the world. Due to this, efforts are being made to improve the diagnosis of this neoplasm and the search for molecular markers that may be involved in its genesis. Within this perspective, the mitochondrial DNA is considered as a potential candidate, since it has several well documented changes and is readily accessible. However, numerous alterations have been reported in mtDNA, not facilitating the visualization of which alterations and molecular markers are truly involved with gastric carcinogenesis. This review presents a compilation of the main known changes relating mtDNA to gastric cancer and their clinical significance.

  3. An antilock molecular braking system.

    PubMed

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles.

  4. Unidirectional rotary motion in a molecular system

    NASA Astrophysics Data System (ADS)

    Kelly, T. Ross; de Silva, Harshani; Silva, Richard A.

    1999-09-01

    The conversion of energy into controlled motion plays an important role in both man-made devices and biological systems. The principles of operation of conventional motors are well established, but the molecular processes used by `biological motors' such as muscle fibres, flagella and cilia to convert chemical energy into co-ordinated movement remain poorly understood. Although `brownian ratchets' are known to permit thermally activated motion in one direction only, the concept of channelling random thermal energy into controlled motion has not yet been extended to the molecular level. Here we describe a molecule that uses chemical energy to activate and bias a thermally induced isomerization reaction, and thereby achieve unidirectional intramolecular rotary motion. The motion consists of a 120° rotation around a single bond connecting a three-bladed subunit to the bulky remainder of the molecule, and unidirectional motion is achieved by reversibly introducing a tether between the two units to energetically favour one of the two possible rotation directions. Although our system does not achieve continuous and fast rotation, the design principles that we have used may prove relevant for a better understanding of biological and synthetic molecular motors producing unidirectional rotary motion.

  5. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma

    PubMed Central

    Castro, Nadia P; Osório, Cynthia ABT; Torres, César; Bastos, Elen P; Mourão-Neto, Mário; Soares, Fernando A; Brentani, Helena P; Carraro, Dirce M

    2008-01-01

    . Conclusions We identified new genes that are potentially involved in the malignant transformation of DCIS, and our findings strongly suggest that cells from the in situ component of lesions with co-existing invasive ductal carcinoma exhibit molecular alterations that enable them to invade the surrounding tissue before morphological changes in the lesion become apparent. PMID:18928525

  6. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma.

    PubMed

    Castro, Nadia P; Osório, Cynthia A B T; Torres, César; Bastos, Elen P; Mourão-Neto, Mário; Soares, Fernando A; Brentani, Helena P; Carraro, Dirce M

    2008-01-01

    potentially involved in the malignant transformation of DCIS, and our findings strongly suggest that cells from the in situ component of lesions with co-existing invasive ductal carcinoma exhibit molecular alterations that enable them to invade the surrounding tissue before morphological changes in the lesion become apparent.

  7. Alterations in the endocannabinoid system in the rat valproic acid model of autism.

    PubMed

    Kerr, D M; Downey, L; Conboy, M; Finn, D P; Roche, M

    2013-07-15

    The endocannabinoid system plays a crucial role in regulating emotionality and social behaviour, however it is unknown whether this system plays a role in symptoms associated with autism spectrum disorders. The current study evaluated if alterations in the endocannabinoid system accompany behavioural changes in the valproic acid (VPA) rat model of autism. Adolescent rats prenatally exposed to VPA exhibited impaired social investigatory behaviour, hypoalgesia and reduced lococmotor activity on exposure to a novel aversive arena. Levels of the endocananbinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG) in the hippocampus, frontal cortex or cerebellum were not altered in VPA- versus saline-exposed animals. However, the expression of mRNA for diacylglycerol lipase α, the enzyme primarily responsible for the synthesis of 2-AG, was reduced in the cerebellum of VPA-exposed rats. Furthermore, while the expression of mRNA for the 2-AG-catabolising enzyme monoacylglycerol lipase was reduced, the activity of this enzyme was increased, in the hippocampus of VPA-exposed animals. CB1 or CB2 receptor expression was not altered in any of the regions examined, however VPA-exposed rats exhibited reduced PPARα and GPR55 expression in the frontal cortex and PPARγ and GPR55 expression in the hippocampus, additional receptor targets of the endocannabinoids. Furthermore, tissue levels of the fatty acid amide hydrolase substrates, AEA, oleoylethanolamide and palmitoylethanolamide, were higher in the hippocampus of VPA-exposed rats immediately following social exposure. These data indicate that prenatal VPA exposure is associated with alterations in the brain's endocannabinoid system and support the hypothesis that endocannabinoid dysfunction may underlie behavioural abnormalities observed in autism spectrum disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A Molecular Basis of Cancer.

    ERIC Educational Resources Information Center

    Weinberg, Robert A.

    1983-01-01

    Discusses the molecular basis of cancer, focusing on genetics of the disease. Indicates that human cancers are initiated by oncogenes (altered versions of normal genes) and that in one case the critical alteration is a single point mutation that changes one amino acid in the protein encoded by the gene. (JN)

  9. Diabetes-induced changes in specific lipid molecular species in rat myocardium.

    PubMed Central

    Han, X; Abendschein, D R; Kelley, J G; Gross, R W

    2000-01-01

    Intrinsic cardiac dysfunction during the diabetic state has been causally linked to changes in myocardial lipid metabolism. However, the precise alterations in the molecular species of myocardial polar and non-polar lipids during the diabetic state and their responses to insulin have not been investigated. Herein we demonstrate four specific alterations in rat myocardial lipid molecular species after induction of the diabetic state by streptozotocin treatment: (i) a massive remodelling of triacylglycerol molecular species including a >5-fold increase in tripalmitin mass and a 60% decrease in polyunsaturated triacylglycerol molecular species mass (i.e. triacylglycerols containing at least one acyl residue with more than two double bonds); (ii) a 46% increase in myocardial phosphatidylinositol mass; (iii) a 44% increase in myocardial plasmenylethanolamine mass and (iv) a 22% decrease in 1-stearoyl-2-arachidonoyl phosphatidylethanolamine content. Each of the changes in phospholipid classes, subclasses and individual molecular species were prevented by insulin treatment after induction of the diabetic state. In sharp contrast, the alterations in triacylglycerol molecular species were not preventable by peripheral insulin treatment after induction of the diabetic state. These results segregate diabetes-induced alterations in myocardial lipid metabolism into changes that can be remedied or not by routine peripheral insulin treatment and suggest that peripheral insulin therapy alone may not be sufficient to correct all of the metabolic alterations present in diabetic myocardium. PMID:11062060

  10. The bacteriorhodopsin model membrane system as a prototype molecular computing element.

    PubMed

    Hong, F T

    1986-01-01

    The quest for more sophisticated integrated circuits to overcome the limitation of currently available silicon integrated circuits has led to the proposal of using biological molecules as computational elements by computer scientists and engineers. While the theoretical aspect of this possibility has been pursued by computer scientists, the research and development of experimental prototypes have not been pursued with an equal intensity. In this survey, we make an attempt to examine model membrane systems that incorporate the protein pigment bacteriorhodopsin which is found in Halobacterium halobium. This system was chosen for several reasons. The pigment/membrane system is sufficiently simple and stable for rigorous quantitative study, yet at the same time sufficiently complex in molecular structure to permit alteration of this structure in an attempt to manipulate the photosignal. Several methods of forming the pigment/membrane assembly are described and the potential application to biochip design is discussed. Experimental data using these membranes and measured by a tunable voltage clamp method are presented along with a theoretical analysis based on the Gouy-Chapman diffuse double layer theory to illustrate the usefulness of this approach. It is shown that detailed layouts of the pigment/membrane assembly as well as external loading conditions can modify the time course of the photosignal in a predictable manner. Some problems that may arise in the actual implementation and manufacturing, as well as the use of existing technology in protein chemistry, immunology, and recombinant DNA technology are discussed.

  11. Immune system alterations in amyotrophic lateral sclerosis.

    PubMed

    Hovden, H; Frederiksen, J L; Pedersen, S W

    2013-11-01

    Amyotrophic lateral sclerosis is a disease of which the underlying cause and pathogenesis are unknown. Cumulatative data clearly indicates an active participation by the immune system in the disease. An increasingly recognized theory suggests a non-cell autonomous mechanism, meaning that multiple cells working together are necessary for the pathogenesis of the disease. Observed immune system alterations could indicate an active participation in this mechanism. Damaged motor neurons are able to activate microglia, astrocytes and the complement system, which further can influence each other and contribute to neurodegeneration. Infiltrating peripheral immune cells appears to correlate with disease progression, but their significance and composition is unclear. The deleterious effects of this collaborating system of cells appear to outweigh the protective aspects, and revealing this interplay might give more insight into the disease. Markers from the classical complement pathway are elevated where its initiator C1q appears to derive primarily from motor neurons. Activated microglia and astrocytes are found in close proximity to dying motor neurons. Their activation status and proliferation seemingly increases with disease progression. Infiltrating monocytes, macrophages and T cells are associated with these areas, although with mixed reports regarding T cell composition. This literature review will provide evidence supporting the immune system as an important part of ALS disease mechanism and present a hypothesis to direct the way for further studies. © 2013 John Wiley & Sons A/S.

  12. The main factors controlling petrophysical alteration in hydrothermal systems of the Kuril-Kamchatka island arch

    NASA Astrophysics Data System (ADS)

    Frolova, J.; Ladygin, V.; Rychagov, S.; Shanina, V.; Blyumkina, M.

    2009-04-01

    This report is based on the results of petrophysical studies obtained on a number of hydrothermal systems in the Kuril-Kamchatka island arc (Pauzhetsky, Mutnovsky, Koshelevsky, Essovsky, a volcano of Ebeko, Oceansky). Mineral composition and pore-space structure of primary rocks change intensively during hydrothermal process, results in alteration of petrophysical properties - porosity, density, permeability, hygroscopy, sonic velocity, elastic modulus, mechanical properties, thermal and magnetic characteristics. Petrophysical alterations gradually lead to the change of the structure of hydrothermal system, and its hydrodynamic and temperature regime. The tendency of petrophysical alteration can be different. In some cases rocks "improvement" is observed i.e. consolidation, hardening, decrease of porosity and permeability, removal of hygroscopy. In other cases rocks "deterioration" occurs, i.e. formation of secondary porosity and permeability, a decrease of density, strength, and elastic modulus, and occurrence of hygroscopic moisture. The classical example of cardinal petrophysical alteration is the transformation of hard basalts to plastic clays. The opposite example is the transformation of only slightly consolidates porous tuffs to hard and dense secondary quartzite. The character of petrophysical alteration depends on a number of factors including peculiarities of primary rocks, temperature, pressure and composition of thermal fluids, duration of fluid-rock interaction, and condition of fluid (steam, water, boiling water). The contribution of each factor to change of volcanic rocks properties is considered and analyzed in details. In particular, primary rocks controls speed, intensity and character of petrophysical alterations. Factors favorable for alteration are high porosity and permeability, micro crakes, weak cementation, glassy structure, basaltic composition. Kuril-Kamchatka region represents the volcanic island arch so host rocks in hydrothermal

  13. Molecular marker systems for Oenothera genetics.

    PubMed

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.

  14. THE SYMPATHETIC NERVOUS SYSTEM ALTERATIONS IN HUMAN HYPERTENSION

    PubMed Central

    Grassi, Guido; Mark, Allyn; Esler, Murray

    2015-01-01

    A number of articles have dealt with the importance and mechanisms of the sympathetic nervous system alterations in experimental animal models of hypertension. This review addresses the role of the sympathetic nervous system in the pathophysiology and therapy of human hypertension. We first discuss the strengths and limitations of various techniques for assessing the sympathetic nervous system in humans, with a focus on heart rate, plasma norepinephrine, microneurographic recording of sympathetic nerve traffic, and measurements of radiolabeled norepinephrine spillover. We then examine the evidence supporting the importance of neuroadrenergic factors as “promoters” and “amplifiers” of human hypertension. We expand on the role of the sympathetic nervous system in two increasingly common forms of secondary hypertension, namely hypertension associated with obesity and with renal disease. With this background, we examine interventions of sympathetic deactivation as a mode of antihypertensive treatment. Particular emphasis is given to the background and results of recent therapeutic approaches based on carotid baroreceptor stimulation and radiofrequency ablation of the renal nerves. PMID:25767284

  15. 32 CFR Appendix B to Part 323 - Criteria for New and Altered Record Systems

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as operating systems and system utilities that provide for easier access are considered alterations... terminals does not extend the capacity of the current operating system and existing security is preserved. f... not operate a system of records until the waiting periods have expired. E. Outside review of new and...

  16. 32 CFR Appendix B to Part 323 - Criteria for New and Altered Record Systems

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as operating systems and system utilities that provide for easier access are considered alterations... terminals does not extend the capacity of the current operating system and existing security is preserved. f... not operate a system of records until the waiting periods have expired. E. Outside review of new and...

  17. 32 CFR Appendix B to Part 323 - Criteria for New and Altered Record Systems

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... as operating systems and system utilities that provide for easier access are considered alterations... terminals does not extend the capacity of the current operating system and existing security is preserved. f... not operate a system of records until the waiting periods have expired. E. Outside review of new and...

  18. Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish

    PubMed Central

    Li, Jia-Min; Li, Ling-Yu; Qin, Xuan; Degrace, Pascal; Demizieux, Laurent; Limbu, Samwel M.; Wang, Xin; Zhang, Mei-Ling; Li, Dong-Liang; Du, Zhen-Yu

    2018-01-01

    Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin (mtor), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be used

  19. Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish.

    PubMed

    Li, Jia-Min; Li, Ling-Yu; Qin, Xuan; Degrace, Pascal; Demizieux, Laurent; Limbu, Samwel M; Wang, Xin; Zhang, Mei-Ling; Li, Dong-Liang; Du, Zhen-Yu

    2018-01-01

    Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin ( mtor ), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be

  20. Molecular Pathology: Predictive, Prognostic, and Diagnostic Markers in Uterine Tumors.

    PubMed

    Ritterhouse, Lauren L; Howitt, Brooke E

    2016-09-01

    This article focuses on the diagnostic, prognostic, and predictive molecular biomarkers in uterine malignancies, in the context of morphologic diagnoses. The histologic classification of endometrial carcinomas is reviewed first, followed by the description and molecular classification of endometrial epithelial malignancies in the context of histologic classification. Taken together, the molecular and histologic classifications help clinicians to approach troublesome areas encountered in clinical practice and evaluate the utility of molecular alterations in the diagnosis and subclassification of endometrial carcinomas. Putative prognostic markers are reviewed. The use of molecular alterations and surrogate immunohistochemistry as prognostic and predictive markers is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Privacy Act of 1974; altered system of records--PHS. Notification of altered system of records: 09-30-0036, "Alcohol, Drug Abuse, and Mental Health Epidemiologic and Biometric Research Data, HHS/ADAMHA/OA".

    PubMed

    1984-10-23

    In accordance with the requirements of the Privacy Act, the Public Health Service (OHS) is publishing a notice of proposal to alter the system of records in the Alcohol, Drug Abuse, and Mental Health Administration (ADAMHA), National Institute of Mental Health (NIMH), entitled, "Mental Health Epidemiologic and Biometric Research Data, HHS/ADAMHA/NIMH," to create an umbrella system of records to include epidemiologic and biometric research data in the areas of alcohol and drug abuse in addition to data already collected and maintained for mental health research. The system is to be retitled, "Alcohol, Drug Abuse, and Mental Health Epidemiologic and Biometric Research Data, HHS/ADAMHA/OA." PHS invites interested persons to submit comments on the proposed alteration on or before November 23, 1984.

  2. Plant genotoxicity: a molecular cytogenetic approach in plant bioassays.

    PubMed

    Maluszynska, Jolanta; Juchimiuk, Jolanta

    2005-06-01

    It is important for the prevention of DNA changes caused by environment to understand the biological consequences of DNA damages and their molecular modes of action that lead to repair or alterations of the genetic material. Numerous genotoxicity assay systems have been developed to identify DNA reactive compounds. The available data show that plant bioassays are important tests in the detection of genotoxic contamination in the environment and the establishment of controlling systems. Plant system can detect a wide range of genetic damage, including gene mutations and chromosome aberrations. Recently introduced molecular cytogenetic methods allow analysis of genotoxicity, both at the chromosomal and DNA level. FISH gives a new possibility of the detection and analysis of chromosomal rearrangements in a great detail. DNA fragmentation can be estimated using the TUNEL test and the single cell gel electrophoresis (Comet assay).

  3. Protonation free energy levels in complex molecular systems.

    PubMed

    Antosiewicz, Jan M

    2008-04-01

    All proteins, nucleic acids, and other biomolecules contain residues capable of exchanging protons with their environment. These proton transfer phenomena lead to pH sensitivity of many molecular processes underlying biological phenomena. In the course of biological evolution, Nature has invented some mechanisms to use pH gradients to regulate biomolecular processes inside cells or in interstitial fluids. Therefore, an ability to model protonation equilibria in molecular systems accurately would be of enormous value for our understanding of biological processes and for possible rational influence on them, like in developing pH dependent drugs to treat particular diseases. This work presents a derivation, by thermodynamic and statistical mechanical methods, of an expression for the free energy of a complex molecular system at arbitrary ionization state of its titratable residues. This constitutes one of the elements of modeling protonation equilibria. Starting from a consideration of a simple acid-base equilibrium of a model compound with a single tritratable group, we arrive at an expression which is of general validity for complex systems. The only approximation used in this derivation is the postulating that the interaction energy between any pair of titratable sites does not depend on the protonation states of all the remaining ionizable groups.

  4. Altered Neuronal and Circuit Excitability in Fragile X Syndrome.

    PubMed

    Contractor, Anis; Klyachko, Vitaly A; Portera-Cailliau, Carlos

    2015-08-19

    Fragile X syndrome (FXS) results from a genetic mutation in a single gene yet produces a phenotypically complex disorder with a range of neurological and psychiatric problems. Efforts to decipher how perturbations in signaling pathways lead to the myriad alterations in synaptic and cellular functions have provided insights into the molecular underpinnings of this disorder. From this large body of data, the theme of circuit hyperexcitability has emerged as a potential explanation for many of the neurological and psychiatric symptoms in FXS. The mechanisms for hyperexcitability range from alterations in the expression or activity of ion channels to changes in neurotransmitters and receptors. Contributions of these processes are often brain region and cell type specific, resulting in complex effects on circuit function that manifest as altered excitability. Here, we review the current state of knowledge of the molecular, synaptic, and circuit-level mechanisms underlying hyperexcitability and their contributions to the FXS phenotypes. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The molecular bases of the suicidal brain

    PubMed Central

    Turecki, Gustavo

    2017-01-01

    Suicide ranks among the leading causes of death around the world, and takes a heavy emotional and public health toll on most societies. Both distal and proximal factors contribute to suicidal behaviour. Distal factors — such as familial and genetic predisposition, as well as early-life adversity — increase the lifetime risk of suicide. They alter responses to stress and other processes through epigenetic modification of genes and associated changes in gene expression, and through the regulation of emotional and behavioural traits. Proximal factors associate with the precipitation of a suicidal event and include alterations in key neurotransmitter systems, inflammatory changes and glial dysfunction in the brain. This Review explores the key molecular changes associated with suicidality, and presents some promising avenues for future research. PMID:25354482

  6. Molecularly Engineered Polymer-Based Systems in Drug Delivery and Regenerative Medicine.

    PubMed

    Piluso, Susanna; Soultan, Al Halifa; Patterson, Jennifer

    2017-01-01

    Polymer-based systems are attractive in drug delivery and regenerative medicine due to the possibility of tailoring their properties and functions to a specific application. The present review provides several examples of molecularly engineered polymer systems, including stimuli responsive polymers and supramolecular polymers. The advent of controlled polymerization techniques has enabled the preparation of polymers with controlled molecular weight and well-defined architecture. By using these techniques coupled to orthogonal chemical modification reactions, polymers can be molecularly engineered to incorporate functional groups able to respond to small changes in the local environment or to a specific biological signal. This review highlights the properties and applications of stimuli-responsive systems and polymer therapeutics, such as polymer-drug conjugates, polymer-protein conjugates, polymersomes, and hyperbranched systems. The applications of polymeric membranes in regenerative medicine are also discussed. The examples presented in this review suggest that the combination of membranes with polymers that are molecularly engineered to respond to specific biological functions could be relevant in the field of regenerative medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Anticipatory dynamics of biological systems: from molecular quantum states to evolution

    NASA Astrophysics Data System (ADS)

    Igamberdiev, Abir U.

    2015-08-01

    Living systems possess anticipatory behaviour that is based on the flexibility of internal models generated by the system's embedded description. The idea was suggested by Aristotle and is explicitly introduced to theoretical biology by Rosen. The possibility of holding the embedded internal model is grounded in the principle of stable non-equilibrium (Bauer). From the quantum mechanical view, this principle aims to minimize energy dissipation in expense of long relaxation times. The ideas of stable non-equilibrium were developed by Liberman who viewed living systems as subdivided into the quantum regulator and the molecular computer supporting coherence of the regulator's internal quantum state. The computational power of the cell molecular computer is based on the possibility of molecular rearrangements according to molecular addresses. In evolution, the anticipatory strategies are realized both as a precession of phylogenesis by ontogenesis (Berg) and as the anticipatory search of genetic fixation of adaptive changes that incorporates them into the internal model of genetic system. We discuss how the fundamental ideas of anticipation can be introduced into the basic foundations of theoretical biology.

  8. Altered fingerprints: analysis and detection.

    PubMed

    Yoon, Soweon; Feng, Jianjiang; Jain, Anil K

    2012-03-01

    The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem.

  9. MOLECULAR BONDING SYSTEM - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This document presents an evaluation of the Molecular Bonding System (MBS) and its ability to chemically stabilize three metals-contaminated wstes/soils during a SITe demo. The MBS process treated approximately 500 tons each of soil/Fill, Slag, and Miscellaneous Smelter Waste wit...

  10. Atomic and Molecular Systems in Intense Ultrashort Laser Pulses

    NASA Astrophysics Data System (ADS)

    Saenz, A.

    2008-07-01

    The full quantum mechanical treatment of atomic and molecular systems exposed to intense laser pulses is a so far unsolved challenge, even for systems as small as molecular hydrogen. Therefore, a number of simplified qualitative and quantitative models have been introduced in order to provide at least some interpretational tools for experimental data. The assessment of these models describing the molecular response is complicated, since a comparison to experiment requires often a number of averages to be performed. This includes in many cases averaging of different orientations of the molecule with respect to the laser field, focal volume effects, etc. Furthermore, the pulse shape and even the peak intensity is experimentally not known with very high precision; considering, e.g., the exponential intensity dependence of the ionization signal. Finally, experiments usually provide only relative yields. As a consequence of all these averagings and uncertainties, it is possible that different models may successfully explain some experimental results or features, although these models disagree substantially, if their predictions are compared before averaging. Therefore, fully quantum-mechanical approaches at least for small atomic and molecular systems are highly desirable and have been developed in our group. This includes efficient codes for solving the time-dependent Schrodinger equation of atomic hydrogen, helium or other effective one- or two-electron atoms as well as for the electronic motion in linear (effective) one-and two-electron diatomic molecules like H_2.Very recently, a code for larger molecular systems that adopts the so-called single-active electron approximation was also successfully implemented and applied. In the first part of this talk popular models describing intense laser-field ionization of atoms and their extensions to molecules are described. Then their validity is discussed on the basis of quantum-mechanical calculations. Finally, some

  11. Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems

    DTIC Science & Technology

    2017-08-01

    Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems The views, opinions and/or findings contained in...University of California - San Diego Title: Propagating Molecular Recognition Events through Highly Integrated Sense-Response Chemical Systems Report Term...including enzymatic reactions , occurring at the aqueous interfaces of thermotropic LCs show promise as the basis of biomolecular triggers of LC

  12. F1174V mutation alters the ALK active conformation in response to Crizotinib in NSCLC: Insight from molecular simulations.

    PubMed

    Dehghanian, Fariba; Kay, Maryam; Vallian, Sadeq

    2017-08-01

    Crizotinib is an efficient antineoplastic drug for treatment of non-small cell lung carcinoma (NSCLC), which is identified as an anaplastic lymphoma kinase (ALK) inhibitor. F1174V is a recently identified acquired point mutation relating to the Crizotinib resistance in NSCLC patients. The mechanism of Crizotinib resistance relating to F1174V mutation as a non-active site mutation remains unclear. In this study, the molecular dynamic simulation was used to investigate the possible mechanisms by which F1174V mutation may affect the structure and activity of ALK kinase domain. The results suggested that F1174V mutation could cause two important secondary structure alterations, which led to the local conformational change in ALK kinase domain. This causes more positive free energy in the mutant complex in comparison with the wild-type one. In addition, our structural analyses illustrated that F1174V mutation could result in some important interactions, which represent the key characteristics of the ALK active conformation. This study provided a molecular mechanism for ALK Crizotinib resistance caused by F1174V mutation,which could facilitate designing more efficient drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research.

    PubMed

    Lai, Floriana; Jutfelt, Fredrik; Nilsson, Göran E

    2015-01-01

    Studies on the consequences of ocean acidification for the marine ecosystem have revealed behavioural changes in coral reef fishes exposed to sustained near-future CO2 levels. The changes have been linked to altered function of GABAergic neurotransmitter systems, because the behavioural alterations can be reversed rapidly by treatment with the GABAA receptor antagonist gabazine. Characterization of the molecular mechanisms involved would be greatly aided if these can be examined in a well-characterized model organism with a sequenced genome. It was recently shown that CO2-induced behavioural alterations are not confined to tropical species, but also affect the three-spined stickleback, although an involvement of the GABAA receptor was not examined. Here, we show that loss of lateralization in the stickleback can be restored rapidly and completely by gabazine treatment. This points towards a worrying universality of disturbed GABAA function after high-CO2 exposure in fishes from tropical to temperate marine habitats. Importantly, the stickleback is a model species with a sequenced and annotated genome, which greatly facilitates future studies on underlying molecular mechanisms.

  14. Integrative pathway knowledge bases as a tool for systems molecular medicine.

    PubMed

    Liang, Mingyu

    2007-08-20

    There exists a sense of urgency to begin to generate a cohesive assembly of biomedical knowledge as the pace of knowledge accumulation accelerates. The urgency is in part driven by the emergence of systems molecular medicine that emphasizes the combination of systems analysis and molecular dissection in the future of medical practice and research. A potentially powerful approach is to build integrative pathway knowledge bases that link organ systems function with molecules.

  15. Molecular genetics of intraductal papillary-mucinous neoplasms of the pancreas.

    PubMed

    Furukawa, Toru

    2007-01-01

    Intraductal papillary-mucinous neoplasms of the pancreas show characteristic clinicopathological and molecular pathobiological features which are distinct from those of conventional ductal adenocarcinomas. Alterations of KRAS, AKT/PKB, CDKN2A, TP53, SMAD4, STK11/LKB1, and DUSP6, and other molecular alterations, including global expression studies as well as their clinical implications, are discussed.

  16. 41 CFR 51-9.502 - Federal Register notice of establishment of new system or alteration of existing system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... existing system. (a) When the Executive Director receives notice that the Senate, the House of... the submission of the proposal to the Senate, the House of Representatives, and the Office of... notice shall be published in the Federal Register of the proposed establishment or alteration of a system...

  17. 41 CFR 51-9.502 - Federal Register notice of establishment of new system or alteration of existing system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... existing system. (a) When the Executive Director receives notice that the Senate, the House of... the submission of the proposal to the Senate, the House of Representatives, and the Office of... notice shall be published in the Federal Register of the proposed establishment or alteration of a system...

  18. Kinetics from Replica Exchange Molecular Dynamics Simulations.

    PubMed

    Stelzl, Lukas S; Hummer, Gerhard

    2017-08-08

    Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.

  19. Resistance training alters skeletal muscle structure and function in human heart failure: effects at the tissue, cellular and molecular levels

    PubMed Central

    Toth, Michael J; Miller, Mark S; VanBuren, Peter; Bedrin, Nicholas G; LeWinter, Martin M; Ades, Philip A; Palmer, Bradley M

    2012-01-01

    Reduced skeletal muscle function in heart failure (HF) patients may be partially explained by altered myofilament protein content and function. Resistance training increases muscle function, although whether these improvements are achieved by correction of myofilament deficits is not known. To address this question, we examined 10 HF patients and 14 controls prior to and following an 18 week high-intensity resistance training programme. Evaluations of whole muscle size and strength, single muscle fibre size, ultrastructure and tension and myosin–actin cross-bridge mechanics and kinetics were performed. Training improved whole muscle isometric torque in both groups, although there were no alterations in whole muscle size or single fibre cross-sectional area or isometric tension. Unexpectedly, training reduced the myofibril fractional area of muscle fibres in both groups. This structural change manifested functionally as a reduction in the number of strongly bound myosin–actin cross-bridges during Ca2+ activation. When post-training single fibre tension data were corrected for the loss of myofibril fractional area, we observed an increase in tension with resistance training. Additionally, training corrected alterations in cross-bridge kinetics (e.g. myosin attachment time) in HF patients back to levels observed in untrained controls. Collectively, our results indicate that improvements in myofilament function in sedentary elderly with and without HF may contribute to increased whole muscle function with resistance training. More broadly, these data highlight novel cellular and molecular adaptations in muscle structure and function that contribute to the resistance-trained phenotype. PMID:22199163

  20. Molecular pathways and therapeutic targets in lung cancer

    PubMed Central

    Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi

    2014-01-01

    Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523

  1. Molecular medicine: a path towards a personalized medicine.

    PubMed

    Miranda, Debora Marques de; Mamede, Marcelo; Souza, Bruno Rezende de; Almeida Barros, Alexandre Guimarães de; Magno, Luiz Alexandre; Alvim-Soares, Antônio; Rosa, Daniela Valadão; Castro, Célio José de; Malloy-Diniz, Leandro; Gomez, Marcus Vinícius; Marco, Luiz Armando De; Correa, Humberto; Romano-Silva, Marco Aurélio

    2012-03-01

    Psychiatric disorders are among the most common human illnesses; still, the molecular and cellular mechanisms underlying their complex pathophysiology remain to be fully elucidated. Over the past 10 years, our group has been investigating the molecular abnormalities in major signaling pathways involved in psychiatric disorders. Recent evidences obtained by the Instituto Nacional de Ciência e Tecnologia de Medicina Molecular (National Institute of Science and Technology - Molecular Medicine, INCT-MM) and others using behavioral analysis of animal models provided valuable insights into the underlying molecular alterations responsible for many complex neuropsychiatric disorders, suggesting that "defects" in critical intracellular signaling pathways have an important role in regulating neurodevelopment, as well as in pathophysiology and treatment efficacy. Resources from the INCT have allowed us to start doing research in the field of molecular imaging. Molecular imaging is a research discipline that visualizes, characterizes, and quantifies the biologic processes taking place at cellular and molecular levels in humans and other living systems through the results of image within the reality of the physiological environment. In order to recognize targets, molecular imaging applies specific instruments (e.g., PET) that enable visualization and quantification in space and in real-time of signals from molecular imaging agents. The objective of molecular medicine is to individualize treatment and improve patient care. Thus, molecular imaging is an additional tool to achieve our ultimate goal.

  2. Materials learning from life: concepts for active, adaptive and autonomous molecular systems.

    PubMed

    Merindol, Rémi; Walther, Andreas

    2017-09-18

    Bioinspired out-of-equilibrium systems will set the scene for the next generation of molecular materials with active, adaptive, autonomous, emergent and intelligent behavior. Indeed life provides the best demonstrations of complex and functional out-of-equilibrium systems: cells keep track of time, communicate, move, adapt, evolve and replicate continuously. Stirred by the understanding of biological principles, artificial out-of-equilibrium systems are emerging in many fields of soft matter science. Here we put in perspective the molecular mechanisms driving biological functions with the ones driving synthetic molecular systems. Focusing on principles that enable new levels of functionalities (temporal control, autonomous structures, motion and work generation, information processing) rather than on specific material classes, we outline key cross-disciplinary concepts that emerge in this challenging field. Ultimately, the goal is to inspire and support new generations of autonomous and adaptive molecular devices fueled by self-regulating chemistry.

  3. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    PubMed

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat

  4. Water in the early solar system: Mid-infrared studies of aqueous alteration on asteroids.

    NASA Astrophysics Data System (ADS)

    McAdam, Margaret M.; Sunshine, Jessica M.; Kelley, Michael S.; Trilling, David E.

    2017-10-01

    This work investigates the distribution of water in the early Solar System by connecting asteroids to carbonaceous chondrite meteorites using spectroscopy. Aqueous alteration or the chemical reaction between liquid water and silicates on the parent asteroid, has extensively affected several groups of carbonaceous chondrites. The degree of alteration or amount of hydrated minerals produced depends on a number of factors including the abundance of coaccreted water-ice, the internal distribution of water in the parent body and the setting of alteration (e.g., open vs. closed setting). Despite this complexity which is still under investigation, the mineralogical changes produced by aqueous alteration are well understood (e.g., Howard et al., 2015). The mid-infrared spectral region has been shown to be a tool for estimating the degree of alteration of asteroids and meteorites remotely (McAdam et al., 2015). Specifically, mid-infrared spectral features changes continuously with degree of alteration. In this region meteorites can be categorized into four groups based on their spectral characteristics: anhydrous, less altered, intermediately altered and highly altered. We present the estimated degrees of alteration for 73 main belt asteroids using these results. Hydrated minerals appear to be widespread in the main belt and asteroids have variable degrees of alteration. There does not appear to be any relationship between the estimated degree of alteration and size, albedo or heliocentric distance. This indicates that water-ice must have been a significant component of the solar nebula in the 2-5 AU region during the time of carbonaceous chondrite accretion (~2.7-4 Ma post-CAI formation; Sugiura and Fujiya, 2014). The snow-line therefore must have been in this region during this epoch. Furthermore, local heterogeneities of water-ice were likely common since asteroids of all sizes and heliocentric distances may exhibit any degree from anhydrous to highly altered

  5. Molecular Marker Systems for Oenothera Genetics

    PubMed Central

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G.; Greiner, Stephan

    2008-01-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome–genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9·8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed. PMID:18791241

  6. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses.

    PubMed

    Tashakori-Sabzevar, Faezeh; Mohajeri, Seyed Ahmad

    2015-05-01

    Recently, significant advances have been made in order to optimize drug delivery to ocular tissues. The main problems in ocular drug delivery are poor bioavailability and uncontrollable drug delivery of conventional ophthalmic preparations (e.g. eye drops). Hydrogels have been investigated since 1965 as new ocular drug delivery systems. Increase of hydrogel loading capacity, optimization of drug residence time on the ocular surface and biocompatibility with the eye tissue has been the main focus of previous studies. Molecular imprinting technology provided the opportunity to fulfill the above-mentioned objectives. Molecularly imprinted soft contact lenses (SCLs) have high potentials as novel drug delivery systems for the treatment of eye disorders. This technique is used for the preparation of polymers with specific binding sites for a template molecule. Previous studies indicated that molecular imprinting technology could be successfully applied for the preparation of SCLs as ocular drug delivery systems. Previous research, particularly in vivo studies, demonstrated that molecular imprinting is a versatile and effective method in optimizing the drug release behavior and enhancing the loading capacity of SCLs as new ocular drug delivery systems. This review highlights various potentials of molecularly imprinted contact lenses in enhancing the drug-loading capacity and controlling the drug release, compared to other ocular drug delivery systems. We have also studied the effects of contributing factors such as the type of comonomer, template/functional monomer molar ratio, crosslinker concentration in drug-loading capacity, and the release properties of molecularly imprinted hydrogels.

  7. Molecular spectral imaging system for quantitative immunohistochemical analysis of early diabetic retinopathy.

    PubMed

    Li, Qingli; Zhang, Jingfa; Wang, Yiting; Xu, Guoteng

    2009-12-01

    A molecular spectral imaging system has been developed based on microscopy and spectral imaging technology. The system is capable of acquiring molecular spectral images from 400 nm to 800 nm with 2 nm wavelength increments. The basic principles, instrumental systems, and system calibration method as well as its applications for the calculation of the stain-uptake by tissues are introduced. As a case study, the system is used for determining the pathogenesis of diabetic retinopathy and evaluating the therapeutic effects of erythropoietin. Some molecular spectral images of retinal sections of normal, diabetic, and treated rats were collected and analyzed. The typical transmittance curves of positive spots stained for albumin and advanced glycation end products are retrieved from molecular spectral data with the spectral response calibration algorithm. To explore and evaluate the protective effect of erythropoietin (EPO) on retinal albumin leakage of streptozotocin-induced diabetic rats, an algorithm based on Beer-Lambert's law is presented. The algorithm can assess the uptake by histologic retinal sections of stains used in quantitative pathology to label albumin leakage and advanced glycation end products formation. Experimental results show that the system is helpful for the ophthalmologist to reveal the pathogenesis of diabetic retinopathy and explore the protective effect of erythropoietin on retinal cells of diabetic rats. It also highlights the potential of molecular spectral imaging technology to provide more effective and reliable diagnostic criteria in pathology.

  8. Catecholaminergic systems in stress: structural and molecular genetic approaches.

    PubMed

    Kvetnansky, Richard; Sabban, Esther L; Palkovits, Miklos

    2009-04-01

    Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct

  9. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients

    PubMed Central

    Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro

    2017-01-01

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903

  10. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients.

    PubMed

    Sauer, Aisha V; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D'Adamo, Patrizia; Aiuti, Alessandro

    2017-01-11

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.

  11. Structural differences between bovine A(1) and A(2) β-casein alter micelle self-assembly and influence molecular chaperone activity.

    PubMed

    Raynes, J K; Day, L; Augustin, M A; Carver, J A

    2015-04-01

    Within each milk protein there are many individual protein variants and marked alterations to milk functionality can occur depending on the genetic variants of each protein present. Bovine A(1) and A(2) β-casein (β-CN) are 2 variants that contribute to differences in the gelation performance of milk. The A(1) and A(2) β-CN variants differ by a single AA, the substitution of histidine for proline at position 67. β-Casein not only participates in formation of the casein micelle but also forms an oligomeric micelle itself and functions as a molecular chaperone to prevent the aggregation of a wide range of proteins, including the other caseins. Micelle assembly of A(1) and A(2) β-CN was investigated using dynamic light scattering and small-angle X-ray scattering, whereas protein functionality was assessed using fluorescence techniques and molecular chaperone assays. The A(2) β-CN variant formed smaller micelles than A(1) β-CN, with the monomer-micelle equilibrium of A(2) β-CN being shifted toward the monomer. This shift most likely arose from structural differences between the 2 β-CN variants associated with the adoption of greater polyproline-II helix in A(2) β-CN and most likely led to enhanced chaperone activity of A(2) β-CN compared with A(1) β-CN. The difference in micelle assembly, and hence chaperone activity, may provide explain differences in the functionality of homozygous A(1) and A(2) milk. The results of this study highlight that substitution of even a single AA can significantly alter the properties of an intrinsically unstructured protein such as β-CN and, in this case, may have an effect on the functionality of milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Altered Expression of Retinal Molecular Markers in the Canine RPE65 Model of Leber Congenital Amaurosis

    PubMed Central

    Hernández, Maria; Pearce-Kelling, Susan E.; Rodriguez, F. David; Aguirre, Gustavo D.; Vecino, Elena

    2010-01-01

    Purpose. Leber congenital amaurosis (LCA) is a group of childhood-onset retinal diseases characterized by severe visual impairment or blindness. One form is caused by mutations in the RPE65 gene, which encodes the retinal pigment epithelium (RPE) isomerase. In this study, the retinal structure and expression of molecular markers for different retinal cell types were characterized, and differences between control and RPE65 mutant dogs during the temporal evolution of the disease were analyzed. Methods. Retinas from normal and mutant dogs of different ages were examined by immunofluorescence with a panel of 16 different antibodies. Results. Cones and rods were preserved in the mutant retinas, and the number of cones was normal. However, there was altered expression of cone arrestin and delocalization of rod opsin. The ON bipolar cells showed sprouting of the dendritic arbors toward the outer nuclear layer (ONL) and retraction of their axons in the inner nuclear layer (INL). A decreased expression of GABA, and an increased expression of intermediate filament glial markers was also found in the mutant retinas. These changes were more evident in the adult than the young mutant retinas. Conclusions. The structure of the retina is well preserved in the mutant retina, but several molecular changes take place in photoreceptors and in bipolar and amacrine cells. Some of these changes are structural, whereas others reflect a change in localization of the examined proteins. This study provides new information that can be applied to the interpretation of outcomes of retinal gene therapy in animal models and humans. PMID:20671290

  13. Does glimepiride alter the pharmacokinetics of sildenafil citrate in diabetic nephropathy animals: investigating mechanism of interaction by molecular modeling studies.

    PubMed

    Tripathi, Alok Shiomurti; Timiri, Ajay Kumar; Mazumder, Papiya Mitra; Chandewar, Anil

    2015-10-01

    The present study evaluates possible drug interactions between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ)-induced diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction based on molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg kg(-1), i.p.) and was confirmed by assessing blood and urine biochemical parameters 28 days after induction. Selected DN animals were used to explore the drug interaction between GLIM (0.5 mg kg(-1), p.o.) and SIL (2.5 mg kg(-1), p.o.) on the 29th and 70th day of the protocol. Possible drug interaction was assessed by evaluating the plasma drug concentration using HPLC-UV and changes in biochemical parameters in blood and urine were also determined. The mechanism of the interaction was postulated from the results of a molecular modeling study using the Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in blood and urine biochemical parameters in STZ-treated groups. The concentration of SIL increased significantly (P < 0.001) in rat plasma when co-administered with GLIM on the 70th day of the protocol. Molecular modeling revealed important interactions with rat serum albumin and CYP2C9. GLIM has a strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL, whereas for CYP2C9, GLIM forms a stronger hydrogen bond than SIL with polar contacts and hydrophobic interactions. The present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals, and the mechanism is supported by molecular modeling studies.

  14. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  15. Molecular Effects of Neonicotinoids in Honey Bees (Apis mellifera).

    PubMed

    Christen, Verena; Mittner, Fabian; Fent, Karl

    2016-04-05

    Neonicotinoids are implicated in the decline of bee populations. As agonists of nicotinic acetylcholine receptors, they disturb acetylcholine receptor signaling leading to neurotoxicity. Several behavioral studies showed the link between neonicotinoid exposure and adverse effects on foraging activity and reproduction. However, molecular effects underlying these effects are poorly understood. Here we elucidated molecular effects at environmental realistic levels of three neonicotinoids and nicotine, and compared laboratory studies to field exposures with acetamiprid. We assessed transcriptional alterations of eight selected genes in caged honey bees exposed to different concentrations of the neonicotinoids acetamiprid, clothianidin, imidacloporid, and thiamethoxam, as well as nicotine. We determined transcripts of several targets, including nicotinic acetylcholine receptor α 1 and α 2 subunit, the multifunctional gene vitellogenin, immune system genes apidaecin and defensin-1, stress-related gene catalase and two genes linked to memory formation, pka and creb. Vitellogenin showed a strong increase upon neonicotinoid exposures in the laboratory and field, while creb and pka transcripts were down-regulated. The induction of vitellogenin suggests adverse effects on foraging activity, whereas creb and pka down-regulation may be implicated in decreased long-term memory formation. Transcriptional alterations occurred at environmental concentrations and provide an explanation for the molecular basis of observed adverse effects of neonicotinoids to bees.

  16. Rare endocrine cancers have novel genetic alterations

    Cancer.gov

    A molecular characterization of adrenocortical carcinoma, a rare cancer of the adrenal cortex, analyzed 91 cases for alterations in the tumor genomes and identified several novel genetic mutations as likely mechanisms driving the disease as well as whole genome doubling as a probable driver of the disease.

  17. Structural and Functional Alterations in Neocortical Circuits after Mild Traumatic Brain Injury

    NASA Astrophysics Data System (ADS)

    Vascak, Michal

    National concern over traumatic brain injury (TBI) is growing rapidly. Recent focus is on mild TBI (mTBI), which is the most prevalent injury level in both civilian and military demographics. A preeminent sequelae of mTBI is cognitive network disruption. Advanced neuroimaging of mTBI victims supports this premise, revealing alterations in activation and structure-function of excitatory and inhibitory neuronal systems, which are essential for network processing. However, clinical neuroimaging cannot resolve the cellular and molecular substrates underlying such changes. Therefore, to understand the full scope of mTBI-induced alterations it is necessary to study cortical networks on the microscopic level, where neurons form local networks that are the fundamental computational modules supporting cognition. Recently, in a well-controlled animal model of mTBI, we demonstrated in the excitatory pyramidal neuron system, isolated diffuse axonal injury (DAI), in concert with electrophysiological abnormalities in nearby intact (non-DAI) neurons. These findings were consistent with altered axon initial segment (AIS) intrinsic activity functionally associated with structural plasticity, and/or disturbances in extrinsic systems related to parvalbumin (PV)-expressing interneurons that form GABAergic synapses along the pyramidal neuron perisomatic/AIS domains. The AIS and perisomatic GABAergic synapses are domains critical for regulating neuronal activity and E-I balance. In this dissertation, we focus on the neocortical excitatory pyramidal neuron/inhibitory PV+ interneuron local network following mTBI. Our central hypothesis is that mTBI disrupts neuronal network structure and function causing imbalance of excitatory and inhibitory systems. To address this hypothesis we exploited transgenic and cre/lox mouse models of mTBI, employing approaches that couple state-of-the-art bioimaging with electrophysiology to determine the structuralfunctional alterations of excitatory and

  18. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Roy, Raktim; Phani Shilpa, P.; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level.

  19. System Concept for Remote Measurement of Asteroid Molecular Composition

    NASA Astrophysics Data System (ADS)

    Hughes, G. B.; Lubin, P. M.; Zhang, Q.; Brashears, T.; Cohen, A. N.; Madajian, J.

    2016-12-01

    We propose a method for probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons) from a distant vantage, such as from a spacecraft orbiting the object. A directed energy beam is focused on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption of the blackbody radiation occurs within the ejected plume. Bulk composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected material. Our proposed method differs from technologies such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes materials in the target; scattered ions emit characteristic radiation, and the LIBS detector performs atomic composition analysis by observing emission spectra. Standoff distance for LIBS is limited by the strength of characteristic emission, and distances greater than 10 m are problematic. Our proposed method detects atomic and molecular absorption spectra in the plume; standoff distance is limited by the size of heated spot, and the plume opacity; distances on the order of tens of kilometers are immediately feasible. Simulations have been developed for laser heating of a rocky target, with concomitant evaporation. Evaporation rates lead to determination of plume density and opacity. Absorption profiles for selected materials are estimated from plume properties. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis from tens of kilometers distance. This paper explores the feasibility a hypothetical mission that seeks to perform surface molecular composition analysis of a near-earth asteroid while the craft orbits the asteroid. Such a system has compelling potential benefit for

  20. Application to processing system using intra-molecular BRET

    NASA Astrophysics Data System (ADS)

    Otsuji, Tomomi; Okuda-Ashitaka, Emiko; Kojima, Satoshi; Akiyama, Hidehumi; Ito, Seiji; Ohmiya, Yoshihiro

    2003-07-01

    Luciferases are used as the reporter gene for promoter activity, whereas a green fluorescent protein (GFP) is used as marker for cellular function and localization. Recently, bioluminescence resonance energy transfer (BRET) between luciferase and YFP is used for analysis of inter-molecular reaction such as ligand-receptor in the living cells. The neuropeptides nocistatin (NST) and nociceptin/orphanin FQ (Noc/OFQ) are derived from the same precursor protein, while NST exhibits antagonism against Noc/OFQ-actions. In this study, we attempt an intra-molecular BRET system for monitoring dynamic biological process of the production of NST and Noc/OFQ in the living cells. At first, we constructed a fusion protein (Rluc-GFP) covalently linking luciferase (Renilla luciferase; Rluc) to Aequorea GFP as an intra-molecular BRET partner. Furthermore, we inserted constructs of mouse NST and Noc/OFQ (Rluc-m-GFP) or bovine NST and Noc/OFQ (Rluc-b-GFP) containing a proteolytic cleavage motif (Lys-Arg) within Rluc-GFP. When these constructions were transfected into Cos7 cells, all fusion proteins had luciferase activity and specific fluorescence. Luminescence spectra of Rluc-GFP, Rluc-m-GFP and Rluc-b-GFP fusion proteins with DeepBlueC as a substrate showed two peaks centered at 400 nm and 510 nm, whereas Rluc showed one peak centered at 400 nm. These results indicate that the proteolytic cleavage motif inserted fusion proteins between luciferase and GFP are available for intra-molecular BRET systems at first step.

  1. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes

    PubMed Central

    Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo

    2016-01-01

    With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020

  2. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity

    PubMed Central

    Bartlett, Madelaine E.; Whipple, Clinton J.

    2013-01-01

    Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein–protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution. PMID:24124420

  3. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse.

    PubMed

    Voras, Zachary E; deGhetaldi, Kristin; Wiggins, Marcie B; Buckley, Barbara; Baade, Brian; Mass, Jennifer L; Beebe, Thomas P

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as

  4. ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse

    NASA Astrophysics Data System (ADS)

    Voras, Zachary E.; deGhetaldi, Kristin; Wiggins, Marcie B.; Buckley, Barbara; Baade, Brian; Mass, Jennifer L.; Beebe, Thomas P.

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as

  5. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules

    NASA Astrophysics Data System (ADS)

    Hamelberg, Donald; Mongan, John; McCammon, J. Andrew

    2004-06-01

    Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.

  6. Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias.

    PubMed

    Hartman, Matthew E; Liu, Yonggang; Zhu, Wei-Zhong; Chien, Wei-Ming; Weldy, Chad S; Fishman, Glenn I; Laflamme, Michael A; Chin, Michael T

    2014-07-01

    CHF1/Hey2 is a Notch-responsive basic helix-loop-helix transcription factor involved in cardiac development. Common variants in Hey2 are associated with Brugada syndrome. We hypothesized that absence of CHF1/Hey2 would result in abnormal cellular electrical activity, altered cardiac conduction system (CCS) development, and increased arrhythmogenesis. We isolated neonatal CHF/Hey2-knockout (KO) cardiac myocytes and measured action potentials and ion channel subunit gene expression. We also crossed myocardial-specific CHF1/Hey2-KO mice with cardiac conduction system LacZ reporter mice and stained for conduction system tissue. We also performed ambulatory ECG monitoring for arrhythmias and heart rate variability. Neonatal cardiomyocytes from CHF1/Hey2-KO mice demonstrate a 50% reduction in action potential dV/dT, a 50-75% reduction in SCN5A, KCNJ2, and CACNA1C ion channel subunit gene expression, and an increase in delayed afterdepolarizations from 0/min to 12/min. CHF1/Hey2 cKO CCS-lacZ mice have a ∼3-fold increase in amount of CCS tissue. Ambulatory ECG monitoring showed no difference in cardiac conduction, arrhythmias, or heart rate variability. Wild-type cells or animals were used in all experiments. CHF1/Hey2 may contribute to Brugada syndrome by influencing the expression of SCN5A and formation of the cardiac conduction system, but its absence does not cause baseline conduction defects or arrhythmias in the adult mouse.-Hartman, M. E., Liu, Y., Zhu, W.-Z., Chien, W.-M., Weldy, C. S., Fishman, G. I., Laflamme, M. A., Chin, M. T. Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias. © FASEB.

  7. Molecular classification of gastric cancer.

    PubMed

    Chia, N-Y; Tan, P

    2016-05-01

    Gastric cancer (GC), a heterogeneous disease characterized by epidemiologic and histopathologic differences across countries, is a leading cause of cancer-related death. Treatment of GC patients is currently suboptimal due to patients being commonly treated in a uniform fashion irrespective of disease subtype. With the advent of next-generation sequencing and other genomic technologies, GCs are now being investigated in great detail at the molecular level. High-throughput technologies now allow a comprehensive study of genomic and epigenomic alterations associated with GC. Gene mutations, chromosomal aberrations, differential gene expression and epigenetic alterations are some of the genetic/epigenetic influences on GC pathogenesis. In addition, integrative analyses of molecular profiling data have led to the identification of key dysregulated pathways and importantly, the establishment of GC molecular classifiers. Recently, The Cancer Genome Atlas (TCGA) network proposed a four subtype classification scheme for GC based on the underlying tumor molecular biology of each subtype. This landmark study, together with other studies, has expanded our understanding on the characteristics of GC at the molecular level. Such knowledge may improve the medical management of GC in the future. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Molecular Biology of Lung Cancer

    PubMed Central

    Nana-Sinkam, Serge Patrick

    2013-01-01

    Based on recent bench and clinical research, the treatment of lung cancer has been refined, with treatments allocated according to histology and specific molecular features. For example, targeting mutations such as epidermal growth factor receptor (EGFR) with tyrosine kinase inhibitors has been particularly successful as a treatment modality, demonstrating response rates in selected patients with adenocarcinoma tumors harboring EGFR mutations that are significantly higher than those for conventional chemotherapy. However, the development of new targeted therapies is, in part, highly dependent on an improved understanding of the molecular underpinnings of tumor initiation and progression, knowledge of the role of molecular aberrations in disease progression, and the development of highly reproducible platforms for high-throughput biomarker discovery and testing. In this article, we review clinically relevant research directed toward understanding the biology of lung cancer. The clinical purposes of this research are (1) to identify susceptibility variants and field molecular alterations that will promote the early detection of tumors and (2) to identify tumor molecular alterations that serve as therapeutic targets, prognostic biomarkers, or predictors of tumor response. We focus on research developments in the understanding of lung cancer somatic DNA mutations, chromosomal aberrations, epigenetics, and the tumor microenvironment, and how they can advance diagnostics and therapeutics. PMID:23649444

  9. Visualization of aging-associated chromatin alterations with an engineered TALE system

    PubMed Central

    Ren, Ruotong; Deng, Liping; Xue, Yanhong; Suzuki, Keiichiro; Zhang, Weiqi; Yu, Yang; Wu, Jun; Sun, Liang; Gong, Xiaojun; Luan, Huiqin; Yang, Fan; Ju, Zhenyu; Ren, Xiaoqing; Wang, Si; Tang, Hong; Geng, Lingling; Zhang, Weizhou; Li, Jian; Qiao, Jie; Xu, Tao; Qu, Jing; Liu, Guang-Hui

    2017-01-01

    Visualization of specific genomic loci in live cells is a prerequisite for the investigation of dynamic changes in chromatin architecture during diverse biological processes, such as cellular aging. However, current precision genomic imaging methods are hampered by the lack of fluorescent probes with high specificity and signal-to-noise contrast. We find that conventional transcription activator-like effectors (TALEs) tend to form protein aggregates, thereby compromising their performance in imaging applications. Through screening, we found that fusing thioredoxin with TALEs prevented aggregate formation, unlocking the full power of TALE-based genomic imaging. Using thioredoxin-fused TALEs (TTALEs), we achieved high-quality imaging at various genomic loci and observed aging-associated (epi) genomic alterations at telomeres and centromeres in human and mouse premature aging models. Importantly, we identified attrition of ribosomal DNA repeats as a molecular marker for human aging. Our study establishes a simple and robust imaging method for precisely monitoring chromatin dynamics in vitro and in vivo. PMID:28139645

  10. Autonomous Agents: The Origins and Co-Evolution of Reproducing Molecular Systems

    NASA Technical Reports Server (NTRS)

    Kauffman, Stuart

    1999-01-01

    The central aim of this award concerned an investigation into, and adequate formulation of, the concept of an "autonomous agent." If we consider a bacterium swimming upstream in a glucose gradient, we are willing to say of the bacterium that it is going to get food. That is, we are willing, and do, describe the bacterium as acting on its own behalf in an environment. All free living cells are, in this sense, autonomous agents. But the bacterium is "just" a set of molecules. We define an autonomous agent as a physical system able to act on its own behalf in an environment, then ask, "What must a physical system be to be an autonomous agent?" The tentative definition for a molecular autonomous agent is that it must be self-reproducing and carry out at least one thermodynamic work cycle. The work carried out in this grant involved, among other features, the development of a detailed model of a molecular autonomous agent, and study of the kinetics of this system. In particular, a molecular autonomous agent must, by the above tentative definition, not only reproduce, but must carry out at least one work cycle. I took, as a simple example of a self-reproducing molecular system, the single-stranded DNA hexamer 3'CCGCGG5' which can line up and ligate its two complementary trimers, 5'CCG3' and 5'CGG3'. But the two ligated trimers constitute the same molecular sequence in the 3' to 5' direction as the initial hexamer, hence this system is autocatalytic. On the other hand the above system is not yet an autonomous agent. At the minimum, autonomous agents, as I have defined them, are a new class of chemical reaction network. At a maximum, they may constitute a proper definition of life itself.

  11. [Prognostic and predictive molecular markers for urologic cancers].

    PubMed

    Hartmann, A; Schlomm, T; Bertz, S; Heinzelmann, J; Hölters, S; Simon, R; Stoehr, R; Junker, K

    2014-04-01

    Molecular prognostic factors and genetic alterations as predictive markers for cancer-specific targeted therapies are used today in the clinic for many malignancies. In recent years, many molecular markers for urogenital cancers have also been identified. However, these markers are not clinically used yet. In prostate cancer, novel next-generation sequencing methods revealed a detailed picture of the molecular changes. There is growing evidence that a combination of classical histopathological and validated molecular markers could lead to a more precise estimation of prognosis, thus, resulting in an increasing number of patients with active surveillance as a possible treatment option. In patients with urothelial carcinoma, histopathological factors but also the proliferation of the tumor, mutations in oncogenes leading to an increasing proliferation rate and changes in genes responsible for invasion and metastasis are important. In addition, gene expression profiles which could distinguish aggressive tumors with high risk of metastasis from nonmetastasizing tumors have been recently identified. In the future, this could potentially allow better selection of patients needing systemic perioperative treatment. In renal cell carcinoma, many molecular markers that are associated with metastasis and survival have been identified. Some of these markers were also validated as independent prognostic markers. Selection of patients with primarily organ-confined tumors and increased risk of metastasis for adjuvant systemic therapy could be clinically relevant in the future.

  12. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    PubMed Central

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  13. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development

    PubMed Central

    Caldwell, Katharine E.; Labrecque, Matthew T.; Solomon, Benjamin R.; Ali, Abdulmehdi; Allan, Andrea M.

    2015-01-01

    The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50 ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of

  14. Molecular genetics of low-grade gliomas: genomic alterations guiding diagnosis and therapeutic intervention. 11th annual Frye-Halloran Brain Tumor Symposium.

    PubMed

    Jones, Pamela S; Dunn, Gavin P; Barker, Fred G; Curry, William T; Hochberg, Fred H; Cahill, Daniel P

    2013-02-01

    The authors' goal was to review the current understanding of the underlying molecular and genetic mechanisms involved in low-grade glioma development and how these mechanisms can be targets for detection and treatment of the disease and its recurrence. On October 4, 2012, the authors convened a meeting of researchers and clinicians across a variety of pertinent medical specialties to review the state of current knowledge on molecular genetic mechanisms of low-grade gliomas and to identify areas for further research and drug development. The meeting consisted of 3 scientific sessions ranging from neuropathology of IDH1 mutations; CIC, ATRX, and FUBP1 mutations in oligodendrogliomas and astrocytomas; and IDH1 mutations as therapeutic targets. Sessions consisted of a total of 10 talks by international leaders in low-grade glioma research, mutant IDH1 biology and its application in glioma research, and treatment. The recent discovery of recurrent gene mutations in low-grade glioma has increased the understanding of the molecular mechanisms involved in a host of biological activities related to low-grade gliomas. Understanding the role these genetic alterations play in brain cancer initiation and progression will help lead to the development of novel treatment modalities than can be personalized to each patient, thereby helping transform this now often-fatal malignancy into a chronic or even curable disease.

  15. Molecular imaging of the dopaminergic system and its association with human cognitive function.

    PubMed

    Cropley, Vanessa L; Fujita, Masahiro; Innis, Robert B; Nathan, Pradeep J

    2006-05-15

    Molecular imaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) has recently been used to examine dopamine (DA) function and its relationship with cognition in human subjects. This article will review PET and SPECT studies that have explored the relationship between cognitive processes and components of the DA system (pre-, intra-, and postsynaptic) in healthy and patient populations such as Parkinson's disease (PD), schizophrenia, Huntington's disease, and aging. It is demonstrated that DA activity modulates a range of frontal executive-type cognitive processes such as working memory, attentional functioning, and sequential organization, and alterations of DA within the fronto-striato-thalamic circuits might contribute to the cognitive impairments observed in PD, schizophrenia, and normal aging. Although associations between DA and cognitive measures need to be considered within the context of fronto-striato-thalamic circuitry, it is suggested that striatal (especially caudate) DA activity, particularly via D2 receptors, might be important for response inhibition, temporal organization of material, and motor performance, whereas cortical DA transmission via D1 receptors might be important for maintaining and representing on-going behavior.

  16. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas.

    PubMed

    Pajtler, Kristian W; Wen, Ji; Sill, Martin; Lin, Tong; Orisme, Wilda; Tang, Bo; Hübner, Jens-Martin; Ramaswamy, Vijay; Jia, Sujuan; Dalton, James D; Haupfear, Kelly; Rogers, Hazel A; Punchihewa, Chandanamali; Lee, Ryan; Easton, John; Wu, Gang; Ritzmann, Timothy A; Chapman, Rebecca; Chavez, Lukas; Boop, Fredrick A; Klimo, Paul; Sabin, Noah D; Ogg, Robert; Mack, Stephen C; Freibaum, Brian D; Kim, Hong Joo; Witt, Hendrik; Jones, David T W; Vo, Baohan; Gajjar, Amar; Pounds, Stan; Onar-Thomas, Arzu; Roussel, Martine F; Zhang, Jinghui; Taylor, J Paul; Merchant, Thomas E; Grundy, Richard; Tatevossian, Ruth G; Taylor, Michael D; Pfister, Stefan M; Korshunov, Andrey; Kool, Marcel; Ellison, David W

    2018-06-16

    Of nine ependymoma molecular groups detected by DNA methylation profiling, the posterior fossa type A (PFA) is most prevalent. We used DNA methylation profiling to look for further molecular heterogeneity among 675 PFA ependymomas. Two major subgroups, PFA-1 and PFA-2, and nine minor subtypes were discovered. Transcriptome profiling suggested a distinct histogenesis for PFA-1 and PFA-2, but their clinical parameters were similar. In contrast, PFA subtypes differed with respect to age at diagnosis, gender ratio, outcome, and frequencies of genetic alterations. One subtype, PFA-1c, was enriched for 1q gain and had a relatively poor outcome, while patients with PFA-2c ependymomas showed an overall survival at 5 years of > 90%. Unlike other ependymomas, PFA-2c tumors express high levels of OTX2, a potential biomarker for this ependymoma subtype with a good prognosis. We also discovered recurrent mutations among PFA ependymomas. H3 K27M mutations were present in 4.2%, occurring only in PFA-1 tumors, and missense mutations in an uncharacterized gene, CXorf67, were found in 9.4% of PFA ependymomas, but not in other groups. We detected high levels of wildtype or mutant CXorf67 expression in all PFA subtypes except PFA-1f, which is enriched for H3 K27M mutations. PFA ependymomas are characterized by lack of H3 K27 trimethylation (H3 K27-me3), and we tested the hypothesis that CXorf67 binds to PRC2 and can modulate levels of H3 K27-me3. Immunoprecipitation/mass spectrometry detected EZH2, SUZ12, and EED, core components of the PRC2 complex, bound to CXorf67 in the Daoy cell line, which shows high levels of CXorf67 and no expression of H3 K27-me3. Enforced reduction of CXorf67 in Daoy cells restored H3 K27-me3 levels, while enforced expression of CXorf67 in HEK293T and neural stem cells reduced H3 K27-me3 levels. Our data suggest that heterogeneity among PFA ependymomas could have clinicopathologic utility and that CXorf67 may have a functional role in these tumors.

  17. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions.

    PubMed

    Roy, Raktim; Shilpa, P Phani; Bagh, Sangram

    2016-09-01

    Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.

  18. Molecular-Flow Properties of RIB Type Vapor-Transport Systems Using a Fast-Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alton, Gerald D; Bilheux, Hassina Z; Zhang, Y.

    2014-01-01

    The advent of the fast-valve device, described previously, permits measurement of molecular-flow times of chemically active or inactive gaseous species through radioactive ion beam (RIB) target ion source systems, independent of size, geometry and materials of construction. Thus, decay losses of short-half-life RIBs can be determined for a given target/vapor-transport system in advance of on-line operation, thereby ascertaining the feasibility of the system design for successful processing of a given isotope. In this article, molecular-flow-time theory and experimentally measured molecular-flow time data are given for serial- and parallel-coupled Ta metal RIB vapor-transport systems similar to those used at ISOL basedmore » RIB facilities. In addition, the effect of source type on the molecular-flow time properties of a given system is addressed, and a chemical passivation method for negating surface adsorption enthalpies for chemically active gaseous species on Ta surfaces is demonstrated.« less

  19. Cryogenic molecular separation system for radioactive (11)C ion acceleration.

    PubMed

    Katagiri, K; Noda, A; Suzuki, K; Nagatsu, K; Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Ramzdorf, A Yu; Nakao, M; Hojo, S; Wakui, T; Noda, K

    2015-12-01

    A (11)C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. In the ISOL system, (11)CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive (12)CH4 gases, which can simulate the chemical characteristics of (11)CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  20. Molecular mechanisms of aging and immune system regulation in Drosophila.

    PubMed

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.

  1. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms

    NASA Technical Reports Server (NTRS)

    Baldwin, Kenneth M.; Haddad, Fadia

    2002-01-01

    The goal of this article is to examine our current understanding of the chain of events known to be involved in the adaptive process whereby specific genes and their protein products undergo altered expression; specifically, skeletal muscle adaptation in response to altered loading states will be discussed, with a special focus on the regulation of the contractile protein, myosin heavy chain gene expression. This protein, which is both an important structural and regulatory protein comprising the contractile apparatus, can be expressed as different isoforms, thereby having an impact on the functional diversity of the muscle. Because the regulation of the myosin gene family is under the control of a complex set of processes including, but not limited to, activity, hormonal, and metabolic factors, this protein will serve as a cellular "marker" for studies of muscle plasticity in response to various mechanical perturbations in which the quantity and type of myosin isoform, along with other important cellular proteins, are altered in expression.

  2. A Systems Biology Framework Identifies Molecular Underpinnings of Coronary Heart Disease

    PubMed Central

    Huan, Tianxiao; Zhang, Bin; Wang, Zhi; Joehanes, Roby; Zhu, Jun; Johnson, Andrew D.; Ying, Saixia; Munson, Peter J.; Raghavachari, Nalini; Wang, Richard; Liu, Poching; Courchesne, Paul; Hwang, Shih-Jen; Assimes, Themistocles L.; McPherson, Ruth; Samani, Nilesh J.; Schunkert, Heribert; Meng, Qingying; Suver, Christine; O'Donnell, Christopher J.; Derry, Jonathan; Yang, Xia; Levy, Daniel

    2013-01-01

    Objective Genetic approaches have identified numerous loci associated with coronary heart disease (CHD). The molecular mechanisms underlying CHD gene-disease associations, however, remain unclear. We hypothesized that genetic variants with both strong and subtle effects drive gene subnetworks that in turn affect CHD. Approach and Results We surveyed CHD-associated molecular interactions by constructing coexpression networks using whole blood gene expression profiles from 188 CHD cases and 188 age- and sex-matched controls. 24 coexpression modules were identified including one case-specific and one control-specific differential module (DM). The DMs were enriched for genes involved in B-cell activation, immune response, and ion transport. By integrating the DMs with altered gene expression associated SNPs (eSNPs) and with results of GWAS of CHD and its risk factors, the control-specific DM was implicated as CHD-causal based on its significant enrichment for both CHD and lipid eSNPs. This causal DM was further integrated with tissue-specific Bayesian networks and protein-protein interaction networks to identify regulatory key driver (KD) genes. Multi-tissue KDs (SPIB and TNFRSF13C) and tissue-specific KDs (e.g. EBF1) were identified. Conclusions Our network-driven integrative analysis not only identified CHD-related genes, but also defined network structure that sheds light on the molecular interactions of genes associated with CHD risk. PMID:23539213

  3. Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems

    NASA Astrophysics Data System (ADS)

    Nistor, Razvan A.

    The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high

  4. Quantitative computational models of molecular self-assembly in systems biology

    PubMed Central

    Thomas, Marcus; Schwartz, Russell

    2017-01-01

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally. PMID:28535149

  5. Quantitative computational models of molecular self-assembly in systems biology.

    PubMed

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  6. Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks

    PubMed Central

    Wolff, Gretchen; Duncan, Marilyn J.

    2013-01-01

    Shifting the onset of light, acutely or chronically, can profoundly affect responses to infection, tumor progression, development of metabolic disease, and mortality in mammals. To date, the majority of phase-shifting studies have focused on acute exposure to a shift in the timing of the light cycle, whereas the consequences of chronic phase shifts alone on molecular rhythms in peripheral tissues such as skeletal muscle have not been studied. In this study, we tested the effect of chronic phase advance on the molecular clock mechanism in two phenotypically different skeletal muscles. The phase advance protocol (CPA) involved 6-h phase advances (earlier light onset) every 4 days for 8 wk. Analysis of the molecular clock, via bioluminescence recording, in the soleus and flexor digitorum brevis (FDB) muscles and lung demonstrated that CPA advanced the phase of the rhythm when studied immediately after CPA. However, if the mice were placed into free-running conditions (DD) for 2 wk after CPA, the molecular clock was not phase shifted in the two muscles but was still shifted in the lung. Wheel running behavior remained rhythmic in CPA mice; however, the endogenous period length of the free-running rhythm was significantly shorter than that of control mice. Core body temperature, cage activity, and heart rate remained rhythmic throughout the experiment, although the onset of the rhythms was significantly delayed with CPA. These results provide clues that lifestyles associated with chronic environmental desynchrony, such as shift work, can have disruptive effects on the molecular clock mechanism in peripheral tissues, including both types of skeletal muscle. Whether this can contribute, long term, to increased incidence of insulin resistance/metabolic disease requires further study. PMID:23703115

  7. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    PubMed

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

  8. Sulfated Low Molecular Weight Lignins, Allosteric Inhibitors of Coagulation Proteinases via the Heparin Binding Site, Significantly Alter the Active Site of Thrombin and Factor Xa Compared to Heparin

    PubMed Central

    Henry, Brian L.; Desai, Umesh R.

    2014-01-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. PMID:25242245

  9. Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin.

    PubMed

    Henry, Brian L; Desai, Umesh R

    2014-11-01

    Sulfated low molecular weight lignins (LMWLs) have been found to bind in the heparin binding sites of coagulation proteinases. LMWLs represent a library of diverse non-carbohydrate, aromatic molecules which are structures different from heparin, but still potently inhibit thrombin and factor Xa. To better understand their mechanism of action, we studied the effects of three sulfated LMWLs (CDSO3, FDSO3, and SDSO3) on the active sites of thrombin and factor Xa. LMWLs were found to uniformly inhibit the catalytic activity of thrombin and factor Xa, regardless of the substrate used. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of each chromogenic substrate decreases significantly in the presence of sulfated LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. These studies indicate that LMWLs inhibit thrombin and factor Xa through allosteric disruption of the catalytic apparatus, specifically through the catalytic step. As opposed to heparin, LMWLs significantly alter the binding of the active site fluorescent ligand p-aminobenzamidine. LMWLs also had a greater effect on the molecular orientation of fluorescein-labeled His 57 than heparin. The molecular geometry surrounding the most important catalytic amino acid, Ser 195, was significantly altered by the binding of LMWLs while heparin had no measurable effect on Ser 195. These results further advance the concept of sulfated LMWLs as heparin mimics and will aid the design of anticoagulants based on their novel scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Difference of carboxybetaine and oligo(ethylene glycol) moieties in altering hydrophobic interactions: a molecular simulation study.

    PubMed

    Shao, Qing; White, Andrew D; Jiang, Shaoyi

    2014-01-09

    Polycarboxybetaine and poly(ethylene glycol) materials resist nonspecific protein adsorption but differ in influencing biological functions such as enzymatic activity. To investigate this difference, we studied the influence of carboxybetaine and oligo(ethylene glycol) moieties on hydrophobic interactions using molecular simulations. We employed a model system composed of two non-polar plates and studied the potential of mean force of plate-plate association in carboxybetaine, (ethylene glycol)4, and (ethylene glycol)2 solutions using well-tempered metadynamics simulations. Water, trimethylamine N-oxide, and urea solutions were used as reference systems. We analyzed the variation of the potential of mean force in various solutions to study how carboxybetaine and oligo(ethylene glycol) moieties influence the hydrophobic interactions. To study the origin of their influence, we analyzed the normalized distributions of moieties and water molecules using molecular dynamics simulations. The simulation results showed that oligo(ethylene glycol) moieties repel water molecules away from the non-polar plates and weaken the hydrophobic interactions. Carboxybetaine moieties do not repel water molecules away from the plates and therefore do not influence the hydrophobic interactions.

  11. Design theory and performance of cryogenic molecular adsorption refrigeration systems

    NASA Technical Reports Server (NTRS)

    Hartwig, W. H.; Woltman, A. W.; Masson, J. P.

    1978-01-01

    Closed-cycle operation of molecular adsorption refrigeration systems (MARS) has been demonstrated by using thermally cycled zeolites to adsorb and desorb various gases under pressures of 20-60 atm. This paper develops three aspects of the design theory: the physical theory of molecular adsorption of small molecules such as A, N2, N2O and NH3, the design relations for closed-cycle flow for three or more compressors, and the coefficient of performance. This work is intended to demonstrate nonmechanical gas compression for various cryogenic gases than can compete with mechanical systems with a different mix of advantages and disadvantages.

  12. Neonatal allopregnanolone levels alteration: effects on behavior and role of the hippocampus.

    PubMed

    Darbra, S; Mòdol, L; Llidó, A; Casas, C; Vallée, M; Pallarès, M

    2014-02-01

    Several works have pointed out the importance of the neurosteroid allopregnanolone for the maturation of the central nervous system and for adult behavior. The alteration of neonatal allopregnanolone levels in the first weeks of life alters emotional adult behavior and sensory gating processes. Without ruling out brain structures, some of these behavioral alterations seem to be related to a different functioning of the hippocampus in adult age. We focus here on the different behavioral studies that have revealed the importance of neonatal allopregnanolone levels for the adult response to novel environmental stimuli, anxiety-related behaviors and processing of sensory inputs (prepulse inhibition). An increase in neonatal physiological allopregnanolone levels decreases anxiety and increases novelty responses in adult age, thus affecting the individual response to environmental cues. These effects are also accompanied by a decrease in prepulse inhibition, indicating alterations in sensory gating that have been related to that present in disorders, such as schizophrenia. Moreover, behavioral studies have shown that some of these effects are related to a different functioning of the dorsal hippocampus, as the behavioral effects (decrease in anxiety and locomotion or increase in prepulse inhibition) of intrahippocampal allopregnanolone infusions in adult age are not present in those subjects in whom neonatal allopregnanolone levels were altered. Recent data indicated that this hippocampal involvement may be related to alterations in the expression of gamma-aminobutyric-acid receptors containing α4 and δ subunits, molecular alterations that can persist into adult age and that can, in part, explain the reported behavioral disturbances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Multiple biomarkers in molecular oncology. I. Molecular diagnostics applications in cervical cancer detection.

    PubMed

    Malinowski, Douglas P

    2007-03-01

    The screening for cervical carcinoma and its malignant precursors (cervical neoplasia) currently employs morphology-based detection methods (Papanicolaou [Pap] smear) in addition to the detection of high-risk human papillomavirus. The combination of the Pap smear with human papillomavirus testing has achieved significant improvements in sensitivity for the detection of cervical disease. Diagnosis of cervical neoplasia is dependent upon histology assessment of cervical biopsy specimens. Attempts to improve the specificity of cervical disease screening have focused on the investigation of molecular biomarkers for adjunctive use in combination with the Pap smear. Active research into the genomic and proteomic alterations that occur during human papillomavirus-induced neoplastic transformation have begun to characterize some of the basic mechanisms inherent to the disease process of cervical cancer development. This research continues to demonstrate the complexity of multiple genomic and proteomic alterations that accumulate during the tumorigenesis process. Despite this diversity, basic patterns of uncontrolled signal transduction, cell cycle deregulation, activation of DNA replication and altered extracellular matrix interactions are beginning to emerge as common features inherent to cervical cancer development. Some of these gene or protein expression alterations have been investigated as potential biomarkers for screening and diagnostics applications. The contribution of multiple gene alterations in the development of cervical cancer suggests that the application of multiple biomarker panels has the potential to develop clinically useful molecular diagnostics. In this review, the application of biomarkers for the improvement of sensitivity and specificity of the detection of cervical neoplasia within cytology specimens will be discussed.

  14. Identification of new molecular alterations in Fatal Familial Insomnia.

    USDA-ARS?s Scientific Manuscript database

    Fatal familial insomnia (FFI) is an autosomal dominant prion disease caused by a D178N mutation in PRNP in combination with methionine (Met) at codon 129 in the mutated allele of the same gene (D178N-129M haplotype). The present study analyzes pathological and molecular features in seven FFI cases c...

  15. Signaling pathway deregulation and molecular alterations across pediatric medulloblastomas.

    PubMed

    Lhermitte, B; Blandin, A F; Coca, A; Guerin, E; Durand, A; Entz-Werlé, N

    2018-05-15

    Medulloblastomas (MBs) account for 15% of brain tumors in children under the age of 15. To date, the overall 5-year survival rate for all children is only around 60%. Recent advances in cancer genomics have led to a fundamental change in medulloblastoma classification and is evolving along with the genomic discoveries, allowing to regularly reclassify this disease. The previous molecular classification defined 4 groups (WNT-activated MB, SHH-activated MB and the groups 3 and 4 characterized partially by NMYC and MYC driven MBs). This stratification moved forward recently to better define these groups and their correlation to outcome. This new stratification into 7 novel subgroups was helpful to lay foundations and complementary data on the understanding regarding molecular pathways and gene mutations underlying medulloblastoma biology. This review was aimed at answering the recent key questions on MB genomics and go further in the relevance of those genes in MB development as well as in their targeted therapies. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. 44 CFR 6.71 - Federal Register notice of establishment of new system or alteration of existing system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... establishment or alteration of a system of records shall be published in the Federal Register, in accordance with FEMA procedures when: (a) Notice is received that the Senate, the House of Representatives, and... the date of submission of the proposal to the Senate, the House of Representatives, and the Office of...

  17. 44 CFR 6.71 - Federal Register notice of establishment of new system or alteration of existing system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... establishment or alteration of a system of records shall be published in the Federal Register, in accordance with FEMA procedures when: (a) Notice is received that the Senate, the House of Representatives, and... the date of submission of the proposal to the Senate, the House of Representatives, and the Office of...

  18. Molecular Mechanisms of Aging and Immune System Regulation in Drosophila

    PubMed Central

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span. PMID:22949833

  19. ANN expert system screening for illicit amphetamines using molecular descriptors

    NASA Astrophysics Data System (ADS)

    Gosav, S.; Praisler, M.; Dorohoi, D. O.

    2007-05-01

    The goal of this study was to develop and an artificial neural network (ANN) based on computed descriptors, which would be able to classify the molecular structures of potential illicit amphetamines and to derive their biological activity according to the similarity of their molecular structure with amphetamines of known toxicity. The system is necessary for testing new molecular structures for epidemiological, clinical, and forensic purposes. It was built using a database formed by 146 compounds representing drugs of abuse (mainly central stimulants, hallucinogens, sympathomimetic amines, narcotics and other potent analgesics), precursors, or derivatized counterparts. Their molecular structures were characterized by computing three types of descriptors: 38 constitutional descriptors (CDs), 69 topological descriptors (TDs) and 160 3D-MoRSE descriptors (3DDs). An ANN system was built for each category of variables. All three networks (CD-NN, TD-NN and 3DD-NN) were trained to distinguish between stimulant amphetamines, hallucinogenic amphetamines, and nonamphetamines. A selection of variables was performed when necessary. The efficiency with which each network identifies the class identity of an unknown sample was evaluated by calculating several figures of merit. The results of the comparative analysis are presented.

  20. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  1. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  2. 44 CFR 6.72 - Effective date of new system of records or alteration of an existing system of records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Effective date of new system of records or alteration of an existing system of records. 6.72 Section 6.72 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY GENERAL IMPLEMENTATION OF THE PRIVACY ACT OF 1974 Report on New...

  3. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.

    PubMed

    Cho, Yeonchoo; Cho, Woo Jong; Youn, Il Seung; Lee, Geunsik; Singh, N Jiten; Kim, Kwang S

    2014-11-18

    CONSPECTUS: In chemical and biological systems, various interactions that govern the chemical and physical properties of molecules, assembling phenomena, and electronic transport properties compete and control the microscopic structure of materials. The well-controlled manipulation of each component can allow researchers to design receptors or sensors, new molecular architectures, structures with novel morphology, and functional molecules or devices. In this Account, we describe the structures and electronic and spintronic properties of π-molecular systems that are important for controlling the architecture of a variety of carbon-based systems. Although DFT is an important tool for describing molecular interactions, the inability of DFT to accurately represent dispersion interactions has made it difficult to properly describe π-interactions. However, the recently developed dispersion corrections for DFT have allowed us to include these dispersion interactions cost-effectively. We have investigated noncovalent interactions of various π-systems including aromatic-π, aliphatic-π, and non-π systems based on dispersion-corrected DFT (DFT-D). In addition, we have addressed the validity of DFT-D compared with the complete basis set (CBS) limit values of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and Møller-Plesset second order perturbation theory (MP2). The DFT-D methods are still unable to predict the correct ordering in binding energies within the benzene dimer and the cyclohexane dimer. Nevertheless, the overall DFT-D predicted binding energies are in reasonable agreement with the CCSD(T) results. In most cases, results using the B97-D3 method closely reproduce the CCSD(T) results with the optimized energy-fitting parameters. On the other hand, vdW-DF2 and PBE0-TS methods estimate the dispersion energies from the calculated electron density. In these approximations, the interaction energies around the equilibrium

  4. Molecular and biological hallmarks of ageing.

    PubMed

    Aunan, J R; Watson, M M; Hagland, H R; Søreide, K

    2016-01-01

    Ageing is the inevitable time-dependent decline in physiological organ function that eventually leads to death. Age is a major risk factor for many of the most common medical conditions, such as cardiovascular disease, cancer, diabetes and Alzheimer's disease. This study reviews currently known hallmarks of ageing and their clinical implications. A literature search of PubMed/MEDLINE was conducted covering the last decade. Average life expectancy has increased dramatically over the past century and is estimated to increase even further. Maximum longevity, however, appears unchanged, suggesting a universal limitation to the human organism. Understanding the underlying molecular processes of ageing and health decline may suggest interventions that, if used at an early age, can prevent, delay, alleviate or even reverse age-related diseases. Hallmarks of ageing can be grouped into three main categories. The primary hallmarks cause damage to cellular functions: genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis. These are followed by antagonistic responses to such damage: deregulated nutrient sensing, altered mitochondrial function and cellular senescence. Finally, integrative hallmarks are possible culprits of the clinical phenotype (stem cell exhaustion and altered intercellular communication), which ultimately contribute to the clinical effects of ageing as seen in physiological loss of reserve, organ decline and reduced function. The sum of these molecular hallmarks produces the clinical picture of the elderly surgical patient: frailty, sarcopenia, anaemia, poor nutrition and a blunted immune response system. Improved understanding of the ageing processes may give rise to new biomarkers of risk or prognosis, novel treatment targets and translational approaches across disciplines that may improve outcomes. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  5. 76 FR 4449 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... for the purpose of assisting the Department's efforts to respond to a suspected or confirmed breach of... returned to submitter. Used between specialty units for research purposes; and for epidemiological... or Altered System of Records Narrative Statement I. Background and Purpose of the System A...

  6. Silicon isotopes fractionation in meteoric chemical weathering and hydrothermal alteration systems of volcanic rocks (Mayotte)

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Puyraveau, Romain-Arnaud; Guihou, Abel; Haurine, Frederic; Deschamps, Pierre; rad, Setareh; Nehlig, Pierre

    2017-04-01

    Low temperature chemical weathering fractionates silicon (Si) isotopes while forming secondary silicates. The Si fractionation ranges of high temperature secondary phyllosilicates formed in hydrothermal alteration environments have not been investigated to date. Several parameters, including temperature, reaction rates, pH, ionic concentrations in solution, precipitation/dissolution series or kinetic versus equilibrium regime are not the same in hydrothermal alteration and surface weathering systems and may lead to different fractionation factors. In this work, we analyzed Si isotopes in these two types of alteration conditions in two profiles sampled on the volcanic island of Mayotte. In both profiles, Si-bearing secondary mineral was kaolinite. Both profiles showed 30Si depletion as a function of the degree of alteration but each with a distinct pattern. In the meteoric weathering profile, from the bottom to the top, a gradual decrease of the δ30Si from parent rock (-0.29 ± 0.13 ‰) towards the most weathered product (-2.05 ± 0.13 ‰) was observed. In the hydrothermal alteration profile, in which meteoric weathering was also superimposed at the top of the profile, an abrupt transition of the δ30Si was measured at the interface between parent-rock (-0.21 ± 0.11 ‰) and the altered products, with a minimum value of -3.06 ± 0.16 ‰˙ At the scale of Si-bearing secondary minerals, in the chemical weathering system, a Δ30Sikaol-parentrock of -1.9 ‰ was observed, in agreement with results in the literature. A low temperature kinetic fractionation 30ɛ of -2.29 ‰ was calculated using a simple steady state model. However, an unexpected Δ30Sikaol-parentrock of -2.85 ‰ was measured in the hydrothermal alteration site, pointing to possible mechanisms linked to dissolution/precipitation series and/or to ionic composition of the solution as the main controlling factors of fractionation in hydrothermal conditions. At the scale of the profiles, both δ30Si

  7. Hemorrhagic shock and surgical stress alter distribution of labile zinc within high- and low-molecular-weight plasma fractions.

    PubMed

    Kelly, Edward; Mathew, Jeff; Kohler, Jonathan E; Blass, Amy L; Soybel, And David I

    2012-08-01

    Zinc ions (Zn) are essential for tissue repair following injury or stress. We hypothesize that during such stresses Zn is redistributed to labile pools in plasma components. Here we tested this hypothesis using a novel assay to monitor labile Zn in plasma in hemorrhagic shock. Adult rats in the shock group (S group) underwent hemorrhage and resuscitation. Blood samples were drawn at baseline and at 1, 4, and 24 h. The surgical control group (SC group) was anesthetized and instrumented, but not bled. Albumin, total Zn, and labile Zn levels were assayed in plasma. Binding capacity for Zn was assessed in high- and low-molecular-weight pools. Significant decreases in total Zn were observed by 24 h, in both S and SC groups. Albumin levels were significantly reduced in the S group at 1 and 4 h but restored at 24 h; significant changes were not observed in other groups. In whole plasma, labile Zn levels were stable initially in the S and SC groups, but declined at 24 h. In the high-molecular-weight pool, marked and significant impairment of binding was noted throughout all time periods following the shock period in the S group. Such changes were observed in the SC group of less intensity and duration. These experiments suggest that shock alters affinity of plasma proteins for Zn, promoting delivery to peripheral tissues during periods of increased Zn utilization.

  8. Molecular classification of soft tissue sarcomas and its clinical applications

    PubMed Central

    Jain, Shilpa; Xu, Ruliang; Prieto, Victor G; Lee, Peng

    2010-01-01

    Sarcomas are a heterogeneous group of tumors that are traditionally classified according to the morphology and type of tissue that they resemble, such as rhabdomyosarcoma, which resembles skeletal muscle. However, the cell of origin is unclear in numerous sarcomas. Molecular genetics analyses have not only assisted in understanding the molecular mechanism in sarcoma pathogenesis but also demonstrated new relationships within different types of sarcomas leading to a more proper classification of sarcomas. Molecular classification based on the genetic alteration divides sarcomas into two main categories: (i) sarcomas with specific genetic alterations; which can further be subclassified based on a) reciprocal translocations resulting in oncogenic fusion transcripts (e.g. EWSR1-FLI1 in Ewing sarcoma) and b) specific oncogenic mutations (e.g. KIT and PDGFRA mutations in gastrointestinal stromal tumors) and (ii) sarcomas displaying multiple, complex karyotypic abnormalities with no specific pattern, including leiomyo-sarcoma, and pleomorphic liposarcoma. These specific genetic alterations are an important adjunct to standard morphological and immunohistochemical diagnoses, and in some cases have a prognostic value, e. g., Ewing family tumors, synovial sarcoma, and alveolar rhabdomyosarcoma. In addition, these studies may also serve as markers to detect minimal residual disease and can aid in staging or monitor the efficacy of therapy. Furthermore, sarcoma-specific fusion genes and other emerging molecular events may also represent potential targets for novel therapeutic approaches such as Gleevec for dermatofibrosarcoma protuberans. Therefore, increased understanding of the molecular biology of sarcomas is leading towards development of newer and more effective treatment regimens. The review focuses on recent advances in molecular genetic alterations having an impact on diagnostics, prognostication and clinical management of selected sarcomas. PMID:20490332

  9. Subtle Monte Carlo Updates in Dense Molecular Systems.

    PubMed

    Bottaro, Sandro; Boomsma, Wouter; E Johansson, Kristoffer; Andreetta, Christian; Hamelryck, Thomas; Ferkinghoff-Borg, Jesper

    2012-02-14

    Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions.

  10. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids

    PubMed Central

    2013-01-01

    Background Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. Results We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Conclusions Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of

  11. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    PubMed

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice

  12. Formation of Complex Amino Acid Precursors in Simulated Primitive Atmosphere and Their Alteration under Simulated Submarine Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kurihara, Hironari; Hirako, Tomoaki; Obayashi, Yumiko; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka

    Since late 1970's a great number of submarine hydrothermal systems (SHSs) has been dis-covered, and they are considered possible sites of chemical evolution and generation of life on the Earth since their discovery in late 1970s. A number of experiments simulating the con-ditions of SHSs were conducted, and abiotic production and polymerization of amino acids were reported. Free amino acids were frequently used as starting materials to examine possible organic reactions in the simulation experiments. In our early studies, not free amino acids but complex amino acids precursors with large molecular weights were formed abiotically from simulated primitive Earth atmosphere (a mixture of CO, N2 and H2 O) (Takano et al., 2004). Such complex organics (hereafter referred as to CNWs) should have been delivered to SHSs in Primitive Ocean, where they were subjected to further alteration. We examined possible alteration of the complex organics in high-temperature high-pressure environments by the su-percritical water flow reactor (SCWFR) (Islam et al.. 2003) and an autoclave. CNWs were quite hydrophilic compounds whose molecular weights were ca. 3000. After heating 573 K for 2 min in the SCWFR, aggregates of organics were formed, which were separated from aque-ous solution with a Nucleopore filter (pore size: 200 nm). We propose the following scenario of chemical evolution: (1) Complex organics including amino acid precursors were formed in primitive atmosphere and/or extraterrestrial environments, (ii) they were delivered to primor-dial SHSs, (iii) hydrothermal alteration occurred in SHSs to give organic aggregates, (iv) quite primitive molecular systems with subtle biological functions were generated in the competition among such aggregates. References: Islam, Md. N., Kaneko, T., and Kobayashi, K (2003). Reactions of Amino Acids with a Newly ConstructedSupercritical Water Flow Reactor Simulating Submarine Hydrothermal Systems. Bull. Chem. Soc. Jpn., 76, 1171. Takano, Y

  13. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  14. Cancer Stratification by Molecular Imaging

    PubMed Central

    Weber, Justus; Haberkorn, Uwe; Mier, Walter

    2015-01-01

    The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2). Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter), as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers. PMID:25749472

  15. Altered expression of talin 1 in peripheral immune cells points to a significant role of the innate immune system in spontaneous autoimmune uveitis.

    PubMed

    Degroote, Roxane L; Hauck, Stefanie M; Kremmer, Elisabeth; Amann, Barbara; Ueffing, Marius; Deeg, Cornelia A

    2012-07-19

    The molecular mechanism which enables activated immune cells to cross the blood-retinal barrier in spontaneous autoimmune uveitis is yet to be unraveled. Equine recurrent uveitis is the only spontaneous animal model allowing us to investigate the autoimmune mediated transformation of leukocytes in the course of this sight threatening disease. Hypothesizing that peripheral blood immune cells change their protein expression pattern in spontaneous autoimmune uveitis, we used DIGE to detect proteins with altered abundance comparing peripheral immune cells of healthy and ERU diseased horses. Among others, we found a significant downregulation of talin 1 in peripheral blood granulocytes of ERU specimen, pointing to changes in β integrin activation and indicating a significant role of the innate immune system in spontaneous autoimmune diseases. Copyright © 2012. Published by Elsevier B.V.

  16. PRESENILIN-NULL CELLS HAVE ALTERED TWO-PORE CALCIUM CHANNEL EXPRESSION AND LYSOSOMAL CALCIUM; IMPLICATIONS FOR LYSOSOMAL FUNCTION

    PubMed Central

    Kayala, Kara M Neely; Dickinson, George D; Minassian, Anet; Walls, Ken C; Green, Kim N; LaFerla, Frank M

    2012-01-01

    Presenilins are necessary for calcium homeostasis and also for efficient proteolysis through the autophagy/lysosome system. Presenilin regulates both endoplasmic reticulum calcium stores and autophagic proteolysis in a γ-secretase independent fashion. The endo-lysosome system can also act as a calcium store, with calcium efflux channels being recently identified as two-pore channels 1 and 2. Here we investigated lysosomal calcium content and the channels that mediate calcium release from these acidic stores in presenilin knockout cells. We report that presenilin loss leads to a lower total lysosomal calcium store despite the buildup of lysosomes found in these cells. Additionally, we find alterations in two-pore calcium channel protein expression, with loss of presenilin preventing the formation of a high molecular weight species of TPC1 and TPC2. Finally, we find that treatments that disturb lysosomal calcium release lead to a reduction in autophagy function yet lysosomal inhibitors do not alter two-pore calcium channel expression. These data indicate that alterations in lysosomal calcium in the absence of presenilins might be leading to disruptions in autophagy. PMID:23103503

  17. Altered Gag Polyprotein Cleavage Specificity of Feline Immunodeficiency Virus/Human Immunodeficiency Virus Mutant Proteases as Demonstrated in a Cell-Based Expression System

    PubMed Central

    Lin, Ying-Chuan; Brik, Ashraf; de Parseval, Aymeric; Tam, Karen; Torbett, Bruce E.; Wong, Chi-Huey; Elder, John H.

    2006-01-01

    We have used feline immunodeficiency virus (FIV) protease (PR) as a mutational system to study the molecular basis of substrate-inhibitor specificity for lentivirus PRs, with a focus on human immunodeficiency virus type 1 (HIV-1) PR. Our previous mutagenesis studies demonstrated that discrete substitutions in the active site of FIV PR with structurally equivalent residues of HIV-1 PR dramatically altered the specificity of the mutant PRs in in vitro analyses. Here, we have expanded these studies to analyze the specificity changes in each mutant FIV PR expressed in the context of the natural Gag-Pol polyprotein ex vivo. Expression mutants were prepared in which 4 to 12 HIV-1-equivalent substitutions were made in FIV PR, and cleavage of each Gag-Pol polyprotein was then assessed in pseudovirions from transduced cells. The findings demonstrated that, as with in vitro analyses, inhibitor specificities of the mutants showed increased HIV-1 PR character when analyzed against the natural substrate. In addition, all of the mutant PRs still processed the FIV polyprotein but the apparent order of processing was altered relative to that observed with wild-type FIV PR. Given the importance of the order in which Gag-Pol is processed, these findings likely explain the failure to produce infectious FIVs bearing these mutations. PMID:16873240

  18. Molecular pathology of skin neoplasms of the head and neck.

    PubMed

    Kraft, Stefan; Granter, Scott R

    2014-06-01

    Skin neoplasms include the most common malignancies affecting humans. Many show an ultraviolet (UV)-induced pathogenesis and often affect the head and neck region. To review literature on cutaneous neoplasms that show a predilection for the head and neck region and that are associated with molecular alterations. Literature review. Common nonmelanoma skin cancers, such as basal and squamous cell carcinomas, show a UV-induced pathogenesis. Basal cell carcinomas are characterized by molecular alterations of the Hedgehog pathway, affecting patched and smoothened genes. While squamous cell carcinomas show UV-induced mutations in several genes, driver mutations are only beginning to be identified. In addition, certain adnexal neoplasms also predominantly affect the head and neck region and show interesting, recently discovered molecular abnormalities, or are associated with hereditary conditions whose molecular genetic pathogenesis is well understood. Furthermore, recent advances have led to an increased understanding of the molecular pathogenesis of melanoma. Certain melanoma subtypes, such as lentigo maligna melanoma and desmoplastic melanoma, which are more often seen on the chronically sun-damaged skin of the head and neck, show differences in their molecular signature when compared to the other more common subtypes, such as superficial spreading melanoma, which are more prone to occur at sites with acute intermittent sun damage. In summary, molecular alterations in cutaneous neoplasms of the head and neck are often related to UV exposure. Their molecular footprint often reflects the histologic tumor type, and familiarity with these changes will be increasingly necessary for diagnostic and therapeutic considerations.

  19. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  20. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal-porphyry copper system at Red Mountain, Arizona

    USGS Publications Warehouse

    Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.

    2013-01-01

    Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of

  1. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    PubMed Central

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  2. A peptide inhibitor of the urokinase/urokinase receptor system inhibits alteration of the blood-retinal barrier in diabetes.

    PubMed

    Navaratna, Deepti; Menicucci, Gina; Maestas, Joann; Srinivasan, Ramprasad; McGuire, Paul; Das, Arup

    2008-09-01

    One of the major complications of diabetes is the alteration of the blood-retinal barrier, leading to retinal edema and consequent vision loss. The aim of this study was to evaluate the role of the urokinase plasminogen activator (uPA)/uPA receptor (uPAR) system in the regulation of retinal vascular permeability. Biochemical, molecular, and histological techniques were used to examine the role of uPA and uPAR in the regulation of retinal vascular permeability in diabetic rats and cultured retinal endothelial cells. The increased retinal vascular permeability in diabetic rats was associated with a decrease in vascular endothelial (VE) -cadherin expression in retinal vessels. Treatment with the uPA/uPAR-inhibiting peptide (A6) was shown to reduce diabetes-induced permeability and the loss of VE-cadherin. The increased permeability of cultured cells in response to advanced glycation end products (AGEs) was significantly inhibited with A6. Treatment of endothelial cells with specific matrix metalloproteinases or AGEs resulted in loss of VE-cadherin from the cell surface, which could be inhibited by A6. uPA/uPAR physically interacts with AGEs/receptor for advanced glycation end products on the cell surface and regulates its activity. uPA and its receptor uPAR play important roles in the alteration of the blood-retinal barrier through proteolytic degradation of VE-cadherin. The ability of A6 to block retinal vascular permeability in diabetes suggests a potential therapeutic approach for the treatment of diabetic macular edema.

  3. Multi-scale continuum modeling of biological processes: from molecular electro-diffusion to sub-cellular signaling transduction

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Kekenes-Huskey, P.; Hake, J. E.; Holst, M. J.; McCammon, J. A.; Michailova, A. P.

    2012-01-01

    This paper presents a brief review of multi-scale modeling at the molecular to cellular scale, with new results for heart muscle cells. A finite element-based simulation package (SMOL) was used to investigate the signaling transduction at molecular and sub-cellular scales (http://mccammon.ucsd.edu/smol/, http://FETK.org) by numerical solution of the time-dependent Smoluchowski equations and a reaction-diffusion system. At the molecular scale, SMOL has yielded experimentally validated estimates of the diffusion-limited association rates for the binding of acetylcholine to mouse acetylcholinesterase using crystallographic structural data. The predicted rate constants exhibit increasingly delayed steady-state times, with increasing ionic strength, and demonstrate the role of an enzyme's electrostatic potential in influencing ligand binding. At the sub-cellular scale, an extension of SMOL solves a nonlinear, reaction-diffusion system describing Ca2+ ligand buffering and diffusion in experimentally derived rodent ventricular myocyte geometries. Results reveal the important role of mobile and stationary Ca2+ buffers, including Ca2+ indicator dye. We found that alterations in Ca2+-binding and dissociation rates of troponin C (TnC) and total TnC concentration modulate sub-cellular Ca2+ signals. The model predicts that reduced off-rate in the whole troponin complex (TnC, TnI, TnT) versus reconstructed thin filaments (Tn, Tm, actin) alters cytosolic Ca2+ dynamics under control conditions or in disease-linked TnC mutations. The ultimate goal of these studies is to develop scalable methods and theories for the integration of molecular-scale information into simulations of cellular-scale systems.

  4. Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination.

    PubMed

    Christen, Verena; Fent, Karl

    2017-07-01

    Pesticides are implicated in the decline of honey bee populations. Many insecticides are neurotoxic and act by different modes of actions. Although a link between insecticide exposure and changed behaviour has been made, molecular effects underlying these effects are poorly understood. Here we elucidated molecular effects at environmental realistic concentrations of two organophosphates, chlorpyrifos and malathion, the pyrethroid cypermethrin, and the ryanodine receptor activator, chlorantraniliprole. We assessed transcriptional alterations of selected genes at three exposure times (24 h, 48 h, 72 h) in caged honey bees exposed to different concentrations of these compounds. Our targeted gene expression concept focused on several transcripts, including nicotinic acetylcholine receptor α 1 and α 2 (nAChRα1, nAChRα2) subunits, the multifunctional gene vitellogenin, immune system related genes of three immune system pathways, genes belonging to the detoxification system and ER stress genes. Our data indicate a dynamic pattern of expressional changes at different exposure times. All four insecticides induced strong alterations in the expression of immune system related genes suggesting negative implications for honey bee health, as well as cytochrome P450 enzyme transcripts suggesting an interference with metabolism. Exposure to neurotoxic chlorpyrifos, malathion and cypermethrin resulted in up-regulation of nAChRα1 and nAChRα2. Moreover, alterations in the expression of vitellogenin occurred, which suggests implications on foraging activity. Chlorantraniliprole induced ER stress which may be related to toxicity. The comparison of all transcriptional changes indicated that the expression pattern is rather compound-specific and related to its mode of action, but clusters of common transcriptional changes between different compounds occurred. As transcriptional alterations occurred at environmental concentrations our data provide a molecular basis for observed

  5. [Clinical, morphological and molecular biological characteristics of the aging eye].

    PubMed

    Böhm, M R R; Thomasen, H; Parnitzke, F; Steuhl, K-P

    2017-02-01

    The physiological aging of the eye is associated with loss of visual function. Age-related changes of the eye can result in ophthalmological diseases. The aim of this article is to display morphological, histological and molecular biological alterations of the aging eye. A web-based search and review of the literature for aging of the visual system including cornea, lens, vitreous humor, retina, retinal pigment epithelium (RPE), choroidea and optic nerve were carried out. The most important results related to morphological, histological and molecular biological changes are summarized. Age-related, morphological alterations can be found in preretinal structures, e. g. cornea, lens and vitreous humor, as well as neuronal structures, such as the retina. In addition to negligible clinical signs of the aging eye, there are clinically relevant changes which can develop into pathological ophthalmological diseases. These transitions from age-related alterations to relevant ophthalmological diseases, e. g. age-related macular degeneration and glaucoma are continuous. An understanding of aging could provide predictive factors to detect the conversion of physiological aging into pathological conditions. The derivation of physiological markers or new approaches to detection and treatment of disease-related entities associated with the risk factor aging are desirable. Translational approaches in clinical and basic science are necessary to provide new therapeutic options for relevant ophthalmological diseases in the future.

  6. Evolution of complex adaptations in molecular systems

    PubMed Central

    Pál, Csaba; Papp, Balázs

    2017-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular ’springboards’, such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths. PMID:28782044

  7. 76 FR 4438 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... information for the purpose of assisting the Department's efforts to respond to a suspected or confirmed... Altered System of Records Narrative Statement I. Background and Purpose of the System A. Background The... for the purpose of assisting the Department's efforts to respond to a suspected or confirmed breach of...

  8. Alterations in the Ubiquitin Proteasome System in Persistent but Not Reversible Proteinuric Diseases

    PubMed Central

    Beeken, Maire; Lindenmeyer, Maja T.; Blattner, Simone M.; Radón, Victoria; Oh, Jun; Meyer, Tobias N.; Hildebrand, Diana; Schlüter, Hartmut; Reinicke, Anna T.; Knop, Jan-Hendrik; Vivekanandan-Giri, Anuradha; Münster, Silvia; Sachs, Marlies; Wiech, Thorsten; Pennathur, Subramaniam; Cohen, Clemens D.; Kretzler, Matthias; Stahl, Rolf A.K.

    2014-01-01

    Podocytes are the key cells affected in nephrotic glomerular kidney diseases, and they respond uniformly to injury with cytoskeletal rearrangement. In nephrotic diseases, such as membranous nephropathy and FSGS, persistent injury often leads to irreversible structural damage, whereas in minimal change disease, structural alterations are mostly transient. The factors leading to persistent podocyte injury are currently unknown. Proteolysis is an irreversible process and could trigger persistent podocyte injury through degradation of podocyte-specific proteins. We, therefore, analyzed the expression and functional consequence of the two most prominent proteolytic systems, the ubiquitin proteasome system (UPS) and the autophagosomal/lysosomal system, in persistent and transient podocyte injuries. We show that differential upregulation of both proteolytic systems occurs in persistent human and rodent podocyte injury. The expression of specific UPS proteins in podocytes differentiated children with minimal change disease from children with FSGS and correlated with poor clinical outcome. Degradation of the podocyte-specific protein α-actinin-4 by the UPS depended on oxidative modification in membranous nephropathy. Notably, the UPS was overwhelmed in podocytes during experimental glomerular disease, resulting in abnormal protein accumulation and compensatory upregulation of the autophagosomal/lysosomal system. Accordingly, inhibition of both proteolytic systems enhanced proteinuria in persistent nephrotic disease. This study identifies altered proteolysis as a feature of persistent podocyte injury. In the future, specific UPS proteins may serve as new biomarkers or therapeutic targets in persistent nephrotic syndrome. PMID:24722446

  9. Pulmonary arterial hypertension associated to systemic erythematous lupus: molecular characterization of 3 cases.

    PubMed

    Pousada, Guillermo; Lago-Docampo, Mauro; Baloira, Adolfo; Valverde, Diana

    2018-03-08

    Pulmonary arterial hypertension associated with systemic lupus erythematosus (PAH-SLE) is a rare disease with a low incidence rate. In this study, PAH related genes and genetic modifiers were characterised molecularly in patients with PAH-SLE. Three patients diagnosed with PAH-SLE and 100 control individuals were analysed after signing an informed consent. Two out of the three analysed patients with PAH-SLE were carriers of pathogenic mutations in the genes BMPR2 and ENG. After an in silico analysis, pathogenic mutations were searched for in control individuals and different databases, with negative results, and they were thus functionally analysed. The third patients only showed polymorphisms in the genes BMPR2, ACVRL1 and ENG. Several genetic variants and genetic modifiers were identified in the three analysed patients. These modifiers, along with the pathogenic mutations, could lead to a more severe clinical course in patients with PAH. We present, for the first time, patients with PAH-SLE carrying pathogenic mutations in the main genes related to PAH and alterations in the genetic modifiers. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  10. [Molecular genetics of familial tumour syndromes of the central nervous system].

    PubMed

    Murnyák, Balázs; Szepesi, Rita; Hortobágyi, Tibor

    2015-02-01

    Although most of the central nervous system tumours are sporadic, rarely they are associated with familial tumour syndromes. These disorders usually present with an autosomal dominant inheritance and neoplasia develops at younger age than in sporadic cases. Most of these tumours are bilateral, multiplex or multifocal. The causative mutations occur in genes involved in cell cycle regulation, cell growth, differentiation and DNA repair. Studying these hereditary cancer predisposition syndromes associated with nervous system tumours can facilitate the deeper understanding of the molecular background of sporadic tumours and the development of novel therapeutic agents. This review is an update on hereditary tumour syndromes with nervous system involvement with emphasis on molecular genetic characteristics and their clinical implications.

  11. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. © 2015 The Author(s).

  12. Between destiny and disease: genetics and molecular pathways of human central nervous system aging.

    PubMed

    Glorioso, Christin; Sibille, Etienne

    2011-02-01

    Aging of the human brain is associated with "normal" functional, structural, and molecular changes that underlie alterations in cognition, memory, mood and motor function, amongst other processes. Normal aging also imposes a robust constraint on the onset of many neurological diseases, ranging from late onset neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's diseases (PD), to early onset psychiatric disorders, such as bipolar disorder (BPD) and schizophrenia (SCZ). The molecular mechanisms and genetic underpinnings of age-related changes in the brain are understudied, and, while they share some overlap with peripheral mechanisms of aging, many are unique to the largely non-mitotic brain. Hence, understanding mechanisms of brain aging and identifying associated modulators may have profound consequences for the prevention and treatment of age-related impairments and diseases. Here we review current knowledge on age-related functional and structural changes, their molecular and genetic underpinnings, and discuss how these pathways may contribute to the vulnerability to develop age-related neurological diseases. We highlight recent findings from human post-mortem brain microarray studies, which we hypothesize, point to a potential genetically controlled transcriptional program underlying molecular changes and age-gating of neurological diseases. Finally, we discuss the implications of this model for understanding basic mechanisms of brain aging and for the future investigation of therapeutic approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. KCNH2-3.1 expression impairs cognition and alters neuronal function in a model of molecular pathology associated with schizophrenia.

    PubMed

    Carr, Gregory V; Chen, Jingshan; Yang, Feng; Ren, Ming; Yuan, Peixiong; Tian, Qingjun; Bebensee, Audrey; Zhang, Grace Y; Du, Jing; Glineburg, Paul; Xun, Randy; Akhile, Omoye; Akuma, Daniel; Pickel, James; Barrow, James C; Papaleo, Francesco; Weinberger, Daniel R

    2016-11-01

    Overexpression in humans of KCNH2-3.1, which encodes a primate-specific and brain-selective isoform of the human ether-a-go-go-related potassium channel, is associated with impaired cognition, inefficient neural processing and schizophrenia. Here, we describe a new mouse model that incorporates the KCNH2-3.1 molecular phenotype. KCNH2-3.1 transgenic mice are viable and display normal sensorimotor behaviors. However, they show alterations in neuronal structure and microcircuit function in the hippocampus and prefrontal cortex, areas affected in schizophrenia. Specifically, in slice preparations from the CA1 region of the hippocampus, KCNH2-3.1 transgenic mice have fewer mature dendrites and impaired theta burst stimulation long-term potentiation. Abnormal neuronal firing patterns characteristic of the fast deactivation kinetics of the KCNH2-3.1 isoform were also observed in prefrontal cortex. Transgenic mice showed significant deficits in a hippocampal-dependent object location task and a prefrontal cortex-dependent T-maze working memory task. Interestingly, the hippocampal-dependent alterations were not present in juvenile transgenic mice, suggesting a developmental trajectory to the phenotype. Suppressing KCNH2-3.1 expression in adult mice rescues both the behavioral and physiological phenotypes. These data provide insight into the mechanism of association of KCNH2-3.1 with variation in human cognition and neuronal physiology and may explain its role in schizophrenia.

  14. SILAC-based quantitative proteomic analysis reveals widespread molecular alterations in human skin keratinocytes upon chronic arsenic exposure.

    PubMed

    Mir, Sartaj Ahmad; Pinto, Sneha M; Paul, Somnath; Raja, Remya; Nanjappa, Vishalakshi; Syed, Nazia; Advani, Jayshree; Renuse, Santosh; Sahasrabuddhe, Nandini A; Prasad, T S Keshava; Giri, Ashok K; Gowda, Harsha; Chatterjee, Aditi

    2017-03-01

    Chronic exposure to arsenic is associated with dermatological and nondermatological disorders. Consumption of arsenic-contaminated drinking water results in accumulation of arsenic in liver, spleen, kidneys, lungs, and gastrointestinal tract. Although arsenic is cleared from these sites, a substantial amount of residual arsenic is left in keratin-rich tissues including skin. Epidemiological studies suggest the association of skin cancer upon arsenic exposure, however, the mechanism of arsenic-induced carcinogenesis is not completely understood. We developed a cell line based model to understand the molecular mechanisms involved in arsenic-mediated toxicity and carcinogenicity. Human skin keratinocyte cell line, HaCaT, was chronically exposed to 100 nM sodium arsenite over a period of 6 months. We observed an increase in basal ROS levels in arsenic-exposed cells. SILAC-based quantitative proteomics approach resulted in identification of 2111 proteins of which 42 proteins were found to be overexpressed and 54 downregulated (twofold) upon chronic arsenic exposure. Our analysis revealed arsenic-induced overexpression of aldo-keto reductase family 1 member C2 (AKR1C2), aldo-keto reductase family 1 member C3 (AKR1C3), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H dehydrogenase [quinone] 1 (NQO1) among others. We observed downregulation of several members of the plakin family including periplakin (PPL), envoplakin (EVPL), and involucrin (IVL) that are essential for terminal differentiation of keratinocytes. MRM and Western blot analysis confirmed differential expression of several candidate proteins. Our study provides insights into molecular alterations upon chronic arsenic exposure on skin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dietary protein restriction causes modification in aluminum-induced alteration in glutamate and GABA system of rat brain

    PubMed Central

    Nayak, Prasunpriya; Chatterjee, Ajay K

    2003-01-01

    Background Alteration of glutamate and γ-aminobutyrate system have been reported to be associated with neurodegenerative disorders and have been postulated to be involved in aluminum-induced neurotoxicity as well. Aluminum, an well known and commonly exposed neurotoxin, was found to alter glutamate and γ-aminobutyrate levels as well as activities of associated enzymes with regional specificity. Protein malnutrition also reported to alter glutamate level and some of its metabolic enzymes. Thus the region-wise study of levels of brain glutamate and γ-aminobutyrate system in protein adequacy and inadequacy may be worthwhile to understand the mechanism of aluminum-induced neurotoxicity. Results Protein restriction does not have any significant impact on regional aluminum and γ-aminobutyrate contents of rat brain. Significant interaction of dietary protein restriction and aluminum intoxication to alter regional brain glutamate level was observed in the tested brain regions except cerebellum. Alteration in glutamate α-decarboxylase and γ-aminobutyrate transaminase activities were found to be significantly influenced by interaction of aluminum intoxication and dietary protein restriction in all the tested brain regions. In case of regional brain succinic semialdehyde content, this interaction was significant only in cerebrum and thalamic area. Conclusion The alterations of regional brain glutamate and γ-aminobutyrate levels by aluminum are region specific as well as dependent on dietary protein intake. The impact of aluminum exposure on the metabolism of these amino acid neurotransmitters are also influenced by dietary protein level. Thus, modification of dietary protein level or manipulation of the brain amino acid homeostasis by any other means may be an useful tool to find out a path to restrict amino acid neurotransmitter alterations in aluminum-associated neurodisorders. PMID:12657166

  16. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    PubMed

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how

  17. 41 CFR 51-9.503 - Effective date of new systems of records or alteration of an existing system of records.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Effective date of new systems of records or alteration of an existing system of records. 51-9.503 Section 51-9.503 Public Contracts and Property Management Other Provisions Relating to Public Contracts COMMITTEE FOR PURCHASE FROM PEOPLE WHO ARE BLIND OR SEVERELY DISABLED 9...

  18. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    NASA Astrophysics Data System (ADS)

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; Hong, Hawoong; Marks, Laurence D.; Fong, Dillon D.

    2018-03-01

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. The high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO3 oxide perovskites containing elements from both the metalorganic source and a traditional effusion cell.

  19. Structure and atomic correlations in molecular systems probed by XAS reverse Monte Carlo refinement

    NASA Astrophysics Data System (ADS)

    Di Cicco, Andrea; Iesari, Fabio; Trapananti, Angela; D'Angelo, Paola; Filipponi, Adriano

    2018-03-01

    The Reverse Monte Carlo (RMC) algorithm for structure refinement has been applied to x-ray absorption spectroscopy (XAS) multiple-edge data sets for six gas phase molecular systems (SnI2, CdI2, BBr3, GaI3, GeBr4, GeI4). Sets of thousands of molecular replicas were involved in the refinement process, driven by the XAS data and constrained by available electron diffraction results. The equilibrated configurations were analysed to determine the average tridimensional structure and obtain reliable bond and bond-angle distributions. Detectable deviations from Gaussian models were found in some cases. This work shows that a RMC refinement of XAS data is able to provide geometrical models for molecular structures compatible with present experimental evidence. The validation of this approach on simple molecular systems is particularly important in view of its possible simple extension to more complex and extended systems including metal-organic complexes, biomolecules, or nanocrystalline systems.

  20. The Optical Bichromatic Force in Molecular Systems

    NASA Astrophysics Data System (ADS)

    Aldridge, Leland; Galica, Scott; Eyler, E. E.

    2015-05-01

    The optical bichromatic force has been demonstrated to be useful for slowing atomic beams much more rapidly than radiative forces. Through numerical simulations, we examine several aspects of applying the bichromatic force to molecular beams. One is the unavoidable existence of out-of-system radiative decay, requiring one or more repumping beams. We find that the average deceleration varies strongly with the repumping intensity, but when using optimal parameters, the force approaches the limiting value allowed by population statistics. Another consideration is the effect of fine and hyperfine structure. We examine a simplified multlevel model based on the B <--> X transition in calcium monofluoride. To circumvent optical pumping into coherent dark states, we include two possible schemes: (1) a skewed dc magnetic field, and (2) rapid optical polarization switching. Our results indicate that the bichromatic force remains a viable option for creating large forces in molecular beams, with a reduction in the peak force by approximately an order of magnitude compared to a two-level atom, but little effect on the velocity range over which the force is effective. We also describe our progress towards experimental tests of the bichromatic force on a molecular beam of CaF. Supported by the National Science Foundation.

  1. Altered Stra13 and Dec2 circadian gene expression in hypoxic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillaumond, Fabienne; Lacoche, Samuel; Dulong, Sandrine

    2008-05-16

    The circadian system regulates rhythmically most of the mammalian physiology in synchrony with the environmental light/dark cycle. Alteration of circadian clock gene expression has been associated with tumour progression but the molecular links between the two mechanisms remain poorly defined. Here we show that Stra13 and Dec2, two circadian transcriptional regulators which play a crucial role in cell proliferation and apoptosis are overexpressed and no longer rhythmic in serum shocked fibroblasts treated with CoCl{sub 2,} a substitute of hypoxia. This effect is associated with a loss of circadian expression of the clock genes Rev-erb{alpha} and Bmal1, and the clock-controlled genemore » Dbp. Consistently, cotransfection assays demonstrate that STRA13 and DEC2 both antagonize CLOCK:BMAL1 dependent transactivation of the Rev-erb{alpha} and Dbp promoters. Using a transplantable osteosarcoma tumour model, we show that hypoxia is associated with altered circadian expression of Stra13, Dec2, Rev-erb{alpha}, Bmal1 and Dbp in vivo. These observations collectively support the notion that overexpression of Stra13 and Dec2 links hypoxia signalling to altered circadian clock gene expression.« less

  2. AID to overcome the limitations of genomic information by introducing somatic DNA alterations.

    PubMed

    Honjo, Tasuku; Muramatsu, Masamichi; Nagaoka, Hitoshi; Kinoshita, Kazuo; Shinkura, Reiko

    2006-05-01

    The immune system has adopted somatic DNA alterations to overcome the limitations of the genomic information. Activation induced cytidine deaminase (AID) is an essential enzyme to regulate class switch recombination (CSR), somatic hypermutation (SHM) and gene conversion (GC) of the immunoglobulin gene. AID is known to be required for DNA cleavage of S regions in CSR and V regions in SHM. However, its molecular mechanism is a focus of extensive debate. RNA editing hypothesis postulates that AID edits yet unknown mRNA, to generate specific endonucleases for CSR and SHM. By contrast, DNA deamination hypothesis assumes that AID deaminates cytosine in DNA, followed by DNA cleavage by base excision repair enzymes. We summarize the basic knowledge for molecular mechanisms for CSR and SHM and then discuss the importance of AID not only in the immune regulation but also in the genome instability.

  3. Monolayer atomic crystal molecular superlattices.

    PubMed

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A; Huang, Yu; Duan, Xiangfeng

    2018-03-07

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 10 7 , along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  4. Monolayer atomic crystal molecular superlattices

    NASA Astrophysics Data System (ADS)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  5. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution.

    PubMed

    Skinner, Michael K

    2015-04-26

    Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Striatal molecular alterations in HD gene carriers: a systematic review and meta-analysis of PET studies.

    PubMed

    Niccolini, Flavia; Pagano, Gennaro; Fusar-Poli, Paolo; Wood, Andrew; Mrzljak, Ladislav; Sampaio, Cristina; Politis, Marios

    2018-02-01

    Over the past years, positron emission tomography (PET) imaging studies have investigated striatal molecular changes in premanifest and manifest Huntington's disease (HD) gene expansion carriers (HDGECs), but they have yielded inconsistent results. To systematically examine the evidence of striatal molecular alterations in manifest and premanifest HDGECs as measured by PET imaging studies. MEDLINE, ISI Web of Science, Cochrane Library and Scopus databases were searched for articles published until 7 June 2017 that included PET studies in manifest and premanifest HDGECs. Meta-analyses were conducted with random effect models, and heterogeneity was addressed with I 2 index, controlling for publication bias and quality of study. The primary outcome was the standardised mean difference (SMD) of PET uptakes in the whole striatum, caudate and putamen in manifest and premanifest HDGECs compared with healthy controls (HCs). Twenty-four out of 63 PET studies in premanifest (n=158) and manifest (n=191) HDGECs and HCs (n=333) were included in the meta-analysis. Premanifest and manifest HDGECs showed significant decreases in dopamine D 2 receptors in caudate (SMD=-1.233, 95% CI -1.753 to -0.713, p<0.0001; SMD=-5.792, 95% CI -7.695 to -3.890, p<0.0001) and putamen (SMD=-1.479, 95% CI -1.965 to -0.992, p<0.0001; SMD=-5.053, 95% CI -6.558 to -3.549, p<0.0001), in glucose metabolism in caudate (SMD=-0.758, 95% CI -1.139 to -0.376, p<0.0001; SMD=-3.738, 95% CI -4.880 to -2.597, p<0.0001) and putamen (SMD=-2.462, 95% CI -4.208 to -0.717, p=0.006; SMD=-1.650, 95% CI -2.842 to -0.458, p<0.001) and in striatal PDE10A binding (SMD=-1.663, 95% CI -2.603 to -0.723, p=0.001; SMD=-2.445, 95% CI -3.371 to -1.519, p<0.001). PET imaging has the potential to detect striatal molecular changes even at the early premanifest stage of HD, which are relevant to the neuropathological mechanisms underlying the development of the disease. © Article author(s) (or their employer(s) unless otherwise

  7. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    ERIC Educational Resources Information Center

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  8. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    DOE PAGES

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; ...

    2018-03-08

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less

  9. Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Tassie K.; Cook, Seyoung; Benda, Erika

    A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less

  10. Molecular diagnostics in gastric cancer.

    PubMed

    Bornschein, Jan; Leja, Marcis; Kupcinskas, Juozas; Link, Alexander; Weaver, Jamie; Rugge, Massimo; Malfertheiner, Peter

    2014-01-01

    Despite recent advances in individualised targeted therapy, gastric cancer remains one of the most challenging diseases in gastrointestinal oncology. Modern imaging techniques using endoscopic filter devices and in vivo molecular imaging are designed to enable early detection of the cancer and surveillance of patients at risk. Molecular characterisation of the tumour itself as well as of the surrounding inflammatory environment is more sophisticated in the view of tailored therapies and individual prognostic assessment. The broad application of high throughput techniques for the description of genome wide patterns of structural (copy number aberrations, single nucleotide polymorphisms, methylation pattern) and functional (gene expression profiling, proteomics, miRNA) alterations in the cancer tissue lead not only to a better understanding of the tumour biology but also to a description of gastric cancer subtypes independent from classical stratification systems. Biostatistical means are required for the interpretation of the massive amount of data generated by these approaches. In this review we give an overview on the current knowledge of diagnostic methods for detection, description and understanding of gastric cancer disease.

  11. Molecular Mechanisms of Root Gravitropism.

    PubMed

    Su, Shih-Heng; Gibbs, Nicole M; Jancewicz, Amy L; Masson, Patrick H

    2017-09-11

    Plant shoots typically grow against the gravity vector to access light, whereas roots grow downward into the soil to take up water and nutrients. These gravitropic responses can be altered by developmental and environmental cues. In this review, we discuss the molecular mechanisms that govern the gravitropism of angiosperm roots, where a physical separation between sites for gravity sensing and curvature response has facilitated discovery. Gravity sensing takes place in the columella cells of the root cap, where sedimentation of starch-filled plastids (amyloplasts) triggers a pathway that results in a relocalization to the lower side of the cell of PIN proteins, which facilitate efflux of the plant hormone auxin efflux. Consequently, auxin accumulates in the lower half of the root, triggering bending of the root tip at the elongation zone. We review our understanding of the molecular mechanisms that control this process in primary roots, and discuss recent insights into the regulation of oblique growth in lateral roots and its impact on root-system architecture and soil exploration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Elucidation of molecular kinetic schemes from macroscopic traces using system identification

    PubMed Central

    González-Maeso, Javier; Sealfon, Stuart C.; Galocha-Iragüen, Belén; Brezina, Vladimir

    2017-01-01

    Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic) processes from the overall (macroscopic) response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology can be successfully

  13. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system

    NASA Astrophysics Data System (ADS)

    Ragazzon, Giulio; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Credi, Alberto

    2015-01-01

    Biomolecular motors convert energy into directed motion and operate away from thermal equilibrium. The development of dynamic chemical systems that exploit dissipative (non-equilibrium) processes is a challenge in supramolecular chemistry and a premise for the realization of artificial nanoscale motors. Here, we report the relative unidirectional transit of a non-symmetric molecular axle through a macrocycle powered solely by light. The molecular machine rectifies Brownian fluctuations by energy and information ratchet mechanisms and can repeat its working cycle under photostationary conditions. The system epitomizes the conceptual and practical elements forming the basis of autonomous light-powered directed motion with a minimalist molecular design.

  14. Synapse alterations in autism: Review of animal model findings.

    PubMed

    Zatkova, Martina; Bakos, Jan; Hodosy, Julius; Ostatnikova, Daniela

    2016-06-01

    Recent research has produced an explosion of experimental data on the complex neurobiological mechanisms of developmental disorders including autism. Animal models are one approach to studying the phenotypic features and molecular basis of autism. In this review, we describe progress in understanding synaptogenesis and alterations to this process with special emphasis on the cell adhesion molecules and scaffolding proteins implicated in autism. Genetic mouse model experiments are discussed in relation to alterations to selected synaptic proteins and consequent behavioral deficits measured in animal experiments. Pubmed databases were used to search for original and review articles on animal and human clinical studies on autism. The cell adhesion molecules, neurexin, neurolignin and the Shank family of proteins are important molecular targets associated with autism. The heterogeneity of the autism spectrum of disorders limits interpretation of information acquired from any single animal model or animal test. We showed synapse-specific/ model-specific defects associated with a given genotype in these models. Characterization of mouse models with genetic variations may help study the mechanisms of autism in humans. However, it will be necessary to apply new analytic paradigms in using genetically modified mice for understanding autism etiology in humans. Further studies are needed to create animal models with mutations that match the molecular and neural bases of autism.

  15. Electronic properties of a molecular system with Platinum

    NASA Astrophysics Data System (ADS)

    Ojeda, J. H.; Medina, F. G.; Becerra-Alonso, David

    2017-10-01

    The electronic properties are studied using a finite homogeneous molecule called Trans-platinum-linked oligo(tetraethenylethenes). This system is composed of individual molecules such as benzene rings, platinum, Phosphore and Sulfur. The mechanism for the study of the electron transport through this system is based on placing the molecule between metal contacts to control the current through the molecular system. We study this molecule based on the tight-binding approach for the calculation of the transport properties using the Landauer-Büttiker formalism and the Fischer-Lee relationship, based on a semi-analytic Green's function method within a real-space renormalization approach. Our results show a significant agreement with experimental measurements.

  16. Preface - From molecules to molecular materials, biological molecular systems and nanostructures: A collection of contributions presented at the XIIIth International Conference on Molecular Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ratajczak, Henryk; Drozd, Marek; Fausto, Rui

    2016-12-01

    This volume contains a series of selected contributions presented at the XIIIth International Conference on Molecular Spectroscopy (ICMS): "From Molecules to Molecular Materials, Biological Molecular Systems and Nanostructures" held in Wrocław, Poland, 9-12 September 2015, under the auspices of the Mayor of Wrocław and the European Academy of Sciences, Arts and Humanities. Wrocław was chosen not accidentally as venue for the conference. With more than a thousand years of history, Wrocław is the location of one of the oldest universities in Central Europe. Being a place where education and science play major roles in the daily life of its inhabitants, Wrocław is also a privileged center for spectroscopy in Poland.

  17. Acute systemic rapamycin induces neurobehavioral alterations in rats.

    PubMed

    Hadamitzky, Martin; Herring, Arne; Keyvani, Kathy; Doenlen, Raphael; Krügel, Ute; Bösche, Katharina; Orlowski, Kathrin; Engler, Harald; Schedlowski, Manfred

    2014-10-15

    Rapamycin is a drug with antiproliferative and immunosuppressive properties, widely used for prevention of acute graft rejection and cancer therapy. It specifically inhibits the activity of the mammalian target of rapamycin (mTOR), a protein kinase known to play an important role in cell growth, proliferation and antibody production. Clinical observations show that patients undergoing therapy with immunosuppressive drugs frequently suffer from affective disorders such as anxiety or depression. However, whether these symptoms are attributed to the action of the distinct compounds remains rather elusive. The present study investigated in rats neurobehavioral consequences of acute rapamycin treatment. Systemic administration of a single low dose rapamycin (3mg/kg) led to enhanced neuronal activity in the amygdala analyzed by intracerebral electroencephalography and FOS protein expression 90min after drug injection. Moreover, behavioral investigations revealed a rapamycin-induced increase in anxiety-related behaviors in the elevated plus-maze and in the open-field. The behavioral alterations correlated to enhanced amygdaloid expression of KLK8 and FKBP51, proteins that have been implicated in the development of anxiety and depression. Together, these results demonstrate that acute blockade of mTOR signaling by acute rapamycin administration not only causes changes in neuronal activity, but also leads to elevated protein expression in protein kinase pathways others than mTOR, contributing to the development of anxiety-like behavior. Given the pivotal role of the amygdala in mood regulation, associative learning, and modulation of cognitive functions, our findings raise the question whether therapy with rapamycin may induce alterations in patients neuropsychological functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    PubMed

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems.

    PubMed

    Tanaka, Shigenori; Mochizuki, Yuji; Komeiji, Yuto; Okiyama, Yoshio; Fukuzawa, Kaori

    2014-06-14

    Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.

  20. MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations.

    PubMed

    Ohmura, Itta; Morimoto, Gentaro; Ohno, Yousuke; Hasegawa, Aki; Taiji, Makoto

    2014-08-06

    We are developing the MDGRAPE-4, a special-purpose computer system for molecular dynamics (MD) simulations. MDGRAPE-4 is designed to achieve strong scalability for protein MD simulations through the integration of general-purpose cores, dedicated pipelines, memory banks and network interfaces (NIFs) to create a system on chip (SoC). Each SoC has 64 dedicated pipelines that are used for non-bonded force calculations and run at 0.8 GHz. Additionally, it has 65 Tensilica Xtensa LX cores with single-precision floating-point units that are used for other calculations and run at 0.6 GHz. At peak performance levels, each SoC can evaluate 51.2 G interactions per second. It also has 1.8 MB of embedded shared memory banks and six network units with a peak bandwidth of 7.2 GB s(-1) for the three-dimensional torus network. The system consists of 512 (8×8×8) SoCs in total, which are mounted on 64 node modules with eight SoCs. The optical transmitters/receivers are used for internode communication. The expected maximum power consumption is 50 kW. While MDGRAPE-4 software has still been improved, we plan to run MD simulations on MDGRAPE-4 in 2014. The MDGRAPE-4 system will enable long-time molecular dynamics simulations of small systems. It is also useful for multiscale molecular simulations where the particle simulation parts often become bottlenecks.

  1. MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations

    PubMed Central

    Ohmura, Itta; Morimoto, Gentaro; Ohno, Yousuke; Hasegawa, Aki; Taiji, Makoto

    2014-01-01

    We are developing the MDGRAPE-4, a special-purpose computer system for molecular dynamics (MD) simulations. MDGRAPE-4 is designed to achieve strong scalability for protein MD simulations through the integration of general-purpose cores, dedicated pipelines, memory banks and network interfaces (NIFs) to create a system on chip (SoC). Each SoC has 64 dedicated pipelines that are used for non-bonded force calculations and run at 0.8 GHz. Additionally, it has 65 Tensilica Xtensa LX cores with single-precision floating-point units that are used for other calculations and run at 0.6 GHz. At peak performance levels, each SoC can evaluate 51.2 G interactions per second. It also has 1.8 MB of embedded shared memory banks and six network units with a peak bandwidth of 7.2 GB s−1 for the three-dimensional torus network. The system consists of 512 (8×8×8) SoCs in total, which are mounted on 64 node modules with eight SoCs. The optical transmitters/receivers are used for internode communication. The expected maximum power consumption is 50 kW. While MDGRAPE-4 software has still been improved, we plan to run MD simulations on MDGRAPE-4 in 2014. The MDGRAPE-4 system will enable long-time molecular dynamics simulations of small systems. It is also useful for multiscale molecular simulations where the particle simulation parts often become bottlenecks. PMID:24982255

  2. Molecular and Histological Changes in Post-Treatment Biopsies of Non-Squamous Non-Small Cell Lung Cancer: A Retrospective Study.

    PubMed

    Vatrano, S; Righi, L; Vavalá, T; Rapa, I; Busso, M; Izzo, S; Cappia, S; Veltri, A; Papotti, M; Scagliotti, G V; Novello, S

    2016-04-01

    Recently, in advanced non-small cell lung cancer (NSCLC), standard chemotherapy was flanked by biological agents directed against genomic abnormalities, including EGFR and ALK alterations, that significantly improved patient outcome. Despite these achievements, tumour progression almost always occurs and a reassessment of the tumour genetic profile may contribute to modulating the therapeutic regimen. Resampling may provide tissue for additional tests to detect acquired resistance and/or new genetic alterations, but the currently available information is limited. Histological and genetic reassessments of biopsy or surgical tissue samples from 50 non-squamous NSCLC patients before and after at least one systemic treatment were performed. EGFR, KRAS, BRAF, PIK3CA and HER2 mutations were sequenced, p.T790M was identified with real-time PCR, and ALK and MET genomic alterations by fluorescence in situ hybridization. Overall in baseline biopsies, 37/50 (74 %) tumours had genetic alterations, either single (52 %) or multiple (22 %). Among them, 16 were EGFR mutations and 6 ALK rearrangements. In the second tissue sampling, 54 % of cases had additional genomic changes, including newly acquired alterations (81 %) or losses (18 %). The commonest changes were MET amplification and p.T790M mutation. One case had a histological shift from adenocarcinoma to small cell carcinoma. The remarkable number of molecular changes following systemic therapy and the genetic complexity of some cases underline the value of histological and molecular re-evaluation of lung cancer to tailor the most appropriate therapy during disease progression.

  3. Receptor-mediated signalling in plants: molecular patterns and programmes

    PubMed Central

    Tör, Mahmut; Lotze, Michael T.; Holton, Nicholas

    2009-01-01

    A highly evolved surveillance system in plants is able to detect a broad range of signals originating from pathogens, damaged tissues, or altered developmental processes, initiating sophisticated molecular mechanisms that result in defence, wound healing, and development. Microbe-associated molecular pattern molecules (MAMPs), damage-associated molecular pattern molecules (DAMPs), virulence factors, secreted proteins, and processed peptides can be recognized directly or indirectly by this surveillance system. Nucleotide binding-leucine rich repeat proteins (NB-LRR) are intracellular receptors and have been targeted by breeders for decades to elicit resistance to crop pathogens in the field. Receptor-like kinases (RLKs) or receptor like proteins (RLPs) are membrane bound signalling molecules with an extracellular receptor domain. They provide an early warning system for the presence of potential pathogens and activate protective immune signalling in plants. In addition, they act as a signal amplifier in the case of tissue damage, establishing symbiotic relationships and effecting developmental processes. The identification of several important ligands for the RLK-type receptors provided an opportunity to understand how plants differentiate, how they distinguish beneficial and detrimental stimuli, and how they co-ordinate the role of various types of receptors under varying environmental conditions. The diverse roles of extra-and intracellular plant receptors are examined here and the recent findings on how they promote defence and development is reviewed. PMID:19628572

  4. Ursodeoxycholic acid alleviates cholestasis-induced histophysiological alterations in the male reproductive system of bile duct-ligated rats.

    PubMed

    Saad, Ramadan A; Mahmoud, Yomna I

    2014-12-01

    Ursodeoxycholic acid is the most widely used drug for treating cholestatic liver diseases. However, its effect on the male reproductive system alterations associated with cholestasis has never been studied. Thus, this study aimed to investigate the effect of ursodeoxycholic acid on cholestasis-induced alterations in the male reproductive system. Cholestasis was induced by bile duct ligation. Bile duct-ligated rats had higher cholestasis biomarkers and lower levels of testosterone, LH and FSH than did the Sham rats. They also had lower reproductive organs weights, and lower sperm motility, density and normal morphology than those of Sham rats. Histologically, these animals suffered from testicular tubular atrophy, interstitial edema, thickening of basement membranes, vacuolation, and depletion of germ cells. After ursodeoxycholic acid administration, cholestasis-induced structural and functional alterations were significantly ameliorated. In conclusion, ursodeoxycholic acid can ameliorate the reproductive complications of chronic cholestasis in male patients, which represents an additional benefit to this drug. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Estradiol therapy in adulthood reverses glial and neuronal alterations caused by perinatal asphyxia.

    PubMed

    Saraceno, Gustavo Ezequiel; Bertolino, María Laura Aón; Galeano, Pablo; Romero, Juan Ignacio; Garcia-Segura, Luis Miguel; Capani, Francisco

    2010-06-01

    The capacity of the ovarian hormone 17beta-estradiol to prevent neurodegeneration has been characterized in several animal models of brain and spinal cord pathology. However, the potential reparative activity of the hormone under chronic neurodegenerative conditions has received less attention. In this study we have assessed the effect of estradiol therapy in adulthood on chronic glial and neuronal alterations caused by perinatal asphyxia (PA) in rats. Four-month-old male Sprague-Dawley rats submitted to PA just after delivery, and their control littermates, were injected for 3 consecutive days with 17beta estradiol or vehicle. Animals subjected to PA and treated with vehicle showed an increased astrogliosis, focal swelling and fragmented appearance of MAP-2 immunoreactive dendrites, decreased MAP-2 immunoreactivity and decreased phosphorylation of high and medium molecular weight neurofilaments in the hippocampus, compared to control animals. Estradiol therapy reversed these alterations. These findings indicate that estradiol is able to reduce, in adult animals, chronic reactive astrogliosis and neuronal alterations caused by an early developmental neurodegenerative event, suggesting that the hormone might induce reparative actions in the Central Nervous System (CNS). Copyright (c) 2009 Elsevier Inc. All rights reserved.

  6. Alteration of biomacromolecule in corn by steam flaking in relation to biodegradation kinetics in ruminant, revealed with vibrational molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Ningning; Liu, Jianxin; Yu, Peiqiang

    2018-02-01

    Large scale of steam flaked corn has been used in dairy ration to maintain high milk production level. This study aimed to determine effects of steam flaking on processing-induced intrinsic molecular structure changes that were associated with rumen degradation kinetics and nutrients supply. The advanced vibrational molecular spectroscopy was applied to reveal the processing-induced intrinsic structure changes on a molecular basis. The rumen degradation kinetics and nutrient supply were determined using in situ approach in ruminant livestock system. Raw corn grain (RC) and steam flaked corn grain (SFC) were obtained from two different processing plants. The results showed that (1) Compared to RC, SFC had greater truly digestible non-fiber carbohydrate [tdNFC: 86.8 versus 78.0% dry matter (DM)], but lower truly digestible crude protein [tdCP: 7.7 versus 9.0% DM]. (2) The steam flaking increased (P < 0.01) rumen degradable DM (RDDM) and starch (RDSt), but decreased (P < 0.01) rumen degradable protein (RDP). (3) Molecular absorbance intensities of most carbohydrate biopolymers were greater in SFC (P < 0.01), but protein amides associated molecular spectral intensities were lower (P < 0.01) in SFC. (4). The molecular structure and nutrient interactive study showed that carbohydrate spectral intensities were positively (P < 0.10) associated with RDDM and RDSt and protein amide spectral intensities were positively (P < 0.10) associated with RDP. This results indicated that the steam flaking induced molecular structure changes had an interactive relationship with rumen degradation kinetics.

  7. Molecular Mechanisms of Ethanol-associated Oro-esophageal Squamous Cell Carcinoma

    PubMed Central

    Liu, Yao; Chen, Hao; Sun, Zheng; Chen, Xiaoxin

    2016-01-01

    Alcohol drinking is a major etiological factor of oro-esophageal squamous cell carcinoma (OESCC). Both local and systemic effects of ethanol may promote carcinogenesis, especially among chronic alcoholics. However, molecular mechanisms of ethanol-associated OESCC are still not well understood. In this review, we summarize current understandings and propose three mechanisms of ethanol-associated OESCC: (1) Disturbance of systemic metabolism of nutrients: during ethanol metabolism in the liver, systemic metabolism of retinoids, zinc, iron and methyl groups is altered. These nutrients are known to be associated with the development of OESCC. (2) Disturbance of redox metabolism in squamous epithelial cells: when ethanol is metabolized in oro-esophageal squamous epithelial cells, reactive oxygen species are generated and produce oxidative damage. Meanwhile, ethanol may also disturb fatty-acid metabolism in these cells. (3) Disturbance of signaling pathways in squamous epithelial cells: due to its physico-chemical properties, ethanol changes cell membrane fluidity and shape, and may thus impact multiple signaling pathways. Advanced molecular techniques in genomics, epigenomics, metabolomics and microbiomics will help us elucidate how ethanol promotes OESCC. PMID:25766659

  8. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    PubMed

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron.

  9. Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus.

    PubMed

    Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2017-08-01

    Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.

  10. Alterations in gut transport of minerals and in binding proteins during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.

    1984-01-01

    The structural components of the skeleton develop and are maintained in a 1 g environment, shaped by the mechanical load to which they are constantly exposed. Altering such a mechanical load by reducing the gravitational force imposed on the system, as in space flight, has profound effects on the skeleton and permits an exploration of the molecular events which regulate normal skeletal homeostasis. The objective was to determine whether simulated weightlessness reduced intestinal calcium transport, and if so, to determine the molecular mechanisms for such an effect. A nonstressful tail suspension in which the rats gained weight normally while suspended was used to simulate weightlessness. A significant change in intestinal calcium transport was not demonstrated. However, a cyclic change in bone formation with suspension was shown. Based on these observations, the objective changed to determination of the hormonal regulation of bone formation during simulated weightlessness.

  11. Articular Joint Lubricants during Osteoarthritis and Rheumatoid Arthritis Display Altered Levels and Molecular Species

    PubMed Central

    Liebisch, Gerhard; Zhang, Ruiyan; Siebert, Hans-Christian; Wilhelm, Jochen; Kaesser, Ulrich; Dettmeyer, Reinhard B.; Klein, Heiko; Ishaque, Bernd; Rickert, Markus; Schmitz, Gerd; Schmidt, Tannin A.; Steinmeyer, Juergen

    2015-01-01

    Background Hyaluronic acid (HA), lubricin, and phospholipid species (PLs) contribute independently or together to the boundary lubrication of articular joints that is provided by synovial fluid (SF). Our study is the first reporting quantitative data about the molecular weight (MW) forms of HA, lubricin, and PLs in SF from cohorts of healthy donors, patients with early (eOA)- or late (lOA)-stage osteoarthritis (OA), and patients with active rheumatoid arthritis (RA). Methods We used human SF from unaffected controls, eOA, lOA, and RA. HA and lubricin levels were measured by enzyme-linked immunosorbent assay. PLs was quantified by electrospray ionization tandem mass spectrometry. Fatty acids (FAs) were analyzed by gas chromatography, coupled with mass spectrometry. The MW distribution of HA was determined by agarose gel electrophoresis. Results Compared with control SF, the concentrations of HA and lubricin were lower in OA and RA SF, whereas those of PLs were higher in OA and RA SF. Moreover, the MW distribution of HA shifted toward the lower ranges in OA and RA SF. We noted distinct alterations between cohorts in the relative distribution of PLs and the degree of FA saturation and chain lengths of FAs. Conclusions The levels, composition, and MW distribution of all currently known lubricants in SF—HA, lubricin, PLs—vary with joint disease and stage of OA. Our study is the first delivering a comprehensive view about all joint lubricants during health and widespread joint diseases. Thus, we provide the framework to develop new optimal compounded lubricants to reduce joint destruction. PMID:25933137

  12. 75 FR 60468 - Privacy Act of 1974; Report of an Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... Secretary for the purpose of evaluating the administration, process, or outcomes of the National Vaccine... Administration (HRSA) is proposing to alter the system of records for the National Vaccine Injury Compensation Program, 09-15-0056. In accordance with the National Childhood Vaccine Injury Act of 1986, as amended (42...

  13. Chemo brain or tumor brain - that is the question: the presence of extracranial tumors profoundly affects molecular processes in the prefrontal cortex of TumorGraft mice

    PubMed Central

    Kovalchuk, Anna; Ilnytskyy, Yaroslav; Rodriguez-Juarez, Rocio; Shpyleva, Svitlana; Melnyk, Stepan; Pogribny, Igor; Katz, Amanda; Sidransky, David; Kovalchuk, Olga; Kolb, Bryan

    2017-01-01

    Cancer chemotherapy causes numerous persistent central nervous system complications. This condition is known as chemo brain. Cognitive impairments occur even before treatment, and hence are referred to as cancer associated cognitive changes, or tumor brain. There is much yet to be learned about the mechanisms of both chemo brain and tumor brain. The frequency and timing of chemo brain and tumor brain occurrence and persistence strongly suggest they may be epigenetic in nature and associated with altered gene expression. Here we used TumorGraftTM models wherein part of a patient's tumor is removed and grafted into immune-deficient mice and conducted global gene expression and DNA methylation analysis. We show that malignant non-central nervous system tumor growth causes profound molecular alterations in the brain. Mice harbouring triple negative or progesterone positive breast cancer TumorGrafts exhibited altered gene expression, decreased levels of DNA methylation, increased levels of DNA hydroxymethylation, and oxidative stress in the prefrontal cortex. Interestingly, chemotherapy did not have any additional synergistic effects on the analyzed processes. The molecular changes observed in this study are known signs of neurodegeneration and brain aging. This study provides an important roadmap for future large-scale analysis of the molecular and cellular mechanisms of tumor brain. PMID:28758896

  14. Preparation of Low Molecular Weight Heparin by Microwave Discharge Electrodeless Lamp/TiO2 Photo-Catalytic Reaction.

    PubMed

    Lee, Do-Jin; Kim, Byung Hoon; Kim, Sun-Jae; Kim, Jung-Sik; Lee, Heon; Jung, Sang-Chul

    2015-01-01

    An MDEL/TiO2 photo-catalyst hybrid system was applied, for the first time, for the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing microwave intensity and treatment time. The abscission of the chemical bonds between the constituents of heparin by photo-catalytic reaction did not alter the characteristics of heparin. Formation of by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the MDEL/TiO2 photo-chemical reaction.

  15. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables.

    PubMed

    Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino

    2013-12-07

    Collective variables (CVs) are low-dimensional representations of the state of a complex system, which help us rationalize molecular conformations and sample free energy landscapes with molecular dynamics simulations. Given their importance, there is need for systematic methods that effectively identify CVs for complex systems. In recent years, nonlinear manifold learning has shown its ability to automatically characterize molecular collective behavior. Unfortunately, these methods fail to provide a differentiable function mapping high-dimensional configurations to their low-dimensional representation, as required in enhanced sampling methods. We introduce a methodology that, starting from an ensemble representative of molecular flexibility, builds smooth and nonlinear data-driven collective variables (SandCV) from the output of nonlinear manifold learning algorithms. We demonstrate the method with a standard benchmark molecule, alanine dipeptide, and show how it can be non-intrusively combined with off-the-shelf enhanced sampling methods, here the adaptive biasing force method. We illustrate how enhanced sampling simulations with SandCV can explore regions that were poorly sampled in the original molecular ensemble. We further explore the transferability of SandCV from a simpler system, alanine dipeptide in vacuum, to a more complex system, alanine dipeptide in explicit water.

  16. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables

    NASA Astrophysics Data System (ADS)

    Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino

    2013-12-01

    Collective variables (CVs) are low-dimensional representations of the state of a complex system, which help us rationalize molecular conformations and sample free energy landscapes with molecular dynamics simulations. Given their importance, there is need for systematic methods that effectively identify CVs for complex systems. In recent years, nonlinear manifold learning has shown its ability to automatically characterize molecular collective behavior. Unfortunately, these methods fail to provide a differentiable function mapping high-dimensional configurations to their low-dimensional representation, as required in enhanced sampling methods. We introduce a methodology that, starting from an ensemble representative of molecular flexibility, builds smooth and nonlinear data-driven collective variables (SandCV) from the output of nonlinear manifold learning algorithms. We demonstrate the method with a standard benchmark molecule, alanine dipeptide, and show how it can be non-intrusively combined with off-the-shelf enhanced sampling methods, here the adaptive biasing force method. We illustrate how enhanced sampling simulations with SandCV can explore regions that were poorly sampled in the original molecular ensemble. We further explore the transferability of SandCV from a simpler system, alanine dipeptide in vacuum, to a more complex system, alanine dipeptide in explicit water.

  17. Early fear memory defects are associated with altered synaptic plasticity and molecular architecture in the TgCRND8 Alzheimer's disease mouse model.

    PubMed

    Steele, John W; Brautigam, Hannah; Short, Jennifer A; Sowa, Allison; Shi, Mengxi; Yadav, Aniruddha; Weaver, Christina M; Westaway, David; Fraser, Paul E; St George-Hyslop, Peter H; Gandy, Sam; Hof, Patrick R; Dickstein, Dara L

    2014-07-01

    Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cognitive status and assessment of amyloid burden, gliosis, and molecular pathology during disease progression. Here we sought to understand the behavioral, cellular, ultrastructural, and molecular changes that occur at a pathological stage equivalent to the early stages of human AD. We studied the TgCRND8 mouse, a model of aggressive AD amyloidosis, at an early stage of plaque pathology (3 months of age) in comparison to their wildtype littermates and assessed changes in cognition, neuron and spine structure, and expression of synaptic glutamate receptor proteins. We found that, at this age, TgCRND8 mice display substantial plaque deposition in the neocortex and hippocampus and impairment on cued and contextual memory tasks. Of particular interest, we also observed a significant decrease in the number of neurons in the hippocampus. Furthermore, analysis of CA1 neurons revealed significant changes in apical and basal dendritic spine types, as well as altered expression of GluN1 and GluA2 receptors. This change in molecular architecture within the hippocampus may reflect a rising representation of inherently less stable thin spine populations, which can cause cognitive decline. These changes, taken together with toxic insults from amyloid-β protein, may underlie the observed neuronal loss. Copyright © 2014 Wiley Periodicals, Inc.

  18. [Selective alteration of the declarative memory systems in patients treated with a high number of electroconvulsive therapy sessions].

    PubMed

    Rami-González, L; Boget-Llucià, T; Bernardo, M; Marcos, T; Cañizares-Alejos, S; Penadés, R; Portella, M J; Castelví, M; Raspall, T; Salamero, M

    The reversible electrochemical effects of electroconvulsive therapy (ECT) on specific areas of the brain enable the neuroanatomical bases of some cognitive functions to be studied. In research carried out on memory systems, a selective alteration of the declarative ones has been observed after treatment with ECT. Little work has been done to explore the differential alteration of the memory subsystems in patients with a high number of ECT sessions. AIM. To study the declarative and non declarative memory system in psychiatric patients submitted to maintenance ECT treatment, with a high number of previous ECT sessions. 20 patients submitted to treatment with ECT (10 diagnosed as having depression and 10 with schizophrenia) and 20 controls, who were paired by age, sex and psychopathological diagnosis. For the evaluation of the declarative memory system, the Wechsler Memory Scale (WMS) logical memory test was used. The Hanoi Tower procedural test was employed to evaluate the non declarative system. Patients treated with ECT performed worse in the WMS logical memory test, but this was only significant in patients diagnosed as suffering from depression. No significant differences were observed in the Hanoi Tower test. A selective alteration of the declarative systems was observed in patients who had been treated with a high number of ECT sessions, while the non declarative memory systems remain unaffected.

  19. Characterization of a Viral Synergism in the Monocot Brachypodium distachyon Reveals Distinctly Altered Host Molecular Processes Associated with Disease1[C][W][OA

    PubMed Central

    Mandadi, Kranthi K.; Scholthof, Karen-Beth G.

    2012-01-01

    Panicum mosaic virus (PMV) and its satellite virus (SPMV) together infect several small grain crops, biofuel, and forage and turf grasses. Here, we establish the emerging monocot model Brachypodium (Brachypodium distachyon) as an alternate host to study PMV- and SPMV-host interactions and viral synergism. Infection of Brachypodium with PMV+SPMV induced chlorosis and necrosis of leaves, reduced seed set, caused stunting, and lowered biomass, more than PMV alone. Toward gaining a molecular understanding of PMV- and SPMV-affected host processes, we used a custom-designed microarray and analyzed global changes in gene expression of PMV- and PMV+SPMV-infected plants. PMV infection by itself modulated expression of putative genes functioning in carbon metabolism, photosynthesis, metabolite transport, protein modification, cell wall remodeling, and cell death. Many of these genes were additively altered in a coinfection with PMV+SPMV and correlated to the exacerbated symptoms of PMV+SPMV coinfected plants. PMV+SPMV coinfection also uniquely altered expression of certain genes, including transcription and splicing factors. Among the host defenses commonly affected in PMV and PMV+SPMV coinfections, expression of an antiviral RNA silencing component, SILENCING DEFECTIVE3, was suppressed. Several salicylic acid signaling components, such as pathogenesis-related genes and WRKY transcription factors, were up-regulated. By contrast, several genes in jasmonic acid and ethylene responses were down-regulated. Strikingly, numerous protein kinases, including several classes of receptor-like kinases, were misexpressed. Taken together, our results identified distinctly altered immune responses in monocot antiviral defenses and provide insights into monocot viral synergism. PMID:22961132

  20. A Study of Olivine Alteration to Iddingsite Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kuebler, K. E.; Wang, Alian; Haskin, L. A.; Jolliff, B. L.

    2003-01-01

    A crucial task of Mars surface science is to determine past environmental conditions, especially aqueous environments and their nature. Identification of mineral alteration by water is one way to do this. Recent work interprets TES spectra as indicating altered basalt on Mars. Olivine, a primary basaltic mineral, is easily altered by aqueous solutions. Alteration assemblages of olivine may be specific to deuteric, hydrothermal, surface water, or metamorphic environments. Raman spectra are produced by molecular vibrations and provide direct means for studying and identifying alteration products. Here, we present a combined study of changes in the chemical composition and Raman spectra of an olivine as it alters to iddingsite. Iddingsite is found in some SNC meteorites and is presumably present on Mars. The term 'iddingsite' has been used as a catch-all term to describe reddish alteration products of olivine, although some authors ascribe a narrower definition: an angstrom-scale intergrowth of goethite and smectite (presumably saponite) formed in an oxidizing and fluid-rich environment. Alteration conserves Fe (albeit oxidized) but requires addition of Al and H2O and removal of Mg and Si. The smectite that forms may be removed by continued alteration. Dehydration of the goethite forms hematite. Our purpose is to study the mineral assemblage, determine the structural and chemical variability of the components with respect to the degree of alteration, and to find spectral indicators of alteration that will be useful during in-situ analyses on Mars.

  1. Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.

    PubMed

    Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R

    2017-07-01

    Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1  week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.

  2. Combined Molecular Algorithms for the Generation, Equilibration and Topological Analysis of Entangled Polymers: Methodology and Performance

    PubMed Central

    Karayiannis, Nikos Ch.; Kröger, Martin

    2009-01-01

    We review the methodology, algorithmic implementation and performance characteristics of a hierarchical modeling scheme for the generation, equilibration and topological analysis of polymer systems at various levels of molecular description: from atomistic polyethylene samples to random packings of freely-jointed chains of tangent hard spheres of uniform size. Our analysis focuses on hitherto less discussed algorithmic details of the implementation of both, the Monte Carlo (MC) procedure for the system generation and equilibration, and a postprocessing step, where we identify the underlying topological structure of the simulated systems in the form of primitive paths. In order to demonstrate our arguments, we study how molecular length and packing density (volume fraction) affect the performance of the MC scheme built around chain-connectivity altering moves. In parallel, we quantify the effect of finite system size, of polydispersity, and of the definition of the number of entanglements (and related entanglement molecular weight) on the results about the primitive path network. Along these lines we approve main concepts which had been previously proposed in the literature. PMID:20087477

  3. 75 FR 34755 - Privacy Act; Proposed Alteration to Existing Systems of Records, Single Family Mortgage Asset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... increase in the number of records maintained by the system. These alterations do not impact the scope...-sponsored database that makes a federal debtor's delinquency and claim information available to federal...

  4. Water in the Early Solar System: Infrared Studies of Aqueously Altered and Minimally Processed Asteroids

    NASA Astrophysics Data System (ADS)

    McAdam, Margaret M.

    This thesis investigates connections between low albedo asteroids and carbonaceous chondrite meteorites using spectroscopy. Meteorites and asteroids preserve information about the early solar system including accretion processes and parent body processes active on asteroids at these early times. One process of interest is aqueous alteration. This is the chemical reaction between coaccreted water and silicates producing hydrated minerals. Some carbonaceous chondrites have experienced extensive interactions with water through this process. Since these meteorites and their parent bodies formed close to the beginning of the Solar System, these asteroids and meteorites may provide clues to the distribution, abundance and timing of water in the Solar nebula at these times. Chapter 2 of this thesis investigates the relationships between extensively aqueously altered meteorites and their visible, near and mid-infrared spectral features in a coordinated spectral-mineralogical study. Aqueous alteration is a parent body process where initially accreted anhydrous minerals are converted into hydrated minerals in the presence of coaccreted water. Using samples of meteorites with known bulk properties, it is possible to directly connect changes in mineralogy caused by aqueous alteration with spectral features. Spectral features in the mid-infrared are found to change continuously with increasing amount of hydrated minerals or degree of alteration. Building on this result, the degrees of alteration of asteroids are estimated in a survey of new asteroid data obtained from SOFIA and IRTF as well as archived the Spitzer Space Telescope data. 75 observations of 73 asteroids are analyzed and presented in Chapter 4. Asteroids with hydrated minerals are found throughout the main belt indicating that significant ice must have been present in the disk at the time of carbonaceous asteroid accretion. Finally, some carbonaceous chondrite meteorites preserve amorphous iron-bearing materials

  5. Applying phylogenetic analysis to viral livestock diseases: moving beyond molecular typing.

    PubMed

    Olvera, Alex; Busquets, Núria; Cortey, Marti; de Deus, Nilsa; Ganges, Llilianne; Núñez, José Ignacio; Peralta, Bibiana; Toskano, Jennifer; Dolz, Roser

    2010-05-01

    Changes in livestock production systems in recent years have altered the presentation of many diseases resulting in the need for more sophisticated control measures. At the same time, new molecular assays have been developed to support the diagnosis of animal viral disease. Nucleotide sequences generated by these diagnostic techniques can be used in phylogenetic analysis to infer phenotypes by sequence homology and to perform molecular epidemiology studies. In this review, some key elements of phylogenetic analysis are highlighted, such as the selection of the appropriate neutral phylogenetic marker, the proper phylogenetic method and different techniques to test the reliability of the resulting tree. Examples are given of current and future applications of phylogenetic reconstructions in viral livestock diseases. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis.

    PubMed

    Gu, Jinping; Hu, Xiaomin; Shao, Wei; Ji, Tianhai; Yang, Wensheng; Zhuo, Huiqin; Jin, Zeyu; Huang, Huiying; Chen, Jiacheng; Huang, Caihua; Lin, Donghai

    2016-09-13

    Gastric cancer (GC) is one of the most malignant tumors with a poor prognosis. Alterations in metabolic pathways are inextricably linked to GC progression. However, the underlying molecular mechanisms remain elusive. We performed NMR-based metabolomic analysis of sera derived from a rat model of gastric carcinogenesis, revealed significantly altered metabolic pathways correlated with the progression of gastric carcinogenesis. Rats were histologically classified into four pathological groups (gastritis, GS; low-grade gastric dysplasia, LGD; high-grade gastric dysplasia, HGD; GC) and the normal control group (CON). The metabolic profiles of the five groups were clearly distinguished from each other. Furthermore, significant inter-metabolite correlations were extracted and used to reconstruct perturbed metabolic networks associated with the four pathological stages compared with the normal stage. Then, significantly altered metabolic pathways were identified by pathway analysis. Our results showed that oxidative stress-related metabolic pathways, choline phosphorylation and fatty acid degradation were continually disturbed during gastric carcinogenesis. Moreover, amino acid metabolism was perturbed dramatically in gastric dysplasia and GC. The GC stage showed more changed metabolite levels and more altered metabolic pathways. Two activated pathways (glycolysis; glycine, serine and threonine metabolism) substantially contributed to the metabolic alterations in GC. These results lay the basis for addressing the molecular mechanisms underlying gastric carcinogenesis and extend our understanding of GC progression.

  7. THE BIOCIDE TRIBUTYLTIN ALTERS TESTOSTERONE ESTERIFICATION IN MUD SNAILS (ILYANASSA OBSOLETA)

    EPA Science Inventory

    The Biocide Tributyltin Alters Testosterone Esterification in Mud Snails (Ilyanassa obsoleta)

    Meredith P. Gooding and Gerald A. LeBlanc
    Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633

    Tributyltin (TBT...

  8. [Research progress in molecular classification of gastric cancer].

    PubMed

    Zhou, Menglong; Li, Guichao; Zhang, Zhen

    2016-09-25

    Gastric cancer(GC) is a highly heterogeneous malignancy. The present widely used histopathological classifications have gradually failed to meet the needs of individualized diagnosis and treatment. Development of technologies such as microarray and next-generation sequencing (NGS) has allowed GC to be studied at the molecular level. Mechanisms about tumorigenesis and progression of GC can be elucidated in the aspects of gene mutations, chromosomal alterations, transcriptional and epigenetic changes, on the basis of which GC can be divided into several subtypes. The classifications of Tan's, Lei's, TCGA and ACRG are relatively comprehensive. Especially the TCGA and ACRG classifications have large sample size and abundant molecular profiling data, thus, the genomic characteristics of GC can be depicted more accurately. However, significant differences between both classifications still exist so that they cannot be substituted for each other. So far there is no widely accepted molecular classification of GC. Compared with TCGA classification, ACRG system may have more clinical significance in Chinese GC patients since the samples are mostly from Asian population and show better association with prognosis. The molecular classification of GC may provide the theoretical and experimental basis for early diagnosis, therapeutic efficacy prediction and treatment stratification while their clinical application is still limited. Future work should involve the application of molecular classifications in the clinical settings for improving the medical management of GC.

  9. Advances in the molecular genetics of gliomas - implications for classification and therapy.

    PubMed

    Reifenberger, Guido; Wirsching, Hans-Georg; Knobbe-Thomsen, Christiane B; Weller, Michael

    2017-07-01

    Genome-wide molecular-profiling studies have revealed the characteristic genetic alterations and epigenetic profiles associated with different types of gliomas. These molecular characteristics can be used to refine glioma classification, to improve prediction of patient outcomes, and to guide individualized treatment. Thus, the WHO Classification of Tumours of the Central Nervous System was revised in 2016 to incorporate molecular biomarkers - together with classic histological features - in an integrated diagnosis, in order to define distinct glioma entities as precisely as possible. This paradigm shift is markedly changing how glioma is diagnosed, and has important implications for future clinical trials and patient management in daily practice. Herein, we highlight the developments in our understanding of the molecular genetics of gliomas, and review the current landscape of clinically relevant molecular biomarkers for use in classification of the disease subtypes. Novel approaches to the genetic characterization of gliomas based on large-scale DNA-methylation profiling and next-generation sequencing are also discussed. In addition, we illustrate how advances in the molecular genetics of gliomas can promote the development and clinical translation of novel pathogenesis-based therapeutic approaches, thereby paving the way towards precision medicine in neuro-oncology.

  10. Long-term smoking alters abundance of over half of the proteome in bronchoalveolar lavage cell in smokers with normal spirometry, with effects on molecular pathways associated with COPD.

    PubMed

    Yang, Mingxing; Kohler, Maxie; Heyder, Tina; Forsslund, Helena; Garberg, Hilde K; Karimi, Reza; Grunewald, Johan; Berven, Frode S; Magnus Sköld, C; Wheelock, Åsa M

    2018-03-08

    Smoking represents a significant risk factor for many chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). To identify dysregulation of specific proteins and pathways in bronchoalveolar lavage (BAL) cells associated with smoking, isobaric tags for relative and absolute quantitation (iTRAQ)-based shotgun proteomics analyses were performed on BAL cells from healthy never-smokers and smokers with normal lung function from the Karolinska COSMIC cohort. Multivariate statistical modeling, multivariate correlations with clinical data, and pathway enrichment analysis were performed. Smoking exerted a significant impact on the BAL cell proteome, with more than 500 proteins representing 15 molecular pathways altered due to smoking. The majority of these alterations occurred in a gender-independent manner. The phagosomal- and leukocyte trans endothelial migration (LTM) pathways significantly correlated with FEV 1 /FVC as well as the percentage of CD8 + T-cells and CD8 + CD69 + T-cells in smokers. The correlations to clinical parameters in healthy never-smokers were minor. The significant correlations of proteins in the phagosome- and LTM pathways with activated cytotoxic T-cells (CD69+) and the level of airway obstruction (FEV 1 /FVC) in smokers, both hallmarks of COPD, suggests that these two pathways may play a role in the molecular events preceding the development of COPD in susceptible smokers. Both pathways were found to be further dysregulated in COPD patients from the same cohort, thereby providing further support to this hypothesis. Given that not all smokers develop COPD in spite of decades of smoking, it is also plausible that some of the molecular pathways associated with response to smoking exert protective mechanisms to smoking-related pathologies in resilient individuals. ClinicalTrials.gov identifier NCT02627872 ; Retrospectively registered on December 9, 2015.

  11. Short-term Hydropower Reservoir Operations in Chile's Central Interconnected System: Tradeoffs between Hydrologic Alteration and Economic Performance

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.

    2011-12-01

    Hydropower accounts for about 50% of the installed capacity in Chile's Central Interconnected System (CIS) and new developments are envisioned in the near future. Large projects involving reservoirs are perceived negatively by the general public. In terms of operations, hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and operations at each level affect different environmental processes. Due to its ability to quickly and inexpensively respond to short-term changes in demand, hydropower reservoirs often are operated to provide power during periods of peak demand. This operational scheme, known as hydropeaking, changes the hydrologic regime by altering the rate and frequency of changes in flow magnitude on short time scales. To mitigate impacts on downstream ecosystems, operational constraints -typically minimum instream flows and maximum ramping rates- are imposed on hydropower plants. These operational restrictions limit reduce operational flexibility and can reduce the economic value of energy generation by imposing additional costs on the operation of interconnected power systems. Methods to predict the degree of hydrologic alteration rely on statistical analyses of instream flow time series. Typically, studies on hydrologic alteration use historical operational records for comparison between pre- and post-dam conditions. Efforts to assess hydrologic alteration based on future operational schemes of reservoirs are scarce. This study couples two existing models: a mid-term operations planning and a short-term economic dispatch to simulate short-term hydropower reservoir operations under different future scenarios. Scenarios of possible future configurations of the Chilean CIS are defined with emphasis on the introduction of non-conventional renewables (particularly wind energy) and large hydropower projects in Patagonia. Both models try to reproduce the actual decision making process in the Chilean Central Interconnected System

  12. Squamous cell carcinoma variants of the upper aerodigestive tract: a comprehensive review with a focus on genetic alterations.

    PubMed

    Shah, Akeesha A; Jeffus, Susanne K; Stelow, Edward B

    2014-06-01

    Squamous cell carcinoma of the upper aerodigestive tract is a heterogenous entity. Although conventional squamous cell carcinomas are easily recognized, the morphologic variants of squamous cell carcinoma can present a diagnostic challenge. Familiarity with these variants is necessary because many are associated with unique risk factors and are characterized by specific molecular alterations (eg, nuclear protein in testis midline carcinomas). Perhaps the most important distinction is in identifying viral-related from nonviral-related carcinomas. The accurate diagnosis of these variants is necessary for prognostic and therapeutic reasons. To provide a clinicopathologic overview and summary of the molecular alterations of the common squamous cell carcinoma variants, including verrucous, spindle cell, acantholytic, adenosquamous, basaloid, and papillary squamous cell carcinoma, as well as nuclear protein in testis midline carcinoma, and to discuss the distinguishing features of human papillomavirus- and Epstein-Barr virus-related squamous cell carcinomas. Published peer-reviewed literature. Familiarity with squamous cell carcinoma variants is essential for proper diagnosis and to guide appropriate clinical management. Further insight into the molecular alterations underlying those variants may lead to alterations in existing treatment approaches and to evolution of novel treatment modalities.

  13. Does Aging Alter the Molecular Substrate of Ionotropic Neurotransmitter Receptors in the Rostral Ventral Lateral Medulla? - A Short Communication

    PubMed Central

    Pawar, Hitesh N.; Balivada, Sivasai; Kenney, Michael J.

    2017-01-01

    Aging alters sympathetic nervous system (SNS) regulation, although central mechanisms are not well understood. In young rats the rostral ventral lateral medulla (RVLM) is critically involved in central SNS regulation and RVLM neuronal activity is mediated by a balance of excitatory and inhibitory ionotropic neurotransmitters and receptors, providing the foundation for hypothesizing that with advanced age the molecular substrate of RVLM ionotropic receptors is characterized by upregulated excitatory and downregulated inhibitory receptor subunits. This hypothesis was tested by comparing the relative mRNA expression and protein concentration of RVLM excitatory (NMDA and AMPA) and inhibitory (GABA and glycinergic) ionotropic neurotransmitter receptor subunits in young and aged Fischer (F344) rats. Brains were removed from anesthetized rats and the RVLM-containing area was micropunched and extracted RNA and protein were subsequently used for TaqMan qRT-PCR gene expression and quantitative ELISA analyses. Bilateral chemical inactivation of RVLM neurons and peripheral ganglionic blockade on visceral sympathetic nerve discharge (SND) was determined in additional experiments. The relative gene expression of RVLM NMDA and AMPA glutamate-gated receptor subunits and protein concentration of select receptor subunits did not differ between young and aged rats, and there were no age-related differences in the expression of RVLM ionotropic GABAA and Gly receptors, or of protein concentration of select GABAA subunits. RVLM muscimol microinjections significantly reduced visceral SND by 70±2% in aged F344 rats. Collectively these findings from this short communication support a functional role for the RVLM in regulation of sympathetic nerve outflow in aged rats, but provide no evidence for an ionotropic RVLM receptor-centric framework explaining age-associated changes in SNS regulation. PMID:28263869

  14. Molecular dynamics simulations highlight structural and functional alterations in deafness-related M34T mutation of connexin 26.

    PubMed

    Zonta, Francesco; Buratto, Damiano; Cassini, Chiara; Bortolozzi, Mario; Mammano, Fabio

    2014-01-01

    Mutations of the GJB2 gene encoding the connexin 26 (Cx26) gap junction protein, which is widely expressed in the inner ear, are the primary cause of hereditary non-syndromic hearing loss in several populations. The deafness-associated single amino acid substitution of methionine 34 (M34) in the first transmembrane helix (TM1) with a threonine (T) ensues in the production of mutant Cx26M34T channels that are correctly synthesized and assembled in the plasma membrane. However, mutant channels overexpressed in HeLa cells retain only 11% of the wild type unitary conductance. Here we extend and rationalize those findings by comparing wild type Cx26 (Cx26WT) and Cx26M34T mutant channels in silico, using molecular dynamics simulations. Our results indicate that the quaternary structure of the Cx26M34T hemichannel is altered at the level of the pore funnel due to the disruption of the hydrophobic interaction between M34 and tryptophan 3 (W3) in the N-terminal helix (NTH). Our simulations also show that external force stimuli applied to the NTHs can detach them from the inner wall of the pore more readily in the mutant than in the wild type hemichannel. These structural alterations significantly increase the free energy barrier encountered by permeating ions, correspondingly decreasing the unitary conductance of the Cx26M34T hemichannel. Our results accord with the proposal that the mutant resides most of the time in a low conductance state. However, the small displacement of the NTHs in our Cx26M34T hemichannel model is not compatible with the formation of a pore plug as in the related Cx26M34A mutant.

  15. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging.

    PubMed

    Grammatikakis, Ioannis; Panda, Amaresh C; Abdelmohsen, Kotb; Gorospe, Myriam

    2014-12-01

    During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits.

  16. Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging

    PubMed Central

    Abdelmohsen, Kotb; Gorospe, Myriam

    2014-01-01

    During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits. PMID:25543668

  17. Organic molecules as chemical fossils - The molecular fossil record

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1983-01-01

    The study of biochemical clues to the early earth and the origin of life is discussed. The methods used in such investigation are described, including the extraction, fractionation, and analysis of geolipids and the analysis of kerogen. The occurrence of molecular fossils in the geological record is examined, discussing proposed precursor-product relationships and the molecular assessment of deep sea sediments, ancient sediments, and crude petroleums. Alterations in the molecular record due to diagenesis and catagenesis are considered, and the use of microbial lipids as molecular fossils is discussed. The results of searches for molecular fossils in Precambrian sediments are assessed.

  18. Alterations in tendon microenvironment in response to mechanical load: potential molecular targets for treatment strategies

    PubMed Central

    Fouda, Mohamed B; Thankam, Finosh G; Dilisio, Matthew F; Agrawal, Devendra K

    2017-01-01

    Rotator cuff (RC) tendons could beinflicted in many ways with an eventual outcome of pain, weakness and disability, which represent a large burden on health care cost. However, optimal healing, either conservatively or with surgical intervention, remains an issue that needs further investigation. Disorders of the RC tendons may result from external factors like trauma, or internal factors through physiologic and metabolic derangement. Most RC tendon disorders may be asymptomatic and may result from an over-activity of the inflicted shoulder and its tendons. Such tendon disorders are poorly diagnosed since patients do not seek medical attention until pain or weakness ensue. Immunological and biochemical events in RC disorders due to mechanical intolerance have not been investigated. Generally, the mechanical load drives normal physiological properties of the tendon. But, mechanical overload/burden exerts stress on tenocytes, and disrupts the tendon microenvironment by triggering a multitude of signaling pathways leading to extracellular matrix remodeling, disorganization, alteration in collagen composition and apoptosis. These events result in weak tendon which is highly susceptible to rupture or tear. In this article, we critically reviewed the intrinsic signaling pathways that are excessively triggered by continuous mechanical load and the counteracting physiological responses and associated derangements. The elucidation of the molecular events underlying mechanical stress-induced symptomatic/asymptomatic tendinopathy could provide information on potential target sites for translational application in the management of rotator cuff disorders. PMID:29118899

  19. Coarse muscovite veins and alteration deep in the Yerington batholith, Nevada: insights into fluid exsolution in the roots of porphyry copper systems

    NASA Astrophysics Data System (ADS)

    Runyon, Simone E.; Steele-MacInnis, Matthew; Seedorff, Eric; Lecumberri-Sanchez, Pilar; Mazdab, Frank K.

    2017-04-01

    Veins and pervasive wall-rock alteration composed of coarse muscovite±quartz±pyrite are documented for the first time in a porphyritic granite at Luhr Hill in the Yerington District, Nevada. Coarse muscovite at Luhr Hill occurs at paleodepths of 6-7 km in the roots of a porphyry copper system and crops out on the scale of tens to hundreds of meters, surrounded by rock that is unaltered or variably altered to sodic-calcic assemblages. Coarse muscovite veins exhibit a consistent orientation, subvertical and N-S striking, which structurally restores to subhorizontal at the time of formation. Along strike, coarse muscovite veins swell from distal, millimeter-thick muscovite-only veinlets to proximal, centimeter-thick quartz-sulfide-bearing muscovite veins. Crosscutting relationships between coarse muscovite veins, pegmatite dikes, and sodic-calcic veins indicate that muscovite veins are late-stage magmatic-hydrothermal features predating final solidification of the Luhr Hill porphyritic granite. Fluid inclusions in the muscovite-quartz veins are high-density aqueous inclusions of 3-9 wt% NaCl eq. and <1 mol% CO2 that homogenize between 150 and 200 °C, similar to fluid inclusions from greisen veins in Sn-W-Mo vein systems. Our results indicate that muscovite-forming fluids at Luhr Hill were mildly acidic, of low to moderate salinity and sulfur content and low CO2 content, and that muscovite in deep veins and alteration differs in texture, composition, and process of formation from sericite at shallower levels of the hydrothermal system. Although the definition of greisen is controversial, we suggest that coarse muscovite alteration is more similar to alteration in greisen-type Sn-W-Mo districts worldwide than to sericitic alteration at higher levels of porphyry copper systems. The fluids that form coarse muscovite veins and alteration in the roots of porphyry copper systems are distinct from fluids that formed copper ore or widespread, shallower, acidic alteration

  20. No neuronal loss, but alterations of the GDNF system in asymptomatic diverticulosis.

    PubMed

    Barrenschee, Martina; Wedel, Thilo; Lange, Christina; Hohmeier, Ines; Cossais, François; Ebsen, Michael; Vogel, Ilka; Böttner, Martina

    2017-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor known to promote the survival and maintenance of neurons not only in the developing but also in the adult enteric nervous system. As diverticular disease (DD) is associated with reduced myenteric neurons, alterations of the GDNF system were studied in asymptomatic diverticulosis (diverticulosis) and DD. Morphometric analysis for quantifying myenteric ganglia and neurons were assessed in colonic full-thickness sections of patients with diverticulosis and controls. Samples of tunica muscularis (TM) and laser-microdissected myenteric ganglia from patients with diverticulosis, DD and controls were analyzed for mRNA expression levels of GDNF, GFRA1, and RET by RT-qPCR. Myenteric protein expression of both receptors was quantified by fluorescence-immunohistochemistry of patients with diverticulosis, DD, and controls. Although no myenteric morphometric alterations were found in patients with diverticulosis, GDNF, GFRA1 and RET mRNA expression was down-regulated in the TM of patients with diverticulosis as well as DD. Furthermore GFRA1 and RET myenteric plexus mRNA expression of patients with diverticulosis and DD was down-regulated, whereas GDNF remained unaltered. Myenteric immunoreactivity of the receptors GFRα1 and RET was decreased in both asymptomatic diverticulosis and DD patients. Our data provide evidence for an impaired GDNF system at gene and protein level not only in DD but also during early stages of diverticula formation. Thus, the results strengthen the idea of a disturbed GDNF-responsiveness as contributive factor for a primary enteric neuropathy involved in the pathogenesis and disturbed intestinal motility observed in DD.

  1. Circadian molecular clock in lung pathophysiology

    PubMed Central

    Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.

    2015-01-01

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874

  2. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity.

    PubMed

    Tauber, Svantje; Lauber, Beatrice A; Paulsen, Katrin; Layer, Liliana E; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S; Ullrich, Oliver

    2017-01-01

    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non

  3. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity

    PubMed Central

    Tauber, Svantje; Lauber, Beatrice A.; Paulsen, Katrin; Layer, Liliana E.; Lehmann, Martin; Hauschild, Swantje; Shepherd, Naomi R.; Polzer, Jennifer; Segerer, Jürgen; Thiel, Cora S.

    2017-01-01

    The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC–TOF–MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface–bound fucose. The reduced ICAM-1 expression and the loss of cell surface–bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non

  4. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    PubMed Central

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  5. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    PubMed

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  6. 76 FR 4462 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... 1974; Report of Modified or Altered System of Records AGENCY: Office of Workforce and Career... that assistance. These records will be maintained by the Office of Workforce and Career Development... Human Services (HHS) Centers for Disease Control and Prevention (CDC) Office of Workforce and Career...

  7. 76 FR 4485 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Privacy Act of 1974; Report of Modified or Altered System of Records AGENCY: Division of Global Migration and... Infectious Diseases (CCID), Division of Global Migration and Quarantine, National Center for the Preparedness...

  8. Adrenocortical carcinoma: the dawn of a new era of genomic and molecular biology analysis.

    PubMed

    Armignacco, R; Cantini, G; Canu, L; Poli, G; Ercolino, T; Mannelli, M; Luconi, M

    2018-05-01

    Over the last decade, the development of novel and high penetrance genomic approaches to analyze biological samples has provided very new insights in the comprehension of the molecular biology and genetics of tumors. The use of these techniques, consisting of exome sequencing, transcriptome, miRNome, chromosome alteration, genome, and epigenome analysis, has also been successfully applied to adrenocortical carcinoma (ACC). In fact, the analysis of large cohorts of patients allowed the stratification of ACC with different patterns of molecular alterations, associated with different outcomes, thus providing a novel molecular classification of the malignancy to be associated with the classical pathological analysis. Improving our knowledge about ACC molecular features will result not only in a better diagnostic and prognostic accuracy, but also in the identification of more specific therapeutic targets for the development of more effective pharmacological anti-cancer approaches. In particular, the specific molecular alteration profiles identified in ACC may represent targetable events by the use of already developed or newly designed drugs enabling a better and more efficacious management of the ACC patient in the context of new frontiers of personalized precision medicine.

  9. Broadening the functionality of a J-protein/Hsp70 molecular chaperone system.

    PubMed

    Schilke, Brenda A; Ciesielski, Szymon J; Ziegelhoffer, Thomas; Kamiya, Erina; Tonelli, Marco; Lee, Woonghee; Cornilescu, Gabriel; Hines, Justin K; Markley, John L; Craig, Elizabeth A

    2017-10-01

    By binding to a multitude of polypeptide substrates, Hsp70-based molecular chaperone systems perform a range of cellular functions. All J-protein co-chaperones play the essential role, via action of their J-domains, of stimulating the ATPase activity of Hsp70, thereby stabilizing its interaction with substrate. In addition, J-proteins drive the functional diversity of Hsp70 chaperone systems through action of regions outside their J-domains. Targeting to specific locations within a cellular compartment and binding of specific substrates for delivery to Hsp70 have been identified as modes of J-protein specialization. To better understand J-protein specialization, we concentrated on Saccharomyces cerevisiae SIS1, which encodes an essential J-protein of the cytosol/nucleus. We selected suppressors that allowed cells lacking SIS1 to form colonies. Substitutions changing single residues in Ydj1, a J-protein, which, like Sis1, partners with Hsp70 Ssa1, were isolated. These gain-of-function substitutions were located at the end of the J-domain, suggesting that suppression was connected to interaction with its partner Hsp70, rather than substrate binding or subcellular localization. Reasoning that, if YDJ1 suppressors affect Ssa1 function, substitutions in Hsp70 itself might also be able to overcome the cellular requirement for Sis1, we carried out a selection for SSA1 suppressor mutations. Suppressing substitutions were isolated that altered sites in Ssa1 affecting the cycle of substrate interaction. Together, our results point to a third, additional means by which J-proteins can drive Hsp70's ability to function in a wide range of cellular processes-modulating the Hsp70-substrate interaction cycle.

  10. Multimodal molecular analysis of astroblastoma enables reclassification of most cases into more specific molecular entities.

    PubMed

    Wood, Matthew D; Tihan, Tarik; Perry, Arie; Chacko, Geeta; Turner, Clinton; Pu, Cunfeng; Payne, Christopher; Yu, Alexander; Bannykh, Serguei I; Solomon, David A

    2018-03-01

    Astroblastoma is a rare and controversial glioma with variable clinical behavior. The diagnosis currently rests on histologic findings of a circumscribed glioma with astroblastomatous pseudorosettes and vascular hyalinization. Immunohistochemical studies have suggested different oncogenic drivers, such as BRAF p.V600E, but very few cases have been studied using genome-wide methodologies. Recent genomic profiling identified a subset of CNS embryonal tumors with astroblastoma-like morphology that harbored MN1 gene fusions, termed "CNS high-grade neuroepithelial tumors with MN1 alteration" (CNS-HGNET-MN1). To further characterize the genetic alterations that drive astroblastomas, we performed targeted next-generation sequencing (NGS) of 500 cancer-associated genes in a series of eight cases. We correlated these findings with break-apart fluorescence in situ hybridization (FISH) analysis of the MN1 locus and genome-wide DNA methylation profiling. Four cases showed MN1 alteration by FISH, including two pediatric cases that lacked other pathogenic alterations, and two adult cases that harbored other cancer-associated gene mutations or copy number alterations (eg, CDKN2A/B homozygous deletion, TP53, ATM and TERT promoter mutations). Three of these cases grouped with the CNS-HGNET-MN1 entity by methylation profiling. Two of four MN1 intact cases by FISH showed genetic features of either anaplastic pleomorphic xanthoastrocytoma (BRAF p.V600E mutation, CDKN2A/B homozygous deletion and TERT promoter mutation) or IDH-wildtype glioblastoma (trisomy 7, monosomy 10, CDK4 amplification and TP53, NRAS and TERT promoter mutations) and these cases had an aggressive clinical course. Two clinically indolent cases remained unclassifiable despite multimodal molecular analysis. We conclude that astroblastoma histology is not specific for any entity including CNS-HGNET-MN1, and that additional genetic characterization should be considered for astroblastomas, as a number of these tumors

  11. Development of design information for molecular-sieve type regenerative CO2-removal systems

    NASA Technical Reports Server (NTRS)

    Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.

    1973-01-01

    Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.

  12. The generation of meaningful information in molecular systems.

    PubMed

    Wills, Peter R

    2016-03-13

    The physico-chemical processes occurring inside cells are under the computational control of genetic (DNA) and epigenetic (internal structural) programming. The origin and evolution of genetic information (nucleic acid sequences) is reasonably well understood, but scant attention has been paid to the origin and evolution of the molecular biological interpreters that give phenotypic meaning to the sequence information that is quite faithfully replicated during cellular reproduction. The near universality and age of the mapping from nucleotide triplets to amino acids embedded in the functionality of the protein synthetic machinery speaks to the early development of a system of coding which is still extant in every living organism. We take the origin of genetic coding as a paradigm of the emergence of computation in natural systems, focusing on the requirement that the molecular components of an interpreter be synthesized autocatalytically. Within this context, it is seen that interpreters of increasing complexity are generated by series of transitions through stepped dynamic instabilities (non-equilibrium phase transitions). The early phylogeny of the amino acyl-tRNA synthetase enzymes is discussed in such terms, leading to the conclusion that the observed optimality of the genetic code is a natural outcome of the processes of self-organization that produced it. © 2016 The Author(s).

  13. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling.

    PubMed

    Klinke, David J

    2016-01-01

    In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis.

  14. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling

    PubMed Central

    Klinke, David J

    2016-01-01

    In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis. PMID:27308541

  15. Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles

    NASA Technical Reports Server (NTRS)

    Lowery, Mary Sue

    1998-01-01

    Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.

  16. Unique mutation portraits and frequent COL2A1 gene alteration in chondrosarcoma

    PubMed Central

    Totoki, Yasushi; Yoshida, Akihiko; Hosoda, Fumie; Nakamura, Hiromi; Hama, Natsuko; Ogura, Koichi; Yoshida, Aki; Fujiwara, Tomohiro; Arai, Yasuhito; Toguchida, Junya; Tsuda, Hitoshi; Miyano, Satoru; Kawai, Akira

    2014-01-01

    Chondrosarcoma is the second most frequent malignant bone tumor. However, the etiological background of chondrosarcomagenesis remains largely unknown, along with details on molecular alterations and potential therapeutic targets. Massively parallel paired-end sequencing of whole genomes of 10 primary chondrosarcomas revealed that the process of accumulation of somatic mutations is homogeneous irrespective of the pathological subtype or the presence of IDH1 mutations, is unique among a range of cancer types, and shares significant commonalities with that of prostate cancer. Clusters of structural alterations localized within a single chromosome were observed in four cases. Combined with targeted resequencing of additional cartilaginous tumor cohorts, we identified somatic alterations of the COL2A1 gene, which encodes an essential extracellular matrix protein in chondroskeletal development, in 19.3% of chondrosarcoma and 31.7% of enchondroma cases. Epigenetic regulators (IDH1 and YEATS2) and an activin/BMP signal component (ACVR2A) were recurrently altered. Furthermore, a novel FN1-ACVR2A fusion transcript was observed in both chondrosarcoma and osteochondromatosis cases. With the characteristic accumulative process of somatic changes as a background, molecular defects in chondrogenesis and aberrant epigenetic control are primarily causative of both benign and malignant cartilaginous tumors. PMID:25024164

  17. The impact of systemic cortical alterations on perception

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng

    2011-12-01

    Perception is the process of transmitting and interpreting sensory information, and the primary somatosensory (SI) area in the human cortex is the main sensory receptive area for the sensation of touch. The elaborate neuroanatomical connectivity that subserves the neuronal communication between adjacent and near-adjacent regions within sensory cortex has been widely recognized to be essential to normal sensory function. As a result, systemic cortical alterations that impact the cortical regional interaction, as associated with many neurological disorders, are expected to have significant impact on sensory perception. Recently, our research group has developed a novel sensory diagnostic system that employs quantitative sensory testing methods and is able to non-invasively assess central nervous system healthy status. The intent of this study is to utilize quantitative sensory testing methods that were designed to generate discriminable perception to objectively and quantitatively assess the impacts of different conditions on human sensory information processing capacity. The correlation between human perceptions with observations from animal research enables a better understanding of the underlying neurophysiology of human perception. Additional findings on different subject populations provide valuable insight of the underlying mechanisms for the development and maintenance of different neurological diseases. During the course of the study, several protocols were designed and utilized. And this set of sensory-based perceptual metrics was employed to study the effects of different conditions (non-noxious thermal stimulation, chronic pain stage, and normal aging) on sensory perception. It was found that these conditions result in significant deviations of the subjects' tactile information processing capacities from normal values. Although the observed shift of sensory detection sensitivity could be a result of enhanced peripheral activity, the changes in the effects

  18. Proteomics Analysis of Molecular Risk Factors in the Ocular Hypertensive Human Retina

    PubMed Central

    Yang, Xiangjun; Hondur, Gözde; Li, Ming; Cai, Jian; Klein, Jon B.; Kuehn, Markus H.; Tezel, Gülgün

    2015-01-01

    Purpose To better understand ocular hypertension–induced early molecular alterations that may determine the initiation of neurodegeneration in human glaucoma, this study analyzed retinal proteomic alterations in the ocular hypertensive human retina. Methods Retina samples were obtained from six human donors with ocular hypertension (without glaucomatous injury) and six age- and sex-matched normotensive controls. Retinal proteins were analyzed by two-dimensional LC-MS/MS (liquid chromatography and linear ion trap mass spectrometry) using oxygen isotope labeling for relative quantification of protein expression. Proteomics data were validated by Western blot and immunohistochemical analyses of selected proteins. Results Out of over 2000 retinal proteins quantified, hundreds exhibited over 2-fold increased or decreased expression in ocular hypertensive samples relative to normotensive controls. Bioinformatics linked the proteomics datasets to various pathways important for maintenance of cellular homeostasis in the ocular hypertensive retina. Upregulated proteins included various heat shock proteins, ubiquitin proteasome pathway components, antioxidants, and DNA repair enzymes, while many proteins involved in mitochondrial oxidative phosphorylation exhibited downregulation in the ocular hypertensive retina. Despite the altered protein expression reflecting intrinsic adaptive/protective responses against mitochondrial energy failure, oxidative stress, and unfolded proteins, no alterations suggestive of an ongoing cell death process or neuroinflammation were detectable. Conclusions This study provides information about ocular hypertension–related molecular risk factors for glaucoma development. Molecular alterations detected in the ocular hypertensive human retina as opposed to previously detected alterations in human donor retinas with clinically manifest glaucoma suggest that proteome alterations determine the individual threshold to tolerate the ocular

  19. Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology.

    PubMed

    Theophilou, Georgios; Paraskevaidi, Maria; Lima, Kássio M G; Kyrgiou, Maria; Martin-Hirsch, Pierre L; Martin, Francis L

    2015-05-01

    The complex processes driving cancer have so far impeded the discovery of dichotomous biomarkers associated with its initiation and progression. Reductionist approaches utilizing 'omics' technologies have met some success in identifying molecular alterations associated with carcinogenesis. Systems biology is an emerging science that combines high-throughput investigation techniques to define the dynamic interplay between regulatory biological systems in response to internal and external cues. Vibrational spectroscopy has the potential to play an integral role within systems biology research approaches. It is capable of examining global models of carcinogenesis by scrutinizing chemical bond alterations within molecules. The application of infrared or Raman spectroscopic approaches coupled with computational analysis under the systems biology umbrella can assist the transition of biomarker research from the molecular level to the system level. The comprehensive representation of carcinogenesis as a multilevel biological process will inevitably revolutionize cancer-related healthcare by personalizing risk prediction and prevention.

  20. Prostate cancer molecular profiling: the Achilles heel for the implementation of precision medicine.

    PubMed

    Oliveira-Barros, Eliane Gouvêa; Nicolau-Neto, Pedro; Da Costa, Nathalia Meireles; Pinto, Luís Felipe Ribeiro; Palumbo, Antonio; Nasciutti, Luiz Eurico

    2017-11-01

    Cancer has been mainly treated by traditional therapeutic approaches which do not consider the human genetic diversity and present limitations, probably as a consequence of a poor knowledge of both patient's genetic background and tumor biology. Due to genome project conclusion and large-scale gene analyses emergence, the therapeutic management of several prevalent and aggressive tumors has dramatically improved and represents the closest examples of a precision medicine intervention in this field. Nonetheless, prostate cancer (PCa) remains as a challenge to personalized medicine implementation, probably due to its notorious heterogeneous molecular profile. Cancer treatment personalized approaches rely on the premise that a well-defined panorama of tumor molecular alterations can help selecting new and specific therapeutic targets for its treatment and potentially discriminate tumors which behave differentially. Lately, molecular and genetic studies have been investigating PCa basis, revealing multiple recurrent genomic alterations that include mutations, DNA copy-number variations, rearrangements, and gene fusions, among others. In addition to the increment on PCa molecular biology knowledge, mapping the molecular alterations pattern of this neoplasia, especially the differences existent between tumors displaying distinct behaviors, could represent a great improvement concerning the identification of new targets, personalized medicine, and patients' management and prognosis. © 2017 International Federation for Cell Biology.

  1. Molecular aspects of defence priming.

    PubMed

    Conrath, Uwe

    2011-10-01

    Plants can be primed for more rapid and robust activation of defence to biotic or abiotic stress. Priming follows perception of molecular patterns of microbes or plants, recognition of pathogen-derived effectors or colonisation by beneficial microbes. However the process can also be induced by treatment with some natural or synthetic compounds and wounding. The primed mobilization of defence is often associated with development of immunity and stress tolerance. Although the phenomenon has been known for decades, the molecular basis of priming is poorly understood. Here, I summarize recent progress made in unravelling molecular aspects of defence priming that is the accumulation of dormant mitogen-activated protein kinases, chromatin modifications and alterations of primary metabolism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Effect of Artificial Gravity: Central Nervous System Neurochemical Studies

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; D'Amelio, Fernando; Eng, Lawrence F.

    1997-01-01

    The major objective of this project was to assess chemical and morphological modifications occurring in muscle receptors and the central nervous system of animals subjected to altered gravity (2 x Earth gravity produced by centrifugation and simulated micro gravity produced by hindlimb suspension). The underlying hypothesis for the studies was that afferent (sensory) information sent to the central nervous system by muscle receptors would be changed in conditions of altered gravity and that these changes, in turn, would instigate a process of adaptation involving altered chemical activity of neurons and glial cells of the projection areas of the cerebral cortex that are related to inputs from those muscle receptors (e.g., cells in the limb projection areas). The central objective of this research was to expand understanding of how chronic exposure to altered gravity, through effects on the vestibular system, influences neuromuscular systems that control posture and gait. The project used an approach in which molecular changes in the neuromuscular system were related to the development of effective motor control by characterizing neurochemical changes in sensory and motor systems and relating those changes to motor behavior as animals adapted to altered gravity. Thus, the objective was to identify changes in central and peripheral neuromuscular mechanisms that are associated with the re-establishment of motor control which is disrupted by chronic exposure to altered gravity.

  3. 76 FR 4480 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... of Subjects in Agent Orange, Vietnam Experience, and Selected Cancers Studies, HHS/CDC/CCEHIP/ NCEH.../NCEH proposes to alter System of Records, No. 09-20-0162, ``Records of Subjects in Agent Orange... Agent Orange) to possible adverse health consequences. Such possible effects to be evaluated include...

  4. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    PubMed Central

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-01-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery. PMID:26043147

  5. Alterations in the antioxidant defense system in prepubertal children with a history of extrauterine growth restriction.

    PubMed

    Ortiz-Espejo, M; Gil-Campos, M; Mesa, M D; García-Rodríguez, C E; Muñoz-Villanueva, M C; Pérez-Navero, J L

    2014-01-01

    The role of oxidative stress is well known in the pathogenesis of acquired malnutrition. Intrauterine growth restriction has been associated with an imbalance in oxidative stress/antioxidant system. Therefore, early postnatal environment and, consequently, extrauterine growth restriction might be associated with alterations in the antioxidant defense system, even in the prepubertal stage. This is a descriptive, analytical, and observational case-control study. The study included two groups; 38 Caucasian prepubertal children born prematurely and with a history of extrauterine growth restriction as the case group, and 123 gender- and age-matched controls. Plasma exogenous antioxidant (retinol, β-carotene, and α-tocopherol) concentrations were measured by HPLC; antioxidant enzyme activities of catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase were determined in lysed erythrocytes by spectrophotometric techniques. Catalase and glutathione peroxidase concentrations were significantly lower in extrauterine growth restriction children than in controls (P < 0.001). Lower plasma retinol concentrations were found in the case group (P = 0.029), while concentrations of β-carotene and α-tocopherol were higher (P < 0.001) in extrauterine growth restriction prepubertal children as compared with controls. After correction by gestational age, birth weight, and length, statistically significant differences were also found, except for retinol. Prepubertal children with a history of extrauterine growth restriction present alterations in their antioxidant defense system. Knowing these alterations may be important in establishing pharmacological and nutritional treatments as this situation might be associated with higher metabolic disorders in adulthood.

  6. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction

    NASA Astrophysics Data System (ADS)

    Ohta, Seiichi; Glancy, Dylan; Chan, Warren C. W.

    2016-02-01

    Precise control of biosystems requires development of materials that can dynamically change physicochemical properties. Inspired by the ability of proteins to alter their conformation to mediate function, we explored the use of DNA as molecular keys to assemble and transform colloidal nanoparticle systems. The systems consist of a core nanoparticle surrounded by small satellites, the conformation of which can be transformed in response to DNA via a toe-hold displacement mechanism. The conformational changes can alter the optical properties and biological interactions of the assembled nanosystem. Photoluminescent signal is altered by changes in fluorophore-modified particle distance, whereas cellular targeting efficiency is increased 2.5 times by changing the surface display of targeting ligands. These concepts provide strategies for engineering dynamic nanotechnology systems for navigating complex biological environments.

  7. Betaine Treatment Attenuates Chronic Ethanol-Induced Hepatic Steatosis and Alterations to the Mitochondrial Respiratory Chain Proteome

    PubMed Central

    Kharbanda, Kusum K.; Todero, Sandra L.; King, Adrienne L.; Osna, Natalia A.; McVicker, Benita L.; Tuma, Dean J.; Wisecarver, James L.; Bailey, Shannon M.

    2012-01-01

    Introduction. Mitochondrial damage and disruption in oxidative phosphorylation contributes to the pathogenesis of alcoholic liver injury. Herein, we tested the hypothesis that the hepatoprotective actions of betaine against alcoholic liver injury occur at the level of the mitochondrial proteome. Methods. Male Wister rats were pair-fed control or ethanol-containing liquid diets supplemented with or without betaine (10 mg/mL) for 4-5 wks. Liver was examined for triglyceride accumulation, levels of methionine cycle metabolites, and alterations in mitochondrial proteins. Results. Chronic ethanol ingestion resulted in triglyceride accumulation which was attenuated in the ethanol plus betaine group. Blue native gel electrophoresis (BN-PAGE) revealed significant decreases in the content of the intact oxidative phosphorylation complexes in mitochondria from ethanol-fed animals. The alcohol-dependent loss in many of the low molecular weight oxidative phosphorylation proteins was prevented by betaine supplementation. This protection by betaine was associated with normalization of SAM : S-adenosylhomocysteine (SAH) ratios and the attenuation of the ethanol-induced increase in inducible nitric oxide synthase and nitric oxide generation in the liver. Discussion/Conclusion. In summary, betaine attenuates alcoholic steatosis and alterations to the oxidative phosphorylation system. Therefore, preservation of mitochondrial function may be another key molecular mechanism responsible for betaine hepatoprotection. PMID:22187660

  8. Alteration and Implementation of the CP/M-86 Operating System for a Multi-User Environment.

    DTIC Science & Technology

    1982-12-01

    THE CP/M-86 OPERATING SYSTEM FOR A MULTI-USER ENVIRONMENT by Thomas V. Almquist and David S. Stevens C-, December 1982 ,LU Thesis Advisor : U. R. Kodres...tool$ 044, robo O0eA 6^900091 Approved for public release; distribution unlimited Alteration and Implementation of the CP/M-86 Operating System for a...SCIENCE IN COMPUTER SCIENCE from the NAVAL POSTGRADUATE SCHOOL December 1982 Authors: Approved by: ..... .. . . . . . . . . Thesis Advisor Second

  9. A Hadoop-based Molecular Docking System

    NASA Astrophysics Data System (ADS)

    Dong, Yueli; Guo, Quan; Sun, Bin

    2017-10-01

    Molecular docking always faces the challenge of managing tens of TB datasets. It is necessary to improve the efficiency of the storage and docking. We proposed the molecular docking platform based on Hadoop for virtual screening, it provides the preprocessing of ligand datasets and the analysis function of the docking results. A molecular cloud database that supports mass data management is constructed. Through this platform, the docking time is reduced, the data storage is efficient, and the management of the ligand datasets is convenient.

  10. Chapter 5 Multiple, Localized, and Delocalized/Conjugated Bonds in the Orbital Communication Theory of Molecular Systems

    NASA Astrophysics Data System (ADS)

    Nalewajski, Roman F.

    Information theory (IT) probe of the molecular electronic structure, within the communication theory of chemical bonds (CTCB), uses the standard entropy/information descriptors of the Shannon theory of communication to characterize a scattering of the electronic probabilities and their information content throughout the system chemical bonds generated by the occupied molecular orbitals (MO). These "communications" between the basis-set orbitals are determined by the two-orbital conditional probabilities: one- and two-electron in character. They define the molecular information system, in which the electron-allocation "signals" are transmitted between various orbital "inputs" and "outputs". It is argued, using the quantum mechanical superposition principle, that the one-electron conditional probabilities are proportional to the squares of corresponding elements of the charge and bond-order (CBO) matrix of the standard LCAO MO theory. Therefore, the probability of the interorbital connections in the molecular communication system is directly related to Wiberg's quadratic covalency indices of chemical bonds. The conditional-entropy (communication "noise") and mutual-information (information capacity) descriptors of these molecular channels generate the IT-covalent and IT-ionic bond components, respectively. The former reflects the electron delocalization (indeterminacy) due to the orbital mixing, throughout all chemical bonds in the system under consideration. The latter characterizes the localization (determinacy) in the probability scattering in the molecule. These two IT indices, respectively, indicate a fraction of the input information lost in the channel output, due to the communication noise, and its surviving part, due to deterministic elements in probability scattering in the molecular network. Together, these two components generate the system overall bond index. By a straightforward output reduction (condensation) of the molecular channel, the IT indices of

  11. 76 FR 4446 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... the information for the purpose of assisting the Department's efforts to respond to a suspected or...--Report of Modified or Altered System of Records Narrative Statement I. Background and Purpose of the... information for the purpose of assisting the Department's efforts to respond to a suspected or confirmed...

  12. A high performance system for molecular dynamics simulation of biomolecules using a special-purpose computer.

    PubMed

    Komeiji, Y; Yokoyama, H; Uebayasi, M; Taiji, M; Fukushige, T; Sugimoto, D; Takata, R; Shimizu, A; Itsukashi, K

    1996-01-01

    GRAPE (GRavity PipE) processors are special purpose computers for simulation of classical particles. The performance of MD-GRAPE, one of the GRAPEs developed for molecular dynamics, was investigated. The effective speed of MD-GRAPE was equivalent to approximately 6 Gflops. The precision of MD-GRAPE was good judging from the acceptable fluctuation of the total energy. Then a software named PEACH (Program for Energetic Analysis of bioCHemical molecules) was developed for molecular dynamics of biomolecules in combination with MD-GRAPE. Molecular dynamics simulation was performed for several protein-solvent systems with different sizes. Simulation of the largest system investigated (27,000 atoms) took only 5 sec/step. Thus, the PEACH-GRAPE system is expected to be useful in accurate and reliable simulation of large biomolecules.

  13. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    PubMed

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Element speciation during nuclear glass alteration

    NASA Astrophysics Data System (ADS)

    Galoisy, L.; Calas, G.; Bergeron, B.; Jollivet, P.; Pelegrin, E.

    2011-12-01

    Assessing the long-term behavior of nuclear glasses implies the prediction of their long-term performance. An important controlling parameter is their evolution during interaction with water under conditions simulating geological repositories. After briefly recalling the major characteristics of the local and medium-range structure of borosilicate glasses of nuclear interest, we will present some structural features of this evolution. Specific structural tools used to determine the local structure of glass surfaces include synchrotron-radiation x-ray absorption spectroscopy with total electron yield detection. The evolution of the structure of glass surface has been determined at the Zr-, Fe-, Si- and Al-K edges and U-LIII edge. During alteration in near- or under-saturated conditions, some elements such as Fe change coordination, as other elements such as Zr only suffer structural modifications in under-saturated conditions. Uranium exhibits a modification of its speciation from an hexa-coordinated U(VI) in the borosilicate glass to an uranyl group in the gel. These structural modifications may explain the chemical dependence of the initial alteration rate and the transition to the residual regime. They also illustrate the molecular-scale origin of the processes at the origin of the glass-to-gel transformation. Eventually, they explain the provisional trapping of U by the alteration gel: the uranium retention factors in the gel depend on the alteration conditions, and thus on the nature of the resulting gel and on the trapping conditions.

  15. Do receptors get pregnant too? Adrenergic receptor alterations in human pregnancy.

    PubMed

    Smiley, R M; Finster, M

    1996-01-01

    In this review we discuss adrenergic receptor number and function during pregnancy, with emphasis on evidence that pregnancy results in specific receptor alterations from the nonpregnant state. Changes in adrenergic receptor function or distribution in vascular smooth muscle may be in part responsible for the decreased vascular responsiveness seen in human pregnancy, and the lack of the normal alterations may be a part of the syndromes of gestational hypertension, including preeclampsia-eclampsia. The onset of labor may be influenced by adrenergic modulation, and receptor or postreceptor level molecular alterations may trigger or facilitate normal or preterm labor. Human studies are emphasized when possible to assess the role of adrenergic signal transduction regulation in the physiology and pathophysiology of normal and complicated human pregnancy.

  16. [Primary central nervous system diffuse large B cell lymphoma: a clinicopathologic and molecular study].

    PubMed

    Ma, Z P; Ainiwaer, Babayi; Liu, Z Y; Shi, X L; Cui, W L; Zhang, W; Li, X X

    2016-11-08

    Objective: To investigate clinicopathologic characteristics, immunophenotype and EB virus-related molecular genetic alterations in primary central nervous system diffuse large B cell lymphoma (DLBCL) along with correlation with clinical prognosis. Methods: A total of 30 cases of primary central nervous system DLBCL were retrospectively studied by retrieving clinical data, histological evaluation and immunophenotyping by EnVision two steps methods. The expression of EBER mRNA was detected by in situ hybridization and bcl-2, bcl-6 and C-MYC gene abnormalities were analyzed by interphase fluorescence in situ hybridization. Results: The cases included 18 males and 12 females (sex ratio of 1.5∶1.0) with an age ranging from 24 to 78 years (average age of 52 years, the median age of 53 years). The single primary clinical presentation was focal neurologic deficits. Tumor locations were supratentorial (21 cases), subtentorial (7 cases), involving both locations in 2 cases. Diffuse growth pattern was observed with large lymphoid cells mostly resembling centroblasts with abundant basophilic cytoplasm with oval to round, vesicular nuclei containing fine chromatin. An angiocentric and angiodestructive growth pattern was also present. Other features included perivascular space invasion. Immunohistochemical staining using a panel of CD10, bcl-6 and MUM1, six cases were germinal center-like (GCB) and 24 cases were non-germinal central-like (non-GCB). The positive rates of bcl-2, bcl-6 and C-MYC were 53.3% (16/30), 80.0% (24/30) and 20.0% (6/30), respectively. Genetic alterations were detected by FISH and the gene arrangement rates of bcl-2, bcl-6 and C-MYC were 3.3% (1/30), 16.7% (5/30) and 3.3% (1/30), respectively. There were 19 cases in stage 0-1 disease and 11 cases had stage 2-3 disease. Postoperative follow-up for average 13.6 months showed the median survival of 10 months, one-year survival of 46.7% and 16 patients died within a year. Conclusions: The clinical prognosis

  17. Discovering disease-disease associations by fusing systems-level molecular data

    PubMed Central

    Žitnik, Marinka; Janjić, Vuk; Larminie, Chris; Zupan, Blaž; Pržulj, Nataša

    2013-01-01

    The advent of genome-scale genetic and genomic studies allows new insight into disease classification. Recently, a shift was made from linking diseases simply based on their shared genes towards systems-level integration of molecular data. Here, we aim to find relationships between diseases based on evidence from fusing all available molecular interaction and ontology data. We propose a multi-level hierarchy of disease classes that significantly overlaps with existing disease classification. In it, we find 14 disease-disease associations currently not present in Disease Ontology and provide evidence for their relationships through comorbidity data and literature curation. Interestingly, even though the number of known human genetic interactions is currently very small, we find they are the most important predictor of a link between diseases. Finally, we show that omission of any one of the included data sources reduces prediction quality, further highlighting the importance in the paradigm shift towards systems-level data fusion. PMID:24232732

  18. Discovering disease-disease associations by fusing systems-level molecular data.

    PubMed

    Žitnik, Marinka; Janjić, Vuk; Larminie, Chris; Zupan, Blaž; Pržulj, Nataša

    2013-11-15

    The advent of genome-scale genetic and genomic studies allows new insight into disease classification. Recently, a shift was made from linking diseases simply based on their shared genes towards systems-level integration of molecular data. Here, we aim to find relationships between diseases based on evidence from fusing all available molecular interaction and ontology data. We propose a multi-level hierarchy of disease classes that significantly overlaps with existing disease classification. In it, we find 14 disease-disease associations currently not present in Disease Ontology and provide evidence for their relationships through comorbidity data and literature curation. Interestingly, even though the number of known human genetic interactions is currently very small, we find they are the most important predictor of a link between diseases. Finally, we show that omission of any one of the included data sources reduces prediction quality, further highlighting the importance in the paradigm shift towards systems-level data fusion.

  19. 78 FR 63211 - Privacy Act of 1974; Report of an Altered CMS System of Records Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Medicare & Medicaid Services Privacy Act of... Services (CMS), Department of Health and Human Services (HHS). ACTION: Altered System of Records Notice...), Veterans Health Administration (Champ VA), Children's Health Insurance Program (CHIP), Department of...

  20. System and method for altering the tack of materials using an electrohydraulic discharge

    DOEpatents

    Banerjee, Sujit; Corcoran, Howard

    2007-11-13

    A system and method for altering the tack of a material, namely a polymer used as an adhesive, also known as stickies, or pitch. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater.

  1. System and method for altering the tack of materials using an electrohydraulic discharge

    DOEpatents

    Banerjee, Sujit; Corcoran, Howard

    2003-01-01

    A system and method for altering the tack of a material, namely a polymer used as an adhesive, also known as stickies, or pitch. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater.

  2. Advances of Molecular Imaging for Monitoring the Anatomical and Functional Architecture of the Olfactory System.

    PubMed

    Zhang, Xintong; Bi, Anyao; Gao, Quansheng; Zhang, Shuai; Huang, Kunzhu; Liu, Zhiguo; Gao, Tang; Zeng, Wenbin

    2016-01-20

    The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field.

  3. Resolution of identity approximation for the Coulomb term in molecular and periodic systems.

    PubMed

    Burow, Asbjörn M; Sierka, Marek; Mohamed, Fawzi

    2009-12-07

    A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 muhartree per atom, for both molecular and periodic systems.

  4. Resolution of identity approximation for the Coulomb term in molecular and periodic systems

    NASA Astrophysics Data System (ADS)

    Burow, Asbjörn M.; Sierka, Marek; Mohamed, Fawzi

    2009-12-01

    A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 μhartree per atom, for both molecular and periodic systems.

  5. 76 FR 4440 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... that have a need to know the information for the purpose of assisting the Department's efforts to... Mycobacterioses--Report of Modified or Altered System of Records Narrative Statement I. Background and Purpose of... that have a need to know the information for the purpose of assisting the Department's efforts to...

  6. Does aging alter the molecular substrate of ionotropic neurotransmitter receptors in the rostral ventral lateral medulla? - A short communication.

    PubMed

    Pawar, Hitesh N; Balivada, Sivasai; Kenney, Michael J

    2017-05-01

    Aging alters sympathetic nervous system (SNS) regulation, although central mechanisms are not well understood. In young rats the rostral ventral lateral medulla (RVLM) is critically involved in central SNS regulation and RVLM neuronal activity is mediated by a balance of excitatory and inhibitory ionotropic neurotransmitters and receptors, providing the foundation for hypothesizing that with advanced age the molecular substrate of RVLM ionotropic receptors is characterized by upregulated excitatory and downregulated inhibitory receptor subunits. This hypothesis was tested by comparing the relative mRNA expression and protein concentration of RVLM excitatory (NMDA and AMPA) and inhibitory (GABA and glycinergic) ionotropic neurotransmitter receptor subunits in young and aged Fischer (F344) rats. Brains were removed from anesthetized rats and the RVLM-containing area was micropunched and extracted RNA and protein were subsequently used for TaqMan qRT-PCR gene expression and quantitative ELISA analyses. Bilateral chemical inactivation of RVLM neurons and peripheral ganglionic blockade on visceral sympathetic nerve discharge (SND) was determined in additional experiments. The relative gene expression of RVLM NMDA and AMPA glutamate-gated receptor subunits and protein concentration of select receptor subunits did not differ between young and aged rats, and there were no age-related differences in the expression of RVLM ionotropic GABA A and Gly receptors, or of protein concentration of select GABA A subunits. RVLM muscimol microinjections significantly reduced visceral SND by 70±2% in aged F344 rats. Collectively these findings from this short communication support a functional role for the RVLM in regulation of sympathetic nerve outflow in aged rats, but provide no evidence for an ionotropic RVLM receptor-centric framework explaining age-associated changes in SNS regulation. Published by Elsevier Inc.

  7. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration.

    PubMed

    Friedland, Robert P

    2015-01-01

    The concept of molecular mimicry was established to explain commonalities of structure which developed in response to evolutionary pressures. Most examples of molecular mimicry in medicine have involved homologies of primary protein structure which cause disease. Molecular mimicry can be expanded beyond amino acid sequence to include microRNA and proteomic effects which are either pathogenic or salutogenic (beneficial) in regard to Parkinson's disease, Alzheimer's disease, and related disorders. Viruses of animal or plant origin may mimic nucleotide sequences of microRNAs and influence protein expression. Both Parkinson's and Alzheimer's diseases involve the formation of transmissible self-propagating prion-like proteins. However, the initiating factors responsible for creation of these misfolded nucleating factors are unknown. Amyloid patterns of protein folding are highly conserved through evolution and are widely distributed in the world. Similarities of tertiary protein structure may be involved in the creation of these prion-like agents through molecular mimicry. Cross-seeding of amyloid misfolding, altered proteostasis, and oxidative stress may be induced by amyloid proteins residing in bacteria in our microbiota in the gut and in the diet. Pathways of molecular mimicry induced processes induced by bacterial amyloid in neurodegeneration may involve TLR 2/1, CD14, and NFκB, among others. Furthermore, priming of the innate immune system by the microbiota may enhance the inflammatory response to cerebral amyloids (such as amyloid-β and α-synuclein). This paper describes the specific molecular pathways of these cross-seeding and neuroinflammatory processes. Evolutionary conservation of proteins provides the opportunity for conserved sequences and structures to influence neurological disease through molecular mimicry.

  8. MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems

    PubMed Central

    Abby, Sophie S.; Néron, Bertrand; Ménager, Hervé; Touchon, Marie; Rocha, Eduardo P. C.

    2014-01-01

    Motivation Biologists often wish to use their knowledge on a few experimental models of a given molecular system to identify homologs in genomic data. We developed a generic tool for this purpose. Results Macromolecular System Finder (MacSyFinder) provides a flexible framework to model the properties of molecular systems (cellular machinery or pathway) including their components, evolutionary associations with other systems and genetic architecture. Modelled features also include functional analogs, and the multiple uses of a same component by different systems. Models are used to search for molecular systems in complete genomes or in unstructured data like metagenomes. The components of the systems are searched by sequence similarity using Hidden Markov model (HMM) protein profiles. The assignment of hits to a given system is decided based on compliance with the content and organization of the system model. A graphical interface, MacSyView, facilitates the analysis of the results by showing overviews of component content and genomic context. To exemplify the use of MacSyFinder we built models to detect and class CRISPR-Cas systems following a previously established classification. We show that MacSyFinder allows to easily define an accurate “Cas-finder” using publicly available protein profiles. Availability and Implementation MacSyFinder is a standalone application implemented in Python. It requires Python 2.7, Hmmer and makeblastdb (version 2.2.28 or higher). It is freely available with its source code under a GPLv3 license at https://github.com/gem-pasteur/macsyfinder. It is compatible with all platforms supporting Python and Hmmer/makeblastdb. The “Cas-finder” (models and HMM profiles) is distributed as a compressed tarball archive as Supporting Information. PMID:25330359

  9. Theranostics of prostate cancer: from molecular imaging to precision molecular radiotherapy targeting the prostate specific membrane antigen.

    PubMed

    Kulkarni, Harshad R; Singh, Aviral; Langbein, Thomas; Schuchardt, Christiane; Mueller, Dirk; Zhang, Jingjing; Lehmann, Coline; Baum, Richard P

    2018-06-01

    Alterations at the molecular level are a hallmark of cancer. Prostate cancer is associated with the overexpression of prostate-specific membrane antigen (PSMA) in a majority of cases, predominantly in advanced tumors, increasing with the grade or Gleason's score. PSMA can be selectively targeted using radiolabeled PSMA ligands. These small molecules binding the PSMA can be radiolabeled with γ-emitters like 99m Tc and 111 In or positron emitters like 68 Ga and 18 F for diagnosis as well as with their theranostic pairs such as 177 Lu (β-emitter) or 225 Ac (α-emitter) for therapy. This review summarizes the theranostic role of PSMA ligands for molecular imaging and targeted molecular radiotherapy, moving towards precision oncology.

  10. Molecular pathogenesis of emphysema

    PubMed Central

    Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.

    2008-01-01

    Emphysema is one manifestation of a group of chronic, obstructive, and frequently progressive destructive lung diseases. Cigarette smoking and air pollution are the main causes of emphysema in humans, and cigarette smoking causes emphysema in rodents. This review examines the concept of a homeostatically active lung structure maintenance program that, when attacked by proteases and oxidants, leads to the loss of alveolar septal cells and airspace enlargement. Inflammatory and noninflammatory mechanisms of disease pathogenesis, as well as the role of the innate and adaptive immune systems, are being explored in genetically altered animals and in exposure models of this disease. These recent scientific advances support a model whereby alveolar destruction resulting from a coalescence of mechanical forces, such as hyperinflation, and more recently recognized cellular and molecular events, including apoptosis, cellular senescence, and failed lung tissue repair, produces the clinically recognized syndrome of emphysema. PMID:18246188

  11. Developmental origins of neurotransmitter and transcriptome alterations in adult female zebrafish exposed to atrazine during embryogenesis.

    PubMed

    Wirbisky, Sara E; Weber, Gregory J; Sepúlveda, Maria S; Xiao, Changhe; Cannon, Jason R; Freeman, Jennifer L

    2015-07-03

    Atrazine is an herbicide applied to agricultural crops and is indicated to be an endocrine disruptor. Atrazine is frequently found to contaminate potable water supplies above the maximum contaminant level of 3μg/L as defined by the U.S. Environmental Protection Agency. The developmental origin of adult disease hypothesis suggests that toxicant exposure during development can increase the risk of certain diseases during adulthood. However, the molecular mechanisms underlying disease progression are still unknown. In this study, zebrafish embryos were exposed to 0, 0.3, 3, or 30μg/L atrazine throughout embryogenesis. Larvae were then allowed to mature under normal laboratory conditions with no further chemical treatment until 7 days post fertilization (dpf) or adulthood and neurotransmitter analysis completed. No significant alterations in neurotransmitter levels was observed at 7dpf or in adult males, but a significant decrease in 5-hydroxyindoleacetic acid (5-HIAA) and serotonin turnover was seen in adult female brain tissue. Transcriptomic analysis was completed on adult female brain tissue to identify molecular pathways underlying the observed neurological alterations. Altered expression of 1928, 89, and 435 genes in the females exposed to 0.3, 3, or 30μg/L atrazine during embryogenesis were identified, respectively. There was a high level of overlap between the biological processes and molecular pathways in which the altered genes were associated. Moreover, a subset of genes was down regulated throughout the serotonergic pathway. These results provide support of the developmental origins of neurological alterations observed in adult female zebrafish exposed to atrazine during embryogenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Altered molecular specificity of surfactant phosphatidycholine synthesis in patients with acute respiratory distress syndrome.

    PubMed

    Dushianthan, Ahilanandan; Goss, Victoria; Cusack, Rebecca; Grocott, Michael P W; Postle, Anthony D

    2014-11-07

    Acute respiratory distress syndrome (ARDS) is a life-threatening critical illness, characterised by qualitative and quantitative surfactant compositional changes associated with premature airway collapse, gas-exchange abnormalities and acute hypoxic respiratory failure. The underlying mechanisms for this dysregulation in surfactant metabolisms are not fully explored. Lack of therapeutic benefits from clinical trials, highlight the importance of detailed in-vivo analysis and characterisation of ARDS patients according to patterns of surfactant synthesis and metabolism. Ten patients with moderate to severe ARDS were recruited. Most (90%) suffered from pneumonia. They had an infusion of methyl-D9-choline chloride and small volume bronchoalveolar lavage fluid (BALF) was obtained at 0,6,12,24,48,72 and 96 hours. Controls were healthy volunteers, who had BALF at 24 and 48 hours after methyl-D9-choline infusion. Compositional analysis and enrichment patterns of stable isotope labelling of surfactant phosphatidylcholine (PC) was determined by electrospray ionisation mass spectrometry. BALF of patients with ARDS consisted of diminished total PC and fractional PC16:0/16:0 concentrations compared to healthy controls. Compositional analysis revealed, reductions in fractional compositions of saturated PC species with elevated levels of longer acyl chain unsaturated PC species. Molecular specificity of newly synthesised PC fraction showed time course variation, with lower PC16:0/16:0 composition at earlier time points, but achieved near equilibrium with endogenous composition at 48 hours after methyl-D9-choline infusion. The enrichment of methyl-D9-choline into surfactant total PC is nearly doubled in patients, with considerable variation between individuals. This study demonstrate significant alterations in composition and kinetics of surfactant PC extracted from ARDS patients. This novel approach may facilitate biochemical phenotyping of ARDS patients according to surfactant

  13. Burkitt lymphoma is molecularly distinct from other lymphomas

    Cancer.gov

    Scientists have uncovered a number of molecular signatures in Burkitt lymphoma, including unique genetic alterations that promote cell survival, that are not found in other lymphomas. These findings provide the first genetic evidence that Burkitt lymphoma

  14. Molecular Testing of Brain Tumor

    PubMed Central

    Park, Sung-Hye; Won, Jaekyung; Kim, Seong-Ik; Lee, Yujin; Park, Chul-Kee; Kim, Seung-Ki; Choi, Seung-Hong

    2017-01-01

    The World Health Organization (WHO) classification of central nervous system (CNS) tumors was revised in 2016 with a basis on the integrated diagnosis of molecular genetics. We herein provide the guidelines for using molecular genetic tests in routine pathological practice for an accurate diagnosis and appropriate management. While astrocytomas and IDH-mutant (secondary) glioblastomas are characterized by the mutational status of IDH, TP53, and ATRX, oligodendrogliomas have a 1p/19q codeletion and mutations in IDH, CIC, FUBP1, and the promoter region of telomerase reverse transcriptase (TERTp). IDH-wildtype (primary) glioblastomas typically lack mutations in IDH, but are characterized by copy number variations of EGFR, PTEN, CDKN2A/B, PDGFRA, and NF1 as well as mutations of TERTp. High-grade pediatric gliomas differ from those of adult gliomas, consisting of mutations in H3F3A, ATRX, and DAXX, but not in IDH genes. In contrast, well-circumscribed low-grade neuroepithelial tumors in children, such as pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and ganglioglioma, often have mutations or activating rearrangements in the BRAF, FGFR1, and MYB genes. Other CNS tumors, such as ependymomas, neuronal and glioneuronal tumors, embryonal tumors, meningothelial, and other mesenchymal tumors have important genetic alterations, many of which are diagnostic, prognostic, and predictive markers and therapeutic targets. Therefore, the neuropathological evaluation of brain tumors is increasingly dependent on molecular genetic tests for proper classification, prediction of biological behavior and patient management. Identifying these gene abnormalities requires cost-effective and high-throughput testing, such as next-generation sequencing. Overall, this paper reviews the global guidelines and diagnostic algorithms for molecular genetic testing of brain tumors. PMID:28535583

  15. Terahertz molecular resonance of cancer DNA.

    PubMed

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A; Son, Joo-Hiuk

    2016-11-15

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  16. Terahertz molecular resonance of cancer DNA

    NASA Astrophysics Data System (ADS)

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A.; Son, Joo-Hiuk

    2016-11-01

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  17. Interactive display of molecular models using a microcomputer system

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  18. Variational path integral molecular dynamics and hybrid Monte Carlo algorithms using a fourth order propagator with applications to molecular systems

    NASA Astrophysics Data System (ADS)

    Kamibayashi, Yuki; Miura, Shinichi

    2016-08-01

    In the present study, variational path integral molecular dynamics and associated hybrid Monte Carlo (HMC) methods have been developed on the basis of a fourth order approximation of a density operator. To reveal various parameter dependence of physical quantities, we analytically solve one dimensional harmonic oscillators by the variational path integral; as a byproduct, we obtain the analytical expression of the discretized density matrix using the fourth order approximation for the oscillators. Then, we apply our methods to realistic systems like a water molecule and a para-hydrogen cluster. In the HMC, we adopt two level description to avoid the time consuming Hessian evaluation. For the systems examined in this paper, the HMC method is found to be about three times more efficient than the molecular dynamics method if appropriate HMC parameters are adopted; the advantage of the HMC method is suggested to be more evident for systems described by many body interaction.

  19. Proteomic profiling reveals crucial retinal protein alterations in the early phase of an experimental glaucoma model.

    PubMed

    Anders, Fabian; Teister, Julia; Funke, Sebstian; Pfeiffer, Norbert; Grus, Franz; Solon, Thanos; Prokosch, Verena

    2017-07-01

    Clinical glaucoma is difficult to assess in terms of molecular pathophysiology, prompting studies in experimental models of glaucoma. The purpose of this study was to investigate quantitative changes in retinal protein expression at the onset of experimental glaucoma in rats. Analyzing the proteome provides a suitable tool to decipher the pathophysiological processes in glaucomatous degeneration. Thermic cauterization of episcleral veins was utilized to elevate the intraocular pressure in Sprague Dawley rats. Morphological changes were surveyed on a cellular level with a staining of Brn3a-positive cells. The retinal nerve fiber layer was investigated using optical coherence tomography (OCT, Heidelberg Engineering) and the optic nerve was analyzed by an axonal grading system. Mass spectrometry-featured quantitative proteomics and immunohistochemical staining was used to identify specifically altered proteins in the course of intraocular pressure elevation and initial neurodegeneration. Proteomic data were further analyzed with Ingenuity Pathway Analysis and Cytoscape to analyze further molecular associations. The intraocular pressure rose significantly (p < 0.001) for the follow-up period of 3 weeks after which animals were sacrificed. Eyes exposed to an elevated intraocular pressure showed an initial decrease of retinal ganglion cells, retinal nerve fiber layer (p < 0.05) and an impairment of the optic nerve (p < 0.01). Mass spectrometry led to the identification and quantification of 931 retinal proteins, whereas 32 were considerably altered. Bioinformatics-assisted clustering revealed that a majority of these proteins are functionally associated with cell differentiation, apoptosis and stress response. The creation of an interactive protein network showed that numerous altered proteins are connected regarding their cellular function. Protein kinase b, mitogen-activated protein kinase 1 and the NF-κB complex seem to be essential molecules in this context

  20. Spatial and temporal age-related spectral alterations in benign human breast tissue

    NASA Astrophysics Data System (ADS)

    Theophilou, Georgios; Fogarty, Simon W.; Trevisan, Júlio; Strong, Rebecca J.; Heys, Kelly A.; Patel, Imran I.; Stringfellow, Helen F.; Martin-Hirsch, Pierre L.; Martin, Francis L.

    2016-02-01

    Epidemiological evidence suggests that cancers attributable to exogenous carcinogenic agents may appear decades after initiating exposures. Environmental factors including lifestyle and/or diet have been implicated in the aetiology of breast cancer. Breast tissue undergoes continuous molecular and morphological changes from the time of thelarche to menopause and thereafter. These alterations are both cyclical and longitudinal, and can be influenced by several environmental factors including exposure to oestrogens. Research into the latent period leading to breast carcinogenesis has been mostly limited to when hyperplastic lesions are present. Investigations to identify a biomarker of commitment to disease in normal breast tissue are hindered by the molecular and histological diversity of disease-free breast tissue. Benign tissue from reduction mammoplasties provides an opportunity to study biochemical differences between women of similar ages as well as alterations with advancing age. Herein, synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy was used to examine the terminal ductal lobular epithelium (TDLU) and, intra- and inter-lobular epithelium to identify spatial and temporal changes within these areas. Principal component analysis (PCA) followed by linear discriminant analysis of mid-infrared spectra revealed unambiguous inter-individual as well as age-related differences in each histological compartment interrogated. Moreover, exploratory PCA of luminal and myoepithelial cells within the TDLU indicated the presence of specific cells, potentially stem cells. Understanding alterations within benign tissue may assist in the identification of alterations in latent pre-clinical stages of breast cancer.

  1. Role of Molecular Profiling in Soft Tissue Sarcoma.

    PubMed

    Lindsay, Timothy; Movva, Sujana

    2018-05-01

    Diagnosis and treatment of soft tissue sarcoma (STS) is a particularly daunting task, largely due to the profound heterogeneity that characterizes these malignancies. Molecular profiling has emerged as a useful tool to confirm histologic diagnoses and more accurately classify these malignancies. Recent large-scale, multiplatform analyses have begun the work of establishing a more complete understanding of molecular profiling in STS subtypes and to identify new molecular alterations that may guide the development of novel targeted therapies. This review provides a brief and general overview of the role that molecular profiling has in STS, highlighting select sarcoma subtypes that are notable for recent developments. The role of molecular profiling as it relates to diagnostic strategies is discussed, along with ways that molecular profiling may provide guidance for potential therapeutic interventions. Copyright © 2018 by the National Comprehensive Cancer Network.

  2. Comparable Molecular Alterations in 4-Nitroquinoline 1-Oxide-induced Oral and Esophageal Cancer in Mice and in Human Esophageal Cancer, Associated with Poor Prognosis of Patients

    PubMed Central

    YANG, ZHENGDUO; GUAN, BAOXIANG; MEN, TAOYAN; FUJIMOTO, JUNYA; XU, XIAOCHUN

    2013-01-01

    Background The murine model of 4-nitroquinoline 1-oxide (4-NQO)-induced oral and esophageal cancer is frequently used to assess the effects of different cancer prevention/therapy agents in vivo, but the molecular mechanisms in those 4-NQO-induced carcinogenesis are unknown. This study investigated aberrant expression of cell growth-critical genes in 4-NQO-induced oral and esophageal cancer tissues in mice compared to human disease for association with survival of patients. Materials and Methods C57LB6/129Sv mice were given 4-NQO in their drinking water to induce oral and esophageal cancer. Quantitative-reverse transcription polymerase chain reaction (qRT-PCR), western blot, and immunohistochemistry were used to detect gene expression in the cancer tissues from mice and in 4-NQO-treated human esophageal cancer cell lines and esophageal cancer tissues. Methylation-specific PCR and DNA sequencing were performed to assess methylation of Rarb2 promoter in murine tissues. Kaplan-Meier analysis was performed to associate gene expression in esophageal cancer tissues with survival data for patients with esophageal cancer. Results 4-NQO dose-dependently induced pre-malignant and malignant lesions in oral cavity and esophagus in mice that pathologically and morphologically mimicked human oral and esophageal cancer. Molecularly, 4-NQO inhibited Rarβ2 but induced expression of phosphorylated extracellular-signal-regulated kinase 1 and 2 (p-ERK1/2) and Cox2 proteins and Rarβ2 gene promoter methylation in murine tumors. In vitro treatment with 4-NQO altered expression of RARβ2, p-ERK1/2, and COX2 in human esophageal cancer cells. In tissues from 90 patients with esophageal cancer, expression of p-ERK1/2 and COX2 was up-regulated, and p-ERK1/2 expression was associated with advanced clinical tumor stage and consumption of hot beverages, while COX2 expression was associated with tumor de-differentiation in esophageal cancer. Furthermore, expression of p-ERK1/2 was associated

  3. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status.

    PubMed

    Trivedi, Malav S; Holger, Dana; Bui, Anh Tuyet; Craddock, Travis J A; Tartar, Jaime L

    2017-01-01

    Sleep is critical for repair as well as the rejuvenation processes in the body and many of these functions are regulated via underlying cellular metabolic homeostasis. Changes in sleep pattern are reported to alter such metabolic function resulting in altered disease susceptibility or behavior. Here, we measured the extent to which overnight total sleep deprivation (SD) in young adult humans can influence systemic (plasma-derived) redox-metabolism including the major antioxidant, glutathione as well as DNA methylation levels. Nineteen participants (n = 19, μ age = 21, SD = 3.09) underwent morning testing before and after overnight total SD. Biochemical measures before and after SD revealed that glutathione, ATP, cysteine, and homocysteine levels were significantly reduced following one night of sleep deprivation (all p's < 0.01). Parallel to the well-recognized fact that sleep deprivation (maintaining wakefulness) uses up metabolic reserves, we observed that morning cortisol levels were blunted after sleep deprivation. There were no significant correlations between self-reported or actigraphy-measured sleep and the biochemical measurements, strongly indicating that prior sleep behavior did not have any direct influence on the biochemical measures taken at baseline or after sleep deprivation. Results from the current investigation supports the previous literature implicating the induction of oxidative stress and ATP depletion with sleep deprivation. Furthermore, such altered antioxidant status can also induce downstream epigenetic changes. Although we did not measure the specific genes that were altered under the influence of such sleep deprivation, such epigenetic changes could potentially contribute towards disease predisposition.

  4. Coexpression network analysis identifies transcriptional modules associated with genomic alterations in neuroblastoma.

    PubMed

    Yang, Liulin; Li, Yun; Wei, Zhi; Chang, Xiao

    2018-06-01

    Neuroblastoma is a highly complex and heterogeneous cancer in children. Acquired genomic alterations including MYCN amplification, 1p deletion and 11q deletion are important risk factors and biomarkers in neuroblastoma. Here, we performed a co-expression-based gene network analysis to study the intrinsic association between specific genomic changes and transcriptome organization. We identified multiple gene coexpression modules which are recurrent in two independent datasets and associated with functional pathways including nervous system development, cell cycle, immune system process and extracellular matrix/space. Our results also indicated that modules involved in nervous system development and cell cycle are highly associated with MYCN amplification and 1p deletion, while modules responding to immune system process are associated with MYCN amplification only. In summary, this integrated analysis provides novel insights into molecular heterogeneity and pathogenesis of neuroblastoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017. Published by Elsevier B.V.

  5. Effects of altered auditory feedback across effector systems: production of melodies by keyboard and singing.

    PubMed

    Pfordresher, Peter Q; Mantell, James T

    2012-01-01

    We report an experiment that tested whether effects of altered auditory feedback (AAF) during piano performance differ from its effects during singing. These effector systems differ with respect to the mapping between motor gestures and pitch content of auditory feedback. Whereas this action-effect mapping is highly reliable during phonation in any vocal motor task (singing or speaking), mapping between finger movements and pitch occurs only in limited situations, such as piano playing. Effects of AAF in both tasks replicated results previously found for keyboard performance (Pfordresher, 2003), in that asynchronous (delayed) feedback slowed timing whereas alterations to feedback pitch increased error rates, and the effect of asynchronous feedback was similar in magnitude across tasks. However, manipulations of feedback pitch had larger effects on singing than on keyboard production, suggesting effector-specific differences in sensitivity to action-effect mapping with respect to feedback content. These results support the view that disruption from AAF is based on abstract, effector independent, response-effect associations but that the strength of associations differs across effector systems. Copyright © 2011. Published by Elsevier B.V.

  6. Theoretical study of ANTO molecular systems: Causes of insensitivity of the energetic compound NTO

    NASA Astrophysics Data System (ADS)

    Liu, Min-Hsien; Chen, Cheng; Hong, Yaw-Shun

    The ANTO molecular system, which comprises the energetic compound 3-nitro-1,2,4-triazole-5-one (NTO, with its two lowest-energy conformers L1 and L2), ammonia (NH3), and water (H2O) molecules, is introduced for a theoretical survey of corresponding geometrical structure and localized bonding character. With the medium (or solvent) of H2O and NH3, three intermolecular hydrogen bonds formed in the NTO + NH3 + H2O system would lower the overall molecular energy and stabilize.

  7. Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies.

    PubMed

    Mina, Marco; Raynaud, Franck; Tavernari, Daniele; Battistello, Elena; Sungalee, Stephanie; Saghafinia, Sadegh; Laessle, Titouan; Sanchez-Vega, Francisco; Schultz, Nikolaus; Oricchio, Elisa; Ciriello, Giovanni

    2017-08-14

    Cancer evolves through the emergence and selection of molecular alterations. Cancer genome profiling has revealed that specific events are more or less likely to be co-selected, suggesting that the selection of one event depends on the others. However, the nature of these evolutionary dependencies and their impact remain unclear. Here, we designed SELECT, an algorithmic approach to systematically identify evolutionary dependencies from alteration patterns. By analyzing 6,456 genomes from multiple tumor types, we constructed a map of oncogenic dependencies associated with cellular pathways, transcriptional readouts, and therapeutic response. Finally, modeling of cancer evolution shows that alteration dependencies emerge only under conditional selection. These results provide a framework for the design of strategies to predict cancer progression and therapeutic response. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Calcofluor white ST Alters the in vivo assembly of cellulose microfibrils.

    PubMed

    Haigler, C H; Brown, R M; Benziman, M

    1980-11-21

    The fluorescent brightener, Calcofluor White ST, prevents the in vivo assembly of crystalline cellulose microfibrils and ribbons by Acetobacter xylinum. In the presence of more than 0.01 percent Calcofluor, Acetobacter continues to synthesize high-molecular-weight beta-1,4 glucans. X-ray crystallography shows that the altered product exhibits no detectable crystallinity in the wet state, but upon drying it changes into crystalline cellulose I. Calcofluor alters cellulose crystallization by hydrogen bonding with glucan chains. Synthesis of this altered product is reversible and can be monitored with fluorescence and electron microscopy. Use of Calcofluor has made it possible to separate the processes of polymerization and crystallization leading to the biogenesis of cellulose microfibrils, and has suggested that crystallization occurs by a cell-directed. self-assembly process in Acetobacter xylinum.

  9. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice

    PubMed Central

    Schroeder, Analyne M; Truong, Danny; Loh, Dawn H; Jordan, Maria C; Roos, Kenneth P; Colwell, Christopher S

    2012-01-01

    The circadian system co-ordinates the temporal patterning of behaviour and many underlying biological processes. In some cases, the regulated outputs of the circadian system, such as activity, may be able to feed back to alter core clock processes. In our studies, we used four wheel-access conditions (no access; free access; early night; and late night) to manipulate the duration and timing of activity while under the influence of a light–dark cycle. In wild-type mice, scheduled wheel access was able to increase ambulatory activity, inducing a level of exercise driven at various phases of the light–dark cycle. Scheduled exercise also manipulated the magnitude and phasing of the circadian-regulated outputs of heart rate and body temperature. At a molecular level, the phasing and amplitude of PER2::LUCIFERASE (PER2::LUC) expression rhythms in the SCN and peripheral tissues of Per2::Luc knockin mice were altered by scheduled exercise. We then tested whether scheduled wheel access could improve deficits observed in vasointestinal polypeptide-deficient mice under the influence of a light–dark cycle. We found that scheduled wheel access during the late night improved many of the behavioural, physiological and molecular deficits previously described in vasointestinal polypeptide-deficient mice. Our results raise the possibility that scheduled exercise could be used as a tool to modulate daily rhythms and, when applied, may counteract some of the negative impacts of ageing and disease on the circadian system. PMID:22988135

  10. Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro

    PubMed Central

    McCarthy, Kelly M.; Tank, David W.; Enquist, Lynn W.

    2009-01-01

    Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV

  11. Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin.

    PubMed

    Ziebell, Angela; Gracom, Kristen; Katahira, Rui; Chen, Fang; Pu, Yunqiao; Ragauskas, Art; Dixon, Richard A; Davis, Mark

    2010-12-10

    The lignin content of biomass can impact the ease and cost of biomass processing. Lignin reduction through breeding and genetic modification therefore has potential to reduce costs in biomass-processing industries (e.g. pulp and paper, forage, and lignocellulosic ethanol). We investigated compositional changes in two low-lignin alfalfa (Medicago sativa) lines with antisense down-regulation of p-coumarate 3-hydroxylase (C3H) or hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (HCT). We investigated whether the difference in reactivity during lignification of 4-coumaryl alcohol (H) monomers versus the naturally dominant sinapyl alcohol and coniferyl alcohol lignin monomers alters the lignin structure. Sequential base extraction readily reduced the H monomer content of the transgenic lines, leaving a residual lignin greatly enriched in H subunits; the extraction profile highlighted the difference between the control and transgenic lines. Gel permeation chromatography of isolated ball-milled lignin indicated significant changes in the weight average molecular weight distribution of the control versus transgenic lines (CTR1a, 6000; C3H4a, 5500; C3H9a, 4000; and HCT30a, 4000).

  12. Maternal hyperthyroidism alters the pattern of expression of cardiac renin-angiotensin system components in rat offspring.

    PubMed

    Lino, Caroline A; Shibata, Caroline E R; Barreto-Chaves, Maria Luiza M

    2014-03-01

    Changes in perinatal environment can lead to physiological, morphological, or metabolic alterations in adult life. It is well known that thyroid hormones (TH) are critical for the development, growth, and maturation of organs and systems. In addition, TH interact with the renin-angiotensin system (RAS), and both play a critical role in adult cardiovascular function. The objective of this study was to evaluate the effect of maternal hyperthyroidism on cardiac RAS components in pups during development. From gestational day nine (GD9), pregnant Wistar rats received thyroxine (T4, 12 mg/l in tap water; Hyper group) or vehicle (control group). Dams and pups were killed on GD18 and GD20. Serum concentrations of triiodothyronine (T3) and T4 were higher in the Hyper group than in the control group dams. Cardiac hypertrophy was observed in Hyper pups on GD20. Cardiac angiotensin-converting enzyme (ACE) activity was significantly lower in Hyper pups on both GD18 and GD20, but there was no difference in Ang I/Ang II levels. Ang II receptors expression was higher in the Hyper pup heart on GD18. Maternal hyperthyroidism is associated with alterations in fetal development and altered pattern of expression in RAS components, which in addition to cardiac hypertrophy observed on GD20 may represent an important predisposing factor to cardiovascular diseases in adult life.

  13. Oxidative Stress and Heart Failure in Altered Thyroid States

    PubMed Central

    Mishra, Pallavi; Samanta, Luna

    2012-01-01

    Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism). The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy. PMID:22649319

  14. Molecular Genetic Analysis of Ethanol Intoxication in Drosophila melanogaster.

    PubMed

    Heberlein, Ulrike; Wolf, Fred W; Rothenfluh, Adrian; Guarnieri, Douglas J

    2004-08-01

    Recently, the fruit fly Drosophila melanogaster has been introduced as a model system to study the molecular bases of a variety of ethanol-induced behaviors. It became immediately apparent that the behavioral changes elicited by acute ethanol exposure are remarkably similar in flies and mammals. Flies show signs of acute intoxication, which range from locomotor stimulation at low doses to complete sedation at higher doses and they develop tolerance upon intermittent ethanol exposure. Genetic screens for mutants with altered responsiveness to ethanol have been carried out and a few of the disrupted genes have been identified. This analysis, while still in its early stages, has already revealed some surprising molecular parallels with mammals. The availability of powerful tools for genetic manipulation in Drosophila, together with the high degree of conservation at the genomic level, make Drosophila a promising model organism to study the mechanism by which ethanol regulates behavior and the mechanisms underlying the organism's adaptation to long-term ethanol exposure.

  15. Superrepression through Altered Corepressor-Activated Protein:Protein Interactions.

    PubMed

    He, Chenlu; Custer, Gregory; Wang, Jingheng; Matysiak, Silvina; Beckett, Dorothy

    2018-02-20

    Small molecules regulate transcription in both eukaryotes and prokaryotes by either enhancing or repressing assembly of transcription regulatory complexes. For allosteric transcription repressors, superrepressor mutants can exhibit increased sensitivity to small molecule corepressors. However, because many transcription regulatory complexes assemble in multiple steps, the superrepressor phenotype can reflect changes in any or all of the individual assembly steps. Escherichia coli biotin operon repression complex assembly, which responds to input biotin concentration, occurs via three coupled equilibria, including corepressor binding, holorepressor dimerization, and binding of the dimer to DNA. A genetic screen has yielded superrepressor mutants that repress biotin operon transcription in vivo at biotin concentrations much lower than those required by the wild type repressor. In this work, isothermal titration calorimetry and sedimentation measurements were used to determine the superrepressor biotin binding and homodimerization properties. The results indicate that, although all variants exhibit biotin binding affinities similar to that measured for BirA wt , five of the six superrepressors show altered homodimerization energetics. Molecular dynamics simulations suggest that the altered dimerization results from perturbation of an electrostatic network that contributes to allosteric activation of BirA for dimerization. Modeling of the multistep repression complex assembly for these proteins reveals that the altered sensitivity of the transcription response to biotin concentration is readily explained solely by the altered superrepressor homodimerization energetics. These results highlight how coupled equilibria enable alterations in a transcription regulatory response to input signal through an indirect mechanism.

  16. Chemical and molecular factors in irritable bowel syndrome: current knowledge, challenges, and unanswered questions.

    PubMed

    Camilleri, Michael; Oduyebo, Ibironke; Halawi, Houssam

    2016-11-01

    Several chemical and molecular factors in the intestine are reported to be altered and to have a potentially significant role in irritable bowel syndrome (IBS), particularly in IBS with diarrhea. These include bile acids; short-chain fatty acids; mucosal barrier proteins; mast cell products such as histamine, proteases, and tryptase; enteroendocrine cell products; and mucosal mRNAs, proteins, and microRNAs. This article reviews the current knowledge and unanswered questions in the pathobiology of the chemical and molecular factors in IBS. Evidence continues to point to significant roles in pathogenesis of these chemical and molecular mechanisms, which may therefore constitute potential targets for future research and therapy. However, it is still necessary to address the interaction between these factors in the gut and to appraise how they may influence hypervigilance in the central nervous system in patients with IBS. Copyright © 2016 the American Physiological Society.

  17. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer's Disease.

    PubMed

    Dulla, Chris G; Coulter, Douglas A; Ziburkus, Jokubas

    2016-06-01

    Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. © The Author(s) 2015.

  18. The cyclic AMP cascade is altered in the fragile X nervous system.

    PubMed

    Kelley, Daniel J; Davidson, Richard J; Elliott, Jamie L; Lahvis, Garet P; Yin, Jerry C P; Bhattacharyya, Anita

    2007-09-26

    Fragile X syndrome (FX), the most common heritable cause of mental retardation and autism, is a developmental disorder characterized by physical, cognitive, and behavioral deficits. FX results from a trinucleotide expansion mutation in the fmr1 gene that reduces levels of fragile X mental retardation protein (FMRP). Although research efforts have focused on FMRP's impact on mGluR signaling, how the loss of FMRP leads to the individual symptoms of FX is not known. Previous studies on human FX blood cells revealed alterations in the cyclic adenosine 3', 5'-monophosphate (cAMP) cascade. We tested the hypothesis that cAMP signaling is altered in the FX nervous system using three different model systems. Induced levels of cAMP in platelets and in brains of fmr1 knockout mice are substantially reduced. Cyclic AMP induction is also significantly reduced in human FX neural cells. Furthermore, cAMP production is decreased in the heads of FX Drosophila and this defect can be rescued by reintroduction of the dfmr gene. Our results indicate that a robust defect in cAMP production in FX is conserved across species and suggest that cAMP metabolism may serve as a useful biomarker in the human disease population. Reduced cAMP induction has implications for the underlying causes of FX and autism spectrum disorders. Pharmacological agents known to modulate the cAMP cascade may be therapeutic in FX patients and can be tested in these models, thus supplementing current efforts centered on mGluR signaling.

  19. Redox Control of Leukemia: From Molecular Mechanisms to Therapeutic Opportunities

    PubMed Central

    Irwin, Mary E.; Rivera-Del Valle, Nilsa

    2013-01-01

    Abstract Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability—some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients. Antioxid. Redox Signal. 18, 1349–1383. PMID:22900756

  20. Molecular Mechanisms of Neuroplasticity: An Expanding Universe.

    PubMed

    Gulyaeva, N V

    2017-03-01

    Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different "hot points" in the research area of biochemical mechanisms supporting neuroplasticity.

  1. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations.

    PubMed

    Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod

    2009-11-01

    Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.

  2. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    PubMed Central

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  3. Molecular characterization of chronic-type adult T-cell leukemia/lymphoma.

    PubMed

    Yoshida, Noriaki; Karube, Kennosuke; Utsunomiya, Atae; Tsukasaki, Kunihiro; Imaizumi, Yoshitaka; Taira, Naoya; Uike, Naokuni; Umino, Akira; Arita, Kotaro; Suguro, Miyuki; Tsuzuki, Shinobu; Kinoshita, Tomohiro; Ohshima, Koichi; Seto, Masao

    2014-11-01

    Adult T-cell leukemia/lymphoma (ATL) is a human T-cell leukemia virus type-1-induced neoplasm with four clinical subtypes: acute, lymphoma, chronic, and smoldering. Although the chronic type is regarded as indolent ATL, about half of the cases progress to acute-type ATL. The molecular pathogenesis of acute transformation in chronic-type ATL is only partially understood. In an effort to determine the molecular pathogeneses of ATL, and especially the molecular mechanism of acute transformation, oligo-array comparative genomic hybridization and comprehensive gene expression profiling were applied to 27 and 35 cases of chronic and acute type ATL, respectively. The genomic profile of the chronic type was nearly identical to that of acute-type ATL, although more genomic alterations characteristic of acute-type ATL were observed. Among the genomic alterations frequently observed in acute-type ATL, the loss of CDKN2A, which is involved in cell-cycle deregulation, was especially characteristic of acute-type ATL compared with chronic-type ATL. Furthermore, we found that genomic alteration of CD58, which is implicated in escape from the immunosurveillance mechanism, is more frequently observed in acute-type ATL than in the chronic-type. Interestingly, the chronic-type cases with cell-cycle deregulation and disruption of immunosurveillance mechanism were associated with earlier progression to acute-type ATL. These findings suggested that cell-cycle deregulation and the immune escape mechanism play important roles in acute transformation of the chronic type and indicated that these alterations are good predictive markers for chronic-type ATL. ©2014 American Association for Cancer Research.

  4. Molecular characteristics and alterations during early development of the human vagina

    PubMed Central

    Fritsch, Helga; Richter, Elisabeth; Adam, Nadia

    2012-01-01

    Unresolved questions remain concerning the derivation of the vagina with respect to the relative contributions from the Müllerian ducts, the urogenital sinus, and the Wolffian ducts. Recent molecular and cellular studies in rodents have opened up a large gap between the level of understanding of vaginal development in mice and understanding of human vaginal development, which is based on histology. To compare the findings in mice with human vaginal development and to address this gap, we analysed molecular characteristics of the urogenital sinus, Wolffian ducts, and Müllerian ducts in 8–14-week-old human specimens using immunohistochemical methods. The monoclonal antibodies used were directed against cytokeratin (CK) 14, CK19, vimentin, laminin, p63, E-cadherin, caspase-3, Ki67, HOX A13, and BMP-4. The immunohistochemical analysis revealed that, during weeks 8–9, the epithelium of the Müllerian ducts became positive for p63 as p63-positive cells that originated from the sinus epithelium reached the caudal tip of the fused Müllerian ducts via the Wolffian ducts. The lumen of the fused Müllerian ducts was closed by an epithelial plug that contained both vimentin-positive and vimentin-negative cells. Subsequently, the resulting epithelial tube enlarged by proliferation of basal p63-positive cells. The first signs of squamous differentiation were detected during week 14, with the appearance of CK14-positive cells. According to our results, all three components, namely, the urogenital sinus, Wolffian ducts, and Müllerian ducts, interacted during the formation of the human vagina. The sinus epithelium provided p63-positive cells, the Wollfian ducts acted as a ‘transporter’, and the Müllerian ducts contributed the guiding structure for the vaginal anlagen. Epithelial differentiation began at the end of the period studied and extended in a caudo-cranial direction. The present study is one of the first to provide up-to-date molecular correlates for human

  5. Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deumens, E.; Diz, A.; Longo, R.

    1994-07-01

    An overview is presented of methods for time-dependent treatments of molecules as systems of electrons and nuclei. The theoretical details of these methods are reviewed and contrasted in the light of a recently developed time-dependent method called electron-nuclear dynamics. Electron-nuclear dynamics (END) is a formulation of the complete dynamics of electrons and nuclei of a molecular system that eliminates the necessity of constructing potential-energy surfaces. Because of its general formulation, it encompasses many aspects found in other formulations and can serve as a didactic device for clarifying many of the principles and approximations relevant in time-dependent treatments of molecular systems.more » The END equations are derived from the time-dependent variational principle applied to a chosen family of efficiently parametrized approximate state vectors. A detailed analysis of the END equations is given for the case of a single-determinantal state for the electrons and a classical treatment of the nuclei. The approach leads to a simple formulation of the fully nonlinear time-dependent Hartree-Fock theory including nuclear dynamics. The nonlinear END equations with the [ital ab] [ital initio] Coulomb Hamiltonian have been implemented at this level of theory in a computer program, ENDyne, and have been shown feasible for the study of small molecular systems. Implementation of the Austin Model 1 semiempirical Hamiltonian is discussed as a route to large molecular systems. The linearized END equations at this level of theory are shown to lead to the random-phase approximation for the coupled system of electrons and nuclei. The qualitative features of the general nonlinear solution are analyzed using the results of the linearized equations as a first approximation. Some specific applications of END are presented, and the comparison with experiment and other theoretical approaches is discussed.« less

  6. A quantum-mechanics molecular-mechanics scheme for extended systems

    NASA Astrophysics Data System (ADS)

    Hunt, Diego; Sanchez, Veronica M.; Scherlis, Damián A.

    2016-08-01

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  7. A quantum-mechanics molecular-mechanics scheme for extended systems.

    PubMed

    Hunt, Diego; Sanchez, Veronica M; Scherlis, Damián A

    2016-08-24

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  8. TopoMS: Comprehensive topological exploration for molecular and condensed-matter systems.

    PubMed

    Bhatia, Harsh; Gyulassy, Attila G; Lordi, Vincenzo; Pask, John E; Pascucci, Valerio; Bremer, Peer-Timo

    2018-06-15

    We introduce TopoMS, a computational tool enabling detailed topological analysis of molecular and condensed-matter systems, including the computation of atomic volumes and charges through the quantum theory of atoms in molecules, as well as the complete molecular graph. With roots in techniques from computational topology, and using a shared-memory parallel approach, TopoMS provides scalable, numerically robust, and topologically consistent analysis. TopoMS can be used as a command-line tool or with a GUI (graphical user interface), where the latter also enables an interactive exploration of the molecular graph. This paper presents algorithmic details of TopoMS and compares it with state-of-the-art tools: Bader charge analysis v1.0 (Arnaldsson et al., 01/11/17) and molecular graph extraction using Critic2 (Otero-de-la-Roza et al., Comput. Phys. Commun. 2014, 185, 1007). TopoMS not only combines the functionality of these individual codes but also demonstrates up to 4× performance gain on a standard laptop, faster convergence to fine-grid solution, robustness against lattice bias, and topological consistency. TopoMS is released publicly under BSD License. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. Cellular and Molecular Mechanisms of Sexual Differentiation in the Mammalian Nervous System

    PubMed Central

    Forger, Nancy G.; Strahan, J. Alex; Castillo-Ruiz, Alexandra

    2016-01-01

    Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to rethink often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain. PMID:26790970

  10. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    NASA Astrophysics Data System (ADS)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    geophysical data, as well as analog fossil hydrothermal systems in volcanoes elsewhere, constrain hydrothermal alteration geometry on the pre-Osceola-collapse edifice of Mount Rainier. Relatively narrow zones of acid magmatic-hydrothermal alteration in the central core of the volcano grade to more widely distributed smectite-pyrite alteration farther out on the upper flanks, capped by steam-heated alteration with a large component of alteration resulting from condensation of fumarolic vapor above the water table. Alteration was polygenetic in zones formed episodically, and was strongly controlled by fluxes of heat and magmatic fluid and by local permeability.

  11. Path integral molecular dynamic simulation of flexible molecular systems in their ground state: Application to the water dimer

    NASA Astrophysics Data System (ADS)

    Schmidt, Matthew; Roy, Pierre-Nicholas

    2018-03-01

    We extend the Langevin equation Path Integral Ground State (LePIGS), a ground state quantum molecular dynamics method, to simulate flexible molecular systems and calculate both energetic and structural properties. We test the approach with the H2O and D2O monomers and dimers. We systematically optimize all simulation parameters and use a unity trial wavefunction. We report ground state energies, dissociation energies, and structural properties using three different water models, two of which are empirically based, q-TIP4P/F and q-SPC/Fw, and one which is ab initio, MB-pol. We demonstrate that our energies calculated from LePIGS can be merged seamlessly with low temperature path integral molecular dynamics calculations and note the similarities between the two methods. We also benchmark our energies against previous diffusion Monte Carlo calculations using the same potentials and compare to experimental results. We further demonstrate that accurate vibrational energies of the H2O and D2O monomer can be calculated from imaginary time correlation functions generated from the LePIGS simulations using solely the unity trial wavefunction.

  12. Advances on plant-pathogen interactions from molecular toward systems biology perspectives.

    PubMed

    Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique

    2017-05-01

    In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  13. Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity

    NASA Technical Reports Server (NTRS)

    Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.

  14. Molecular alterations of EGFR and PIK3CA in uterine serous carcinoma.

    PubMed

    Hayes, Monica Prasad; Douglas, Wayne; Ellenson, Lora Hedrick

    2009-06-01

    Uterine serous carcinoma (USC) is an aggressive endometrial cancer associated with poor prognosis despite comprehensive surgical staging and adjuvant chemotherapy and radiation therapy. Biologic targets have yet to be fully explored in this disease and research on such targets could lead to clinical trials utilizing a new class of therapeutics. This study sought to evaluate primary USC tumors for molecular alterations in epidermal growth factor receptor (EGFR) and the recently characterized oncogene PIK3CA, which encodes the catalytic p110-alpha subunit of phosphatidylinositol 3-kinase (PI3K) and thus activates the AKT-mTOR oncogenic pathway. Paraffin-embedded archival tissue of 45 primary USC tumors was utilized in this study. Immunohistochemical analysis of EGFR was performed and cases given a score of 0 to 12 calculated as the product of staining intensity (0 to 3+) and the percentage of positively stained cells (0-4), with 1=1-25%, 2=26-50%, 3=51-75%, and 4=76-100%. For mutational analysis, neoplastic tissue was microdissected and DNA was extracted with phenol-chloroform. Exons 18 through 21 of EGFR and exons 9 and 20 of PIK3CA, the most commonly mutated exons of these genes, were amplified and directly sequenced. When EGFR was evaluated, moderate or strong EGFR membranous staining was observed in 25/45 (56%) USC cases. Thus, a mutational analysis was performed on 35 cases, including all cases with moderate and strong EGFR staining. No mutations were identified in EGFR. In contrast, PIK3CA mutations were confirmed in 5/34 (15%) of USC cases. Four cases were mutated in exon 20 and one case was mutated in exon 9. Since optimal treatment of uterine serous carcinoma remains unknown, novel therapeutic approaches need to be actively pursued. In the current study of primary USC tumors, oncogenic mutations of the PIK3CA gene were seen in 15% of USC cases. This represents the first report of this gene mutation in USC. In addition, EGFR stained positively in the majority

  15. Gene expression-based molecular diagnostic system for malignant gliomas is superior to histological diagnosis.

    PubMed

    Shirahata, Mitsuaki; Iwao-Koizumi, Kyoko; Saito, Sakae; Ueno, Noriko; Oda, Masashi; Hashimoto, Nobuo; Takahashi, Jun A; Kato, Kikuya

    2007-12-15

    Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.

  16. Obesity, metabolic dysfunction and cardiac fibrosis: pathophysiologic pathways, molecular mechanisms and therapeutic opportunities

    PubMed Central

    Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G

    2014-01-01

    Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146

  17. Molecular profiles of finasteride effects on prostate carcinogenesis.

    PubMed

    Li, Jin; Kim, Jeri

    2009-06-01

    Our inability to distinguish between low-grade prostate cancers that pose no threat and those that can kill compels newly diagnosed early prostate cancer patients to make decisions that may negatively affect their lives needlessly for years afterward. To reliably stratify patients into different risk categories and apply appropriate treatment, we need a better molecular understanding of prostate cancer progression. Androgen ablation therapy and 5-alpha reductase inhibitors reduce dihydrotestosterone levels and increase apoptosis. Because of the differing biological potentials of tumor cells, however, these treatments may, in some cases, worsen outcome by selecting for or inducing adaptation of stronger androgen receptor signaling pathways. Reduced dihydrotestosterone also may be associated with altered survival pathways. Complicating treatment effects further, molecular adaptation may be accelerated by interactions between epithelial and stromal cells. The hypothesis that early prostate cancer cells with differing biological potential may respond differently to finasteride treatment is worth testing. Ongoing studies using a systems biology approach in a preoperative prostate cancer setting are testing this hypothesis toward developing more-rational clinical interventions.

  18. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer’s Disease

    PubMed Central

    Dulla, Chris G.; Coulter, Douglas A.; Ziburkus, Jokubas

    2015-01-01

    Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer’s disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. PMID:25948650

  19. The Dilemmas of the Gourmet Fly: The Molecular and Neuronal Mechanisms of Feeding and Nutrient Decision Making in Drosophila

    PubMed Central

    Itskov, Pavel M.; Ribeiro, Carlos

    2012-01-01

    To survive and successfully reproduce animals need to maintain a balanced intake of nutrients and energy. The nervous system of insects has evolved multiple mechanisms to regulate feeding behavior. When animals are faced with the choice to feed, several decisions must be made: whether or not to eat, how much to eat, what to eat, and when to eat. Using Drosophila melanogaster substantial progress has been achieved in understanding the neuronal and molecular mechanisms controlling feeding decisions. These feeding decisions are implemented in the nervous system on multiple levels, from alterations in the sensitivity of peripheral sensory organs to the modulation of memory systems. This review discusses methodologies developed in order to study insect feeding, the effects of neuropeptides and neuromodulators on feeding behavior, behavioral evidence supporting the existence of internal energy sensors, neuronal and molecular mechanisms controlling protein intake, and finally the regulation of feeding by circadian rhythms and sleep. From the discussed data a conceptual framework starts to emerge which aims to explain the molecular and neuronal processes maintaining the stability of the internal milieu. PMID:23407678

  20. Molecular Triage Trials in Colorectal Cancer.

    PubMed

    O'Hara, Mark H; Hamilton, Stanley R; O'Dwyer, Peter J

    2016-01-01

    Advances in the understanding of genomic alterations in cancer, and the various therapies targeted to these alterations have permitted the design of trials directed to bringing this science to the clinic, with the ultimate goal of tailoring therapy to the individual. There is a high need for advances in targeted therapy in colorectal cancer, a disease in which only 2 classes of targeted therapies are approved for use in colorectal cancer, despite the majority of colorectal cancers containing a potentially targetable mutation. Here we outline the key elements to the design of these clinical trials and summarize the current active molecular triage trials in colorectal cancer.

  1. Motor-Iconicity of Sign Language Does Not Alter the Neural Systems Underlying Tool and Action Naming

    ERIC Educational Resources Information Center

    Emmorey, Karen; Grabowski, Thomas; McCullough, Stephen; Damasio, Hannah; Ponto, Laurie; Hichwa, Richard; Bellugi, Ursula

    2004-01-01

    Positron emission tomography was used to investigate whether the motor-iconic basis of certain forms in American Sign Language (ASL) partially alters the neural systems engaged during lexical retrieval. Most ASL nouns denoting tools and ASL verbs referring to tool-based actions are produced with a handshape representing the human hand holding a…

  2. Security Policies for Mitigating the Risk of Load Altering Attacks on Smart Grid Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, Tatyana; AlMajali, Anas; Neuman, Clifford

    2015-04-01

    While demand response programs implement energy efficiency and power quality objectives, they bring potential security threats to the Smart Grid. The ability to influence load in a system enables attackers to cause system failures and impacts the quality and integrity of power delivered to customers. This paper presents a security mechanism to monitor and control load according to a set of security policies during normal system operation. The mechanism monitors, detects, and responds to load altering attacks. We examined the security requirements of Smart Grid stakeholders and constructed a set of load control policies enforced by the mechanism. We implementedmore » a proof of concept prototype and tested it using the simulation environment. By enforcing the proposed policies in this prototype, the system is maintained in a safe state in the presence of load drop attacks.« less

  3. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    PubMed

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Solid-solid collapse transition in a two dimensional model molecular system.

    PubMed

    Singh, Rakesh S; Bagchi, Biman

    2013-11-21

    Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.

  5. Solid-solid collapse transition in a two dimensional model molecular system

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh S.; Bagchi, Biman

    2013-11-01

    Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains.

  6. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems

    PubMed Central

    Lü, Jian-Ming; Lin, Peter H; Yao, Qizhi; Chen, Changyi

    2010-01-01

    Abstract Free radicals derived from oxygen, nitrogen and sulphur molecules in the biological system are highly active to react with other molecules due to their unpaired electrons. These radicals are important part of groups of molecules called reactive oxygen/nitrogen species (ROS/RNS), which are produced during cellular metabolism and functional activities and have important roles in cell signalling, apoptosis, gene expression and ion transportation. However, excessive ROS attack bases in nucleic acids, amino acid side chains in proteins and double bonds in unsaturated fatty acids, and cause oxidative stress, which can damage DNA, RNA, proteins and lipids resulting in an increased risk for cardiovascular disease, cancer, autism and other diseases. Intracellular antioxidant enzymes and intake of dietary antioxidants may help to maintain an adequate antioxidant status in the body. In the past decades, new molecular techniques, cell cultures and animal models have been established to study the effects and mechanisms of antioxidants on ROS. The chemical and molecular approaches have been used to study the mechanism and kinetics of antioxidants and to identify new potent antioxidants. Antioxidants can decrease the oxidative damage directly via reacting with free radicals or indirectly by inhibiting the activity or expression of free radical generating enzymes or enhancing the activity or expression of intracellular antioxidant enzymes. The new chemical and cell-free biological system has been applied in dissecting the molecular action of antioxidants. This review focuses on the research approaches that have been used to study oxidative stress and antioxidants in lipid peroxidation, DNA damage, protein modification as well as enzyme activity, with emphasis on the chemical and cell-free biological system. PMID:19754673

  7. [Molecular epidemiology in the epidemiological transition].

    PubMed

    Tapia-Conyer, R

    1997-01-01

    The epidemiological transition describes the changes in the health profile of populations where infectious diseases are substituted by chronic or non-communicable diseases. Even in industrialized countries, infectious diseases emerge as important public health problems and with a very important association with several type of neoplasm. Molecular epidemiology brings in new tools for the study of the epidemiological transition by discovering infectious agents as etiology of diseases, neither of both new. Much has been advanced in the understanding of the virulence and resistance mechanism of different strains, or improving the knowledge on transmission dynamics and dissemination pathways of infectious diseases. As to the non-communicable diseases, molecular epidemiology has enhanced the identification of endogenous risk factors link to alterations, molecular changes in genetic material, that will allow a more detail definition of risk and the identification of individual and groups at risk of several diseases. The potential impact of molecular epidemiology in other areas as environmental, lifestyles and nutritional areas are illustrated with several examples.

  8. Hypertension: renin-angiotensin-aldosterone system alterations.

    PubMed

    Te Riet, Luuk; van Esch, Joep H M; Roks, Anton J M; van den Meiracker, Anton H; Danser, A H Jan

    2015-03-13

    Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension. © 2015 American Heart Association, Inc.

  9. Altered Placental Tryptophan Metabolism: A Crucial Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders

    DTIC Science & Technology

    2014-07-01

    Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders PRINCIPAL INVESTIGATOR: Alexandre Bonnin, PhD CONTRACTING...Fetal Programming of Neurodevelopmental Disorders 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Alexandre Bonnin, PhD; Betty...metabolism by maternal inflammation during early gestation constitutes a new molecular pathway for the fetal programming of neurodevelopmental

  10. Holographic recording medium employing a photoconductive layer and a low molecular weight microcrystalline polymeric layer

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  11. Using large-scale genome variation cohorts to decipher the molecular mechanism of cancer.

    PubMed

    Habermann, Nina; Mardin, Balca R; Yakneen, Sergei; Korbel, Jan O

    2016-01-01

    Characterizing genomic structural variations (SVs) in the human genome remains challenging, and there is a growing interest to understand somatic SVs occurring in cancer, a disease of the genome. A havoc-causing SV process known as chromothripsis scars the genome when localized chromosome shattering and repair occur in a one-off catastrophe. Recent efforts led to the development of a set of conceptual criteria for the inference of chromothripsis events in cancer genomes and to the development of experimental model systems for studying this striking DNA alteration process in vitro. We discuss these approaches, and additionally touch upon current "Big Data" efforts that employ hybrid cloud computing to enable studies of numerous cancer genomes in an effort to search for commonalities and differences in molecular DNA alteration processes in cancer. Copyright © 2016. Published by Elsevier SAS.

  12. DCMS: A data analytics and management system for molecular simulation.

    PubMed

    Kumar, Anand; Grupcev, Vladimir; Berrada, Meryem; Fogarty, Joseph C; Tu, Yi-Cheng; Zhu, Xingquan; Pandit, Sagar A; Xia, Yuni

    Molecular Simulation (MS) is a powerful tool for studying physical/chemical features of large systems and has seen applications in many scientific and engineering domains. During the simulation process, the experiments generate a very large number of atoms and intend to observe their spatial and temporal relationships for scientific analysis. The sheer data volumes and their intensive interactions impose significant challenges for data accessing, managing, and analysis. To date, existing MS software systems fall short on storage and handling of MS data, mainly because of the missing of a platform to support applications that involve intensive data access and analytical process. In this paper, we present the database-centric molecular simulation (DCMS) system our team developed in the past few years. The main idea behind DCMS is to store MS data in a relational database management system (DBMS) to take advantage of the declarative query interface ( i.e. , SQL), data access methods, query processing, and optimization mechanisms of modern DBMSs. A unique challenge is to handle the analytical queries that are often compute-intensive. For that, we developed novel indexing and query processing strategies (including algorithms running on modern co-processors) as integrated components of the DBMS. As a result, researchers can upload and analyze their data using efficient functions implemented inside the DBMS. Index structures are generated to store analysis results that may be interesting to other users, so that the results are readily available without duplicating the analysis. We have developed a prototype of DCMS based on the PostgreSQL system and experiments using real MS data and workload show that DCMS significantly outperforms existing MS software systems. We also used it as a platform to test other data management issues such as security and compression.

  13. EDITORIAL: 18th European Conference on Dynamics of Molecular Systems 18th European Conference on Dynamics of Molecular Systems

    NASA Astrophysics Data System (ADS)

    Varandas, A. J. C.

    2011-08-01

    This special section of Comments on Atomic, Molecular and Optical Physics (CAMOP) in Physica Scripta collects some of the papers that have been presented at the 18th European Conference on Dynamics of Molecular Systems MOLEC 2010 held in September 2010 in Curia, Portugal, as part of a series of biennial MOLEC conferences. This started in 1976 in Trento, Italy, and has continued, visiting 17 cities in 11 countries, namely Denmark, The Netherlands, Israel, France, Italy, Germany, Czech Republic, Spain, United Kingdom, Turkey and Russia. Following the MOLEC tradition, the scientific programme of the Curia meeting focused on experimental and theoretical studies of molecular interactions, collision dynamics, spectroscopy, and related fields. It included invited speakers from 22 countries, who were asked to summarize the problems reported in their presentations with the objective of revealing the current thinking of leading researchers in atomic, molecular and optical physics. It is hoped that their authoritative contributions presented in this CAMOP special section will also appeal to non-specialists through their clear and broad introductions to the field as well as references to the accessible literature. This CAMOP special section comprises ten contributions, which cover theoretical studies on the electronic structure of molecules and clusters as well as dynamics of elastic, inelastic and reactive encounters between atoms, molecules, ions, clusters and surfaces. Specifically, it includes electronic structure calculations using the traditional coupled-cluster method (Barreto et al 028111), the electron-attached equation-of-motion coupled cluster method (Hansen et al 028110), the diffusion Monte Carlo method (López-Durán et al 028107) and the path-integral Monte Carlo method (Barragán et al 028109). The contributions on molecular dynamics include on-the-fly quasi-classical trajectories on a five-atom molecule (Yu 028104), quantum reaction dynamics on triatomics

  14. System and method for altering characteristics of materials using an electrohydraulic discharge

    DOEpatents

    Banerjee, Sujit

    2003-06-03

    System and method for oxidizing contaminants to alter specific properties, such as tack, of contaminants. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater. An electrical discharge in the liquid medium oxidizes materials, which may be dissolved or suspended therein, such as stickies, pitch, sulfide, ink, toner, and other substances, thereby reducing tack, odor, and/or zeta potential, as well as producing other desirable effect.

  15. Altering shoppers' supermarket purchases to fit nutritional guidelines: An interactive information system

    PubMed Central

    Winett, Richard A.; Geller, E. Scott; Mundy, Laurie L.; Moore, John F.; Wagner, Jana L.; Hite, Lee A.; Leahy, Michael; Neubauer, Tamara E.; Walberg, Janet L.; Walker, W. Bruce; Lombard, David

    1991-01-01

    This study reports the results of one effort to help supermarket shoppers alter food purchases to make purchases (and meals) that are lower in fat and higher in fiber. A prototype interactive information system using instructional video programs, feedback on purchases with specific goals for change, weekly programs, and the ability to track user interactions and intended purchases was evaluated. The major dependent measure was users' actual food purchases as derived from participants' highly detailed supermarket receipts. After a 5- to 7-week baseline phase, participants were randomly assigned to an experimental or control condition for the 7- to 8-week intervention phase. A follow-up phase began 5 to 8 weeks after participants completed the intervention and discontinued use of the system. The results indicated that experimental participants, when compared to control participants, decreased high fat purchases and increased high fiber purchases during intervention, with evidence for some maintenance of effect in follow-up. Plans for increasing the use and impact of the system are discussed. ImagesFigure 1 PMID:1647387

  16. [Molecular biology in clinical cancer research: the example of digestive cancers].

    PubMed

    Lièvre, A; Laurent-Puig, P

    2005-06-01

    Cancer is a DNA disease characterized by uncontrolled cell proliferation due to the accumulation of genetic alterations. Recent progress in molecular biology allowed the identification of markers potentially usefull for patients management through the identification of these genetic alterations and a best understanding of chemotherapy molecular targets. Several examples in digestive oncology underline the relevance of molecular biology in clinical research. If almost all colorectal cancers (CRC) correspond to the same histopathological type (adenocarcinoma), molecular biology allowed the identification of two different molecular mechanisms of colorectal carcinogenesis: chromosomal instability characterized by recurrent allelic losses on chromosomes 17, 5, 18, 8 and 22 that contribute to the inactivation of tumor suppressor genes, and genetic instability characterized by the instability of microsatellite loci due to an alteration of DNA mismatch repair leading to the accumulation of mutations in genes involved in the control of cell cycle and apoptosis. These data are potentially interesting for the management of CRC patients. Indeed, microsatellite instability seems not only to be a good prognostic factor but also a molecular factor that can predict response to adjuvant 5-fluorouracil based chemotherapy. Therapeutic clinical trials taking into account these molecular parameters are still going on. DNA microarray-based gene expression profiling technology that allows the simultaneous analysis of thousand of tumor genes represents also an interesting approach in oncology with the recent identification of a "genetic signature" as a risk factor of tumor recurrence in stage II CRC, a setting in which the benefit of adjuvant chemotherapy remains on debate. At last, a best understanding of chemotherapy molecular targets allowed the identification of genetic markers that can predict the response and/or the toxicity of anti-cancer drugs used in gastrointestinal cancers

  17. Solar system formation and the distribution of volatile species

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1994-01-01

    To understand how the solar system formed we must understand the compositional distribution of the current system. Volatile species are particularly important in that their stability as condensed phases is limited in temperature-pressure space, and hence variations in their distribution at present potentially contain an imprint of processes by which temperature and pressure varied in the solar nebula. In this talk we restrict ourselves to species more volatile than water ice, and address issues related to processes in the outer solar system and the formation of bodies there; others in this conference will cover volatile species relevant to inner solar system processes. Study of the outer solar system is relevant both to understanding the interface between the solar nebula and the progenitor giant molecular cloud (since the chemical links to present-day observables in molecular clouds are species like methane, carbon monoxide, etc.), as well as the origin of terrestrial planet atmospheres and oceans (the latter to be covered by Owen). The wealth of compositional information on outer solar system bodies which has become available from spacecraft and ground-based observations challenges traditional simplistic views of the composition and hence dynamics of the solar nebula. The basic assumption of thermochemical equilibrium, promulgated in the 1950's, in which methane and ammonia dominate nitrogen- and carbon-bearing species, is demonstrably incorrect on both observational and theoretical grounds. However, the kinetic inhibition model which replaced it, in which carbon monoxide and molecular nitrogen dominate a nebula which is fully mixed and hence cycles outer solar system gases through a hot, chemically active zone near the disk center, is not supported either by observations. Instead, a picture of the outer solar system emerges in which the gas and grains are a mixture of relatively unaltered, or modestly altered, molecular cloud material, along with a fraction

  18. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    PubMed Central

    Holt, Brian D.; Shams, Hengameh; Horst, Travis A.; Basu, Saurav; Rape, Andrew D.; Wang, Yu-Li; Rohde, Gustavo K.; Mofrad, Mohammad R. K.; Islam, Mohammad F.; Dahl, Kris Noel

    2012-01-01

    With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics. PMID:24955540

  19. Identifying Molecular Targets for PTSD Treatment Using Single Prolonged Stress

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-1-0377 TITLE: Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0377 Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress 5b. GRANT...brain GR and β-AR expression alters glutamatergic and GABAergic function in neural circuits that mediate SPS-induced deficits in extinction retention

  20. Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations

    NASA Astrophysics Data System (ADS)

    Le Guillou, Corentin; Bernard, Sylvain; Brearley, Adrian J.; Remusat, Laurent

    2014-04-01

    Chondrites accreted the oldest solid materials in the solar system including dust processed in the protoplanetary disk and diverse organic compounds. After accretion, asteroidal alteration may have impacted organic particles in various ways. To constrain these processes, we conducted a comprehensive study of organics disseminated within the matrices of the three carbonaceous chondrite falls, Renazzo (CR2), Murchison (CM2) and Orgueil (CI). By combining synchrotron-based STXM and TEM analyses on FIB sections of samples previously characterized by NanoSIMS, we investigated the influence of aqueous alteration on the morphology, isotopic signature, molecular structure, spatial distribution, and mineralogical environment of the organic matter within the matrices. Two different populations of materials are distinguishable: sub-micrometric individual grains, likely dominated by insoluble compounds and diffuse organic matter, finely interspersed within phyllosilicates and/or (amorphous) nanocarbonates at the nanometer scale. We suggest that this latter component, which is depleted in aromatics and enriched in carboxylic functional groups, may be dominated by soluble compounds. Organic matter in Renazzo (CR) mainly consists of chemically-homogeneous individual grains surrounded by amorphous and nanocrystalline phyllosilicates. Evidence of connectivity between organic grains and fractures indicates that redistribution has occurred: some areas containing diffuse organic matter can be observed. This diffuse organic component is more abundant in Murchison (CM) and Orgueil (CI). This is interpreted as resulting from fluid transport at the micrometer scale and encapsulation within recrystallized alteration phases. In contrast to Renazzo, organic grains in Murchison and Orgueil display strong chemical heterogeneities, likely related to chemical evolution during aqueous alteration. The observations suggest that the altering fluid was a brine with elevated concentrations of both

  1. Molecular Dynamics Study of Polystyrene-b-poly(ethylene oxide) Asymmetric Diblock Copolymer Systems.

    PubMed

    Dobies, M; Makrocka-Rydzyk, M; Jenczyk, J; Jarek, M; Spontak, R J; Jurga, S

    2017-09-12

    Two polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers differing in molecular mass (49 and 78 kDa) but possessing the same PEO cylindrical morphology are examined to elucidate their molecular dynamics. Of particular interest here is the molecular motion of the PEO blocks involved in the rigid amorphous fraction (RAF). An analysis of complementary thermal calorimetry and X-ray scattering data confirms the presence of microphase-separated morphology as well as semicrystalline structure in each copolymer. Molecular motion within the copolymer systems is monitored by dielectric and nuclear magnetic resonance spectroscopies. The results reported herein reveal the existence of two local Arrhenius-type processes attributed to the noncooperative local motion of PEO segments involved in fully amorphous and rigid amorphous PEO microphases. In both systems, two structural relaxations governed by glass-transition phenomena are identified and assigned to cooperative segmental motion in the fully amorphous phase (the α process) and the RAF (the α c process). We measure the temperature dependence of the dynamics associated with all of the processes mentioned above and propose that these local processes are associated with corresponding cooperative segmental motion in both copolymer systems. In marked contrast to the thermal activation of the α process as discerned in both copolymers, the α c process appears to be a sensitive probe of the copolymer nanostructure. That is, the copolymer with shorter PEO blocks exhibits more highly restricted cooperative dynamics of PEO segments in the RAF, which can be explained in terms of the greater constraint imposed by the glassy PS matrix on the PEO blocks comprising smaller cylindrical microdomains.

  2. Precision medicine in colorectal cancer: the molecular profile alters treatment strategies.

    PubMed

    Tran, Nguyen H; Cavalcante, Ludmila L; Lubner, Sam J; Mulkerin, Daniel L; LoConte, Noelle K; Clipson, Linda; Matkowskyj, Kristina A; Deming, Dustin A

    2015-09-01

    When considering treatment options for patients with metastatic colorectal cancer (mCRC), molecular profiling has become a pivotal component in guiding clinical decisions. FOLFOX and FOLFIRI (fluorouracuil, leucovorin plus oxaliplatin or ininotecan, respectively) are the standard base regimens used for the treatment of mCRC. Biologic agents, such as the epidermal growth factor receptor (EGFR) targeted therapies, cetuximab and panitumumab and the vascular endothelial growth factor monoclonal antibody, bevacizumab, are safe and effective in the first-line setting. The most efficacious use of these agents in terms of timing and selection of the right patient population continues to be debated. Here we review multiple investigations into the effectiveness of treatment options as a function of the mutations present in colon cancers. Early studies have reported that KRAS mutations at exon 2 predict resistance to EGFR targeted therapies. More recently the data have expanded to include KRAS mutations at exons 3 and 4 and NRAS mutations at exons 2, 3 and 4 as well as other biomarkers including BRAF and PIK3CA, leading to the evolution of the treatment of mCRC to a more precision-based approach. As our understanding of relevant biomarkers increases, and data from both molecular profiling and treatment response become more readily available, treatment options will become more precise and their outcomes more effective.

  3. Plasma zinc's alter ego is a low-molecular-weight humoral factor.

    PubMed

    Ou, Ou; Allen-Redpath, Keith; Urgast, Dagmar; Gordon, Margaret-Jane; Campbell, Gill; Feldmann, Jörg; Nixon, Graeme F; Mayer, Claus-Dieter; Kwun, In-Sook; Beattie, John H

    2013-09-01

    Mild dietary zinc deprivation in humans and rodents has little effect on blood plasma zinc levels, and yet cellular consequences of zinc depletion can be detected in vascular and other tissues. We proposed that a zinc-regulated humoral factor might mediate the effects of zinc deprivation. Using a novel approach, primary rat vascular smooth muscle cells (VSMCs) were treated with plasma from zinc-deficient (<1 mg Zn/kg) or zinc-adequate (35 mg Zn/kg, pair-fed) adult male rats, and zinc levels were manipulated to distinguish direct and indirect effects of plasma zinc. Gene expression changes were analyzed by microarray and qPCR, and incubation of VSMCs with blood plasma from zinc-deficient rats strongly changed the expression of >2500 genes, compared to incubation of cells with zinc-adequate rat plasma. We demonstrated that this effect was caused by a low-molecular-weight (∼2-kDa) zinc-regulated humoral factor but that changes in gene expression were mostly reversed by adding zinc back to zinc-deficient plasma. Strongly regulated genes were overrepresented in pathways associated with immune function and development. We conclude that zinc deficiency induces the production of a low-molecular-weight humoral factor whose influence on VSMC gene expression is blocked by plasma zinc. This factor is therefore under dual control by zinc.

  4. Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation

    NASA Astrophysics Data System (ADS)

    Rajkumar, V. B.; Chen, Sinn-wen

    2017-04-01

    Ag-Ni is a simple and important system with immiscible liquids and (Ag,Ni) phases. Previously, this system has been thermodynamically modeled utilizing certain thermochemical and phase equilibria information based on conjecture. An attempt is made in this study to determine the missing information which are difficult to measure experimentally. The boundaries of the liquid miscibility gap at high temperatures are determined using a pyrometer. The temperature of the liquid ⇌ (Ag) + (Ni) eutectic reaction is measured using differential thermal analysis. Tie-lines of the Ag-Ni system at 1023 K and 1473 K are measured using a conventional metallurgical method. The enthalpy of mixing of the liquid at 1773 K and the (Ag,Ni) at 973 K is calculated by molecular dynamics simulation using a large-scale atomic/molecular massively parallel simulator. These results along with literature information are used to model the Gibbs energy of the liquid and (Ag,Ni) by a calculation of phase diagrams approach, and the Ag-Ni phase diagram is then calculated.

  5. Saw palmetto alters nuclear measurements reflecting DNA content in men with symptomatic BPH: evidence for a possible molecular mechanism.

    PubMed

    Veltri, Robert W; Marks, Leonard S; Miller, M Craig; Bales, Wes D; Fan, John; Macairan, Maria Luz; Epstein, Jonathan I; Partin, Alan W

    2002-10-01

    To examine the nuclear chromatin characteristics of epithelial cells, looking for an SPHB-mediated effect on nuclear DNA structure and organization. Saw palmetto herbal blend (SPHB) causes contraction of prostate epithelial cells and suppression of tissue dihydrotestosterone levels in men with symptomatic benign prostatic hyperplasia, but a fundamental mechanism remains unknown. A 6-month randomized trial, comparing prostatic tissue of men treated with SPHB (n = 20) or placebo (n = 20), was performed. At baseline, the two groups were similar in age (65 versus 64 years), symptoms (International Prostate Symptom Score 18 versus 17), uroflow (maximal urinary flow rate 10 versus 11 mL/s), prostate volume (59 versus 58 cm(3)), prostate-specific antigen (4.2 versus 2.7 ng/mL), and percentage of epithelium (17% versus 16%). Prostatic tissue was obtained by sextant biopsy before and after treatment. Five-micron sections were Feulgen stained and quantitatively analyzed using the AutoCyte QUIC-DNA imaging system. Images were captured from 200 randomly selected epithelial cell nuclei, and 60 nuclear morphometric descriptors (NMDs) (eg, size, shape, DNA content, and textural features) were determined for each nucleus. Logistic regression analysis was used to assess the differences in the variances of the NMDs between the treated and untreated prostate epithelial cells. At baseline, the SPHB and placebo groups had similar NMD values. After 6 months of placebo, no significant change from baseline was found in the NMDs. However, after 6 months of SPHB, 25 of the 60 NMDs were significantly different compared with baseline, and a multivariate model for predicting treatment effect using 4 of the 25 was created (P <0.001). The multivariate model had an area under the receiver operating characteristic curve of 94% and an accuracy of 85%. Six months of SPHB treatment appears to alter the DNA chromatin structure and organization in prostate epithelial cells. Thus, a possible molecular

  6. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    PubMed

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  7. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs

  8. GBM-associated mutations and altered protein expression are more common in young patients.

    PubMed

    Ferguson, Sherise D; Xiu, Joanne; Weathers, Shiao-Pei; Zhou, Shouhao; Kesari, Santosh; Weiss, Stephanie E; Verhaak, Roeland G; Hohl, Raymond J; Barger, Geoffrey R; Reddy, Sandeep K; Heimberger, Amy B

    2016-10-25

    Geriatric glioblastoma (GBM) patients have a poorer prognosis than younger patients, but IDH1/2 mutations (more common in younger patients) confer a favorable prognosis. We compared key GBM molecular alterations between an elderly (age ≥ 70) and younger (18 < = age < = 45) cohort to explore potential therapeutic opportunities. Alterations more prevalent in the young GBM cohort compared to the older cohort (P < 0.05) were: overexpression of ALK, RRM1, TUBB3 and mutation of ATRX, BRAF, IDH1, and TP53. However, PTEN mutation was significantly more frequent in older patients. Among patients with wild-type IDH1/2 status, TOPO1 expression was higher in younger patients, whereas MGMT methylation was more frequent in older patients. Within the molecularly-defined IDH wild-type GBM cohort, younger patients had significantly more mutations in PDGFRA, PTPN11, SMARCA4, BRAF and TP53. GBMs from 178 elderly patients and 197 young patients were analyzed using DNA sequencing, immunohistochemistry, in situ hybridization, and MGMT-methylation assay to ascertain mutational and amplification/expressional status. Significant molecular differences occurred in GBMs from elderly and young patients. Except for the older cohort's more frequent PTEN mutation and MGMT methylation, younger patients had a higher frequency of potential therapeutic targets.

  9. Epstein-Barr virus-positive gastric cancer: a distinct molecular subtype of the disease?

    PubMed

    Jácome, Alexandre Andrade Dos Anjos; Lima, Enaldo Melo de; Kazzi, Ana Izabela; Chaves, Gabriela Freitas; Mendonça, Diego Cavalheiro de; Maciel, Marina Mara; Santos, José Sebastião Dos

    2016-04-01

    Approximately 90% of the world population is infected by Epstein-Barr virus (EBV). Usually, it infects B lymphocytes, predisposing them to malignant transformation. Infection of epithelial cells occurs rarely, and it is estimated that about to 10% of gastric cancer patients harbor EBV in their malignant cells. Given that gastric cancer is the third leading cause of cancer-related mortality worldwide, with a global annual incidence of over 950,000 cases, EBV-positive gastric cancer is the largest group of EBV-associated malignancies. Based on gene expression profile studies, gastric cancer was recently categorized into four subtypes; EBV-positive, microsatellite unstable, genomically stable and chromosomal instability. Together with previous studies, this report provided a more detailed molecular characterization of gastric cancer, demonstrating that EBV-positive gastric cancer is a distinct molecular subtype of the disease, with unique genetic and epigenetic abnormalities, reflected in a specific phenotype. The recognition of characteristic molecular alterations in gastric cancer allows the identification of molecular pathways involved in cell proliferation and survival, with the potential to identify therapeutic targets. These findings highlight the enormous heterogeneity of gastric cancer, and the complex interplay between genetic and epigenetic alterations in the disease, and provide a roadmap to implementation of genome-guided personalized therapy in gastric cancer. The present review discusses the initial studies describing EBV-positive gastric cancer as a distinct clinical entity, presents recently described genetic and epigenetic alterations, and considers potential therapeutic insights derived from the recognition of this new molecular subtype of gastric adenocarcinoma.

  10. 32 CFR Appendix C to Part 323 - Instructions for Preparation of Reports to New or Altered Systems

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Instructions for Preparation of Reports to New or Altered Systems C Appendix C to Part 323 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DEFENSE LOGISTICS AGENCY PRIVACY PROGRAM Pt...

  11. 32 CFR Appendix C to Part 323 - Instructions for Preparation of Reports to New or Altered Systems

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Instructions for Preparation of Reports to New or Altered Systems C Appendix C to Part 323 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DEFENSE LOGISTICS AGENCY PRIVACY PROGRAM Pt...

  12. [Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].

    PubMed

    Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V

    2014-01-01

    Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.

  13. Inter-Species Grafting Caused Extensive and Heritable Alterations of DNA Methylation in Solanaceae Plants

    PubMed Central

    Lin, Yan; Ma, Yiqiao; Liu, Gang; Yu, Xiaoming; Zhong, Silin; Liu, Bao

    2013-01-01

    Background Grafting has been extensively used to enhance the performance of horticultural crops. Since Charles Darwin coined the term “graft hybrid” meaning that asexual combination of different plant species may generate products that are genetically distinct, highly discrepant opinions exist supporting or against the concept. Recent studies have documented that grafting enables exchanges of both RNA and DNA molecules between the grafting partners, thus providing a molecular basis for grafting-induced genetic variation. DNA methylation is known as prone to alterations as a result of perturbation of internal and external conditions. Given characteristics of grafting, it is interesting to test whether the process may cause an alteration of this epigenetic marker in the grafted organismal products. Methodology/Principal Findings We analyzed relative global DNA methylation levels and locus-specific methylation patterns by the MSAP marker and locus-specific bisulfite-sequencing in the seed plants (wild-type controls), self- and hetero-grafted scions/rootstocks, selfed progenies of scions and their seed-plant controls, involving three Solanaceae species. We quantified expression of putative genes involved in establishing and/or maintaining DNA methylation by q-(RT)-PCR. We found that (1) hetero-grafting caused extensive alteration of DNA methylation patterns in a locus-specific manner, especially in scions, although relative methylation levels remain largely unaltered; (2) the altered methylation patterns in the hetero-grafting-derived scions could be inherited to sexual progenies with some sites showing further alterations or revisions; (3) hetero-grafting caused dynamic changes in steady-state transcript abundance of genes encoding for a set of enzymes functionally relevant to DNA methylation. Conclusions/Significance Our results demonstrate that inter-species grafting in plants could produce extensive and heritable alterations in DNA methylation. We suggest that

  14. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    PubMed

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  15. Nighttime dim light exposure alters the responses of the circadian system.

    PubMed

    Shuboni, D; Yan, L

    2010-11-10

    The daily light dark cycle is the most salient entraining factor for the circadian system. However, in modern society, darkness at night is vanishing as light pollution steadily increases. The impact of brighter nights on wild life ecology and human physiology is just now being recognized. In the present study, we tested the possible detrimental effects of dim light exposure on the regulation of circadian rhythms, using CD1 mice housed in light/dim light (LdimL, 300 lux:20 lux) or light/dark (LD, 300 lux:1 lux) conditions. We first examined the expression of clock genes in the suprachiasmatic nucleus (SCN), the locus of the principal brain clock, in the animals of the LD and LdimL groups. Under the entrained condition, there was no difference in PER1 peak expression between the two groups, but at the trough of the PER 1 rhythm, there was an increase in PER1 in the LdimL group, indicating a decrease in the amplitude of the PER1 rhythm. After a brief light exposure (30 min, 300 lux) at night, the light-induced expression of mPer1 and mPer2 genes was attenuated in the SCN of LdimL group. Next, we examined the behavioral rhythms by monitoring wheel-running activity to determine whether the altered responses in the SCN of LdimL group have behavioral consequence. Compared to the LD controls, the LdimL group showed increased daytime activity. After being released into constant darkness, the LdimL group displayed shorter free-running periods. Furthermore, following the light exposure, the phase shifting responses were smaller in the LdimL group. The results indicate that nighttime dim light exposure can cause functional changes of the circadian system, and suggest that altered circadian function could be one of the mechanisms underlying the adverse effects of light pollution on wild life ecology and human physiology. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular Phenotypes of Osteosarcoma*

    PubMed Central

    Scott, Milcah C.; Sarver, Aaron L.; Tomiyasu, Hirotaka; Cornax, Ingrid; Van Etten, Jamie; Varshney, Jyotika; O'Sullivan, M. Gerard; Subramanian, Subbaya; Modiano, Jaime F.

    2015-01-01

    We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma. PMID:26378234

  17. DEMONSTRATION BULLETIN: MOLECULAR BONDING SYSTEM FOR HEAVY METALS STABILIZATION - SOLUCORP INDUSTRIES LTD.

    EPA Science Inventory

    This document presents an evaluation of the Molecular Bonding System (MBS) and its ability to chemically stabilize three metals-contaminated wstes/soils during a SITe demo. The MBS process treated approximately 500 tons each of soil/Fill, Slag, and Miscellaneous Smelter Waste wit...

  18. Complex Patterns of Altered MicroRNA Expression during the Adenoma-Adenocarcinoma Sequence for Microsatellite-Stable Colorectal Cancer

    PubMed Central

    Bartley, Angela N.; Yao, Hui; Barkoh, Bedia A.; Ivan, Cristina; Mishra, Bal M.; Rashid, Asif; Calin, George A.; Luthra, Rajyalakshmi; Hamilton, Stanley R.

    2012-01-01

    Purpose MicroRNAs are short noncoding RNAs that regulate gene expression and are over- or under-expressed in most tumors, including colorectal adenocarcinoma. MicroRNAs are potential biomarkers and therapeutic targets and agents, but limited information on microRNAome alterations during progression in the well-known adenoma-adenocarcinoma sequence is available to guide their usage. Experimental Design We profiled 866 human microRNAs by microarray analysis in 69 matched specimens of microsatellite-stable adenocarcinomas, adjoining precursor adenomas including areas of high- and low-grade dysplasia, and nonneoplastic mucosa. Results We found 230 microRNAs that were significantly differentially expressed during progression, including 19 not reported previously. Altered microRNAs clustered into two major patterns of early (type I) and late (type II) differential expression. The largest number (n = 108) was altered at the earliest step from mucosa to low-grade dysplasia (subtype IA) prior to major nuclear localization of β-catenin, including 36 microRNAs that had persistent differential expression throughout the entire sequence to adenocarcinoma. Twenty microRNAs were intermittently altered (subtype IB), and six were transiently altered (subtype IC). In contrast, 33 microRNAs were altered late in high-grade dysplasia and adenocarcinoma (subtype IIA), and 63 in adenocarcinoma only (subtype IIB). Predicted targets in 12 molecular pathways were identified for highly altered microRNAs, including the Wnt signaling pathway leading to low-grade dysplasia. β-catenin expression correlated with downregulated microRNAs. Conclusions Our findings suggest that numerous microRNAs play roles in the sequence of molecular events, especially early events, resulting in colorectal adenocarcinoma. The temporal patterns and complexity of microRNAome alterations during progression will influence the efficacy of microRNAs for clinical purposes. PMID:21948089

  19. Studying chemical reactions in biological systems with MBN Explorer: implementation of molecular mechanics with dynamical topology

    NASA Astrophysics Data System (ADS)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.; Volkov, Sergey N.; Solov'yov, Andrey V.

    2016-01-01

    The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies. The implementation of the modified force field was carried out in the popular program MBN Explorer, and, to support the development, we provide several illustrative case studies where dynamical topology is necessary. In particular, it is shown that the modified molecular mechanics force field can be applied for studying processes where rupture of chemical bonds plays an essential role, e.g., in irradiation- or collision-induced damage, and also in transformation and fragmentation processes involving biomolecular systems. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  20. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    PubMed Central

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  1. Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging

    DTIC Science & Technology

    2009-10-01

    molecular breast imaging, with the ability to dynamically contour any sized breast, will improve detection and potentially in vivo characterization of...Having flexible 3D positioning about the breast yielded minimal RMSD differences, which is important for high resolution molecular emission imaging. This...TITLE: Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging PRINCIPAL

  2. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    PubMed

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  3. Tailor-made Molecular Cobalt Catalyst System for the Selective Transformation of Carbon Dioxide to Dialkoxymethane Ethers.

    PubMed

    Schieweck, Benjamin G; Klankermayer, Jürgen

    2017-08-28

    Herein a non-precious transition-metal catalyst system for the selective synthesis of dialkoxymethane ethers from carbon dioxide and molecular hydrogen is presented. The development of a tailored catalyst system based on cobalt salts in combination with selected Triphos ligands and acidic co-catalysts enabled a synthetic pathway, avoiding the oxidation of methanol to attain the formaldehyde level of the central CH 2 unit. This unprecedented productivity based on the molecular cobalt catalyst is the first example of a non-precious transition-metal system for this transformation utilizing renewable carbon dioxide sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Behavioral alterations in cystic fibrosis mice are prevented by cannabinoid treatment in infancy.

    PubMed

    Bregman, Tatiana; Fride, Ester

    2011-06-17

    Substantial data have been accumulated regarding the molecular basis of cystic fibrosis (CF) pathogenesis, whereas the influence of biochemical impairments on brain processes has been the focus of much less attention. We have studied some behavioral parameters, such as motor activity and anxiety level, in a mice model of CF. We have assumed that functioning of the endocannabinoid system could be impaired in CF (endocannabinoids are fatty acid derivatives, and fatty acid deficiency is considered a major factor in CF etiology). We have suggested that chronic treatment with cannabinoid receptors agonist during infancy would balance cannabinoid levels and prevent CF-related behavioral alterations. Motor activity and anxiety level were studied in naïve adult CF mice (cftr-deficient mice) and compared with wild-type mice and to CF mice treated chronically with Δ9-tetrahydrocannabinol (Δ9-THC; endocannabinoid receptor agonist) during infancy (from days 7 to 28). Motor activity was tested in the tetrad, and level of anxiety in the plus maze, a month after cessation of treatment. Motor activity decrease and elevated anxiety level were found in adult naïve CF mice compared with wild-type mice. CF mice treated with THC in infancy showed normal motor activity and anxiety levels in adulthood. Motor function alteration and elevated anxiety levels in CF can result from lack of CFTR-channel in neurons and disturbed activity of various brain areas, as well as being secondary and mediated by fatty acids deficiency, altered levels of endocannabinoids and their receptors. It can be suggested that chronic treatment during infancy restores endocannabinoid function and thus prevents behavioral alterations.

  5. On the sputter alteration of regoliths of outer solar system bodies

    NASA Technical Reports Server (NTRS)

    Hapke, B.

    1986-01-01

    The present theoretical and experimental consideration of processes that are expected to occur when the porous regoliths on outer solar system bodies lacking atmospheres are subjected to energetic ion bombardment indicates that porosity reduces the effective sputtering yield of a soil by more than an order of magnitude. Between 90 and 97 percent of the sputtered atoms are trapped within the regolith and subjected to differential desorption fractionation, which emerges as the most important path for the alteration of chemical and optical properties in sputtered regoliths. Sputtered porous mixtures of water, ammonia and methane frosts suffer a loss of H, and surface reactions of C, N, and O that should yield complex hydrocarbons and carbohydrates; such reactions may have played a role in the formation of carbonaceous chondrites' matrix material prior to agglomeration.

  6. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    USGS Publications Warehouse

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  7. Mapping alteration using imagery from the Tiangong-1 hyperspectral spaceborne system: Example for the Jintanzi gold province, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Feng, Jilu; Rivard, Benoit; Xu, Xinliang; Zhou, Jun; Han, Ling; Yang, Junlu; Ren, Guangli

    2018-02-01

    The Tiangong-1 Hyperspectral Imager (HSI) is a relatively new spaceborne hyperspectral remote sensing system that was launched by the Chinese government on September 29th 2011. The system has 64 shortwave infrared (SWIR) spectral bands (1000-2500 nm) and imagery is at a spatial resolution of 20 m. This study represents an evaluation of Tiangong-1 data for the production of alteration mineral maps. Alteration mineral maps resulting from the analysis of Tiangong-1 HSI data and airborne SASI (Shortwave infrared Airborne Spectrographic Imager) data are compared for the Jintanzi area, Beishan, Gansu province, northwest China where gold bearing veins are documented. The results illustrate the detection of muscovite, kaolinite, chlorite, epidote, calcite and dolomite from Tiangong-1 HSI data and most anomalies seen in the airborne SASI data are captured. The Tiangong-1 data appears to be well suited for the detection of surface mineralogy in support of regional mapping and exploration. The data complements that which will be offered by the Chinese GF-5 Hyperspectral Imager and the German EnMAP system, both scheduled for launch in 2018.

  8. Adult recurrent pilocytic astrocytoma: Clinical, histopathological and molecular study.

    PubMed

    Trabelsi, S; Mama, N; Ladib, M; Popov, S; Burford, A; Mokni, M; Tlili, K; Krifa, H; Varella-Garcia, M; Jones, C; Tahar Yacoubi, M; Saad, A; H'mida Ben Brahim, D

    2015-12-01

    PA is a grade I glial tumor that mostly occurs in children. However, although apparently similar to paediatric PA, adult PA presents a different clinical follow-up that could arise from specific molecular alterations. A variety of genetic alterations have been identified as diagnostic or prognostic glioma molecular markers. We describe a right infratentorial tumor that occurred in a 58-year-old man. Neuroimaging and neuropathological examination suggested PA as an initial diagnosis. The tumor was completely resected. Unexpectedly, two years later, a rapidly growing tumor on the operative site was observed with a second location in the pineal region. Immunohistochemical reactions (IHC), Multiplex ligation probe amplification (MLPA) and fluorescence in situ hybridization (FISH) was performed in both primary and relapse tumor. Neuroimaging and neuropathological examinations suggested an unusual diagnosis for adult patients: a recurrent PA. Both MLPA and FISH analysis contribute to diagnostic confirmation by KIAA1549: BRAF fusion detection. Additional genetic results revealed interesting findings that justified the tumor aggressivity. Molecular analysis of adult PA cases should be routinely combined with histopathological and neuroimaging examination to further refine prognostic diagnoses. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Myeloproliferative Neoplasms: Molecular Drivers and Therapeutics.

    PubMed

    Reuther, G W

    2016-01-01

    Activating mutations in genes that drive neoplastic cell growth are numerous and widespread in cancer, and specific genetic alterations are associated with certain types of cancer. For example, classic myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders that affect cells of the myeloid lineage, including erythrocytes, platelets, and granulocytes. An activating mutation in the JAK2 tyrosine kinase is prevalent in these diseases. In MPN patients that lack such a mutation, other genetic changes that lead to activation of the JAK2 signaling pathway are present, indicating deregulation of JAK2 signaling plays an etiological driving role in MPNs, a concept supported by significant evidence from in vivo experimental MPN systems. Thus, small molecules that inhibit JAK2 activity are ideal drugs to impede the progression of disease in MPN patients. However, even though JAK inhibitors provide significant symptomatic relief, they have failed as a remission-inducing therapy. Nonetheless, the progress made understanding the molecular etiology of MPNs since 2005 is significant and has provided insight for the development and testing of novel molecular targeted therapeutic approaches. The current understanding of driver mutations in MPNs and an overview of current and potential therapeutic strategies for MPN patients will be discussed. © 2016 Elsevier Inc. All rights reserved.

  10. Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.

    PubMed

    Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E

    2018-04-21

    Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.

  11. [Molecular diagnostics of ALK-positive lung cancer].

    PubMed

    Tímár, József; Lotz, Gábor; Rásó, Erzsébet; Moldvay, Judit

    2017-09-20

    ALK translocation is the 3rd most frequent genetic aberration in lung adenocarcinoma, and several inhibitors are now clinically available in first and second line settings. Accordingly, molecular diagnostics of ALK-positive lung cancer is very important and can be done with the rational combination of several methods. All international recommendations suggest that, except for cytological samples, screening technology for ALK-positive tumors is immunohistochemistry using a validated test. It is highly recommended that in case of ALK protein positive samples gene translocation must be confirmed by fluorescent in situ hybridization (FISH). In case of cytological samples FISH technique must be used as ALK diagnostics. In equivocal cases the genetic alteration of ALK can be confirmed by alternative molecular techniques such as next generation sequencing or RNAbased PCR methods. Upon administration of ALK inhibitors, acquired resistance is frequent which is mostly due to ALK amplification and/or mutation. It is evident that the diagnostics of these secondary ALK gene alterations must be done from recurrent tumors or circulating nucleic acids.

  12. Robust mechanobiological behavior emerges in heterogeneous myosin systems.

    PubMed

    Egan, Paul F; Moore, Jeffrey R; Ehrlicher, Allen J; Weitz, David A; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

    2017-09-26

    Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.

  13. Robust mechanobiological behavior emerges in heterogeneous myosin systems

    NASA Astrophysics Data System (ADS)

    Egan, Paul F.; Moore, Jeffrey R.; Ehrlicher, Allen J.; Weitz, David A.; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

    2017-09-01

    Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.

  14. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.

    PubMed

    Bercik, Premysl; Verdu, Elena F; Foster, Jane A; Macri, Joseph; Potter, Murray; Huang, Xiaxing; Malinowski, Paul; Jackson, Wendy; Blennerhassett, Patricia; Neufeld, Karen A; Lu, Jun; Khan, Waliul I; Corthesy-Theulaz, Irene; Cherbut, Christine; Bergonzelli, Gabriela E; Collins, Stephen M

    2010-12-01

    Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve. Copyright © 2010 AGA Institute. Published by Elsevier Inc

  15. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  16. Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma

    PubMed Central

    Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-01

    Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169

  17. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.

    PubMed

    Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L

    2003-07-15

    Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.

  18. The Molecular Landscape of Recurrent and Metastatic Head and Neck Cancers

    PubMed Central

    Morris, Luc G. T.; Chandramohan, Raghu; West, Lyndsay; Zehir, Ahmet; Chakravarty, Debyani; Pfister, David G.; Wong, Richard J.; Lee, Nancy Y.; Sherman, Eric J.; Baxi, Shrujal S.; Ganly, Ian; Singh, Bhuvanesh; Shah, Jatin P.; Shaha, Ashok R.; Boyle, Jay O.; Patel, Snehal G.; Roman, Benjamin R.; Barker, Christopher A.; McBride, Sean M.; Chan, Timothy A.; Dogan, Snjezana; Hyman, David M.; Berger, Michael F.; Solit, David B.; Riaz, Nadeem; Ho, Alan L.

    2016-01-01

    IMPORTANCE Recurrent and/or metastatic head and neck cancer is usually incurable. Implementation of precision oncology for these patients has been limited by incomplete understanding of the molecular alterations underlying advanced disease. At the same time, the molecular profiles of many rare head and neck cancer types are unknown. These significant gaps in knowledge need to be addressed to rationally devise new therapies. OBJECTIVE To illuminate the distinct biology of recurrent and metastatic head and neck cancers and review implementation of precision oncology for patients with advanced disease. DESIGN, SETTING, AND PARTICIPANTS After exclusions, 151 patients with advanced, treatment-resistant head and neck tumors, including squamous cell carcinoma (HNSCC), adenoid cystic carcinoma (ACC), and other salivary and cutaneous cancers, whose tumors were sequenced between January 2014 and July 2015 at Memorial Sloan Kettering were recruited. Next-generation sequencing of tumors as part of clinical care included high-depth (median 600×) exonic coverage of 410 cancer genes and whole-genome copy number analysis. INTERVENTIONS Next-generation sequencing of tumors and matched normal DNA. MAIN OUTCOMES AND MEASURES Feasibility, the frequency of actionable molecular alterations, the effect on decision making, and identification of alterations associated with recurrent and metastatic disease. RESULTS Overall, 151 patients (95 men and 56 women; mean [range] age, 61.8 [17-100] years) were included in the study. Next-generation sequencing ultimately guided therapy in 21 of 151 patients (14%) (13 of 53 [25%] of patients with HNSCC) by refining diagnoses and matching patients to specific therapies, in some cases with dramatic responses on basket studies. Molecular alterations were potentially actionable in 28 of 135 patients (21%). The genetic profiles of recurrent and metastatic tumors were often distinct from primary tumors. Compared to primary human papillomavirus (HPV

  19. Magnetic hysteresis in a lanthanide molecular magnet dimer system

    NASA Astrophysics Data System (ADS)

    Atkinson, James; Cebulka, Rebecca; Del Barco, Enrique; Roubeau, Olivier; Velasco, Veronica; Barrios, Leo; Aromi, Guillem

    Molecular magnets present a wonderful means for studying the dynamics of spin. Often synthesized as a crystal lattice of identical systems, ensemble measurements enable thorough detailing of the internal degrees of freedom. Here we present the results of characterization performed on a dimer system, CeTm(HL)2(H2L)NO3pyH2O (L = ligand, C45H31O15N3), consisting of two lanthanide spins (Cerium and Thulium) with expected local axial anisotropies tilted with respect to each other. Microwave EPR spectroscopy at low temperature reveals hysteresis in observed absorption features, with angle dependence studies indicating the presence of several ``easy axis'' orientations. We attempt to understand this system through modelling via a spin Hamiltonian, and to determine the strength and nature of the coupling between the lanthanide centers. This research was funded through NSF Grant # 24086159.

  20. All-organic microelectromechanical systems integrating specific molecular recognition--a new generation of chemical sensors.

    PubMed

    Ayela, Cédric; Dubourg, Georges; Pellet, Claude; Haupt, Karsten

    2014-09-03

    Cantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency. This allows label-free detection by direct mass sensing of low-molecular-weight analytes at nanomolar concentrations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.