Science.gov

Sample records for alu-derived intronic splicing

  1. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM

    PubMed Central

    Pastor, Tibor; Talotti, Gabriele; Lewandowska, Marzena Anna; Pagani, Franco

    2009-01-01

    We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations. PMID:19773425

  2. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM.

    PubMed

    Pastor, Tibor; Talotti, Gabriele; Lewandowska, Marzena Anna; Pagani, Franco

    2009-11-01

    We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations.

  3. Interaction of hnRNPA1/A2 and DAZAP1 with an Alu-Derived Intronic Splicing Enhancer Regulates ATM Aberrant Splicing

    PubMed Central

    Pastor, Tibor; Pagani, Franco

    2011-01-01

    We have previously identified an Alu-derived Intronic Splicing enhancer (ISE) in the Ataxia Teleangectasia Mutated gene (ATM) that facilitates intron pre-mRNA processing and leads to the inclusion of a cryptic exon in the final mRNA transcript. By using an RNA pull-down assay, we show here that hnRNPA1/A2, HuR and DAZAP1 splicing factors and DHX36 RNA helicase bind to the ISE. By functional studies (overexpression and siRNA experiments), we demonstrate that hnRNPA1 and DAZAP1 are indeed involved in ISE-dependent ATM cryptic exon activation, with hnRNPA1 acting negatively and DAZAP1 positively on splicing selection. On the contrary, HuR and DHX36 have no effect on ATM splicing pattern. These data suggest that splicing factors with both negative and positive effect can assemble on the intronic Alu repeats and regulate pre-mRNA splicing. PMID:21858080

  4. Alu-Derived Alternative Splicing Events Specific to Macaca Lineages in CTSF Gene

    PubMed Central

    Lee, Ja-Rang; Park, Sang-Je; Kim, Young-Hyun; Choe, Se-Hee; Cho, Hyeon-Mu; Lee, Sang-Rae; Kim, Sun-Uk; Kim, Ji-Su; Sim, Bo-Woong; Song, Bong-Seok; Jeong, Kang-Jin; Lee, Youngjeon; Jin, Yeung Bae; Kang, Philyong; Huh, Jae-Won; Chang, Kyu-Tae

    2017-01-01

    Cathepsin F, which is encoded by CTSF, is a cysteine proteinase ubiquitously expressed in several tissues. In a previous study, novel transcripts of the CTSF gene were identified in the crab-eating monkey deriving from the integration of an Alu element–AluYRa1. The occurrence of AluYRa1-derived alternative transcripts and the mechanism of exonization events in the CTSF gene of human, rhesus monkey, and crab-eating monkey were investigated using PCR and reverse transcription PCR on the genomic DNA and cDNA isolated from several tissues. Results demonstrated that AluYRa1 was only integrated into the genome of Macaca species and this lineage-specific integration led to exonization events by producing a conserved 3′ splice site. Six transcript variants (V1–V6) were generated by alternative splicing (AS) events, including intron retention and alternative 5′ splice sites in the 5′ and 3′ flanking regions of CTSF_AluYRa1. Among them, V3–V5 transcripts were ubiquitously expressed in all tissues of rhesus monkey and crab-eating monkey, whereas AluYRa1-exonized V1 was dominantly expressed in the testis of the crab-eating monkey, and V2 was only expressed in the testis of the two monkeys. These five transcript variants also had different amino acid sequences in the C-terminal region of CTSF, as compared to reference sequences. Thus, species-specific Alu-derived exonization by lineage-specific integration of Alu elements and AS events seems to have played an important role during primate evolution by producing transcript variants and gene diversification. PMID:28196413

  5. Multifactorial Interplay Controls the Splicing Profile of Alu-Derived Exons▿ †

    PubMed Central

    Ram, Oren; Schwartz, Schraga; Ast, Gil

    2008-01-01

    Exonization of Alu elements creates primate-specific genomic diversity. Here we combine bioinformatic and experimental methodologies to reconstruct the molecular changes leading to exon selection. Our analyses revealed an intricate network involved in Alu exonization. A typical Alu element contains multiple sites with the potential to serve as 5′ splice sites (5′ss). First, we demonstrated the role of 5′ss strength in controlling exonization events. Second, we found that a cryptic 5′ss enhances the selection of a more upstream site and demonstrate that this is mediated by binding of U1 snRNA to the cryptic splice site, challenging the traditional role attributed to U1 snRNA of binding the 5′ss only. Third, we used a simple algorithm to identify specific sequences that determine splice site selection within specific Alu exons. Finally, by inserting identical exons within different sequences, we demonstrated the importance of flanking genomic sequences in determining whether an Alu exon will undergo exonization. Overall, our results demonstrate the complex interplay between at least four interacting layers that affect Alu exonization. These results shed light on the mechanism through which Alu elements enrich the primate transcriptome and allow a better understanding of the exonization process in general. PMID:18332115

  6. Origin of Spliceosomal Introns and Alternative Splicing

    PubMed Central

    Irimia, Manuel; Roy, Scott William

    2014-01-01

    In this work we review the current knowledge on the prehistory, origins, and evolution of spliceosomal introns. First, we briefly outline the major features of the different types of introns, with particular emphasis on the nonspliceosomal self-splicing group II introns, which are widely thought to be the ancestors of spliceosomal introns. Next, we discuss the main scenarios proposed for the origin and proliferation of spliceosomal introns, an event intimately linked to eukaryogenesis. We then summarize the evidence that suggests that the last eukaryotic common ancestor (LECA) had remarkably high intron densities and many associated characteristics resembling modern intron-rich genomes. From this intron-rich LECA, the different eukaryotic lineages have taken very distinct evolutionary paths leading to profoundly diverged modern genome structures. Finally, we discuss the origins of alternative splicing and the qualitative differences in alternative splicing forms and functions across lineages. PMID:24890509

  7. Nuclear group I introns in self-splicing and beyond

    PubMed Central

    2013-01-01

    Group I introns are a distinct class of RNA self-splicing introns with an ancient origin. All known group I introns present in eukaryote nuclei interrupt functional ribosomal RNA genes located in ribosomal DNA loci. The discovery of the Tetrahymena intron more than 30 years ago has been essential to our understanding of group I intron catalysis, higher-order RNA structure, and RNA folding, but other intron models have provided information about the biological role. Nuclear group I introns appear widespread among eukaryotic microorganisms, and the plasmodial slime molds (myxomycetes) contain an abundance of self-splicing introns. Here, we summarize the main conclusions from previous work on the Tetrahymena intron on RNA self-splicing catalysis as well as more recent work on myxomycete intron biology. Group I introns in myxomycetes that represent different evolutionary stages, biological roles, and functional settings are discussed. PMID:23738941

  8. Splicing of intron 3 of human BACE requires the flanking introns 2 and 4.

    PubMed

    Annies, Maik; Stefani, Muriel; Hueber, Andreas; Fischer, Frauke; Paganetti, Paolo

    2009-10-16

    Regulation of proteolytic cleavage of the amyloid precursor protein by the aspartic protease BACE may occur by alternative splicing and the generation of enzymatically inactive forms. In fact, the presence of exonic donor and acceptor sites for intron 3 generates the two deficient variants BACE457 and BACE476. In HEK293 cells, when introns are inserted separately in the BACE cDNA, we found that whilst introns 2 and 4 are efficiently spliced out, intron 3 is not removed. On the other hand, splicing to wild-type BACE is restored when intron 3 is flanked by the two other introns. The presence of all three introns also leads to alternative splicing of intron 3 and the generation of BACE476. In contrast, BACE457 expression takes place only after mutating the donor splice site of intron 3, indicating that additional regulatory elements are necessary for the use of the splicing site within exon 4. Overall, our data demonstrate that a complex splicing of intron 3 regulates the maturation of the BACE mRNA. This appears orchestrated by domains present in the exons and introns flanking intron 3. Excessive BACE activity is a risk factor for Alzheimer's disease, therefore this complex regulation might guarantee low neuronal BACE activity and disease prevention.

  9. Splicing of many human genes involves sites embedded within introns

    PubMed Central

    Kelly, Steven; Georgomanolis, Theodore; Zirkel, Anne; Diermeier, Sarah; O'Reilly, Dawn; Murphy, Shona; Längst, Gernot; Cook, Peter R.; Papantonis, Argyris

    2015-01-01

    The conventional model for splicing involves excision of each intron in one piece; we demonstrate this inaccurately describes splicing in many human genes. First, after switching on transcription of SAMD4A, a gene with a 134 kb-long first intron, splicing joins the 3′ end of exon 1 to successive points within intron 1 well before the acceptor site at exon 2 is made. Second, genome-wide analysis shows that >60% of active genes yield products generated by such intermediate intron splicing. These products are present at ∼15% the levels of primary transcripts, are encoded by conserved sequences similar to those found at canonical acceptors, and marked by distinctive structural and epigenetic features. Finally, using targeted genome editing, we demonstrate that inhibiting the formation of these splicing intermediates affects efficient exon–exon splicing. These findings greatly expand the functional and regulatory complexity of the human transcriptome. PMID:25897131

  10. Visualizing group II intron catalysis through the stages of splicing

    PubMed Central

    Marcia, Marco; Pyle, Anna Marie

    2012-01-01

    SUMMARY Group II introns are self-splicing ribozymes that share a reaction mechanism and a common ancestor with the eukaryotic spliceosome, thereby providing a model system for understanding the chemistry of pre-mRNA splicing. Here we report fourteen crystal structures of a group II intron at different stages of catalysis. We provide a detailed mechanism for the first step of splicing, we describe a reversible conformational change between the first and the second steps of splicing, and we present the ligand-free intron structure after splicing, in an active state that corresponds to the retrotransposable form of the intron. During each reaction, the reactants are aligned and activated by a heteronuclear four-metal-ion center that contains a metal cluster and obligate monovalent cations, adopting a structural arrangement similar to that of protein endonucleases. Based on our data, we propose a model for the splicing cycle and show that it is applicable to the eukaryotic spliceosome. PMID:23101623

  11. The peculiarities of large intron splicing in animals.

    PubMed

    Shepard, Samuel; McCreary, Mark; Fedorov, Alexei

    2009-11-16

    In mammals a considerable 92% of genes contain introns, with hundreds and hundreds of these introns reaching the incredible size of over 50,000 nucleotides. These "large introns" must be spliced out of the pre-mRNA in a timely fashion, which involves bringing together distant 5' and 3' acceptor and donor splice sites. In invertebrates, especially Drosophila, it has been shown that larger introns can be spliced efficiently through a process known as recursive splicing-a consecutive splicing from the 5'-end at a series of combined donor-acceptor splice sites called RP-sites. Using a computational analysis of the genomic sequences, we show that vertebrates lack the proper enrichment of RP-sites in their large introns, and, therefore, require some other method to aid splicing. We analyzed over 15,000 non-redundant, large introns from six mammals, 1,600 from chicken and zebrafish, and 560 non-redundant large introns from five invertebrates. Our bioinformatic investigation demonstrates that, unlike the studied invertebrates, the studied vertebrate genomes contain consistently abundant amounts of direct and complementary strand interspersed repetitive elements (mainly SINEs and LINEs) that may form stems with each other in large introns. This examination showed that predicted stems are indeed abundant and stable in the large introns of mammals. We hypothesize that such stems with long loops within large introns allow intron splice sites to find each other more quickly by folding the intronic RNA upon itself at smaller intervals and, thus, reducing the distance between donor and acceptor sites.

  12. Alternatively spliced, spliceosomal twin introns in Helminthosporium solani.

    PubMed

    Ág, Norbert; Flipphi, Michel; Karaffa, Levente; Scazzocchio, Claudio; Fekete, Erzsébet

    2015-12-01

    Spliceosomal twin introns, "stwintrons", have been defined as complex intervening sequences that carry a second intron ("internal intron") interrupting one of the conserved sequence domains necessary for their correct splicing via consecutive excision events. Previously, we have described and experimentally verified stwintrons in species of Sordariomycetes, where an "internal intron" interrupted the donor sequence of an "external intron". Here we describe and experimentally verify two novel stwintrons of the potato pathogen Helminthosporium solani. One instance involves alternative splicing of an internal intron interrupting the donor domain of an external intron and a second one interrupting the acceptor domain of an overlapping external intron, both events leading to identical mature mRNAs. In the second case, an internal intron interrupts the donor domain of the external intron, while an alternatively spliced intron leads to an mRNA carrying a premature chain termination codon. We thus extend the stwintron concept to the acceptor domain and establish a link of the occurrence of stwintrons with that of alternative splicing.

  13. An intron-encoded protein assists RNA splicing of multiple similar introns of different bacterial genes.

    PubMed

    Meng, Qing; Wang, Yanfei; Liu, Xiang-Qin

    2005-10-21

    Four group II introns were found in an unusually intron-rich dnaN gene (encoding the beta subunit of DNA polymerase III) of the cyanobacterium Trichodesmium erythraeum, and they have strong similarities to two introns of the RIR gene (encoding ribonucleotide reductase) of the same organism. Of these six introns, only the RIR-3 intron encodes a maturase protein and showed efficient RNA splicing when expressed in Escherichia coli cells. The other five introns do not encode a maturase protein and did not show RNA splicing in E. coli. But these maturase-less introns showed efficient RNA splicing when the RIR-3 intron-encoded maturase protein was co-expressed from a freestanding gene in the same cell. These findings demonstrated that an intron-encoded protein could function as a general maturase for multiple introns of different genes. Major implications may include an intron-mediated co-regulation of the different genes and a resemblance of the evolutionary origin of spliceosomal introns.

  14. Multiple splicing pathways of group II trans-splicing introns in wheat mitochondria.

    PubMed

    Massel, Karen; Silke, Jordan R; Bonen, Linda

    2016-05-01

    Trans-splicing of discontinuous introns in plant mitochondria requires the assembly of independently-transcribed precursor RNAs into splicing-competent structures, and they are expected to be excised as Y-branched molecules ("broken lariats") because these introns belong to the group II ribozyme family. We now demonstrate that this is just one of several trans-splicing pathways for wheat mitochondrial nad1 intron 4 and nad5 intron 2; they also use a hydrolytic pathway and the liberated 5'-half-intron linear molecules are unexpectedly abundant in the RNA population. We also observe a third productive splicing pathway for nad5 intron 2 that yields full-length excised introns in which the termini are joined in vivo and possess non-encoded nucleotides. In the case of trans-splicing nad1 intron 1, which has a weakly-structured and poorly-conserved core sequence, excision appears to be solely through a hydrolytic pathway. When wheat embryos are germinated in the cold rather than at room temperature, an increased complexity in trans-splicing products is seen for nad1 intron 4, suggesting that there can be environmental effects on the RNA folding of bipartite introns. Our observations provide insights into intron evolution and the complexity of RNA processing events in plant mitochondria. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  15. Mechanism of maturase-promoted group II intron splicing

    PubMed Central

    Matsuura, Manabu; Noah, James W.; Lambowitz, Alan M.

    2001-01-01

    Mobile group II introns encode reverse transcriptases that also function as intron-specific splicing factors (maturases). We showed previously that the reverse transcriptase/maturase encoded by the Lactococcus lactis Ll.LtrB intron has a high affinity binding site at the beginning of its own coding region in an idiosyncratic structure, DIVa. Here, we identify potential secondary binding sites in conserved regions of the catalytic core and show via chemical modification experiments that binding of the maturase induces the formation of key tertiary interactions required for RNA splicing. The interaction with conserved as well as idiosyncratic regions explains how maturases in some organisms could evolve into general group II intron splicing factors, potentially mirroring a key step in the evolution of spliceosomal introns. PMID:11743002

  16. Splicing-Related Features of Introns Serve to Propel Evolution

    PubMed Central

    Luo, Yuping; Li, Chun; Gong, Xi; Wang, Yanlu; Zhang, Kunshan; Cui, Yaru; Sun, Yi Eve; Li, Siguang

    2013-01-01

    The role of spliceosomal intronic structures played in evolution has only begun to be elucidated. Comparative genomic analyses of fungal snoRNA sequences, which are often contained within introns and/or exons, revealed that about one-third of snoRNA-associated introns in three major snoRNA gene clusters manifested polymorphisms, likely resulting from intron loss and gain events during fungi evolution. Genomic deletions can clearly be observed as one mechanism underlying intron and exon loss, as well as generation of complex introns where several introns lie in juxtaposition without intercalating exons. Strikingly, by tracking conserved snoRNAs in introns, we found that some introns had moved from one position to another by excision from donor sites and insertion into target sties elsewhere in the genome without needing transposon structures. This study revealed the origin of many newly gained introns. Moreover, our analyses suggested that intron-containing sequences were more prone to sustainable structural changes than DNA sequences without introns due to intron's ability to jump within the genome via unknown mechanisms. We propose that splicing-related structural features of introns serve as an additional motor to propel evolution. PMID:23516505

  17. Intron cleavage affects processing of alternatively spliced transcripts

    PubMed Central

    Pastor, Tibor; Dal Mas, Andrea; Talotti, Gabriele; Bussani, Erica; Pagani, Franco

    2011-01-01

    We previously showed that the insertion of a hammerhead ribozyme (Rz) in a critical intronic position between the EDA exon and a downstream regulatory element affects alternative splicing. Here we evaluate the effect of other intronic cotranscriptional cleavage events on alternative pre-mRNA processing using different ribozymes (Rz) and Microprocessor target sequences (MTSs). In the context of the fibronectin EDA minigene, intronic MTSs were cleaved very inefficiently and did not affect alternative splicing or the level of mature transcripts. On the contrary, all hammerhead Rz derivatives and hepatitis δ Rz were completely cleaved before a splicing decision and able to affect alternative splicing. Despite the very efficient Rz-mediated cleavage, the levels of mature mRNA were only reduced to ∼40%. We show that this effect on mature transcripts occurs regardless of the type and intronic position of Rzs, or changes in alternative splicing and exon definition. Thus, we suggest that intron integrity is not strictly required for splicing but is necessary for efficient pre-mRNA biosynthesis. PMID:21673105

  18. Functional studies on the ATM intronic splicing processing element.

    PubMed

    Lewandowska, Marzena A; Stuani, Cristiana; Parvizpur, Alireza; Baralle, Francisco E; Pagani, Franco

    2005-01-01

    In disease-associated genes, the understanding of the functional significance of deep intronic nucleotide variants may represent a difficult challenge. We have previously reported a new disease-causing mechanism that involves an intronic splicing processing element (ISPE) in ATM, composed of adjacent consensus 5' and 3' splice sites. A GTAA deletion within ISPE maintains potential adjacent splice sites, disrupts a non-canonical U1 snRNP interaction and activates an aberrant exon. In this paper, we demonstrate that binding of U1 snRNA through complementarity within a approximately 40 nt window downstream of the ISPE prevents aberrant splicing. By selective mutagenesis at the adjacent consensus ISPE splice sites, we show that this effect is not due to a resplicing process occurring at the ISPE. Functional comparison of the ATM mouse counterpart and evaluation of the pre-mRNA splicing intermediates derived from affected cell lines and hybrid minigene assays indicate that U1 snRNP binding at the ISPE interferes with the cryptic acceptor site. Activation of this site results in a stringent 5'-3' order of intron sequence removal around the cryptic exon. Artificial U1 snRNA loading by complementarity to heterologous exonic sequences represents a potential therapeutic method to prevent the usage of an aberrant CFTR cryptic exon. Our results suggest that ISPE-like intronic elements binding U1 snRNPs may regulate correct intron processing.

  19. Functional studies on the ATM intronic splicing processing element

    PubMed Central

    Lewandowska, Marzena A.; Stuani, Cristiana; Parvizpur, Alireza; Baralle, Francisco E.; Pagani, Franco

    2005-01-01

    In disease-associated genes, the understanding of the functional significance of deep intronic nucleotide variants may represent a difficult challenge. We have previously reported a new disease-causing mechanism that involves an intronic splicing processing element (ISPE) in ATM, composed of adjacent consensus 5′ and 3′ splice sites. A GTAA deletion within ISPE maintains potential adjacent splice sites, disrupts a non-canonical U1 snRNP interaction and activates an aberrant exon. In this paper, we demonstrate that binding of U1 snRNA through complementarity within a ∼40 nt window downstream of the ISPE prevents aberrant splicing. By selective mutagenesis at the adjacent consensus ISPE splice sites, we show that this effect is not due to a resplicing process occurring at the ISPE. Functional comparison of the ATM mouse counterpart and evaluation of the pre-mRNA splicing intermediates derived from affected cell lines and hybrid minigene assays indicate that U1 snRNP binding at the ISPE interferes with the cryptic acceptor site. Activation of this site results in a stringent 5′–3′ order of intron sequence removal around the cryptic exon. Artificial U1 snRNA loading by complementarity to heterologous exonic sequences represents a potential therapeutic method to prevent the usage of an aberrant CFTR cryptic exon. Our results suggest that ISPE-like intronic elements binding U1 snRNPs may regulate correct intron processing. PMID:16030351

  20. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.

    PubMed

    Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M

    2015-05-01

    When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome.

  1. Introns and Splicing Elements of Five Diverse Fungi†

    PubMed Central

    Kupfer, Doris M.; Drabenstot, Scott D.; Buchanan, Kent L.; Lai, Hongshing; Zhu, Hua; Dyer, David W.; Roe, Bruce A.; Murphy, Juneann W.

    2004-01-01

    Genomic sequences and expressed sequence tag data for a diverse group of fungi (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, Neurospora crassa, and Cryptococcus neoformans) provided the opportunity to accurately characterize conserved intronic elements. An examination of large intron data sets revealed that fungal introns in general are short, that 98% or more of them belong to the canonical splice site (ss) class (5′GU…AG3′), and that they have polypyrimidine tracts predominantly in the region between the 5′ ss and the branch point. Information content is high in the 5′ ss, branch site, and 3′ ss regions of the introns but low in the exon regions adjacent to the introns in the fungi examined. The two yeasts have broader intron length ranges and correspondingly higher intron information content than the other fungi. Generally, as intron length increases in the fungi, so does intron information content. Homologs of U2AF spliceosomal proteins were found in all species except for S. cerevisiae, suggesting a nonconventional role for U2AF in the absence of canonical polypyrimidine tracts in the majority of introns. Our observations imply that splicing in fungi may be different from that in vertebrates and may require additional proteins that interact with polypyrimidine tracts upstream of the branch point. Theoretical protein homologs for Nam8p and TIA-1, two proteins that require U-rich regions upstream of the branch point to function, were found. There appear to be sufficient differences between S. cerevisiae and S. pombe introns and the introns of two filamentous members of the Ascomycota and one member of the Basidiomycota to warrant the development of new model organisms for studying the splicing mechanisms of fungi. PMID:15470237

  2. Cutting a Long Intron Short: Recursive Splicing and Its Implications

    PubMed Central

    Georgomanolis, Theodore; Sofiadis, Konstantinos; Papantonis, Argyris

    2016-01-01

    Over time eukaryotic genomes have evolved to host genes carrying multiple exons separated by increasingly larger intronic, mostly non-protein-coding, sequences. Initially, little attention was paid to these intronic sequences, as they were considered not to contain regulatory information. However, advances in molecular biology, sequencing, and computational tools uncovered that numerous segments within these genomic elements do contribute to the regulation of gene expression. Introns are differentially removed in a cell type-specific manner to produce a range of alternatively-spliced transcripts, and many span tens to hundreds of kilobases. Recent work in human and fruitfly tissues revealed that long introns are extensively processed cotranscriptionally and in a stepwise manner, before their two flanking exons are spliced together. This process, called “recursive splicing,” often involves non-canonical splicing elements positioned deep within introns, and different mechanisms for its deployment have been proposed. Still, the very existence and widespread nature of recursive splicing offers a new regulatory layer in the transcript maturation pathway, which may also have implications in human disease. PMID:27965595

  3. Ancient nature of alternative splicing and functions of introns

    SciTech Connect

    Zhou, Kemin; Salamov, Asaf; Kuo, Alan; Aerts, Andrea; Grigoriev, Igor

    2011-03-21

    Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but introns retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.

  4. Crystal Structure of a Self-Spliced Group ll Intron

    SciTech Connect

    Toor,N.; Keating, K.; Taylor, S.; Pyle, A.

    2008-01-01

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  5. Crystal Structure of a Self-Spliced Group II Intron

    SciTech Connect

    Toor, Navtej; Keating, Kevin S.; Taylor, Sean D.; Pyle, Anna Marie

    2008-04-10

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  6. Nested introns in an intron: evidence of multi-step splicing in a large intron of the human dystrophin pre-mRNA.

    PubMed

    Suzuki, Hitoshi; Kameyama, Toshiki; Ohe, Kenji; Tsukahara, Toshifumi; Mayeda, Akila

    2013-03-18

    The mechanisms by which huge human introns are spliced out precisely are poorly understood. We analyzed large intron 7 (110199 nucleotides) generated from the human dystrophin (DMD) pre-mRNA by RT-PCR. We identified branching between the authentic 5' splice site and the branch point; however, the sequences far from the branch site were not detectable. This RT-PCR product was resistant to exoribonuclease (RNase R) digestion, suggesting that the detected lariat intron has a closed loop structure but contains gaps in its sequence. Transient and concomitant generation of at least two branched fragments from nested introns within large intron 7 suggests internal nested splicing events before the ultimate splicing at the authentic 5' and 3' splice sites. Nested splicing events, which bring the authentic 5' and 3' splice sites into close proximity, could be one of the splicing mechanisms for the extremely large introns.

  7. Detained introns are a novel, widespread class of post-transcriptionally spliced introns

    PubMed Central

    Boutz, Paul L.; Bhutkar, Arjun

    2015-01-01

    Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs—including those in Mdm4, a negative regulator of p53—was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression. PMID:25561496

  8. Splicing enhancement in the yeast rp51b intron.

    PubMed Central

    Libri, D; Lescure, A; Rosbash, M

    2000-01-01

    Splicing enhancement in higher eukaryotes has been linked to SR proteins, to U1 snRNP, and to communication between splice sites across introns or exons mediated by protein-protein interactions. It has been previously shown that, in yeast, communication mediated by RNA-RNA interactions between the two ends of introns is a basis for splicing enhancement. We designed experiments of randomization-selection to isolate splicing enhancers that would work independently from RNA secondary structures. Surprisingly, one of the two families of sequences selected was essentially composed of 5' splice site variants. We show that this sequence enhances splicing independently of secondary structure, is exportable to heterologous contexts, and works in multiple copies with additive effects. The data argue in favor of an early role for splicing enhancement, possibly coincident with commitment complex formation. Genetic compensation experiments with U1 snRNA mutants suggest that U1 snRNP binding to noncanonical locations is required for splicing enhancement. PMID:10744020

  9. Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing.

    PubMed

    Shahzad, K; Rauf, M; Ahmed, M; Malik, Z A; Habib, I; Ahmed, Z; Mahmood, K; Ali, R; Masmoudi, K; Lemtiri-Chlieh, F; Gehring, C; Berkowitz, G A; Saeed, N A

    2015-07-01

    Intron retention in transcripts and the presence of 5' and 3' splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K(+) transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K(+) uptake restored growth in medium containing hygromycin in the presence of different concentrations of K(+) and mediated hypersensitivity to Na(+) . HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K(+) and Na(+) concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  10. Splice Sites Seldom Slide: Intron Evolution in Oomycetes

    PubMed Central

    Sêton Bocco, Steven; Csűrös, Miklós

    2016-01-01

    We examine exon junctions near apparent amino acid insertions and deletions in alignments of orthologous protein-coding genes. In 1,917 ortholog families across nine oomycete genomes, 10–20% of introns are near an alignment gap, indicating at first sight that splice-site displacements are frequent. We designed a robust algorithmic procedure for the delineation of intron-containing homologous regions, and combined it with a parsimony-based reconstruction of intron loss, gain, and splice-site shift events on a phylogeny. The reconstruction implies that 12% of introns underwent an acceptor-site shift, and 10% underwent a donor-site shift. In order to offset gene annotation problems, we amended the procedure with the reannotation of intron boundaries using alignment evidence. The corresponding reconstruction involves much fewer intron gain and splice-site shift events. The frequency of acceptor- and donor-side shifts drops to 4% and 3%, respectively, which are not much different from what one would expect by random codon insertions and deletions. In other words, gaps near exon junctions are mostly artifacts of gene annotation rather than evidence of sliding intron boundaries. Our study underscores the importance of using well-supported gene structure annotations in comparative studies. When transcription evidence is not available, we propose a robust ancestral reconstruction procedure that corrects misannotated intron boundaries using sequence alignments. The results corroborate the view that boundary shifts and complete intron sliding are only accidental in eukaryotic genome evolution and have a negligible impact on protein diversity. PMID:27412607

  11. Splice Sites Seldom Slide: Intron Evolution in Oomycetes.

    PubMed

    Sêton Bocco, Steven; Csűrös, Miklós

    2016-08-25

    We examine exon junctions near apparent amino acid insertions and deletions in alignments of orthologous protein-coding genes. In 1,917 ortholog families across nine oomycete genomes, 10-20% of introns are near an alignment gap, indicating at first sight that splice-site displacements are frequent. We designed a robust algorithmic procedure for the delineation of intron-containing homologous regions, and combined it with a parsimony-based reconstruction of intron loss, gain, and splice-site shift events on a phylogeny. The reconstruction implies that 12% of introns underwent an acceptor-site shift, and 10% underwent a donor-site shift. In order to offset gene annotation problems, we amended the procedure with the reannotation of intron boundaries using alignment evidence. The corresponding reconstruction involves much fewer intron gain and splice-site shift events. The frequency of acceptor- and donor-side shifts drops to 4% and 3%, respectively, which are not much different from what one would expect by random codon insertions and deletions. In other words, gaps near exon junctions are mostly artifacts of gene annotation rather than evidence of sliding intron boundaries. Our study underscores the importance of using well-supported gene structure annotations in comparative studies. When transcription evidence is not available, we propose a robust ancestral reconstruction procedure that corrects misannotated intron boundaries using sequence alignments. The results corroborate the view that boundary shifts and complete intron sliding are only accidental in eukaryotic genome evolution and have a negligible impact on protein diversity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Multiple splicing defects in an intronic false exon.

    PubMed

    Sun, H; Chasin, L A

    2000-09-01

    Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.

  13. Crystal structure of a group I intron splicing intermediate

    PubMed Central

    ADAMS, PETER L.; STAHLEY, MARY R.; GILL, MICHELLE L.; KOSEK, ANNE B.; WANG, JIMIN; STROBEL, SCOTT A.

    2004-01-01

    A recently reported crystal structure of an intact bacterial group I self-splicing intron in complex with both its exons provided the first molecular view into the mechanism of RNA splicing. This intron structure, which was trapped in the state prior to the exon ligation reaction, also reveals the architecture of a complex RNA fold. The majority of the intron is contained within three internally stacked, but sequence discontinuous, helical domains. Here the tertiary hydrogen bonding and stacking interactions between the domains, and the single-stranded joiner segments that bridge between them, are fully described. Features of the structure include: (1) A pseudoknot belt that circumscribes the molecule at its longitudinal midpoint; (2) two tetraloop-tetraloop receptor motifs at the peripheral edges of the structure; (3) an extensive minor groove triplex between the paired and joiner segments, P6-J6/6a and P3-J3/4, which provides the major interaction interface between the intron’s two primary domains (P4-P6 and P3-P9.0); (4) a six-nucleotide J8/7 single stranded element that adopts a μ-shaped structure and twists through the active site, making critical contacts to all three helical domains; and (5) an extensive base stacking architecture that realizes 90% of all possible stacking interactions. The intron structure was validated by hydroxyl radical footprinting, where strong correlation was observed between experimental and predicted solvent accessibility. Models of the pre-first and pre-second steps of intron splicing are proposed with full-sized tRNA exons. They suggest that the tRNA undergoes substantial angular motion relative to the intron between the two steps of splicing. PMID:15547134

  14. Violating the splicing rules: TG dinucleotides function as alternative 3' splice sites in U2-dependent introns.

    PubMed

    Szafranski, Karol; Schindler, Stefanie; Taudien, Stefan; Hiller, Michael; Huse, Klaus; Jahn, Niels; Schreiber, Stefan; Backofen, Rolf; Platzer, Matthias

    2007-01-01

    Despite some degeneracy of sequence signals that govern splicing of eukaryotic pre-mRNAs, it is an accepted rule that U2-dependent introns exhibit the 3' terminal dinucleotide AG. Intrigued by anecdotal evidence for functional non-AG 3' splice sites, we carried out a human genome-wide screen. We identified TG dinucleotides functioning as alternative 3' splice sites in 36 human genes. The TG-derived splice variants were experimentally validated with a success rate of 92%. Interestingly, ratios of alternative splice variants are tissue-specific for several introns. TG splice sites and their flanking intron sequences are substantially conserved between orthologous vertebrate genes, even between human and frog, indicating functional relevance. Remarkably, TG splice sites are exclusively found as alternative 3' splice sites, never as the sole 3' splice site for an intron, and we observed a distance constraint for TG-AG splice site tandems. Since TGs splice sites are exclusively found as alternative 3' splice sites, the U2 spliceosome apparently accomplishes perfect specificity for 3' AGs at an early splicing step, but may choose 3' TGs during later steps. Given the tiny fraction of TG 3' splice sites compared to the vast amount of non-viable TGs, cis-acting sequence signals must significantly contribute to splice site definition. Thus, we consider TG-AG 3' splice site tandems as promising subjects for studies on the mechanisms of 3' splice site selection.

  15. Intronic splicing mutations in PTCH1 cause Gorlin syndrome.

    PubMed

    Bholah, Zaynab; Smith, Miriam J; Byers, Helen J; Miles, Emma K; Evans, D Gareth; Newman, William G

    2014-09-01

    Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.

  16. Mechanistic insights into human pre-mRNA splicing of human ultra-short introns: potential unusual mechanism identifies G-rich introns.

    PubMed

    Sasaki-Haraguchi, Noriko; Shimada, Makoto K; Taniguchi, Ichiro; Ohno, Mutsuhito; Mayeda, Akila

    2012-06-29

    It is unknown how very short introns (<65 nt; termed 'ultra-short' introns) could be spliced in a massive spliceosome (>2.7 MDa) without steric hindrance. By screening an annotated human transcriptome database (H-InvDB), we identified three model ultra-short introns: the 56-nt intron in the HNRNPH1 (hnRNP H1) gene, the 49-nt intron in the NDOR1 (NADPH dependent diflavin oxidoreductase 1) gene, and the 43-nt intron in the ESRP2 (epithelial splicing regulatory protein 2) gene. We verified that these endogenous ultra-short introns are spliced, and also recapitulated this in cultured cells transfected with the corresponding mini-genes. The splicing of these ultra-short introns was repressed by a splicing inhibitor, spliceostatin A, suggesting that SF3b (a U2 snRNP component) is involved in their splicing processes. The 56-nt intron containing a pyrimidine-rich tract was spliced out in a lariat form, and this splicing was inhibited by the disruption of U1, U2, or U4 snRNA. In contrast, the 49- and 43-nt introns were purine-rich overall without any pyrimidine-rich tract, and these lariat RNAs were not detectable. Remarkably, shared G-rich intronic sequences in the 49- and 43-nt introns were required for their splicing, suggesting that these ultra-short introns may recruit a novel auxiliary splicing mechanism linked to G-rich intronic splicing enhancers.

  17. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein

    SciTech Connect

    Lewin, A.S.; Thomas, J. Jr.; Tirupati, H.K.

    1995-12-01

    This report investigates the coupling between transcription and splicing of a mitochondrial group I intron in Saccharomyces cerevisiae and the effect of the Cbp2 protein on splicing. 65 refs., 7 figs.

  18. Comparative analyses between retained introns and constitutively spliced introns in Arabidopsis thaliana using random forest and support vector machine.

    PubMed

    Mao, Rui; Raj Kumar, Praveen Kumar; Guo, Cheng; Zhang, Yang; Liang, Chun

    2014-01-01

    One of the important modes of pre-mRNA post-transcriptional modification is alternative splicing. Alternative splicing allows creation of many distinct mature mRNA transcripts from a single gene by utilizing different splice sites. In plants like Arabidopsis thaliana, the most common type of alternative splicing is intron retention. Many studies in the past focus on positional distribution of retained introns (RIs) among different genic regions and their expression regulations, while little systematic classification of RIs from constitutively spliced introns (CSIs) has been conducted using machine learning approaches. We used random forest and support vector machine (SVM) with radial basis kernel function (RBF) to differentiate these two types of introns in Arabidopsis. By comparing coordinates of introns of all annotated mRNAs from TAIR10, we obtained our high-quality experimental data. To distinguish RIs from CSIs, We investigated the unique characteristics of RIs in comparison with CSIs and finally extracted 37 quantitative features: local and global nucleotide sequence features of introns, frequent motifs, the signal strength of splice sites, and the similarity between sequences of introns and their flanking regions. We demonstrated that our proposed feature extraction approach was more accurate in effectively classifying RIs from CSIs in comparison with other four approaches. The optimal penalty parameter C and the RBF kernel parameter [Formula: see text] in SVM were set based on particle swarm optimization algorithm (PSOSVM). Our classification performance showed F-Measure of 80.8% (random forest) and 77.4% (PSOSVM). Not only the basic sequence features and positional distribution characteristics of RIs were obtained, but also putative regulatory motifs in intron splicing were predicted based on our feature extraction approach. Clearly, our study will facilitate a better understanding of underlying mechanisms involved in intron retention.

  19. Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe.

    PubMed

    Romfo, C M; Alvarez, C J; van Heeckeren, W J; Webb, C J; Wise, J A

    2000-11-01

    Schizosaccharomyces pombe pre-mRNAs are generally multi-intronic and share certain features with pre-mRNAs from Drosophila melanogaster, in which initial splice site pairing can occur via either exon or intron definition. Here, we present three lines of evidence suggesting that, despite these similarities, fission yeast splicing is most likely restricted to intron definition. First, mutating either or both splice sites flanking an internal exon in the S. pombe cdc2 gene produced almost exclusively intron retention, in contrast to the exon skipping observed in vertebrates. Second, we were unable to induce skipping of the internal microexon in fission yeast cgs2, whereas the default splicing pathway excludes extremely small exons in mammals. Because nearly quantitative removal of the downstream intron in cgs2 could be achieved by expanding the microexon, we propose that its retention is due to steric occlusion. Third, several cryptic 5' junctions in the second intron of fission yeast cdc2 are located within the intron, in contrast to their generally exonic locations in metazoa. The effects of expanding and contracting this intron are as predicted by intron definition; in fact, even highly deviant 5' junctions can compete effectively with the standard 5' splice site if they are closer to the 3' splicing signals. Taken together, our data suggest that pairing of splice sites in S. pombe most likely occurs exclusively across introns in a manner that favors excision of the smallest segment possible.

  20. Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes

    PubMed Central

    Pope, Welkin H.; Jacobs-Sera, Deborah; Best, Aaron A.; Broussard, Gregory W.; Connerly, Pamela L.; Dedrick, Rebekah M.; Kremer, Timothy A.; Offner, Susan; Ogiefo, Amenawon H.; Pizzorno, Marie C.; Rockenbach, Kate; Russell, Daniel A.; Stowe, Emily L.; Stukey, Joseph; Thibault, Sarah A.; Conway, James F.; Hendrix, Roger W.; Hatfull, Graham F.

    2013-01-01

    Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution. PMID:23874930

  1. Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns.

    PubMed

    Asakura, Yukari; Barkan, Alice

    2006-12-01

    Chloroplast genomes in plants and green algae contain numerous group II introns, large ribozymes that splice via the same chemical steps as spliceosome-mediated splicing in the nucleus. Most chloroplast group II introns are degenerate, requiring interaction with nucleus-encoded proteins to splice in vivo. Genetic approaches in maize (Zea mays) and Chlamydomonas reinhardtii have elucidated distinct sets of proteins that assemble with chloroplast group II introns and facilitate splicing. Little information is available, however, concerning these processes in Arabidopsis (Arabidopsis thaliana). To determine whether the paucity of data concerning chloroplast splicing factors in Arabidopsis reflects a fundamental difference between protein-facilitated group II splicing in monocot and dicot plants, we examined the mutant phenotypes associated with T-DNA insertions in Arabidopsis genes encoding orthologs of the maize chloroplast splicing factors CRS1, CAF1, and CAF2 (AtCRS1, AtCAF1, and AtCAF2). We show that the splicing functions and intron specificities of these proteins are largely conserved between maize and Arabidopsis, indicating that these proteins were recruited to promote the splicing of plastid group II introns prior to the divergence of monocot and dicot plants. We show further that AtCAF1 promotes the splicing of two group II introns, rpoC1 and clpP-intron 1, that are found in Arabidopsis but not in maize; AtCAF1 is the first splicing factor described for these introns. Finally, we show that a strong AtCAF2 allele conditions an embryo-lethal phenotype, adding to the body of data suggesting that cell viability is more sensitive to the loss of plastid translation in Arabidopsis than in maize.

  2. The U2AF35-related protein Urp contacts the 3' splice site to promote U12-type intron splicing and the second step of U2-type intron splicing.

    PubMed

    Shen, Haihong; Zheng, Xuexiu; Luecke, Stephan; Green, Michael R

    2010-11-01

    The U2AF35-related protein Urp has been implicated previously in splicing of the major class of U2-type introns. Here we show that Urp is also required for splicing of the minor class of U12-type introns. Urp is recruited in an ATP-dependent fashion to the U12-type intron 3' splice site, where it promotes formation of spliceosomal complexes. Remarkably, Urp also contacts the 3' splice site of a U2-type intron, but in this case is specifically required for the second step of splicing. Thus, through recognition of a common splicing element, Urp facilitates distinct steps of U2- and U12-type intron splicing.

  3. The U2AF35-related protein Urp contacts the 3′ splice site to promote U12-type intron splicing and the second step of U2-type intron splicing

    PubMed Central

    Shen, Haihong; Zheng, Xuexiu; Luecke, Stephan; Green, Michael R.

    2010-01-01

    The U2AF35-related protein Urp has been implicated previously in splicing of the major class of U2-type introns. Here we show that Urp is also required for splicing of the minor class of U12-type introns. Urp is recruited in an ATP-dependent fashion to the U12-type intron 3′ splice site, where it promotes formation of spliceosomal complexes. Remarkably, Urp also contacts the 3′ splice site of a U2-type intron, but in this case is specifically required for the second step of splicing. Thus, through recognition of a common splicing element, Urp facilitates distinct steps of U2- and U12-type intron splicing. PMID:21041408

  4. The histone variant H2A.Z promotes splicing of weak introns.

    PubMed

    Nissen, Kelly E; Homer, Christina M; Ryan, Colm J; Shales, Michael; Krogan, Nevan J; Patrick, Kristin L; Guthrie, Christine

    2017-04-01

    Multiple lines of evidence implicate chromatin in the regulation of premessenger RNA (pre-mRNA) splicing. However, the influence of chromatin factors on cotranscriptional splice site usage remains unclear. Here we investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast Schizosaccharomyces pombe Using epistatic miniarray profiles (EMAPs) to survey the genetic interaction landscape of the Swr1 nucleosome remodeling complex, which deposits H2A.Z, we uncovered evidence for functional interactions with components of the spliceosome. In support of these genetic connections, splicing-specific microarrays show that H2A.Z and the Swr1 ATPase are required during temperature stress for the efficient splicing of a subset of introns. Notably, affected introns are enriched for H2A.Z occupancy and more likely to contain nonconsensus splice sites. To test the significance of the latter correlation, we mutated the splice sites in an affected intron to consensus and found that this suppressed the requirement for H2A.Z in splicing of that intron. These data suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Consistent with this model, we show that overexpression of splicing ATPase Prp16 suppresses both the growth and splicing defects seen in the absence of H2A.Z. © 2017 Nissen et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements.

    PubMed

    Burnette, James M; Miyamoto-Sato, Etsuko; Schaub, Marc A; Conklin, Jamie; Lopez, A Javier

    2005-06-01

    Many genes with important roles in development and disease contain exceptionally long introns, but special mechanisms for their expression have not been investigated. We present bioinformatic, phylogenetic, and experimental evidence in Drosophila for a mechanism that subdivides many large introns by recursive splicing at nonexonic elements and alternative exons. Recursive splice sites predicted with highly stringent criteria are found at much higher frequency than expected in the sense strands of introns >20 kb, but they are found only at the expected frequency on the antisense strands, and they are underrepresented within introns <10 kb. The predicted sites in long introns are highly conserved between Drosophila melanogaster and Drosophila pseudoobscura, despite extensive divergence of other sequences within the same introns. These patterns of enrichment and conservation indicate that recursive splice sites are advantageous in the context of long introns. Experimental analyses of in vivo processing intermediates and lariat products from four large introns in the unrelated genes kuzbanian, outspread, and Ultrabithorax confirmed that these introns are removed by a series of recursive splicing steps using the predicted nonexonic sites. Mutation of nonexonic site RP3 within Ultrabithorax also confirmed that recursive splicing is the predominant processing pathway even with a shortened version of the intron. We discuss currently known and potential roles for recursive splicing.

  6. Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome

    PubMed Central

    Sontheimer, Erik J.; Gordon, Peter M.; Piccirilli, Joseph A.

    1999-01-01

    The identical reaction pathway executed by the spliceosome and self-splicing group II intron ribozymes has prompted the idea that both may be derived from a common molecular ancestor. The minimal sequence and structural similarities between group II introns and the spliceosomal small nuclear RNAs, however, have left this proposal in question. Mechanistic comparisons between group II self-splicing introns and the spliceosome are therefore important in determining whether these two splicing machineries may be related. Here we show that 3′-sulfur substitution at the 5′ splice site of a group II intron causes a metal specificity switch during the first step of splicing. In contrast, 3′-sulfur substitution has no significant effect on the metal specificity of the second step of cis-splicing. Isolation of the second step uncovers a metal specificity switch that is masked during the cis-splicing reaction. These results demonstrate that group II intron ribozymes are metalloenzymes that use a catalytic metal ion for leaving group stabilization during both steps of self-splicing. Furthermore, because 3′-sulfur substitution of a spliceosomal intron has precisely the same effects as were observed during cis-splicing of the group II intron, these results provide striking parallels between the catalytic mechanisms employed by these two systems. PMID:10398685

  7. The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand.

    PubMed

    Zhao, Chen; Pyle, Anna Marie

    2017-05-18

    The splicing of group II introns in vivo requires the assistance of a multifunctional intron encoded protein (IEP, or maturase). Each IEP is also a reverse-transcriptase enzyme that enables group II introns to behave as mobile genetic elements. During splicing or retro-transposition, each group II intron forms a tight, specific complex with its own encoded IEP, resulting in a highly reactive holoenzyme. This review focuses on the structural basis for IEP function, as revealed by recent crystal structures of an IEP reverse transcriptase domain and cryo-EM structures of an IEP-intron complex. These structures explain how the same IEP scaffold is utilized for intron recognition, splicing and reverse transcription, while providing a physical basis for understanding the evolutionary transformation of the IEP into the eukaryotic splicing factor Prp8. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing.

    PubMed

    Kong, Ka-Yiu Edwin; Tang, Hei-Man Vincent; Pan, Kewu; Huang, Zhe; Lee, Tsz-Hang Jimmy; Hinnebusch, Alan G; Jin, Dong-Yan; Wong, Chi-Ming

    2014-01-01

    Most unwanted RNA transcripts in the nucleus of eukaryotic cells, such as splicing-defective pre-mRNAs and spliced-out introns, are rapidly degraded by the nuclear exosome. In budding yeast, a number of these unwanted RNA transcripts, including spliced-out introns, are first recognized by the nuclear exosome cofactor Trf4/5p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex before subsequent nuclear-exosome-mediated degradation. However, it remains unclear when spliced-out introns are recognized by TRAMP, and whether TRAMP may have any potential roles in pre-mRNA splicing. Here, we demonstrated that TRAMP is cotranscriptionally recruited to nascent RNA transcripts, with particular enrichment at intronic sequences. Deletion of TRAMP components led to further accumulation of unspliced pre-mRNAs even in a yeast strain defective in nuclear exosome activity, suggesting a novel stimulatory role of TRAMP in splicing. We also uncovered new genetic and physical interactions between TRAMP and several splicing factors, and further showed that TRAMP is required for optimal recruitment of the splicing factor Msl5p. Our study provided the first evidence that TRAMP facilitates pre-mRNA splicing, and we interpreted this as a fail-safe mechanism to ensure the cotranscriptional recruitment of TRAMP before or during splicing to prepare for the subsequent targeting of spliced-out introns to rapid degradation by the nuclear exosome.

  9. Extensive mis-splicing of a bi-partite plant mitochondrial group II intron.

    PubMed

    Elina, Helen; Brown, Gregory G

    2010-01-01

    Expression of the seed plant mitochondrial nad5 gene involves two trans-splicing events that remove fragmented group II introns and join the small, central exon c to exons b and d. We show that in both monocot and eudicot plants, extensive mis-splicing of the bi-partite intron 2 takes place, resulting in the formation of aberrantly spliced products in which exon c is joined to various sites within exon b. These mis-spliced products accumulate to levels comparable to or greater than that of the correctly spliced mRNA. We suggest that mis-splicing may result from folding constraints imposed on intron 2 by base-pairing between exon a and a portion of the bi-partite intron 3 downstream of exon c. Consistent with this hypothesis, we find that mis-splicing does not occur in Oenothera mitochondria, where intron 3 is further fragmented such that the predicted base-pairing region is not covalently linked to exon c. Our findings suggest that intron fragmentation may lead to mis-splicing, which may be corrected by further intron fragmentation.

  10. Influence of intron length on interaction characters between post-spliced intron and its CDS in ribosomal protein genes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqing; Li, Hong; Bao, Tonglaga; Ying, Zhiqiang

    2012-09-01

    Many experiment evidences showed that sequence structures of introns and intron loss/gain can influence gene expression, but current mechanisms did not refer to the functions of post-spliced introns directly. We propose that postspliced introns play their functions in gene expression by interacting with their mRNA sequences and the interaction is characterized by the matched segments between introns and their CDS. In this study, we investigated the interaction characters with length series by improved Smith-Waterman local alignment software for the ribosomal protein genes in C. elegans and D. melanogaster. Our results showed that RF values of five intron groups are significantly high in the central non-conserved region and very low in 5'-end and 3'-end splicing region. It is interesting that the number of the optimal matched regions gradually increases with intron length. Distributions of the optimal matched regions are different for five intron groups. Our study revealed that there are more interaction regions between longer introns and their CDS than shorter, and it provides a positive pattern for regulating the gene expression.

  11. Site-specific reverse splicing of a HEG-containing group I intron in ribosomal RNA

    PubMed Central

    Birgisdottir, Åsa B.; Johansen, Steinar

    2005-01-01

    The wide, but scattered distribution of group I introns in nature is a result of two processes; the vertical inheritance of introns with or without losses, and the occasional transfer of introns across species barriers. Reversal of the group I intron self-splicing reaction, termed reverse splicing, coupled with reverse transcription and genomic integration potentially mediate an RNA-based intron mobility pathway. Compared to the well characterized endonuclease-mediated intron homing, reverse splicing is less specific and represents a likely explanation for many intron transpositions into new genomic sites. However, the frequency and general role of an RNA-based mobility pathway in the spread of natural group I introns is still unclear. We have used the twin-ribozyme intron (Dir.S956-1) from the myxomycete Didymium iridis to test how a mobile group I intron containing a homing endonuclease gene (HEG) selects between potential insertion sites in the small subunit (SSU) rRNA in vitro, in Escherichia coli and in yeast. Surprisingly, the results show a site-specific RNA-based targeting of Dir.S956-1 into its natural (S956) SSU rRNA site. Our results suggest that reverse splicing, in addition to the established endonuclease-mediated homing mechanism, potentially accounts for group I intron spread into the homologous sites of different strains and species. PMID:15817568

  12. Impact of low temperature on splicing of atypical group II introns in wheat mitochondria.

    PubMed

    Dalby, Stephen J; Bonen, Linda

    2013-11-01

    To investigate the impact of cold on group II intron splicing, we compared the physical forms of excised mitochondrial introns from wheat embryos germinated at room temperature and 4°C. For introns which deviate from the conventional branchpoint structure, we observed predominantly heterogeneous circularized introns in the cold rather than linear polyadenylated forms arising from a hydrolytic pathway as seen at room temperature. In addition, intron-containing precursors are elevated relative to mature mRNAs upon cold treatment. Our findings indicate that low temperature growth not only reduces splicing efficiency, but also shifts the splicing biochemistry of atypical group II introns to novel, yet productive, pathways. © 2013. Published by Elsevier B.V. and Mitochondria Research Society.

  13. The doublesex splicing enhancer components Tra2 and Rbp1 also repress splicing through an intronic silencer.

    PubMed

    Qi, Junlin; Su, Shihuang; Mattox, William

    2007-01-01

    The activation of sex-specific alternative splice sites in the Drosophila melanogaster doublesex and fruitless pre-mRNAs has been well studied and depends on the serine-arginine-rich (SR) splicing factors Tra, Tra2, and Rbp1. Little is known, however, about how SR factors negatively regulate splice sites in other RNAs. Here we examine how Tra2 blocks splicing of the M1 intron from its own transcript. We identify an intronic splicing silencer (ISS) adjacent to the M1 branch point that is sufficient to confer Tra2-dependent repression on another RNA. The ISS was found to function independently of its position within the intron, arguing against the idea that bound repressors function by simply interfering with branch point accessibility to general splicing factors. Conserved subelements of the silencer include five short repeated sequences that are required for Tra2 binding but differ from repeated binding sites found in Tra2-dependent splicing enhancers. The ISS also contains a consensus binding site for Rbp1, and this protein was found to facilitate repression of M1 splicing both in vitro and in Drosophila larvae. In contrast to the cooperative binding of SR proteins observed on the doublesex splicing enhancer, we found that Rbp1 and Tra2 bind to the ISS independently through distinct sequences. Our results suggest that functionally synergistic interactions of these SR factors can cause either splicing activation or repression.

  14. Correct in vivo RNA splicing of a mitochondrial intron in algal chloroplasts.

    PubMed Central

    Herdenberger, F; Holländer, V; Kück, U

    1994-01-01

    The self-splicing group II intron (rl1) from Scenedesmus obliquus mitochondria together with its 6 bp intron binding site (IBS1) were inserted in the correct and inverse orientation into the chloroplast tscA gene from C.reinhardtii. Precursor RNA derived from the chimeric tscA-rl1 gene can be used to demonstrate in vitro self-splicing of the rl1 intron RNA. Using the particle bombardment technique, the tscA-rl1 construct was transferred into the chloroplast of the unicellular alga Chlamydomonas reinhardtii. We recovered transformants which contain the chimeric tscA-rl1 gene as shown by Southern analysis. Hybridization and PCR analysis of transcripts confirmed that the heterologous intron is correctly spliced in vivo. From sequencing of cDNA clones we conclude that the IBS1 sequence is sufficient for correct splicing of the mitochondrial intron in C. reinhardtii chloroplasts. Using specific probes, we demonstrate by Northern hybridization that the mature RNA, as well as an intron-3' exon intermediate, accumulate in transformants containing the rl1 intron, correctly inserted into the tscA gene. As expected, no RNA splicing at all was observed when the intron had an inverted orientation within the tscA gene. In addition, a mutated intron RNA with an altered 3' terminal nucleotide was tested in vivo. In contrast to similar mutants examined in vitro, this mutated RNA shows accumulated intron and intron-3' exon intermediates, but no ligated exons at all. Our approach should prove useful for elucidating nucleotide residues involved in splicing of organelle introns in vivo. Images PMID:7520566

  15. Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons

    PubMed Central

    Gelfman, Sahar; Burstein, David; Penn, Osnat; Savchenko, Anna; Amit, Maayan; Schwartz, Schraga; Pupko, Tal; Ast, Gil

    2012-01-01

    Exon–intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon–intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3′ and 5′ splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery. PMID:21974994

  16. Evolution of trans-splicing plant mitochondrial introns in pre-Permian times

    PubMed Central

    Malek, Olaf; Brennicke, Axel; Knoop, Volker

    1997-01-01

    Trans-splicing in angiosperm plant mitochondria connects exons from independent RNA molecules by means of group II intron fragments. Homologues of trans-splicing introns in the angiosperm mitochondrial nad2 and nad5 genes are now identified as uninterrupted group II introns in the ferns Asplenium nidus and Marsilea drummondii. These fern introns are correctly spliced from the pre-mRNA at the sites predicted from their well-conserved secondary structures. The flanking exon sequences of the nad2 and nad5 genes in the ferns require RNA editing, including the removal of in-frame stop codons by U-to-C changes for correct expression of the genetic information. We conclude that cis-splicing introns like the ones now identified in ferns are the ancestors of trans-splicing introns in angiosperm mitochondria. Intron disruption is apparently due to a size increase of the structurally variable group II intron domain IV followed by DNA recombination in the plant mitochondrial genome. PMID:9012822

  17. Activation of cryptic 3' splice sites within introns of cellular genes following gene entrapment.

    PubMed

    Osipovich, Anna B; White-Grindley, Erica K; Hicks, Geoffrey G; Roshon, Michael J; Shaffer, Christian; Moore, Jason H; Ruley, H Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3'-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3' splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3' splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3' splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3' splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3' splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3' splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3' processing and polyadenylation of cellular transcripts.

  18. Activation of cryptic 3′ splice sites within introns of cellular genes following gene entrapment

    PubMed Central

    Osipovich, Anna B.; White-Grindley, Erica K.; Hicks, Geoffrey G.; Roshon, Michael J.; Shaffer, Christian; Moore, Jason H.; Ruley, H. Earl

    2004-01-01

    Gene trap vectors developed for genome-wide mutagenesis can be used to study factors governing the expression of exons inserted throughout the genome. For example, entrapment vectors consisting of a partial 3′-terminal exon [i.e. a neomycin resistance gene (Neo), a poly(A) site, but no 3′ splice site] were typically expressed following insertion into introns, from cellular transcripts that spliced to cryptic 3′ splice sites present either within the targeting vector or in the adjacent intron. A vector (U3NeoSV1) containing the wild-type Neo sequence preferentially disrupted genes that spliced in-frame to a cryptic 3′ splice site in the Neo coding sequence and expressed functional neomycin phosphotransferase fusion proteins. Removal of the cryptic Neo 3′ splice site did not reduce the proportion of clones with inserts in introns; rather, the fusion transcripts utilized cryptic 3′ splice sites present in the adjacent intron or generated by virus integration. However, gene entrapment with U3NeoSV2 was considerably more random than with U3NeoSV1, consistent with the widespread occurrence of potential 3′ splice site sequences in the introns of cellular genes. These results clarify the mechanisms of gene entrapment by U3 gene trap vectors and illustrate features of exon definition required for 3′ processing and polyadenylation of cellular transcripts. PMID:15155860

  19. Structural requirements for selection of 5'- and 3' splice sites of group II introns.

    PubMed Central

    Wallasch, C; Mörl, M; Niemer, I; Schmelzer, C

    1991-01-01

    The group II intron bl1 in the gene for apocytochrome b in yeast mitochondrial DNA (COB) is self-splicing in vitro. It could recently be shown that self-splicing of this intron is fully reversible in vitro. In addition, intron integration is not restricted to parental exons, since the intron can also integrate into a foreign RNA. The position of insertion seems to be immediately 3' to a cryptic intron binding site 1 (IBS1). We confirmed and extended these results by sequencing 26 individual RNAs with transposed introns after reverse transcription and PCR amplification. Results show that intron integration into authentic exons is generally correct, but that integration into a foreign RNA is often inaccurate, i.e. insertion is one nt downstream or upstream of the 3' end of IBS1. This leads to the generation of 5' splice junctions of the new intron-harbouring 'preRNAs' with addition (or deletion) of a single A residue at the 3' end of IBS1. To investigate which structures help to define the position of 5'- and 3' cleavage, preRNAs of i) these clones with aberrant 5' splice junctions and ii) preRNAs with artificial hairpins between domains 5 and 6 of the intron were spliced under different reaction conditions. Results obtained let us conclude that i) branchpoint dependent 5' cleavage is directed by the 5' terminal G residue of the intron and, ii) the first nucleotide(s) of the 3' exon play an important role in defining the 3' splice site. Images PMID:2062646

  20. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    PubMed

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.

  1. Splicing signals in Drosophila: intron size, information content, and consensus sequences.

    PubMed Central

    Mount, S M; Burks, C; Hertz, G; Stormo, G D; White, O; Fields, C

    1992-01-01

    A database of 209 Drosophila introns was extracted from Genbank (release number 64.0) and examined by a number of methods in order to characterize features that might serve as signals for messenger RNA splicing. A tight distribution of sizes was observed: while the smallest introns in the database are 51 nucleotides, more than half are less than 80 nucleotides in length, and most of these have lengths in the range of 59-67 nucleotides. Drosophila splice sites found in large and small introns differ in only minor ways from each other and from those found in vertebrate introns. However, larger introns have greater pyrimidine-richness in the region between 11 and 21 nucleotides upstream of 3' splice sites. The Drosophila branchpoint consensus matrix resembles C T A A T (in which branch formation occurs at the underlined A), and differs from the corresponding mammalian signal in the absence of G at the position immediately preceding the branchpoint. The distribution of occurrences of this sequence suggests a minimum distance between 5' splice sites and branchpoints of about 38 nucleotides, and a minimum distance between 3' splice sites and branchpoints of 15 nucleotides. The methods we have used detect no information in exon sequences other than in the few nucleotides immediately adjacent to the splice sites. However, Drosophila resembles many other species in that there is a discontinuity in A + T content between exons and introns, which are A + T rich. PMID:1508718

  2. A Conditional Role of U2AF in Splicing of Introns with Unconventional Polypyrimidine Tracts▿ †

    PubMed Central

    Sridharan, Vinod; Singh, Ravinder

    2007-01-01

    Recognition of polypyrimidine (Py) tracts typically present between the branch point and the 3′ splice site by the large subunit of the essential splicing factor U2AF is a key early step in pre-mRNA splicing. Diverse intronic sequence arrangements exist, however, including 3′ splice sites lacking recognizable Py tracts, which raises the question of how general the requirement for U2AF is for various intron architectures. Our analysis of fission yeast introns in vivo has unexpectedly revealed that whereas introns lacking Py tracts altogether remain dependent on both subunits of U2AF, introns with long Py tracts, unconventionally positioned upstream of branch points, are unaffected by U2AF inactivation. Nevertheless, mutation of these Py tracts causes strong dependence on the large subunit U2AF59. We also find that Py tract diversity influences the requirement for the conserved C-terminal domain of U2AF59 (RNA recognition motif 3), which has been implicated in protein-protein interactions with other splicing factors. Together, these results suggest that in addition to Py tract binding by U2AF, supplementary mechanisms of U2AF recruitment and 3′ splice site identification exist to accommodate diverse intron architectures, which have gone unappreciated in biochemical studies of model pre-mRNAs. PMID:17709389

  3. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns.

  4. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani

    PubMed Central

    McNeil, Bonnie A.; Simon, Dawn M.; Zimmerly, Steven

    2014-01-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5′ splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5′ exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns. PMID:24214997

  5. Two CRM protein subfamilies cooperate in the splicing of group IIB introns in chloroplasts.

    PubMed

    Asakura, Yukari; Bayraktar, Omer Ali; Barkan, Alice

    2008-11-01

    Chloroplast genomes in angiosperms encode approximately 20 group II introns, approximately half of which are classified as subgroup IIB. The splicing of all but one of the subgroup IIB introns requires a heterodimer containing the peptidyl-tRNA hydrolase homolog CRS2 and one of two closely related proteins, CAF1 or CAF2, that harbor a recently recognized RNA binding domain called the CRM domain. Two CRS2/CAF-dependent introns require, in addition, a CRM domain protein called CFM2 that is only distantly related to CAF1 and CAF2. Here, we show that CFM3, a close relative of CFM2, associates in vivo with those CRS2/CAF-dependent introns that are not CFM2 ligands. Mutant phenotypes in rice and Arabidopsis support a role for CFM3 in the splicing of most of the introns with which it associates. These results show that either CAF1 or CAF2 and either CFM2 or CFM3 simultaneously bind most chloroplast subgroup IIB introns in vivo, and that the CAF and CFM subunits play nonredundant roles in splicing. These results suggest that the expansion of the CRM protein family in plants resulted in two subfamilies that play different roles in group II intron splicing, with further diversification within a subfamily to accommodate multiple intron ligands.

  6. More than one way to splice an RNA: branching without a bulge and splicing without branching in group II introns.

    PubMed Central

    Chu, V T; Liu, Q; Podar, M; Perlman, P S; Pyle, A M

    1998-01-01

    Domain 6 (D6) of group II introns contains a bulged adenosine that serves as the branch-site during self-splicing. In addition to this adenosine, other structural features in D6 are likely to contribute to the efficiency of branching. To understand their role in promoting self-splicing, the branch-site and surrounding nucleotides were mutagenized. Detailed kinetic analysis on the self-splicing efficiency of the mutants revealed several interesting features. First, elimination of the branch-site does not preclude efficient splicing, which takes place instead through a hydrolytic first step. Second, pairing of the branch-site does not eliminate branching, particularly if the adenosine is involved in a mispair. Third, the G-U pairs that often surround group II intron branch-points contribute to the efficiency of branching. These results suggest that there is a strong driving force for promoting self-splicing by group II introns, which employ a versatile set of different mechanisms for ensuring that splicing is successful. In addition, the behavior of these mutants indicates that a bulged adenosine per se is not the important determinant for branch-site recognition in group II introns. Rather, the data suggest that the branch-site adenosine is recognized as a flipped base, a conformation that can be promoted by a variety of different substructures in RNA and DNA. PMID:9769094

  7. Secondary loss of a cis-spliced intron during the divergence of Giardia intestinalis assemblages.

    PubMed

    Kamikawa, Ryoma; Inagaki, Yuji; Hashimoto, Tetsuo

    2014-06-30

    Giardia intestinalis is a parasitic unicellular eukaryote with a highly reduced genome, in which only six cis-spliced and four trans-spliced introns have been discovered. However, we anticipate that more cis- and trans-spliced introns likely remain unidentified in genes encoding hypothetical proteins that occupy ca. 2/3 of all of the open reading frames (ORFs) in the Giardia genome. Consequently, comprehensive surveys of introns in ORFs for hypothetical proteins are critical for better understanding of the intron evolution in this organism. In this study, we identified two novel cis-spliced introns in the draft genome data of G. intestinalis strain WB, by surveying the conserved sequence motifs shared amongst the previously known introns. G. intestinalis strains can be divided into phylogenetically distinct assemblages A-H, and all the introns identified in past studies are shared among the published genome data from strains WB, DH, GS, and P15 representing assemblages A1, A2, B, and E, respectively. Nevertheless one of the two novel introns identified in this study was found to be absent in strain P15. By considering the organismal relationship among G. intestinalis assemblages A1, A2, B, and E, one of the two introns identified in this study has highly likely been lost after the divergence of the assemblages. On the basis of a sequence comparison between the intron-bearing loci in WB, DH, and GS genomes and the homologous but intron-free locus in P15 genome, we propose that the loss of this particular intron was mediated by integration of the DNA fragment reverse-transcribed from mature mRNAs.

  8. Yin Yang 1 Intronic Binding Sequences and Splicing Elicit Intron-Mediated Enhancement of Ubiquitin C Gene Expression

    PubMed Central

    Bianchi, Marzia; Crinelli, Rita; Giacomini, Elisa; Carloni, Elisa; Radici, Lucia; Magnani, Mauro

    2013-01-01

    In a number of organisms, introns affect expression of the gene in which they are contained. Our previous studies revealed that the 5′-UTR intron of human ubiquitin C (UbC) gene is responsible for the boost of reporter gene expression and is able to bind, in vitro, Yin Yang 1 (YY1) trans-acting factor. In this work, we demonstrate that intact YY1 binding sequences are required for maximal promoter activity and YY1 silencing causes downregulation of luciferase mRNA levels. However, YY1 motifs fail to enhance gene expression when the intron is moved upstream of the proximal promoter, excluding the typical enhancer hypothesis and supporting a context-dependent action, like intron-mediated enhancement (IME). Yet, almost no expression is seen in the construct containing an unspliceable version of UbC intron, indicating that splicing is essential for promoter activity. Moreover, mutagenesis of YY1 binding sites and YY1 knockdown negatively affect UbC intron removal from both endogenous and reporter transcripts. Modulation of splicing efficiency by YY1 cis-elements and protein factor may thus be part of the mechanism(s) by which YY1 controls UbC promoter activity. Our data highlight the first evidence of the involvement of a sequence-specific DNA binding factor in IME. PMID:23776572

  9. Enhancement of Transcription by a Splicing-Competent Intron Is Dependent on Promoter Directionality

    PubMed Central

    Agarwal, Neha; Ansari, Athar

    2016-01-01

    Enhancement of transcription by a splicing-competent intron is an evolutionarily conserved feature among eukaryotes. The molecular mechanism underlying the phenomenon, however, is not entirely clear. Here we show that the intron is an important regulator of promoter directionality. Employing strand-specific transcription run-on (TRO) analysis, we show that the transcription of mRNA is favored over the upstream anti-sense transcripts (uaRNA) initiating from the promoter in the presence of an intron. Mutation of either the 5′ or 3′ splice site resulted in the reversal of promoter directionality, thereby suggesting that it is not merely the 5′ splice site but the entire splicing-competent intron that regulates transcription directionality. ChIP analysis revealed the recruitment of termination factors near the promoter region in the presence of an intron. Removal of intron or the mutation of splice sites adversely affected the promoter localization of termination factors. We have earlier demonstrated that the intron-mediated enhancement of transcription is dependent on gene looping. Here we show that gene looping is crucial for the recruitment of termination factors in the promoter-proximal region of an intron-containing gene. In a looping-defective mutant, despite normal splicing, the promoter occupancy of factors required for poly(A)-dependent termination of transcription was compromised. This was accompanied by a concomitant loss of transcription directionality. On the basis of these results, we propose that the intron-dependent gene looping places the terminator-bound factors in the vicinity of the promoter region for termination of the promoter-initiated upstream antisense transcription, thereby conferring promoter directionality. PMID:27152651

  10. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila.

    PubMed

    Gao, Jun-Li; Fan, Yu-Jie; Wang, Xiu-Ye; Zhang, Yu; Pu, Jia; Li, Liang; Shao, Wei; Zhan, Shuai; Hao, Jianjiang; Xu, Yong-Zhen

    2015-04-01

    Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5' intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5' intron finds the 3' introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5' intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing.

  11. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila

    PubMed Central

    Gao, Jun-Li; Fan, Yu-Jie; Wang, Xiu-Ye; Zhang, Yu; Pu, Jia; Li, Liang; Shao, Wei; Zhan, Shuai; Hao, Jianjiang

    2015-01-01

    Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5′ intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5′ intron finds the 3′ introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5′ intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing. PMID:25838544

  12. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.

    PubMed

    Královicová, Jana; Vorechovsky, Igor

    2007-01-01

    Auxiliary splicing signals play a major role in the regulation of constitutive and alternative pre-mRNA splicing, but their relative importance in selection of mutation-induced cryptic or de novo splice sites is poorly understood. Here, we show that exonic sequences between authentic and aberrant splice sites that were activated by splice-site mutations in human disease genes have lower frequencies of splicing enhancers and higher frequencies of splicing silencers than average exons. Conversely, sequences between authentic and intronic aberrant splice sites have more enhancers and less silencers than average introns. Exons that were skipped as a result of splice-site mutations were smaller, had lower SF2/ASF motif scores, a decreased availability of decoy splice sites and a higher density of silencers than exons in which splice-site mutation activated cryptic splice sites. These four variables were the strongest predictors of the two aberrant splicing events in a logistic regression model. Elimination or weakening of predicted silencers in two reporters consistently promoted use of intron-proximal splice sites if these elements were maintained at their original positions, with their modular combinations producing expected modification of splicing. Together, these results show the existence of a gradient in exon and intron definition at the level of pre-mRNA splicing and provide a basis for the development of computational tools that predict aberrant splicing outcomes.

  13. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani

    PubMed Central

    McNeil, Bonnie A.; Zimmerly, Steven

    2014-01-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5′ splice site located 8 nt upstream of the usual 5′ GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1–EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5′ splice site is shown to be affected by structures in addition to IBS1–EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3′ exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  14. The intronic splicing code: multiple factors involved in ATM pseudoexon definition.

    PubMed

    Dhir, Ashish; Buratti, Emanuele; van Santen, Maria A; Lührmann, Reinhard; Baralle, Francisco E

    2010-02-17

    Abundance of pseudo splice sites in introns can potentially give rise to innumerable pseudoexons, outnumbering the real ones. Nonetheless, these are efficiently ignored by the splicing machinery, a process yet to be understood completely. Although numerous 5' splice site-like sequences functioning as splicing silencers have been found to be enriched in predicted human pseudoexons, the lack of active pseudoexons pose a fundamental challenge to how these U1snRNP-binding sites function in splicing inhibition. Here, we address this issue by focusing on a previously described pathological ATM pseudoexon whose inhibition is mediated by U1snRNP binding at intronic splicing processing element (ISPE), composed of a consensus donor splice site. Spliceosomal complex assembly demonstrates inefficient A complex formation when ISPE is intact, implying U1snRNP-mediated unproductive U2snRNP recruitment. Furthermore, interaction of SF2/ASF with its motif seems to be dependent on RNA structure and U1snRNP interaction. Our results suggest a complex combinatorial interplay of RNA structure and trans-acting factors in determining the splicing outcome and contribute to understanding the intronic splicing code for the ATM pseudoexon.

  15. Branch point identification and sequence requirements for intron splicing in Plasmodium falciparum.

    PubMed

    Zhang, Xiaohong; Tolzmann, Caitlin A; Melcher, Martin; Haas, Brian J; Gardner, Malcolm J; Smith, Joseph D; Feagin, Jean E

    2011-11-01

    Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P. falciparum. This analysis indicates that P. falciparum mRNAs have canonical 5' and 3' splice sites. However, the 5' consensus motif is weakly conserved and tolerates nucleotide substitution, including the fifth nucleotide in the intron, which is more typically a G nucleotide in most eukaryotes. In comparison, the 3' splice site has a strong eukaryotic consensus sequence and adjacent polypyrimidine tract. In four different P. falciparum pre-mRNAs, multiple branch points per intron were detected, with some at U instead of the typical A residue. A weak branch point consensus was detected among 18 identified branch points. This analysis indicates that P. falciparum retains many consensus eukaryotic splice site features, despite having an extreme codon bias, and possesses flexibility in branch point nucleophilic attack.

  16. Information content of Caenorhabditis elegans splice site sequences varies with intron length.

    PubMed Central

    Fields, C

    1990-01-01

    A database of sequences of 139 introns from the nematode Caenorhabditis elegans was analyzed using the information measure of Schneider et al. (1986) J. Mol. Biol. 128: 415-431. Statistically significant information is encoded by at least the first 30 nt and last 20 nt of C. elegans introns. Both the quantity and the distribution of information in the 5' splice site sequences differs between the typical short (length less than 75 nt) and rarer long (length greater than 75 nt) introns, with the 5 sites of long introns containing approximately one bit more information. 3' splice site sequences of long and short C. elegans introns differ significantly in the region between -20 and -10 nt. PMID:2326191

  17. Inhibition of Telomerase Activity Using an EGFP-Intron Splicing System Encoding Multiple RNAi Sequences.

    PubMed

    Sakiragaoglu, O; Munn, A L

    2016-12-01

    To inhibit telomerase activity, a construct which contains artificial introns in the enhanced green fluorescent protein (EGFP) gene that encodes small hairpin RNA (shRNA) sequences that target human telomerase reverse transcriptase (hTERT) gene expression was designed and tested for its effect on lung cancer cell line. On intron splicing from the construct, intronic sequences were released and formed shRNA in the cells. After transfection of the construct, hTERT mRNA expression decreased by approximately 55 % in A549 cells. Correspondingly, in the same cell line, telomerase activity was decreased by approximately 23 %. The telomerase activity was transiently inhibited by this non-viral shRNA expression system that uses intron splicing to release artificial introns in an EGFP marker gene that contain shRNA targeting telomerase.

  18. Inhibition of self-splicing group I intron RNA: high-throughput screening assays.

    PubMed Central

    Mei, H Y; Cui, M; Sutton, S T; Truong, H N; Chung, F Z; Czarnik, A W

    1996-01-01

    High-throughput screening assays have been developed to rapidly identify small molecule inhibitors targeting catalytic group I introns. Biochemical reactions catalyzed by a self-splicing group I intron derived from Pneumocystis carinii or from bacteriophage T4 have been investigated. In vitro biochemical assays amenable to high-throughput screening have been established. Small molecules that inhibit the functions of group I introns have been identified. These inhibitors should be useful in better understanding ribozyme catalysis or in therapeutic intervention of group I intron-containing microorganisms. PMID:9016680

  19. Unusual Intron Conservation near Tissue-Regulated Exons Found by Splicing Microarrays

    PubMed Central

    Sugnet, Charles W; Srinivasan, Karpagam; Clark, Tyson A; O'Brien, Georgeann; Cline, Melissa S; Wang, Hui; Williams, Alan; Kulp, David; Blume, John E; Haussler, David; Ares, Manuel

    2006-01-01

    Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing at least two alternative splice junctions for about 40% of the 6,216 alternative events we could detect. Statistical comparisons identify 171 cassette exons whose inclusion or skipping is different in brain relative to other tissues and another 28 exons whose splicing is different in muscle. A subset of these exons is associated with unusual blocks of intron sequence whose conservation in vertebrates rivals that of protein-coding exons. By focusing on sets of exons with similar regulatory patterns, we have identified new sequence motifs implicated in brain and muscle splicing regulation. Of note is a motif that is strikingly similar to the branchpoint consensus but is located downstream of the 5′ splice site of exons included in muscle. Analysis of three paralogous membrane-associated guanylate kinase genes reveals that each contains a paralogous tissue-regulated exon with a similar tissue inclusion pattern. While the intron sequences flanking these exons remain highly conserved among mammalian orthologs, the paralogous flanking intron sequences have diverged considerably, suggesting unusually complex evolution of the regulation of alternative splicing in multigene families. PMID:16424921

  20. Position-dependent repression and promotion of DQB1 intron 3 splicing by GGGG motifs.

    PubMed

    Královicová, Jana; Vorechovsky, Igor

    2006-02-15

    Alternative splicing of HLA-DQB1 exon 4 is allele-dependent and results in variable expression of soluble DQbeta. We have recently shown that differential inclusion of this exon in mature transcripts is largely due to intron 3 variants in the branch point sequence (BPS) and polypyrimidine tract. To identify additional regulatory cis-elements that contribute to haplotype-specific splicing of DQB1, we systematically examined the effect of guanosine (G) repeats on intron 3 removal. We found that the GGG or GGGG repeats generally improved splicing of DQB1 intron 3, except for those that were adjacent to the 5' splice site where they had the opposite effect. The most prominent splicing enhancement was conferred by GGGG motifs arranged in tandem upstream of the BPS. Replacement of a G-rich segment just 5' of the BPS with a series of random sequences markedly repressed splicing, whereas substitutions of a segment further upstream that lacked the G-rich elements and had the same size did not result in comparable splicing inhibition. Systematic mutagenesis of both suprabranch guanosine quadruplets (G(4)) revealed a key role of central G residues in splicing enhancement, whereas cytosines in these positions had the most prominent repressive effects. Together, these results show a significant role of tandem G(4)NG(4) structures in splicing of both complete and truncated DQB1 intron 3, support position dependency of G repeats in splicing promotion and inhibition, and identify positively and negatively acting sequences that contribute to the haplotype-specific DQB1 expression.

  1. An Intronic G Run within HIV-1 Intron 2 Is Critical for Splicing Regulation of vif mRNA

    PubMed Central

    Widera, Marek; Erkelenz, Steffen; Hillebrand, Frank; Krikoni, Aikaterini; Widera, Darius; Kaisers, Wolfgang; Deenen, René; Gombert, Michael; Dellen, Rafael; Pfeiffer, Tanya; Kaltschmidt, Barbara; Münk, Carsten; Bosch, Valerie; Köhrer, Karl

    2013-01-01

    Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1 accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3′ splice site (3′ss) A1 but lack splicing at 5′ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3′ss A1 and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects. The use of 3′ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5′ss D2. Here we show that an intronic G run (GI2-1) represses the use of a second 5′ss, termed D2b, that is embedded within intron 2 and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of GI2-1 and activation of D2b led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral replication in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run identified here. PMID:23255806

  2. Splicing of COB intron 5 requires pairing between the internal guide sequence and both flanking exons.

    PubMed

    Partono, S; Lewin, A S

    1990-11-01

    Group I introns are characterized by a set of conserved sequence elements and secondary structures. Evidence supporting the pairing of certain of these sequences has come from the comparison of intron sequences and from the analysis of mutations that disrupt splicing by interfering with pairing. One of the structures proposed for all group I introns is an internal guide sequence that base pairs with the upstream and the downstream exons, bringing them into alignment for ligation. We made specific mutations in the internal guide sequence and the flanking exons of the fifth intron in the yeast mitochondrial gene for apocytochrome b (COB). Mutations that disrupted the pairing between the internal guide sequence and the upstream exon (the P1 pairing) blocked addition of guanosine to the 5' end of the intron during autocatalytic reactions and prevented formation of the full-length circular intron. In contrast, transcripts containing mutations that disrupted the pairing between the guide sequence and the downstream exon (the P10 helix) initiated splicing but failed to ligate exons. Compensatory mutations that restored helices of normal stability mitigated the effects of the original mutations. These data provide direct evidence for the importance of the base pairing between the internal guide sequence and the downstream exon in the splicing of a wild-type group I intron.

  3. A nicked group II intron and trans-splicing in liverwort, Marchantia polymorpha, chloroplasts.

    PubMed Central

    Kohchi, T; Umesono, K; Ogura, Y; Komine, Y; Nakahigashi, K; Komano, T; Yamada, Y; Ozeki, H; Ohyama, K

    1988-01-01

    The chloroplast gene rps12 for ribosomal protein S12 in a liverwort, Marchantia polymorpha, is split into three exons by two introns, one of which (intron 1) is discontinuous. Exon 1 of rps12 for the N-terminal portion of the S12 protein is far from exons 2 and 3 for the C-terminal portion on the opposite DNA strand. S1-nuclease protection analysis and Northern hybridization with RNA isolated from the liverwort chloroplasts showed that: (i) the exons 1 and 2-3 of the rps12 gene with the neighboring genes were transcribed separately, (ii) the trans-splicing of intron 1 occurred after the processing of two primary transcripts to two pre-mRNAs, and (iii) there was no particular order for the splicing of intron 1 (trans) and intron 2 (cis) in the rps12 gene. We propose a bimolecular interaction model for trans-splicing by assuming that intermolecular base pairings between two pre-mRNAs result in the formation of the structure typical of group II introns except for disruption in the loop III region. This structure could be constructed in intron 1 of tobacco rps12 gene. Images PMID:3194192

  4. Antisense Oligonucleotide Mediated Splice Correction of a Deep Intronic Mutation in OPA1

    PubMed Central

    Bonifert, Tobias; Gonzalez Menendez, Irene; Battke, Florian; Theurer, Yvonne; Synofzik, Matthis; Schöls, Ludger; Wissinger, Bernd

    2016-01-01

    Inherited optic neuropathies (ION) present an important cause of blindness in the European working-age population. Recently we reported the discovery of four independent families with deep intronic mutations in the main inherited optic neuropathies gene OPA1. These deep intronic mutations cause mis-splicing of the OPA1 pre-messenger-RNA transcripts by creating cryptic acceptor splice sites. As a rescue strategy we sought to prevent mis-splicing of the mutant pre-messenger-RNA by applying 2′O-methyl-antisense oligonucleotides (AONs) with a full-length phosphorothioate backbone that target the cryptic acceptor splice sites and the predicted novel branch point created by the deep intronic mutations, respectively. Transfection of patient-derived primary fibroblasts with these AONs induced correct splicing of the mutant pre-messenger-RNA in a time and concentration dependent mode of action, as detected by pyrosequencing of informative heterozygous variants. The treatment showed strong rescue effects (~55%) using the cryptic acceptor splice sites targeting AON and moderate rescue (~16%) using the branch point targeting AON. The highest efficacy of Splice correction could be observed 4 days after treatment however, significant effects were still seen 14 days post-transfection. Western blot analysis revealed increased amounts of OPA1 protein with maximum amounts at ~3 days post-treatment. In summary, we provide the first mutation-specific in vitro rescue strategy for OPA1 deficiency using synthetic AONs. PMID:27874857

  5. Regulation of gene expression through inefficient splicing of U12-type introns.

    PubMed

    Niemelä, Elina H; Frilander, Mikko J

    2014-01-01

    U12-type introns are a rare class of nuclear introns that are removed by a dedicated U12-dependent spliceosome and are thought to regulate the expression of their target genes owing through their slower splicing reaction. Recent genome-wide studies on the splicing of U12-type introns are now providing new insights on the biological significance of this parallel splicing machinery. The new studies cover multiple different organisms and experimental systems, including human patient cells with mutations in the components of the minor spliceosome, zebrafish with similar mutations and various experimentally manipulated human cells and Arabidopsis plants. Here, we will discuss the potential implications of these studies on the understanding of the mechanism and regulation of the minor spliceosome, as well as their medical implications.

  6. Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human.

    PubMed

    Clark, Francis; Thanaraj, T A

    2002-02-15

    By spliced alignment of human DNA and transcript sequence data we constructed a data set of transcript-confirmed exons and introns from 2793 genes, 796 of which (28%) were seen to have multiple isoforms. We find that over one-third of human exons can translate in more than one frame, and that this is highly correlated with G+C content. Introns containing adenosine at donor site position +3 (A3), rather than guanosine (G3), are more common in low G+C regions, while the converse is true in high G+C regions. These two classes of introns are shown to have distinct lengths, consensus sequences and correlations among splice signals, leading to the hypothesis that A3 donor sites are associated with exon definition, and G3 donor sites with intron definition. Minor classes of introns, including GC-AG, U12-type GT-AG, weak, and putative AG-dependant introns are identified and characterized. Cassette exons are more prevalent in low G+C regions, while exon isoforms are more prevalent in high G+C regions. Cassette exon events outnumber other alternative events, while exon isoform events involve truncation twice as often as extension, and occur at acceptor sites twice as often as at donor sites. Alternative splicing is usually associated with weak splice signals, and in a majority of cases, preserves the coding frame. The reported characteristics of constitutive and alternative splice signals, and the hypotheses offered regarding alternative splicing and genome organization, have important implications for experimental research into RNA processing. The 'AltExtron' data sets are available at http://www.bit.uq.edu.au/altExtron/ and http://www.ebi.ac.uk/~thanaraj/altExtron/.

  7. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing.

    PubMed

    Tian, Bin; Pan, Zhenhua; Lee, Ju Youn

    2007-02-01

    mRNA polyadenylation and pre-mRNA splicing are two essential steps for the maturation of most human mRNAs. Studies have shown that some genes generate mRNA variants involving both alternative polyadenylation and alternative splicing. Polyadenylation in introns can lead to conversion of an internal exon to a 3' terminal exon, which is termed composite terminal exon, or usage of a 3' terminal exon that is otherwise skipped, which is termed skipped terminal exon. Using cDNA/EST and genome sequences, we identified polyadenylation sites in introns for all currently known human genes. We found that approximately 20% human genes have at least one intronic polyadenylation event that can potentially lead to mRNA variants, most of which encode different protein products. The conservation of human intronic poly(A) sites in mouse and rat genomes is lower than that of poly(A) sites in 3'-most exons. Quantitative analysis of a number of mRNA variants generated by intronic poly(A) sites suggests that the intronic polyadenylation activity can vary under different cellular conditions for most genes. Furthermore, we found that weak 5' splice site and large intron size are the determining factors controlling the usage of composite terminal exon poly(A) sites, whereas skipped terminal exon poly(A) sites tend to be associated with strong polyadenylation signals. Thus, our data indicate that dynamic interplay between polyadenylation and splicing leads to widespread polyadenylation in introns and contributes to the complexity of transcriptome in the cell.

  8. Trans-splicing with the group I intron ribozyme from Azoarcus

    PubMed Central

    Dolan, Gregory F.; Müller, Ulrich F.

    2014-01-01

    Group I introns are ribozymes (catalytic RNAs) that excise themselves from RNA primary transcripts by catalyzing two successive transesterification reactions. These cis-splicing ribozymes can be converted into trans-splicing ribozymes, which can modify the sequence of a separate substrate RNA, both in vitro and in vivo. Previous work on trans-splicing ribozymes has mostly focused on the 16S rRNA group I intron ribozyme from Tetrahymena thermophila. Here, we test the trans-splicing potential of the tRNAIle group I intron ribozyme from the bacterium Azoarcus. This ribozyme is only half the size of the Tetrahymena ribozyme and folds faster into its active conformation in vitro. Our results showed that in vitro, the Azoarcus and Tetrahymena ribozymes favored the same set of splice sites on a substrate RNA. Both ribozymes showed the same trans-splicing efficiency when containing their individually optimized 5′ terminus. In contrast to the previously optimized 5′-terminal design of the Tetrahymena ribozyme, the Azoarcus ribozyme was most efficient with a trans-splicing design that resembled the secondary structure context of the natural cis-splicing Azoarcus ribozyme, which includes base-pairing between the substrate 5′ portion and the ribozyme 3′ exon. These results suggested preferred trans-splicing interactions for the Azoarcus ribozyme under near-physiological in vitro conditions. Despite the high activity in vitro, however, the splicing efficiency of the Azoarcus ribozyme in Escherichia coli cells was significantly below that of the Tetrahymena ribozyme. PMID:24344321

  9. Do DEAD-box proteins promote group II intron splicing without unwinding RNA?

    PubMed

    Del Campo, Mark; Tijerina, Pilar; Bhaskaran, Hari; Mohr, Sabine; Yang, Quansheng; Jankowsky, Eckhard; Russell, Rick; Lambowitz, Alan M

    2007-10-12

    The DEAD-box protein Mss116p promotes group II intron splicing in vivo and in vitro. Here we explore two hypotheses for how Mss116p promotes group II intron splicing: by using its RNA unwinding activity to act as an RNA chaperone or by stabilizing RNA folding intermediates. We show that an Mss116p mutant in helicase motif III (SAT/AAA), which was reported to stimulate splicing without unwinding RNA, retains ATP-dependent unwinding activity and promotes unfolding of a structured RNA. Its unwinding activity increases sharply with decreasing duplex length and correlates with group II intron splicing activity in quantitative assays. Additionally, we show that Mss116p can promote ATP-independent RNA unwinding, presumably via single-strand capture, also potentially contributing to DEAD-box protein RNA chaperone activity. Our findings favor the hypothesis that DEAD-box proteins function in group II intron splicing as in other processes by using their unwinding activity to act as RNA chaperones.

  10. Allele-specific recognition of the 3′ splice site of INS intron 1

    PubMed Central

    Kralovicova, Jana

    2010-01-01

    Genetic predisposition to type 1 diabetes (T1D) has been associated with a chromosome 11 locus centered on the proinsulin gene (INS) and with differential steady-state levels of INS RNA from T1D-predisposing and -protective haplotypes. Here, we show that the haplotype-specific expression is determined by INS variants that control the splicing efficiency of intron 1. The adenine allele at IVS1-6 (rs689), which rapidly expanded in modern humans, renders the 3′ splice site of this intron more dependent on the auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF). This interaction required both zinc fingers of the 35-kD U2AF subunit (U2AF35) and was associated with repression of a competing 3′ splice site in INS exon 2. Systematic mutagenesis of reporter constructs showed that intron 1 removal was facilitated by conserved guanosine-rich enhancers and identified additional splicing regulatory motifs in exon 2. Sequencing of intron 1 in primates revealed that relaxation of its 3′ splice site in Hominidae coevolved with the introduction of a short upstream open reading frame, providing a more efficient coupled splicing and translation control. Depletion of SR proteins 9G8 and transformer-2 by RNA interference was associated with exon 2 skipping whereas depletion of SRp20 with increased representation of transcripts containing a cryptic 3′ splice site in the last exon. Together, these findings reveal critical interactions underlying the allele-dependent INS expression and INS-mediated risk of T1D and suggest that the increased requirement for U2AF35 in higher primates may hinder thymic presentation of autoantigens encoded by transcripts with weak 3′ splice sites. Electronic supplementary material The online version of this article (doi:10.1007/s00439-010-0860-1) contains supplementary material, which is available to authorized users. PMID:20628762

  11. Experimental evidence for splicing of intron-containing transcripts of plant LTR retrotransposon Ogre.

    PubMed

    Steinbauerová, Veronika; Neumann, Pavel; Macas, Jirí

    2008-11-01

    Ogre elements are a distinct group of plant Ty3/gypsy-like retrotransposons characterized by several specific features, one of which is a separation of the gag-pol region into two non-overlapping open reading frames: ORF2 coding for Gag-Pro, and ORF3 coding for RT/RH-INT proteins. Previous characterization of Ogre elements from several plant species revealed that part of their transcripts lacks the region between ORF2 and ORF3, carrying one uninterrupted ORF instead. In this work, we investigated a hypothesis that this region represents an intron that is spliced out from part of the Ogre transcripts as a means for preferential production of ORF2-encoded proteins over those encoded by the complete ORF2-ORF3 region. The experiments involved analysis of transcription patterns of well-defined Ogre populations in a model plant Medicago truncatula and examination of transcripts carrying dissected pea Ogre intron expressed within a coding sequence of chimeric reporter gene. Both experimental approaches proved that the region between ORF2 and ORF3 is spliced from Ogre transcripts and showed that this process is only partial, probably due to weak splice signals. This is one of very few known cases of spliced LTR retrotransposons and the only one where splicing does not involve parts of the element's coding sequences, thus resembling intron splicing found in most cellular genes.

  12. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Zimmerly, Steven

    2014-06-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. © 2014 McNeil and Zimmerly; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing

    PubMed Central

    Ramalingam, Pradeep; Palanichamy, Jayanth Kumar; Singh, Anand; Das, Prerna; Bhagat, Mohita; Kassab, Muzaffer Ahmad; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2014-01-01

    miRNAs are generally classified as “intergenic” or “intronic” based upon their genomic location. Intergenic miRNAs are known to be transcribed as independent transcription units, while intronic miRNAs are believed to be processed from the introns of their hosting transcription units and hence share common regulatory mechanisms and expression patterns with its host gene. Recent reports in the literature suggest that some intronic miRNAs, which do not show concordance in expression with their respective host genes, might be transcribed and regulated as independent transcription units. However, there is no direct evidence for the existence of independently transcribed intronic miRNA in humans to date. We have characterized the full-length primary transcripts (pri-miRNAs) of three human intronic miRNAs—miR 106b, miR 93, and miR 24-1—by RNA ligase-mediated RACE and show that human intronic miRNA can indeed be transcribed as independent transcription units. Also, clustered miRNAs are generally believed to arise from a common primary transcript and are expected to have similar expression profiles. However, we have identified several novel alternatively spliced transcripts by RT-PCR, each of which harbors a single pre-miRNA from a cluster of closely located intronic miRNAs. We show that these transcripts represent unique pri-miRNAs for each of these clustered miRNAs. We also report the identification of conserved splice acceptor signals which are responsible for maturation of these novel splice variants. Our results suggest that alternative splicing might play a role in uncoupling the expression of clustered miRNAs from each other, which otherwise are generally believed to be co-transcribed and co-expressed. PMID:24226766

  14. Nucleotide sequence composition adjacent to intronic splice sites improves splicing efficiency via its effect on pre-mRNA local folding in fungi.

    PubMed

    Zafrir, Zohar; Tuller, Tamir

    2015-10-01

    RNA splicing is the central process of intron removal in eukaryotes known to regulate various cellular functions such as growth, development, and response to external signals. The canonical sequences indicating the splicing sites needed for intronic boundary recognition are well known. However, the roles and evolution of the local folding of intronic and exonic sequence features adjacent to splice sites has yet to be thoroughly studied. Here, focusing on four fungi (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, and Candida albicans), we performed for the first time a comprehensive high-resolution study aimed at characterizing the encoding of intronic splicing efficiency in pre-mRNA transcripts and its effect on intron evolution. Our analysis supports the conjecture that pre-mRNA local folding strength at intronic boundaries is under selective pressure, as it significantly affects splicing efficiency. Specifically, we show that in the immediate region of 12-30 nucleotides (nt) surrounding the intronic donor site there is a preference for weak pre-mRNA folding; similarly, in the region of 15-33 nt surrounding the acceptor and branch sites there is a preference for weak pre-mRNA folding. We also show that in most cases there is a preference for strong pre-mRNA folding further away from intronic splice sites. In addition, we demonstrate that these signals are not associated with gene-specific functions, and they correlate with splicing efficiency measurements (r = 0.77, P = 2.98 × 10(-21)) and with expression levels of the corresponding genes (P = 1.24 × 10(-19)). We suggest that pre-mRNA folding strength in the above-mentioned regions has a direct effect on splicing efficiency by improving the recognition of intronic boundaries. These new discoveries are contributory steps toward a broader understanding of splicing regulation and intronic/transcript evolution.

  15. In silico analysis of the sequence features responsible for alternatively spliced introns in the model green alga Chlamydomonas reinhardtii.

    PubMed

    Raj-Kumar, Praveen-Kumar; Vallon, Olivier; Liang, Chun

    2017-06-01

    Alternatively spliced introns are the ones that are usually spliced but can be occasionally retained in a transcript isoform. They are the most frequently used alternative splice form in plants (~50% of alternative splicing events). Chlamydomonas reinhardtii, a unicellular alga, is a good model to understand alternative splicing (AS) in plants from an evolutionary perspective as it diverged from land plants a billion years ago. Using over 7 million cDNA sequences from both pyrosequencing and Sanger sequencing, we found that a much higher percentage of genes (~20% of multi-exon genes) undergo AS than previously reported (3-5%). We found a full component of SR and SR-like proteins possibly involved in AS. The most prevalent type of AS event (40%) was retention of introns, most of which were supported by multiple cDNA evidence (72%) while only 20% of them have coding capacity. By comparing retained and constitutive introns, we identified sequence features potentially responsible for the retention of introns, in the framework of an "intron definition" model for splicing. We find that retained introns tend to have a weaker 5' splice site, more Gs in their poly-pyrimidine tract and a lesser conservation of nucleotide 'C' at position -3 of the 3' splice site. In addition, the sequence motifs found in the potential branch-point region differed between retained and constitutive introns. Furthermore, the enrichment of G-triplets and C-triplets among the first and last 50 nt of the introns significantly differ between constitutive and retained introns. These could serve as intronic splicing enhancers. All the alternative splice forms can be accessed at http://bioinfolab.miamioh.edu/cgi-bin/PASA_r20140417/cgi-bin/status_report.cgi?db=Chre_AS .

  16. The effect of intron location on the splicing of BmKK2 in 293T cells.

    PubMed

    Zhijian, Cao; Chao, Dai; Dahe, Jiang; Wenxin, Li

    2006-01-01

    Previously reported results showed that the BmKK2's intron could be recognized and spliced in cultured HEK 293T cells. At the same time, a cryptic splicing site of BmKK2 gene was found in the second exon. Moreover, replacing BmKK2's intron with BmP03's intron (an artificial BmKK2-BmP03 mosaic gene) did not affect the intron's recognition and splicing, but increased the expression level of the toxin-GFP fusion protein (Cao et al., J Biochem Mol Toxicol 2006;20:1-6). In this investigation, the BmKK2's intron with 79 nucleotides length was artificially shifted from the 49th nt (the 17th Gly codon between the first base and the second base) to the 100th nt (the 34th Gly codon between the first base and the second base). Based on the constructed intron-splicing system, the results of RT-PCR and the western blotting analysis showed that the BmKK2's shifted-intron (named BmKK2-s) was not recognized and spliced correctly, but the cryptic splicing site of BmKK2 gene was still spliced in the second exon, which possibly indicated that locations of introns were very important to the recognition and splicing of introns, and splicing of introns was very much associated with the corresponding upstream and downstream exons. This result possibly provides evidence for splice-site recognition across the exons. (c) 2006 Wiley Periodicals, Inc.

  17. A peripheral element assembles the compact core structure essential for group I intron self-splicing

    PubMed Central

    Xiao, Mu; Li, Tingting; Yuan, Xiaoyan; Shang, Yuan; Wang, Fu; Chen, Shoudeng; Zhang, Yi

    2005-01-01

    The presence of non-conserved peripheral elements in all naturally occurring group I introns underline their importance in ensuring the natural intron function. Recently, we reported that some peripheral elements are conserved in group I introns of IE subgroup. Using self-splicing activity as a readout, our initial screening revealed that one such conserved peripheral elements, P2.1, is mainly required to fold the catalytically active structure of the Candida ribozyme, an IE intron. Unexpectedly, the essential function of P2.1 resides in a sequence-conserved short stem of P2.1 but not in a long-range interaction associated with the loop of P2.1 that stabilizes the ribozyme structure. The P2.1 stem is indispensable in folding the compact ribozyme core, most probably by forming a triple helical interaction with two core helices, P3 and P6. Surprisingly, although the ribozyme lacking the P2.1 stem renders a loosely folded core and the loss of self-splicing activity requires two consecutive transesterifications, the mutant ribozyme efficiently catalyzes the first transesterification reaction. These results suggest that the intron self-splicing demands much more ordered structure than does one independent transesterification, highlighting that the universally present peripheral elements achieve their functional importance by enabling the highly ordered structure through diverse tertiary interactions. PMID:16100381

  18. A Complex Network of Factors with Overlapping Affinities Repress Splicing through Intronic Elements

    PubMed Central

    Wang, Yang; Xiao, Xinshu; Zhang, Jianming; Choudhury, Rajarshi; Robertson, Alex; Li, Kai; Ma, Meng; Burge, Christopher B.; Wang, Zefeng

    2012-01-01

    To better understand splicing regulation, we used a cell-based screen to identify ten diverse motifs that inhibit splicing from intron. Each motif was validated in another human cell type and gene context, and their presence correlated with in vivo splicing changes. All motifs exhibited exonic splicing enhancer or silencer activity, and grouping these motifs based on their distributions yielded clusters with distinct patterns of context-dependent activity. Candidate regulatory factors associated with each motif were identified, recovering 24 known and novel splicing regulators. Specific domains in selected factors were sufficient to confer ISS activity. Many factors bound multiple distinct motifs with similar affinity, and all motifs were recognized by multiple factors, revealing a complex, overlapping network of protein:RNA interactions. This arrangement enables individual cis-element to function differently in distinct cellular contexts depending on the spectrum of regulatory factors present. PMID:23241926

  19. An mTERF domain protein functions in group II intron splicing in maize chloroplasts.

    PubMed

    Hammani, Kamel; Barkan, Alice

    2014-04-01

    The mitochondrial transcription termination factor (mTERF) proteins are nucleic acid binding proteins characterized by degenerate helical repeats of ∼30 amino acids. Metazoan genomes encode a small family of mTERF proteins whose members influence mitochondrial gene expression and DNA replication. The mTERF family in higher plants consists of roughly 30 members, which localize to mitochondria or chloroplasts. Effects of several mTERF proteins on plant development and physiology have been described, but molecular functions of mTERF proteins in plants are unknown. We show that a maize mTERF protein, Zm-mTERF4, promotes the splicing of group II introns in chloroplasts. Zm-mTERF4 coimmunoprecipitates with many chloroplast introns and the splicing of some of these introns is disrupted even in hypomorphic Zm-mterf4 mutants. Furthermore, Zm-mTERF4 is found in high molecular weight complexes that include known chloroplast splicing factors. The splicing of two transfer RNAs (trnI-GAU and trnA-UGC) and one ribosomal protein messenger RNA (rpl2) is particularly sensitive to the loss of Zm-mTERF4, accounting for the loss of plastid ribosomes in Zm-mTERF4 mutants. These findings extend the known functional repertoire of the mTERF family to include group II intron splicing and suggest that a conserved role in chloroplast RNA splicing underlies the physiological defects described for mutations in BSM/Rugosa2, the Zm-mTERF4 ortholog in Arabidopsis.

  20. Pentamidine Inhibition of Group I Intron Splicing in Candida albicans Correlates with Growth Inhibition

    PubMed Central

    Miletti, Karl E.; Leibowitz, Michael J.

    2000-01-01

    We previously demonstrated that pentamidine, which has been clinically used against Pneumocystis carinii, inhibits in vitro a group I intron ribozyme from that organism. Another fungal pathogen, Candida albicans, also harbors a group I intron ribozyme (Ca.LSU) in the essential rRNA genes in almost half of the clinical isolates analyzed. To determine whether pentamidine inhibits Ca.LSU in vitro and in cells, phylogenetically closely related intron-containing (4-1) and intronless (62-1) strains were studied. Splicing in vitro of the Ca.LSU group I intron ribozyme was completely inhibited by pentamidine at 200 μM. On rich glucose medium, the intron-containing strain was more sensitive to growth inhibition by pentamidine than was the intronless strain, as measured by disk or broth microdilution assays. On rich glycerol medium, they were equally susceptible to pentamidine. At pentamidine levels selectively inhibiting the intron-containing strain (1 μM) in glucose liquid cultures, inhibition of splicing and rRNA maturation was detected by quantitative reverse transcription-PCR within 1 min with a 10- to 15-fold accumulation of precursor rRNA. No comparable effect was seen in the intronless strain. These results correlate the cellular splicing inhibition of Ca.LSU with the growth inhibition of strain 4-1 harboring Ca.LSU. Broth microdilution assays of 13 Candida strains showed that intron-containing strains were generally more susceptible to pentamidine than the intronless strains. Our data suggest that ribozymes found in pathogenic microorganisms but absent in mammals may be targets for antimicrobial therapy. PMID:10722497

  1. Structural and Mutational Analysis of tRNA Intron-Splicing Endonuclease from Thermoplasma acidophilum DSM 1728: Catalytic Mechanism of tRNA Intron-Splicing Endonucleases▿

    PubMed Central

    Kim, Young Kwan; Mizutani, Kenji; Rhee, Kyung-Hee; Nam, Ki-Hyun; Lee, Won Ho; Lee, Eun Hye; Kim, Eunice Eunkyeong; Park, Sam-Yong; Hwang, Kwang Yeon

    2007-01-01

    In archaea, RNA endonucleases that act specifically on RNA with bulge-helix-bulge motifs play the main role in the recognition and excision of introns, while the eukaryal enzymes use a measuring mechanism to determine the positions of the universally positioned splice sites relative to the conserved domain of pre-tRNA. Two crystallographic structures of tRNA intron-splicing endonuclease from Thermoplasma acidophilum DSM 1728 (EndATa) have been solved to 2.5-Å and 2.7-Å resolution by molecular replacement, using the 2.7-Å resolution data as the initial model and the single-wavelength anomalous-dispersion phasing method using selenomethionine as anomalous signals, respectively. The models show that EndATa is a homodimer and that it has overall folding similar to that of other archaeal tRNA endonucleases. From structural and mutational analyses of H236A, Y229F, and K265I in vitro, we have demonstrated that they play critical roles in recognizing the splice site and in cleaving the pre-tRNA substrate. PMID:17827289

  2. Alternative splicing by participation of the group II intron ORF in extremely halotolerant and alkaliphilic Oceanobacillus iheyensis.

    PubMed

    Chee, Gab-Joo; Takami, Hideto

    2011-01-01

    Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes.

  3. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus.

    PubMed Central

    Dávila-Aponte, J A; Huss, V A; Sogin, M L; Cech, T R

    1991-01-01

    The nuclear small subunit ribosomal RNA gene of the unicellular green alga Ankistrodesmus stipitatus contains a group I intron, the first of its kind to be found in the nucleus of a member of the plant kingdom. The intron RNA closely resembles the group I intron found in the large subunit rRNA precursor of Tetrahymena thermophila, differing by only eight nucleotides of 48 in the catalytic core and having the same peripheral secondary structure elements. The Ankistrodesmus RNA self-splices in vitro, yielding the typical group I intron splicing intermediates and products. Unlike the Tetrahymena intron, however, splicing is accelerated by high concentrations of monovalent cations and is rate-limited by the exon ligation step. This system provides an opportunity to understand how limited changes in intron sequence and structure alter the properties of an RNA catalytic center. Images PMID:1886767

  4. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus.

    PubMed

    Dávila-Aponte, J A; Huss, V A; Sogin, M L; Cech, T R

    1991-08-25

    The nuclear small subunit ribosomal RNA gene of the unicellular green alga Ankistrodesmus stipitatus contains a group I intron, the first of its kind to be found in the nucleus of a member of the plant kingdom. The intron RNA closely resembles the group I intron found in the large subunit rRNA precursor of Tetrahymena thermophila, differing by only eight nucleotides of 48 in the catalytic core and having the same peripheral secondary structure elements. The Ankistrodesmus RNA self-splices in vitro, yielding the typical group I intron splicing intermediates and products. Unlike the Tetrahymena intron, however, splicing is accelerated by high concentrations of monovalent cations and is rate-limited by the exon ligation step. This system provides an opportunity to understand how limited changes in intron sequence and structure alter the properties of an RNA catalytic center.

  5. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    SciTech Connect

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H.

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  6. Transcriptomic analysis of diplomonad parasites reveals a trans-spliced intron in a helicase gene in Giardia

    PubMed Central

    2017-01-01

    Background The mechanisms by which DNA sequences are expressed is the central preoccupation of molecular genetics. Recently, ourselves and others reported that in the diplomonad protist Giardia lamblia, the coding regions of several mRNAs are produced by ligation of independent RNA species expressed from distinct genomic loci. Such trans-splicing of introns was found to affect nearly as many genes in this organism as does classical cis-splicing of introns. These findings raised questions about the incidence of intron trans-splicing both across the G. lambliatranscriptome and across diplomonad diversity in general, however a dearth of transcriptomic data at the time prohibited systematic study of these questions. Methods I leverage newly available transcriptomic data from G. lamblia and the related diplomonad Spironucleus salmonicidato search for trans-spliced introns. My computational pipeline recovers all four previously reported trans-spliced introns in G. lamblia, suggesting good sensitivity. Results Scrutiny of thousands of potential cases revealed only a single additional trans-spliced intron in G. lamblia, in the p68 helicase gene, and no cases in S. salmonicida. The p68 intron differs from the previously reported trans-spliced introns in its high degree of streamlining: the core features of G. lamblia trans-spliced introns are closely packed together, revealing striking economy in the implementation of a seemingly inherently uneconomical molecular mechanism. Discussion These results serve to circumscribe the role of trans-splicing in diplomonads both in terms of the number of genes effected and taxonomically. Future work should focus on the molecular mechanisms, evolutionary origins and phenotypic implications of this intriguing phenomenon. PMID:28090405

  7. Intronic motif pairs cooperate across exons to promote pre-mRNA splicing

    PubMed Central

    2010-01-01

    Background A very early step in splice site recognition is exon definition, a process that is as yet poorly understood. Communication between the two ends of an exon is thought to be required for this step. We report genome-wide evidence for exons being defined through the combinatorial activity of motifs located in flanking intronic regions. Results Strongly co-occurring motifs were found to specifically reside in four intronic regions surrounding a large number of human exons. These paired motifs occur around constitutive and alternative exons but not pseudo exons. Most co-occurring motifs are limited to intronic regions within 100 nucleotides of the exon. They are preferentially associated with weaker exons. Their pairing is conserved in evolution and they exhibit a lower frequency of single nucleotide polymorphism when paired. Paired motifs display specificity with respect to distance from the exon borders and in constitutive versus alternative splicing. Many resemble binding sites for heterogeneous nuclear ribonucleoproteins. Specific pairs are associated with tissue-specific genes, the higher expression of which coincides with that of the pertinent RNA binding proteins. Tested pairs acted synergistically to enhance exon inclusion, and this enhancement was found to be exon-specific. Conclusions The exon-flanking sequence pairs identified here by genomic analysis promote exon inclusion and may play a role in the exon definition step in pre-mRNA splicing. We propose a model in which multiple concerted interactions are required between exonic sequences and flanking intronic sequences to effect exon definition. PMID:20704715

  8. The coenzyme thiamine pyrophosphate inhibits the self-splicing of the group I intron.

    PubMed

    Ahn, Sung Joon; Park, In Kook

    2003-02-01

    Effects of the coenzyme thiamine pyrophosphate and its analogs on the inhibition of self-splicing of primary transcripts of the phage T4 thymidylate synthase gene (td) were investigated. Of all compounds tested, the coenzyme thiamine pyrophosphate was the most potent inhibitor and the order of inhibitory efficiency for compounds tested was as follows: thiamine pyrophosphate>thiamine monophosphate>thiamine>thiochrome. Increasing guanosine concentration overcame the suppression of self-splicing by thiamine pyrophosphate close to the level of normal splicing. Kinetic analysis demonstrated that thiamine pyrophosphate acts as a competitive inhibitor for the td intron RNA with a Ki of 2.2mM. The splicing specificity inhibition by thiamine pyrophosphate is predominantly due to changes in Km.

  9. In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron.

    PubMed Central

    Guo, Feng; Cech, Thomas R

    2002-01-01

    In vivo selection was used to improve the activity of the Tetrahymena pre-rRNA self-splicing intron in the context of heterologous exons. The intron was engineered into a kanamycin nucleotidyltransferase gene, with the pairing between intron bases and the 5' and 3' splice sites maintained. The initial construct failed to confer kanamycin resistance on Escherichia coli, although the pre-mRNA was active in splicing in vitro. Random mutation libraries were constructed to identify active intron variants in E. coli. All the active mutants sequenced contained mutations disrupting a base-paired region above the paired region P1 (referred to as the P1 extension region or P1ex) that involves the very 5' end of the intron. Subsequent site-directed mutagenesis confirmed that these P1ex mutations are responsible and sufficient to activate the intron splicing in E. coli. Thus, it appears that too strong of a secondary structure in the P1ex element can be inhibitory to splicing in vivo. In vitro splicing assays demonstrated that two P1ex mutant constructs splice six to eight times faster than the designed construct at 40 microM GTP concentration. The relative reaction rates of the mutant constructs compared to the original design are further increased at a lower GTP concentration. Possible mechanisms by which the disrupted P1ex structure could influence splicing rates are discussed. This study emphasizes the value of using libraries of random mutations to improve the activity of ribozymes in heterologous contexts in vivo. PMID:12022231

  10. Evolution of gene structural complexity: an alternative-splicing-based model accounts for intron-containing retrogenes.

    PubMed

    Zhang, Chengjun; Gschwend, Andrea R; Ouyang, Yidan; Long, Manyuan

    2014-05-01

    The structure of eukaryotic genes evolves extensively by intron loss or gain. Previous studies have revealed two models for gene structure evolution through the loss of introns: RNA-based gene conversion, dubbed the Fink model and retroposition model. However, retrogenes that experienced both intron loss and intron-retaining events have been ignored; evolutionary processes responsible for the variation in complex exon-intron structure were unknown. We detected hundreds of retroduplication-derived genes in human (Homo sapiens), fly (Drosophila melanogaster), rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) and categorized them either as duplicated genes that have all introns lost or as duplicated genes that have at least lost one and retained one intron compared with the parental copy (intron-retaining [IR] type). Our new model attributes intron retention alternative splicing to the generation of these IR-type gene pairs. We presented 25 parental genes that have an intron retention isoform and have retained introns in the same locations in the IR-type duplicate genes, which directly support our hypothesis. Our alternative-splicing-based model in conjunction with the retroposition and Fink models can explain the IR-type gene observed. We discovered a greater percentage of IR-type genes in plants than in animals, which may be due to the abundance of intron retention cases in plants. Given the prevalence of intron retention in plants, this new model gives a support that plant genomes have very complex gene structures.

  11. Evolution of Gene Structural Complexity: An Alternative-Splicing-Based Model Accounts for Intron-Containing Retrogenes1[W

    PubMed Central

    Zhang, Chengjun; Gschwend, Andrea R.; Ouyang, Yidan; Long, Manyuan

    2014-01-01

    The structure of eukaryotic genes evolves extensively by intron loss or gain. Previous studies have revealed two models for gene structure evolution through the loss of introns: RNA-based gene conversion, dubbed the Fink model and retroposition model. However, retrogenes that experienced both intron loss and intron-retaining events have been ignored; evolutionary processes responsible for the variation in complex exon-intron structure were unknown. We detected hundreds of retroduplication-derived genes in human (Homo sapiens), fly (Drosophila melanogaster), rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) and categorized them either as duplicated genes that have all introns lost or as duplicated genes that have at least lost one and retained one intron compared with the parental copy (intron-retaining [IR] type). Our new model attributes intron retention alternative splicing to the generation of these IR-type gene pairs. We presented 25 parental genes that have an intron retention isoform and have retained introns in the same locations in the IR-type duplicate genes, which directly support our hypothesis. Our alternative-splicing-based model in conjunction with the retroposition and Fink models can explain the IR-type gene observed. We discovered a greater percentage of IR-type genes in plants than in animals, which may be due to the abundance of intron retention cases in plants. Given the prevalence of intron retention in plants, this new model gives a support that plant genomes have very complex gene structures. PMID:24520158

  12. A Novel Intronic Splice Site Tafazzin Gene Mutation Detected Prenatally in a Family with Barth Syndrome

    PubMed Central

    Bakšienė, M; Benušienė, E; Morkūnienė, A; Ambrozaitytė, L; Utkus, A; Kučinskas, V

    2016-01-01

    Abstract Barth syndrome (BTHS) is a rare X-linked disease characterized by dilated cardiomyopathy, proximal skeletal myopathy and cyclic neutropenia. It is caused by various mutations in the tafazzin (TAZ) gene located on Xq28 that results in remodeling of cardiolipin and abnormalities in mitochondria stability and energy production. Here we report on a novel c.285-1G>C splice site mutation in intron 3 of the TAZ gene that was detected prenatally. PMID:28289596

  13. Characterization of cryptic splicing in germline PTEN intronic variants in Cowden syndrome.

    PubMed

    Chen, Hannah Jinlian; Romigh, Todd; Sesock, Kaitlin; Eng, Charis

    2017-10-01

    Germline mutations in the tumor-suppressor gene PTEN predispose to subsets of Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome, and autism. Evidence-based classification of PTEN variants as either deleterious or benign is urgently needed for accurate molecular diagnosis and gene-informed genetic counseling. We studied 34 different germline PTEN intronic variants from 61 CS patients, characterized their PTEN mRNA processing, and analyzed PTEN expression and downstream readouts of P-AKT and P-ERK1/2. While we found that many mutations near splice junctions result in exon skipping, we also identified the presence of cryptic splicing that resulted in premature termination or a shift in isoform usage. PTEN protein expression is significantly lower in the group with splicing changes while P-AKT, but not P-ERK1/2, is significantly increased. Our observations of these PTEN intronic variants should contribute to the determination of pathogenicity of PTEN intronic variants and aid in genetic counseling. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  14. Active 5΄ splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes

    PubMed Central

    Knop, Katarzyna; Stepien, Agata; Barciszewska-Pacak, Maria; Taube, Michal; Bielewicz, Dawid; Michalak, Michal; Borst, Jan W.

    2017-01-01

    Abstract Arabidopsis, miR402 that is encoded within the first intron of a protein-coding gene At1g77230, is induced by heat stress. Its upregulation correlates with splicing inhibition and intronic proximal polyA site selection. It suggests that miR402 is not processed from an intron, but rather from a shorter transcript after selection of the proximal polyA site within this intron. Recently, introns and active 5΄ splice sites (5΄ss’) have been shown to stimulate the accumulation of miRNAs encoded within the first exons of intron-containing MIR genes. In contrast, we have observed the opposite effect of splicing inhibition on intronic miR402 production. Transient expression experiments performed in tobacco leaves revealed a significant accumulation of the intronic mature miR402 when the 5΄ss of the miR402-hosting intron was inactivated. In contrast, when the miR402 stem-loop structure was moved into the first exon, mutation of the first-intron 5΄ss resulted in a decrease in the miRNA level. Thus, the 5΄ss controls the efficiency of miRNA biogenesis. We also show that the SERRATE protein (a key component of the plant microprocessor) colocalizes and interacts with several U1 snRNP auxiliary proteins. We postulate that SERRATE-spliceosome connections have a direct effect on miRNA maturation. PMID:27907902

  15. Intronic variants of SLC26A4 gene enhance splicing efficiency in hybrid minigene assay.

    PubMed

    Kallel-Bouattour, Rihab; Belguith-Maalej, Salima; Zouari-Bradai, Emna; Mnif, Mouna; Abid, Mohamed; Hadj Kacem, Hassen

    2017-07-15

    The SLC26A4 genomic sequence screening in autoimmune thyroid diseases (AITD) revealed different variants types with possible pathogenic effects. Although intronic variants may have more detrimental effects than those coding, they are poorly explored. Thus, in a first assessment, our bioinformatics analysis of intronic variants predicted a pathogenic effect of c.1002-9A>C, c.1545-5T>G and c.1544+9C>T variants. Validating these variants pathogenicity may provide new clues on the AITD physiopathology. Variants were explored in a general population by PCR-RFLP. These variants effects on the mRNA processing was assessed using functional splicing assay based in DNA hybrid minigene in HeLa cell lines. The constructs splicing efficiency was investigated by real time PCR. Our results revealed that c.1002-9A>C is a rare allele (minor frequency allele (MFA)=0.007) whereas c.1545-5T>G and c.1544+9C>T are low frequency variants. The RT-PCR analysis showed that these variants did not affect the mRNA processing. However, quantifying the transcripts generated from minigene constructs proved an mRNA splicing enhancement. Our study suggests a pathogenic effect of three intronic variants on the mRNA splicing efficiency using a DNA Hybrid minigene. By quantifying these transcripts, we unveil the limit of standard RT-PCR in analyzing a splicing minigene assay. Copyright © 2017. Published by Elsevier B.V.

  16. PCR differentiation of commercial yeast strains using intron splice site primers.

    PubMed Central

    de Barros Lopes, M; Soden, A; Henschke, P A; Langridge, P

    1996-01-01

    The increased use of pure starter cultures in the wine industry has made it necessary to develop a rapid and simple identification system for yeast strains. A method based upon the PCR using oligonucleotide primers that are complementary to intron splice sites has been developed. Since most introns are not essential for gene function, introns have evolved with minimal constraint. By targeting these highly variable sequences, the PCR has proved to be very effective in uncovering polymorphisms in commercial yeast strains. The speed of the method and the ability to analyze many samples in a single day permit the monitoring of specific yeast strains during fermentations. Furthermore, the simplicity of the technique, which does not require the isolation of DNA, makes it accessible to industrial laboratories that have limited molecular expertise and resources. PMID:8953723

  17. Group II intron in Bacillus cereus has an unusual 3' extension and splices 56 nucleotides downstream of the predicted site.

    PubMed

    Stabell, Fredrik B; Tourasse, Nicolas J; Ravnum, Solveig; Kolstø, Anne-Brit

    2007-01-01

    All group II introns known to date fold into six functional domains. However, we recently identified an intron in Bacillus cereus ATCC 10987, B.c.I4, that splices 56 nt downstream of the expected 3' splice site in vivo (Tourasse et al. 2005, J. Bacteriol., 187, 5437-5451). In this study, we confirmed by ribonuclease protection assay that the 56-bp segment is part of the intron RNA molecule, and computational prediction suggests that it might form a stable stem-loop structure downstream of domain VI. The splicing of B.c.I4 was further investigated both in vivo and in vitro. Lariat formation proceeded primarily by branching at the ordinary bulged adenosine in domain VI without affecting the fidelity of splicing. In addition, the splicing efficiency of the wild-type intron was better than that of a mutant construct deleted of the 56-bp 3' extension. These results indicate that the intron has apparently adapted to the extra segment, possibly through conformational adjustments. The extraordinary group II intron B.c.I4 harboring an unprecedented extra 3' segment constitutes a dramatic example of the flexibility and adaptability of group II introns.

  18. Metal ion interaction with cosubstrate in self-splicing of group I introns.

    PubMed Central

    Sjögren, A S; Pettersson, E; Sjöberg, B M; Strömberg, R

    1997-01-01

    The catalytic mechanism for self-splicing of the group I intron in the pre-mRNA from the nrdB gene in bacteriophage T4 has been investigated using 2'-amino- 2'-deoxyguanosine or guanosine as cosubstrates in the presence of Mg2+, Mn2+and Zn2+. The results show that a divalent metal ion interacts with the cosubstrate and thereby influences the efficiency of catalysis in the first step of splicing. This suggests the existence of a metal ion that catalyses the nucleophilic attack of the cosubstrate. Of particular significance is that the transesterification reactions of the first step of splicing with 2'-amino-2'-deoxyguanosine as cosubstrate are more efficient in mixtures containing either Mn2+or Zn2+together with Mg2+than with only magnesium ions present. The experiments in metal ion mixtures show that two (or more) metal ions are crucial for the self-splicing of group I introns and suggest the possibility that more than one of these have a direct catalytic role. A working model for a two-metal-ion mechanism in the transesterification steps is suggested. PMID:9016608

  19. Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns.

    PubMed

    Li, Qin; Xiao, Guanghui; Zhu, Yu-Xian

    2014-05-01

    Alternative splicing (AS) is a vital genetic mechanism that enhances the diversity of eukaryotic transcriptomes. Here, we generated 8.3 Gb high-quality RNA-sequencing data from cotton (Gossypium raimondii) and performed a systematic, comparative analysis of AS events. We mapped 85% of the RNA-sequencing data onto the reference genome and identified 154368 splice junctions with 16437 as events in 10197 genes. Intron retention constituted the majority (40%) of all AS events in G. raimondii. Comparison across 11 eukaryote species showed that intron retention is the most common AS type in higher plants. Although transposable elements (TEs) were found in only 2.9% of all G. raimondii introns, they are present in 43% of the retained introns, suggesting that TE-insertion may be an important mechanism for intron retention during AS. The majority of the TE insertions are concentrated 0-40 nt upstream of the 3'-splice site, substantially altering the distribution of branch points from preferred positions and reducing the efficiency of intron splicing by decreasing RNA secondary structure flexibility. Our data suggest that TE-insertion-induced changes in branch point-site distribution are important for intron retention-type AS. Our findings may help explain the vast differences in intron-retention frequencies between vertebrates and higher plants.

  20. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA.

    PubMed

    Paukstelis, Paul J; Chen, Jui-Hui; Chase, Elaine; Lambowitz, Alan M; Golden, Barbara L

    2008-01-03

    The 'RNA world' hypothesis holds that during evolution the structural and enzymatic functions initially served by RNA were assumed by proteins, leading to the latter's domination of biological catalysis. This progression can still be seen in modern biology, where ribozymes, such as the ribosome and RNase P, have evolved into protein-dependent RNA catalysts ('RNPzymes'). Similarly, group I introns use RNA-catalysed splicing reactions, but many function as RNPzymes bound to proteins that stabilize their catalytically active RNA structure. One such protein, the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (TyrRS; CYT-18), is bifunctional and both aminoacylates mitochondrial tRNA(Tyr) and promotes the splicing of mitochondrial group I introns. Here we determine a 4.5-A co-crystal structure of the Twort orf142-I2 group I intron ribozyme bound to splicing-active, carboxy-terminally truncated CYT-18. The structure shows that the group I intron binds across the two subunits of the homodimeric protein with a newly evolved RNA-binding surface distinct from that which binds tRNA(Tyr). This RNA binding surface provides an extended scaffold for the phosphodiester backbone of the conserved catalytic core of the intron RNA, allowing the protein to promote the splicing of a wide variety of group I introns. The group I intron-binding surface includes three small insertions and additional structural adaptations relative to non-splicing bacterial TyrRSs, indicating a multistep adaptation for splicing function. The co-crystal structure provides insight into how CYT-18 promotes group I intron splicing, how it evolved to have this function, and how proteins could have incrementally replaced RNA structures during the transition from an RNA world to an RNP world.

  1. Biased exon/intron distribution of cryptic and de novo 3′ splice sites

    PubMed Central

    Královičová, Jana; Christensen, Mikkel B.; Vořechovský, Igor

    2005-01-01

    We compiled sequences of previously published aberrant 3′ splice sites (3′ss) that were generated by mutations in human disease genes. Cryptic 3′ss, defined here as those resulting from a mutation of the 3′YAG consensus, were more frequent in exons than in introns. They clustered in ∼20 nt region adjacent to authentic 3′ss, suggesting that their under-representation in introns is due to a depletion of AG dinucleotides in the polypyrimidine tract (PPT). In contrast, most aberrant 3′ss that were induced by mutations outside the 3′YAG consensus (designated ‘de novo’) were in introns. The activation of intronic de novo 3′ss was largely due to AG-creating mutations in the PPT. In contrast, exonic de novo 3′ss were more often induced by mutations improving the PPT, branchpoint sequence (BPS) or distant auxiliary signals, rather than by direct AG creation. The Shapiro–Senapathy matrix scores had a good prognostic value for cryptic, but not de novo 3′ss. Finally, AG-creating mutations in the PPT that produced aberrant 3′ss upstream of the predicted BPS in vivo shared a similar ‘BPS-new AG’ distance. Reduction of this distance and/or the strength of the new AG PPT in splicing reporter pre-mRNAs improved utilization of authentic 3′ss, suggesting that AG-creating mutations that are located closer to the BPS and are preceded by weaker PPT may result in less severe splicing defects. PMID:16141195

  2. Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs.

    PubMed

    Vreeswijk, Maaike P G; Kraan, Jaennelle N; van der Klift, Heleen M; Vink, Geraldine R; Cornelisse, Cees J; Wijnen, Juul T; Bakker, Egbert; van Asperen, Christi J; Devilee, Peter

    2009-01-01

    A large number of sequence variants identified in BRCA1 and BRCA2 cannot be distinguished as either disease-causing mutations or neutral variants. These so-called unclassified variants (UVs) include variants that are located in the intronic sequences of BRCA1 and BRCA2. The purpose of this study was to assess the use of splice-site prediction programs (SSPPs) to select intronic variants in BRCA1 and BRCA2 that are likely to affect RNA splicing. We performed in vitro molecular characterization of RNA of six intronic variants in BRCA1 and BRCA2. In four cases (BRCA1, c.81-6T>A and c.4986+5G>T; BRCA2, c.7617+2T>G and c.8754+5G>A) a deleterious effect on RNA splicing was seen, whereas the c.135-15_-12del variant in BRCA1 showed no effect on RNA splicing. In the case of the BRCA2 c.68-7T>A variant, RNA analysis was not sufficient to establish the clinical significance. Six SSPPs were used to predict whether an effect on RNA splicing was expected for these six variants as well as for 23 intronic variants in BRCA1 for which the effect on RNA splicing has been published. Out of a total of 174 predictions, 161 (93%) were informative (i.e., the wild-type splice-site was recognized). No false-negative predictions were observed; an effect on RNA splicing was always predicted by these programs. In four cases (2.5%) a false-positive prediction was observed. For DNA diagnostic laboratories, these programs are therefore very useful to select intronic variants that are likely to affect RNA splicing for further analysis.

  3. RNA-Seq Analysis of Differential Splice Junction Usage and Intron Retentions by DEXSeq

    PubMed Central

    Li, Yafang; Rao, Xiayu; Mattox, William W.; Amos, Christopher I.; Liu, Bin

    2015-01-01

    Alternative splicing is an important biological process in the generation of multiple functional transcripts from the same genomic sequences. Differential analysis of splice junctions (SJs) and intron retentions (IRs) is helpful in the detection of alternative splicing events. In this study, we conducted differential analysis of SJs and IRs by use of DEXSeq, a Bioconductor package originally designed for differential exon usage analysis in RNA-seq data analysis. We set up an analysis pipeline including mapping of RNA-seq reads, the preparation of count tables of SJs and IRs as the input files, and the differential analysis in DEXSeq. We analyzed the public RNA-seq datasets generated from RNAi experiments on Drosophila melanogaster S2-DRSC cells to deplete RNA-binding proteins (GSE18508). The analysis confirmed previous findings on the alternative splicing of the trol and Ant2 (sesB) genes in the CG8144 (ps)-depletion experiment and identified some new alternative splicing events in other RNAi experiments. We also identified IRs that were confirmed in our SJ analysis. The proposed method used in our study can output the genomic coordinates of differentially used SJs and thus enable sequence motif search. Sequence motif search and gene function annotation analysis helped us infer the underlying mechanism in alternative splicing events. To further evaluate this method, we also applied the method to public RNA-seq data from human breast cancer (GSE45419) and the plant Arabidopsis (SRP008262). In conclusion, our study showed that DEXSeq can be adapted to differential analysis of SJs and IRs, which will facilitate the identification of alternative splicing events and provide insights into the molecular mechanisms of transcription processes and disease development. PMID:26327458

  4. A CRM domain protein functions dually in group I and group II intron splicing in land plant chloroplasts.

    PubMed

    Asakura, Yukari; Barkan, Alice

    2007-12-01

    The CRM domain is a recently recognized RNA binding domain found in three group II intron splicing factors in chloroplasts, in a bacterial protein that associates with ribosome precursors, and in a family of uncharacterized proteins in plants. To elucidate the functional repertoire of proteins with CRM domains, we studied CFM2 (for CRM Family Member 2), which harbors four CRM domains. RNA coimmunoprecipitation assays showed that CFM2 in maize (Zea mays) chloroplasts is associated with the group I intron in pre-trnL-UAA and group II introns in the ndhA and ycf3 pre-mRNAs. T-DNA insertions in the Arabidopsis thaliana ortholog condition a defective-seed phenotype (strong allele) or chlorophyll-deficient seedlings with impaired splicing of the trnL group I intron and the ndhA, ycf3-int1, and clpP-int2 group II introns (weak alleles). CFM2 and two previously described CRM proteins are bound simultaneously to the ndhA and ycf3-int1 introns and act in a nonredundant fashion to promote their splicing. With these findings, CRM domain proteins are implicated in the activities of three classes of catalytic RNA: group I introns, group II introns, and 23S rRNA.

  5. Mobile self-splicing group I introns from the psbA gene of Chlamydomonas reinhardtii: highly efficient homing of an exogenous intron containing its own promoter.

    PubMed

    Odom, O W; Holloway, S P; Deshpande, N N; Lee, J; Herrin, D L

    2001-05-01

    Introns 2 and 4 of the psbA gene of Chlamydomonas reinhardtii chloroplasts (Cr.psbA2 and Cr.psbA4, respectively) contain large free-standing open reading frames (ORFs). We used transformation of an intronless-psbA strain (IL) to test whether these introns undergo homing. Each intron, plus short exon sequences, was cloned into a chloroplast expression vector in both orientations and then cotransformed into IL along with a spectinomycin resistance marker (16S rrn). For Cr.psbA2, the sense construct gave nearly 100% cointegration of the intron whereas the antisense construct gave 0%, consistent with homing. For Cr.psbA4, however, both orientations produced highly efficient cointegration of the intron. Efficient cointegration of Cr.psbA4 also occurred when the intron was introduced as a restriction fragment lacking any known promoter. Deletion of most of the ORF, however, abolished cointegration of the intron, consistent with homing. The Cr.psbA4 constructs also contained a 3-(3,4-dichlorophenyl)-1,1-dimethylurea resistance marker in exon 5, which was always present when the intron integrated, thus demonstrating exon coconversion. Remarkably, primary selection for this marker gave >100-fold more transformants (>10,000/microgram of DNA) than did the spectinomycin resistance marker. A trans homing assay was developed for Cr.psbA4; the ORF-minus intron integrated when the ORF was cotransformed on a separate plasmid. This assay was used to identify an intronic region between bp -88 and -194 (relative to the ORF) that stimulated homing and contained a possible bacterial (-10, -35)-type promoter. Primer extension analysis detected a transcript that could originate from this promoter. Thus, this mobile, self-splicing intron also contains its own promoter for ORF expression. The implications of these results for horizontal intron transfer and organelle transformation are discussed.

  6. Learning to live together: mutualism between self-splicing introns and their hosts

    PubMed Central

    2011-01-01

    Group I and II introns can be considered as molecular parasites that interrupt protein-coding and structural RNA genes in all domains of life. They function as self-splicing ribozymes and thereby limit the phenotypic costs associated with disruption of a host gene while they act as mobile DNA elements to promote their spread within and between genomes. Once considered purely selfish DNA elements, they now seem, in the light of recent work on the molecular mechanisms regulating bacterial and phage group I and II intron dynamics, to show evidence of co-evolution with their hosts. These previously underappreciated relationships serve the co-evolving entities particularly well in times of environmental stress. PMID:21481283

  7. Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position.

    PubMed

    Shen, Manli; Mattox, William

    2012-01-01

    SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg-Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.

  8. Intronic Non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees

    PubMed Central

    2013-01-01

    Background Previous whole-genome shotgun bisulfite sequencing experiments showed that DNA cytosine methylation in the honey bee (Apis mellifera) is almost exclusively at CG dinucleotides in exons. However, the most commonly used method, bisulfite sequencing, cannot distinguish 5-methylcytosine from 5-hydroxymethylcytosine, an oxidized form of 5-methylcytosine that is catalyzed by the TET family of dioxygenases. Furthermore, some analysis software programs under-represent non-CG DNA methylation and hydryoxymethylation for a variety of reasons. Therefore, we used an unbiased analysis of bisulfite sequencing data combined with molecular and bioinformatics approaches to distinguish 5-methylcytosine from 5-hydroxymethylcytosine. By doing this, we have performed the first whole genome analyses of DNA modifications at non-CG sites in honey bees and correlated the effects of these DNA modifications on gene expression and alternative mRNA splicing. Results We confirmed, using unbiased analyses of whole-genome shotgun bisulfite sequencing (BS-seq) data, with both new data and published data, the previous finding that CG DNA methylation is enriched in exons in honey bees. However, we also found evidence that cytosine methylation and hydroxymethylation at non-CG sites is enriched in introns. Using antibodies against 5-hydroxmethylcytosine, we confirmed that DNA hydroxymethylation at non-CG sites is enriched in introns. Additionally, using a new technique, Pvu-seq (which employs the enzyme PvuRts1l to digest DNA at 5-hydroxymethylcytosine sites followed by next-generation DNA sequencing), we further confirmed that hydroxymethylation is enriched in introns at non-CG sites. Conclusions Cytosine hydroxymethylation at non-CG sites might have more functional significance than previously appreciated, and in honey bees these modifications might be related to the regulation of alternative mRNA splicing by defining the locations of the introns. PMID:24079845

  9. Intronic non-CG DNA hydroxymethylation and alternative mRNA splicing in honey bees.

    PubMed

    Cingolani, Pablo; Cao, Xiaoyi; Khetani, Radhika S; Chen, Chieh-Chun; Coon, Melissa; Sammak, Alya'a; Bollig-Fischer, Aliccia; Land, Susan; Huang, Yun; Hudson, Matthew E; Garfinkel, Mark D; Zhong, Sheng; Robinson, Gene E; Ruden, Douglas M

    2013-09-30

    Previous whole-genome shotgun bisulfite sequencing experiments showed that DNA cytosine methylation in the honey bee (Apis mellifera) is almost exclusively at CG dinucleotides in exons. However, the most commonly used method, bisulfite sequencing, cannot distinguish 5-methylcytosine from 5-hydroxymethylcytosine, an oxidized form of 5-methylcytosine that is catalyzed by the TET family of dioxygenases. Furthermore, some analysis software programs under-represent non-CG DNA methylation and hydryoxymethylation for a variety of reasons. Therefore, we used an unbiased analysis of bisulfite sequencing data combined with molecular and bioinformatics approaches to distinguish 5-methylcytosine from 5-hydroxymethylcytosine. By doing this, we have performed the first whole genome analyses of DNA modifications at non-CG sites in honey bees and correlated the effects of these DNA modifications on gene expression and alternative mRNA splicing. We confirmed, using unbiased analyses of whole-genome shotgun bisulfite sequencing (BS-seq) data, with both new data and published data, the previous finding that CG DNA methylation is enriched in exons in honey bees. However, we also found evidence that cytosine methylation and hydroxymethylation at non-CG sites is enriched in introns. Using antibodies against 5-hydroxmethylcytosine, we confirmed that DNA hydroxymethylation at non-CG sites is enriched in introns. Additionally, using a new technique, Pvu-seq (which employs the enzyme PvuRts1l to digest DNA at 5-hydroxymethylcytosine sites followed by next-generation DNA sequencing), we further confirmed that hydroxymethylation is enriched in introns at non-CG sites. Cytosine hydroxymethylation at non-CG sites might have more functional significance than previously appreciated, and in honey bees these modifications might be related to the regulation of alternative mRNA splicing by defining the locations of the introns.

  10. Activating the branch-forming splicing pathway by reengineering the ribozyme component of a natural group II intron.

    PubMed

    Monachello, Dario; Michel, François; Costa, Maria

    2016-03-01

    When assayed in vitro, group IIC self-splicing introns, which target bacterial Rho-independent transcription terminators, generally fail to yield branched products during splicing despite their possessing a seemingly normal branchpoint. Starting with intron O.i.I1 from Oceanobacillus iheyensis, whose crystallographically determined structure lacks branchpoint-containing domain VI, we attempted to determine what makes this intron unfit for in vitro branch formation. A major factor was found to be the length of the helix at the base of domain VI: 4 base pairs (bp) are required for efficient branching, even though a majority of group IIC introns have a 3-bp helix. Equally important for lariat formation is the removal of interactions between ribozyme domains II and VI, which are specific to the second step of splicing. Conversely, mismatching of domain VI and its proposed first-step receptor in subdomain IC1 was found to be detrimental; these data suggest that the intron-encoded protein may promote branch formation partly by modulating the equilibrium between conformations specific to the first and second steps of splicing. As a practical application, we show that by making just two changes to the O.i.I1 ribozyme, it is possible to generate sufficient amounts of lariat intron for the latter to be purified and used in kinetic assays in which folding and reaction are uncoupled.

  11. Activating the branch-forming splicing pathway by reengineering the ribozyme component of a natural group II intron

    PubMed Central

    Monachello, Dario; Michel, François; Costa, Maria

    2016-01-01

    When assayed in vitro, group IIC self-splicing introns, which target bacterial Rho-independent transcription terminators, generally fail to yield branched products during splicing despite their possessing a seemingly normal branchpoint. Starting with intron O.i.I1 from Oceanobacillus iheyensis, whose crystallographically determined structure lacks branchpoint-containing domain VI, we attempted to determine what makes this intron unfit for in vitro branch formation. A major factor was found to be the length of the helix at the base of domain VI: 4 base pairs (bp) are required for efficient branching, even though a majority of group IIC introns have a 3-bp helix. Equally important for lariat formation is the removal of interactions between ribozyme domains II and VI, which are specific to the second step of splicing. Conversely, mismatching of domain VI and its proposed first-step receptor in subdomain IC1 was found to be detrimental; these data suggest that the intron-encoded protein may promote branch formation partly by modulating the equilibrium between conformations specific to the first and second steps of splicing. As a practical application, we show that by making just two changes to the O.i.I1 ribozyme, it is possible to generate sufficient amounts of lariat intron for the latter to be purified and used in kinetic assays in which folding and reaction are uncoupled. PMID:26769855

  12. Use of a Fluorescent Aptamer RNA as an Exonic Sequence to Analyze Self-Splicing Ability of a Group I Intron from Structured RNAs

    PubMed Central

    Furukawa, Airi; Tanaka, Takahiro; Furuta, Hiroyuki; Matsumura, Shigeyoshi; Ikawa, Yoshiya

    2016-01-01

    Group I self-splicing intron constitutes an important class of functional RNA molecules that can promote chemical transformation. Although the fundamental mechanism of the auto-excision from its precursor RNA has been established, convenient assay systems for its splicing activity are still useful for a further understanding of its detailed mechanism and of its application. Because some host RNA sequences, to which group I introns inserted form stable three-dimensional (3D) structures, the effects of the 3D structures of exonic elements on the splicing efficiency of group I introns are important but not a fully investigated issue. We developed an assay system for group I intron self-splicing by employing a fluorescent aptamer RNA (spinach RNA) as a model exonic sequence inserted by the Tetrahymena group I intron. We investigated self-splicing of the intron from spinach RNA, serving as a model exonic sequence with a 3D structure. PMID:27869660

  13. Use of a Fluorescent Aptamer RNA as an Exonic Sequence to Analyze Self-Splicing Ability of aGroup I Intron from Structured RNAs.

    PubMed

    Furukawa, Airi; Tanaka, Takahiro; Furuta, Hiroyuki; Matsumura, Shigeyoshi; Ikawa, Yoshiya

    2016-11-17

    Group I self-splicing intron constitutes an important class of functional RNA molecules that can promote chemical transformation. Although the fundamental mechanism of the auto-excision from its precursor RNA has been established, convenient assay systems for its splicing activity are still useful for a further understanding of its detailed mechanism and of its application. Because some host RNA sequences, to which group I introns inserted form stable three-dimensional (3D) structures, the effects of the 3D structures of exonic elements on the splicing efficiency of group I introns are important but not a fully investigated issue. We developed an assay system for group I intron self-splicing by employing a fluorescent aptamer RNA (spinach RNA) as a model exonic sequence inserted by the Tetrahymena group I intron. We investigated self-splicing of the intron from spinach RNA, serving as a model exonic sequence with a 3D structure.

  14. New intronic splicing mutation in the LMNA gene causing progressive cardiac conduction defects and variable myopathy.

    PubMed

    Rogozhina, Y; Mironovich, S; Shestak, A; Adyan, T; Polyakov, A; Podolyak, D; Bakulina, A; Dzemeshkevich, S; Zaklyazminskaya, E

    2016-12-31

    Most of mutations in the LMNA gene are unique and have been found in only a few unrelated families. The clinical interpretation of new genetic variants, especially beyond the coding area and canonical splice sites, is proving to be difficult and requires advanced investigation. This study included patients with progressive cardiac conduction defects with neuromuscular involvement. The clinical evaluation included medical history and 24-h Holter monitoring. The genetic evaluation included mutation screening in the LMNA gene by the Sanger sequence. Sanger sequencing was followed by RT-PCR of the target fragment of cDNA. In silico modeling was performed with CCBulder and Modeller software. The diagnosis of limb-girdle muscular dystrophy type 1B (LGMD1B) was established. The new intronic variant c.513+45T>G was found in the LMNA gene in the proband and affected daughter. The insertion of 45bp was confirmed in the proband's cDNA. The structural and possible functional effects of the aberrant protein were predicted. Variant c.513+45T>G in the LMNA gene likely translates into the longer lamin A/C proteins with additional 15 amino acids. This variant is thought to be pathogenic. Intronic variants in the LMNA gene located beside canonic splice sites may be responsible for some genotype-negative cases with clinical phenotype of laminopathies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. NMR structure of the 5' splice site in the group IIB intron Sc.ai5γ--conformational requirements for exon-intron recognition.

    PubMed

    Kruschel, Daniela; Skilandat, Miriam; Sigel, Roland K O

    2014-03-01

    A crucial step of the self-splicing reaction of group II intron ribozymes is the recognition of the 5' exon by the intron. This recognition is achieved by two regions in domain 1 of the intron, the exon-binding sites EBS1 and EBS2 forming base pairs with the intron-binding sites IBS1 and IBS2 located at the end of the 5' exon. The complementarity of the EBS1•IBS1 contact is most important for ensuring site-specific cleavage of the phosphodiester bond between the 5' exon and the intron. Here, we present the NMR solution structures of the d3' hairpin including EBS1 free in solution and bound to the IBS1 7-mer. In the unbound state, EBS1 is part of a flexible 11-nucleotide (nt) loop. Binding of IBS1 restructures and freezes the entire loop region. Mg(2+) ions are bound near the termini of the EBS1•IBS1 helix, stabilizing the interaction. Formation of the 7-bp EBS1•IBS1 helix within a loop of only 11 nt forces the loop backbone to form a sharp turn opposite of the splice site, thereby presenting the scissile phosphate in a position that is structurally unique.

  16. Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter.

    PubMed

    Cooper, Aaron R; Lill, Georgia R; Gschweng, Eric H; Kohn, Donald B

    2015-01-01

    Lentiviral vectors almost universally use heterologous internal promoters to express transgenes. One of the most commonly used promoter fragments is a 1.2-kb sequence from the human ubiquitin C (UBC) gene, encompassing the promoter, some enhancers, first exon, first intron and a small part of the second exon of UBC. Because splicing can occur after transcription of the vector genome during vector production, we investigated whether the intron within the UBC promoter fragment is faithfully transmitted to target cells. Genetic analysis revealed that more than 80% of proviral forms lack the intron of the UBC promoter. The human elongation factor 1 alpha (EEF1A1) promoter fragment intron was not lost during lentiviral packaging, and this difference between the UBC and EEF1A1 promoter introns was conferred by promoter exonic sequences. UBC promoter intron loss caused a 4-fold reduction in transgene expression. Movement of the expression cassette to the opposite strand prevented intron loss and restored full expression. This increase in expression was mostly due to non-classical enhancer activity within the intron, and movement of putative intronic enhancer sequences to multiple promoter-proximal sites actually repressed expression. Reversal of the UBC promoter also prevented intron loss and restored full expression in bidirectional lentiviral vectors.

  17. Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support for MatK as an essential splice factor.

    PubMed

    Vogel, J; Hübschmann, T; Börner, T; Hess, W R

    1997-07-11

    Group II introns frequently require assistance by specific factors, maturases, for folding and effective splicing in vivo. The only putative maturase of higher plant chloroplasts is encoded by matK, located in the intron of trnK. We show that in barley matK transcripts are modified at a first codon base by C-to-U RNA editing. The resulting H --> Y substitution restores a sequence motif that is present in maturases of yeast and plant mitochondria and of Lactococcus ltrA and that is positioned within the X domain. Processing of trnK-matK transcripts was further investigated in plastids lacking functional ribosomes due to a mutation. Absence of the intron-encoded matK gene product in these plastids is correlated with the accumulation of precursor transcripts for tRNALys(UUU)-matK, processed to different degrees, and by the lack of mature and spliced tRNA molecules. These results suggest an essential role of MatK for splicing of its own transcript in vivo. Processing of the 5' end of trnK exon 1 was found to proceed efficiently also in the mutant plastids although the two tRNA exons were separated by the 2481 nt intron. Consequently, presence of the intron does not interfere with the formation of mature 5' termini.

  18. Vemurafenib-resistant BRAF selects alternative branch points different from its wild-type BRAF in intron 8 for RNA splicing.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2015-01-01

    One mechanism of resistance of the melanoma-associated BRAF kinase to its small molecule inhibitor vemurafenib is by point mutations in its intron 8 resulting in exons 4-8 skipping. In this report, we carried out in vitro BRAF RNA splicing assays and lariat RT-PCR to map the intron 8 branch points in wild-type and BRAF mutants. We identify multiple branch points (BP) in intron 8 of both wild-type (wt) and vemurafenib-resistant BRAF RNA. In wt BRAF, BPs are located at -29A, -28A and -26A, whereas in a vemurafenib-resistant BRAF splicing mutant, BPs map to -22A, -18A and -15A, proximal to the intron 8 3' splice site. This finding of a distal-to-proximal shift of the branch point sequence in BRAF splicing in response to point-mutations in intron 8 provides insight into the regulation of BRAF alternative splicing upon vemurafenib resistance.

  19. PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing

    PubMed Central

    Taube, Jennifer R.; Sperle, Karen; Banser, Linda; Seeman, Pavel; Cavan, Barbra Charina V.; Garbern, James Y.; Hobson, Grace M.

    2014-01-01

    Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5′ splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative splicing using a splicing minigene construct transfected into the oligodendrocyte cell line, Oli-neu. Our data reveal that the alternative splice of PLP1 is regulated by a long-distance interaction between two highly conserved elements that are separated by 581 bases within the 1071-base intron 3. Further, our data suggest that a base-pairing secondary structure forms between these two elements, and we demonstrate that mutations of either element designed to destabilize the secondary structure decreased the PLP1/DM20 ratio, while swap mutations designed to restore the structure brought the PLP1/DM20 ratio to near normal levels. Sequence analysis of intron 3 in families with clinical symptoms of PMD who did not have coding-region mutations revealed mutations that segregated with disease in three families. We showed that these patient mutations, which potentially destabilize the secondary structure, also reduced the PLP1/DM20 ratio. This is the first report of patient mutations causing disease by disruption of a long-distance intronic interaction controlling alternative splicing. This finding has important implications for molecular diagnostics of PMD. PMID:24890387

  20. Ribozyme Stability, Exon Skipping, and a Potential Role for RNA Helicase in Group I Intron Splicing by Coxiella burnetii▿

    PubMed Central

    Hicks, Linda D.; Warrier, Indu; Raghavan, Rahul; Minnick, Michael F.

    2011-01-01

    The 23S rRNA gene of Coxiella burnetii, the agent of Q fever in humans, contains an unusually high number of conserved, selfish genetic elements, including two group I introns, termed Cbu.L1917 (L1917) and Cbu.L1951 (L1951). To better understand the role that introns play in Coxiella's biology, we determined the intrinsic stability time periods (in vitro half-lives) of the encoded ribozymes to be ∼15 days for L1917 and ∼5 days for L1951, possibly due to differences in their sizes (551 and 1,559 bases, respectively), relative degrees of compactness of the respective RNA structures, and amounts of single-stranded RNA. In vivo half-lives for both introns were also determined to be ∼11 min by the use of RNase protection assays and an Escherichia coli model. Intron RNAs were quantified in synchronous cultures of C. burnetii and found to closely parallel those of 16S rRNA; i.e., ribozyme levels significantly increased between days 0 and 3 and then remained stable until 8 days postinfection. Both 16S rRNA and ribozyme levels fell during the stationary and death phases (days 8 to 14). The marked stability of the Coxiella intron RNAs is presumably conferred by their association with ribosomes, a stoichiometric relationship that was determined to be one ribozyme, of either type, per 500 ribosomes. Inaccuracies in splicing (exon 2 skipping) were found to increase during the first 5 days in culture, with a rate of approximately one improperly spliced 23S rRNA per 1.3 million copies. The in vitro efficiency of L1917 intron splicing was significantly enhanced in the presence of a recombinant Coxiella RNA DEAD-box helicase (CBU_0670) relative to that of controls, suggesting that this enzyme may serve as an intron RNA splice facilitator in vivo. PMID:21803999

  1. An in vitro peptide complementation assay for CYT-18-dependent group I intron splicing reveals a new role for the N-terminus.

    PubMed

    Geng, Chun; Paukstelis, Paul J

    2014-03-04

    The mitochondrial tyrosyl tRNA synthetase from Neurospora crassa (CYT-18 protein) is a bifunctional group I intron splicing cofactor. CYT-18 is capable of splicing multiple group I introns from a wide variety of sources by stabilizing the catalytically active intron structures. CYT-18 and mt TyrRSs from related fungal species have evolved to assist in group I intron splicing in part by the accumulation of three N-terminal domain insertions. Biochemical and structural analysis indicate that the N-terminal insertions serve primarily to create a structure-stabilizing scaffold for critical tertiary interactions between the two major RNA domains of group I introns. Previous studies concluded that the primarily α-helical N-terminal insertion, H0, contributes to protein stability and is necessary for splicing the N. crassa ND1 intron but is dispensable for splicing the N. crassa mitochondrial LSU intron. Here, we show that CYT-18 with a complete H0 deletion retains residual ND1 intron splicing activity and that addition of the missing N-terminus in trans is capable of restoring a significant portion of its splicing activity. The development of this peptide complementation assay has allowed us to explore important characteristics of the CYT-18/group I intron interaction including the stoichiometry of H0 in intron splicing and the importance of specific H0 residues. Evaluation of truncated H0 peptides in this assay and a re-examination of the CYT-18 crystal structure suggest a previously unknown structural role of the first five N-terminal residues of CYT-18. These residues interact directly with another splicing insertion, making H0 a central structural element responsible for connecting all three N-terminal splicing insertions.

  2. Intron retention resulting from a silent mutation in the VWF gene that structurally influences the 5′ splice site

    PubMed Central

    Yadegari, Hamideh; Biswas, Arijit; Akhter, Mohammad Suhail; Driesen, Julia; Ivaskevicius, Vytautas; Marquardt, Natascha

    2016-01-01

    Disease-associated silent mutations are considered to affect the accurate pre–messenger RNA (mRNA) splicing either by influencing regulatory elements, leading to exon skipping, or by creating a new cryptic splice site. This study describes a new molecular pathological mechanism by which a silent mutation inhibits splicing and leads to intron retention. We identified a heterozygous silent mutation, c.7464C>T, in exon 44 of the von Willebrand factor (VWF) gene in a family with type 1 von Willebrand disease. In vivo and ex vivo transcript analysis revealed an aberrantly spliced transcript, with intron 44 retained in the mRNA, implying disruption of the first catalytic step of splicing at the 5′ splice site (5′ss). The abnormal transcript with the retained intronic region coded a truncated protein that lacked the carboxy-terminal end of the VWF protein. Confocal immunofluorescence characterizations of blood outgrowth endothelial cells derived from the patient confirmed the presence of the truncated protein by demonstrating accumulation of VWF in the endoplasmic reticulum. In silico pre-mRNA secondary and tertiary structure analysis revealed that this substitution, despite its distal position from the 5′ss (85 bp downstream), induces cis alterations in pre-mRNA structure that result in the formation of a stable hairpin at the 5′ss. This hairpin sequesters the 5′ss residues involved in U1 small nuclear RNA interactions, thereby inhibiting excision of the pre-mRNA intronic region. This study is the first to show the allosteric-like/far-reaching effect of an exonic variation on pre-mRNA splicing that is mediated by structural changes in the pre-mRNA. PMID:27543438

  3. The mitochondrial genome of the prasinophyte Prasinoderma coloniale reveals two trans-spliced group I introns in the large subunit rRNA gene.

    PubMed

    Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2013-01-01

    Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications

  4. The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis.

    PubMed

    Gualberto, José M; Le Ret, Monique; Beator, Barbara; Kühn, Kristina

    2015-07-27

    Transcript splicing in plant mitochondria involves numerous nucleus-encoded factors, most of which are of eukaryotic origin. Some of these belong to protein families initially characterised to perform unrelated functions. The RAD52-like ODB1 protein has been reported to have roles in homologous recombination-dependent DNA repair in the nuclear and mitochondrial compartments in Arabidopsis thaliana. We show that it is additionally involved in splicing and facilitates the excision of two cis-spliced group II introns, nad1 intron 2 and nad2 intron 1, in Arabidopsis mitochondria. odb1 mutants lacking detectable amounts of ODB1 protein over-accumulated incompletely spliced nad1 and nad2 transcripts. The two ODB1-dependent introns were both found to splice via first-step hydrolysis and to be released as linear or circular molecules instead of lariats. Our systematic analysis of the structures of excised introns in Arabidopsis mitochondria revealed several other hydrolytically spliced group II introns in addition to nad1 intron 2 and nad2 intron 1, indicating that ODB1 is not a general determinant of the hydrolytic splicing pathway.

  5. The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis

    PubMed Central

    Gualberto, José M.; Le Ret, Monique; Beator, Barbara; Kühn, Kristina

    2015-01-01

    Transcript splicing in plant mitochondria involves numerous nucleus-encoded factors, most of which are of eukaryotic origin. Some of these belong to protein families initially characterised to perform unrelated functions. The RAD52-like ODB1 protein has been reported to have roles in homologous recombination-dependent DNA repair in the nuclear and mitochondrial compartments in Arabidopsis thaliana. We show that it is additionally involved in splicing and facilitates the excision of two cis-spliced group II introns, nad1 intron 2 and nad2 intron 1, in Arabidopsis mitochondria. odb1 mutants lacking detectable amounts of ODB1 protein over-accumulated incompletely spliced nad1 and nad2 transcripts. The two ODB1-dependent introns were both found to splice via first-step hydrolysis and to be released as linear or circular molecules instead of lariats. Our systematic analysis of the structures of excised introns in Arabidopsis mitochondria revealed several other hydrolytically spliced group II introns in addition to nad1 intron 2 and nad2 intron 1, indicating that ODB1 is not a general determinant of the hydrolytic splicing pathway. PMID:26048959

  6. Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing

    PubMed Central

    Perriman, Rhonda; Ares, Manuel

    2010-01-01

    U2 snRNA-intron branchpoint pairing is a critical step in pre-mRNA recognition by the splicing apparatus, but the mechanism by which these two RNAs engage each other is unknown. Here we identify a new U2 snRNA structure, the branchpoint interaction stem-loop (BSL), that presents the U2 nucleotides that will contact the intron. We provide evidence that the BSL forms prior to interaction with the intron, and is disrupted by the DExD/H protein Prp5p during engagement of the snRNA with the intron. In vitro splicing complex assembly in a BSL-destabilized mutant extract suggests that the BSL is required at a previously unrecognized step between commitment complex and prespliceosome formation. The extreme evolutionary conservation of the BSL suggests it represents an ancient structural solution to the problem of intron branchpoint recognition by dynamic RNA elements that must serve multiple functions at other times during splicing. PMID:20471947

  7. Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing.

    PubMed

    Perriman, Rhonda; Ares, Manuel

    2010-05-14

    U2 snRNA-intron branchpoint pairing is a critical step in pre-mRNA recognition by the splicing apparatus, but the mechanism by which these two RNAs engage each other is unknown. Here, we identify a U2 snRNA structure, the branchpoint-interacting stem loop (BSL), which presents the U2 nucleotides that will contact the intron. We provide evidence that the BSL forms prior to interaction with the intron and is disrupted by the DExD/H protein Prp5p during engagement of the snRNA with the intron. In vitro splicing complex assembly in a BSL-destabilized mutant extract suggests that the BSL is required at a previously unrecognized step between commitment complex and prespliceosome formation. The extreme evolutionary conservation of the BSL suggests that it represents an ancient structural solution to the problem of intron branchpoint recognition by dynamic RNA elements that must serve multiple functions at other times during splicing. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. A conserved 3' extension in unusual group II introns is important for efficient second-step splicing.

    PubMed

    Stabell, Fredrik B; Tourasse, Nicolas J; Kolstø, Anne-Brit

    2009-06-01

    The B.c.I4 group II intron from Bacillus cereus ATCC 10987 harbors an unusual 3' extension. Here, we report the discovery of four additional group II introns with a similar 3' extension in Bacillus thuringiensis kurstaki 4D1 that splice at analogous positions 53/56 nt downstream of domain VI in vivo. Phylogenetic analyses revealed that the introns are only 47-61% identical to each other. Strikingly, they do not form a single evolutionary lineage even though they belong to the same Bacterial B class. The extension of these introns is predicted to form a conserved two-stem-loop structure. Mutational analysis in vitro showed that the smaller stem S1 is not critical for self-splicing, whereas the larger stem S2 is important for efficient exon ligation and lariat release in presence of the extension. This study clearly demonstrates that previously reported B.c.I4 is not a single example of a specialized intron, but forms a new functional class with an unusual mode that ensures proper positioning of the 3' splice site.

  9. Interaction between the first and last nucleotides of pre-mRNA introns is a determinant of 3' splice site selection in S. cerevisiae.

    PubMed Central

    Chanfreau, G; Legrain, P; Dujon, B; Jacquier, A

    1994-01-01

    The splicing of group II and nuclear pre-mRNAs introns occurs via a similar splicing pathway and some of the RNA-RNA interactions involved in these splicing reactions show structural similarities. Recently, genetic analyses performed in a group II intron and the yeast nuclear actin gene suggested that non Watson-Crick interactions between intron boundaries are important for the second splicing step efficiency in both classes of introns. We here show that, in the yeast nuclear rp51A intron, a G to A mutation at the first position activates cryptic 3' splice sites with the sequences UAC/ or UAA/. Moreover, the natural 3' splice site could be reactivated by a G to C substitution of the last intron nucleotide. These results demonstrate that the interaction between the first and last intron nucleotides is a conserved feature of nuclear pre-mRNA splicing in yeast and is involved in the mechanism of 3' splice site selection. Images PMID:8029003

  10. A Novel Pathway for Sensory-Mediated Arousal Involves Splicing of an Intron in the period Clock Gene

    PubMed Central

    Cao, Weihuan; Edery, Isaac

    2015-01-01

    Study Objectives: D. melanogaster is an excellent animal model to study how the circadian (≅ 24-h) timing system and sleep regulate daily wake-sleep cycles. Splicing of a temperature-sensitive 3'-terminal intron (termed dmpi8) from the circadian clock gene period (per) regulates the distribution of daily activity in Drosophila. The role of dmpi8 splicing on daily behavior was further evaluated by analyzing sleep. Design: Transgenic flies of the same genetic background but expressing either a wild-type recombinant per gene or one where the efficiency of dmpi8 splicing was increased were exposed to different temperatures in daily light-dark cycles and sleep parameters measured. In addition, transgenic flies were briefly exposed to a variety of sensory-mediated stimuli to measure arousal responses. Results: Surprisingly, we show that the effect of dmpi8 splicing on daytime activity levels does not involve a circadian role for per but is linked to adjustments in sensory-dependent arousal and sleep behavior. Genetically altered flies with high dmpi8 splicing efficiency remain aroused longer following short treatments with light and non-photic cues such as mechanical stimulation. Conclusions: We propose that the thermal regulation of dmpi8 splicing acts as a temperature-calibrated rheostat in a novel arousal mechanism, so that on warm days the inefficient splicing of the dmpi8 intron triggers an increase in quiescence by decreasing sensory-mediated arousal, thus ensuring flies minimize being active during the hot midday sun despite the presence of light in the environment, which is usually a strong arousal cue for diurnal animals. Citation: Cao W, Edery I. A novel pathway for sensory-mediated arousal involves splicing of an intron in the period clock gene. SLEEP 2015;38(1):41–51. PMID:25325457

  11. A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention

    PubMed Central

    Scherrer, Frederick W.; Spingola, Marc

    2006-01-01

    In the yeast Saccharomyces cerevisiae, Mer1p is expressed only during meiosis, and its expression is linked to the splicing of at least three mRNAs: MER2, MER3, and AMA1. Previous evidence suggests that Mer1p activates splicing by directly recruiting snRNPs or stabilizing intermediate splicing complexes formed on pre-mRNA that contains an intronic Mer1p enhancer element. However, some splicing factors, especially accessory/non-snRNP factors, have critical roles in retaining unspliced pre-mRNAs in the nucleus. We tested if Mer1p may indirectly regulate splicing by preventing the export of pre-mRNAs to the cytoplasm and also demonstrated that a second subunit of the Retention and Splicing (RES) complex, Bud13p, has transcript-specific effects on Mer1p-activated splicing. The results indicated that Mer1p can retain unspliced pre-mRNA in the nucleus; however, nuclear retention could not be uncoupled from splicing activation. In the absence of Mer1p, the AMA1 pre-mRNA is exported to the cytoplasm, translated, but not subjected to nonsense-mediated decay (NMD) despite a premature stop codon in the intron. These data imply that Mer1p can retain pre-mRNAs in the nucleus only by facilitating their interaction with the spliceosome and that two subunits of the RES complex modulate Mer1p function on two of the three Mer1p-dependent introns. The results also support models for cytoplasmic degradation of unspliced pre-mRNAs that fail to assemble into spliceosomes in yeast. PMID:16738408

  12. A Novel Pathogenic BRCA1 Splicing Variant Produces Partial Intron Retention in the Mature Messenger RNA

    PubMed Central

    Esposito, Maria Valeria; Nunziato, Marcella; Starnone, Flavio; Telese, Antonella; Calabrese, Alessandra; D’Aiuto, Giuseppe; Pucci, Pietro; D’Aiuto, Massimiliano; Baralle, Francisco; D’Argenio, Valeria; Salvatore, Francesco

    2016-01-01

    About 10% of all breast cancers arise from hereditary mutations that increase the risk of breast and ovarian cancers; and about 25% of these are associated with the BRCA1 or BRCA2 genes. The identification of BRCA1/BRCA2 mutations can enable physicians to better tailor the clinical management of patients; and to initiate preventive measures in healthy carriers. The pathophysiological significance of newly identified variants poses challenges for genetic counseling. We characterized a new BRCA1 variant discovered in a breast cancer patient during BRCA1/2 screening by next-generation sequencing. Bioinformatic predictions; indicating that the variant is probably pathogenetic; were verified using retro-transcription of the patient’s RNA followed by PCR amplifications performed on the resulting cDNA. The variant causes the loss of a canonic donor splice site at position +2 in BRCA1 intron 21; and consequently the partial retention of 156 bp of intron 21 in the patient’s transcript; which demonstrates that this novel BRCA1 mutation plays a pathogenetic role in breast cancer. These findings enabled us to initiate appropriate counseling and to tailor the clinical management of this family. Lastly; these data reinforce the importance of studying the effects of sequence variants at the RNA level to verify their potential role in disease onset. PMID:28009814

  13. Duchenne muscular dystrophy caused by a frame-shift mutation in the acceptor splice site of intron 26.

    PubMed

    Meregalli, Mirella; Maciotta, Simona; Angeloni, Valentina; Torrente, Yvan

    2016-08-11

    The dystrophin gene is the one of the largest described in human beings and mutations associated to this gene are responsible for Duchenne or Becker muscular dystrophies. Here we describe a nucleotide substitution in the acceptor splice site of intron 26 (c.3604-1G > C) carried by a 6-year-old boy who presented with a history of progressive proximal muscle weakness and elevated serum creatine kinase levels. RNA analysis showed that the first two nucleotides of the mutated intron 26 (AC) were not recognized by the splicing machinery and a new splicing site was created within exon 27, generating a premature stop codon and avoiding protein translation. The evaluation of the pathogenic effect of the mutation by mRNA analysis will be useful in the optics of an antisense oligonucleotides (AON)-based therapy.

  14. CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing.

    PubMed

    Wang, Danxin; Sadee, Wolfgang

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) metabolizes 30-50% of clinically used drugs. Large interperson variability in CYP3A4 activity affects response to CYP3A4 substrate drugs. We had demonstrated that an intronic single nucleotide polymorphism rs35599367 (CYP3A4*22, located in intron 6) reduces mRNA/protein expression; however, the underlying mechanism remained unknown. Here we show that CYP3A4*22 is associated with a two-fold or greater increase in formation of a nonfunctional CYP3A4 alternative splice variant with partial intron 6 retention in human liver (P=0.006), but not in small intestines. Consistent with this observation, in-vitro transfection experiments with a CYP3A4 minigene (spanning from intron 5 to intron 7) demonstrated that plasmids carrying the rs35599367 minor T allele caused significantly greater intron 6 retention than the C allele in liver derived HepG2 cells, but not in intestine-derived LS-174T cells. These results indicate that tissue-specific increased formation of nonfunctional alternative splice variant causes reduced CYP3A4 mRNA/protein expression in CYP3A4*22 carriers.

  15. Becker muscular dystrophy due to an intronic splicing mutation inducing a dual dystrophin transcript.

    PubMed

    Todeschini, Alice; Gualandi, Francesca; Trabanelli, Cecilia; Armaroli, Annarita; Ravani, Anna; Fanin, Marina; Rota, Silvia; Bello, Luca; Ferlini, Alessandra; Pegoraro, Elena; Padovani, Alessandro; Filosto, Massimiliano

    2016-10-01

    We describe a 29-year-old patient who complained of left thigh muscle weakness since he was 23 and of moderate proximal weakness of both lower limbs with difficulty in climbing stairs and running since he was 27. Mild weakness of iliopsoas and quadriceps muscles and muscle atrophy of both the distal forearm and thigh were observed upon clinical examination. He harboured a novel c.1150-3C>G substitution in the DMD gene, affecting the intron 10 acceptor splice site and causing exon 11 skipping and an out-of-frame transcript. However, protein of normal molecular weight but in reduced amounts was observed on Western Blot analysis. Reverse transcription analysis on muscle RNA showed production, via alternative splicing, of a transcript missing exon 11 as well as a low abundant full-length transcript which is enough to avoid the severe Duchenne phenotype. Our study showed that a reduced amount of full length dystrophin leads to a mild form of Becker muscular dystrophy. These results confirm earlier findings that low amounts of dystrophin can be associated with a milder phenotype, which is promising for therapies aiming at dystrophin restoration. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Control of Human PLP1 Expression Through Transcriptional Regulatory Elements and Alternatively Spliced Exons in Intron 1

    PubMed Central

    Hamdan, Hamdan; Kockara, Neriman T.; Jolly, Lee Ann; Haun, Shirley

    2015-01-01

    *These authors contributed equally to this work.Although the myelin proteolipid protein gene (PLP1) encodes the most abundant protein in central nervous system (CNS) myelin, not much is known about the mechanisms that govern expression of the human gene (hPLP1). Much more is known about the processes that regulate Plp1 gene expression in rodents. From studies with Plp1-lacZ transgenic mice, it was determined that the first intron of mouse Plp1 (mPlp1) is required to attain high levels of expression in brain, concurrent with the active myelination period. Other studies have suggested that within mPlp1 intron 1 (>8 kb) lie several regions with enhancer-like activity. To test whether these sequences (and possibly others) in hPLP1 intron 1 are functional, deletion-transfection analysis was performed with hPLP1-lacZ constructs that contain various portions of the intron, or lack it altogether. Results presented here demonstrate the importance of hPLP1 intron 1 in achieving maximal levels of expression in the immortalized oligodendroglial cell line, Oli-neu. Deletion analysis indicates that the intron contains multiple positive regulatory elements which are active in Oli-neu cells. Some of these elements appear to be functionally conserved between human and mouse, while others are not. Furthermore, our studies demonstrate that multiple splice variants can be formed due to inclusion of extra (supplementary) exons from what is classically thought of as hPLP1 intron 1. Thus, splicing of these novel exons (which are not recognized as such in mPlp1 due to lack of conserved splice sites) must utilize factors common to both human and mouse since Oli-neu cells are of mouse origin. PMID:25694552

  17. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.

    PubMed

    Wu, XianMing; Hurst, Laurence D

    2015-07-01

    The nearly neutral theory predicts that small effective population size provides the conditions for weakened selection. This is postulated to explain why our genome is more "bloated" than that of, for example, yeast, ours having large introns and large intergene spacer. If a bloated genome is also an error prone genome might it, however, be the case that selection for error-mitigating properties is stronger in our genome? We examine this notion using splicing as an exemplar, not least because large introns can predispose to noisy splicing. We thus ask whether, owing to genomic decay, selection for splice error-control mechanisms is stronger, not weaker, in species with large introns and small populations. In humans much information defining splice sites is in cis-exonic motifs, most notably exonic splice enhancers (ESEs). These act as splice-error control elements. Here then we ask whether within and between-species intron size is a predictor of the commonality of exonic cis-splicing motifs. We show that, as predicted, the proportion of synonymous sites that are ESE-associated and under selection in humans is weakly positively correlated with the size of the flanking intron. In a phylogenetically controlled framework, we observe, also as expected, that mean intron size is both predicted by Ne.μ and is a good predictor of cis-motif usage across species, this usage coevolving with splice site definition. Unexpectedly, however, across taxa intron density is a better predictor of cis-motif usage than intron size. We propose that selection for splice-related motifs is driven by a need to avoid decoy splice sites that will be more common in genes with many and large introns. That intron number and density predict ESE usage within human genes is consistent with this, as is the finding of intragenic heterogeneity in ESE density. As intronic content and splice site usage across species is also well predicted by Ne.μ, the result also suggests an unusual circumstance in

  18. Characterization of a disease-associated mutation affecting a putative splicing regulatory element in intron 6b of the cystic fibrosis transmembrane conductance regulator (CFTR) gene.

    PubMed

    Faà, Valeria; Incani, Federica; Meloni, Alessandra; Corda, Denise; Masala, Maddalena; Baffico, A Maria; Seia, Manuela; Cao, Antonio; Rosatelli, M Cristina

    2009-10-30

    Cystic fibrosis (CF) is a common recessive disorder caused by >1600 mutations in the CF transmembrane conductance regulator (CFTR) gene. About 13% of CFTR mutations are classified as "splicing mutations," but for almost 40% of these, their role in affecting the pre-mRNA splicing of the gene is not yet defined. In this work, we describe a new splicing mutation detected in three unrelated Italian CF patients. By DNA analyses and mRNA studies, we identified the c.1002-1110_1113delTAAG mutation localized in intron 6b of the CFTR gene. At the mRNA level, this mutation creates an aberrant inclusion of a sequence of 101 nucleotides between exons 6b and 7. This sequence corresponds to a portion of intron 6b and resembles a cryptic exon because it is characterized by an upstream ag and a downstream gt sequence, which are most probably recognized as 5'- and 3'-splice sites by the spliceosome. Through functional analysis of this splicing defect, we show that this mutation abolishes the interaction of the splicing regulatory protein heterogeneous nuclear ribonucleoprotein A2/B1 with an intronic splicing regulatory element and creates a new recognition motif for the SRp75 splicing factor, causing activation of the cryptic exon. Our results show that the c.1002-1110_1113delTAAG mutation creates a new intronic splicing regulatory element in intron 6b of the CFTR gene exclusively recognized by SRp75.

  19. Albino Leaf 2 is involved in the splicing of chloroplast group I and II introns in rice

    PubMed Central

    Liu, Changhong; Zhu, Haitao; Xing, Yi; Tan, Jianjie; Chen, Xionghui; Zhang, Jianjun; Peng, Haifeng; Xie, Qingjun; Zhang, Zemin

    2016-01-01

    Chloroplasts play an essential role in plant growth and development through manipulating photosynthesis and the production of hormones and metabolites. Although many genes or regulators involved in chloroplast biogenesis and development have been isolated and characterized, identification of novel components is still lacking. We isolated a rice (Oryza sativa) mutant, termed albino leaf 2 (al2), using genetic screening. Phenotypic analysis revealed that the al2 mutation caused obvious albino leaves at the early developmental stage, eventually leading to al2 seedling death. Electron microscopy investigations indicated that the chloroplast structure was disrupted in the al2 mutants at an early developmental stage and subsequently resulted in the breakdown of the entire chloroplast. Molecular cloning illustrated that AL2 encodes a chloroplast group IIA intron splicing facilitator (CRS1) in rice, which was confirmed by a genetic complementation experiment. Moreover, our results demonstrated that AL2 was constitutively expressed in various tissues, including green and non-green tissues. Interestingly, we found that the expression levels of a subset of chloroplast genes that contain group IIA and IIB introns were significantly reduced in the al2 mutant compared to that in the wild type, suggesting that AL2 is a functional CRS1 in rice. Differing from the orthologous CRS1 in maize and Arabidopsis that only regulates splicing of the chloroplast group II intron, our results demonstrated that the AL2 gene is also likely to be involved in the splicing of the chloroplast group I intron. They also showed that disruption of AL2 results in the altered expression of chloroplast-associated genes, including chlorophyll biosynthetic genes, plastid-encoded polymerases and nuclear-encoded chloroplast genes. Taken together, these findings shed new light on the function of nuclear-encoded chloroplast group I and II intron splicing factors in rice. PMID:27543605

  20. Splicing defective mutants of the COXI gene of yeast mitochondrial DNA: initial definition of the maturase domain of the group II intron aI2.

    PubMed

    Moran, J V; Mecklenburg, K L; Sass, P; Belcher, S M; Mahnke, D; Lewin, A; Perlman, P

    1994-06-11

    Six mutations blocking the function of a seven intron form of the mitochondrial gene encoding subunit I of cytochrome c oxidase (COXI) and mapping upstream of exon 3 were isolated and characterized. A cis-dominant mutant of the group IIA intron 1 defines a helical portion of the C1 substructure of domain 1 as essential for splicing. A trans-recessive mutant confirms that the intron 1 reading frame encodes a maturase function. A cis-dominant mutant in exon 2 was found to have no effect on the splicing of intron 1 or 2. A trans-recessive mutant, located in the group IIA intron 2, demonstrates for the first time that intron 2 encodes a maturase. A genetic dissection of the five missense mutations present in the intron 2 reading frame of that strain demonstrates that the maturase defect results from one or both of the missense mutations in a newly-recognized conserved sequence called domain X.

  1. The molecular evolution and structural organization of self-splicing group I introns at position 516 in nuclear SSU rDNA of myxomycetes.

    PubMed

    Haugen, Peik; Coucheron, Dag H; Rønning, Sissel B; Haugli, Kari; Johansen, Steinar

    2003-01-01

    Group I introns are relatively common within nuclear ribosomal DNA of eukaryotic microorganisms, especially in myxomycetes. Introns at position S516 in the small subunit ribosomal RNA gene are particularly common, but have a sporadic occurrence in myxomycetes. Fuligo septica, Badhamia gracilis, and Physarum flavicomum, all members of the family Physaraceae, contain related group IC1 introns at this site. The F. septica intron was studied at the molecular level and found to self-splice as naked RNA and to generate full-length intron RNA circles during incubation. Group I introns at position S516 appear to have a particularly widespread distribution among protists and fungi. Secondary structural analysis of more than 140 S516 group I introns available in the database revealed five different types of organization, including IC1 introns with and without His-Cys homing endonuclease genes, complex twin-ribozyme introns, IE introns, and degenerate group I-like introns. Both intron structural and phylogenetic analyses indicate a multiple origin of the S516 introns during evolution. The myxomycete introns are related to S516 introns in the more distantly related brown algae and Acanthamoeba species. Possible mechanisms of intron transfer both at the RNA- and DNA-levels are discussed in order to explain the observed widespread, but scattered, phylogenetic distribution.

  2. Expression of intron-containing C. elegans heat shock genes in mouse cells demonstrates divergence of 3' splice site recognition sequences between nematodes and vertebrates, and an inhibitory effect of heat shock on the mammalian splicing apparatus.

    PubMed Central

    Kay, R J; Russnak, R H; Jones, D; Mathias, C; Candido, E P

    1987-01-01

    Splicing of a pair of intron-containing heat shock genes from Caenorhabditis elegans has been studied in transfected mouse cells. The hsp16-1 and hsp16-48 genes of C. elegans encode 16,000 Da heat shock polypeptides. Each gene contains a short intron of 52 (hsp16-1) or 55 (hsp16-48) base pairs. When these genes were introduced into mouse cells, they were efficiently induced following heat shock, but splicing of the introns was abnormal. In mouse cells, cleavage of the hsp16 transcripts occurred at the correct 5' splice sites, but the 3' splice sites were located at AG dinucleotides downstream of the correct sites. This aberrant splicing was not solely due to the small size of the C. elegans introns, since a hsp16-1 gene containing an intron enlarged by tandem duplication showed exactly the same splicing pattern. The mouse cells thus seem to be unable to recognize the natural 3' splice sites of the C. elegans transcripts. The efficiency of splicing was greatly reduced under heat shock conditions, and unspliced transcripts accumulated in the nucleus. During a subsequent recovery period at 37 degrees C, these transcripts were spliced and transported to the cytoplasm. Images PMID:3588308

  3. Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells

    PubMed Central

    2011-01-01

    Background The outcome of virus infection depends from the precise coordination of viral gene expression and genome replication. The ability to control and regulate these processes is therefore important for analysis of infection process. Viruses are also useful tools in bio- and gene technology; they can efficiently kill cancer cells and trigger immune responses to tumors. However, the methods for constructing tissue- or cell-type specific viruses typically suffer from low target-cell specificity and a high risk of reversion. Therefore novel and universal methods of regulation of viral infection are also important for therapeutic application of virus-based systems. Methods Aberrantly spliced introns were introduced into crucial gene-expression units of adenovirus vector and alphavirus DNA/RNA layered vectors and their effects on the viral gene expression, replication and/or the release of infectious genomes were studied in cell culture. Transfection of the cells with splice-switching oligonucleotides was used to correct the introduced functional defect(s). Results It was demonstrated that viral gene expression, replication and/or the release of infectious genomes can be blocked by the introduction of aberrantly spliced introns. The insertion of such an intron into an adenovirus vector reduced the expression of the targeted gene more than fifty-fold. A similar insertion into an alphavirus DNA/RNA layered vector had a less dramatic effect; here, only the release of the infectious transcript was suppressed but not the subsequent replication and spread of the virus. However the insertion of two aberrantly spliced introns resulted in an over one hundred-fold reduction in the infectivity of the DNA/RNA layered vector. Furthermore, in both systems the observed effects could be reverted by the delivery of splice-switching oligonucleotide(s), which corrected the splicing defects. Conclusions Splice-switch technology, originally developed for genetic disease therapy, can

  4. Overexpression of DEAD box protein pMSS116 promotes ATP-dependent splicing of a yeast group II intron in vitro.

    PubMed Central

    Niemer, I; Schmelzer, C; Börner, G V

    1995-01-01

    The group II intron bI1, the first intron of the mitochondrial cytochrome b gene in yeast is self-splicing in vitro. Genetic evidence suggests that trans-acting factors are required for in vivo splicing of this intron. In accordance with these findings, we present in vitro data showing that splicing of bI1 under physiological conditions depends upon the presence of proteins of a mitochondrial lysate. ATP is an essential component is this reaction. Overexpression of the nuclear-encoded DEAD box protein pMSS-116 results in a marked increase in the ATP-dependent splicing activity of the extract, suggesting that pMSS116 may play an important role in splicing of bI1. Images PMID:7659519

  5. A Contracted DNA Repeat in LHX3 Intron 5 Is Associated with Aberrant Splicing and Pituitary Dwarfism in German Shepherd Dogs

    PubMed Central

    Voorbij, Annemarie M. W. Y.; van Steenbeek, Frank G.; Vos-Loohuis, Manon; Martens, Ellen E. C. P.; Hanson-Nilsson, Jeanette M.; van Oost, Bernard A.; Kooistra, Hans S.; Leegwater, Peter A.

    2011-01-01

    Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism. PMID:22132174

  6. Muscleblind-like 1 activates insulin receptor exon 11 inclusion by enhancing U2AF65 binding and splicing of the upstream intron.

    PubMed

    Echeverria, Gloria V; Cooper, Thomas A

    2014-02-01

    Alternative splicing regulates developmentally and tissue-specific gene expression programs, disruption of which have been implicated in numerous diseases. Muscleblind-like 1 (MBNL1) regulates splicing transitions, which are disrupted on loss of MBNL1 function in myotonic dystrophy type 1 (DM1). One such event is MBNL1-mediated activation of insulin receptor exon 11 inclusion, which requires an intronic enhancer element downstream of exon 11. The mechanism of MBNL1-mediated activation of exon inclusion is unknown. We developed an in vitro splicing assay, which robustly recapitulates MBNL1-mediated splicing activation of insulin receptor exon 11 and found that MBNL1 activates removal of the intron upstream of exon 11 upon binding its functional response element in the downstream intron. MBNL1 enhances early spliceosome assembly as evidenced by enhanced complex A formation and binding of U2 small nuclear ribonucleoprotein auxiliary factor 65 kDa subunit (U2AF65) on the upstream intron. We demonstrated that neither the 5' splice site nor exon 11 sequences are required for MBNL1-activated U2AF65 binding. Interestingly, the 5' splice site is required for MBNL1-mediated activation of upstream intron removal, although MBNL1 has no effect on U1 snRNA recruitment. These results suggest that MBNL1 directly activates binding of U2AF65 to enhance upstream intron removal to ultimately activate alternative exon inclusion.

  7. hnRNP L inhibits CD44 V10 exon splicing through interacting with its upstream intron.

    PubMed

    Loh, Tiing Jen; Cho, Sunghee; Moon, Heegyum; Jang, Ha Na; Williams, Darren Reece; Jung, Da-Woon; Kim, Il-Chul; Ghigna, Claudia; Biamonti, Giuseppe; Zheng, Xuexiu; Shen, Haihong

    2015-06-01

    CD44 is a complex cell adhesion molecule that mediates communication and adhesion between adjacent cells as well as between cells and the extracellular matrix. CD44 pre-mRNA produces various mRNA isoforms through alternative splicing of 20 exons, among which exons 1-5 (C1-C5) and 16-20 (C6-C10) are constant exons, whereas exons 6-15 (V1-V10) are variant exons. CD44 V10 exon has important roles in breast tumor progression and Hodgkin lymphoma. Here we show that increased expression of hnRNP L inhibits V10 exon splicing of CD44 pre-mRNA, whereas reduced expression of hnRNP L promotes V10 exon splicing. In addition, hnRNP L also promotes V10 splicing of endogenous CD44 pre-mRNA. Through mutation analysis, we demonstrate that the effects of hnRNP L on V10 splicing are abolished when the CA-rich sequence on the upstream intron of V10 exon is disrupted. However, hnRNP L effects are stronger if more CA-repeats are provided. Furthermore, we show that hnRNP L directly contacts the CA-rich sequence. Importantly, we provide evidences that hnRNP L inhibits U2AF65 binding on the upstream Py tract of V10 exon. Our results reveal that hnRNP L is a new regulator for CD44 V10 exon splicing.

  8. Two self-splicing group I introns interrupt two late transcribed genes of prolate-headed Lactobacillus delbrueckii phage JCL1032.

    PubMed

    Riipinen, K A; Alatossava, T

    2004-10-01

    Two group I introns were detected from the late gene region of the prolate-headed phage JCL1032 of Lactobacillus delbrueckii. Introns JCL-I1 and JCL-I2 interrupt orf602 and orf1868 encoding a phage terminase large subunit (TerL, 69.7 kDa) and a putative tape measure protein (TMP, 202 kDa), respectively. The introns JCL-I1 (226 bp) and JCL-I2 (322 bp) were efficiently self-spliced in vivo. Both introns were classified to the subgroup IA1 having all the conserved structures necessary for splicing, but lacking the ability to encode endonucleases or other gene products. The introns JCL-I1 and JCL-I2 shared restricted nucleotide sequence similarity with each other and with the group I terL intron of Lb. delbrueckii phage LL-H. No match was found for JCL-I1 in the homology searches. Instead, the primary sequence from the joining region of P8 and P7 to P9 of the intron JCL-I2 was homologous to the group I intron of Bacillus mojavensis; the orf142 introns I1, I2 and I3 of Staphylococcus aureus phage Twort; the group I intron of phage Bastille (Bacillus thuringiensis); and to the group IA3 intron of Monomastix species.

  9. The Fission Yeast Pre-mRNA-processing Factor 18 (prp18+) Has Intron-specific Splicing Functions with Links to G1-S Cell Cycle Progression.

    PubMed

    Vijaykrishna, Nagampalli; Melangath, Geetha; Kumar, Rakesh; Khandelia, Piyush; Bawa, Pushpinder; Varadarajan, Raghavan; Vijayraghavan, Usha

    2016-12-30

    The fission yeast genome, which contains numerous short introns, is an apt model for studies on fungal splicing mechanisms and splicing by intron definition. Here we perform a domain analysis of the evolutionarily conserved Schizosaccharomyces pombe pre-mRNA-processing factor, SpPrp18. Our mutational and biophysical analyses of the C-terminal α-helical bundle reveal critical roles for the conserved region as well as helix five. We generate a novel conditional missense mutant, spprp18-5 To assess the role of SpPrp18, we performed global splicing analyses on cells depleted of prp18(+) and the conditional spprp18-5 mutant, which show widespread but intron-specific defects. In the absence of functional SpPrp18, primer extension analyses on a tfIId(+) intron 1-containing minitranscript show accumulated pre-mRNA, whereas the lariat intron-exon 2 splicing intermediate was undetectable. These phenotypes also occurred in cells lacking both SpPrp18 and SpDbr1 (lariat debranching enzyme), a genetic background suitable for detection of lariat RNAs. These data indicate a major precatalytic splicing arrest that is corroborated by the genetic interaction between spprp18-5 and spprp2-1, a mutant in the early acting U2AF59 protein. Interestingly, SpPrp18 depletion caused cell cycle arrest before S phase. The compromised splicing of transcripts coding for G1-S regulators, such as Res2, a transcription factor, and Skp1, a regulated proteolysis factor, are shown. The cumulative effects of SpPrp18-dependent intron splicing partly explain the G1 arrest upon the loss of SpPrp18. Our study using conditional depletion of spprp18(+) and the spprp18-5 mutant uncovers an intron-specific splicing function and early spliceosomal interactions and suggests links with cell cycle progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans

    PubMed Central

    Kamikawa, Ryoma; Shiratori, Takashi; Ishida, Ken-Ichiro; Miyashita, Hideaki; Roger, Andrew J.

    2016-01-01

    Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes. PMID:26833505

  11. A mutation in a rare type of intron in a sodium-channel gene results in aberrant splicing and causes myotonia.

    PubMed

    Kubota, Tomoya; Roca, Xavier; Kimura, Takashi; Kokunai, Yosuke; Nishino, Ichizo; Sakoda, Saburo; Krainer, Adrian R; Takahashi, Masanori P

    2011-07-01

    Many mutations in the skeletal-muscle sodium-channel gene SCN4A have been associated with myotonia and/or periodic paralysis, but so far all of these mutations are located in exons. We found a patient with myotonia caused by a deletion/insertion located in intron 21 of SCN4A, which is an AT-AC type II intron. This is a rare class of introns that, despite having AT-AC boundaries, are spliced by the major or U2-type spliceosome. The patient's skeletal muscle expressed aberrantly spliced SCN4A mRNA isoforms generated by activation of cryptic splice sites. In addition, genetic suppression experiments using an SCN4A minigene showed that the mutant 5' splice site has impaired binding to the U1 and U6 snRNPs, which are the cognate factors for recognition of U2-type 5' splice sites. One of the aberrantly spliced isoforms encodes a channel with a 35-amino acid insertion in the cytoplasmic loop between domains III and IV of Nav1.4. The mutant channel exhibited a marked disruption of fast inactivation, and a simulation in silico showed that the channel defect is consistent with the patient's myotonic symptoms. This is the first report of a disease-associated mutation in an AT-AC type II intron, and also the first intronic mutation in a voltage-gated ion channel gene showing a gain-of-function defect.

  12. Insertion of part of an intron into the 5[prime] untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene

    SciTech Connect

    Conrad, R.; Thomas, J.; Spieth, J.; Blumenthal, T. )

    1991-04-01

    In nematodes, the RNA products of some genes are trans-spliced to a 22-nucleotide spliced leader (SL), while the RNA products of other genes are not. In Caenorhabditis elegans, there are two SLs, Sl1 and SL2, donated by two distinct small nuclear ribonucleoprotein particles in a process functionally quite similar to nuclear intron removal. The authors demonstrate here that it is possible to convert a non-trans-spliced gene into a trans-spliced gene by placement of an intron missing only the 5[prime] splice site into the 5[prime] untranslated region. Stable transgenic strains were isolated expressing a gene in which 69 nucleotides of a vit-5 intron, including the 3[prime] splice site, were inserted into the 5[prime] untranslated region of a vit-2/vit-6 fusion gene. The RNA product of this gene was examined by primer extension and PCR amplification. Although the vit-2/vit-6 transgene product is not normally trans-spliced, the majority of transcripts from this altered gene were trans-spliced to SL1. They termed the region of a trans-spliced mRNA precursor between the 5[prime] end and the first 3[prime] splice site an 'outrun'. The results suggest that if a transcript begins with intronlike sequence followed by a 3[prime] splice site, this alone may constitute an outrun and be sufficient to demarcate a transcript as a trans-splice acceptor. These findings leave open the possibility that specific sequences are required to increase the efficiency of trans-splicing.

  13. Splicing of the large intron present in the nonstructural gene of minute virus of mice is governed by TIA-1/TIAR binding downstream of the nonconsensus donor.

    PubMed

    Choi, Eun-Young; Pintel, David

    2009-06-01

    The essential proteins NS1 and NS2 of minute virus of mice are encoded by mRNAs R1 and R2, respectively. R2 is derived from R1 by excision of a large intron and thus splicing governs the relative ratios of NS1 and NS2. Excision of the large intron utilizes a nonconsensus 5' donor site. We identified a U-rich and A-rich intronic sequence immediately downstream of the nonconsensus 5' donor site that functions as an intronic splicing enhancer (ISE) required for efficient large-intron excision. The ISE binds the cellular RNA-processing proteins TIA-1 and TIAR, which enhance usage of the nonconsensus donor.

  14. Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts

    PubMed Central

    2010-01-01

    Background Hemiascomycetous yeasts have intron-poor genomes with very few cases of alternative splicing. Most of the reported examples result from intron retention in Saccharomyces cerevisiae and some have been shown to be functionally significant. Here we used transcriptome-wide approaches to evaluate the mechanisms underlying the generation of alternative transcripts in Yarrowia lipolytica, a yeast highly divergent from S. cerevisiae. Results Experimental investigation of Y. lipolytica gene models identified several cases of alternative splicing, mostly generated by intron retention, principally affecting the first intron of the gene. The retention of introns almost invariably creates a premature termination codon, as a direct consequence of the structure of intron boundaries. An analysis of Y. lipolytica introns revealed that introns of multiples of three nucleotides in length, particularly those without stop codons, were underrepresented. In other organisms, premature termination codon-containing transcripts are targeted for degradation by the nonsense-mediated mRNA decay (NMD) machinery. In Y. lipolytica, homologs of S. cerevisiae UPF1 and UPF2 genes were identified, but not UPF3. The inactivation of Y. lipolytica UPF1 and UPF2 resulted in the accumulation of unspliced transcripts of a test set of genes. Conclusions Y. lipolytica is the hemiascomycete with the most intron-rich genome sequenced to date, and it has several unusual genes with large introns or alternative transcription start sites, or introns in the 5' UTR. Our results suggest Y. lipolytica intron structure is subject to significant constraints, leading to the under-representation of stop-free introns. Consequently, intron-containing transcripts are degraded by a functional NMD pathway. PMID:20573210

  15. Deep intronic mis-splicing mutation in JAK3 gene underlies T-B+NK- severe combined immunodeficiency phenotype.

    PubMed

    Stepensky, Polina; Keller, Baerbel; Shamriz, Oded; NaserEddin, Adeeb; Rumman, Nisreen; Weintraub, Michael; Warnatz, Klaus; Elpeleg, Orly; Barak, Yaacov

    2016-02-01

    Severe combined immune deficiency (SCID) is a group of genetically heterogeneous diseases caused by an early block in T cell differentiation and present with life threatening infections, often within the first year of life. Janus kinase (JAK)3 gene mutations have been found to cause autosomal recessive T-B+ SCID phenotype. In this study we describe three patients with a novel deep intronic mis-splicing mutation in JAK3 as a cause of T-B+NK- SCID highlighting the need for careful evaluation of intronic regulatory elements of known genes associated with clearly defined clinical phenotypes. We present the cases and discuss the current literature. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Skipping of Exons by Premature Termination of Transcription and Alternative Splicing within Intron-5 of the Sheep SCF Gene: A Novel Splice Variant

    PubMed Central

    Saravanaperumal, Siva Arumugam; Pediconi, Dario; Renieri, Carlo; La Terza, Antonietta

    2012-01-01

    Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (−) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as ‘soluble’ isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a ‘novel’ mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D175G site which is necessary to produce ‘soluble’ form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6–9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (−) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals. PMID:22719917

  17. The Arabidopsis homolog of human minor spliceosomal protein U11-48K plays a crucial role in U12 intron splicing and plant development

    PubMed Central

    Xu, Tao; Kim, Bo Mi; Kwak, Kyung Jin; Jung, Hyun Ju; Kang, Hunseung

    2016-01-01

    The minor U12 introns are removed from precursor mRNAs by the U12 intron-specific minor spliceosome. Among the seven ribonucleoproteins unique to the minor spliceosome, denoted as U11/U12-20K, U11/U12-25K, U11/U12-31K, U11/U12-65K, U11-35K, U11-48K, and U11-59K, the roles of only U11/U12-31K and U11/U12-65K have been demonstrated in U12 intron splicing and plant development. Here, the functional role of the Arabidopsis homolog of human U11-48K in U12 intron splicing and the development of Arabidopsis thaliana was examined using transgenic knockdown plants. The u11-48k mutants exhibited several defects in growth and development, such as severely arrested primary inflorescence stems, formation of serrated leaves, production of many rosette leaves after bolting, and delayed senescence. The splicing of most U12 introns analyzed was impaired in the u11-48k mutants. Comparative analysis of the splicing defects and phenotypes among the u11/u12-31k, u11-48k, and u11/12-65k mutants showed that the severity of abnormal development was closely correlated with the degree of impairment in U12 intron splicing. Taken together, these results provide compelling evidence that the Arabidopsis homolog of human U11-48K protein, as well as U11/U12-31K and U11/U12-65K proteins, is necessary for correct splicing of U12 introns and normal plant growth and development. PMID:27091878

  18. Characterisation of three novel splice site mutations in introns 11, 18 and 30 of the NF-1 gene

    SciTech Connect

    Purandare, S.M.; Lanyon, W.G.; Arngrimsson, R.

    1994-09-01

    Identification and characterization of germline mutations within the NF-1 gene was carried out in 25 unrelated NF-1 patients, in whom we have detected three splice site mutations which cause exon skipping. Our detection strategy incorporated both RNA and DNA as templates for PCR, chemical mismatch cleavage and direct sequencing. The first mutation was detected in the splice donor sequence of intron 11 (1721+3A{r_arrow}G), which results in the skipping of exon 11 and causes a shift in the translational reading frame and the creation of a premature stop codon at position 560. This is predicted to result in the synthesis of a shorter protein product of 559 amino acids instead of 2818, with loss of the NF-1 GAP related domain. The patient is a familial case of NF-1 with neurological complications and no evidence of malignancy. She has an affected son who has inherited the same mutation and has skeletal complications. The second mutation was detected at the splice donor site in intron 18 (3113+1G{r_arrow}A) and caused the skipping of exon 18. This did not cause a shift in the reading frame but resulted in the exclusion of 41 amino acids from the predicted protein product and was seen in a familial case of NF-1 with neurological complications. The third mutation, at the splice donor site in intron 30 (5749+2T{r_arrow}G), caused the skipping of exon 30, shifting the translational reading frame and creating a premature stop codon at position 1851. The predicted protein product is reduced from the normal 2818 to 1850 amino acids. This patient is a sporadic case of NF-1, has neurological and skeletal complications and no evidence of malignancy. Thus in our analysis of 25 patients, the strategy of using RT-PCR to amplify the NF-1 cDNA greatly facilitated the detection of these errors of splicing, each of which is predicted to cause a major distruption of the protein product neurofibromin.

  19. Insertion of a self-splicing intron into the mtDNA of atriploblastic animal

    SciTech Connect

    Valles, Y.; Halanych, K.; Boore, J.L.

    2006-04-14

    Nephtys longosetosa is a carnivorous polychaete worm that lives in the intertidal and subtidal zones with worldwide distribution (pleijel&rouse2001). Its mitochondrial genome has the characteristics typical of most metazoans: 37 genes; circular molecule; almost no intergenic sequence; and no significant gene rearrangements when compared to other annelid mtDNAs (booremoritz19981995). Ubiquitous features as small intergenic regions and lack of introns suggested that metazoan mtDNAs are under strong selective pressures to reduce their genome size allowing for faster replication requirements (booremoritz19981995Lynch2005). Yet, in 1996 two type I introns were found in the mtDNA of the basal metazoan Metridium senile (FigureX). Breaking a long-standing rule (absence of introns in metazoan mtDNA), this finding was later supported by the further presence of group I introns in other cnidarians. Interestingly, only the class Anthozoa within cnidarians seems to harbor such introns. Although several hundreds of triploblastic metazoan mtDNAs have been sequenced, this study is the first evidence of mitochondrial introns in triploblastic metazoans. The cox1 gene of N. longosetosa has an intron of almost 2 kbs in length. This finding represents as well the first instance of a group II intron (anthozoans harbor group I introns) in all metazoan lineages. Opposite trends are observed within plants, fungi and protist mtDNAs, where introns (both group I and II) and other non-coding sequences are widespread. Plant, fungal and protist mtDNA structure and organization differ enormously from that of metazoan mtDNA. Both, plant and fungal mtDNA are dynamic molecules that undergo high rates of recombination, contain long intergenic spacer regions and harbor both group I and group II introns. However, as metazoans they have a conserved gene content. Protists, on the other hand have a striking variation of gene content and introns that account for the genome size variation. In contrast to

  20. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA.

    PubMed

    Sanz, David J; Hollywood, Jennifer A; Scallan, Martina F; Harrison, Patrick T

    2017-01-01

    Cystic Fibrosis is an autosomal recessive disorder caused by mutations in the CFTR gene. CRISPR mediated, template-dependent homology-directed gene editing has been used to correct the most common mutation, c.1521_1523delCTT / p.Phe508del (F508del) which affects ~70% of individuals, but the efficiency was relatively low. Here, we describe a high efficiency strategy for editing of three different rare CFTR mutations which together account for about 3% of individuals with Cystic Fibrosis. The mutations cause aberrant splicing of CFTR mRNA due to the creation of cryptic splice signals that result in the formation of pseudoexons containing premature stop codons c.1679+1634A>G (1811+1.6kbA>G) and c.3718-2477C>T (3849+10kbC>T), or an out-of-frame 5' extension to an existing exon c.3140-26A>G (3272-26A>G). We designed pairs of Cas9 guide RNAs to create targeted double-stranded breaks in CFTR either side of each mutation which resulted in high efficiency excision of the target genomic regions via non-homologous end-joining repair. When evaluated in a mini-gene splicing assay, we showed that targeted excision restored normal splicing for all three mutations. This approach could be used to correct aberrant splicing signals or remove disruptive transcription regulatory motifs caused by deep-intronic mutations in a range of other genetic disorders.

  2. Who Activates the Nucleophile in Ribozyme Catalysis? An Answer from the Splicing Mechanism of Group II Introns.

    PubMed

    Casalino, Lorenzo; Palermo, Giulia; Rothlisberger, Ursula; Magistrato, Alessandra

    2016-08-24

    Group II introns are Mg(2+)-dependent ribozymes that are considered to be the evolutionary ancestors of the eukaryotic spliceosome, thus representing an ideal model system to understand the mechanism of conversion of premature messenger RNA (mRNA) into mature mRNA. Neither in splicing nor for self-cleaving ribozymes has the role of the two Mg(2+) ions been established, and even the way the nucleophile is activated is still controversial. Here we employed hybrid quantum-classical QM(Car-Parrinello)/MM molecular dynamics simulations in combination with thermodynamic integration to characterize the molecular mechanism of the first and rate-determining step of the splicing process (i.e., the cleavage of the 5'-exon) catalyzed by group II intron ribozymes. Remarkably, our results show a new RNA-specific dissociative mechanism in which the bulk water accepts the nucleophile's proton during its attack on the scissile phosphate. The process occurs in a single step with no Mg(2+) ion activating the nucleophile, at odds with nucleases enzymes. We suggest that the novel reaction path elucidated here might be an evolutionary ancestor of the more efficient two-metal-ion mechanism found in enzymes.

  3. Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing

    PubMed Central

    Merico, Daniele; Roifman, Maian; Braunschweig, Ulrich; Yuen, Ryan K. C.; Alexandrova, Roumiana; Bates, Andrea; Reid, Brenda; Nalpathamkalam, Thomas; Wang, Zhuozhi; Thiruvahindrapuram, Bhooma; Gray, Paul; Kakakios, Alyson; Peake, Jane; Hogarth, Stephanie; Manson, David; Buncic, Raymond; Pereira, Sergio L.; Herbrick, Jo-Anne; Blencowe, Benjamin J.; Roifman, Chaim M.; Scherer, Stephen W.

    2015-01-01

    Roifman Syndrome is a rare congenital disorder characterized by growth retardation, cognitive delay, spondyloepiphyseal dysplasia and antibody deficiency. Here we utilize whole-genome sequencing of Roifman Syndrome patients to reveal compound heterozygous rare variants that disrupt highly conserved positions of the RNU4ATAC small nuclear RNA gene, a minor spliceosome component that is essential for minor intron splicing. Targeted sequencing confirms allele segregation in six cases from four unrelated families. RNU4ATAC rare variants have been recently reported to cause microcephalic osteodysplastic primordial dwarfism, type I (MOPD1), whose phenotype is distinct from Roifman Syndrome. Strikingly, all six of the Roifman Syndrome cases have one variant that overlaps MOPD1-implicated structural elements, while the other variant overlaps a highly conserved structural element not previously implicated in disease. RNA-seq analysis confirms extensive and specific defects of minor intron splicing. Available allele frequency data suggest that recessive genetic disorders caused by RNU4ATAC rare variants may be more prevalent than previously reported. PMID:26522830

  4. Influence of specific mutations on the thermal stability of the td group I intron in vitro and on its splicing efficiency in vivo: a comparative study.

    PubMed

    Brion, P; Schroeder, R; Michel, F; Westhof, E

    1999-07-01

    Group I introns constitute excellent systems for analyzing the relationship between RNA tertiary folding and catalysis. Within a hierarchical framework interpretation of RNA folding, secondary structure motifs subtend RNA three-dimensional (3D) architecture. Thus, mutations in two-dimensional motifs are expected to have effects different from those disrupting 3D contacts. Using UV spectroscopy, we have studied the influence of nucleotide substitutions, in both secondary and tertiary structure elements, on the thermal stability of the tertiary folding of the bacteriophage T4 td group I intron. Further, we present a quantitative analysis of the relationship between the splicing efficiency in vivo and the stability of the intron structure as monitored by UV melting curves. We conclude that the stability of the tertiary structure of a group I intron as measured by UV melting is generally a good indication of its ability to splice in vivo.

  5. The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA

    PubMed Central

    Vincenti, Sara; Chiara, Valentina De; Bozzoni, Irene; Presutti, Carlo

    2007-01-01

    Genomic location of sequences encoding small nucleolar RNAs (snoRNAs) is peculiar in all eukaryotes from yeast to mammals: most of them are encoded within the introns of host genes. In Saccharomyces cerevisiae, seven snoRNAs show this location. In this work we demonstrate that the position of snoRNA-coding regions with respect to splicing consensus sequences is critical: yeast strains expressing mutant constructs containing shorter or longer spacers (the regions between snoRNA ends and intron splice sites) show a drop in accumulation of U24 and U18 snoRNAs. Further mutational analysis demonstrates that altering the distance between the 3′ end of the snoRNA and the branch point is the most important constraint for snoRNA biosynthesis, and that stable external stems, which are sometimes present in introns containing snoRNAs, can overcome the positional effect. Surprisingly enough, splicing of the host introns is clearly affected in most of these constructs indicating that, at least in S. cerevisiae, an incorrect location of snoRNA-coding sequences within the host intron is detrimental to the splicing process. This is different with respect to what was demonstrated in mammals, where the activity of the splicing machinery seems to be dominant with respect to the assembly of snoRNPs, and it is not affected by the location of snoRNA sequences. We also show that intronic box C/D snoRNA recognition and assembly of snoRNPs occur during transcription when splicing sequences are recognized. PMID:17135484

  6. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene.

    PubMed

    Mercado, Pablo Arrisi; Ayala, Youhna M; Romano, Maurizio; Buratti, Emanuele; Baralle, Francisco E

    2005-01-01

    Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and promote exon 3 splicing. In the present study, we show that the ESE is necessary only in the proper context. In addition, we have characterized two novel sequences in the flanking introns that modulate apoA-II exon 3 splicing. There is a G-rich element in intron 2 that interacts with hnRNPH1 and inhibits exon 3 splicing. The second is a purine rich region in intron 3 that binds SRp40 and SRp55 and promotes exon 3 inclusion in mRNA. We have also found that the (GU) repeats in the apoA-II context bind the splicing factor TDP-43 and interfere with exon 3 definition. Significantly, blocking of TDP-43 expression by small interfering RNA overrides the need for all the other cis-acting elements making exon 3 inclusion constitutive even in the presence of disrupted exonic and intronic enhancers. Altogether, our results suggest that exonic and intronic enhancers have evolved to balance the negative effects of the two silencers located in intron 2 and hence rescue the constitutive exon 3 inclusion in apoA-II mRNA.

  7. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene

    PubMed Central

    Mercado, Pablo Arrisi; Ayala, Youhna M.; Romano, Maurizio; Buratti, Emanuele; Baralle, Francisco E.

    2005-01-01

    Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and promote exon 3 splicing. In the present study, we show that the ESE is necessary only in the proper context. In addition, we have characterized two novel sequences in the flanking introns that modulate apoA-II exon 3 splicing. There is a G-rich element in intron 2 that interacts with hnRNPH1 and inhibits exon 3 splicing. The second is a purine rich region in intron 3 that binds SRp40 and SRp55 and promotes exon 3 inclusion in mRNA. We have also found that the (GU) repeats in the apoA-II context bind the splicing factor TDP-43 and interfere with exon 3 definition. Significantly, blocking of TDP-43 expression by small interfering RNA overrides the need for all the other cis-acting elements making exon 3 inclusion constitutive even in the presence of disrupted exonic and intronic enhancers. Altogether, our results suggest that exonic and intronic enhancers have evolved to balance the negative effects of the two silencers located in intron 2 and hence rescue the constitutive exon 3 inclusion in apoA-II mRNA. PMID:16254078

  8. Intraspecific variations of Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation of the intron splice site profiles.

    PubMed

    Vigentini, Ileana; De Lorenzis, Gabriella; Picozzi, Claudia; Imazio, Serena; Merico, Annamaria; Galafassi, Silvia; Piškur, Jure; Foschino, Roberto

    2012-06-15

    In enology, "Brett" character refers to the wine spoilage caused by the yeast Dekkera/Brettanomyces bruxellensis and its production of volatile phenolic off-flavours. However, the spoilage potential of this yeast is strain-dependent. Therefore, a rapid and reliable recognition at the strain level is a key point to avoid serious economic losses. The present work provides an operative tool to assess the genetic intraspecific variation in this species through the use of introns as molecular targets. Firstly, the available partial D./B. bruxellensis genome sequence was investigated in order to build primers annealing to introns 5' splice site sequence (ISS). This analysis allowed the detection of a non-random vocabulary flanking the site and, exploiting this feature, the creation of specific probes for strain discrimination. Secondly, the separation of the intron splice site PCR fragments was obtained throughout the set up of a capillary electrophoresis protocol, giving a 94% repeatability threshold in our experimental conditions. The comparison of results obtained with ISS-PCR/CE versus the ones performed by mtDNA RFLP revealed that the former protocol is more discriminating and allowed a reliable identification at strain level. Actually sixty D./B. bruxellensis isolates were recognised as unique strains, showing a level of similarity below 79% and confirming the high genetic polymorphism existing within the species. Two main clusters were grouped at similarity levels of about 46% and 47%, respectively, showing a poor correlation with the geographic area of isolation. Moreover, from the evolutionary point of view, the proposed technique could determine the frequency of the genome rearrangements that can occur in D./B. bruxellesis populations. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Multiple transcripts of the CYP21 gene are generated by the mutation of the splicing donor site in intron 2 from GT to AT in 21-hydroxylase deficiency.

    PubMed

    Lee, H H; Chang, S F

    2001-12-01

    Maturation of primary RNA transcripts of eukaryotic genes often involves the removal of introns and joining of exons. The fidelity of RNA splicing is dependent on the identity of the nucleotide (nt) sequences at exon/intron boundaries. Most importantly, the highly conserved intronic 5'GT and 3'AG sequences are essential for correct splicing. Substitution of GT by any other nt leads to incomplete mRNA and a disruption of protein structure. We describe here the results of our transfection experiments in COS-1 cells with a CYP21 genomic construct that contained an IVS 2+1G-->A mutation. Analysis of the transcripts by RT-PCR revealed that two different transcripts were generated by this mutant genome. In all the splicing products, we found that the entire exon 2 was deleted. Surprisingly, 30% of the transcripts from this mutant CYP21 genome were accompanied by an inclusion of 3' intron 2 sequences due to the use of a different splice acceptor site. This is the first report of the molecular characterization of a splice donor site mutation in CYP21 via transcription in COS-1 cells.

  10. Intron Definition and a Branch Site Adenosine at nt 385 Control RNA Splicing of HPV16 E6*I and E7 Expression

    PubMed Central

    Ajiro, Masahiko; Jia, Rong; Zhang, Lifang; Liu, Xuefeng; Zheng, Zhi-Ming

    2012-01-01

    HPV16 E6 and E7, two viral oncogenes, are expressed from a single bicistronic pre-mRNA. In this report, we provide the evidence that the bicistronic pre-mRNA intron 1 contains three 5′ splice sites (5′ ss) and three 3′ splice sites (3′ ss) normally used in HPV16+ cervical cancer and its derived cell lines. The choice of two novel alternative 5′ ss (nt 221 5′ ss and nt 191 5′ ss) produces two novel isoforms of E6E7 mRNAs (E6*V and E6*VI). The nt 226 5′ ss and nt 409 3′ ss is preferentially selected over the other splice sites crossing over the intron to excise a minimal length of the intron in RNA splicing. We identified AACAAAC as the preferred branch point sequence (BPS) and an adenosine at nt 385 (underlined) in the BPS as a branch site to dictate the selection of the nt 409 3′ ss for E6*I splicing and E7 expression. Introduction of point mutations into the mapped BPS led to reduced U2 binding to the BPS and thereby inhibition of the second step of E6E7 splicing at the nt 409 3′ ss. Importantly, the E6E7 bicistronic RNA with a mutant BPS and inefficient splicing makes little or no E7 and the resulted E6 with mutations of 91QYNK94 to 91PSFW94 displays attenuate activity on p53 degradation. Together, our data provide structural basis of the E6E7 intron 1 for better understanding of how viral E6 and E7 expression is regulated by alternative RNA splicing. This study elucidates for the first time a mapped branch point in HPV16 genome involved in viral oncogene expression. PMID:23056301

  11. Intron definition and a branch site adenosine at nt 385 control RNA splicing of HPV16 E6*I and E7 expression.

    PubMed

    Ajiro, Masahiko; Jia, Rong; Zhang, Lifang; Liu, Xuefeng; Zheng, Zhi-Ming

    2012-01-01

    HPV16 E6 and E7, two viral oncogenes, are expressed from a single bicistronic pre-mRNA. In this report, we provide the evidence that the bicistronic pre-mRNA intron 1 contains three 5' splice sites (5' ss) and three 3' splice sites (3' ss) normally used in HPV16(+) cervical cancer and its derived cell lines. The choice of two novel alternative 5' ss (nt 221 5' ss and nt 191 5' ss) produces two novel isoforms of E6E7 mRNAs (E6*V and E6*VI). The nt 226 5' ss and nt 409 3' ss is preferentially selected over the other splice sites crossing over the intron to excise a minimal length of the intron in RNA splicing. We identified AACAAAC as the preferred branch point sequence (BPS) and an adenosine at nt 385 (underlined) in the BPS as a branch site to dictate the selection of the nt 409 3' ss for E6*I splicing and E7 expression. Introduction of point mutations into the mapped BPS led to reduced U2 binding to the BPS and thereby inhibition of the second step of E6E7 splicing at the nt 409 3' ss. Importantly, the E6E7 bicistronic RNA with a mutant BPS and inefficient splicing makes little or no E7 and the resulted E6 with mutations of (91)QYNK(94) to (91)PSFW(94) displays attenuate activity on p53 degradation. Together, our data provide structural basis of the E6E7 intron 1 for better understanding of how viral E6 and E7 expression is regulated by alternative RNA splicing. This study elucidates for the first time a mapped branch point in HPV16 genome involved in viral oncogene expression.

  12. A mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant.

    PubMed Central

    Epstein, D J; Vogan, K J; Trasler, D G; Gros, P

    1993-01-01

    The splotch (Sp) mouse mutant displays defects in neural tube closure in the form of exencephaly and spina bifida. Recently, mutations in the Pax-3 gene have been described in the radiation-induced Spr and Sp2H alleles. This led us to examine the integrity of the Pax-3 gene and its cellular mRNA transcript in the original, spontaneously arising Sp allele. A complex mutation in the Pax-3 gene including an A-->T transversion at the invariant 3' AG splice acceptor of intron 3 was identified in the Sp/Sp mutant. This genomic mutation abrogates the normal splicing of intron 3, resulting in the generation of four aberrantly spliced mRNA transcripts. Two of these Pax-3 transcripts make use of cryptic 3' splice sites within the downstream exon, generating small deletions which disrupt the reading frame of the transcripts. A third aberrant splicing event results in the deletion of exon 4, while a fourth retains intron 3. These aberrantly spliced mRNA transcripts are not expected to result in functional Pax-3 proteins and are thus responsible for the phenotype observed in the Sp mouse mutant. Images PMID:8421686

  13. SRSF1 (SRp30a) regulates the alternative splicing of caspase 9 via a novel intronic splicing enhancer affecting the chemotherapeutic sensitivity of non-small cell lung cancer cells

    PubMed Central

    Shultz, Jacqueline C.; Goehe, Rachel W.; Murudkar, Charuta S.; Wijesinghe, Dayanjan S.; Mayton, Eric K.; Massiello, Autumn; Hawkins, Amy J.; Mukerjee, Prabhat; Pinkerman, Ryan L.; Park, Margaret A.; Chalfant, Charles E.

    2011-01-01

    Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology with the alternative pre-mRNA processing of caspase 9 as one example. In this study, we delve into the underlying molecular mechanisms that regulate the alternative splicing of caspase 9. Specifically, the pre-mRNA sequence of caspase 9 was analyzed for RNA cis-elements known to interact with SRSF1, a required enhancer for caspase 9 RNA splicing. This analysis revealed thirteen possible RNA cis-elements for interaction with SRSF1 with mutagenesis of these RNA cis-elements identifying a strong intronic splicing enhancer located in intron 6 (C9-I6/ISE). SRSF1 specifically interacted with this sequence, which was required for SRSF1 to act as a splicing enhancer of the inclusion of the four exon cassette. To further determine the biological importance of this mechanism, we employed RNA oligonucleotides to redirect caspase 9 pre-mRNA splicing in favor of caspase 9b expression, which resulted in an increase in the IC50 of non-small cell lung cancer (NSCLC) cells to daunorubicin, cisplatinum, and paclitaxel. In contrast, downregulation of caspase 9b induced a decrease in the the IC50 of these chemotherapeutic drugs. Lastly, these studies demonstrated that caspase 9 RNA splicing was a major mechanism for the synergistic effects of combination therapy with daunorubicin and erlotinib. Overall, we have identified a novel intronic splicing enhancer that regulates caspase 9 RNA splicing and specifically interacts with SRSF1. Furthermore, we demonstrate that the alternative splicing of caspase 9 is an important molecular mechanism with therapeutic relevance to NSCLCs. PMID:21622622

  14. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans.

    PubMed

    Kamikawa, Ryoma; Shiratori, Takashi; Ishida, Ken-Ichiro; Miyashita, Hideaki; Roger, Andrew J

    2016-02-01

    Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. An intron element modulating 5' splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNP A1.

    PubMed Central

    Chabot, B; Blanchette, M; Lapierre, I; La Branche, H

    1997-01-01

    The hnRNP A1 pre-mRNA is alternatively spliced to yield the A1 and A1b mRNAs, which encode proteins differing in their ability to modulate 5' splice site selection. Sequencing a genomic portion of the murine A1 gene revealed that the intron separating exon 7 and the alternative exon 7B is highly conserved between mouse and human. In vitro splicing assays indicate that a conserved element (CE1) from the central portion of the intron shifts selection toward the distal donor site when positioned in between the 5' splice sites of exon 7 and 7B. In vivo, the CE1 element promotes exon 7B skipping. A 17-nucleotide sequence within CE1 (CE1a) is sufficient to activate the distal 5' splice site. RNase T1 protection/immunoprecipitation assays indicate that hnRNP A1 binds to CE1a, which contains the sequence UAGAGU, a close match to the reported optimal A1 binding site, UAGGGU. Replacing CE1a by different oligonucleotides carrying the sequence UAGAGU or UAGGGU maintains the preference for the distal 5' splice site. In contrast, mutations in the AUGAGU sequence activate the proximal 5' splice site. In support of a direct role of the A1-CE1 interaction in 5'-splice-site selection, we observed that the amplitude of the shift correlates with the efficiency of A1 binding. Whereas addition of SR proteins abrogates the effect of CE1, the presence of CE1 does not modify U1 snRNP binding to competing 5' splice sites, as judged by oligonucleotide-targeted RNase H protection assays. Our results suggest that hnRNP A1 modulates splice site selection on its own pre-mRNA without changing the binding of U1 snRNP to competing 5' splice sites. PMID:9121425

  16. HLA-A*68020103 shows an eight nucleotides deletion within intron 2 but has normal mRNA splicing and serological recognition.

    PubMed

    Balas, A; Sánchez-García, F; Bustamante, L; García-Sánchez, F; Vicario, J L

    2007-09-01

    A novel A*68020103 allele was completely characterized by sequencing in a Spanish bone marrow donor. A*68020103 has an eight nucleotides deletion at the 5'-end of intron 2, when compared with other A*6802 alleles. This alteration does not affect either its mRNA splicing process or serological detection.

  17. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    PubMed

    Chen, Huei-Mei; Futcher, Bruce; Leatherwood, Janet

    2011-01-01

    The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/G)AAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  18. Structural Divergence of the Group I Intron Binding Surface in Fungal Mitochondrial Tyrosyl-tRNA Synthetases That Function in RNA Splicing.

    PubMed

    Lamech, Lilian T; Saoji, Maithili; Paukstelis, Paul J; Lambowitz, Alan M

    2016-05-27

    The mitochondrial tyrosyl-tRNA synthetases (mtTyrRSs) of Pezizomycotina fungi, a subphylum that includes many pathogenic species, are bifunctional proteins that both charge mitochondrial tRNA(Tyr) and act as splicing cofactors for autocatalytic group I introns. Previous studies showed that one of these proteins, Neurospora crassa CYT-18, binds group I introns by using both its N-terminal catalytic and C-terminal anticodon binding domains and that the catalytic domain uses a newly evolved group I intron binding surface that includes an N-terminal extension and two small insertions (insertions 1 and 2) with distinctive features not found in non-splicing mtTyrRSs. To explore how this RNA binding surface diverged to accommodate different group I introns in other Pezizomycotina fungi, we determined x-ray crystal structures of C-terminally truncated Aspergillus nidulans and Coccidioides posadasii mtTyrRSs. Comparisons with previous N. crassa CYT-18 structures and a structural model of the Aspergillus fumigatus mtTyrRS showed that the overall topology of the group I intron binding surface is conserved but with variations in key intron binding regions, particularly the Pezizomycotina-specific insertions. These insertions, which arose by expansion of flexible termini or internal loops, show greater variation in structure and amino acids potentially involved in group I intron binding than do neighboring protein core regions, which also function in intron binding but may be more constrained to preserve mtTyrRS activity. Our results suggest a structural basis for the intron specificity of different Pezizomycotina mtTyrRSs, highlight flexible terminal and loop regions as major sites for enzyme diversification, and identify targets for therapeutic intervention by disrupting an essential RNA-protein interaction in pathogenic fungi. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Role of helical constraints of the EBS1-IBS1 duplex of a group II intron on demarcation of the 5' splice site.

    PubMed

    Popovic, Milena; Greenbaum, Nancy L

    2014-01-01

    Recognition of the 5' splice site by group II introns involves pairing between an exon binding sequence (EBS) 1 within the ID3 stem-loop of domain 1 and a complementary sequence at the 3' end of exon 1 (IBS1). To identify the molecular basis for splice site definition of a group IIB ai5γ intron, we probed the solution structure of the ID3 stem-loop alone and upon binding of its IBS1 target by solution NMR. The ID3 stem was structured. The base of the ID3 loop was stacked but displayed a highly flexible EBS1 region. The flexibility of EBS1 appears to be a general feature of the ai5γ and the smaller Oceanobacillus iheyensis (O.i.) intron and may help in effective search of conformational space and prevent errors in splicing as a result of fortuitous base-pairing. Binding of IBS1 results in formation of a structured seven base pair duplex that terminates at the 5' splice site in spite of the potential for additional A-U and G•U pairs. Comparison of these data with conformational features of EBS1-IBS1 duplexes extracted from published structures suggests that termination of the duplex and definition of the splice site are governed by constraints of the helical geometry within the ID3 loop. This feature and flexibility of the uncomplexed ID3 loop appear to be common for both the ai5γ and O.i. introns and may help to fine-tune elements of recognition in group II introns.

  20. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing

    PubMed Central

    Tang, Thean Hock; Rozhdestvensky, Timofey S.; d’Orval, Béatrice Clouet; Bortolin, Marie-Line; Huber, Harald; Charpentier, Bruno; Branlant, Christiane; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander

    2002-01-01

    The bulge–helix–bulge (BHB) motif recognised by the archaeal splicing endonuclease is also found in the long processing stems of archaeal rRNA precursors in which it is cleaved to generate pre-16S and pre-23S rRNAs. We show that in two species, Archaeoglobus fulgidus and Sulfolobus solfataricus, representatives from the two major archaeal kingdoms Euryarchaeota and Crenarchaeota, respectively, the pre-rRNA spacers cleaved at the BHB motifs surrounding pre-16S and pre-23S rRNAs subsequently become ligated. In addition, we present evidence that this is accompanied by circularisation of ribosomal pre-16S and pre-23S rRNAs in both species. These data reveal a further link between intron splicing and pre-rRNA processing in Archaea, which might reflect a common evolutionary origin of the two processes. One spliced RNA species designated 16S-D RNA, resulting from religation at the BHB motif of 16S pre-rRNA, is a highly abundant and stable RNA which folds into a three-stem structure interrupted by two single-stranded regions as assessed by chemical probing. It spans a region of the pre-rRNA 5′ external transcribed spacer exhibiting a highly conserved folding pattern in Archaea. Surprisingly, 16S-D RNA contains structural motifs found in archaeal C/D box small RNAs and binds to the L7Ae protein, a core component of archaeal C/D box RNPs. This supports the notion that it might have an important but still unknown role in pre-rRNA biogenesis or might even target RNA molecules other than rRNA. PMID:11842103

  1. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    SciTech Connect

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  2. An Intronic MBTPS2 Variant Results in a Splicing Defect in Horses with Brindle Coat Texture

    PubMed Central

    Murgiano, Leonardo; Waluk, Dominik P.; Towers, Rachel; Wiedemar, Natalie; Dietrich, Joëlle; Jagannathan, Vidhya; Drögemüller, Michaela; Balmer, Pierre; Druet, Tom; Galichet, Arnaud; Penedo, M. Cecilia; Müller, Eliane J.; Roosje, Petra; Welle, Monika M.; Leeb, Tosso

    2016-01-01

    We investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed “brindle” by horse breeders. We propose the term “brindle 1 (BR1)” for this specific form of brindle. In some BR1 horses, the stripes were also differentially pigmented. Pedigree analyses were suggestive of a monogenic X-chromosomal semidominant mode of inheritance. Haplotype analyses identified a 5 Mb candidate region on chromosome X. Whole genome sequencing of four BR1 and 60 nonbrindle horses identified 61 private variants in the critical interval, none of them located in an exon of an annotated gene. However, one of the private variants was close to an exon/intron boundary in intron 10 of the MBTPS2 gene encoding the membrane bound transcription factor peptidase, site 2 (c.1437+4T>C). Different coding variants in this gene lead to three related genodermatoses in human patients. We therefore analyzed MBTPS2 transcripts in skin, and identified an aberrant transcript in a BR1 horse, which lacked the entire exon 10 and parts of exon 11. The MBTPS2:c1437+4T>C variant showed perfect cosegregation with the brindle phenotype in the investigated family, and was absent from 457 control horses of diverse breeds. Altogether, our genetic data, and previous knowledge on MBTPS2 function in the skin, suggest that the identified MBTPS2 intronic variant leads to partial exon skipping, and causes the BR1 phenotype in horses. PMID:27449517

  3. Identification of human short introns.

    PubMed

    Abebrese, Emmanuel L; Ali, Syed H; Arnold, Zachary R; Andrews, Victoria M; Armstrong, Katharine; Burns, Lindsay; Crowder, Hannah R; Day, R Thomas; Hsu, Daniel G; Jarrell, Katherine; Lee, Grace; Luo, Yi; Mugayo, Daphine; Raza, Zain; Friend, Kyle

    2017-01-01

    Canonical pre-mRNA splicing requires snRNPs and associated splicing factors to excise conserved intronic sequences, with a minimum intron length required for efficient splicing. Non-canonical splicing-intron excision without the spliceosome-has been documented; most notably, some tRNAs and the XBP1 mRNA contain short introns that are not removed by the spliceosome. There have been some efforts to identify additional short introns, but little is known about how many short introns are processed from mRNAs. Here, we report an approach to identify RNA short introns from RNA-Seq data, discriminating against small genomic deletions. We identify hundreds of short introns conserved among multiple human cell lines. These short introns are often alternatively spliced and are found in a variety of RNAs-both mRNAs and lncRNAs. Short intron splicing efficiency is increased by secondary structure, and we detect both canonical and non-canonical short introns. In many cases, splicing of these short introns from mRNAs is predicted to alter the reading frame and change protein output. Our findings imply that standard gene prediction models which often assume a lower limit for intron size fail to predict short introns effectively. We conclude that short introns are abundant in the human transcriptome, and short intron splicing represents an added layer to mRNA regulation.

  4. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns.

    PubMed Central

    Allain, F H; Varani, G

    1995-01-01

    The upstream site of cleavage of all group I self-splicing introns is identified by an absolutely conserved U.G base pair. Although a wobble C.A pair can substitute the U.G pair, all other combinations of nucleotides at this position abolish splicing, suggesting that it is an unusual RNA structure, rather than sequence, that is recognized by the catalytic intron core. RNA enzymes are metalloenzymes, and divalent metal ion binding may be an important requirement for splice site recognition and catalysis. The paramagnetic broadening of NMR resonances upon manganese binding at specific sites was used to probe the interaction between divalent metal ions and an oligonucleotide model of a group I intron ribozyme substrate. Unlike previous studies in which only imino proton resonances were monitored, we have used isotopically labelled RNA and a set of complete spectral assignments to identify the location of the divalent metal binding site with much greater detail than previously possible. Two independent metal binding sites were identified for this oligonucleotide. A first metal binding site is located in the major groove of the three consecutive G.C base pairs at the end of double helical stem. A second site is found in the major groove of the RNA double helix in the vicinity of the U.G base pair. These results suggest that metal ion coordination (or a metal bridge) and tertiary interactions identified biochemically, may be used by group I intron ribozymes for substrate recognition. Images PMID:7885828

  5. The Intronic GABRG2 Mutation, IVS6+2T→G, Associated with CAE Altered Subunit mRNA Intron Splicing, Activated Nonsense-Mediated Decay and Produced a Stable Truncated γ2 Subunit

    PubMed Central

    Tian, Mengnan; Macdonald, Robert L.

    2012-01-01

    The intronic GABRG2 mutation, IVS6+2T→G, was identified in an Australian family with childhood absence epilepsy (CAE) and febrile seizures (Kananura et al., 2002). The GABRG2 intron 6 splice donor site was found to be mutated from GT to GG. We generated wildtype and mutant γ2S subunit bacterial artificial chromosomes (BACs) driven by a CMV promoter and expressed them in HEK293T cells and expressed wildtype and mutant γ2S subunit BACs containing the endogenous hGABRG2 promoter in transgenic mice. Wildtype and mutant GABRG2 mRNA splicing patterns were determined in both BAC transfected HEK293T cells and transgenic mouse brain, and in both, the mutation abolished intron 6 splicing at the donor site, activated a cryptic splice site, generated partial intron 6 retention and produced a frame shift in exon 7 that created a premature translation-termination codon (PTC). The resultant mutant mRNA was either degraded partially by nonsense mediated mRNA decay (NMD) or translated to a stable, truncated subunit (the γ2-PTC subunit) containing the first 6 GABRG2 exons and a novel frame-shifted 29 aa C terminal tail. The γ2-PTC subunit was homologous to the mollusk acetylcholine binding protein (AChBP) but was not secreted from cells. It was retained in the ER and not expressed on the surface membrane, but it did oligomerize with α1 and β2 subunits. These results suggested that the GABRG2 mutation, IVS6+2T→G, reduced surface αβγ2 receptor levels, thus reducing GABAergic inhibition, by reducing GABRG2 transcript level and producing a stable, nonfunctional truncated subunit that had a dominant negative effect on αβγ2 receptor assembly. PMID:22539854

  6. Splicing defects in ABCD1 gene leading to both exon skipping and partial intron retention in X-linked adrenoleukodystrophy Tunisian patient.

    PubMed

    Kallabi, Fakhri; Hadj Salem, Ikhlass; Ben Chehida, Amel; Ben Salah, Ghada; Ben Turkia, Hadhami; Tebib, Neji; Keskes, Leila; Kamoun, Hassen

    2015-08-01

    X-linked adrenoleukodystrophy (X-ALD) affects the nervous system white matter and adrenal cortex secondary to mutations in the ABCD1 gene that encodes a peroxisomal membrane protein: the adrenoleukodystrophy protein. The disease is characterized by high concentrations of very long-chain fatty acids in plasma, adrenal, testicular and nervous tissues. Various types of mutations have been identified in the ABCD1 gene: point mutations, insertions, and deletions. To date, more than 40 point mutations have been reported at the splice junctions of the ABCD1 gene; only few functional studies have been performed to explore these types of mutations. In this study, we have identified de novo splice site mutation c.1780+2T>G in ABCD1 gene in an X-ALD Tunisian patient. Sequencing analysis of cDNA showed a minor transcript lacking exon 7 and a major transcript with a partial intron 7 retention due to activation of a new intronic cryptic splice site. Both outcomes lead to frameshifts with premature stop codon generation in exon 8 and intron 7 respectively. To the best of our knowledge, the current study demonstrates that a single splicing mutation affects the ABCD1 transcripts and the ALDP protein function. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  7. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo

    PubMed Central

    Potratz, Jeffrey P.; Campo, Mark Del; Wolf, Rachel Z.; Lambowitz, Alan M.; Russell, Rick

    2011-01-01

    The yeast DEAD-box protein Mss116p functions as a general RNA chaperone in splicing mitochondrial group I and group II introns. For most of its functions, Mss116p is thought to use ATP-dependent RNA unwinding to facilitate RNA structural transitions, but it has been suggested to assist folding of one group II intron (aI5γ) primarily by stabilizing a folding intermediate. Here we compare three aI5γ constructs: one with long exons, one with short exons, and a ribozyme construct lacking exons. The long exons result in slower splicing, suggesting that they misfold and/or stabilize non-native intronic structure. Nevertheless, Mss116p acceleration of all three constructs depends upon ATP and is inhibited by mutations that compromise RNA unwinding, suggesting similar mechanisms. Results of splicing assays and a new two-stage assay that separates ribozyme folding and catalysis indicate that maximal folding of all three constructs by Mss116p requires ATP-dependent RNA unwinding. ATP-independent activation is appreciable for only a subpopulation of the minimal ribozyme construct and not for constructs containing exons. As expected for a general RNA chaperone, Mss116p can also disrupt the native ribozyme, which can refold after Mss116p removal. Finally, using yeast strains with mtDNA containing only the single intron aI5γ, we show that Mss116p mutants promote splicing in vivo to degrees that correlate with their residual ATP-dependent RNA-unwinding activities. Together, our results indicate that, although DEAD-box proteins play multiple roles in RNA folding, the physiological function of Mss116p in aI5γ splicing includes a requirement for ATP-dependent local unfolding, allowing conversion of non-functional to functional RNA structure. PMID:21679717

  8. An antisense microwalk reveals critical role of an intronic position linked to a unique long-distance interaction in pre-mRNA splicing

    PubMed Central

    Singh, Natalia N.; Hollinger, Katrin; Bhattacharya, Dhruva; Singh, Ravindra N.

    2010-01-01

    Here we report a novel finding of an antisense oligonucleotide (ASO) microwalk in which we examined the position-specific role of intronic residues downstream from the 5′ splice site (5′ ss) of SMN2 exon 7, skipping of which is associated with spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Our results revealed the inhibitory role of a cytosine residue at the 10th intronic position (10C), which is neither conserved nor associated with any known splicing motif. Significance of 10C emerged from the splicing pattern of SMN2 exon 7 in presence of a 14-mer ASO (L14) that sequestered two adjacent hnRNP A1 motifs downstream from 10C and yet promoted SMN2 exon 7 skipping. Another 14-mer ASO (F14) that sequestered both, 10C and adjacent hnRNP A1 motifs, led to a strong stimulation of SMN2 exon 7 inclusion. The inhibitory role of 10C was found to be tightly linked to its unpaired status and specific positioning immediately upstream of a RNA:RNA helix formed between the targeting ASO and its intronic target. Employing a heterologous context as well as changed contexts of SMN2 intron 7, we show that the inhibitory effect of unpaired 10C is dependent upon a long-distance interaction involving downstream intronic sequences. Our report furnishes one of the rare examples in which an ASO-based approach could be applied to unravel the critical role of an intronic position that may not belong to a linear motif and yet play significant role through long-distance interactions. PMID:20413618

  9. Compound heterozygote for lipoprotein lipase deficiency: Ser----Thr244 and transition in 3' splice site of intron 2 (AG----AA) in the lipoprotein lipase gene.

    PubMed Central

    Hata, A; Emi, M; Luc, G; Basdevant, A; Gambert, P; Iverius, P H; Lalouel, J M

    1990-01-01

    Cloning and sequencing of translated exons and intron-exon boundaries of the lipoprotein lipase gene in a patient of French descent who has the chylomicronemia syndrome revealed that he was a compound heterozygote for two nucleotide substitutions. One (TCC----ACC) leads to an amino acid substitution (Ser----Thr244), while the other alters the 3' splice site of intron 2 (AG----AA). The functional significance of the Thr244 amino acid substitution was established by in vitro expression in cultured mammalian cells. Images Figure 1 Figure 2 PMID:2121025

  10. Modeling study on the cleavage step of the self-splicing reaction in group I introns

    NASA Technical Reports Server (NTRS)

    Setlik, R. F.; Garduno-Juarez, R.; Manchester, J. I.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1993-01-01

    A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E. J. Mol. Biol. 216, 585-610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next, an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of P1 helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123-128. (1992)), based on mutational studies involving the J8/7 segment. Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25-33 (1991)) as a guide. The presence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.

  11. Modeling study on the cleavage step of the self-splicing reaction in group I introns

    NASA Technical Reports Server (NTRS)

    Setlik, R. F.; Garduno-Juarez, R.; Manchester, J. I.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1993-01-01

    A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E. J. Mol. Biol. 216, 585-610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next, an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of P1 helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123-128. (1992)), based on mutational studies involving the J8/7 segment. Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25-33 (1991)) as a guide. The presence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.

  12. Identification of human short introns

    PubMed Central

    Abebrese, Emmanuel L.; Arnold, Zachary R.; Armstrong, Katharine; Burns, Lindsay; Day, R. Thomas; Hsu, Daniel G.; Jarrell, Katherine; Luo, Yi; Mugayo, Daphine

    2017-01-01

    Canonical pre-mRNA splicing requires snRNPs and associated splicing factors to excise conserved intronic sequences, with a minimum intron length required for efficient splicing. Non-canonical splicing–intron excision without the spliceosome–has been documented; most notably, some tRNAs and the XBP1 mRNA contain short introns that are not removed by the spliceosome. There have been some efforts to identify additional short introns, but little is known about how many short introns are processed from mRNAs. Here, we report an approach to identify RNA short introns from RNA-Seq data, discriminating against small genomic deletions. We identify hundreds of short introns conserved among multiple human cell lines. These short introns are often alternatively spliced and are found in a variety of RNAs–both mRNAs and lncRNAs. Short intron splicing efficiency is increased by secondary structure, and we detect both canonical and non-canonical short introns. In many cases, splicing of these short introns from mRNAs is predicted to alter the reading frame and change protein output. Our findings imply that standard gene prediction models which often assume a lower limit for intron size fail to predict short introns effectively. We conclude that short introns are abundant in the human transcriptome, and short intron splicing represents an added layer to mRNA regulation. PMID:28520720

  13. A novel intronic cis element, ISE/ISS-3, regulates rat fibroblast growth factor receptor 2 splicing through activation of an upstream exon and repression of a downstream exon containing a noncanonical branch point sequence.

    PubMed

    Hovhannisyan, Ruben H; Carstens, Russ P

    2005-01-01

    Mutually exclusive splicing of fibroblast growth factor receptor 2 (FGFR2) exons IIIb and IIIc yields two receptor isoforms, FGFR2-IIIb and -IIIc, with distinctly different ligand binding properties. Several RNA cis elements in the intron (intron 8) separating these exons have been described that are required for splicing regulation. Using a heterologous splicing reporter, we have identified a new regulatory element in this intron that confers cell-type-specific inclusion of an unrelated exon that mirrors its ability to promote cell-type-specific inclusion of exon IIIb. This element promoted inclusion of exon IIIb while at the same time silencing exon IIIc inclusion in cells expressing FGFR2-IIIb; hence, we have termed this element ISE/ISS-3 (for "intronic splicing enhancer-intronic splicing silencer 3"). Silencing of exon IIIc splicing by ISE/ISS-3 was shown to require a branch point sequence (BPS) using G as the primary branch nucleotide. Replacing a consensus BPS with A as the primary branch nucleotide resulted in constitutive splicing of exon IIIc. Our results suggest that the branch point sequence constitutes an important component that can contribute to the efficiency of exon definition of alternatively spliced cassette exons. Noncanonical branch points may thus facilitate cell-type-specific silencing of regulated exons by flanking cis elements.

  14. A human and a plant intron-containing tRNATyr gene are both transcribed in a HeLa cell extract but spliced along different pathways.

    PubMed Central

    van Tol, H; Stange, N; Gross, H J; Beier, H

    1987-01-01

    tRNA splicing enzymes had been identified in mammalian and plant cells long before homologous intron-containing tRNA genes were detected. The tRNATyr gene presented here is the first intron-containing, human tRNA gene for which transcription and pre-tRNA maturation has been studied in a homologous system. This gene is disrupted by a 20-bp long intron and encodes one of the two major human tRNAsTyr which have been purified and sequenced. A tRNATyr gene recently isolated from Nicotiana also contains an intron and codes for a functional, major cytoplasmic tRNATyr. Both tRNA genes are efficiently transcribed in a HeLa cell nuclear extract. Each of them produces two independent primary transcripts because of two initiation and termination sites, respectively. The maturation of the tRNATyr precursors proceeds along different pathways. The intervening sequence of the human pre-tRNATyr is excised first, followed by ligation of the tRNA halves and maturation of the flanks, as has been shown for all intron-containing tRNA genes transcribed in HeLa extract. The order of maturation steps is reversed for the plant pre-tRNATyr: processing of the flanking sequences precedes intron excision. This maturation pathway corresponds to that observed in vivo for tRNA biosynthesis in Xenopus oocytes and yeast. Images Fig. 1. Fig. 4. Fig. 5. Fig. 6. PMID:3502708

  15. Intron 1 mediated regulation of bovine prion protein gene expression: Role of donor splicing sites, sequences with potential enhancer and suppressor activities.

    PubMed

    Elmonir, Walid; Inoshima, Yasuo; Elbassiouny, Ahmed; Ishiguro, Naotaka

    2010-07-09

    Prion protein plays a key role in the pathogenesis of transmissible spongiform encephalopathies. Because changes in expression of the prion protein gene (PRNP) alter the incubation time and severity of prion diseases. Our previous work revealed a strong association between the promoter (spanning base pairs (bp) -88 to -30) and intron 1 (spanning bp +114 to +892) that leads to optimum expression of the bovine PRNP. Here, we employed two mutation analysis strategies (deletion and insertion) and two reporter assay systems (luciferase and GFP expression) to define the regulatory domains within intron 1 and further elucidate its role in regulating the promoter activity of the bovine prion protein gene. We identified DNA sequences with potential suppressor and enhancer activities within the 5' end of intron 1. Moreover stability analyses for PRNP mRNAs demonstrated that splicing sites and mechanism are critical for bovine PRNP expression. Copyright 2010 Elsevier Inc. All rights reserved.

  16. RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns.

    PubMed

    Doktor, Thomas Koed; Hua, Yimin; Andersen, Henriette Skovgaard; Brøner, Sabrina; Liu, Ying Hsiu; Wieckowska, Anna; Dembic, Maja; Bruun, Gitte Hoffmann; Krainer, Adrian R; Andresen, Brage Storstein

    2017-01-09

    Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by insufficient levels of the Survival of Motor Neuron (SMN) protein. SMN is expressed ubiquitously and functions in RNA processing pathways that include trafficking of mRNA and assembly of snRNP complexes. Importantly, SMA severity is correlated with decreased snRNP assembly activity. In particular, the minor spliceosomal snRNPs are affected, and some U12-dependent introns have been reported to be aberrantly spliced in patient cells and animal models. SMA is characterized by loss of motor neurons, but the underlying mechanism is largely unknown. It is likely that aberrant splicing of genes expressed in motor neurons is involved in SMA pathogenesis, but increasing evidence indicates that pathologies also exist in other tissues. We present here a comprehensive RNA-seq study that covers multiple tissues in an SMA mouse model. We show elevated U12-intron retention in all examined tissues from SMA mice, and that U12-dependent intron retention is induced upon siRNA knock-down of SMN in HeLa cells. Furthermore, we show that retention of U12-dependent introns is mitigated by ASO treatment of SMA mice and that many transcriptional changes are reversed. Finally, we report on missplicing of several Ca(2+) channel genes that may explain disrupted Ca(2+) homeostasis in SMA and activation of Cdk5. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns

    PubMed Central

    Doktor, Thomas Koed; Hua, Yimin; Andersen, Henriette Skovgaard; Brøner, Sabrina; Liu, Ying Hsiu; Wieckowska, Anna; Dembic, Maja; Bruun, Gitte Hoffmann; Krainer, Adrian R.; Andresen, Brage Storstein

    2017-01-01

    Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by insufficient levels of the Survival of Motor Neuron (SMN) protein. SMN is expressed ubiquitously and functions in RNA processing pathways that include trafficking of mRNA and assembly of snRNP complexes. Importantly, SMA severity is correlated with decreased snRNP assembly activity. In particular, the minor spliceosomal snRNPs are affected, and some U12-dependent introns have been reported to be aberrantly spliced in patient cells and animal models. SMA is characterized by loss of motor neurons, but the underlying mechanism is largely unknown. It is likely that aberrant splicing of genes expressed in motor neurons is involved in SMA pathogenesis, but increasing evidence indicates that pathologies also exist in other tissues. We present here a comprehensive RNA-seq study that covers multiple tissues in an SMA mouse model. We show elevated U12-intron retention in all examined tissues from SMA mice, and that U12-dependent intron retention is induced upon siRNA knock-down of SMN in HeLa cells. Furthermore, we show that retention of U12-dependent introns is mitigated by ASO treatment of SMA mice and that many transcriptional changes are reversed. Finally, we report on missplicing of several Ca2+ channel genes that may explain disrupted Ca2+ homeostasis in SMA and activation of Cdk5. PMID:27557711

  18. Solution Structure of the HIV-1 Intron Splicing Silencer and Its Interactions with the UP1 Domain of Heterogeneous Nuclear Ribonucleoprotein (hnRNP) A1.

    PubMed

    Jain, Niyati; Morgan, Christopher E; Rife, Brittany D; Salemi, Marco; Tolbert, Blanton S

    2016-01-29

    Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3' acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.

  19. Solution Structure of the HIV-1 Intron Splicing Silencer and Its Interactions with the UP1 Domain of Heterogeneous Nuclear Ribonucleoprotein (hnRNP) A1*

    PubMed Central

    Jain, Niyati; Morgan, Christopher E.; Rife, Brittany D.; Salemi, Marco; Tolbert, Blanton S.

    2016-01-01

    Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3′ acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein. PMID:26607354

  20. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene.

    PubMed

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B P

    2016-01-12

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  1. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene

    PubMed Central

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B. P.

    2016-01-01

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients. PMID:26771602

  2. The Arabidopsis U11/U12-65K is an indispensible component of minor spliceosome and plays a crucial role in U12 intron splicing and plant development.

    PubMed

    Jung, Hyun Ju; Kang, Hunseung

    2014-06-01

    The U12-dependent introns have been identified in a wide range of eukaryotes and are removed from precursor-mRNAs by U12 intron-specific minor spliceosome. Although several proteins unique to minor spliceosome have been identified, the nature of their effect on U12 intron splicing as well as plant growth and development remain largely unknown. Here, we characterized the functional role of an U12-type spliceosomal protein, U11/U12-65K in Arabidopsis thaliana. The transgenic knockdown plants generated by artificial miRNA-mediated silencing strategy exhibited severe defect in growth and development, such as severely arrested primary inflorescence stems, serrated leaves, and the formation of many rosette leaves after bolting. RNA sequencing and reverse transcription polymerase chain reaction (RT-PCR) analyses revealed that splicing of 198 out of the 234 previously predicted U12 intron-containing genes and 32 previously unidentified U12 introns was impaired in u11/u12-65k mutant. Moreover, the U11/U12-65K mutation affected alternative splicing, as well as U12 intron splicing, of many introns. Microarray analysis revealed that the genes involved in cell wall biogenesis and function, plant development, and metabolic processes are differentially expressed in the mutant plants. U11/U12-65K protein bound specifically to U12 small nuclear RNA (snRNA), which is necessary for branch-point site recognition. Taken together, these results provide clear evidence that U11/U12-65K is an indispensible component of minor spliceosome and involved in U12 intron splicing and alternative splicing of many introns, which is crucial for plant development.

  3. Loss of a Trans-Splicing nad1 Intron from Geraniaceae and Transfer of the Maturase Gene matR to the Nucleus in Pelargonium

    PubMed Central

    Grewe, Felix; Zhu, Andan; Mower, Jeffrey P.

    2016-01-01

    The mitochondrial nad1 gene of seed plants has a complex structure, including four introns in cis or trans configurations and a maturase gene (matR) hosted within the final intron. In the geranium family (Geraniaceae), however, sequencing of representative species revealed that three of the four introns, including one in a trans configuration and another that hosts matR, were lost from the nad1 gene in their common ancestor. Despite the loss of the host intron, matR has been retained as a freestanding gene in most genera of the family, indicating that this maturase has additional functions beyond the splicing of its host intron. In the common ancestor of Pelargonium, matR was transferred to the nuclear genome, where it was split into two unlinked genes that encode either its reverse transcriptase or maturase domain. Both nuclear genes are transcribed and contain predicted mitochondrial targeting signals, suggesting that they express functional proteins that are imported into mitochondria. The nuclear localization and split domain structure of matR in the Pelargonium nuclear genome offers a unique opportunity to assess the function of these two domains using transgenic approaches. PMID:27664178

  4. Tissue-Specific Splicing of the Herpes Simplex Virus Type 1 Latency-Associated Transcript (LAT) Intron in LAT Transgenic Mice

    PubMed Central

    Gussow, Anne M.; Giordani, Nicole V.; Tran, Robert K.; Imai, Yumi; Kwiatkowski, Dacia L.; Rall, Glenn F.; Margolis, Todd P.; Bloom, David C.

    2006-01-01

    To study the regulation of herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) expression and processing in the absence of other cis and trans viral functions, a transgenic mouse containing the region encompassing the LAT promoter (LAP1) and the LAT 5′ exon through the 2.0-kb intron was created. LAT expression was detectable by reverse transcriptase PCR (RT-PCR) in a number of tissues, including the dorsal root ganglia (DRG), trigeminal ganglia (TG), brain, skin, liver, and kidney. However, when the accumulation of the 2.0-kb LAT intron was analyzed at the cellular level by in situ hybridization, little or no detectable accumulation was observed in the brain, spinal cord, kidney, or foot, although the 2.0-kb LAT intron was detected at high levels (over 90% of neurons) in the DRG and TG. Northern blot analysis detected the stable 2.0-kb LAT intron only in the sensory ganglia. When relative amounts of the spliced and unspliced LAT within the brain, liver, kidney, spinal cord, TG, and DRG were analyzed by real-time RT-PCR, splicing of the 2.0-kb LAT intron was significantly more efficient in the sensory ganglia than in other tissues. Finally, infection of both transgenic mice and nontransgenic littermates with HSV-1 revealed no differences in lytic replication, establishment of latency, or reactivation, suggesting that expression of the LAT transgene in trans has no significant effect on those functions. Taken together, these data indicate that the regulation of expression and processing of LAT RNA within the mouse is highly cell-type specific and occurs in the absence of other viral cis- and trans-acting factors. PMID:16973547

  5. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

    PubMed

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-02-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.

  6. In vitro characterization of the splicing efficiency and fidelity of the RmInt1 group II intron as a means of controlling the dispersion of its host mobile element.

    PubMed

    Chillón, Isabel; Molina-Sánchez, María Dolores; Fedorova, Olga; García-Rodríguez, Fernando Manuel; Martínez-Abarca, Francisco; Toro, Nicolás

    2014-12-01

    Group II introns are catalytic RNAs that are excised from their precursors in a protein-dependent manner in vivo. Certain group II introns can also react in a protein-independent manner under nonphysiological conditions in vitro. The efficiency and fidelity of the splicing reaction is crucial, to guarantee the correct formation and expression of the protein-coding mRNA. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. The RmInt1 intron self-splices in vitro, but this reaction generates side products due to a predicted cryptic IBS1* sequence within the 3' exon. We engineered an RmInt1 intron lacking the cryptic IBS1* sequence, which improved the fidelity of the splicing reaction. However, atypical circular forms of similar electrophoretic mobility to the lariat intron were nevertheless observed. We analyzed a run of four cytidine residues at the 3' splice site potentially responsible for a lack of fidelity at this site leading to the formation of circular intron forms. We showed that mutations of residues base-pairing in the tertiary EBS3-IBS3 interaction increased the efficiency and fidelity of the splicing reaction. Our results indicate that RmInt1 has developed strategies for decreasing its splicing efficiency and fidelity. RmInt1 makes use of unproductive splicing reactions to limit the transposition of the insertion sequence into which it inserts itself in its natural context, thereby preventing potentially harmful dispersion of ISRm2011-2 throughout the genome of its host.

  7. Structural basis for recognition of intron branchpoint RNA by yeast Msl5 and selective effects of interfacial mutations on splicing of yeast pre-mRNAs.

    PubMed

    Jacewicz, Agata; Chico, Lidia; Smith, Paul; Schwer, Beate; Shuman, Stewart

    2015-03-01

    Saccharomyces cerevisiae Msl5 orchestrates spliceosome assembly by binding the intron branchpoint sequence 5'-UACUAAC and, with its heterodimer partner protein Mud2, establishing cross intron-bridging interactions with the U1 snRNP at the 5' splice site. Here we define the central Msl5 KH-QUA2 domain as sufficient for branchpoint RNA recognition. The 1.8 Å crystal structure of Msl5-(KH-QUA2) bound to the branchpoint highlights an extensive network of direct and water-mediated protein-RNA and intra-RNA atomic contacts at the interface that illuminate how Msl5 recognizes each nucleobase of the UACUAAC element. The Msl5 structure rationalizes a large body of mutational data and inspires new functional studies herein, which reveal how perturbations of the Msl5·RNA interface impede the splicing of specific yeast pre-mRNAs. We also identify interfacial mutations in Msl5 that bypass the essentiality of Sub2, a DExD-box ATPase implicated in displacing Msl5 from the branchpoint in exchange for the U2 snRNP. These studies establish an atomic resolution framework for understanding splice site selection and early spliceosome dynamics.

  8. Structural basis for recognition of intron branchpoint RNA by yeast Msl5 and selective effects of interfacial mutations on splicing of yeast pre-mRNAs

    PubMed Central

    Jacewicz, Agata; Chico, Lidia; Smith, Paul

    2015-01-01

    Saccharomyces cerevisiae Msl5 orchestrates spliceosome assembly by binding the intron branchpoint sequence 5′-UACUAAC and, with its heterodimer partner protein Mud2, establishing cross intron-bridging interactions with the U1 snRNP at the 5′ splice site. Here we define the central Msl5 KH-QUA2 domain as sufficient for branchpoint RNA recognition. The 1.8 Å crystal structure of Msl5-(KH-QUA2) bound to the branchpoint highlights an extensive network of direct and water-mediated protein–RNA and intra-RNA atomic contacts at the interface that illuminate how Msl5 recognizes each nucleobase of the UACUAAC element. The Msl5 structure rationalizes a large body of mutational data and inspires new functional studies herein, which reveal how perturbations of the Msl5·RNA interface impede the splicing of specific yeast pre-mRNAs. We also identify interfacial mutations in Msl5 that bypass the essentiality of Sub2, a DExD-box ATPase implicated in displacing Msl5 from the branchpoint in exchange for the U2 snRNP. These studies establish an atomic resolution framework for understanding splice site selection and early spliceosome dynamics. PMID:25587180

  9. A complex twintron is excised as four individual introns.

    PubMed Central

    Drager, R G; Hallick, R B

    1993-01-01

    Twintrons are introns-within-introns excised by sequential splicing reactions. A new type of complex twintron comprised of four individual group III introns has been characterized. The external intron is interrupted by an internal intron containing two additional introns. This 434 nt complex twintron within a Euglena gracilis chloroplast ribosomal protein gene is excised by four sequential splicing reactions. Two of the splicing reactions utilize multiple 5'- and/or 3'-splice sites. These findings are evidence that introns with multiple active splice sites can be formed by the repeated insertion of introns into existing introns. Images PMID:7685079

  10. Trans-splicing Group I Intron Targeting Hepatitis C Virus IRES Mediates Cell Death upon Viral Infection in Huh7.5 Cells

    PubMed Central

    Nawtaisong, Pruksa; Fraser, Mark E.; Carter, James R.; Fraser, Malcolm J.

    2015-01-01

    The HCV-IRES sequence is vital for both protein translation and genome replication and serves as a potential target for anti-HCV therapy. We constructed a series of anti-HCV Group I introns (αHCV-GrpIs) to attack conserved target sites within the HCV IRES. These αHCV-GrpIs were designed to mediate a trans-splicing reaction that replaces the viral RNA genome downstream of the 5’ splice site with a 3’ exon that encodes an apoptosis-inducing gene. Pro-active forms of the apoptosis inducing genes BID, Caspase 3, Caspase 8, or tBax were modified by incorporation of the HCV NS5A/5B cleavage sequence in place of their respective endogenous cleavage sites to ensure that only HCV infected cells would undergo apoptosis following splicing and expression. Huh7.5 cells transfected with each intron were challenged at MOI 0.1 with HCV-Jc1FLAG2 which expresses a Gaussia Luciferase (GLuc) marker. Virus-containing supernatants were then assayed for GLuc expression as a measure of viral replication inhibition. Cellular extracts were analyzed for the presence of correct splice products by RT-PCR and DNA sequencing. We also measured levels of Caspase 3 activity as a means of quantifying apoptotic cell death. Each of these αHCV-GrpI introns was able to correctly splice their 3’ apoptotic exons onto the virus RNA genome at the targeted Uracil, and resulted in greater than 80% suppression of the GLuc marker. A more pronounced suppression effect was observed with TCID50 virus titrations, which demonstrated that these αHCV-GrpIs were able to suppress viral replication by more than 2 logs, or greater than 99%. Robust activation of the apoptotic factor within the challenged cells was evidenced by a significant increase of Caspase 3 activity upon viral infection compared to non-challenged cells. This novel genetic intervention tool may prove beneficial in certain HCV subjects. PMID:25840398

  11. Antisense-based RNA therapy of factor V deficiency: in vitro and ex vivo rescue of a F5 deep-intronic splicing mutation.

    PubMed

    Nuzzo, Francesca; Radu, Claudia; Baralle, Marco; Spiezia, Luca; Hackeng, Tilman M; Simioni, Paolo; Castoldi, Elisabetta

    2013-11-28

    Antisense molecules are emerging as a powerful tool to correct splicing defects. Recently, we identified a homozygous deep-intronic mutation (F5 c.1296+268A>G) activating a cryptic donor splice site in a patient with severe coagulation factor V (FV) deficiency and life-threatening bleeding episodes. Here, we assessed the ability of 2 mutation-specific antisense molecules (a morpholino oligonucleotide [MO] and an engineered U7 small nuclear RNA [snRNA]) to correct this splicing defect. COS-1 and HepG2 cells transfected with a F5 minigene construct containing the patient's mutation expressed aberrant messenger RNA (mRNA) in excess of normal mRNA. Treatment with mutation-specific antisense MO (1-5 µM) or a construct expressing antisense U7snRNA (0.25-2 µg) dose-dependently increased the relative amount of correctly spliced mRNA by 1 to 2 orders of magnitude, whereas control MO and U7snRNA were ineffective. Patient-derived megakaryocytes obtained by differentiation of circulating progenitor cells did not express FV, but became positive for FV at immunofluorescence staining after administration of antisense MO or U7snRNA. However, treatment adversely affected cell viability, mainly because of the transfection reagents used to deliver the antisense molecules. Our data provide in vitro and ex vivo proof of principle for the efficacy of RNA therapy in severe FV deficiency, but additional cytotoxicity studies are warranted.

  12. Localization of a Bacterial Group II Intron-Encoded Protein in Eukaryotic Nuclear Splicing-Related Cell Compartments

    PubMed Central

    Nisa-Martínez, Rafael; Laporte, Philippe; Jiménez-Zurdo, José Ignacio; Frugier, Florian; Crespi, Martin; Toro, Nicolás

    2013-01-01

    Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns. PMID:24391881

  13. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    PubMed

    Nisa-Martínez, Rafael; Laporte, Philippe; Jiménez-Zurdo, José Ignacio; Frugier, Florian; Crespi, Martin; Toro, Nicolás

    2013-01-01

    Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP) in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  14. Synthesis of RNA containing inosine: analysis of the sequence requirements for the 5' splice site of the Tetrahymena group I intron.

    PubMed Central

    Green, R; Szostak, J W; Benner, S A; Rich, A; Usman, N

    1991-01-01

    Two protected derivatives of the ribonucleoside inosine have been prepared to serve as building blocks for phosphoramidite-based synthesis of RNA. Two different synthetic routes address the unusual solubility characteristics of inosine and its derivatives. The final products of the different synthetic pathways, 5'-O-(dimethoxytrityl)-2'-O-(t-butyldimethylsiyl) inosine 3'-O-(beta-cyanoethyldiisopropylamino) phosphoramidite 5a, and O6-p-nitrophenylethyl-5'-O-(dimethoxytrityl)-2'-O-(t-butyldimethylsilyl) inosine 3'-O-(methyldiisopropylamino) phosphoramidite 5b, were chemically incorporated into short oligoribonucleotides which also contained the four standard ribonucleoside bases. The oligomers were chosen to study base-specific interactions between an RNA substrate and an RNA enzyme derived from the Group I Tetrahymena self-splicing intron. The oligomers were shown to be biochemically competent using a trans cleavage assay with the modified Tetrahymena intron. The results confirm the dependence of the catalytic activity on a wobble base pair, rather than a Watson-Crick base pair, in the helix at the 5'-splice site. Furthermore, comparison of guanosine and inosine in a wobble base pair allows one to assess the importance of the guanine 2-amino group for biological activity. The preparation of the inosine phosphoramidites adds to the repertoire of base analogues available for the study of RNA catalysis and RNA-protein interactions. Images PMID:1714564

  15. An intronic insertion in KPL2 results in aberrant splicing and causes the immotile short-tail sperm defect in the pig

    PubMed Central

    Sironen, Anu; Thomsen, Bo; Andersson, Magnus; Ahola, Virpi; Vilkki, Johanna

    2006-01-01

    The immotile short-tail sperm defect is an autosomal recessive disease within the Finnish Yorkshire pig population. This disease specifically affects the axoneme structure of sperm flagella, whereas cilia in other tissues appear unaffected. Recently, the disease locus was mapped to a 3-cM region on porcine chromosome 16. To facilitate identification of candidate genes, we constructed a porcine-human comparative map, which anchored the disease locus to a region on human chromosome 5p13.2 containing eight annotated genes. Sequence analysis of a candidate gene KPL2 revealed the presence of an inserted retrotransposon within an intron. The insertion affects splicing of the KPL2 transcript in two ways; it either causes skipping of the upstream exon, or causes the inclusion of an intronic sequence as well as part of the insertion in the transcript. Both changes alter the reading frame leading to premature termination of translation. Further work revealed that the aberrantly spliced exon is expressed predominantly in testicular tissue, which explains the tissue-specificity of the immotile short-tail sperm defect. These findings show that the KPL2 gene is important for correct axoneme development and provide insight into abnormal sperm development and infertility disorders. PMID:16549801

  16. The Arabidopsis U12-Type Spliceosomal Protein U11/U12-31K Is Involved in U12 Intron Splicing via RNA Chaperone Activity and Affects Plant Development[C][W

    PubMed Central

    Kim, Won Yong; Jung, Hyun Ju; Kwak, Kyung Jin; Kim, Min Kyung; Oh, Seung Han; Han, Yeon Soo; Kang, Hunseung

    2010-01-01

    U12 introns are removed from precursor-mRNA by a U12 intron-specific spliceosome that contains U11 and U12 small nuclear ribonucleoproteins. Although several proteins unique to the U12-type spliceosome have been identified, the manner by which they affect U12-dependent intron splicing as well as plant growth and development remain largely unknown. Here, we assessed the role of U11/U12-31K, a U12-type spliceosomal protein in Arabidopsis thaliana. T-DNA–tagged homozygote lines for U11/U12-31K could not be obtained, and heterozygote mutants were defective for seed maturation, indicating that U11/U12-31K is essential for the normal development of Arabidopsis. Knockdown of U11/U12-31K by artificial microRNA caused a defect in proper U12 intron splicing, resulting in abnormal stem growth and development of Arabidopsis. This defect in proper splicing was not restricted to specific U12-type introns, but most U12 intron splicing was influenced by U11/U12-31K. The stunted inflorescence stem growth was recovered by exogenously applied gibberellic acid (GA), but not by cytokinin, auxin, or brassinosteroid. GA metabolism-related genes were highly downregulated in U11/U12-31K knockdown plants. Importantly, U11/U12-31K was determined to harbor RNA chaperone activity. We propose that U11/U12-31K is an RNA chapereone that is indispensible for proper U12 intron splicing and for normal growth and development of plants. PMID:21148817

  17. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.

    PubMed

    Karbstein, Katrin; Lee, Jihee; Herschlag, Daniel

    2007-04-24

    Several ribozyme constructs have been used to dissect aspects of the group I self-splicing reaction. The Tetrahymena L-21 ScaI ribozyme, the best studied of these intron analogues, catalyzes a reaction analogous to the first step of self-splicing, in which a 5'-splice site analogue (S) and guanosine (G) are converted into a 5'-exon analogue (P) and GA. This ribozyme preserves the active site but lacks a short 5'-terminal segment (called the IGS extension herein) that forms dynamic helices, called the P1 extension and P10 helix. The P1 extension forms at the 5'-splice site in the first step of self-splicing, and P10 forms at the 3'-splice site in the second step of self-splicing. To dissect the contributions from the IGS extension and the helices it forms, we have investigated the effects of each of these elements at each reaction step. These experiments were performed with the L-16 ScaI ribozyme, which retains the IGS extension, and with 5'- and 3'-splice site analogues that differ in their ability to form the helices. The presence of the IGS extension strengthens binding of P by 40-fold, even when no new base pairs are formed. This large effect was especially surprising, as binding of S is essentially unaffected for S analogues that do not form additional base pairs with the IGS extension. Analysis of a U.U pair immediately 3' to the cleavage site suggests that a previously identified deleterious effect from a dangling U residue on the L-21 ScaI ribozyme arises from a fortuitous active site interaction and has implications for RNA tertiary structure specificity. Comparisons of the affinities of 5'-splice site analogues that form only a subset of base pairs reveal that inclusion of the conserved G.U base pair at the cleavage site of group I introns destabilizes the P1 extension >100-fold relative to the stability of a helix with all Watson-Crick base pairs. Previous structural data with model duplexes and the recent intron structures suggest that this effect can be

  18. An Aberrant Splice Acceptor Site Due to a Novel Intronic Nucleotide Substitution in MSX1 Gene Is the Cause of Congenital Tooth Agenesis in a Japanese Family

    PubMed Central

    Tatematsu, Tadashi; Kimura, Masashi; Nakashima, Mitsuko; Machida, Junichiro; Yamaguchi, Seishi; Shibata, Akio; Goto, Hiroki; Nakayama, Atsuo; Higashi, Yujiro; Miyachi, Hitoshi; Shimozato, Kazuo; Matsumoto, Naomichi; Tokita, Yoshihito

    2015-01-01

    Congenital tooth agenesis is caused by mutations in the MSX1, PAX9, WNT10A, or AXIN2 genes. Here, we report a Japanese family with nonsyndromic tooth agenesis caused by a novel nucleotide substitution in the intronic region between exons 1 and 2 of the MSX1 gene. Because the mutation is located 9 bp before exon 2 (c.452-9G>A), we speculated that the nucleotide substitution would generate an abnormal splice site. Using cDNA analysis of an immortalized patient blood cell, we confirmed that an additional 7-nucleotide sequence was inserted at the splice junction between exons 1 and 2 (c.451_452insCCCTCAG). The consequent frameshift generated a homeodomain-truncated MSX1 (p.R151fsX20). We then studied the subcellular localization of truncated MSX1 protein in COS cells, and observed that it had a whole cell distribution more than a nuclear localization, compared to that of wild-type protein. This result suggests a deletion of the nuclear localization signal, which is mapped to the MSX1 homeodomain. These results indicate that this novel intronic nucleotide substitution is the cause of tooth agenesis in this family. To date, most MSX1 variants isolated from patients with tooth agenesis involve single amino acid substitutions in the highly conserved homeodomain or deletion mutants caused by frameshift or nonsense mutations. We here report a rare case of an intronic mutation of the MSX1 gene responsible for human tooth agenesis. In addition, the missing tooth patterns were slightly but significantly different between an affected monozygotic twin pair of this family, showing that epigenetic or environmental factors also affect the phenotypic variations of missing teeth among patients with nonsyndromic tooth agenesis caused by an MSX1 haploinsufficiency. PMID:26030286

  19. Absence of an intron splicing silencer in porcine Smn1 intron 7 confers immunity to the exon skipping mutation in human SMN2.

    PubMed

    Doktor, Thomas Koed; Schrøder, Lisbeth Dahl; Andersen, Henriette Skovgaard; Brøner, Sabrina; Kitewska, Anna; Sørensen, Charlotte Brandt; Andresen, Brage Storstein

    2014-01-01

    Spinal Muscular Atrophy is caused by homozygous loss of SMN1. All patients retain at least one copy of SMN2 which produces an identical protein but at lower levels due to a silent mutation in exon 7 which results in predominant exclusion of the exon. Therapies targeting the splicing of SMN2 exon 7 have been in development for several years, and their efficacy has been measured using either in vitro cellular assays or in vivo small animal models such as mice. In this study we evaluated the potential for constructing a mini-pig animal model by introducing minimal changes in the endogenous porcine Smn1 gene to maintain the native genomic structure and regulation. We found that while a Smn2-like mutation can be introduced in the porcine Smn1 gene and can diminish the function of the ESE, it would not recapitulate the splicing pattern seen in human SMN2 due to absence of a functional ISS immediately downstream of exon 7. We investigated the ISS region and show here that the porcine ISS is inactive due to disruption of a proximal hnRNP A1 binding site, while a distal hnRNP A1 binding site remains functional but is unable to maintain the functionality of the ISS as a whole.

  20. Novel compound heterozygous mutations for lipoprotein lipase deficiency. A G-to-T transversion at the first position of exon 5 causing G154V missense mutation and a 5' splice site mutation of intron 8.

    PubMed

    Ikeda, Y; Takagi, A; Nakata, Y; Sera, Y; Hyoudou, S; Hamamoto, K; Nishi, Y; Yamamoto, A

    2001-07-01

    We systematically investigated the molecular defects causing a primary LPL deficiency in a Japanese male infant (patient DI) with fasting hyperchylomicronemia (type I hyperlipoproteinemia) and in his parents. Patient DI had neither LPL activity nor immunoreactive LPL mass in the pre- and post-heparin plasma. The patient was a compound heterozygote for novel mutations consisting of a G-to-T transversion at the first nucleotide of exon 5 [+1 position of 3' acceptor splice site (3'-ass) of intron 4] and a T-to-C transition in the invariant GT at position +2 of the 5' donor splice site (5'-dss) of intron 8 (Int8/5'-dss/t(+2)c). The G-to-T transversion, although affecting the 11 nucleotide of the 3'-consensus acceptor splice site, resulted in a substitution of Gly(154) to Val (G154V; GG(716)C(-->)GTC). The mutant G154V LPL expressed in COS-1 cells was catalytically inactive and hardly released from the cells by heparin. The Int8/5'-dss/t(+2)c mutation inactivated the authentic 5' splice site of intron 8 and led to the utilization of a cryptic 5'-dss in exon 8 as an alternative splice site 133 basepairs upstream from the authentic splice site, thereby causing joining of a part of exon 8 to exon 9 with skipping of a 134-bp fragment of exon 8 and intron 8. These additional mutations in the consensus sequences of the 3' and 5' splice sites might be useful for better understanding the factors that are involved in splice site selection in vivo.

  1. Beta zero thalassemia caused by a base substitution that creates an alternative splice acceptor site in an intron.

    PubMed Central

    Metherall, J E; Collins, F S; Pan, J; Weissman, S M; Forget, B G

    1986-01-01

    A thalassemic beta-globin gene cloned from a haplotype I chromosome contains a T to G transversion at position 116 of IVS1 which results in the generation of an abnormal alternative acceptor splice site. Transient expression studies revealed a 4-fold decrease in the amount of RNA produced with greater than 99% of it being abnormally spliced despite preservation of the normal acceptor splice site at position 130. These results suggest that the mutation at IVS1 position 116 results in beta zero thalassemia. A closely related mutation at position 110 of IVS1 also generates a novel acceptor site and results in a similar decrease in total mRNA produced, but approximately 20% of the mRNA produced is normally spliced and thus the phenotype is that of beta + thalassemia. These observations suggest that short range position effects may play a dramatic role in the choice of potential splice acceptor sites. We demonstrate the presence of abnormally spliced mRNA in reticulocytes of affected individuals and show the mutation at IVS1 position 116 segregating from the mutation at IVS1 position 110 in a three generation pedigree. The mutation results in the creation of a MaeI restriction site, as do a number of other thalassemic mutations, and we demonstrate some difficulties that may arise in the differential diagnosis of these mutations. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3780671

  2. Factor IXMadrid 2: a deletion/insertion in factor IX gene which abolishes the sequence of the donor junction at the exon IV-intron d splice site.

    PubMed Central

    Solera, J; Magallón, M; Martin-Villar, J; Coloma, A

    1992-01-01

    DNA from a patient with severe hemophilia B was evaluated by RFLP analysis, producing results which suggested the existence of a partial deletion within the factor IX gene. The deletion was further localized and characterized by PCR amplification and sequencing. The altered allele has a 4,442-bp deletion which removes both the donor splice site located at the 5' end of intron d and the two last coding nucleotides located at the 3' end of exon IV in the normal factor IX gene; this fragment has been replaced by a 47-bp sequence from the normal factor IX gene, although this fragment has been inserted in inverted orientation. Two homologous sequences have been discovered at the ends of the deleted DNA fragment. Images Figure 1 PMID:1346483

  3. Factor IXMadrid 2: a deletion/insertion in factor IX gene which abolishes the sequence of the donor junction at the exon IV-intron d splice site.

    PubMed

    Solera, J; Magallón, M; Martin-Villar, J; Coloma, A

    1992-02-01

    DNA from a patient with severe hemophilia B was evaluated by RFLP analysis, producing results which suggested the existence of a partial deletion within the factor IX gene. The deletion was further localized and characterized by PCR amplification and sequencing. The altered allele has a 4,442-bp deletion which removes both the donor splice site located at the 5' end of intron d and the two last coding nucleotides located at the 3' end of exon IV in the normal factor IX gene; this fragment has been replaced by a 47-bp sequence from the normal factor IX gene, although this fragment has been inserted in inverted orientation. Two homologous sequences have been discovered at the ends of the deleted DNA fragment.

  4. Novel point mutation in the splice donor site of exon-intron junction 6 of the androgen receptor gene in a patient with partial androgen insensitivity syndrome.

    PubMed

    Sammarco, I; Grimaldi, P; Rossi, P; Cappa, M; Moretti, C; Frajese, G; Geremia, R

    2000-09-01

    Androgen receptor (AR) gene mutations have been shown to cause androgen insensitivity syndrome with altered sexual differentiation in XY individuals, ranging from a partial insensitivity with male phenotype and azoospermia to a complete insensitivity with female phenotype and the absence of pubic and axillary sexual hair after puberty. In this study we present an 11-yr-old XY girl, with clinical manifestations peculiar for impaired androgen biological action, including female phenotype, blind-ending vagina, small degree of posterior labial fusion, and absence of uterus, fallopian tubes, and ovaries. At the time of the diagnosis the patient had a FSH/LH ratio according to the puberal stage, undetectable 17beta-estradiol, and high levels of testosterone (80.1 ng/mL). After bilateral gonadectomy, performed at the age of 11 yr, histological examination showed small embryonic seminiferous tubules containing prevalently Sertoli cells and occasional spermatogonia together with abundant fibrous tissue. Molecular study of the patient showed a guanine to thymine transversion in position +5 of the donor splice site in the junction between exon 6 and intron 6 of the AR gene. The result of RT-PCR amplification of the AR messenger ribonucleic acid from cultured genital skin fibroblasts of the patient suggests that splicing is defective, and intron 6 is retained in most of the receptor messenger ribonucleic acid molecules. We show by immunoblotting that most of the expressed protein lacks part of the C-terminal hormone-binding domain, and a small amount of normal receptor is observed. This is probably responsible for the reduced binding capacity in genital skin fibroblasts of the patient. The molecular basis of the alteration in this case is a novel, uncommon mutation, leading to a phenotype indicative of a partial androgen insensitivity syndrome, Quigley's grade 5.

  5. A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii

    PubMed Central

    Grewe, Felix; Viehoever, Prisca; Weisshaar, Bernd; Knoop, Volker

    2009-01-01

    Plant mitochondrial genomes show much more evolutionary plasticity than those of animals. We analysed the first mitochondrial DNA (mtDNA) of a lycophyte, the quillwort Isoetes engelmannii, which is separated from seed plants by more than 350 million years of evolution. The Isoetes mtDNA is particularly rich in recombination events, and chloroplast as well as nuclear DNA inserts document the incorporation of foreign sequences already in this most ancestral vascular plant lineage. On the other hand, particularly small group II introns and short intergenic regions reveal a tendency of evolution towards a compact mitochondrial genome. RNA editing reaches extreme levels exceeding 100 pyrimidine exchanges in individual mRNAs and, hitherto unobserved in such frequency, also in tRNAs with 18 C-to-U conversions in the tRNA for proline. In total, some 1500 sites of RNA editing can be expected for the Isoetes mitochondrial transcriptome. As a unique molecular novelty, the Isoetes cox1 gene requires trans-splicing via a discontinuous group I intron demonstrating disrupted, but functional, RNAs for yet another class of natural ribozymes. PMID:19553190

  6. Alu-derived old world monkeys exonization event and experimental validation of the LEPR gene.

    PubMed

    Huh, Jae-Won; Kim, Young-Hyun; Kim, Dae-Soo; Park, Sang-Je; Lee, Sang-Rae; Kim, Sang-Hyun; Kim, Ekyune; Kim, Sun-Uk; Kim, Myeong-Su; Kim, Heui-Soo; Chang, Kyu-Tae

    2010-09-01

    The leptin receptor (LEPR) is a crucial regulatory protein that interacts with Leptin. In our analysis of LEPR, novel AluJb-derived alternative transcripts were identified in the genome of the rhesus monkey. In order to investigate the occurrence of AluJb-derived alternative transcripts and the mechanism underlying exonization events, we conducted analyses using a number of primate genomic DNAs and adipose RNAs of tissue and primary cells derived from the crab-eating monkey. Our results demonstrate that the AluJb element has been integrated into our common ancestor genome prior to the divergence of simians and prosimians. The lineage-specific exonization event of the LEPR gene in chimpanzees, orangutans, and Old World monkeys appear to have been accomplished via transition mutations of the 5' splicing site (second position of C to T). However, in New World monkeys and prosimians, the AluJb-related LEPR transcript should be silenced by the additional transversion mutation (fourth position of T to G). The AluJb-related transcript of human LEPR should also be silenced by a mutation of the 5' splicing site (first position of G to A) and the insertion of one nucleotide sequence (minus fourth position of A). Our data suggests that lineage-specific exonization events should be determined by the combination event of the formation of splicing sites and protection against site-specific mutation pressures. These evolutionary mechanisms could be major sources for primate diversification.

  7. Abetalipoproteinemia caused by maternal isodisomy of chromosome 4q containing an intron 9 splice acceptor mutation in the microsomal triglyceride transfer protein gene.

    PubMed

    Yang, X P; Inazu, A; Yagi, K; Kajinami, K; Koizumi, J; Mabuchi, H

    1999-08-01

    Uniparental disomy (UPD), a rare inheritance of 2 copies of a single chromosome homolog or a region of a chromosome from one parent, can result in various autosomal recessive diseases. Abetalipoproteinemia (ABL) is a rare autosomal recessive deficiency of apoB-containing lipoproteins caused by a microsomal triglyceride transfer protein (MTP) deficiency. In this study, we describe a patient with ABL inherited as a homozygous intron 9 splice acceptor G(-1)-to-A mutation of the transfer protein gene. This mutation alters the splicing of the mRNA, resulting in a 36 amino acids, in-frame deletion of sequence encoded by exon 10. We analyzed chromosome 4, including MTP gene (4q22-24), using short tandem repeat markers. The proband has only his mother's genes in chromosome 4q spanning a 150-centimorgan region; ie, segmental maternal isodisomy 4q21-35, probably due to mitotic recombination. Nonpaternity between the proband and his father was excluded using 6 polymorphic markers from different chromosomes (paternity probability, 0.999). Maternal isodisomy (maternal UPD 4q) was the basis for homozygosity of the MTP gene mutation in this patient.

  8. A novel pathogenic splice acceptor site germline mutation in intron 14 of the APC gene in a Chinese family with familial adenomatous polyposis

    PubMed Central

    Zhao, Guoru; Hu, Yuan; Liang, Shengran; Zhang, Xipeng

    2017-01-01

    Familial adenomatous polyposis (FAP) is an autosomal dominant precancerous condition, clinically characterized by the presence of multiple colorectal adenomas or polyps. Patients with FAP has a high risk of developing colorectal cancer (CRC) from these colorectal adenomatous polyps by the mean age of diagnosis at 40 years. Germline mutations of the APC gene cause familial adenomatous polyposis (FAP). Colectomy has recommended for the FAP patients with significant polyposis. Here, we present a clinical molecular study of a four generation Chinese family with FAP. Clinical diagnosis of FAP has been done according to the phenotype, family history and medical records. Patient's blood samples were collected and genomic DNA was extracted. In order to identify the pathogenic mutation underlying the disease phenotype targeted next-generation sequencing and confirmatory sanger sequencing has undertaken. Targeted next generation sequencing identified a novel heterozygous splice-acceptor site mutation [c.1744-1G>A] in intron 14 of APC gene, which is co-segregated with the FAP phenotypes in the proband and amongst all the affected family members. This mutation is not present in unaffected family members and in normal healthy controls of same ethnic origin. According to the LOVD database for Chinese colorectal cancer patients, in Chinese population, 60% of the previously reported APC gene mutations causes FAP, are missense mutations. This novel splice-acceptor site mutation causing FAP in this Chinese family expands the germline mutation spectrum of the APC gene in the Chinese population. PMID:28423518

  9. A novel pathogenic splice acceptor site germline mutation in intron 14 of the APC gene in a Chinese family with familial adenomatous polyposis.

    PubMed

    Wang, Dan; Liang, Shengyun; Zhang, Zhao; Zhao, Guoru; Hu, Yuan; Liang, Shengran; Zhang, Xipeng; Banerjee, Santasree

    2017-03-28

    Familial adenomatous polyposis (FAP) is an autosomal dominant precancerous condition, clinically characterized by the presence of multiple colorectal adenomas or polyps. Patients with FAP has a high risk of developing colorectal cancer (CRC) from these colorectal adenomatous polyps by the mean age of diagnosis at 40 years. Germline mutations of the APC gene cause familial adenomatous polyposis (FAP). Colectomy has recommended for the FAP patients with significant polyposis. Here, we present a clinical molecular study of a four generation Chinese family with FAP. Clinical diagnosis of FAP has been done according to the phenotype, family history and medical records. Patient's blood samples were collected and genomic DNA was extracted. In order to identify the pathogenic mutation underlying the disease phenotype targeted next-generation sequencing and confirmatory sanger sequencing has undertaken. Targeted next generation sequencing identified a novel heterozygous splice-acceptor site mutation [c.1744-1G>A] in intron 14 of APC gene, which is co-segregated with the FAP phenotypes in the proband and amongst all the affected family members. This mutation is not present in unaffected family members and in normal healthy controls of same ethnic origin. According to the LOVD database for Chinese colorectal cancer patients, in Chinese population, 60% of the previously reported APC gene mutations causes FAP, are missense mutations. This novel splice-acceptor site mutation causing FAP in this Chinese family expands the germline mutation spectrum of the APC gene in the Chinese population.

  10. Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene.

    PubMed

    Rodríguez-Martín, Carlos; Cidre, Florencia; Fernández-Teijeiro, Ana; Gómez-Mariano, Gema; de la Vega, Leticia; Ramos, Patricia; Zaballos, Ángel; Monzón, Sara; Alonso, Javier

    2016-05-01

    Retinoblastoma (RB, MIM 180200) is the paradigm of hereditary cancer. Individuals harboring a constitutional mutation in one allele of the RB1 gene have a high predisposition to develop RB. Here, we present the first case of familial RB caused by a de novo insertion of a full-length long interspersed element-1 (LINE-1) into intron 14 of the RB1 gene that caused a highly heterogeneous splicing pattern of RB1 mRNA. LINE-1 insertion was inferred by mRNA studies and full-length sequenced by massive parallel sequencing. Some of the aberrant mRNAs were produced by noncanonical acceptor splice sites, a new finding that up to date has not been described to occur upon LINE-1 retrotransposition. Our results clearly show that RNA-based strategies have the potential to detect disease-causing transposon insertions. It also confirms that the incorporation of new genetic approaches, such as massive parallel sequencing, contributes to characterize at the sequence level these unique and exceptional genetic alterations.

  11. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing

    PubMed Central

    Lardelli, Rea M.; Thompson, James X.; Yates, John R.; Stevens, Scott W.

    2010-01-01

    Eukaryotic pre-mRNA splicing is a complex process requiring the precise timing and action of >100 trans-acting factors. It has been known for some time that the two steps of splicing chemistry require three DEAH-box RNA helicase-like proteins; however, their mechanism of action at these steps has remained elusive. Spliceosomes arrested in vivo at the three helicase checkpoints were purified, and first step-arrested spliceosomes were functionally characterized. We show that the first step of splicing requires a novel ATP-independent conformational change. Prp2p then catalyzes an ATP-dependent rearrangement displacing the SF3a and SF3b complexes from the branchpoint within the spliceosome. We propose a model in which SF3 prevents premature nucleophilic attack of the chemically reactive hydroxyl of the branchpoint adenosine prior to the first transesterification. When the spliceosome attains the proper conformation and upon the function of Prp2p, SF3 is displaced from the branchpoint allowing first step chemistry to occur. PMID:20089683

  12. The Unusual 23S rRNA Gene of Coxiella burnetii: Two Self-Splicing Group I Introns Flank a 34-Base-Pair Exon, and One Element Lacks the Canonical ΩG▿

    PubMed Central

    Raghavan, Rahul; Miller, Scott R.; Hicks, Linda D.; Minnick, Michael F.

    2007-01-01

    We describe the presence and characteristics of two self-splicing group I introns in the sole 23S rRNA gene of Coxiella burnetii. The two group I introns, Cbu.L1917 and Cbu.L1951, are inserted at sites 1917 and 1951 (Escherichia coli numbering), respectively, in the 23S rRNA gene of C. burnetii. Both introns were found to be self-splicing in vivo and in vitro even though the terminal nucleotide of Cbu.L1917 is adenine and not the canonical conserved guanine, termed ΩG, found in Cbu.L1951 and all other group I introns described to date. Predicted secondary structures for both introns were constructed and revealed that Cbu.L1917 and Cbu.L1951 were group IB2 and group IA3 introns, respectively. We analyzed strains belonging to eight genomic groups of C. burnetii to determine sequence variation and the presence or absence of the elements and found both introns to be highly conserved (≥99%) among them. Although phylogenetic analysis did not identify the specific identities of donors, it indicates that the introns were likely acquired independently; Cbu.L1917 was acquired from other bacteria like Thermotoga subterranea and Cbu.L1951 from lower eukaryotes like Acanthamoeba castellanii. We also confirmed the fragmented nature of mature 23S rRNA in C. burnetii due to the presence of an intervening sequence. The presence of three selfish elements in C. burnetii's 23S rRNA gene is very unusual for an obligate intracellular bacterium and suggests a recent shift to its current lifestyle from a previous niche with greater opportunities for lateral gene transfer. PMID:17644584

  13. A chloroplast-localized DEAD-box RNA helicaseAtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana.

    PubMed

    Gu, Lili; Xu, Tao; Lee, Kwanuk; Lee, Kwang Ho; Kang, Hunseung

    2014-09-01

    Although many DEAD-box RNA helicases (RHs) are targeted to chloroplasts, the functional roles of the majority of RHs are still unknown. Recently, the chloroplast-localized Arabidopsis thaliana AtRH3 has been demonstrated to play important roles in intron splicing, ribosome biogenesis, and seedling growth. To further understand the functional role of AtRH3 in intron splicing and growth and the stress response in Arabidopsis, the newly-generated artificial microRNA-mediated knockdown plants as well as the previously characterized T-DNA tagged rh3-4 mutant were analyzed under normal and stress conditions. The rh3 mutants displayed retarded growth and pale-green phenotypes, and the growth of mutant plants was inhibited severely under salt or cold stress but marginally under dehydration stress conditions. Splicing of several intron-containing chloroplast genes was defective in the mutant plants. Importantly, splicing of ndhA and ndhB genes was severely inhibited in the mutant plants compared with the wild-type plants under salt or cold stress but not under dehydration stress conditions. Moreover, AtRH3 complemented the growth-defect phenotype of the RNA chaperone-deficient Escherichia coli mutant and had the ability to disrupt RNA and DNA base pairs, indicating that AtRH3 possesses RNA chaperone activity. Taken together, these results demonstrate that AtRH3 plays a prominent role in the growth and stress response of Arabidopsis, and suggest that proper splicing of introns governed by RNA chaperone activity of AtRH3 is crucial for chloroplast function and the growth and stress response of plants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Aberrant splicing and transcription termination caused by P element insertion into the intron of a Drosophila gene

    SciTech Connect

    Horowitz, H.; Berg, C.A.

    1995-01-01

    Insertional mutagenesis screens using the P[lacZ, rosy{sup +}] (PZ) transposable element have provided thousands of mutant lines for analyzing genes of varied function in the fruitfly, Drosophila melanogaster. As has been observed with other P elements, many of the PZ-induced mutations result from insertion of the P element into the promoter or 5{prime} untranslated regions of the affected gene. We document here a novel mechanism for mutagenesis by this element. We show that sequences present within the element direct aberrant splicing and termination events that produce an mRNA composed of 5{prime} sequences from the mutated gene (in this case, pipsqueak) and 3{prime} sequences from within the P[lacZ, rosy{sup +}] element. These truncated RNAs could yield proteins with dominant mutant effects. 43 refs., 4 figs.

  15. Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA.

    PubMed Central

    Zaug, A J; Cech, T R

    1995-01-01

    Dimethyl sulfate modification of RNA in living Tetrahymena thermophila allowed assessment of RNA secondary structure and protein association. The self-splicing rRNA intron had the same methylation pattern in vivo as in vitro, indicating that the structures are equivalent and suggesting that this RNA is not stably associated with protein in the nucleolus. Methylation was consistent with the current secondary structure model. Much of telomerase RNA was protected from methylation in vivo, but the A's and C's in the template region were very reactive. Thus, most telomerase is not base paired to telomeres in vivo. Protein-free telomerase RNA adopts a structure different from that in vivo, especially in the template and pseudoknot regions. The U2 snRNA showed methylation protection at the Sm protein-binding sequence and the mRNA branch site recognition sequence. For both telomerase RNA and U2 snRNA, the in vivo methylation pattern corresponded much better to the structure determined by comparative sequence analysis than did the in vitro methylation pattern. Thus, as expected, comparative analysis gives the structure of the RNA in vivo. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 5 PMID:7493315

  16. Early-Onset X-Linked Retinitis Pigmentosa in a Heterozygous Female Harboring an Intronic Donor Splice Site Mutation in the Retinitis Pigmentosa GTPase Regulator Gene.

    PubMed

    Shifera, Amde Selassie; Kay, Christine Nichols

    2015-01-01

    To report a heterozygous female presenting with an early-onset and severe form of X-linked retinitis pigmentosa (XLRP). This is a case series presenting the clinical findings in a heterozygous female with XLRP and two of her family members. Fundus photography, fundus autofluorescence, ocular coherence tomography, and visual perimetry are presented. The proband reported here is a heterozygous female who presented at the age of 8 years with an early onset and aggressive form of XLRP. The patient belongs to a four-generation family with a total of three affected females and four affected males. The patient was initially diagnosed with retinitis pigmentosa (RP) at the age of 4 years. Genetic testing identified a heterozygous donor splice site mutation in intron 1 (IVS1 + 1G > A) of the retinitis pigmentosa GTPase regulator gene. The father of the proband was diagnosed with RP when he was a young child. The sister of the proband, evaluated at the age of 6 years, showed macular pigmentary changes. Although carriers of XLRP are usually asymptomatic or have a mild disease of late onset, the proband presented here exhibited an early-onset, aggressive form of the disease. It is not clear why some carrier females manifest a severe phenotype. A better understanding of the genetic processes involved in the penetrance and expressivity of XLRP in heterozygous females could assist in providing the appropriate counseling to affected families.

  17. cDNA structure, alternative splicing and exon-intron organization of the predisposing tuberous sclerosis (Tsc2) gene of the Eker rat model.

    PubMed Central

    Kobayashi, T; Nishizawa, M; Hirayama, Y; Kobayashi, E; Hino, O

    1995-01-01

    The Eker rat hereditary renal carcinoma (RC) is an excellent example of a Mendelian dominant predisposition to a specific cancer in an experimental animal. We recently reported that a germline insertion in the rat homologue of the human tuberous sclerosis gene (TSC2) gives rise to the dominantly inherited cancer in the Eker rat model. We now describe the entire cDNA (5375 bp without exons 25 and 31) and genomic structure of the rat Tsc2 gene. The deduced amino acid sequence (1743 amino acids) shows 92% identity to the human counterpart. Surprisingly, there are a great many (> or = 41) coding exons with small sized introns spanning only approximately 35 kb of genomic DNA. Two alternative splicing events [involving exons 25 (129 bp) and 31 (69 bp)] make for a complex diversity of the Tsc2 product. The present determination of the Tsc2 gene and establishment of strong conservation between the rat and man provide clues for assessing unknown gene functions apart from that already predicted from the GTPase activating proteins (GAP3) homologous domain and for future analysis of intragenic mutations in tumors using methods such as PCR-SSCP and for insights into diverse phenotypes between species. Images PMID:7651821

  18. Wilson's disease caused by alternative splicing and Alu exonization due to a homozygous 3039-bp deletion spanning from intron 1 to exon 2 of the ATP7B gene.

    PubMed

    Mameli, Eva; Lepori, Maria Barbara; Chiappe, Francesca; Ranucci, Giusy; Di Dato, Fabiola; Iorio, Raffaele; Loudianos, Georgios

    2015-09-15

    We describe a case of Wilson's disease (WD) diagnosed at 5 years after routine biochemical test showed increased aminotransferases. Mutation analysis of the ATP7B gene revealed a 3039-bp deletion in the homozygous state spanning from the terminal part of intron 1 to nt position 368 of exon 2. This deletion results in the activation of 3 cryptic splice sites: an AG acceptor splice site in nt positions 578-579 producing a different breakpoint and removing the first 577 nts of exon 2, an acceptor and a donor splice site in nt positions 20363-4 and 20456-7, respectively, in intron 1, resulting in the activation of a 94-bp cryptic Alu exon being incorporated into the mature transcript. The resulting alternative transcript contains a TAG stop codon in the first amino acid position of the cryptic exon, likely producing a truncated, non-functional protein. This study shows that intron exonization can also occur in humans through naturally occurring gross deletions. The results suggest that the combination of DNA and RNA analyses can be used for molecular characterization of gross ATP7B deletions, thus improving genetic counseling and diagnosis of WD. Moreover these studies help to better establish new molecular mechanisms producing Wilson's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. ida4-1, ida4-2, and ida4-3 are intron splicing mutations affecting the locus encoding p28, a light chain of Chlamydomonas axonemal inner dynein arms.

    PubMed Central

    LeDizet, M; Piperno, G

    1995-01-01

    We recently determined the nucleotide sequence of the gene encoding p28, a light chain of inner dynein arms of Chlamydomonas axonemes. Here, we show that p28 is the protein encoded by the IDA4 locus. p28, and the dynein heavy chains normally associated with it, are completely absent from the flagella and cell bodies of three allelic strains of ida4, named ida4-1, ida4-2, and ida4-3. We determined the nucleotide sequence of the three alleles of the p28 gene and found in each case a single nucleotide change, affecting the splice sites of the first, second, and fourth introns, respectively. Reverse transcriptase-polymerase chain reaction amplification of RNAs prepared from ida4 cells confirmed that these mutations prevent the correct splicing of the affected introns, thereby blocking the synthesis of full-length p28. These are the first intron splicing mutations described in Chlamydomonas and the first inner dynein arm mutations characterized at the molecular level. The absence in ida4 axonemes of the dynein heavy chains normally found in association with p28 suggests that p28 is necessary for stable assembly of a subset of inner dynein arms or for the binding of these arms to the microtubule doublets. Images PMID:7579690

  20. High-throughput sequencing of the entire genomic regions of CCM1/KRIT1, CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations.

    PubMed

    Rath, Matthias; Jenssen, Sönke E; Schwefel, Konrad; Spiegler, Stefanie; Kleimeier, Dana; Sperling, Christian; Kaderali, Lars; Felbor, Ute

    2017-09-01

    Cerebral cavernous malformations (CCM) are vascular lesions of the central nervous system that can cause headaches, seizures and hemorrhagic stroke. Disease-associated mutations have been identified in three genes: CCM1/KRIT1, CCM2 and CCM3/PDCD10. The precise proportion of deep-intronic variants in these genes and their clinical relevance is yet unknown. Here, a long-range PCR (LR-PCR) approach for target enrichment of the entire genomic regions of the three genes was combined with next generation sequencing (NGS) to screen for coding and non-coding variants. NGS detected all six CCM1/KRIT1, two CCM2 and four CCM3/PDCD10 mutations that had previously been identified by Sanger sequencing. Two of the pathogenic variants presented here are novel. Additionally, 20 stringently selected CCM index cases that had remained mutation-negative after conventional sequencing and exclusion of copy number variations were screened for deep-intronic mutations. The combination of bioinformatics filtering and transcript analyses did not reveal any deep-intronic splice mutations in these cases. Our results demonstrate that target enrichment by LR-PCR combined with NGS can be used for a comprehensive analysis of the entire genomic regions of the CCM genes in a research context. However, its clinical utility is limited as deep-intronic splice mutations in CCM1/KRIT1, CCM2 and CCM3/PDCD10 seem to be rather rare. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    SciTech Connect

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi )

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  2. A novel point mutation (G-1 to T) in a 5' splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker muscular dystrophy.

    PubMed Central

    Hagiwara, Y.; Nishio, H.; Kitoh, Y.; Takeshima, Y.; Narita, N.; Wada, H.; Yokoyama, M.; Nakamura, H.; Matsuo, M.

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. We now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5' splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5' splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G-1-to-T mutation at the 5' splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. Images Figure 2 Figure 5 PMID:8279470

  3. Characterization of a Soluble B7-H3 (sB7-H3) Spliced from the Intron and Analysis of sB7-H3 in the Sera of Patients with Hepatocellular Carcinoma

    PubMed Central

    Chen, Weiwei; Liu, Peixin; Wang, Yedong; Nie, Weimin; Li, Zhiwei; Xu, Wen; Li, Fengyi; Zhou, Zhiping; Zhao, Min; Liu, Henggui

    2013-01-01

    B7-H3 is a recently discovered member of the B7 superfamily molecules and has been found to play a negative role in T cell responses. In this study, we identified a new B7-H3 isoform that is produced by alternative splicing from the forth intron of B7-H3 and encodes the sB7-H3 protein. Protein sequence analysis showed that sB7-H3 contains an additional four amino acids, encoded by the intron sequence, at the C-terminus compared to the ectodomain of 2Ig-B7-H3. We further found that this spliced sB7-H3 plays a negative regulatory role in T cell responses and serum sB7-H3 is higher in patients with hepatocellular carcinoma (HCC) than in healthy donors. Furthermore, we found that the expression of the spliced sb7-h3 gene is higher in carcinoma and peritumor tissues than in PBMCs of both healthy controls and patients, indicating that the high level of serum sB7-H3 in patients with HCC is caused by the increased expression of this newly discovered spliced sB7-H3 isoform in carcinoma and peritumor tissues. PMID:24194851

  4. The complex intron landscape and massive intron invasion in a picoeukaryote provides insights into intron evolution.

    PubMed

    Verhelst, Bram; Van de Peer, Yves; Rouzé, Pierre

    2013-01-01

    Genes in pieces and spliceosomal introns are a landmark of eukaryotes, with intron invasion usually assumed to have happened early on in evolution. Here, we analyze the intron landscape of Micromonas, a unicellular green alga in the Mamiellophyceae lineage, demonstrating the coexistence of several classes of introns and the occurrence of recent massive intron invasion. This study focuses on two strains, CCMP1545 and RCC299, and their related individuals from ocean samplings, showing that they not only harbor different classes of introns depending on their location in the genome, as for other Mamiellophyceae, but also uniquely carry several classes of repeat introns. These introns, dubbed introner elements (IEs), are found at novel positions in genes and have conserved sequences, contrary to canonical introns. This IE invasion has a huge impact on the genome, doubling the number of introns in the CCMP1545 strain. We hypothesize that each IE class originated from a single ancestral IE that has been colonizing the genome after strain divergence by inserting copies of itself into genes by intron transposition, likely involving reverse splicing. Along with similar cases recently observed in other organisms, our observations in Micromonas strains shed a new light on the evolution of introns, suggesting that intron gain is more widespread than previously thought.

  5. The prevalent deep intronic c. 639+919 G>A GLA mutation causes pseudoexon activation and Fabry disease by abolishing the binding of hnRNPA1 and hnRNP A2/B1 to a splicing silencer.

    PubMed

    Palhais, Bruno; Dembic, Maja; Sabaratnam, Rugivan; Nielsen, Kira S; Doktor, Thomas Koed; Bruun, Gitte Hoffmann; Andresen, Brage Storstein

    2016-11-01

    Fabry disease is an X-linked recessive inborn disorder of the glycosphingolipid metabolism, caused by total or partial deficiency of the lysosomal α-galactosidase A enzyme due to mutations in the GLA gene. The prevalent c.639+919 G>A mutation in GLA leads to pathogenic insertion of a 57bp pseudoexon sequence from intron 4, which is responsible for the cardiac variant phenotype. In this study we investigate the splicing regulatory mechanism leading to GLA pseudoexon activation. Splicing analysis of GLA minigenes revealed that pseudoexon activation is influenced by cell-type. We demonstrate that the wild-type sequence harbors an hnRNP A1 and hnRNP A2/B1-binding exonic splicing silencer (ESS) overlapping the 5'splice site (5'ss) that prevents pseudoexon inclusion. The c.639+919 G>A mutation disrupts this ESS allowing U1 snRNP recognition of the 5'ss. We show that the wild-type GLA 5'ss motif with the ESS is also able to inhibit inclusion of an unrelated pseudoexon in the FGB gene, and that also in the FGB context inactivation of the ESS by the c.639+919 G>A mutation causes pseudoexon activation, underscoring the universal nature of the ESS. Finally, we demonstrate that splice switching oligonucleotide (SSO) mediated blocking of the pseudoexon 3'ss and 5'ss effectively restores normal GLA splicing. This indicates that SSO based splicing correction may be a therapeutic alternative in the treatment of Fabry disease.

  6. The natural history of group I introns.

    PubMed

    Haugen, Peik; Simon, Dawn M; Bhattacharya, Debashish

    2005-02-01

    There are four major classes of introns: self-splicing group I and group II introns, tRNA and/or archaeal introns and spliceosomal introns in nuclear pre-mRNA. Group I introns are widely distributed in protists, bacteria and bacteriophages. Group II introns are found in fungal and land plant mitochondria, algal plastids, bacteria and Archaea. Group II and spliceosomal introns share a common splicing pathway and might be related to each other. The tRNA and/or archaeal introns are found in the nuclear tRNA of eukaryotes and in archaeal tRNA, rRNA and mRNA. The mechanisms underlying the self-splicing and mobility of a few model group I introns are well understood. By contrast, the role of these highly distinct processes in the evolution of the 1500 group I introns found thus far in nature (e.g. in algae and fungi) has only recently been clarified. The explosion of new sequence data has facilitated the use of comparative methods to understand group I intron evolution in a broader context and to generate hypotheses about intron insertion, splicing and spread that can be tested experimentally.

  7. The antiquity of group I introns.

    PubMed

    Shub, D A

    1991-12-01

    The recent discovery of self-splicing introns in cyanobacteria has given renewed interest to the question of whether introns may have been present in the ancestor of all living things. The properties of introns in genes of bacteria and bacteriophages are discussed in the context of their possible origin and biological function.

  8. Factor IX[sub Madrid 2]: A deletion/insertion in Facotr IX gene which abolishes the sequence of the donor junction at the exon IV-intron d splice site

    SciTech Connect

    Solera, J. ); Magallon, M.; Martin-Villar, J. ); Coloma, A. )

    1992-02-01

    DNA from a patient with severe hemophilia B was evaluated by RFLP analysis, producing results which suggested the existence of a partial deletion within the factor IX gene. The deletion was further localized and characterized by PCR amplification and sequencing. The altered allele has a 4,442-bp deletion which removes both the donor splice site located at the 5[prime] end of intron d and the two last coding nucleotides located at the 3[prime] end of exon IV in the normal factor IX gene; this fragment has been inserted in inverted orientation. Two homologous sequences have been discovered at the ends of the deleted DNA fragment.

  9. Eukaryotic evolution: early origin of canonical introns.

    PubMed

    Simpson, Alastair G B; MacQuarrie, Erin K; Roger, Andrew J

    2002-09-19

    Spliceosomal introns, one of the hallmarks of eukaryotic genomes, were thought to have originated late in evolution and were assumed not to exist in eukaryotes that diverged early -- until the discovery of a single intron with an aberrant splice boundary in the primitive 'protozoan' Giardia. Here we describe introns from a close relative of Giardia, Carpediemonas membranifera, that have boundary sequences of the normal eukaryotic type, indicating that canonical introns are likely to have arisen very early in eukaryotic evolution.

  10. The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene.

    PubMed Central

    Menssen, A; Höhmann, S; Martin, W; Schnable, P S; Peterson, P A; Saedler, H; Gierl, A

    1990-01-01

    The A2 locus of Zea mays, identified as one of the genes affecting anthocyanin biosynthesis, was cloned using the transposable elements rcy and dSpm as gene tags. The A2 gene encodes a putative protein of 395 amino acids and is devoid of introns. Two a2-m1 alleles, containing dSpm insertions of different sizes, were characterized. The dSpm element from the original state allele has perfect termini and undergoes frequent transposition. The element from the class II state allele is no longer competent to transpose. It has retained the 13 bp terminal inverted repeat but has lost all subterminal sites at the 5' end, which are recognized by tnpA protein, the most abundant product of the En/Spm transposable element system. The relatively high A2 gene expression of one a2-m1 allele is due to removal of almost all dSpm sequences by splicing. The slightly altered A2 enzyme is still functional as shown by complementation of an a2 mutant with the corresponding cDNA. The 5' and 3' splice sites are constituted by the termini of the dSpm element; it therefore represents a novel intron of the A2 gene. Images Fig. 3. Fig. 4. Fig. 6. Fig. 8. PMID:2170105

  11. A heroin addiction severity-associated intronic single nucleotide polymorphism modulates alternative pre-mRNA splicing of the μ opioid receptor gene OPRM1 via hnRNPH interactions.

    PubMed

    Xu, Jin; Lu, Zhigang; Xu, Mingming; Pan, Ling; Deng, Yi; Xie, Xiaohu; Liu, Huifen; Ding, Shixiong; Hurd, Yasmin L; Pasternak, Gavril W; Klein, Robert J; Cartegni, Luca; Zhou, Wenhua; Pan, Ying-Xian

    2014-08-13

    Single nucleotide polymorphisms (SNPs) in the OPRM1 gene have been associated with vulnerability to opioid dependence. The current study identifies an association of an intronic SNP (rs9479757) with the severity of heroin addiction among Han-Chinese male heroin addicts. Individual SNP analysis and haplotype-based analysis with additional SNPs in the OPRM1 locus showed that mild heroin addiction was associated with the AG genotype, whereas severe heroin addiction was associated with the GG genotype. In vitro studies such as electrophoretic mobility shift assay, minigene, siRNA, and antisense morpholino oligonucleotide studies have identified heterogeneous nuclear ribonucleoprotein H (hnRNPH) as the major binding partner for the G-containing SNP site. The G-to-A transition weakens hnRNPH binding and facilitates exon 2 skipping, leading to altered expressions of OPRM1 splice-variant mRNAs and hMOR-1 proteins. Similar changes in splicing and hMOR-1 proteins were observed in human postmortem prefrontal cortex with the AG genotype of this SNP when compared with the GG genotype. Interestingly, the altered splicing led to an increase in hMOR-1 protein levels despite decreased hMOR-1 mRNA levels, which is likely contributed by a concurrent increase in single transmembrane domain variants that have a chaperone-like function on MOR-1 protein stability. Our studies delineate the role of this SNP as a modifier of OPRM1 alternative splicing via hnRNPH interactions, and suggest a functional link between an SNP-containing splicing modifier and the severity of heroin addiction. Copyright © 2014 the authors 0270-6474/14/3411048-19$15.00/0.

  12. Morphine regulates expression of μ-opioid receptor MOR-1A, an intron-retention carboxyl terminal splice variant of the μ-opioid receptor (OPRM1) gene via miR-103/miR-107.

    PubMed

    Lu, Zhigang; Xu, Jin; Xu, Mingming; Pasternak, Gavril W; Pan, Ying-Xian

    2014-02-01

    The μ-opioid receptor (MOR-1) gene OPRM1 undergoes extensive alternative splicing, generating an array of splice variants. Of these variants, MOR-1A, an intron-retention carboxyl terminal splice variant identical to MOR-1 except for the terminal intracellular tail encoded by exon 3b, is quite abundant and conserved from rodent to humans. Increasing evidence indicates that miroRNAs (miRNAs) regulate MOR-1 expression and that μ agonists such as morphine modulate miRNA expression. However, little is known about miRNA regulation of the OPRM1 splice variants. Using 3'-rapid amplification cDNA end and Northern blot analyses, we identified the complete 3'-untranslated region (3'-UTR) for both mouse and human MOR-1A and their conserved polyadenylation site, and defined the role the 3'-UTR in mRNA stability using a luciferase reporter assay. Computer models predicted a conserved miR-103/107 targeting site in the 3'-UTR of both mouse and human MOR-1A. The functional relevance of miR-103/107 in regulating expression of MOR-1A protein through the consensus miR-103/107 binding sites in the 3'-UTR was established by using mutagenesis and a miR-107 inhibitor in transfected human embryonic kidney 293 cells and Be(2)C cells that endogenously express human MOR-1A. Chronic morphine treatment significantly upregulated miR-103 and miR-107 levels, leading to downregulation of polyribosome-associated MOR-1A in both Be(2)C cells and the striatum of a morphine-tolerant mouse, providing a new perspective on understanding the roles of miRNAs and OPRM1 splice variants in modulating the complex actions of morphine in animals and humans.

  13. A Heroin Addiction Severity-Associated Intronic Single Nucleotide Polymorphism Modulates Alternative Pre-mRNA Splicing of the μ Opioid Receptor Gene OPRM1 via hnRNPH Interactions

    PubMed Central

    Xu, Jin; Lu, Zhigang; Xu, Mingming; Pan, Ling; Deng, Yi; Xie, Xiaohu; Liu, Huifen; Ding, Shixiong; Hurd, Yasmin L.; Pasternak, Gavril W.; Klein, Robert J.; Cartegni, Luca

    2014-01-01

    Single nucleotide polymorphisms (SNPs) in the OPRM1 gene have been associated with vulnerability to opioid dependence. The current study identifies an association of an intronic SNP (rs9479757) with the severity of heroin addiction among Han-Chinese male heroin addicts. Individual SNP analysis and haplotype-based analysis with additional SNPs in the OPRM1 locus showed that mild heroin addiction was associated with the AG genotype, whereas severe heroin addiction was associated with the GG genotype. In vitro studies such as electrophoretic mobility shift assay, minigene, siRNA, and antisense morpholino oligonucleotide studies have identified heterogeneous nuclear ribonucleoprotein H (hnRNPH) as the major binding partner for the G-containing SNP site. The G-to-A transition weakens hnRNPH binding and facilitates exon 2 skipping, leading to altered expressions of OPRM1 splice-variant mRNAs and hMOR-1 proteins. Similar changes in splicing and hMOR-1 proteins were observed in human postmortem prefrontal cortex with the AG genotype of this SNP when compared with the GG genotype. Interestingly, the altered splicing led to an increase in hMOR-1 protein levels despite decreased hMOR-1 mRNA levels, which is likely contributed by a concurrent increase in single transmembrane domain variants that have a chaperone-like function on MOR-1 protein stability. Our studies delineate the role of this SNP as a modifier of OPRM1 alternative splicing via hnRNPH interactions, and suggest a functional link between an SNP-containing splicing modifier and the severity of heroin addiction. PMID:25122903

  14. Analysis of the 5' end of the Drosophila muscle myosin heavy chain gene. Alternatively spliced transcripts initiate at a single site and intron locations are conserved compared to myosin genes of other organisms.

    PubMed

    Wassenberg, D R; Kronert, W A; O'Donnell, P T; Bernstein, S I

    1987-08-05

    We have localized the transcription start site of the Drosophila melanogaster muscle myosin heavy chain (MHC) gene and find that all forms of the alternatively spliced MHC mRNA initiate at the same location. Therefore the alternative inclusion/exclusion of the 3' penultimate exon in transcripts from this gene (Bernstein, S.I., Hansen, C.J., Becker, K.D., Wassenberg, D.R., II, Roche, E.S., Donady, J.J., and Emerson, C. P., Jr. (1986) Mol. Cell. Biol. 6, 2511-2519; Rozek, C.E., and Davidson, N. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2128-2134) does not result from the use of different 5' transcription initiation sites. This gene is the first invertebrate MHC gene shown to have TATA and CAAT box consensus sequences and a noncoding 5' exon, properties that are shared with some vertebrate and invertebrate contractile protein genes. The intron that splits the 5' noncoding region of the Drosophila MHC gene contains no major conserved elements relative to other Drosophila contractile protein genes. The introns within the coding region near the 5' end of the Drosophila MHC gene are located at the same sites as nematode and vertebrate MHC gene introns, indicating that these MHC genes are derived from a common ancestral sequence. The putative ATP binding domain encoded in the fourth exon of the Drosophila MHC gene is highly conserved relative to vertebrate, invertebrate, and non-muscle MHC genes suggesting that each of these myosins bind ATP by the same mechanism. Two divergent copies of the third exon are present within the 5' region of the Drosophila MHC gene, suggesting that alternative splicing produces MHC isoforms with different globular head regions.

  15. The Ll.LtrB intron from Lactococcus lactis excises as circles in vivo: insights into the group II intron circularization pathway.

    PubMed

    Monat, Caroline; Quiroga, Cecilia; Laroche-Johnston, Felix; Cousineau, Benoit

    2015-07-01

    Group II introns are large ribozymes that require the assistance of intron-encoded or free-standing maturases to splice from their pre-mRNAs in vivo. They mainly splice through the classical branching pathway, being released as RNA lariats. However, group II introns can also splice through secondary pathways like hydrolysis and circularization leading to the release of linear and circular introns, respectively. Here, we assessed in vivo splicing of various constructs of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. The study of excised intron junctions revealed, in addition to branched intron lariats, the presence of perfect end-to-end intron circles and alternatively circularized introns. Removal of the branch point A residue prevented Ll.LtrB excision through the branching pathway but did not hinder intron circle formation. Complete intron RNA circles were found associated with the intron-encoded protein LtrA forming nevertheless inactive RNPs. Traces of double-stranded head-to-tail intron DNA junctions were also detected in L. lactis RNA and nucleic acid extracts. Some intron circles and alternatively circularized introns harbored variable number of non-encoded nucleotides at their splice junction. The presence of mRNA fragments at the splice junction of some intron RNA circles provides insights into the group II intron circularization pathway in bacteria.

  16. Reenacting the birth of an intron

    SciTech Connect

    Hellsten, Uffe; Aspden, Julie L.; Rio, Donald C.; Rokhsar, Daniel S.

    2011-07-01

    An intron is an extended genomic feature whose function requires multiple constrained positions - donor and acceptor splice sites, a branch point, a polypyrimidine tract and suitable splicing enhancers - that may be distributed over hundreds or thousands of nucleotides. New introns are therefore unlikely to emerge by incremental accumulation of functional sub-elements. Here we demonstrate that a functional intron can be created de novo in a single step by a segmental genomic duplication. This experiment recapitulates in vivo the birth of an intron that arose in the ancestral jawed vertebrate lineage nearly half a billion years ago.

  17. Origin and evolution of spliceosomal introns.

    PubMed

    Rogozin, Igor B; Carmel, Liran; Csuros, Miklos; Koonin, Eugene V

    2012-04-16

    Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded 'introns first' held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or

  18. Origin and evolution of spliceosomal introns

    PubMed Central

    2012-01-01

    Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome

  19. Group II Introns and Their Protein Collaborators

    NASA Astrophysics Data System (ADS)

    Solem, Amanda; Zingler, Nora; Pyle, Anna Marie; Li-Pook-Than, Jennifer

    Group II introns are an abundant class of autocatalytic introns that excise themselves from precursor mRNAs. Although group II introns are catalytic RNAs, they require the assistance of proteins for efficient splicing in vivo. Proteins that facilitate splicing of organellar group II introns fall into two main categories: intron-encoded maturases and host-encoded proteins. This chapter will focus on the host proteins that group II introns recruited to ensure their function. It will discuss the great diversity of these proteins, define common features, and describe different strategies employed to achieve specificity. Special emphasis will be placed on DEAD-box ATPases, currently the best studied example of host-encoded proteins with a role in group II intron splicing. Since the exact mechanisms by which splicing is facilitated is not known for any of the host proteins, general mechanistic strategies for protein-mediated RNA folding are described and assessed for their potential role in group II intron splicing.

  20. Cryptic splice sites and split genes.

    PubMed

    Kapustin, Yuri; Chan, Elcie; Sarkar, Rupa; Wong, Frederick; Vorechovsky, Igor; Winston, Robert M; Tatusova, Tatiana; Dibb, Nick J

    2011-08-01

    We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes.

  1. Cryptic splice sites and split genes

    PubMed Central

    Kapustin, Yuri; Chan, Elcie; Sarkar, Rupa; Wong, Frederick; Vorechovsky, Igor; Winston, Robert M.; Tatusova, Tatiana; Dibb, Nick J.

    2011-01-01

    We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes. PMID:21470962

  2. Aberrant Splicing in Transgenes Containing Introns, Exons, and V5 Epitopes: Lessons from Developing an FSHD Mouse Model Expressing a D4Z4 Repeat with Flanking Genomic Sequences

    PubMed Central

    Ansseau, Eugénie; Domire, Jacqueline S.; Wallace, Lindsay M.; Eidahl, Jocelyn O.; Guckes, Susan M.; Giesige, Carlee R.; Pyne, Nettie K.; Belayew, Alexandra; Harper, Scott Q.

    2015-01-01

    The DUX4 gene, encoded within D4Z4 repeats on human chromosome 4q35, has recently emerged as a key factor in the pathogenic mechanisms underlying Facioscapulohumeral muscular dystrophy (FSHD). This recognition prompted development of animal models expressing the DUX4 open reading frame (ORF) alone or embedded within D4Z4 repeats. In the first published model, we used adeno-associated viral vectors (AAV) and strong viral control elements (CMV promoter, SV40 poly A) to demonstrate that the DUX4 cDNA caused dose-dependent toxicity in mouse muscles. As a follow-up, we designed a second generation of DUX4-expressing AAV vectors to more faithfully genocopy the FSHD-permissive D4Z4 repeat region located at 4q35. This new vector (called AAV.D4Z4.V5.pLAM) contained the D4Z4/DUX4 promoter region, a V5 epitope-tagged DUX4 ORF, and the natural 3’ untranslated region (pLAM) harboring two small introns, DUX4 exons 2 and 3, and the non-canonical poly A signal required for stabilizing DUX4 mRNA in FSHD. AAV.D4Z4.V5.pLAM failed to recapitulate the robust pathology of our first generation vectors following delivery to mouse muscle. We found that the DUX4.V5 junction sequence created an unexpected splice donor in the pre-mRNA that was preferentially utilized to remove the V5 coding sequence and DUX4 stop codon, yielding non-functional DUX4 protein with 55 additional residues on its carboxyl-terminus. Importantly, we further found that aberrant splicing could occur in any expression construct containing a functional splice acceptor and sequences resembling minimal splice donors. Our findings represent an interesting case study with respect to AAV.D4Z4.V5.pLAM, but more broadly serve as a note of caution for designing constructs containing V5 epitope tags and/or transgenes with downstream introns and exons. PMID:25742305

  3. Spliceosome twin introns in fungal nuclear transcripts.

    PubMed

    Flipphi, Michel; Fekete, Erzsébet; Ag, Norbert; Scazzocchio, Claudio; Karaffa, Levente

    2013-08-01

    The spliceosome is an RNA/protein complex, responsible for intron excision from eukaryotic nuclear transcripts. In bacteria, mitochondria and plastids, intron excision does not involve the spliceosome, but occurs through mechanisms dependent on intron RNA secondary and tertiary structure. For group II/III chloroplast introns, "twintrons" (introns within introns) have been described. The excision of the external intron, and thus proper RNA maturation, necessitates prior removal of the internal intron, which interrupts crucial sequences of the former. We have here predicted analogous instances of spliceosomal twintrons ("stwintrons") in filamentous fungi. In two specific cases, where the internal intron interrupts the donor of the external intron after the first or after the second nucleotide, respectively, we show that intermediates with the sequence predicted by the "stwintron" hypothesis, are produced in the splicing process. This implies that two successive rounds of RNA scanning by the spliceosome are necessary to produce the mature mRNA. The phylogenetic distributions of the stwintrons we have identified suggest that they derive from "late" events, subsequent to the appearance of the host intron. They may well not be limited to fungal nuclear transcripts, and their generation and eventual disappearance in the evolutionary process are relevant to hypotheses of intron origin and alternative splicing.

  4. A novel A-isoform-like inositol 1,4,5-trisphosphate 3-kinase from chicken erythrocytes exhibits alternative splicing and conservation of intron positions between vertebrates and invertebrates.

    PubMed

    Bertsch, U; Haefs, M; Möller, M; Deschermeier, C; Fanick, W; Kitzerow, A; Ozaki, S; Meyer, H E; Mayr, G W

    1999-03-04

    Based on the partial peptide sequence of inositol 1,4, 5-trisphosphate 3-kinase purified with 135 000-fold enrichment from chicken erythrocytes, cDNA-fragments were cloned by RT-PCR using degenerate oligonucleotides. Subsequent hybridization screening of an embryonic chicken cDNA library and 5'-RACE yielded a cDNA-contig of 2418 bp, encoding a 452 amino acid protein. The amino acid sequence shows the highest degree of homology with A-isoforms of inositol 1,4,5-trisphosphate 3-kinase (65% identities), whereas homology towards B and C isoforms was lower (57% and 52% amino acid identities respectively). These findings reveal a new tissue-specific pattern of A-isoform expression, a form which so far has only been found in brain and testes. Two overlapping lambda-genomic clones for chicken inositol 1,4,5-trisphosphate 3-kinase, isolated by hybridization screening, covered 18 499 bp of genomic sequence. This contig included four exons: three of them were present in all cDNA clones, whereas one was only represented in a single cDNA clone. In addition, the sequence of the latter differed from the other cDNAs by an in-frame deletion of 72 bp within the coding region for the catalytic domain of the enzyme. This divergent cDNA suggests the existence of alternative splice products, at least in embryonic tissue.A comparison of the position of introns, with the respective introns known from the corresponding gene from Caenorhabditis elegans, revealed a high degree of conservation of intron positions between vertebrates and invertebrates. Functional data for the enzyme suggests that the conserved exons represent defined functional protein modules.

  5. A mutation in At-nMat1a, which encodes a nuclear gene having high similarity to group II intron maturase, causes impaired splicing of mitochondrial NAD4 transcript and altered carbon metabolism in Arabidopsis thaliana.

    PubMed

    Nakagawa, Naoki; Sakurai, Naoki

    2006-06-01

    To elucidate the mechanism of cellulose synthesis, we isolated a mutant of Arabidopsis (changed sensitivity to cellulose synthesis inhibitors 1, css1) that showed changed sensitivity to cellulose biosynthesis inhibitor. The analysis of phenotypes indicated that the css1 mutation influenced various fundamental metabolic pathways including amino acid metabolism, triacylglycerol degradation and polysaccharide synthesis (cellulose and starch) during the early stage of plant growth. Unexpectedly, the map-based cloning of the gene responsible for the css1 mutation identified a protein (At-nMat1a) that was assumed to be a splicing factor of the mitochondrial group II intron. In accordance with this result, this mutant exhibited improper splicing of the mitochondrial NAD4 transcript. We noticed that the phenotypes of the css1 mutant are similar to the responses to anoxia that hinders mitochondrial aerobic respiration. It seems that the defect in the function of mitochondria influences various aspects of fundamental cellular metabolism including cellulose synthesis. Our results suggested that sucrose synthase (SuSy), an enzyme involved in the biosynthesis of cellulose, plays key roles in the connection between mitochondria and cellulose synthesis. The isolation of the css1 mutant also provides a useful resource in the study of post-transcriptional gene regulation in mitochondria.

  6. SR proteins: a foot on the exon before the transition from intron to exon definition.

    PubMed

    Ram, Oren; Ast, Gil

    2007-01-01

    Two recent publications illuminate the evolution of alternative splicing, showing that a SR (serine-arginine-rich) protein that regulates alternative splicing in multicellular organisms is also found in a unicellular organism without alternative splicing, in which it can assist in the splicing of weak introns. Moreover, insertion of SR proteins into an organism lacking such proteins can restore the splicing of weak introns. These results imply that SR proteins had already facilitated the splicing of weak introns before the evolution of alternative splicing.

  7. An organellar maturase associates with multiple group II introns

    PubMed Central

    Zoschke, Reimo; Nakamura, Masayuki; Liere, Karsten; Sugiura, Masahiro; Börner, Thomas; Schmitz-Linneweber, Christian

    2010-01-01

    Bacterial group II introns encode maturase proteins required for splicing. In organelles of photosynthetic land plants, most of the group II introns have lost the reading frames for maturases. Here, we show that the plastidial maturase MatK not only interacts with its encoding intron within trnK-UUU, but also with six additional group II introns, all belonging to intron subclass IIA. Mapping analyses of RNA binding sites revealed MatK to recognize multiple regions within the trnK intron. Organellar group II introns are considered to be the ancestors of nuclear spliceosomal introns. That MatK associates with multiple intron ligands makes it an attractive model for an early trans-acting nuclear splicing activity. PMID:20133623

  8. Identification and molecular characterization of three new K+-channel specific toxins from the Chinese scorpion Mesobuthus martensii Karsch revealing intronic number polymorphism and alternative splicing in duplicated genes.

    PubMed

    Zeng, Xian-Chun; Zhang, Lei; Nie, Yao; Luo, Xuesong

    2012-04-01

    K(+)-channel specific toxins from scorpions are powerful probes used in the structural and functional characterization of different subfamilies of K(+)-channels which are thought to be the most diverse ion channels. However, only a limited number of K(+)-channel toxins have been identified from scorpions so far; moreover, little is known about the mechanisms for the generation of a combinatorial peptide library in a venom gland of a scorpion. Here, we identified and characterized three new K(+)-channel toxin-like peptides from the scorpion Mesobuthus martensii Karsch, which were referred to as BmKcug1, BmKcug2 and BmKcugx, respectively. BmKcug1 and BmKcug2 are two new members of α-KTx1 subfamily, and have been classified as α-KTx1.14 and α-KTx1.15, respectively. BmKcugx represents a new subfamily of K(+)-channel specific toxins which was classified into α-KTx22. BmKcugx was thus classified as α-KTx22.1. Genomic analysis demonstrated that BmKcugx gene has two exons interrupted by an intron inserted in the signal peptide encoding region, whereas BmKcug1a (a close homologue of BmKcug1)/BmKcug2 gene was interrupted by two introns, located within the 5'UTR of the gene and in the signal peptide encoding region, respectively. Transcriptomic analysis for the venom glands of M. martensii Karsch indicated that the abundances of the transcripts of BmKcug1a and BmKcug2 are much higher than that of BmKcugx; it suggests that the intron in 5'UTR could markedly increase the expression level of the K(+)-channel toxins. Alignment of the genomic sequences of BmKcug1a and BmKcug2 revealed that an alternative splicing event occurred at the intron 1-exon 2 junction in the 5'UTR of BmKcug2 transcript.

  9. Group II Introns: Mobile Ribozymes that Invade DNA

    PubMed Central

    Lambowitz, Alan M.; Zimmerly, Steven

    2011-01-01

    SUMMARY Group II introns are mobile ribozymes that self-splice from precursor RNAs to yield excised intron lariat RNAs, which then invade new genomic DNA sites by reverse splicing. The introns encode a reverse transcriptase that stabilizes the catalytically active RNA structure for forward and reverse splicing, and afterwards converts the integrated intron RNA back into DNA. The characteristics of group II introns suggest that they or their close relatives were evolutionary ancestors of spliceosomal introns, the spliceosome, and retrotransposons in eukaryotes. Further, their ribozyme-based DNA integration mechanism enabled the development of group II introns into gene targeting vectors (“targetrons”), which have the unique feature of readily programmable DNA target specificity. PMID:20463000

  10. Structural basis for exon recognition by a group II intron

    SciTech Connect

    Toor, Navtej; Rajashankar, Kanagalaghatta; Keating, Kevin S.; Pyle, Anna Marie

    2008-11-18

    Free group II introns are infectious retroelements that can bind and insert themselves into RNA and DNA molecules via reverse splicing. Here we report the 3.4-A crystal structure of a complex between an oligonucleotide target substrate and a group IIC intron, as well as the refined free intron structure. The structure of the complex reveals the conformation of motifs involved in exon recognition by group II introns.

  11. A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811 + 1.6kbA {yields} G, produces a new exon: High frequency in spanish cystic fibrosis chromosomes and association with severe phenotype

    SciTech Connect

    Chillon, M.; Casals, T.; Gimenez, J.; Ramos, D.; Nunes, V.; Estivill, X.; Doerk, T.; Will, K.; Fonknechten, N.

    1995-03-01

    mRNA analysis of the cystic fibrosis transmembrane regulator (CFTR) gene in tissues of cystic fibrosis (CF) patients has allowed us to detect a cryptic exon. The new exon involves 49 base pairs between exons 11 and 12 and is due to a point mutation (1811+1.6bA{yields}G) that creates a new donor splice site in intron 11. Semiquantitative mRNA analysis showed that 1811+1.6kbA{r_arrow}G-mRNA was 5-10-fold less abundant than {triangle}F508 mRNA. Mutations 1811+1.6kbA{yields}G was found in 21 Spanish and 1 German CF chromosome(s), making it the fourth-most-frequent mutation (2%) in the Spanish population. Individuals with genotype {triangle}F508/1811+1.6kbA{yields}G have only 1%-3% of normal CFTR mRNA. This loss of 97% of normal CFTR mRNA must be responsible for the pancreatic insufficiency and for the severe CF phenotype in these patients. 30 refs., 3 figs., 2 tabs.

  12. A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811+1.6kbA-->G, produces a new exon: high frequency in Spanish cystic fibrosis chromosomes and association with severe phenotype.

    PubMed Central

    Chillón, M; Dörk, T; Casals, T; Giménez, J; Fonknechten, N; Will, K; Ramos, D; Nunes, V; Estivill, X

    1995-01-01

    mRNA analysis of the cystic fibrosis transmembrane regulator (CFTR) gene in tissues of cystic fibrosis (CF) patients has allowed us to detect a cryptic exon. The new exon involves 49 base pairs between exons 11 and 12 and is due to a point mutation (1811+1.6kbA-->G) that creates a new donor splice site in intron 11. Semiquantitative mRNA analysis showed that 1811+1.6kbA-->G-mRNA was 5-10-fold less abundant than delta F508 mRNA. Mutation 1811+1.6kbA-->G was found in 21 Spanish and 1 German CF chromosomes, making it the fourth-most-frequent mutation (2%) in the Spanish population. Individuals with genotype delta F508/1811+1.6kbA-->G have only 1%-3% of normal CFTR mRNA. This loss of 97% of normal CFTR mRNA must be responsible for the pancreatic insufficiency and for the severe CF phenotype in these patients. Images Figure 3 PMID:7534040

  13. A novel transversion in the intron 5 donor splice junction of CYP2C19 and a sequence polymorphism in exon 3 contribute to the poor metabolizer phenotype for the anticonvulsant drug S-mephenytoin.

    PubMed

    Ibeanu, G C; Blaisdell, J; Ferguson, R J; Ghanayem, B I; Brosen, K; Benhamou, S; Bouchardy, C; Wilkinson, G R; Dayer, P; Goldstein, J A

    1999-08-01

    Cytochrome P-450 (CYP) 2C19 is responsible for the metabolism of a number of therapeutic agents such as S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Genetic polymorphisms in this enzyme are responsible for the poor metabolizers (PM) of mephenytoin, which represent approximately 13-23% of Asians and 3-5% of Caucasians. Several polymorphisms contribute to this phenotype. We have isolated two new allelic variants that contribute to the PM phenotype in Caucasians. CYP2C19*7 contained a single T --> A nucleotide transversion in the invariant GT at the 5' donor splice site of intron 5. The second PM allele, CYP2C19*8, consisted of a T358C nucleotide transition in exon 3 that results in a Trp120Arg substitution. In a bacterial expression system, CYP2C198 protein exhibited a dramatic (approximately 90% and 70%) reduction in the metabolism of S-mephenytoin and tolbutamide, respectively, when compared with the wild-type CYP2C191B protein. Restriction fragment length polymerase chain reaction tests were developed to identify the new allelic variants.

  14. Short intron-derived ncRNAs.

    PubMed

    Hubé, Florent; Ulveling, Damien; Sureau, Alain; Forveille, Sabrina; Francastel, Claire

    2017-05-05

    Introns represent almost half of the human genome, although they are eliminated from transcripts through RNA splicing. Yet, different classes of non-canonical miRNAs have been proposed to originate directly from intron splicing. Here, we considered the alternative splicing of introns as an interesting source of miRNAs, compatible with a developmental switch. We report computational prediction of new Short Intron-Derived ncRNAs (SID), defined as precursors of smaller ncRNAs like miRNAs and snoRNAs produced directly by splicing, and tested their dependence on each key factor in canonical or alternative miRNAs biogenesis (Drosha, DGCR8, DBR1, snRNP70, U2AF65, PRP8, Dicer, Ago2). We found that about half of predicted SID rely on debranching of the excised intron-lariat by the enzyme DBR1, as proposed for mirtrons. However, we identified new classes of SID for which miRNAs biogenesis may rely on intermingling between canonical and alternative pathways. We validated selected SID as putative miRNAs precursors and identified new endogenous miRNAs produced by non-canonical pathways, including one hosted in the first intron of SRA (Steroid Receptor RNA activator). Consistent with increased SRA intron retention during myogenic differentiation, release of SRA intron and its associated mature miRNA decreased in cells from healthy subjects but not from myotonic dystrophy patients with splicing defects. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. Results I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that

  16. Structure of a group II intron in complex with its reverse transcriptase.

    PubMed

    Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei

    2016-06-01

    Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.

  17. Crystal structure of a group II intron in the pre-catalytic state

    SciTech Connect

    Chan, Russell T.; Robart, Aaron R.; Rajashankar, Kanagalaghatta R.; Pyle, Anna Marie; Toor, Navtej

    2012-12-10

    Group II introns are self-splicing catalytic RNAs that are thought to be ancestral to the spliceosome. Here we report the 3.65-{angstrom} crystal structure of the group II intron from Oceanobacillus iheyensis in the pre-catalytic state. The structure reveals the conformation of the 5' splice site in the catalytic core and represents the first structure of an intron prior to the first step of splicing.

  18. Bacterial group I introns: mobile RNA catalysts

    PubMed Central

    2014-01-01

    Group I introns are intervening sequences that have invaded tRNA, rRNA and protein coding genes in bacteria and their phages. The ability of group I introns to self-splice from their host transcripts, by acting as ribozymes, potentially renders their insertion into genes phenotypically neutral. Some group I introns are mobile genetic elements due to encoded homing endonuclease genes that function in DNA-based mobility pathways to promote spread to intronless alleles. Group I introns have a limited distribution among bacteria and the current assumption is that they are benign selfish elements, although some introns and homing endonucleases are a source of genetic novelty as they have been co-opted by host genomes to provide regulatory functions. Questions regarding the origin and maintenance of group I introns among the bacteria and phages are also addressed. PMID:24612670

  19. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse.

    PubMed

    Khodor, Yevgenia L; Menet, Jerome S; Tolan, Michael; Rosbash, Michael

    2012-12-01

    Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. We recently showed that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, we analyze a recently generated, high-throughput sequencing data set of mouse liver nascent RNA, originally studied for circadian transcriptional regulation. Cotranscriptional splicing is approximately twofold less efficient in mouse liver than in Drosophila, i.e., nascent intron levels relative to exon levels are ∼0.55 in mouse versus 0.25 in the fly. An additional difference between species is that only mouse cotranscriptional splicing is optimal when 5'-exon length is between 50 and 500 bp, and intron length does not correlate with splicing efficiency, consistent with exon definition. A similar analysis of intron and exon length dependence in the fly is more consistent with intron definition. Contrasted with these differences are many similarities between the two systems: Alternatively annotated introns are less efficiently spliced cotranscriptionally than constitutive introns, and introns of single-intron genes are less efficiently spliced than introns from multi-intron genes. The most striking common feature is intron position: Cotranscriptional splicing is much more efficient when introns are far from the 3' ends of their genes. Additionally, absolute gene length correlates positively with cotranscriptional splicing efficiency independently of intron location and position, in flies as well as in mice. The gene length and distance effects indicate that more "nascent time" gives rise to greater cotranscriptional splicing efficiency in both systems.

  20. A segmental genomic duplication generates a functional intron

    PubMed Central

    Hellsten, Uffe; Aspden, Julie L.; Rio, Donald C.; Rokhsar, Daniel S.

    2011-01-01

    An intron is an extended genomic feature whose function requires multiple constrained positions—donor and acceptor splice sites, a branch point, a polypyrimidine tract and suitable splicing enhancers—that may be distributed over hundreds or thousands of nucleotides. New introns are therefore unlikely to emerge by incremental accumulation of functional sub-elements. Here we demonstrate that a functional intron can be created de novo in a single step by a segmental genomic duplication. This experiment recapitulates in vivo the birth of an intron that arose in the ancestral jawed vertebrate lineage nearly half-a-billion years ago. PMID:21878908

  1. Conserved intron positions in ancient protein modules

    PubMed Central

    de Roos, Albert DG

    2007-01-01

    Background The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt) derived from GenBank. Results A set of conserved intron positions was found by matching identical splice sites sequences from distantly-related eukaryotic kingdoms. Most amino acid sequences with conserved introns were homologous to consensus sequences of functional domains from conserved proteins including kinases, phosphatases, small GTPases, transporters and matrix proteins. These included ancient proteins that originated before the eukaryote-prokaryote split, for instance the catalytic domain of protein phosphatase 2A where a total of eleven conserved introns were found. Using an experimental setup in which the relation between a splice site and the ancientness of its surrounding sequence could be studied, it was found that the presence of an intron was positively correlated to the ancientness of its surrounding sequence. Intron phase conservation was linked to the conservation of the gene sequence and not to the splice site sequence itself. However, no apparent differences in phase distribution were found between introns in conserved versus non-conserved sequences. Conclusion The data confirm an origin of introns deep in the eukaryotic branch and is in concordance with the presence of introns in the first functional protein modules in an 'Exon theory of genes' scenario. A model is proposed in which shuffling of primordial short exonic sequences led to the formation of the first functional protein modules, in line with hypotheses that see the formation of introns integral to the origins of genome evolution. Reviewers This article was

  2. Mobile Introns Shape the Genetic Diversity of Their Host Genes.

    PubMed

    Repar, Jelena; Warnecke, Tobias

    2017-04-01

    Self-splicing introns populate several highly conserved protein-coding genes in fungal and plant mitochondria. In fungi, many of these introns have retained their ability to spread to intron-free target sites, often assisted by intron-encoded endonucleases that initiate the homing process. Here, leveraging population genomic data from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Lachancea kluyveri, we expose nonrandom patterns of genetic diversity in exons that border self-splicing introns. In particular, we show that, in all three species, the density of single nucleotide polymorphisms increases as one approaches a mobile intron. Through multiple lines of evidence, we rule out relaxed purifying selection as the cause of uneven nucleotide diversity. Instead, our findings implicate intron mobility as a direct driver of host gene diversity. We discuss two mechanistic scenarios that are consistent with the data: either endonuclease activity and subsequent error-prone repair have left a mutational footprint on the insertion environment of mobile introns or nonrandom patterns of genetic diversity are caused by exonic coconversion, which occurs when introns spread to empty target sites via homologous recombination. Importantly, however, we show that exonic coconversion can only explain diversity gradients near intron-exon boundaries if the conversion template comes from outside the population. In other words, there must be pervasive and ongoing horizontal gene transfer of self-splicing introns into extant fungal populations. Copyright © 2017 Repar and Warnecke.

  3. Evolution of the Exon-Intron Structure in Ciliate Genomes.

    PubMed

    Bondarenko, Vladyslav S; Gelfand, Mikhail S

    2016-01-01

    A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n) are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively), but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33-35 bp, 47-51 bp, and 78-80 bp). In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short introns in

  4. Evolution of the Exon-Intron Structure in Ciliate Genomes

    PubMed Central

    Gelfand, Mikhail S.

    2016-01-01

    A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus) possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n) are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively), but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33–35 bp, 47–51 bp, and 78–80 bp). In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short introns in

  5. Double-target Antisense U1snRNAs Correct Mis-splicing Due to c.639+861C>T and c.639+919G>A GLA Deep Intronic Mutations.

    PubMed

    Ferri, Lorenzo; Covello, Giuseppina; Caciotti, Anna; Guerrini, Renzo; Denti, Michela Alessandra; Morrone, Amelia

    2016-01-01

    Fabry disease is a rare X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (α-Gal A) enzyme, which is encoded by the GLA gene. GLA transcription in humans produces a major mRNA encoding α-Gal A and a minor mRNA of unknown function, which retains a 57-nucleotide-long cryptic exon between exons 4 and 5, bearing a premature termination codon. NM_000169.2:c.639+861C>T and NM_000169.2:c.639+919G>A GLA deep intronic mutations have been described to cause Fabry disease by inducing overexpression of the alternatively spliced mRNA, along with a dramatic decrease in the major one. Here, we built a wild-type GLA minigene and two minigenes that carry mutations c.639+861C>T and c.639+919G>A. Once transfected into cells, the minigenes recapitulate the molecular patterns observed in patients, at the mRNA, protein, and enzymatic level. We constructed a set of specific double-target U1asRNAs to correct c.639+861C>T and c.639+919G>A GLA mutations. Efficacy of U1asRNAs in inducing the skipping of the cryptic exon was evaluated upon their transient co-transfection with the minigenes in COS-1 cells, by real-time polymerase chain reaction (PCR), western blot analysis, and α-Gal A enzyme assay. We identified a set of U1asRNAs that efficiently restored α-Gal A enzyme activity and the correct splicing pathways in reporter minigenes. We also identified a unique U1asRNA correcting both mutations as efficently as the mutation-specific U1asRNAs. Our study proves that an exon skipping-based approach recovering α-Gal A activity in the c.639+861C>T and c.639+919G>A GLA mutations is active.

  6. Double-target Antisense U1snRNAs Correct Mis-splicing Due to c.639+861C>T and c.639+919G>A GLA Deep Intronic Mutations.

    PubMed

    Ferri, Lorenzo; Covello, Giuseppina; Caciotti, Anna; Guerrini, Renzo; Denti, Michela Alessandra; Morrone, Amelia

    2016-10-25

    Fabry disease is a rare X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (α-Gal A) enzyme, which is encoded by the GLA gene. GLA transcription in humans produces a major mRNA encoding α-Gal A and a minor mRNA of unknown function, which retains a 57-nucleotide-long cryptic exon between exons 4 and 5, bearing a premature termination codon. NM_000169.2:c.639+861C>T and NM_000169.2:c.639+919G>A GLA deep intronic mutations have been described to cause Fabry disease by inducing overexpression of the alternatively spliced mRNA, along with a dramatic decrease in the major one. Here, we built a wild-type GLA minigene and two minigenes that carry mutations c.639+861C>T and c.639+919G>A. Once transfected into cells, the minigenes recapitulate the molecular patterns observed in patients, at the mRNA, protein, and enzymatic level. We constructed a set of specific double-target U1asRNAs to correct c.639+861C>T and c.639+919G>A GLA mutations. Efficacy of U1asRNAs in inducing the skipping of the cryptic exon was evaluated upon their transient co-transfection with the minigenes in COS-1 cells, by real-time polymerase chain reaction (PCR), western blot analysis, and α-Gal A enzyme assay. We identified a set of U1asRNAs that efficiently restored α-Gal A enzyme activity and the correct splicing pathways in reporter minigenes. We also identified a unique U1asRNA correcting both mutations as efficently as the mutation-specific U1asRNAs. Our study proves that an exon skipping-based approach recovering α-Gal A activity in the c.639+861C>T and c.639+919G>A GLA mutations is active.

  7. Double-target Antisense U1snRNAs Correct Mis-splicing Due to c.639+861C>T and c.639+919G>A GLA Deep Intronic Mutations

    PubMed Central

    Ferri, Lorenzo; Covello, Giuseppina; Caciotti, Anna; Guerrini, Renzo; Denti, Michela Alessandra; Morrone, Amelia

    2016-01-01

    Fabry disease is a rare X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (α-Gal A) enzyme, which is encoded by the GLA gene. GLA transcription in humans produces a major mRNA encoding α-Gal A and a minor mRNA of unknown function, which retains a 57-nucleotide-long cryptic exon between exons 4 and 5, bearing a premature termination codon. NM_000169.2:c.639+861C>T and NM_000169.2:c.639+919G>A GLA deep intronic mutations have been described to cause Fabry disease by inducing overexpression of the alternatively spliced mRNA, along with a dramatic decrease in the major one. Here, we built a wild-type GLA minigene and two minigenes that carry mutations c.639+861C>T and c.639+919G>A. Once transfected into cells, the minigenes recapitulate the molecular patterns observed in patients, at the mRNA, protein, and enzymatic level. We constructed a set of specific double-target U1asRNAs to correct c.639+861C>T and c.639+919G>A GLA mutations. Efficacy of U1asRNAs in inducing the skipping of the cryptic exon was evaluated upon their transient co-transfection with the minigenes in COS-1 cells, by real-time polymerase chain reaction (PCR), western blot analysis, and α-Gal A enzyme assay. We identified a set of U1asRNAs that efficiently restored α-Gal A enzyme activity and the correct splicing pathways in reporter minigenes. We also identified a unique U1asRNA correcting both mutations as efficently as the mutation-specific U1asRNAs. Our study proves that an exon skipping-based approach recovering α-Gal A activity in the c.639+861C>T and c.639+919G>A GLA mutations is active. PMID:27779620

  8. Mammalian Introns: When the Junk Generates Molecular Diversity

    PubMed Central

    Hubé, Florent; Francastel, Claire

    2015-01-01

    Introns represent almost half of the human genome, yet their vast majority is eliminated from eukaryotic transcripts through RNA splicing. Nevertheless, they feature key elements and functions that deserve further interest. At the level of DNA, introns are genomic segments that can shelter independent transcription units for coding and non-coding RNAs which transcription may interfere with that of the host gene, and regulatory elements that can influence gene expression and splicing itself. From the RNA perspective, some introns can be subjected to alternative splicing. Intron retention appear to provide some plasticity to the nature of the protein produced, its distribution in a given cell type and timing of its translation. Intron retention may also serve as a switch to produce coding or non-coding RNAs from the same transcription unit. Conversely, splicing of introns has been directly implicated in the production of small regulatory RNAs. Hence, splicing of introns also appears to provide plasticity to the type of RNA produced from a genetic locus (coding, non-coding, short or long). We addressed these aspects to add to our understanding of mechanisms that control the fate of introns and could be instrumental in regulating genomic output and hence cell fate. PMID:25710723

  9. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5' UTR intron.

    PubMed

    Akua, Tsofit; Shaul, Orit

    2013-11-01

    The mechanisms that underlie the ability of some introns to increase gene expression, a phenomenon called intron-mediated enhancement (IME), are not fully understood. It is also not known why introns localized in the 5'-untranslated region (5' UTR) are considerably longer than downstream eukaryotic introns. It was hypothesized that this extra length results from the presence of some functional intronic elements. However, deletion analyses studies carried out thus far were unable to identify specific intronic regions necessary for IME. Using deletion analysis and a gain-of-function approach, an internal element that considerably increases translational efficiency, without affecting splicing, was identified in the 5' UTR intron of the Arabidopsis thaliana MHX gene. Moreover, the ability of this element to enhance translation was diminished by a minor downstream shift in the position of introns containing it from the 5' UTR into the coding sequence. These data suggest that some of the extra length of 5' UTR introns results from the presence of elements that enhance translation, and, moreover, from the ability of 5' UTR introns to provide preferable platforms for such elements over downstream introns. The impact of the identified intronic element on translational efficiency was augmented upon removal of neighbouring intronic elements. Interference between different intronic elements had not been reported thus far. This interference may support the bioinformatics-based idea that some of the extra sequence of 5' UTR introns is also necessary for separating different functional intronic elements.

  10. Protein splicing: selfish genes invade cellular proteins.

    PubMed

    Neff, N F

    1993-12-01

    Protein splicing is a series of enzymatic events involving intramolecular protein breakage, rejoining and intron homing, in which introns are able to promote the recombinative transposition of their own coding sequences. Eukaryotic and prokaryotic spliced proteins have conserved similar gene structure, but little amino acid identity. The genes coding for these spliced proteins contain internal in-frame introns that encode polypeptides that apparently self-excise from the resulting host protein sequences. Excision of the 'protein intron' is coupled with joining of the two flanking protein regions encoded by exons of the host gene. Some introns of this type encode DNA endonucleases, related to Group I RNA intron gene products, that stimulate gene conversion and self-transmission.

  11. Phylogenetically close group I introns with different positions among Paramecium bursaria photobionts imply a primitive stage of intron diversification.

    PubMed

    Hoshina, Ryo; Imamura, Nobutaka

    2009-06-01

    Group I introns are a distinct RNA group that catalyze their excision from precursor RNA transcripts and ligate the exons. Group I introns have a sporadic and highly biased distribution due to the two intron transfer mechanisms of homing and reverse splicing. These transfer pathways recognize assigned sequences even when introns are transferred beyond the species level. Consequently, introns at homologous gene sites between different host organisms are more related than those at heterologous sites within an organism. We describe the subgroup IE introns of two Chlorella species that are symbiotic green algae (photobionts) of a ciliate, Paramecium bursaria. One strain Chlorella sp. SW1-ZK (Csw.) had two IE introns at S651 and L2449, and the other strain Chlorella sp. OK1-ZK (Cok.) had four IE introns at S943, L1688, L1926, and L2184 (numbering reflects their homologous position in Escherichia coli rRNA gene: S = small subunit rRNA, L = large subunit rRNA). Despite locating on six heterologous sites, the introns formed a monophyletic clade independent of other groups. Phylogenetic and structural analyses of the introns indicated that Csw.L2449 has an archaic state, and the other introns are assumed to be originated from this intron. Some of the introns shared common internal guide sequences, which are necessary for misdirected transfer (i.e., transposition) via reverse splicing. Other introns, however, shared similar sequence fragments further upstream, after the insertions. We propose a hypothetical model to explain how these intron transpositions may have occurred in these photobionts; they transposed by a combination of homing-like event requiring relaxed sequence homology of recognition sequences and reverse splicing. This case study may represent a key to describe how group I intron explores new insertion sites.

  12. Bacterial Group II Introns: Identification and Mobility Assay.

    PubMed

    Toro, Nicolás; Molina-Sánchez, María Dolores; Nisa-Martínez, Rafael; Martínez-Abarca, Francisco; García-Rodríguez, Fernando Manuel

    2016-01-01

    Group II introns are large catalytic RNAs and mobile retroelements that encode a reverse transcriptase. Here, we provide methods for their identification in bacterial genomes and further analysis of their splicing and mobility capacities.

  13. The intron in centromeric noncoding RNA facilitates RNAi-mediated formation of heterochromatin.

    PubMed

    Mutazono, Masatoshi; Morita, Misato; Tsukahara, Chihiro; Chinen, Madoka; Nishioka, Shiori; Yumikake, Tatsuhiro; Dohke, Kohei; Sakamoto, Misuzu; Ideue, Takashi; Nakayama, Jun-Ichi; Ishii, Kojiro; Tani, Tokio

    2017-02-01

    In fission yeast, the formation of centromeric heterochromatin is induced through the RNA interference (RNAi)-mediated pathway. Some pre-mRNA splicing mutants (prp) exhibit defective formation of centromeric heterochromatin, suggesting that splicing factors play roles in the formation of heterochromatin, or alternatively that the defect is caused by impaired splicing of pre-mRNAs encoding RNAi factors. Herein, we demonstrate that the splicing factor spPrp16p is enriched at the centromere, and associates with Cid12p (a factor in the RNAi pathway) and the intron-containing dg ncRNA. Interestingly, removal of the dg intron, mutations of its splice sites, or replacement of the dg intron with an euchromatic intron significantly decreased H3K9 dimethylation. We also revealed that splicing of dg ncRNA is repressed in cells and its repression depends on the distance from the transcription start site to the intron. Inefficient splicing was also observed in other intron-containing centromeric ncRNAs, dh and antisense dg, and splicing of antisense dg ncRNA was repressed in the presence of the RNAi factors. Our results suggest that the introns retained in centromeric ncRNAs work as facilitators, co-operating with splicing factors assembled on the intron and serving as a platform for the recruitment of RNAi factors, in the formation of centromeric heterochromatin.

  14. The intron in centromeric noncoding RNA facilitates RNAi-mediated formation of heterochromatin

    PubMed Central

    Mutazono, Masatoshi; Morita, Misato; Tsukahara, Chihiro; Chinen, Madoka; Nishioka, Shiori; Yumikake, Tatsuhiro; Dohke, Kohei; Sakamoto, Misuzu; Ideue, Takashi; Nakayama, Jun-ichi; Ishii, Kojiro

    2017-01-01

    In fission yeast, the formation of centromeric heterochromatin is induced through the RNA interference (RNAi)-mediated pathway. Some pre-mRNA splicing mutants (prp) exhibit defective formation of centromeric heterochromatin, suggesting that splicing factors play roles in the formation of heterochromatin, or alternatively that the defect is caused by impaired splicing of pre-mRNAs encoding RNAi factors. Herein, we demonstrate that the splicing factor spPrp16p is enriched at the centromere, and associates with Cid12p (a factor in the RNAi pathway) and the intron-containing dg ncRNA. Interestingly, removal of the dg intron, mutations of its splice sites, or replacement of the dg intron with an euchromatic intron significantly decreased H3K9 dimethylation. We also revealed that splicing of dg ncRNA is repressed in cells and its repression depends on the distance from the transcription start site to the intron. Inefficient splicing was also observed in other intron-containing centromeric ncRNAs, dh and antisense dg, and splicing of antisense dg ncRNA was repressed in the presence of the RNAi factors. Our results suggest that the introns retained in centromeric ncRNAs work as facilitators, co-operating with splicing factors assembled on the intron and serving as a platform for the recruitment of RNAi factors, in the formation of centromeric heterochromatin. PMID:28231281

  15. Splicing in action: assessing disease causing sequence changes

    PubMed Central

    Baralle, D; Baralle, M

    2005-01-01

    Variations in new splicing regulatory elements are difficult to identify exclusively by sequence inspection and may result in deleterious effects on precursor (pre) mRNA splicing. These mutations can result in either complete skipping of the exon, retention of the intron, or the introduction of a new splice site within an exon or intron. Sometimes mutations that do not disrupt or create a splice site activate pre-existing pseudo splice sites, consistent with the proposal that introns contain splicing inhibitory sequences. These variants can also affect the fine balance of isoforms produced by alternatively spliced exons and in consequence cause disease. Available genomic pathology data reveal that we are still partly ignorant of the basic mechanisms that underlie the pre-mRNA splicing process. The fact that human pathology can provide pointers to new modulatory elements of splicing should be exploited. PMID:16199547

  16. FGLamide Allatostatin genes in Arthropoda: introns early or late?

    PubMed

    Martínez-Pérez, Francisco; Bendena, William G; Chang, Belinda S W; Tobe, Stephen S

    2009-07-01

    FGLamide allatostatins are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders and also show myomodulatory activity. The FGLamide allatostatin (AST) gene structure in Dictyoptera is intronless within the ORF, whereas in 9 species of Diptera, the FGLamide AST ORF has one intron. To investigate the evolutionary history of AST intron structure, (intron early versus intron late hypothesis), all available Arthropoda FGLamide AST gene sequences were examined from genome databases with reference to intron presence and position/phase. Three types of FGLamide AST ORF organization were found: intronless in I. scapularis and P. humanus corporis; one intron in D. pulex, A. pisum, A. mellifera and five Drosophila sp.; two introns in N. vitripennis, B. mori strains, A. aegypti, A. gambiae and C. quinquefasciatus. The literature suggests that for the majority of genes examined, most introns exist between codons (phase 0) which may reflect an ancient function of introns to separate protein modules. 60% of the FGLamide AST ORFs introns were between the first and second base within a codon (phase 1), 28% were between the second and third nucleotides within a codon (phase two) and 12% were phase 0. As would be required for correct intron splicing consensus sequence, 84% of introns were in codons starting with guanine. The positioning of introns was a maximum of 9 codons from a dibasic cleavage site. Our results suggest that the introns in the analyzed species support the intron late model.

  17. Chloroplast group III twintron excision utilizing multiple 5'- and 3'-splice sites.

    PubMed Central

    Copertino, D W; Shigeoka, S; Hallick, R B

    1992-01-01

    The chloroplast genes of Euglena gracilis contain more than 60 group II and 47 group III introns. Some Euglena chloroplast genes also contain twintrons, introns-within-introns. Two types of twintrons have previously been described, a group II twintron and a mixed group II/group III twintron. We report that four introns, three within the RNA polymerase subunit gene rpoC1 and one within ribosomal protein gene rpl16, with mean lengths twice typical group III introns, are a new type of twintron. The group III twintrons are composed of group III introns within other group III introns. The splicing of the twintrons was analyzed by PCR amplification, cloning and sequencing of cDNAs, and Northern hybridization. Excision of each group III twintron occurs by a two-step, sequential splicing pathway. Removal of the internal introns precedes excision of the external introns. Splicing of internal introns in three of the four group III twintrons involves multiple 5'- and/or 3'-splice sites. With two of the twintrons the proximal 5'-splice site can be spliced to an internal 3'-splice site, yielding alternative 'pseudo' fully spliced mRNAs. Excised group III introns of the rpl16 twintron are not linear RNA molecules but either lariat or circular RNAs, probably a lariat. The origins of alternative splicing and a possible evolutionary relationship between group II, group III and nuclear pre-mRNA introns are discussed. Images PMID:1464326

  18. Intron retention as a component of regulated gene expression programs.

    PubMed

    Jacob, Aishwarya G; Smith, Christopher W J

    2017-04-08

    Intron retention has long been an exemplar of regulated splicing with case studies of individual events serving as models that provided key mechanistic insights into the process of splicing control. In organisms such as plants and budding yeast, intron retention is well understood as a major mechanism of gene expression regulation. In contrast, in mammalian systems, the extent and functional significance of intron retention have, until recently, remained greatly underappreciated. Technical challenges to the global detection and quantitation of transcripts with retained introns have often led to intron retention being overlooked or dismissed as "noise". Now, however, with the wealth of information available from high-throughput deep sequencing, combined with focused computational and statistical analyses, we are able to distinguish clear intron retention patterns in various physiological and pathological contexts. Several recent studies have demonstrated intron retention as a central component of gene expression programs during normal development as well as in response to stress and disease. Furthermore, these studies revealed various ways in which intron retention regulates protein isoform production, RNA stability and translation efficiency, and rapid induction of expression via post-transcriptional splicing of retained introns. In this review, we highlight critical findings from these transcriptomic studies and discuss commonalties in the patterns prevalent in intron retention networks at the functional and regulatory levels.

  19. Mobile Introns Shape the Genetic Diversity of Their Host Genes

    PubMed Central

    Repar, Jelena; Warnecke, Tobias

    2017-01-01

    Self-splicing introns populate several highly conserved protein-coding genes in fungal and plant mitochondria. In fungi, many of these introns have retained their ability to spread to intron-free target sites, often assisted by intron-encoded endonucleases that initiate the homing process. Here, leveraging population genomic data from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Lachancea kluyveri, we expose nonrandom patterns of genetic diversity in exons that border self-splicing introns. In particular, we show that, in all three species, the density of single nucleotide polymorphisms increases as one approaches a mobile intron. Through multiple lines of evidence, we rule out relaxed purifying selection as the cause of uneven nucleotide diversity. Instead, our findings implicate intron mobility as a direct driver of host gene diversity. We discuss two mechanistic scenarios that are consistent with the data: either endonuclease activity and subsequent error-prone repair have left a mutational footprint on the insertion environment of mobile introns or nonrandom patterns of genetic diversity are caused by exonic coconversion, which occurs when introns spread to empty target sites via homologous recombination. Importantly, however, we show that exonic coconversion can only explain diversity gradients near intron–exon boundaries if the conversion template comes from outside the population. In other words, there must be pervasive and ongoing horizontal gene transfer of self-splicing introns into extant fungal populations. PMID:28193728

  20. Variation in sequence and organization of splicing regulatory elements in vertebrate genes

    PubMed Central

    Yeo, Gene; Hoon, Shawn; Venkatesh, Byrappa; Burge, Christopher B.

    2004-01-01

    Although core mechanisms and machinery of premRNA splicing are conserved from yeast to human, the details of intron recognition often differ, even between closely related organisms. For example, genes from the pufferfish Fugu rubripes generally contain one or more introns that are not properly spliced in mouse cells. Exploiting available genome sequence data, a battery of sequence analysis techniques was used to reach several conclusions about the organization and evolution of splicing regulatory elements in vertebrate genes. The classical splice site and putative branch site signals are completely conserved across the vertebrates studied (human, mouse, pufferfish, and zebrafish), and exonic splicing enhancers also appear broadly conserved in vertebrates. However, another class of splicing regulatory elements, the intronic splicing enhancers, appears to differ substantially between mammals and fish, with G triples (GGG) very abundant in mammalian introns but comparatively rare in fish. Conversely, short repeats of AC and GT are predicted to function as intronic splicing enhancers in fish but are not enriched in mammalian introns. Consistent with this pattern, exonic splicing enhancer-binding SR proteins are highly conserved across all vertebrates, whereas heterogeneous nuclear ribonucleoproteins, which bind many intronic sequences, vary in domain structure and even presence/absence between mammals and fish. Exploiting differences in intronic sequence composition, a statistical model was developed to predict the splicing phenotype of Fugu introns in mammalian systems and was used to engineer the spliceability of a Fugu intron in human cells by insertion of specific sequences, thereby rescuing splicing in human cells. PMID:15505203

  1. Identification and Validation of Evolutionarily Conserved Unusually Short Pre-mRNA Introns in the Human Genome

    PubMed Central

    Shimada, Makoto K.; Sasaki-Haraguchi, Noriko; Mayeda, Akila

    2015-01-01

    According to the length distribution of human introns, there is a large population of short introns with a threshold of 65 nucleotides (nt) and a peak at 85 nt. Using human genome and transcriptome databases, we investigated the introns shorter than 66 nt, termed ultra-short introns, the identities of which are scarcely known. Here, we provide for the first time a list of bona fide human ultra-short introns, which have never been characterized elsewhere. By conducting BLAST searches of the databases, we screened 22 introns (37–65 nt) with conserved lengths and sequences among closely related species. We then provide experimental and bioinformatic evidence for the splicing of 15 introns, of which 12 introns were remarkably G-rich and 9 introns contained completely inefficient splice sites and/or branch sites. These unorthodox characteristics of ultra-short introns suggest that there are unknown splicing mechanisms that differ from the well-established mechanism. PMID:25961948

  2. Splicing in Caenorhabditis elegans does not require an AG at the 3' splice acceptor site.

    PubMed Central

    Aroian, R V; Levy, A D; Koga, M; Ohshima, Y; Kramer, J M; Sternberg, P W

    1993-01-01

    The dinucleotide AG, found at the 3' end of virtually all eukaryotic pre-mRNA introns, is thought to be essential for splicing. Reduction-of-function mutations in two Caenorhabditis elegans genes, the receptor tyrosine kinase gene let-23 and the collagen gene dpy-10, both alter the AG at the end of a short (ca. 50-nucleotide) intron to AA. The in vivo effects of these mutations were studied by sequencing polymerase chain reaction-amplified reverse-transcribed RNA isolated from the two mutants. As expected, we find transcripts that splice to a cryptic AG, skip an exon, and retain an unspliced intron. However, we also find significant levels of splicing at the mutated 3' splice site (AA) and at nearby non-AG dinucleotides. Our results indicate that for short C. elegans introns an AG is not required for splicing at either the correct 3' splice site or incorrect sites. Analysis of a splice site mutant involving a longer, 316-nucleotide C. elegans intron indicates that an AG is also not required there for splicing. We hypothesize that elements besides the invariant AG, e.g., an A-U-rich region, a UUUC motif, and/or a potential branch point sequence, are directing the selection of the 3' splice site and that in wild-type genes these elements cooperate so that proper splicing occurs. Images PMID:8417357

  3. Circularization pathway of a bacterial group II intron

    PubMed Central

    Monat, Caroline; Cousineau, Benoit

    2016-01-01

    Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3′ splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria. PMID:26673697

  4. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    PubMed

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  5. The Brown Algae Pl.LSU/2 Group II Intron-Encoded Protein Has Functional Reverse Transcriptase and Maturase Activities

    PubMed Central

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner. PMID:23505475

  6. Predicted group II intron lineages E and F comprise catalytically active ribozymes.

    PubMed

    Nagy, Vivien; Pirakitikulr, Nathan; Zhou, Katherine Ismei; Chillón, Isabel; Luo, Jerome; Pyle, Anna Marie

    2013-09-01

    Group II introns are self-splicing, retrotransposable ribozymes that contribute to gene expression and evolution in most organisms. The ongoing identification of new group II introns and recent bioinformatic analyses have suggested that there are novel lineages, which include the group IIE and IIF introns. Because the function and biochemical activity of group IIE and IIF introns have never been experimentally tested and because these introns appear to have features that distinguish them from other introns, we set out to determine if they were indeed self-splicing, catalytically active RNA molecules. To this end, we transcribed and studied a set of diverse group IIE and IIF introns, quantitatively characterizing their in vitro self-splicing reactivity, ionic requirements, and reaction products. In addition, we used mutational analysis to determine the relative role of the EBS-IBS 1 and 2 recognition elements during splicing by these introns. We show that group IIE and IIF introns are indeed distinct active intron families, with different reactivities and structures. We show that the group IIE introns self-splice exclusively through the hydrolytic pathway, while group IIF introns can also catalyze transesterifications. Intriguingly, we observe one group IIF intron that forms circular intron. Finally, despite an apparent EBS2-IBS2 duplex in the sequences of these introns, we find that this interaction plays no role during self-splicing in vitro. It is now clear that the group IIE and IIF introns are functional ribozymes, with distinctive properties that may be useful for biotechnological applications, and which may contribute to the biology of host organisms.

  7. Predicted group II intron lineages E and F comprise catalytically active ribozymes

    PubMed Central

    Nagy, Vivien; Pirakitikulr, Nathan; Zhou, Katherine Ismei; Chillón, Isabel; Luo, Jerome; Pyle, Anna Marie

    2013-01-01

    Group II introns are self-splicing, retrotransposable ribozymes that contribute to gene expression and evolution in most organisms. The ongoing identification of new group II introns and recent bioinformatic analyses have suggested that there are novel lineages, which include the group IIE and IIF introns. Because the function and biochemical activity of group IIE and IIF introns have never been experimentally tested and because these introns appear to have features that distinguish them from other introns, we set out to determine if they were indeed self-splicing, catalytically active RNA molecules. To this end, we transcribed and studied a set of diverse group IIE and IIF introns, quantitatively characterizing their in vitro self-splicing reactivity, ionic requirements, and reaction products. In addition, we used mutational analysis to determine the relative role of the EBS-IBS 1 and 2 recognition elements during splicing by these introns. We show that group IIE and IIF introns are indeed distinct active intron families, with different reactivities and structures. We show that the group IIE introns self-splice exclusively through the hydrolytic pathway, while group IIF introns can also catalyze transesterifications. Intriguingly, we observe one group IIF intron that forms circular intron. Finally, despite an apparent EBS2-IBS2 duplex in the sequences of these introns, we find that this interaction plays no role during self-splicing in vitro. It is now clear that the group IIE and IIF introns are functional ribozymes, with distinctive properties that may be useful for biotechnological applications, and which may contribute to the biology of host organisms. PMID:23882113

  8. Intron evolution in Saccharomycetaceae.

    PubMed

    Hooks, Katarzyna B; Delneri, Daniela; Griffiths-Jones, Sam

    2014-09-01

    Introns in protein-coding genes are very rare in hemiascomycetous yeast genomes. It has been suggested that these species have experienced extensive intron loss during their evolution from the postulated intron-rich fungal ancestor. However, no intron-devoidy east species have been identified and some of the introns remaining within the genomes of intron-poor species, such as Saccharomyces cerevisiae, appear to be beneficial during growth under stress conditions. In order to reveal the pattern of intron retention within intron-poor yeast species and better understand the mechanisms of intron evolution, we generated a comprehensive set of 250 orthologous introns in the 20 species that comprise the Saccharomycetaceae, by analyzing RNA deep-sequencing data and alignments of intron-containing genes. Analysis of these intron sets shows that intron loss is at least two orders of magnitude more frequent than intron gain. Fine mapping of intron positions shows that intron sliding is rare, and that introns are almost always removed without changing the primary sequence of the encoded protein. The latter finding is consistent with the prevailing view that homologous recombination between reverse-transcribed mature mRNAs and the corresponding genomic locus is the primary mechanism of intron loss. However, we also find evidence that loss of a small number of introns is mediated by micro-homology, and that the number of intron losses is diminished in yeast species that have lost the microhomology end joining and nonhomologous end joining machinery.

  9. Intron Evolution in Saccharomycetaceae

    PubMed Central

    Hooks, Katarzyna B.; Delneri, Daniela; Griffiths-Jones, Sam

    2014-01-01

    Introns in protein-coding genes are very rare in hemiascomycetous yeast genomes. It has been suggested that these species have experienced extensive intron loss during their evolution from the postulated intron-rich fungal ancestor. However, no intron-devoid yeast species have been identified and some of the introns remaining within the genomes of intron-poor species, such as Saccharomyces cerevisiae, appear to be beneficial during growth under stress conditions. In order to reveal the pattern of intron retention within intron-poor yeast species and better understand the mechanisms of intron evolution, we generated a comprehensive set of 250 orthologous introns in the 20 species that comprise the Saccharomycetaceae, by analyzing RNA deep-sequencing data and alignments of intron-containing genes. Analysis of these intron sets shows that intron loss is at least two orders of magnitude more frequent than intron gain. Fine mapping of intron positions shows that intron sliding is rare, and that introns are almost always removed without changing the primary sequence of the encoded protein. The latter finding is consistent with the prevailing view that homologous recombination between reverse-transcribed mature mRNAs and the corresponding genomic locus is the primary mechanism of intron loss. However, we also find evidence that loss of a small number of introns is mediated by micro-homology, and that the number of intron losses is diminished in yeast species that have lost the microhomology end joining and nonhomologous end joining machinery. PMID:25364803

  10. RNA helicases in splicing.

    PubMed

    Cordin, Olivier; Beggs, Jean D

    2013-01-01

    In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.

  11. Association pattern mining of intron retention events in human based on hybrid learning machine.

    PubMed

    Hu, Hae-Jin; Goh, Sung-Ho; Lee, Yeon-Su

    2010-01-01

    Alternative splicing is a main component of protein diversity, and aberrant splicing is known to be one of the main causes of genetic disorders such as cancer. Many statistical and computational approaches have identified several major factors that determine the splicing event, such as exon/intron length, splice site strength, and density of splicing enhancers or silencers. These factors may be correlated with one another and thus result in a specific type of splicing, but there has not been a systematic approach to extracting comprehensible association patterns. Here, we attempted to understand the decision making process of the learning machine on intron retention event. We adopted a hybrid learning machine approach using a random forest and association rule mining algorithm to determine the governing factors of intron retention events and their combined effect on decision-making processes. By quantifying all candidate features into five category values, we enhanced the understandability of generated rules. The interesting features found by the random forest algorithm are that only the adenine- and thymine-based triplets such as ATA, TTA, and ATT, but not the known intronic splicing enhancer GGG triplet is shown the significant features. The rules generated by the association rule mining algorithm also show that constitutive introns are generally characterized by high adenine- and thymine-based triplet frequency (level 3 and above), 3' and 5' splice site scores, exonic splicing silencer scores, and intron length, whereas retained introns are characterized by low-level counterpart scores.

  12. Bioinformatics analysis of plant orthologous introns: identification of an intronic tRNA-like sequence.

    PubMed

    Akkuratov, Evgeny E; Walters, Lorraine; Saha-Mandal, Arnab; Khandekar, Sushant; Crawford, Erin; Zirbel, Craig L; Leisner, Scott; Prakash, Ashwin; Fedorova, Larisa; Fedorov, Alexei

    2014-09-10

    Orthologous introns have identical positions relative to the coding sequence in orthologous genes of different species. By analyzing the complete genomes of five plants we generated a database of 40,512 orthologous intron groups of dicotyledonous plants, 28,519 orthologous intron groups of angiosperms, and 15,726 of land plants (moss and angiosperms). Multiple sequence alignments of each orthologous intron group were obtained using the Mafft algorithm. The number of conserved regions in plant introns appeared to be hundreds of times fewer than that in mammals or vertebrates. Approximately three quarters of conserved intronic regions among angiosperms and dicots, in particular, correspond to alternatively-spliced exonic sequences. We registered only a handful of conserved intronic ncRNAs of flowering plants. However, the most evolutionarily conserved intronic region, which is ubiquitous for all plants examined in this study, including moss, possessed multiple structural features of tRNAs, which caused us to classify it as a putative tRNA-like ncRNA. Intronic sequences encoding tRNA-like structures are not unique to plants. Bioinformatics examination of the presence of tRNA inside introns revealed an unusually long-term association of four glycine tRNAs inside the Vac14 gene of fish, amniotes, and mammals.

  13. Birth of new spliceosomal introns in fungi by multiplication of introner-like elements.

    PubMed

    van der Burgt, Ate; Severing, Edouard; de Wit, Pierre J G M; Collemare, Jérôme

    2012-07-10

    Spliceosomal introns are noncoding sequences that separate exons in eukaryotic genes and are removed from pre-messenger RNAs by the splicing machinery. Their origin has remained a mystery in biology since their discovery because intron gains seem to be infrequent in many eukaryotic lineages. Although a few recent intron gains have been reported, none of the proposed gain mechanisms can convincingly explain the high number of introns in present-day eukaryotic genomes. Here we report on particular spliceosomal introns that share high sequence similarity and are reminiscent of introner elements. These elements multiplied in unrelated genes of six fungal genomes and account for the vast majority of intron gains in these fungal species. Such introner-like elements (ILEs) contain all typical characteristics of regular spliceosomal introns (RSIs) but are longer and predicted to harbor more stable secondary structures. However, dating of multiplication events showed that they degenerate in sequence and length within 100,000 years to eventually become indistinguishable from RSIs. We suggest that ILEs not only account for intron gains in six fungi but also in ancestral eukaryotes to give rise to most RSIs by a yet unknown multiplication mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Evolutionary convergence on highly-conserved 3' intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome.

    PubMed

    Irimia, Manuel; Roy, Scott William

    2008-08-08

    The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3' consensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3' splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene

  15. Retrohoming of a Mobile Group II Intron in Human Cells Suggests How Eukaryotes Limit Group II Intron Proliferation.

    PubMed

    Truong, David M; Hewitt, F Curtis; Hanson, Joseph H; Cui, Xiaoxia; Lambowitz, Alan M

    2015-08-01

    Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a "ribozyme") and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed "retrohoming". Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the

  16. Retrohoming of a Mobile Group II Intron in Human Cells Suggests How Eukaryotes Limit Group II Intron Proliferation

    PubMed Central

    Truong, David M.; Hewitt, F. Curtis; Hanson, Joseph H.; Cui, Xiaoxia; Lambowitz, Alan M.

    2015-01-01

    Mobile bacterial group II introns are evolutionary ancestors of spliceosomal introns and retroelements in eukaryotes. They consist of an autocatalytic intron RNA (a “ribozyme”) and an intron-encoded reverse transcriptase, which function together to promote intron integration into new DNA sites by a mechanism termed “retrohoming”. Although mobile group II introns splice and retrohome efficiently in bacteria, all examined thus far function inefficiently in eukaryotes, where their ribozyme activity is limited by low Mg2+ concentrations, and intron-containing transcripts are subject to nonsense-mediated decay (NMD) and translational repression. Here, by using RNA polymerase II to express a humanized group II intron reverse transcriptase and T7 RNA polymerase to express intron transcripts resistant to NMD, we find that simply supplementing culture medium with Mg2+ induces the Lactococcus lactis Ll.LtrB intron to retrohome into plasmid and chromosomal sites, the latter at frequencies up to ~0.1%, in viable HEK-293 cells. Surprisingly, under these conditions, the Ll.LtrB intron reverse transcriptase is required for retrohoming but not for RNA splicing as in bacteria. By using a genetic assay for in vivo selections combined with deep sequencing, we identified intron RNA mutations that enhance retrohoming in human cells, but <4-fold and not without added Mg2+. Further, the selected mutations lie outside the ribozyme catalytic core, which appears not readily modified to function efficiently at low Mg2+ concentrations. Our results reveal differences between group II intron retrohoming in human cells and bacteria and suggest constraints on critical nucleotide residues of the ribozyme core that limit how much group II intron retrohoming in eukaryotes can be enhanced. These findings have implications for group II intron use for gene targeting in eukaryotes and suggest how differences in intracellular Mg2+ concentrations between bacteria and eukarya may have impacted the

  17. Mechanism for DNA transposons to generate introns on genomic scales.

    PubMed

    Huff, Jason T; Zilberman, Daniel; Roy, Scott W

    2016-10-27

    The discovery of introns four decades ago was one of the most unexpected findings in molecular biology. Introns are sequences interrupting genes that must be removed as part of messenger RNA production. Genome sequencing projects have shown that most eukaryotic genes contain at least one intron, and frequently many. Comparison of these genomes reveals a history of long evolutionary periods during which few introns were gained, punctuated by episodes of rapid, extensive gain. However, although several detailed mechanisms for such episodic intron generation have been proposed, none has been empirically supported on a genomic scale. Here we show how short, non-autonomous DNA transposons independently generated hundreds to thousands of introns in the prasinophyte Micromonas pusilla and the pelagophyte Aureococcus anophagefferens. Each transposon carries one splice site. The other splice site is co-opted from the gene sequence that is duplicated upon transposon insertion, allowing perfect splicing out of the RNA. The distributions of sequences that can be co-opted are biased with respect to codons, and phasing of transposon-generated introns is similarly biased. These transposons insert between pre-existing nucleosomes, so that multiple nearby insertions generate nucleosome-sized intervening segments. Thus, transposon insertion and sequence co-option may explain the intron phase biases and prevalence of nucleosome-sized exons observed in eukaryotes. Overall, the two independent examples of proliferating elements illustrate a general DNA transposon mechanism that can plausibly account for episodes of rapid, extensive intron gain during eukaryotic evolution.

  18. Alternative splicing interference by xenobiotics.

    PubMed

    Zaharieva, Emanuela; Chipman, J Kevin; Soller, Matthias

    2012-06-14

    The protein coding sequence of most eukaryotic genes (exons) is interrupted by non-coding parts (introns), which are excised in a process termed splicing. To generate a mature messenger RNA (mRNA) hundreds of combinatorial protein-protein and RNA-protein interactions are required to splice out often very large introns with high fidelity and accuracy. Inherent to splicing is the use of alternative splice sites generating immense proteomic diversity from a limited number of genes. In humans, alternative splicing is a major mode of regulating gene expression, occurs in over 90% of genes and is particularly abundant in the brain. Only recently, it has been recognized that the complexity of the splicing process makes it susceptible to interference by various xenobiotics. These compounds include antineoplastic substances, commonly used drugs and food supplements and cause a spectrum of effects ranging from deleterious inhibition of general splicing to highly specific modifications of alternative splicing affecting only certain genes. Alterations in splicing have been implicated in numerous diseases such as cancer and neurodegeneration. Splicing regulation plays an important role in the execution of programmed cell death. The switch between anti- and pro-apoptotic isoforms by alternative splice site selection and misregulation of a number of splicing factors impacts on cell survival and disease. Here, our current knowledge is summarized on compounds interfering with general and alternative splicing and of the current methodology to study changes in these processes relevant to the field of toxicology and future risk assessments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Recursive splicing in long vertebrate genes.

    PubMed

    Sibley, Christopher R; Emmett, Warren; Blazquez, Lorea; Faro, Ana; Haberman, Nejc; Briese, Michael; Trabzuni, Daniah; Ryten, Mina; Weale, Michael E; Hardy, John; Modic, Miha; Curk, Tomaž; Wilson, Stephen W; Plagnol, Vincent; Ule, Jernej

    2015-05-21

    It is generally believed that splicing removes introns as single units from precursor messenger RNA transcripts. However, some long Drosophila melanogaster introns contain a cryptic site, known as a recursive splice site (RS-site), that enables a multi-step process of intron removal termed recursive splicing. The extent to which recursive splicing occurs in other species and its mechanistic basis have not been examined. Here we identify highly conserved RS-sites in genes expressed in the mammalian brain that encode proteins functioning in neuronal development. Moreover, the RS-sites are found in some of the longest introns across vertebrates. We find that vertebrate recursive splicing requires initial definition of an 'RS-exon' that follows the RS-site. The RS-exon is then excluded from the dominant mRNA isoform owing to competition with a reconstituted 5' splice site formed at the RS-site after the first splicing step. Conversely, the RS-exon is included when preceded by cryptic promoters or exons that fail to reconstitute an efficient 5' splice site. Most RS-exons contain a premature stop codon such that their inclusion can decrease mRNA stability. Thus, by establishing a binary splicing switch, RS-sites demarcate different mRNA isoforms emerging from long genes by coupling cryptic elements with inclusion of RS-exons.

  20. Intron Length Coevolution across Mammalian Genomes.

    PubMed

    Keane, Peter A; Seoighe, Cathal

    2016-10-01

    Although they do not contribute directly to the proteome, introns frequently contain regulatory elements and can extend the protein coding potential of the genome through alternative splicing. For some genes, the contribution of introns to the time required for transcription can also be functionally significant. We have previously shown that intron length in genes associated with developmental patterning is often highly conserved. In general, sets of genes that require precise coordination in the timing of their expression may be sensitive to changes in transcript length. A prediction of this hypothesis is that evolutionary changes in intron length, when they occur, may be correlated between sets of coordinately expressed genes. To test this hypothesis, we analyzed intron length coevolution in alignments from nine eutherian mammals. Overall, genes that belong to the same protein complex or that are coexpressed were significantly more likely to show evidence of intron length coevolution than matched, randomly sampled genes. Individually, protein complexes involved in the cell cycle showed the strongest evidence of coevolution of intron lengths and clusters of coexpressed genes enriched for cell cycle genes also showed significant evidence of intron length coevolution. Our results reveal a novel aspect of gene coevolution and provide a means to identify genes, protein complexes and biological processes that may be particularly sensitive to changes in transcriptional dynamics. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Intron Length Coevolution across Mammalian Genomes

    PubMed Central

    Keane, Peter A.; Seoighe, Cathal

    2016-01-01

    Although they do not contribute directly to the proteome, introns frequently contain regulatory elements and can extend the protein coding potential of the genome through alternative splicing. For some genes, the contribution of introns to the time required for transcription can also be functionally significant. We have previously shown that intron length in genes associated with developmental patterning is often highly conserved. In general, sets of genes that require precise coordination in the timing of their expression may be sensitive to changes in transcript length. A prediction of this hypothesis is that evolutionary changes in intron length, when they occur, may be correlated between sets of coordinately expressed genes. To test this hypothesis, we analyzed intron length coevolution in alignments from nine eutherian mammals. Overall, genes that belong to the same protein complex or that are coexpressed were significantly more likely to show evidence of intron length coevolution than matched, randomly sampled genes. Individually, protein complexes involved in the cell cycle showed the strongest evidence of coevolution of intron lengths and clusters of coexpressed genes enriched for cell cycle genes also showed significant evidence of intron length coevolution. Our results reveal a novel aspect of gene coevolution and provide a means to identify genes, protein complexes and biological processes that may be particularly sensitive to changes in transcriptional dynamics. PMID:27550903

  2. Mechanisms Used for Genomic Proliferation by Thermophilic Group II Introns

    PubMed Central

    Mohr, Georg; Ghanem, Eman; Lambowitz, Alan M.

    2010-01-01

    Mobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelments hypothesized to be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however, contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which contains 28 closely related copies of a group II intron, constituting ∼1.3% of the genome. Here, by using a combination of bioinformatics and mobility assays at different temperatures, we identified mechanisms that contribute to the proliferation of T. elongatus group II introns. These mechanisms include divergence of DNA target specificity to avoid target site saturation; adaptation of some intron-encoded reverse transcriptases to splice and mobilize multiple degenerate introns that do not encode reverse transcriptases, leading to a common splicing apparatus; and preferential insertion within other mobile introns or insertion elements, which provide new unoccupied sites in expanding non-essential DNA regions. Additionally, unlike mesophilic group II introns, the thermophilic T. elongatus introns rely on elevated temperatures to help promote DNA strand separation, enabling access to a larger number of DNA target sites by base pairing of the intron RNA, with minimal constraint from the reverse transcriptase. Our results provide insight into group II intron proliferation mechanisms and show that higher temperatures, which are thought to have prevailed on Earth during the emergence of eukaryotes, favor intron proliferation by increasing the accessibility of DNA target sites. We also identify actively mobile thermophilic introns, which may be useful for structural studies, gene targeting in thermophiles, and as a source of thermostable reverse transcriptases. PMID:20543989

  3. Higher frequency of intron loss from the promoter proximally paused genes of Drosophila melanogaster.

    PubMed

    Jiang, Li; Li, Xue-Nan; Niu, Deng-Ke

    2014-01-01

    Although intron losses have been widely reported, it is not clear whether they are neutral and therefore random or driven by positive selection. Intron transcription and splicing are time-consuming and can delay the expression of its host gene. For genes that must be activated quickly to respond to physiological or stress signals, intron delay may be deleterious. Promoter proximally paused (PPP) genes are a group of rapidly expressed genes. To respond quickly to activation signals, they generally initiate transcription competently but stall after synthesizing a short RNA. In this study, performed in Drosophila melanogaster, the PPP genes were found to have a significantly higher rate of intron loss than control genes. However, further analysis did not find more significant shrinkage of intron size in PPP genes. Referring to previous studies on the rates of transcription and splicing and to the time saved by deletion of the introns from mouse gene Hes7, it is here suggested that transcription delay is comparable to splicing delay only when the intron is 28.5 kb or larger, which is greater in size than 95% of vertebrate introns, 99.5% of Drosophila introns, and all the annotated introns of Saccharomyces cerevisiae and Arabidopsis thaliana. Delays in intron splicing are probably a selective force, promoting intron loss from quickly expressed genes. In other genes, it may have been an exaptation during the emergency of developmental clocks.

  4. Reverse transcriptase and intron number evolution

    PubMed Central

    Kuo, Alan; Grigoriev, Igor V.

    2014-01-01

    Background Introns are universal in eukaryotic genomes and play important roles in transcriptional regulation, mRNA export to the cytoplasm, nonsense-mediated decay as both a regulatory and a splicing quality control mechanism, R-loop avoidance, alternative splicing, chromatin structure, and evolution by exon-shuffling. Methods Sixteen complete fungal genomes were used 13 of which were sequenced and annotated by JGI. Ustilago maydis, Cryptococcus neoformans, and Coprinus cinereus (also named Coprinopsis cinerea) were from the Broad Institute. Gene models from JGI-annotated genomes were taken from the GeneCatalog track that contained the best representative gene models. Varying fractions of the GeneCatalog were manually curated by external users. For clarity, we used the JGI unique database identifier. Results The last common ancestor of eukaryotes (LECA) has an estimated 6.4 coding exons per gene (EPG) and evolved into the diverse eukaryotic life forms, which is recapitulated by the development of a stem cell. We found a parallel between the simulated reverse transcriptase (RT)-mediated intron loss and the comparative analysis of 16 fungal genomes that spanned a wide range of intron density. Although footprints of RT (RTF) were dynamic, relative intron location (RIL) to the 5'-end of mRNA faithfully traced RT-mediated intron loss and revealed 7.7 EPG for LECA. The mode of exon length distribution was conserved in simulated intron loss, which was exemplified by the shared mode of 75 nt between fungal and Chlamydomonas genomes. The dominant ancient exon length was corroborated by the average exon length of the most intron-rich genes in fungal genomes and consistent with ancient protein modules being ~25 aa. Combined with the conservation of a protein length of 400 aa, the earliest ancestor of eukaryotes could have 16 EPG. During earlier evolution, Ascomycota’s ancestor had significantly more 3'-biased RT-mediated intron loss that was followed by dramatic RTF loss

  5. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    PubMed

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html.

  6. Evolutionary dynamics of U12-type spliceosomal introns

    PubMed Central

    2010-01-01

    Background Many multicellular eukaryotes have two types of spliceosomes for the removal of introns from messenger RNA precursors. The major (U2) spliceosome processes the vast majority of introns, referred to as U2-type introns, while the minor (U12) spliceosome removes a small fraction (less than 0.5%) of introns, referred to as U12-type introns. U12-type introns have distinct sequence elements and usually occur together in genes with U2-type introns. A phylogenetic distribution of U12-type introns shows that the minor splicing pathway appeared very early in eukaryotic evolution and has been lost repeatedly. Results We have investigated the evolution of U12-type introns among eighteen metazoan genomes by analyzing orthologous U12-type intron clusters. Examination of gain, loss, and type switching shows that intron type is remarkably conserved among vertebrates. Among 180 intron clusters, only eight show intron loss in any vertebrate species and only five show conversion between the U12 and the U2-type. Although there are only nineteen U12-type introns in Drosophila melanogaster, we found one case of U2 to U12-type conversion, apparently mediated by the activation of cryptic U12 splice sites early in the dipteran lineage. Overall, loss of U12-type introns is more common than conversion to U2-type and the U12 to U2 conversion occurs more frequently among introns of the GT-AG subtype than among introns of the AT-AC subtype. We also found support for natural U12-type introns with non-canonical terminal dinucleotides (CT-AC, GG-AG, and GA-AG) that have not been previously reported. Conclusions Although complete loss of the U12-type spliceosome has occurred repeatedly, U12 introns are extremely stable in some taxa, including eutheria. Loss of U12 introns or the genes containing them is more common than conversion to the U2-type. The degeneracy of U12-type terminal dinucleotides among natural U12-type introns is higher than previously thought. PMID:20163699

  7. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA.

    PubMed

    Nishida, Atsushi; Minegishi, Maki; Takeuchi, Atsuko; Niba, Emma Tabe Eko; Awano, Hiroyuki; Lee, Tomoko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2015-06-01

    The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), comprises 79 exons that show multiple alternative splicing events. Intron retention, a type of alternative splicing, may control gene expression. We examined intron retention in dystrophin introns by reverse-transcription PCR from skeletal muscle, focusing on the nine shortest (all <1000 bp), because these are more likely to be retained. Only one, intron 40, was retained in mRNA; sequencing revealed insertion of a complete intron 40 (851 nt) between exons 40 and 41. The intron 40 retention product accounted for 1.2% of the total product but had a premature stop codon at the fifth intronic codon. Intron 40 retention was most strongly observed in the kidney (36.6%) and was not obtained from the fetal liver, lung, spleen or placenta. This indicated that intron retention is a tissue-specific event whose level varies among tissues. In two DMD patients, intron 40 retention was observed in one patient but not in the other. Examination of splicing regulatory factors revealed that intron 40 had the highest guanine-cytosine content of all examined introns in a 30-nt segment at its 3' end. Further studies are needed to clarify the biological role of intron 40-retained dystrophin mRNA.

  8. RNA splicing during terminal erythropoiesis.

    PubMed

    Conboy, John G

    2017-05-01

    Erythroid progenitors must accurately and efficiently splice thousands of pre-mRNAs as the cells undergo extensive changes in gene expression and cellular remodeling during terminal erythropoiesis. Alternative splicing choices are governed by interactions between RNA binding proteins and cis-regulatory binding motifs in the RNA. This review will focus on recent studies that define the genome-wide scope of splicing in erythroblasts and discuss what is known about its regulation. RNA-seq analysis of highly purified erythroblast populations has revealed an extensive program of alternative splicing of both exons and introns. During normal erythropoiesis, stage-specific splicing transitions alter the structure and abundance of protein isoforms required for optimized red cell production. Mutation or deficiency of splicing regulators underlies hematopoietic disease in myelopdysplasia syndrome patients via disrupting the splicing program. Erythroid progenitors execute an elaborate alternative splicing program that modulates gene expression posttranscriptionally, ultimately regulating the structure and function of the proteome in a differentiation stage-specific manner during terminal erythropoiesis. This program helps drive differentiation and ensure synthesis of the proper protein isoforms required to produce mechanically stable red cells. Mutation or deficiency of key splicing regulatory proteins disrupts the splicing program to cause disease.

  9. The Euglena gracilis intron-encoded mat2 locus is interrupted by three additional group II introns.

    PubMed Central

    Zhang, L; Jenkins, K P; Stutz, E; Hallick, R B

    1995-01-01

    The 4,144 nt Euglena gracilis chloroplast psbC intron 2 has been characterized as a single, cis-spliced 593 nt group II intron interrupted by an open reading frame of 758 codons in the loop region of domain IV. The 2,277 nt coding region of orf 758 is interrupted by two additional group II introns of 369 nt and 352 nt. Another 553 nt group II intron is located in the 5' untranslated leader region of orf 758. Because the psbC intron 2 orf encodes a maturase-like protein that has reverse transcriptase domains and a domain X characteristic of group II intron-encoded proteins, the locus has been designated mat2. The psbC intron 2 is the first member of a new category of twintron, characterized by introns within a gene within another intron. A potential role of psbC intron 2 as a "founder" intron involved in the spread of introns to new sites in the plastid genome of the Euglenophycae is discussed. PMID:8595563

  10. The Euglena gracilis intron-encoded mat2 locus is interrupted by three additional group II introns.

    PubMed

    Zhang, L; Jenkins, K P; Stutz, E; Hallick, R B

    1995-12-01

    The 4,144 nt Euglena gracilis chloroplast psbC intron 2 has been characterized as a single, cis-spliced 593 nt group II intron interrupted by an open reading frame of 758 codons in the loop region of domain IV. The 2,277 nt coding region of orf 758 is interrupted by two additional group II introns of 369 nt and 352 nt. Another 553 nt group II intron is located in the 5' untranslated leader region of orf 758. Because the psbC intron 2 orf encodes a maturase-like protein that has reverse transcriptase domains and a domain X characteristic of group II intron-encoded proteins, the locus has been designated mat2. The psbC intron 2 is the first member of a new category of twintron, characterized by introns within a gene within another intron. A potential role of psbC intron 2 as a "founder" intron involved in the spread of introns to new sites in the plastid genome of the Euglenophycae is discussed.

  11. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

    PubMed

    Xiong, Hui Y; Alipanahi, Babak; Lee, Leo J; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K C; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S; Hughes, Timothy R; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R; Jojic, Nebojsa; Scherer, Stephen W; Blencowe, Benjamin J; Frey, Brendan J

    2015-01-09

    To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine.

  12. Both the polypyrimidine tract and the 3' splice site function prior to the first step of splicing in fission yeast.

    PubMed

    Romfo, C M; Wise, J A

    1997-11-15

    While it is known that several trans -acting splicing factors are highly conserved between Schizosaccharomyces pombe and mammals, the roles of cis -acting signals have received comparatively little attention. In Saccharomyces cerevisiae, sequences downstream from the branch point are not required prior to the first transesterification reaction, whereas in mammals the polypyrimidine tract and, in some introns, the 3' AG dinucleotide are critical for initial recognition of an intron. We have investigated the contribution of these two sequence elements to splicing in S.pombe. To determine the stage at which the polypyrimidine tract functions, we analyzed the second intron of the cdc2 gene (cdc 2-Int2), in which pyrimidines span the entire interval between the branch point and 3' splice site. Our data indicate that substitution of a polypurine tract results in accumulation of linear pre-mRNA, while expanding the polypyrimidine tract enhances splicing efficiency, as in mammals. To examine the role of the AG dinucleotide in cdc 2-Int2 splicing, we mutated the 3' splice junction in both the wild-type and pyrimidine tract variant RNAs. These changes block the first transesterification reaction, as in a subset of mammalian introns. However, in contrast to the situation in mammals, we were unable to rescue the first step of splicing in a 3' splice site mutant by expanding the polypyrimidine tract. Mutating the terminal G in the third intron of the nda 3 gene (nda 3-Int3) also blocks the first transesterification reaction, suggesting that early recognition of the 3' splice site is a general property of fission yeast introns. Counter to earlier work with an artificial intron, it is not possible to restore the first step of splicing in cdc 2-Int2 and nda 3-Int3 3' splice site mutants by introducing compensatory changes in U1 snRNA. These results highlight the diversity and probable redundancy of mechanisms for identifying the 3' ends of introns.

  13. Conserved RNA secondary structures promote alternative splicing.

    PubMed

    Shepard, Peter J; Hertel, Klemens J

    2008-08-01

    Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site strength, splicing regulators, the exon/intron architecture, and the process of pre-mRNA synthesis itself. RNA secondary structures have also been proposed to influence alternative splicing as stable RNA secondary structures that mask splice sites are expected to interfere with splice-site recognition. Using structural and functional conservation, we identified RNA structure elements within the human genome that associate with alternative splice-site selection. Their frequent involvement with alternative splicing demonstrates that RNA structure formation is an important mechanism regulating gene expression and disease.

  14. RNA-splicing endonuclease structure and function.

    PubMed

    Calvin, K; Li, H

    2008-04-01

    The RNA-splicing endonuclease is an evolutionarily conserved enzyme responsible for the excision of introns from nuclear transfer RNA (tRNA) and all archaeal RNAs. Since its first identification from yeast in the late 1970s, significant progress has been made toward understanding the biochemical mechanisms of this enzyme. Four families of the splicing endonucleases possessing the same active sites and overall architecture but with different subunit compositions have been identified. Two related consensus structures of the precursor RNA splice sites and the critical elements required for intron excision have been established. More recently, a glimpse was obtained of the structural mechanism by which the endonuclease recognizes the consensus RNA structures and cleaves at the splice sites. This review summarizes these findings and discusses their implications in the evolution of intron removal processes.

  15. Alternative Splicing in Next Generation Sequencing Data of Saccharomyces cerevisiae

    PubMed Central

    Schreiber, Konrad; Csaba, Gergely; Haslbeck, Martin; Zimmer, Ralf

    2015-01-01

    mRNA splicing is required in about 4% of protein coding genes in Saccharomyces cerevisiae. The gene structure of those genes is simple, generally comprising two exons and one intron. In order to characterize the impact of alternative splicing on the S. cerevisiae transcriptome, we perform a systematic analysis of mRNA sequencing data. We find evidence of a pervasive use of alternative splice sites and detect several novel introns both within and outside protein coding regions. We also find a predominance of alternative splicing on the 3’ side of introns, a finding which is consistent with existing knowledge on conservation of exon-intron boundaries in S. cerevisiae. Some of the alternatively spliced transcripts allow for a translation into different protein products. PMID:26469855

  16. Handling tRNA introns, archaeal way and eukaryotic way

    PubMed Central

    Yoshihisa, Tohru

    2014-01-01

    Introns are found in various tRNA genes in all the three kingdoms of life. Especially, archaeal and eukaryotic genomes are good sources of tRNA introns that are removed by proteinaceous splicing machinery. Most intron-containing tRNA genes both in archaea and eukaryotes possess an intron at a so-called canonical position, one nucleotide 3′ to their anticodon, while recent bioinformatics have revealed unusual types of tRNA introns and their derivatives especially in archaeal genomes. Gain and loss of tRNA introns during various stages of evolution are obvious both in archaea and eukaryotes from analyses of comparative genomics. The splicing of tRNA molecules has been studied extensively from biochemical and cell biological points of view, and such analyses of eukaryotic systems provided interesting findings in the past years. Here, I summarize recent progresses in the analyses of tRNA introns and the splicing process, and try to clarify new and old questions to be solved in the next stages. PMID:25071838

  17. The horsetail Equisetum arvense mitochondria share two group I introns with the liverwort Marchantia, acquired a novel group II intron but lost intron-encoded ORFs.

    PubMed

    Bégu, Dominique; Araya, Alejandro

    2009-02-01

    We studied the genomic structure and RNA editing of mitochondrial cox1, cox2, cob and atp9 from the horsetail Equisetum arvense, a representative of an old fern lineage. Editing of cox1, cob and atp9 mRNAs occur only by C-to-U transitions. No changes were found in cox2 transcripts constituting one of the rare examples of unedited mitochondrial mRNA in land plants. From three intervening sequences in cox1, cox1i395 and cox1i624 are group IB introns homologous to the Marchantia polymorpha cox1 introns, and cox1i747 is a group IIA intron different to other introns found in plant mtDNA. The group II intron cox2i373 is very similar to other introns found in cox2 from vascular plants. While cob and atp9 have no introns and display the gene structure found in seed plants, various nucleotide substitutions abolish the only potential ORF, a LAGLIDADG endonuclease present in cox1i395. Thus, E. arvense mitochondria conserve two group I introns from non-vascular plants, probably inherited from a common ancestor with liverworts. Analogous to seed plants, E. arvense has no potential mitochondrial splicing factors encoded in these introns. This is the first report concerning the presence of vertically inherited group I introns in vascular plant mitochondria.

  18. The enduring mystery of intron-mediated enhancement.

    PubMed

    Gallegos, Jenna E; Rose, Alan B

    2015-08-01

    Within two years of their discovery in 1977, introns were found to have a positive effect on gene expression. Numerous examples of stimulatory introns have been described since then in very diverse organisms, including plants. In some cases, the mechanism through which the intron affects expression is readily understood. However, many introns that affect expression increase mRNA accumulation through an unknown mechanism, referred to as intron-mediated enhancement (IME). Despite several decades of research into IME, and the clear benefits of using introns to increase transgene expression, little progress has been made in understanding the mechanism of IME. Several fundamental questions regarding the role of transcription and splicing, the sequences responsible for IME, the involvement of other factors, and the relationship between introns and promoters remain unanswered. The more we learn about the properties of stimulating introns, the clearer it becomes that the effects of introns are unfamiliar and difficult to reconcile with conventional views of how transcription is controlled. We hypothesize that introns increase transcript initiation upstream of themselves by creating a localized region of accessible chromatin. Introns might represent a novel kind of downstream regulatory element for genes transcribed by RNA polymerase II.

  19. Extremely fast and incredibly close: cotranscriptional splicing in budding yeast.

    PubMed

    Wallace, Edward W J; Beggs, Jean D

    2017-05-01

    RNA splicing, an essential part of eukaryotic pre-messenger RNA processing, can be simultaneous with transcription by RNA polymerase II. Here, we compare and review independent next-generation sequencing methods that jointly quantify transcription and splicing in budding yeast. For many yeast transcripts, splicing is fast, taking place within seconds of intron transcription, while polymerase is within a few dozens of nucleotides of the 3' splice site. Ribosomal protein transcripts are spliced particularly fast and cotranscriptionally. However, some transcripts are spliced inefficiently or mainly post-transcriptionally. Intron-mediated regulation of some genes is likely to be cotranscriptional. We suggest that intermediates of the splicing reaction, missing from current data sets, may hold key information about splicing kinetics. © 2017 Wallace and Beggs; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Regulation of the beta-hydroxyacyl ACP dehydratase gene of Picea mariana by alternative splicing.

    PubMed

    Tai, Helen H; Williams, Martin; Iyengar, Abhinav; Yeates, Jessica; Beardmore, Tannis

    2007-01-01

    The gene for beta-hydroxyacyl ACP dehydratase, a de novo fatty acid biosynthetic enzyme, was cloned from Picea mariana (black spruce) and consists of five exons and four introns. The first intron of the beta-hydroxyacyl ACP dehydratase mRNA is alternatively spliced. Retention of intron 1 in splice variants results in truncation of the beta-hydroxyacyl ACP dehydratase ORF at a premature termination codon. In addition, splicing of intron 1 was found to be associated with cold temperature. mRNAs retaining intron 1 increase with seed imbibition at 22 degrees C but not 4 degrees C, whereas, splicing of intron 1 increases in winter weeks with temperatures below freezing. These results provide evidence that alternative splicing may also contribute to regulation of lipid biosynthesis in Picea mariana.

  1. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity

    PubMed Central

    Nisa-Martínez, Rafael; Molina-Sánchez, María Dolores; Toro, Nicolás

    2016-01-01

    Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP) with reverse transcriptase (RT) and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En) domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT) of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns. PMID:27588750

  2. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity.

    PubMed

    Nisa-Martínez, Rafael; Molina-Sánchez, María Dolores; Toro, Nicolás

    2016-01-01

    Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP) with reverse transcriptase (RT) and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En) domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT) of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns.

  3. Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures.

    PubMed

    Hausner, Georg; Olson, Robert; Simon, Dawn; Johnson, Ian; Sanders, Erin R; Karol, Kenneth G; McCourt, Richard M; Zimmerly, Steven

    2006-02-01

    The trnK intron of plants encodes the matK open reading frame (ORF), which has been used extensively as a phylogenetic marker for classification of plants. Here we examined the evolution of the trnK intron itself as a model for group II intron evolution in plants. Representative trnK intron sequences were compiled from species spanning algae to angiosperms, and four introns were newly sequenced. Phylogenetic analyses showed that the matK ORFs belong to the ML (mitochondrial-like) subclass of group II intron ORFs, indicating that they were derived from a mobile group II intron of the class. RNA structures of the introns were folded and analyzed, which revealed progressive RNA structural deviations and degenerations throughout plant evolution. The data support a model in which plant organellar group II introns were derived from bacterial-like introns that had "standard" RNA structures and were competent for self-splicing and mobility and that subsequently the ribozyme structures degenerated to ultimately become dependent upon host-splicing factors. We propose that the patterns of RNA structure evolution seen for the trnK intron will apply to the other group II introns in plants.

  4. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids.

    PubMed

    Milanowski, Rafał; Karnkowska, Anna; Ishikawa, Takao; Zakryś, Bozena

    2014-03-01

    The nuclear genomes of euglenids contain three types of introns: conventional spliceosomal introns, nonconventional introns for which a splicing mechanism is unknown (variable noncanonical borders, RNA secondary structure bringing together intron ends), and so-called intermediate introns, which combine features of conventional and nonconventional introns. Analysis of two genes, tubA and tubB, from 20 species of euglenids reveals contrasting distribution patterns of conventional and nonconventional introns--positions of conventional introns are conserved, whereas those of the nonconventional ones are unique to individual species or small groups of closely related taxa. Moreover, in the group of phototrophic euglenids, 11 events of conventional intron loss versus 15 events of nonconventional intron gain were identified. A comparison of all nonconventional intron sequences highlighted the most conserved elements in their sequence and secondary structure. Our results led us to put forward two hypotheses. 1) The first one posits that mutational changes in intron sequence could lead to a change in their excision mechanism--intermediate introns would then be a transitional form between the conventional and nonconventional introns. 2) The second hypothesis concerns the origin of nonconventional introns--because of the presence of inverted repeats near their ends, insertion of MITE-like transposon elements is proposed as a possible source of new introns.

  5. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution.

    PubMed

    Lambowitz, Alan M; Belfort, Marlene

    2015-02-01

    This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.

  6. Mobile Bacterial Group II Introns at the Crux of Eukaryotic Evolution

    PubMed Central

    Lambowitz, Alan M.; Belfort, Marlene

    2015-01-01

    SUMMARY This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome’s small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns. PMID:25878921

  7. Twelve Group I introns in the same pre-rRNA transcript of the myxomycete Fuligo septica: RNA processing and evolution.

    PubMed

    Lundblad, Eirik W; Einvik, Christer; Rønning, Sissel; Haugli, Kari; Johansen, Steinar

    2004-07-01

    The ribosomal DNA region of the myxomycete Fuligo septica was investigated and found to contain 12 group I introns (four in the small subunit and eight in the large subunit ribosomal RNAs). We have performed molecular and phylogenetic analyses to provide insight into intron structure and function, intron-host biology, and intron origin and evolution. The introns vary in size from 398 to 943 nt, all lacking detectable open reading frames. Secondary structure models revealed considerable structural diversity, but all, except one (subclass IB), represent the common group IC1 intron subclass. In vitro splicing analysis revealed that 10 of the 12 introns were able to self-splice as naked RNA, but all 12 introns were able to splice out from the precursor rRNA in vivo as evaluated by reverse transcription PCR analysis on total F. septica RNA. Furthermore, RNA processing analyses in vitro and in vivo showed that 10 of 12 introns perform hydrolytic cleavage at the 3' splice site, as well as intron circularization. Full-length intron RNA circles were detected in vivo. The order of splicing was analyzed by a reverse transcription PCR approach on cellular RNA, but no strict order of intron excision could be detected. Phylogenetic analysis indicated that most Fuligo introns were distantly related to each other and were independently gained in ribosomal DNA during evolution.

  8. Selection for reduced translation costs at the intronic 5′ end in fungi

    PubMed Central

    Zafrir, Zohar; Zur, Hadas; Tuller, Tamir

    2016-01-01

    It is generally believed that introns are not translated; therefore, the potential intronic features that may be related to the translation step (occurring after splicing) have yet to be thoroughly studied. Here, focusing on four fungi, we performed for the first time a comprehensive study aimed at characterizing how translation efficiency is encoded in introns and affects their evolution. By analysing their intronome we provide evidence of selection for STOP codons close to the intronic 5′ end, and show that the beginning of introns are selected for significantly high translation, presumably to reduce translation and metabolic costs in cases of non-spliced introns. Ribosomal profiling data analysis in Saccharomyces cerevisiae supports the conjecture that in this organism intron retention frequently occurs, introns are partially translated, and their translation efficiency affects organismal fitness. We show that the reported results are more significant in highly translated and highly spliced genes, but are not associated only with genes with a specific function. We also discuss the potential relation of the reported signals to efficient nonsense-mediated decay due to splicing errors. These new discoveries are supported by population-genetics considerations. In addition, they are contributory steps towards a broader understanding of intron evolution and the effect of silent mutations on gene expression and organismal fitness. PMID:27260512

  9. Evolution of group I introns in Porifera: new evidence for intron mobility and implications for DNA barcoding.

    PubMed

    Schuster, Astrid; Lopez, Jose V; Becking, Leontine E; Kelly, Michelle; Pomponi, Shirley A; Wörheide, Gert; Erpenbeck, Dirk; Cárdenas, Paco

    2017-03-20

    Mitochondrial introns intermit coding regions of genes and feature characteristic secondary structures and splicing mechanisms. In metazoans, mitochondrial introns have only been detected in sponges, cnidarians, placozoans and one annelid species. Within demosponges, group I and group II introns are present in six families. Based on different insertion sites within the cox1 gene and secondary structures, four types of group I and two types of group II introns are known, which can harbor up to three encoding homing endonuclease genes (HEG) of the LAGLIDADG family (group I) and/or reverse transcriptase (group II). However, only little is known about sponge intron mobility, transmission, and origin due to the lack of a comprehensive dataset. We analyzed the largest dataset on sponge mitochondrial group I introns to date: 95 specimens, from 11 different sponge genera which provided novel insights into the evolution of group I introns. For the first time group I introns were detected in four genera of the sponge family Scleritodermidae (Scleritoderma, Microscleroderma, Aciculites, Setidium). We demonstrated that group I introns in sponges aggregate in the most conserved regions of cox1. We showed that co-occurrence of two introns in cox1 is unique among metazoans, but not uncommon in sponges. However, this combination always associates an active intron with a degenerating one. Earlier hypotheses of HGT were confirmed and for the first time VGT and secondary losses of introns conclusively demonstrated. This study validates the subclass Spirophorina (Tetractinellida) as an intron hotspot in sponges. Our analyses confirm that most sponge group I introns probably originated from fungi. DNA barcoding is discussed and the application of alternative primers suggested.

  10. Exon definition as a potential negative force against intron losses in evolution.

    PubMed

    Niu, Deng-Ke

    2008-11-13

    Previous studies have indicated that the wide variation in intron density (the number of introns per gene) among different eukaryotes largely reflects varying degrees of intron loss during evolution. The most popular model, which suggests that organisms lose introns through a mechanism in which reverse-transcribed cDNA recombines with the genomic DNA, concerns only one mutational force. Using exons as the units of splicing-site recognition, exon definition constrains the length of exons. An intron-loss event results in fusion of flanking exons and thus a larger exon. The large size of the newborn exon may cause splicing errors, i.e., exon skipping, if the splicing of pre-mRNAs is initiated by exon definition. By contrast, if the splicing of pre-mRNAs is initiated by intron definition, intron loss does not matter. Exon definition may thus be a selective force against intron loss. An organism with a high frequency of exon definition is expected to experience a low rate of intron loss throughout evolution and have a high density of spliceosomal introns. The majority of spliceosomal introns in vertebrates may be maintained during evolution not because of potential functions, but because of their splicing mechanism (i.e., exon definition). Further research is required to determine whether exon definition is a negative force in maintaining the high intron density of vertebrates. This article was reviewed by Dr. Scott W. Roy (nominated by Dr. John Logsdon), Dr.Eugene V. Koonin, and Dr. Igor B. Rogozin (nominated by Dr. Mikhail Gelfand). For the full reviews,please go to the Reviewers' comments section.

  11. Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles.

    PubMed

    de Longevialle, Andéol Falcon; Small, Ian D; Lurin, Claire

    2010-07-01

    Plant organelles arose from two independent endosymbiosis events. Throughout evolutionary history, tight control of chloroplasts and mitochondria has been gained by the nucleus, which regulates most steps of organelle genome expression and metabolism. In particular, RNA maturation, including RNA splicing, is highly dependent on nuclearly encoded splicing factors. Most introns in organelles are group II introns, whose catalytic mechanism closely resembles that of the nuclear spliceosome. Plant group II introns have lost the ability to self-splice in vivo and require nuclearly encoded proteins as cofactors. Since the first splicing factor was identified in chloroplasts more than 10 years ago, many other proteins have been shown to be involved in splicing of one or more introns in chloroplasts or mitochondria. These new proteins belong to a variety of different families of RNA binding proteins and provide new insights into ribonucleo-protein complexes and RNA splicing machineries in organelles. In this review, we describe how splicing factors, encoded by the nucleus and targeted to the organelles, take part in post-transcriptional steps in higher plant organelle gene expression. We go on to discuss the potential for these factors to regulate organelle gene expression.

  12. An intronic open reading frame was released from one of group II introns in the mitochondrial genome of the haptophyte Chrysochromulina sp. NIES-1333.

    PubMed

    Nishimura, Yuki; Kamikawa, Ryoma; Hashimoto, Tetsuo; Inagaki, Yuji

    2014-01-01

    Mitochondrial (mt) genome sequences, which often bear introns, have been sampled from phylogenetically diverse eukaryotes. Thus, we can anticipate novel insights into intron evolution from previously unstudied mt genomes. We here investigated the origins and evolution of three introns in the mt genome of the haptophyte Chrysochromulina sp. NIES-1333, which was sequenced completely in this study. All the three introns were characterized as group II, on the basis of predicted secondary structure, and the conserved sequence motifs at the 5' and 3' termini. Our comparative studies on diverse mt genomes prompt us to propose that the Chrysochromulina mt genome laterally acquired the introns from mt genomes in distantly related eukaryotes. Many group II introns harbor intronic open reading frames for the proteins (intron-encoded proteins or IEPs), which likely facilitate the splicing of their host introns. However, we propose that a "free-standing," IEP-like protein, which is not encoded within any introns in the Chrysochromulina mt genome, is involved in the splicing of the first cox1 intron that lacks any open reading frames.

  13. An intronic open reading frame was released from one of group II introns in the mitochondrial genome of the haptophyte Chrysochromulina sp. NIES-1333

    PubMed Central

    Nishimura, Yuki; Kamikawa, Ryoma; Hashimoto, Tetsuo; Inagaki, Yuji

    2014-01-01

    Mitochondrial (mt) genome sequences, which often bear introns, have been sampled from phylogenetically diverse eukaryotes. Thus, we can anticipate novel insights into intron evolution from previously unstudied mt genomes. We here investigated the origins and evolution of three introns in the mt genome of the haptophyte Chrysochromulina sp. NIES-1333, which was sequenced completely in this study. All the three introns were characterized as group II, on the basis of predicted secondary structure, and the conserved sequence motifs at the 5′ and 3′ termini. Our comparative studies on diverse mt genomes prompt us to propose that the Chrysochromulina mt genome laterally acquired the introns from mt genomes in distantly related eukaryotes. Many group II introns harbor intronic open reading frames for the proteins (intron-encoded proteins or IEPs), which likely facilitate the splicing of their host introns. However, we propose that a “free-standing,” IEP-like protein, which is not encoded within any introns in the Chrysochromulina mt genome, is involved in the splicing of the first cox1 intron that lacks any open reading frames. PMID:25054084

  14. Phase distribution of spliceosomal introns: implications for intron origin.

    PubMed

    Nguyen, Hung D; Yoshihama, Maki; Kenmochi, Naoya

    2006-09-08

    The origin of spliceosomal introns is the central subject of the introns-early versus introns-late debate. The distribution of intron phases is non-uniform, with an excess of phase-0 introns. Introns-early explains this by speculating that a fraction of present-day introns were present between minigenes in the progenote and therefore must lie in phase-0. In contrast, introns-late predicts that the nonuniformity of intron phase distribution reflects the nonrandomness of intron insertions. In this paper, we tested the two theories using analyses of intron phase distribution. We inferred the evolution of intron phase distribution from a dataset of 684 gene orthologs from seven eukaryotes using a maximum likelihood method. We also tested whether the observed intron phase distributions from 10 eukaryotes can be explained by intron insertions on a genome-wide scale. In contrast to the prediction of introns-early, the inferred evolution of intron phase distribution showed that the proportion of phase-0 introns increased over evolution. Consistent with introns-late, the observed intron phase distributions matched those predicted by an intron insertion model quite well. Our results strongly support the introns-late hypothesis of the origin of spliceosomal introns.

  15. GC content around splice sites affects splicing through pre-mRNA secondary structures

    PubMed Central

    2011-01-01

    Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens), mice (Mus musculus), fruit flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans) to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures. PMID:21281513

  16. GC content around splice sites affects splicing through pre-mRNA secondary structures.

    PubMed

    Zhang, Jing; Kuo, C C Jay; Chen, Liang

    2011-01-31

    Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens), mice (Mus musculus), fruit flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans) to further investigate this phenomenon. We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  17. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    NASA Astrophysics Data System (ADS)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  18. Cloning of intronic sequence within DsRed2 increased the number of cells expressing red fluorescent protein.

    PubMed

    Pisal, Rishikaysh V; Hrebikova, Hana; Chvatalova, Jana; Soukup, Tomas; Stanislav, Filip; Mokry, Jaroslav

    2017-08-24

    Cloning of artificial intronic sequence within the open reading frame (ORF) of DsRed2 gene. Splice prediction software was used to analyze DsRed2 sequence to find an ideal site for cloning artificial intronic sequence. Intron was cloned within DsRed2 using cyclic ligation assembly. Flow cytometry was used to quantify the number of cells expressing red fluorescence. Sequencing data confirmed precise cloning of intron at the desired position using cyclic ligation assembly. Successful expression of red fluorescence after cloning of intron confirmed successful intron recognition and splicing by host cell line. Cloning of intron increased the number of cells expressing red fluorescent protein. Cloning of intronic sequence within DsRed2 has helped to increase the number of cells expressing red fluorescence by approximately four percent.

  19. Horizontal transfer and gene conversion as an important driving force in shaping the landscape of mitochondrial introns.

    PubMed

    Wu, Baojun; Hao, Weilong

    2014-04-16

    Group I introns are highly dynamic and mobile, featuring extensive presence-absence variation and widespread horizontal transfer. Group I introns can invade intron-lacking alleles via intron homing powered by their own encoded homing endonuclease gene (HEG) after horizontal transfer or via reverse splicing through an RNA intermediate. After successful invasion, the intron and HEG are subject to degeneration and sequential loss. It remains unclear whether these mechanisms can fully address the high dynamics and mobility of group I introns. Here, we found that HEGs undergo a fast gain-and-loss turnover comparable with introns in the yeast mitochondrial 21S-rRNA gene, which is unexpected, as the intron and HEG are generally believed to move together as a unit. We further observed extensively mosaic sequences in both the introns and HEGs, and evidence of gene conversion between HEG-containing and HEG-lacking introns. Our findings suggest horizontal transfer and gene conversion can accelerate HEG/intron degeneration and loss, or rescue and propagate HEG/introns, and ultimately result in high HEG/intron turnover rate. Given that up to 25% of the yeast mitochondrial genome is composed of introns and most mitochondrial introns are group I introns, horizontal transfer and gene conversion could have served as an important mechanism in introducing mitochondrial intron diversity, promoting intron mobility and consequently shaping mitochondrial genome architecture.

  20. Widespread alternative and aberrant splicing revealed by lariat sequencing

    PubMed Central

    Stepankiw, Nicholas; Raghavan, Madhura; Fogarty, Elizabeth A.; Grimson, Andrew; Pleiss, Jeffrey A.

    2015-01-01

    Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures. PMID:26261211

  1. Multiple physical forms of excised group II intron RNAs in wheat mitochondria

    PubMed Central

    Li-Pook-Than, Jennifer; Bonen, Linda

    2006-01-01

    Plant mitochondrial group II introns do not all possess hallmark ribozymic features such as the bulged adenosine involved in lariat formation. To gain insight into their splicing pathways, we have examined the physical form of excised introns in germinating wheat embryos. Using RT–PCR and cRT–PCR, we observed conventional lariats consistent with a two-step transesterification pathway for introns such as nad2 intron 4, but this was not the case for the cox2 intron or nad1 intron 2. For cox2, we detected full-length linear introns, which possess non-encoded 3′terminaladenosines, as well as heterogeneous circular introns, which lack 3′ nucleotide stretches. These observations are consistent with hydrolytic splicing followed by polyadenylation as well as an in vivo circularization pathway, respectively. The presence of both linear and circular species in vivo is supported by RNase H analysis. Furthermore, the nad1 intron 2, which lacks a bulged nucleotide at the branchpoint position, comprised a mixed population of precisely full-length molecules and circular ones which also include a short, discrete block of non-encoded nucleotides. The presence of these various linear and circular forms of excised intron molecules in plant mitochondria points to multiple novel group II splicing mechanisms in vivo. PMID:16717283

  2. Quantification of pre-mRNA escape rate and synergy in splicing

    PubMed Central

    Bonde, Marie Mi; Voegeli, Sylvia; Baudrimont, Antoine; Séraphin, Bertrand; Becskei, Attila

    2014-01-01

    Splicing reactions generally combine high speed with accuracy. However, some of the pre-mRNAs escape the nucleus with a retained intron. Intron retention can control gene expression and increase proteome diversity. We calculated the escape rate for the yeast PTC7 intron and pre-mRNA. This prediction was facilitated by the observation that splicing is a linear process and by deriving simple algebraic expressions from a model of co- and post-transcriptional splicing and RNA surveillance that determines the rate of the nonsense-mediated decay (NMD) of the pre-mRNAs with the retained intron. The escape rate was consistent with the observed threshold of splicing rate below which the mature mRNA level declined. When an mRNA contains multiple introns, the outcome of splicing becomes more difficult to predict since not only the escape rate of the pre-mRNA has to be considered, but also the possibility that the splicing of each intron is influenced by the others. We showed that the two adjacent introns in the SUS1 mRNA are spliced cooperatively, but this does not counteract the escape of the partially spliced mRNA. These findings will help to infer promoter activity and to predict the behavior of and to control splicing regulatory networks. PMID:25352554

  3. The Function of Introns

    PubMed Central

    Chorev, Michal; Carmel, Liran

    2012-01-01

    The intron–exon architecture of many eukaryotic genes raises the intriguing question of whether this unique organization serves any function, or is it simply a result of the spread of functionless introns in eukaryotic genomes. In this review, we show that introns in contemporary species fulfill a broad spectrum of functions, and are involved in virtually every step of mRNA processing. We propose that this great diversity of intronic functions supports the notion that introns were indeed selfish elements in early eukaryotes, but then independently gained numerous functions in different eukaryotic lineages. We suggest a novel criterion of evolutionary conservation, dubbed intron positional conservation, which can identify functional introns. PMID:22518112

  4. Invasion of protein coding genes by green algal ribosomal group I introns.

    PubMed

    McManus, Hilary A; Lewis, Louise A; Fučíková, Karolina; Haugen, Peik

    2012-01-01

    The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns.

  5. Applying genetic programming to the prediction of alternative mRNA splice variants.

    PubMed

    Vukusic, Ivana; Grellscheid, Sushma Nagaraja; Wiehe, Thomas

    2007-04-01

    Genetic programming (GP) can be used to classify a given gene sequence as either constitutively or alternatively spliced. We describe the principles of GP and apply it to a well-defined data set of alternatively spliced genes. A feature matrix of sequence properties, such as nucleotide composition or exon length, was passed to the GP system "Discipulus." To test its performance we concentrated on cassette exons (SCE) and retained introns (SIR). We analyzed 27,519 constitutively spliced and 9641 cassette exons including their neighboring introns; in addition we analyzed 33,316 constitutively spliced introns compared to 2712 retained introns. We find that the classifier yields highly accurate predictions on the SIR data with a sensitivity of 92.1% and a specificity of 79.2%. Prediction accuracies on the SCE data are lower, 47.3% (sensitivity) and 70.9% (specificity), indicating that alternative splicing of introns can be better captured by sequence properties than that of exons.

  6. The Arabidopsis splicing factor SR1 is regulated by alternative splicing.

    PubMed

    Lazar, G; Goodman, H M

    2000-03-01

    The serine-arginine (SR)-rich splicing factors play essential roles in general splicing and regulate alternative splice site utilization in a concentration-dependent manner. SR1 is a plant homologue of the human general/alternative splicing factor SF2/ASF. We report here that alternative splicing regulates SR1 itself. Of the five detected SR1 transcripts only one encodes the full-length protein, while the other four are different variants of the essential arginine-serine-rich domain. The data suggest that SR1 pre-mRNA could be committed to two alternate splicing pathways. One, dependent on the alternative utilization of competing 3' splice sites in intron 9, generates SR1, SR1B and SR1C. The other, regulated by suppression of intron 9 5' splice site utilization, generates SR1D and SR1E. The splicing pattern and molecular structure of SR1D indicates an evolutionary conservation of splicing-based regulation between plants and vertebrates and suggests that the various isoforms perform important functions. Results from transient gene expression assays indicate that alternative splicing is not an autoregulatory mechanism used to control the transcript level of the full-length protein. The ratio of SR1/SR1B transcripts, which are generated by alternative 3' splice site utilization in intron 9, is under temperature control. The temperature-dependent increase in SR1B/SR1 ratio suggests a role of SR1B in the adaptation to high-temperature environments. In addition, based on the regulated co-expression of SR1 transcripts, it is possible that some SR1 functions could be determined by the combinatorial action of the various isoforms.

  7. Functional comparison of three transformer gene introns regulating conditional female lethality

    USDA-ARS?s Scientific Manuscript database

    The trasformer gene plays a critical role in the sex determination pathways of many insects. We cloned two transformer gene introns from Anastrepha suspensa, the Caribbean fruit fly. These introns have sequences that putatively have a role in sex-specific splicing patterns that affect sex determinat...

  8. Structure of a Group II Intron Complexed with its Reverse Transcriptase

    PubMed Central

    Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei

    2016-01-01

    Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice to yield mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein, with multiple activities including reverse transcriptase. This activity is responsible for copying the intron RNA into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8 Å resolution and in its protein-depleted form at 4.5 Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship of the reverse transcriptase catalytic domain to telomerase, whereas the active center for splicing resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility. PMID:27136327

  9. Systematic analysis of intron size and abundance parameters in diverse lineages.

    PubMed

    Wu, Jiayan; Xiao, Jingfa; Wang, Lingping; Zhong, Jun; Yin, Hongyan; Wu, Shuangxiu; Zhang, Zhang; Yu, Jun

    2013-10-01

    All eukaryotic genomes have genes with introns in variable sizes. As far as spliceosomal introns are concerned, there are at least three basic parameters to stratify introns across diverse eukaryotic taxa: size, number, and sequence context. The number parameter is highly variable in lower eukaryotes, especially among protozoan and fungal species, which ranges from less than 4% to 78% of the genes. Over greater evolutionary time scales, the number parameter undoubtedly increases as observed in higher plants and higher vertebrates, reaching greater than 12.5 exons per gene in average among mammalian genomes. The size parameter is more complex, where multiple modes appear at work. Aside from intronless genes, there are three other types of intron-containing genes: half-sized, minimal, and size-expandable introns. The half-sized introns have only been found in a limited number of genomes among protozoan and fungal lineages and the other two types are prevalent in all animal and plant genomes. Among the size-expandable introns, the sizes of plant introns are expansion-limited in that the large introns exceeding 1000 bp are fewer in numbers and transposon-free as compared to the large introns among animals, where the larger introns are filled with transposable elements and appear expansion-flexible, reaching several kilobasepairs (kbp) and even thousands of kbp in size. Most of the intron parameters can be studied as signatures of the specific splicing machineries of different eukaryotic lineages and are highly relevant to the regulation of gene expression and functionality. In particular, the transcription-splicing-export coupling of eukaryotic intron dispensing leads to a working hypothesis that all intron parameters are evolved to be efficient and function-related in processing and routing the spliced transcripts.

  10. Genome-wide identification of zero nucleotide recursive splicing in Drosophila.

    PubMed

    Duff, Michael O; Olson, Sara; Wei, Xintao; Garrett, Sandra C; Osman, Ahmad; Bolisetty, Mohan; Plocik, Alex; Celniker, Susan E; Graveley, Brenton R

    2015-05-21

    Recursive splicing is a process in which large introns are removed in multiple steps by re-splicing at ratchet points--5' splice sites recreated after splicing. Recursive splicing was first identified in the Drosophila Ultrabithorax (Ubx) gene and only three additional Drosophila genes have since been experimentally shown to undergo recursive splicing. Here we identify 197 zero nucleotide exon ratchet points in 130 introns of 115 Drosophila genes from total RNA sequencing data generated from developmental time points, dissected tissues and cultured cells. The sequential nature of recursive splicing was confirmed by identification of lariat introns generated by splicing to and from the ratchet points. We also show that recursive splicing is a constitutive process, that depletion of U2AF inhibits recursive splicing, and that the sequence and function of ratchet points are evolutionarily conserved in Drosophila. Finally, we identify four recursively spliced human genes, one of which is also recursively spliced in Drosophila. Together, these results indicate that recursive splicing is commonly used in Drosophila, occurs in humans, and provides insight into the mechanisms by which some large introns are removed.

  11. Distribution of Conventional and Nonconventional Introns in Tubulin (α and β) Genes of Euglenids

    PubMed Central

    Milanowski, Rafał; Karnkowska, Anna; Ishikawa, Takao; Zakryś, Bożena

    2014-01-01

    The nuclear genomes of euglenids contain three types of introns: conventional spliceosomal introns, nonconventional introns for which a splicing mechanism is unknown (variable noncanonical borders, RNA secondary structure bringing together intron ends), and so-called intermediate introns, which combine features of conventional and nonconventional introns. Analysis of two genes, tubA and tubB, from 20 species of euglenids reveals contrasting distribution patterns of conventional and nonconventional introns—positions of conventional introns are conserved, whereas those of the nonconventional ones are unique to individual species or small groups of closely related taxa. Moreover, in the group of phototrophic euglenids, 11 events of conventional intron loss versus 15 events of nonconventional intron gain were identified. A comparison of all nonconventional intron sequences highlighted the most conserved elements in their sequence and secondary structure. Our results led us to put forward two hypotheses. 1) The first one posits that mutational changes in intron sequence could lead to a change in their excision mechanism—intermediate introns would then be a transitional form between the conventional and nonconventional introns. 2) The second hypothesis concerns the origin of nonconventional introns—because of the presence of inverted repeats near their ends, insertion of MITE-like transposon elements is proposed as a possible source of new introns. PMID:24296662

  12. Global analysis of the nuclear processing of transcripts with unspliced U12-type introns by the exosome

    PubMed Central

    Niemelä, Elina H.; Oghabian, Ali; Staals, Raymond H.J.; Greco, Dario; Pruijn, Ger J.M.; Frilander, Mikko J.

    2014-01-01

    U12-type introns are a rare class of introns in the genomes of diverse eukaryotes. In the human genome, they number over 700. A subset of these introns has been shown to be spliced at a slower rate compared to the major U2-type introns. This suggests a rate-limiting regulatory function for the minor spliceosome in the processing of transcripts containing U12-type introns. However, both the generality of slower splicing and the subsequent fate of partially processed pre-mRNAs remained unknown. Here, we present a global analysis of the nuclear retention of transcripts containing U12-type introns and provide evidence for the nuclear decay of such transcripts in human cells. Using SOLiD RNA sequencing technology, we find that, in normal cells, U12-type introns are on average 2-fold more retained than the surrounding U2-type introns. Furthermore, we find that knockdown of RRP41 and DIS3 subunits of the exosome stabilizes an overlapping set of U12-type introns. RRP41 knockdown leads to slower decay kinetics of U12-type introns and globally upregulates the retention of U12-type, but not U2-type, introns. Our results indicate that U12-type introns are spliced less efficiently and are targeted by the exosome. These characteristics support their role in the regulation of cellular mRNA levels. PMID:24848017

  13. Altered mRNA splicing in lipoprotein disorders.

    PubMed

    Calandra, Sebastiano; Tarugi, Patrizia; Bertolini, Stefano

    2011-04-01

    To review recent publications concerning the functional assessment on pre-mRNA splicing of genomic variants found in some monogenic dyslipidemias. Examples are derived from familial hypercholesterolemia, familial HDL deficiency/Tangier disease and familial hypobetalipoproteinemia. About 5-10% of genomic variants found in familial hypercholesterolemia, FHD/Tangier disease and familial hypobetalipoproteinemia are located in the introns of the candidate genes and are classified as splicing mutations. Although variants affecting highly conserved GT/AG dinucleotides at the splice sites are likely to be pathogenic, it is difficult to predict the effects of variants located deep in the introns. Algorithms were developed to predict the effect of these variants and to provide the rationale for functional studies. Combined in-silico and wet bench analysis revealed that some intronic variants classified as pathogenic have no effect, whereas others generated abnormal transcripts. Nucleotide substitutions at the 5' and the 3' of exons might change the splice site consensus sequence, causing splicing defects. Rare silent mutations were identified which create new splice sites within exons, with the consequent production of abnormal transcripts. Intronic variants, even if located deep in introns, as well as exonic variants could affect splicing with the formation of abnormal transcripts encoding structurally abnormal proteins.

  14. Intron retention-dependent gene regulation in Cryptococcus neoformans

    PubMed Central

    Gonzalez-Hilarion, Sara; Paulet, Damien; Lee, Kyung-Tae; Hon, Chung-Chau; Lechat, Pierre; Mogensen, Estelle; Moyrand, Frédérique; Proux, Caroline; Barboux, Rony; Bussotti, Giovanni; Hwang, Jungwook; Coppée, Jean-Yves; Bahn, Yong-Sun; Janbon, Guilhem

    2016-01-01

    The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification. PMID:27577684

  15. Testing the IMEter on rice introns and other aspects of intron-mediated enhancement of gene expression.

    PubMed

    Morello, Laura; Gianì, Silvia; Troina, Filippo; Breviario, Diego

    2011-01-01

    In many eukaryotes, spliceosomal introns are able to influence the level and site of gene expression. The mechanism of this Intron Mediated Enhancement (IME) has not yet been elucidated, but regulation of gene expression is likely to occur at several steps during and after transcription. Different introns have different intrinsic enhancing properties, but the determinants of these differences remain unknown. Recently, an algorithm called IMEter, which is able to predict the IME potential of introns without direct testing, has been proposed. A computer program was developed for Arabidopsis thaliana and rice (Oryza sativa L.), but was only tested experimentally in Arabidopsis by measuring the enhancement effect on GUS expression of different introns inserted within otherwise identical plasmids. To test the IMEter potential in rice, a vector bearing the upstream regulatory sequence of a rice β-tubulin gene (OsTub6) fused to the GUS reporter gene was used. The enhancing intron interrupting the OsTub6 5'-UTR was precisely replaced by seven other introns carrying different features. GUS expression level in transiently transformed rice calli does not significantly correlate with the calculated IMEter score. It was also found that enhanced GUS expression was mainly due to a strong increase in the mRNA steady-state level and that mutations at the splice recognition sites almost completely abolished the enhancing effect. Splicing also appeared to be required for IME in Arabidopsis cell cultures, where failure of the OsTub6 5' region to drive high level gene expression could be rescued by replacing the poorly spliced rice intron with one from Arabidopsis.

  16. A Three-Dimensional Model of a Group II Intron RNA and Its Interaction with the Intron-Encoded Reverse Transcriptase

    PubMed Central

    Dai, Lixin; Chai, Dinggeng; Gu, Shan-Qing; Gabel, Jesse; Noskov, Sergei Y.; Blocker, Forrest J. H.; Lambowitz, Alan M.; Zimmerly, Steven

    2009-01-01

    Group II introns are self-splicing ribozymes believed to be the ancestors of spliceosomal introns. Many group II introns encode reverse transcriptases that promote both RNA splicing and intron mobility to new genomic sites. Here we used a circular permutation and cross-linking method to establish sixteen intramolecular distance relationships within the mobile Lactococcus lactis Ll.LtrB-ΔORF intron. Using these new constraints together with thirteen established tertiary interactions and eight published cross-links, we modeled a complete three-dimensional structure of the intron. We also used the circular permutation strategy to map RNA-protein interaction sites through fluorescence quenching and cross-linking assays. Our model provides a comprehensive structural framework for understanding the function of group II ribozymes, their natural structural variations, and the mechanisms by which the intron-encoded protein promotes RNA splicing and intron mobility. The model also suggests an arrangement of active site elements that may be conserved in the spliceosome. PMID:18424209

  17. The exon junction complex is required for definition and excision of neighboring introns in Drosophila.

    PubMed

    Hayashi, Rippei; Handler, Dominik; Ish-Horowicz, David; Brennecke, Julius

    2014-08-15

    Splicing of pre-mRNAs results in the deposition of the exon junction complex (EJC) upstream of exon-exon boundaries. The EJC plays crucial post-splicing roles in export, translation, localization, and nonsense-mediated decay of mRNAs. It also aids faithful splicing of pre-mRNAs containing large introns, albeit via an unknown mechanism. Here, we show that the core EJC plus the accessory factors RnpS1 and Acinus aid in definition and efficient splicing of neighboring introns. This requires prior deposition of the EJC in close proximity to either an upstream or downstream splicing event. If present in isolation, EJC-dependent introns are splicing-defective also in wild-type cells. Interestingly, the most affected intron belongs to the piwi locus, which explains the reported transposon desilencing in EJC-depleted Drosophila ovaries. Based on a transcriptome-wide analysis, we propose that the dependency of splicing on the EJC is exploited as a means to control the temporal order of splicing events. © 2014 Hayashi et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Regulation of the circadian clock through pre-mRNA splicing in Arabidopsis.

    PubMed

    Cui, Zhibo; Xu, Quan; Wang, Xiaoxue

    2014-05-01

    Alternative splicing plays an important role in regulating gene functions and enhancing the diversity of the proteome in plants. Most of the genes are interrupted by introns in Arabidopsis. More than half of the intron-split genes involved in multiple biological processes including the circadian clock are alternatively spliced. In this review, we focus on the involvement of alternative splicing in the regulation of the circadian clock.

  19. Frequency of intron loss correlates with processed pseudogene abundance: a novel strategy to test the reverse transcriptase model of intron loss

    PubMed Central

    2013-01-01

    Background Although intron loss in evolution has been described, the mechanism involved is still unclear. Three models have been proposed, the reverse transcriptase (RT) model, genomic deletion model and double-strand-break repair model. The RT model, also termed mRNA-mediated intron loss, suggests that cDNA molecules reverse transcribed from spliced mRNA recombine with genomic DNA causing intron loss. Many studies have attempted to test this model based on its predictions, such as simultaneous loss of adjacent introns, 3'-side bias of intron loss, and germline expression of intron-lost genes. Evidence either supporting or opposing the model has been reported. The mechanism of intron loss proposed in the RT model shares the process of reverse transcription with the formation of processed pseudogenes. If the RT model is correct, genes that have produced more processed pseudogenes are more likely to undergo intron loss. Results In the present study, we observed that the frequency of intron loss is correlated with processed pseudogene abundance by analyzing a new dataset of intron loss obtained in mice and rats. Furthermore, we found that mRNA molecules of intron-lost genes are mostly translated on free cytoplasmic ribosomes, a feature shared by mRNA molecules of the parental genes of processed pseudogenes and long interspersed elements. This feature is likely convenient for intron-lost gene mRNA molecules to be reverse transcribed. Analyses of adjacent intron loss, 3'-side bias of intron loss, and germline expression of intron-lost genes also support the RT model. Conclusions Compared with previous evidence, the correlation between the abundance of processed pseudogenes and intron loss frequency more directly supports the RT model of intron loss. Exploring such a correlation is a new strategy to test the RT model in organisms with abundant processed pseudogenes. PMID:23497167

  20. The Splicing Factor FUBP1 Is Required for the Efficient Splicing of Oncogene MDM2 Pre-mRNA*

    PubMed Central

    Jacob, Aishwarya G.; Singh, Ravi K.; Mohammad, Fuad; Bebee, Thomas W.; Chandler, Dawn S.

    2014-01-01

    Alternative splicing of the oncogene MDM2 is a phenomenon that occurs in cells in response to genotoxic stress and is also a hallmark of several cancer types with important implications in carcinogenesis. However, the mechanisms regulating this splicing event remain unclear. Previously, we uncovered the importance of intron 11 in MDM2 that affects the splicing of a damage-responsive MDM2 minigene. Here, we have identified discrete cis regulatory elements within intron 11 and report the binding of FUBP1 (Far Upstream element-Binding Protein 1) to these elements and the role it plays in MDM2 splicing. Best known for its oncogenic role as a transcription factor in the context of c-MYC, FUBP1 was recently described as a splicing regulator with splicing repressive functions. In the case of MDM2, we describe FUBP1 as a positive splicing regulatory factor. We observed that blocking the function of FUBP1 in in vitro splicing reactions caused a decrease in splicing efficiency of the introns of the MDM2 minigene. Moreover, knockdown of FUBP1 in cells induced the formation of MDM2-ALT1, a stress-induced splice variant of MDM2, even under normal conditions. These results indicate that FUBP1 is also a strong positive splicing regulator that facilitates efficient splicing of the MDM2 pre-mRNA by binding its introns. These findings are the first report describing the regulation of alternative splicing of MDM2 mediated by the oncogenic factor FUBP1. PMID:24798327

  1. Evolution of Pleopsidium (lichenized Ascomycota) S943 group I introns and the phylogeography of an intron-encoded putative homing endonuclease.

    PubMed

    Reeb, Valérie; Haugen, Peik; Bhattacharya, Debashish; Lutzoni, François

    2007-03-01

    The sporadic distribution of nuclear group I introns among different fungal lineages can be explained by vertical inheritance of the introns followed by successive losses, or horizontal transfers from one lineage to another through intron homing or reverse splicing. Homing is mediated by an intron-encoded homing endonuclease (HE) and recent studies suggest that the introns and their associated HE gene (HEG) follow a recurrent cyclical model of invasion, degeneration, loss, and reinvasion. The purpose of this study was to compare this model to the evolution of HEGs found in the group I intron at position S943 of the nuclear ribosomal DNA of the lichen-forming fungus Pleopsidium. Forty-eight S943 introns were found in the 64 Pleopsidium samples from a worldwide screen, 22 of which contained a full-length HEG that encodes a putative 256-amino acid HE, and 2 contained HE pseudogenes. The HEGs are divided into two closely related types (as are the introns that encode them) that differ by 22.6% in their nucleotide sequences. The evolution of the Pleopsidium intron-HEG element shows strong evidence for a cyclical model of evolution. The intron was likely acquired twice in the genus and then transmitted via two or three interspecific horizontal transfers. Close geographical proximity plays an important role in intron-HEG horizontal transfer because most of these mobile elements were found in Europe. Once acquired in a lineage, the intron-HEG element was also vertically transmitted, and occasionally degenerated or was lost.

  2. HIFs Enhance the Transcriptional Activation and Splicing of Adrenomedullin

    PubMed Central

    Sena, Johnny A.; Wang, Liyi; Pawlus, Matthew R.; Hu, Cheng-Jun

    2014-01-01

    Adrenomedullin (ADM) is important for tumor angiogenesis, tumor cell growth and survival. Under normoxic conditions, the ADM gene was found to produce two alternative transcripts, a fully-spliced transcript that produces AM and PAMP peptides and a intron-3-retaining transcript that produces a less functionally significant PAMP peptide only. ADM is a well-established hypoxia inducible gene; however, it is not clear which ADM isoform is induced by hypoxia. In this study, it was determined that various cancer and normal cells express two predominant types of ADM transcripts, a AM/PAMP peptide producing FL transcript in which all introns are removed, and a non-protein producing I1-3 transcript in which all introns are retained. Interestingly, hypoxia preferentially induced the FL isoform. Moreover, HIFs, but not hypoxia per se are necessary and sufficient to increase splicing of ADM pre-mRNA. ADM splicing reporters confirmed that transcriptional activation by HIF or other transcription factors is sufficient to enhance splicing. However, HIFs are more potent in enhancing ADM pre-mRNA splicing than other transcriptional activators. Thus, ADM intron retention is not a consequence of abnormal splicing, but is an important mechanism to regulate ADM expression. These results demonstrate a novel function of HIFs in regulating ADM expression by enhancing its pre-mRNA splicing. Importantly, using endogenous and cloned ADM gene, further evidence is provided for the coupling of transcription and RNA splicing. PMID:24523299

  3. Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity

    PubMed Central

    Marquez, Yamile; Höpfler, Markus; Ayatollahi, Zahra; Barta, Andrea; Kalyna, Maria

    2015-01-01

    Alternative splicing (AS) diversifies transcriptomes and proteomes and is widely recognized as a key mechanism for regulating gene expression. Previously, in an analysis of intron retention events in Arabidopsis, we found unusual AS events inside annotated protein-coding exons. Here, we also identify such AS events in human and use these two sets to analyse their features, regulation, functional impact, and evolutionary origin. As these events involve introns with features of both introns and protein-coding exons, we name them exitrons (exonic introns). Though exitrons were detected as a subset of retained introns, they are clearly distinguishable, and their splicing results in transcripts with different fates. About half of the 1002 Arabidopsis and 923 human exitrons have sizes of multiples of 3 nucleotides (nt). Splicing of these exitrons results in internally deleted proteins and affects protein domains, disordered regions, and various post-translational modification sites, thus broadly impacting protein function. Exitron splicing is regulated across tissues, in response to stress and in carcinogenesis. Intriguingly, annotated intronless genes can be also alternatively spliced via exitron usage. We demonstrate that at least some exitrons originate from ancestral coding exons. Based on our findings, we propose a “splicing memory” hypothesis whereby upon intron loss imprints of former exon borders defined by vestigial splicing regulatory elements could drive the evolution of exitron splicing. Altogether, our studies show that exitron splicing is a conserved strategy for increasing proteome plasticity in plants and animals, complementing the repertoire of AS events. PMID:25934563

  4. Inhibition of Splicing but not Cleavage at the 5' Splice Site by Truncating Human β -globin Pre-mRNA

    NASA Astrophysics Data System (ADS)

    Furdon, Paul J.; Kole, Ryszard

    1986-02-01

    Human β -globin mRNAs truncated in the second exon or in the first intron have been processed in vitro in a HeLa cell nuclear extract. Transcripts containing a fragment of the second exon as short as 53 nucleotides are efficiently spliced, whereas transcripts truncated 24 or 14 nucleotides downstream from the 3' splice site are spliced inefficiently, if at all. All of these transcripts, however, are efficiently and accurately cleaved at the 5' splice site. In contrast, RNA truncated in the first intron, 54 nucleotides upstream from the 3' splice site, is not processed at all. These findings suggest that cleavage at the 5' splice site and subsequent splicing steps--i.e., cleavage at the 3' splice site and exon ligation--need not be coupled. Anti-Sm serum inhibits the complete splicing reaction and cleavage at the 5' splice site, suggesting involvement of certain ribonucleoprotein particles in the cleavage reaction. ATP and Mg2+ are required for cleavage at the 5' splice site at concentrations similar to those for the complete splicing reaction.

  5. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.

    PubMed

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.

  6. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome

    PubMed Central

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes. PMID:25482895

  7. Re-splicing of mature mRNA in cancer cells promotes activation of distant weak alternative splice sites

    PubMed Central

    Kameyama, Toshiki; Suzuki, Hitoshi; Mayeda, Akila

    2012-01-01

    Transcripts of the human tumor susceptibility gene 101 (TSG101) are aberrantly spliced in many cancers. A major aberrant splicing event on the TSG101 pre-mRNA involves joining of distant alternative 5′ and 3′ splice sites within exon 2 and exon 9, respectively, resulting in the extensive elimination of the mRNA. The estimated strengths of the alternative splice sites are much lower than those of authentic splice sites. We observed that the equivalent aberrant mRNA could be generated from an intron-less TSG101 gene expressed ectopically in breast cancer cells. Remarkably, we identified a pathway-specific endogenous lariat RNA consisting solely of exonic sequences, predicted to be generated by a re-splicing between exon 2 and exon 9 on the spliced mRNA. Our results provide evidence for a two-step splicing pathway in which the initial constitutive splicing removes all 14 authentic splice sites, thereby bringing the weak alternative splice sites into close proximity. We also demonstrate that aberrant multiple-exon skipping of the fragile histidine triad (FHIT) pre-mRNA in cancer cells occurs via re-splicing of spliced FHIT mRNA. The re-splicing of mature mRNA can potentially generate mutation-independent diversity in cancer transcriptomes. Conversely, a mechanism may exist in normal cells to prevent potentially deleterious mRNA re-splicing events. PMID:22675076

  8. Systematic identification and analysis of exonic splicing silencers.

    PubMed

    Wang, Zefeng; Rolish, Michael E; Yeo, Gene; Tung, Vivian; Mawson, Matthew; Burge, Christopher B

    2004-12-17

    Exonic splicing silencers (ESSs) are cis-regulatory elements that inhibit the use of adjacent splice sites, often contributing to alternative splicing (AS). To systematically identify ESSs, an in vivo splicing reporter system was developed to screen a library of random decanucleotides. The screen yielded 141 ESS decamers, 133 of which were unique. The silencer activity of over a dozen of these sequences was also confirmed in a heterologous exon/intron context and in a second cell type. Of the unique ESS decamers, most could be clustered into groups to yield seven putative ESS motifs, some resembling known motifs bound by hnRNPs H and A1. Potential roles of ESSs in constitutive splicing were explored using an algorithm, ExonScan, which simulates splicing based on known or putative splicing-related motifs. ExonScan and related bioinformatic analyses suggest that these ESS motifs play important roles in suppression of pseudoexons, in splice site definition, and in AS.

  9. Mechanisms and Regulation of Alternative Pre-mRNA Splicing

    PubMed Central

    Lee, Yeon

    2015-01-01

    Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA–protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA–RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions. PMID:25784052

  10. Intron retention is a widespread mechanism of tumor-suppressor inactivation.

    PubMed

    Jung, Hyunchul; Lee, Donghoon; Lee, Jongkeun; Park, Donghyun; Kim, Yeon Jeong; Park, Woong-Yang; Hong, Dongwan; Park, Peter J; Lee, Eunjung

    2015-11-01

    A substantial fraction of disease-causing mutations are pathogenic through aberrant splicing. Although genome profiling studies have identified somatic single-nucleotide variants (SNVs) in cancer, the extent to which these variants trigger abnormal splicing has not been systematically examined. Here we analyzed RNA sequencing and exome data from 1,812 patients with cancer and identified ∼900 somatic exonic SNVs that disrupt splicing. At least 163 SNVs, including 31 synonymous ones, were shown to cause intron retention or exon skipping in an allele-specific manner, with ∼70% of the SNVs occurring on the last base of exons. Notably, SNVs causing intron retention were enriched in tumor suppressors, and 97% of these SNVs generated a premature termination codon, leading to loss of function through nonsense-mediated decay or truncated protein. We also characterized the genomic features predictive of such splicing defects. Overall, this work demonstrates that intron retention is a common mechanism of tumor-suppressor inactivation.

  11. Adenosine to Inosine editing frequency controlled by splicing efficiency

    PubMed Central

    Licht, Konstantin; Kapoor, Utkarsh; Mayrhofer, Elisa; Jantsch, Michael F.

    2016-01-01

    Alternative splicing and adenosine to inosine (A to I) RNA-editing are major factors leading to co- and post-transcriptional modification of genetic information. Both, A to I editing and splicing occur in the nucleus. As editing sites are frequently defined by exon–intron basepairing, mRNA splicing efficiency should affect editing levels. Moreover, splicing rates affect nuclear retention and will therefore also influence the exposure of pre-mRNAs to the editing-competent nuclear environment. Here, we systematically test the influence of splice rates on RNA-editing using reporter genes but also endogenous substrates. We demonstrate for the first time that the extent of editing is controlled by splicing kinetics when editing is guided by intronic elements. In contrast, editing sites that are exclusively defined by exonic structures are almost unaffected by the splicing efficiency of nearby introns. In addition, we show that editing levels in pre- and mature mRNAs do not match. This phenomenon can in part be explained by the editing state of an RNA influencing its splicing rate but also by the binding of the editing enzyme ADAR that interferes with splicing. PMID:27112566

  12. Conservation of selection on matK following an ancient loss of its flanking intron.

    PubMed

    Duffy, Aaron M; Kelchner, Scot A; Wolf, Paul G

    2009-06-01

    The chloroplast gene trnK and its associated group II intron appear to be absent in a large and ancient clade that includes nearly 90% of fern species. However, the maturase protein encoded within the intron (matK) is still present and located on the boundary of a large-scale inversion. We surveyed the chloroplast genome sequence of clade-member Adiantum capillus-veneris for evidence of a still present but fragmented trnK intron. Lack of signature structural domains and sequence motifs in the genome indicate loss of the trnK intron through degradation in an ancestor of the clade. In plants, matK preferentially catalyzes splicing of the trnK intron, but may also have a generalist function, splicing other group II introns in the chloroplast genome. We therefore tested whether a shift in selective constraint has occurred after loss of the trnK intron. Using previously unavailable sequences for several ferns, we compared matK sequences of the intron-less fern clade to sequences from seed plants and ferns with the intron and found no significant differences in selection among lineages using multiple methods. We conclude that matK in ferns has maintained its apparently ancient and generalized function in chloroplasts, even after the loss of its co-evolved group II intron. Finally, we also present primers that will allow amplification and nucleotide sequencing of the phylogenetically useful matK gene in additional fern taxa.

  13. Intron retention and 3'-UTR analysis of Arabidopsis Dicer-like 2 transcripts.

    PubMed

    He, Qiongji; Peng, Jiejun; Yan, Fei; Lin, Lin; Lu, Yuwen; Zheng, Hongying; Chen, Hairu; Chen, Jianping

    2012-03-01

    Arabidopsis thaliana Dicer-like protein 2 (AtDCL2) plays an essential role in the RNA interference pathway. The function of AtDCL2 and other DCLs has been much studied but little has been done to characterize the DCLs transcripts before they are translated into proteins. Here, we investigated AtDCL2 transcripts and showed that all 21 introns of AtDCL2 except intron 9, 18, 20 and 21 could be retained although spliced sequences usually predominated. Intron 10 was more frequently retained and transient expression assays in Nicotiana benthamiana leaves showed that when AG/C at the 3' splicing site of the intron was changed to AG/G, the intron was more frequently spliced out. Conversely, a high retention of intron 18 was obtained if the AG/G at the 3' splicing site was changed to AG/C. These results suggest that the sequence at the 3' splicing site affects the efficiency of intron splicing. The 3'-UTRs of AtDCL2 had lengths between 54 and 154 nts, and the different 3'-UTRs differentially affected the transcriptional levels of fused GFP expressed transiently in N. benthamiana. Further comparisons and mutation experiments suggested that a putative SBF-1 binding site and an AU-rich element in the 3'-UTR both down-regulated expression of the upstream GFP fused to the 3'-UTR. Conversely, a second poly(A) consensus signal sequence in one 3'-UTR up-regulated gene expression. Our results provide insight into the character of AtDCL2 transcripts and demonstrate the potential complexity of factors that affect the frequency and patterns of alternative splicing.

  14. Alternative RNA splicing of KSHV ORF57 produces two different RNA isoforms.

    PubMed

    Majerciak, Vladimir; Zheng, Zhi-Ming

    2016-01-15

    In lytically infected B cells Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 gene encodes two RNA isoforms by alternative splicing of its pre-mRNA, which contains a small, constitutive intron in its 5' half and a large, suboptimal intron in its 3's half. The RNA1 isoform encodes full-length ORF57 and is a major isoform derived from splicing of the constitutive small intron, but retaining the suboptimal large intron as the coding region. A small fraction (<5%) of ORF57 RNA undergoes double splicing to produce a smaller non-coding RNA2 due to lack of a translational termination codon. Both RNAs are cleaved and polyadenylated at the same cleavage site CS83636. The insertion of ORF57 RNA1 into a restriction cutting site in certain mammalian expression vectors activates splicing of the subopitmal intron and produces a truncated ORF57 protein.

  15. Inactivation of group II intron RmInt1 in the Sinorhizobium meliloti genome.

    PubMed

    Molina-Sánchez, María Dolores; Toro, Nicolás

    2015-07-09

    Group II introns are self-splicing catalytic RNAs that probably originated in bacteria and act as mobile retroelements. The dispersal and dynamics of group II intron spread within a bacterial genome are thought to follow a selection-driven extinction model. Likewise, various studies on the evolution of group II introns have suggested that they are evolving toward an inactive form by fragmentation, with the loss of the intron 3'-terminus, but with some intron fragments remaining and continuing to evolve in the genome. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti, but some strains of this species have no RmInt1 introns. We studied the splicing ability and mobility of the three full-length RmInt1 copies harbored by S. meliloti 1021, and obtained evidence suggesting that specific mutations may lead to the impairment of intron splicing and retrohoming. Our data suggest that the RmInt1 copies in this strain are undergoing a process of inactivation.

  16. Molecular characterization of a new member of the lariat capping twin-ribozyme introns

    PubMed Central

    2014-01-01

    Background Twin-ribozyme introns represent a complex class of mobile group I introns that harbour a lariat capping (LC) ribozyme and a homing endonuclease gene embedded in a conventional self-splicing group I ribozyme (GIR2). Twin-ribozyme introns have so far been confined to nucleolar DNA in Naegleria amoeboflagellates and the myxomycete Didymium iridis. Results We characterize structural organization, catalytic properties and molecular evolution of a new twin-ribozyme intron in Allovahlkampfia (Heterolobosea). The intron contains two ribozyme domains with different functions in ribosomal RNA splicing and homing endonuclease mRNA maturation. We found Allovahlkampfia GIR2 to be a typical group IC1 splicing ribozyme responsible for addition of the exogenous guanosine cofactor (exoG), exon ligation and circularization of intron RNA. The Allovahlkampfia LC ribozyme, by contrast, represents an efficient self-cleaving ribozyme that generates a small 2′,5′ lariat cap at the 5′ end of the homing endonuclease mRNA, and thus contributes to intron mobility. Conclusions The discovery of a twin-ribozyme intron in a member of Heterolobosea expands the distribution pattern of LC ribozymes. We identify a putative regulatory RNA element (AP2.1) in the Allovahlkampfia LC ribozyme that involves homing endonuclease mRNA coding sequences as an important structural component. PMID:25342998

  17. Splicing of scorpion toxin gene BmKK2 in HEK 293T cells.

    PubMed

    Zhijian, Cao; Chao, Dai; Shijin, Yin; Yingliang, Wu; Jiqun, Sheng; Yonggang, Sha; Wenxin, Li

    2006-01-01

    Using GFP as a reporter gene, splicing of scorpion toxin gene BmKK2 was investigated in cultured HEK 293T cells. The results of RT-PCR and western blotting showed that BmKK2's intron could be recognized and spliced in cultured HEK 293T cells. At the same time, a cryptic splicing site of BmKK2 gene was found at the 91st nucleotide site of the second exon, which is a typical form of alternative splicing. For the first time, alternative splicing would partially explain the diversity of scorpion toxins at the gene level. Moreover, replacing BmKK2's intron with BmP03's intron (an artificial BmKK2-BmP03 mosaic gene) did not affect the intron's recognition and splicing, but increased the expression of the toxin-GFP fusion protein by fluorescence imaging, which indicated that both introns may regulate the expression of toxin-GFP fusion protein. The artificial BmKK2-BmP03 mosaic gene was also spliced into two kinds of mRNA molecules, which showed that sequence of intron was not absolutely conserved. The results suggested that introns of scorpion toxin genes BmKK2 and BmP03 increase the diversity of scorpion toxins and regulate the expression of their genes. 2006 Wiley Periodicals, Inc.

  18. A G-to-T transversion at the splice acceptor site of dystrophin exon 14 shows multiple splicing outcomes that are not exemplified by transition mutations.

    PubMed

    Ota, Mitsunori; Takeshima, Yasuhiro; Nishida, Atsushi; Awano, Hiroyuki; Lee, Tomoko; Yagi, Mariko; Matsuo, Masafumi

    2012-01-01

    Mutations at splicing consensus sequences have been shown to induce splicing errors such as exon skipping or cryptic splice site activation. Here, we identified eight splicing products caused by a G-to-T transversion mutation at the splice acceptor site of exon 14 of the dystrophin gene (c.1603-1G>T). Unexpectedly, the most abundant product showed skipping of the two consecutive exons 14 and 15, and exon 14 skipping was observed as the second most abundant product. To examine the cause of this splicing multiplicity, minigenes containing dystrophin exons 14 and 15 with their flanking introns were constructed and subjected to in vitro splicing. Minigenes with the wild-type sequence or a G>A transition at position c.1603-1 produced only the mature mRNA. On the other hand, the minigenes with a G>T or G>C transversion mutation produced multiple splicing products. A time-course analysis of the in vitro splicing revealed that splicing of the middle intron, intron 14, was the first step in transcript maturation for all four minigene constructs. The identity of the mutant nucleotide, but not its position, is a factor leading to multiple splicing outcomes. Our results suggest that exon skipping therapy for Duchenne's muscular dystrophy should be carefully monitored for their splicing outcomes.

  19. The global landscape of intron retentions in lung adenocarcinoma

    PubMed Central

    2014-01-01

    Background The transcriptome complexity in an organism can be achieved by alternative splicing of precursor messenger RNAs. It has been revealed that alternations in mRNA splicing play an important role in a number of diseases including human cancers. Methods In this study, we exploited whole transcriptome sequencing data from five lung adenocarcinoma tissues and their matched normal tissues to interrogate intron retention, a less studied alternative splicing form which has profound structural and functional consequence by modifying open reading frame or inserting premature stop codons. Results Abundant intron retention events were found in both tumor and normal tissues, and 2,340 and 1,422 genes only contain tumor-specific retentions and normal-specific retentions, respectively. Combined with gene expression analysis, we showed that genes with tumor-specific retentions tend to be over-expressed in tumors, and the abundance of intron retention within genes is negatively related with gene expression, indicating the action of nonsense mediated decay. Further functional analysis demonstrated that genes with tumor-specific retentions include known lung cancer driver genes and are found enriched in pathways important in carcinogenesis. Conclusions We hypothesize that intron retentions and consequent nonsense mediated decay may collectively counteract the over-expression of genes promoting cancer development. Identification of genes with tumor-specific retentions may also help develop targeted therapies. PMID:24646369

  20. Evidence for a class of very small introns in the gene for hypoxanthine-guanine phosphoribosyltransferase in Schistosoma mansoni.

    PubMed Central

    Craig, S P; Muralidhar, M G; McKerrow, J H; Wang, C C

    1989-01-01

    The single copy gene for the hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) of the parasitic trematode, Schistosoma mansoni, contains seven introns, the first four of which are only 31, 33, 42, and 32 bases in length. These are the smallest introns ever discovered in a non-viral nuclear gene coding for protein. These very small introns possess the canonical GT...AG splice site sequences but lack the branching sequence, the secondary structure, and the minimum size of approximately 50 bases believed to be required for the splicing of eucaryotic mRNA precursors. Evidently, a somewhat different splicing mechanism for the transcripts of these very small introns is necessary. Their discovery within the genes of helminths raises theoretical considerations for the evolution of introns in eucaryotes. Images PMID:2701934

  1. Genetic suppression of intronic +1G mutations by compensatory U1 snRNA changes in Caenorhabditis elegans.

    PubMed Central

    Zahler, Alan M; Tuttle, John D; Chisholm, Andrew D

    2004-01-01

    Mutations to the canonical +1G of introns, which are commonly found in many human inherited disease alleles, invariably result in aberrant splicing. Here we report genetic findings in C. elegans that aberrant splicing due to +1G mutations can be suppressed by U1 snRNA mutations. An intronic +1G-to-U mutation, e936, in the C. elegans unc-73 gene causes aberrant splicing and loss of gene function. We previously showed that mutation of the sup-39 gene promotes splicing at the mutant splice donor in e936 mutants. We demonstrate here that sup-39 is a U1 snRNA gene; suppressor mutations in sup-39 are compensatory substitutions in the 5' end, which enhance recognition of the mutant splice donor. sup-6(st19) is an allele-specific suppressor of unc-13(e309), which contains an intronic +1G-to-A transition. The e309 mutation activates a cryptic splice site, and sup-6(st19) restores splicing to the mutant splice donor. sup-6 also encodes a U1 snRNA and the mutant contains a compensatory substitution at its 5' end. This is the first demonstration that U1 snRNAs can act to suppress the effects of mutations to the invariant +1G of introns. These findings are suggestive of a potential treatment of certain alleles of inherited human genetic diseases. PMID:15342508

  2. Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability.

    PubMed

    Bonnet, Amandine; Grosso, Ana R; Elkaoutari, Abdessamad; Coleno, Emeline; Presle, Adrien; Sridhara, Sreerama C; Janbon, Guilhem; Géli, Vincent; de Almeida, Sérgio F; Palancade, Benoit

    2017-08-17

    Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Half pint/Puf68 is required for negative regulation of splicing by the SR splicing factor Transformer2.

    PubMed

    Wang, Shanzhi; Wagner, Eric J; Mattox, William

    2013-08-01

    The SR family of proteins plays important regulatory roles in the control of alternative splicing in a wide range of organisms. These factors affect splicing through both positive and negative controls of splice site recognition by pre-spliceosomal factors. Recent studies indicate that the Drosophila SR factor Transformer 2 (Tra2) activates and represses splicing through distinct and separable effector regions of the protein. While the interactions of its Arg-Ser-rich activator region have been well studied, cofactors involved in splicing repression have yet to be found. Here we use a luciferase-based splicing reporter assay to screen for novel proteins necessary for Tra2-dependent repression of splicing. This approach identified Half pint, also known as Puf68, as a co-repressor required for Tra2-mediated autoregulation of the M1 intron. In vivo, Half pint is required for Tra2-dependent repression of M1 splicing but is not necessary for Tra2-dependent activation of doublesex splicing. Further experiments indicate that the effect of Hfp is sequence-specific and that it associates with these target transcripts in cells. Importantly, known M1 splicing regulatory elements are sufficient to sensitize a heterologous intron to Hfp regulation. Two alternative proteins deriving from Hfp transcripts, Hfp68, and Hfp58, were found to be expressed in vivo but differed dramatically in their effect on M1 splicing. Comparison of the cellular localization of these forms in S2 cells revealed that Hfp68 is predominantly localized to the nucleus while Hfp58 is distributed across both the nucleus and cytoplasm. This accords with their observed effects on splicing and suggests that differential compartmentalization may contribute to the specificity of these isoforms. Together, these studies reveal a function for Half pint in splicing repression and demonstrate it to be specifically required for Tra2-dependent intron inclusion.

  4. Using Profiles Based on Nucleotide Hydrophobicity to Define Essential Regions for Splicing

    PubMed Central

    Boldina, Galina; Ivashchenko, Anatoly; Régnier, Mireille

    2009-01-01

    The splice-site sequences of U2-type introns are highly degenerate, so many different sequences can function as U2-type splice sites. Using our new profiles based on hydrophobicity properties we pointed out specific properties for regions surrounding splice sites. We built a set T of flanking regions of genes with 1-3 introns from 21st and 22nd chromosomes extracted from GenBank to define positions having conserved properties, namely hydrophobicity, that are potentially essential for recognition by spliceosome. GT–AG introns exist in U2 and U12-types. Therefore, intron type cannot be simply determined by the dinucleotide termini. We attempted to distinguish U2 and U12-types introns with help of hydrophobicity profiles on sets of spice sites for U2 or U12-type introns extracted from SpliceRack database. The positions given by our method, which may be important for recognition by spliceosome, were compared to the nucleotide consensus provided by a classical method, Pictogram. We showed that there is a similarity of hydrophobicity profiles inside intron types. On one hand, GT–AG and GC–AG introns belonging to U2-type have resembling hydrophobicity profiles as well as AT–AC and GT–AG introns belonging to U12-type. On the other hand, hydrophobicity profiles of U2 and U12-types GT–AG introns are completely different. We suggest that hydrophobicity profiles facilitate definition of intron type, distinguishing U2 and U12 intron types and can be used to build programs to search splice site and to evaluate their strength. Therefore, our study proves that hydrophobicity profiles are informative method providing insights into mechanisms of splice sites recognition. PMID:19119309

  5. [Alternative splicing regulation: implications in cancer diagnosis and treatment].

    PubMed

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora; Martínez-Contreras, Rebeca

    2015-04-08

    The accurate expression of the genetic information is regulated by processes like mRNA splicing, proposed after the discoveries of Phil Sharp and Richard Roberts, who demonstrated the existence of intronic sequences, present in almost every structural eukaryotic gene, which should be precisely removed. This intron removal is called "splicing", which generates different proteins from a single mRNA, with different or even antagonistic functions. We currently know that alternative splicing is the most important source of protein diversity, given that 70% of the human genes undergo splicing and that mutations causing defects in this process could originate up to 50% of genetic diseases, including cancer. When these defects occur in genes involved in cell adhesion, proliferation and cell cycle regulation, there is an impact on cancer progression, rising the opportunity to diagnose and treat some types of cancer according to a particular splicing profile.

  6. Alternative Splicing of STAT3 Is Affected by RNA Editing.

    PubMed

    Goldberg, Lior; Abutbul-Amitai, Mor; Paret, Gideon; Nevo-Caspi, Yael

    2017-03-09

    A-to-I RNA editing, carried out