Science.gov

Sample records for alumina scale spallation

  1. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2010-01-01

    For some time the oxidation community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cool down, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of thermal barrier coatings (TBCs) refer to this process. It is most apparent for relatively adherent alumina scales that have survived initial cool down in a dry environment, have built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sensitive zone" can be described that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement. Hydrogen is derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen-induced effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic-tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen detection as a reaction product or interfacial species. Further support is provided by critical experiments that recreate the moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H 2-containing atmospheres or cathodic hydrogen charging. Accordingly, they strongly indicate that interfacial hydrogen, derived from moisture, is the key chemical species accounting for delayed alumina scale spallation.

  2. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    For some time our community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cooldown, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of TBC's refer to this process. It is most apparent for relatively adherent alumina scales that have survived cool down in a dry environment, built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sweet zone" can be defined that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen as a reaction product or detected interfacial species. Further support is provided by critical experiments that produce the same moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H2-containing atmospheres or cathodic hydrogen charging.

  3. Sulfur and Moisture Effects on Alumina Scale and TBC Spallation

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2007-01-01

    It has been well established that a few ppmw sulfur impurity may segregate to the interface of thermally grown alumina scales and the underlying substrate, resulting in bond degradation and premature spallation. This has been shown for NiAl and NiCrAl-based alloys, bare single crystal superalloys, or coated superalloys. The role of reactive elements (especially Y) has been to getter the sulfur in the bulk and preclude interfacial segregation. Pt additions are also very beneficial, however a similar thermodynamic explanation does not apply. The purpose of the present discussion is to highlight some observations of these effects on Rene'142, Rene'N5, PWA1480, and PWA1484. For PWA1480, we have mapped cyclic oxidation and spallation in terms of potential sulfur interfacial layers and found that a cumulative amount of about one monolayer is sufficient to degrade long term adhesion. Depending on substrate thickness, optimum performance occurs if sulfur is reduced below about 0.2-0.5 ppmw. This is accomplished in the laboratory by hydrogen annealing or commercially by melt-fluxing. Excellent 1150 C cyclic oxidation is thus demonstrated for desulfurized Rene'142, Rene'N5, and PWA1484. Alternatively, a series of N5 alloys provided by GE-AE have shown that as little as 15 ppmw of Y dopant was effective in providing remarkable scale adhesion. In support of a Y-S gettering mechanism, hydrogen annealing was unable to desulfurize these alloys from their initial level of 5 ppmw S. This impurity and critical doping level corresponds closely to YS or Y2S3 stoichiometry. In many cases, Y-doped alloys or alloys with marginal sulfur levels exhibit an oxidative sensitivity to the ambient humidity called Moisture-Induced Delayed Spallation (MIDS). After substantial scale growth, coupled with damage from repeated cycling, cold samples may spall after a period of time, breathing on them, or immersing them in water. While stress corrosion arguments may apply, we propose that the underlying

  4. Moisture-Induced Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2005-01-01

    Thermal expansion mismatch stresses and interfacial sulfur activity are the major factors producing primary Al2O3 scale spallation on high temperature alloys. However, moisture-induced delayed spallation appears as a secondary, but often dramatic, illustration of an additional mechanistic detail. A historical review of delayed failure of alumina scales and TBC s on superalloys is presented herein. Similarities with metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al+3H2O=Al(OH)3+3H(+)+3e(-), is the operative mechanism. This proposal was tested by standard cathodic hydrogen charging in 1N H2SO4, applied to Rene N5 pre-oxidized at 1150 C for 1000 1-hr cycles, and monitored by weight change, induced current, and microstructure. Here cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the electrolyte alone produced neither scale spallation nor alloy dissolution. These experiments thus highlight the detrimental effects of hydrogen charging on alumina scale adhesion. It is proposed that interfacial hydrogen embrittlement is produced by moist air and is the root cause of both moisture-induced, delayed scale spallation and desktop TBC failures.

  5. Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    Delayed interfacial scale failure takes place after cooling for samples of a Ni(Pt)Al-coated CMSX4 single crystal superalloy, cycled at 1150 C for up to 2000 hr. One sample exhibited premature coating grain boundary wrinkling, alumina scale spallation to bare metal, and a final weight loss of 3.3 mg/cm2 . Spallation under ambient conditions was monitored with time after cooldown and was found to continue for 24 hr. This produced up to 0.05 mg/cm2 additional loss for each hold, accumulating 0.7 mg/cm 2 (20 percent of the total) over the course of the test. After test termination, water immersion produced an additional 0.15 mg/cm2 loss. (A duplicate sample produced much less wrinkling and time dependent spalling, maintaining a net weight gain.) The results are consistent with the general phenomena of moisture-induced delayed spallation (MIDS) of mature, distressed alumina scales formed on oxidation resistant M-Al alloys. Relative ambient humidity is discussed as the factor controlling adsorbed moisture, reaction with the substrate, and hydrogen effects on interface strength.

  6. Delayed Alumina Scale Spallation on Rene'n5+y: Moisture Effects and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Morscher, Gregory N.

    2001-01-01

    The single crystal superalloy Rene'N5 (with or without Y-doping and hydrogen annealing) was cyclically oxidized at 1150 C for 1000 hours. After considerable scale growth (>= 500 hours), even the adherent alumina scales formed on Y-doped samples exhibited delayed interfacial spallation during subsequent water immersion tests, performed up to one year after oxidation. Spallation was characterized by weight loss, the amount of spalled area, and acoustic emission response. Hydrogen annealing (prior to oxidation) reduced spallation both before and after immersion, but without measurably reducing the bulk sulfur content of the Y-doped alloys. The duration and frequency of sequential, co-located acoustic emission events implied an interfacial crack growth rate at least 10(exp -3) m/s, but possibly higher than 10(exp 2) m/s. This is much greater than classic moisture-assisted slow crack growth rates in bulk alumina (10(exp -6) to 10(exp -3) m/s), which may still have occurred undetected by acoustic emission. An alternative failure sequence is proposed: an incubation process for preferential moisture ingress leads to a local decrease in interfacial toughness, thus allowing fast fracture driven by stored strain energy.

  7. Moisture-Induced Delayed Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    While interfacial sulfur is the primary chemical factor affecting Al2O3 scale adhesion, moisture-induced delayed spallation appears as a secondary, but impressive, mechanistic detail. Similarities with bulk metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al(sub alloy)+3(H2O)(sub air) = Al(OH)(-) (sub 3) +3H(+) may be the operative mechanism. This proposal was tested on pre-oxidized Rene N5 by standard cathodic hydrogen charging in 1N H2SO4, as monitored by weight change, induced current, and microstructure. Cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the acid electrolyte produced neither scale spallation nor alloy dissolution. Thus, hydrogen charging was detrimental to alumina scale adhesion. Moisture-induced interfacial hydrogen embrittlement is concluded to be the cause of delayed scale spallation and desktop thermal barrier coating failures.

  8. Surface modification to prevent oxide scale spallation

    DOEpatents

    Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A

    2013-07-16

    A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.

  9. HPC simulations of grain-scale spallation to improve thermal spallation drilling

    NASA Astrophysics Data System (ADS)

    Walsh, S. D.; Lomov, I.; Wideman, T. W.; Potter, J.

    2012-12-01

    Thermal spallation drilling and related hard-rock hole opening techniques are transformative technologies with the potential to dramatically reduce the costs associated with EGS well drilling and improve the productivity of new and existing wells. In contrast to conventional drilling methods that employ mechanical means to penetrate rock, thermal spallation methods fragment rock into small pieces ("spalls") without contact via the rapid transmission of heat to the rock surface. State-of-the-art constitutive models of thermal spallation employ Weibull statistical failure theory to represent the relationship between rock heterogeneity and its propensity to produce spalls when heat is applied to the rock surface. These models have been successfully used to predict such factors as penetration rate, spall-size distribution and borehole radius from drilling jet velocity and applied heat flux. A properly calibrated Weibull model would permit design optimization of thermal spallation drilling under geothermal field conditions. However, although useful for predicting system response in a given context, Weibull models are by their nature empirically derived. In the past, the parameters used in these models were carefully determined from laboratory tests, and thus model applicability was limited by experimental scope. This becomes problematic, for example, if simulating spall production at depths relevant for geothermal energy production, or modeling thermal spallation drilling in new rock types. Nevertheless, with sufficient computational resources, Weibull models could be validated in the absence of experimental data by explicit small-scale simulations that fully resolve rock grains. This presentation will discuss how high-fidelity simulations can be used to inform Weibull models of thermal spallation, and what these simulations reveal about the processes driving spallation at the grain-scale - in particular, the role that inter-grain boundaries and micro-pores play in the

  10. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    SciTech Connect

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  11. Sulfur Impurities and the Microstructure of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1997-01-01

    The relationship between the microstructure of alumina scales, adhesion, and sulfur content was examined through a series of nickel alloys oxidized in 1100 to 1200 deg. C cyclic or isothermal exposures in air. In cyclic tests of undoped NiCrAl, adhesion was produced when the sulfur content was reduced, without any change in scale microstructure. Although interfacial voids were not observed in cyclic tests of NiCrAl, they were promoted by long-term isothermal exposures, by sulfur doping, and in most exposures of NiAl. Two single crystal superalloys, PWA 1480 and Rene' N5, were also tested, either in the as-received condition or after the sulfur content had been reduced to less than 1 ppmw by hydrogen annealing. The unannealed alloys always exhibited spalling to bare metal, but interfacial voids were not observed consistently. Desulfurized PWA 1480 and Rene' N5 exhibited remarkable adhesion and no voidage for either isothermal or cyclic exposures. The most consistent microstructural feature was that, for the cases where voids did form, the scale undersides exhibited corresponding areas with ridged oxide grain boundaries. Voids were not required for spallation nor were other microstructural features essential for adhesion. These observations are consistent with the model whereby scale spallation is controlled primarily by interfacial sulfur segregation and the consequent degradation of oxide-metal bonding.

  12. Chemical and microstructural characterization of thermally grown alumina scales

    SciTech Connect

    Natesan, K.; Richier, C.; Veal, B.W.

    1995-09-01

    An experimental program has been initiated to evaluate the chemical, microstructural, and mechanical integrity of thermally grown oxide scales to establish requirements for improved corrosion performance in terms of composition, structure, and properties. Iron aluminides of several compositions were selected for the study. Oxidation studies were conducted in air and oxygen environments at 1000{degrees}C. The results showed that the scaling kinetics followed a parabolic rate law but that the rates in early stages of oxidation were significantly greater than in later stages; the difference could be attributed to the presence of fast-growing transient iron oxides in the layer during the early stages. Further, scale failure occurred via gross spallation, scale cracking, and nodule formation and was influenced by alloy composition. Auger electron spectroscopy of Ar-exposed specimens of ternary Fe-Cr-Al alloy showed sulfur on the gas/scale side of the interface; the sulfur decreased as the exposure time increased. Raman spectroscopy and ruby fluorescence were used to examine the scale development as a function of oxidation temperature. Ruby-line shift is used to examine phase transformations in alumina and to calculate compressive strains in thermally grown scales.

  13. The microstructure and mechanical reliability of alumina scales and coatings

    SciTech Connect

    Alexander, K.B.; Pruessner, K.; Tortorelli, P.F.

    1997-09-01

    Alumina scales on iron-aluminides (Fe{sub 3}Al-based) and NiCrAl- based alloys were characterized in order to develop the knowledge to control the oxidation performance of alloys by controlling the microstructure and microchemistry of their scales. Plasma-deposited amorphous alumina coatings on iron-aluminides were used to study phase transformations, transport processes in the scales, and S segregation to the scale/metal interface. It was found that during heat treatment in absence of oxidation, amorphous coatings first transform to {gamma}-Al{sub 2}O{sub 3} and eventually {alpha}-Al{sub 2}O{sub 3} nucleates at the scale/metal interface. Sulfur from the Zr- free alloy segregates to the scale/metal interface during heat treatment. Thermally grown scales on Zr-doped iron-aluminides were compared to those formed after oxidation of a specimen with an alumina coating. Microstructural and gravimetric results showed that the primarily amorphous alumina coating promoted the nucleation and growth of metastable alumina phases, which resulted in more rapid oxidation. The thermally grown oxide was found on top of the coating. The NiCrAl-based alloys formed columnar alumina scales underneath a layer of mixed oxides. Segregation of alloying elements like Y, Hf, and At was found at both oxide grain boundaries and scale/metal interfaces.

  14. Scaling phenomena of isobaric yields in projectile fragmentation, spallation, and fission reactions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Huang, Ling; Song, Yi-Dan

    2017-02-01

    Background: The isobaric ratio difference scaling phenomenon, which has been found for the fragments produced in projectile fragmentation reactions, is related to the nuclear density change in reaction systems. Purpose: To verify whether the isobaric ratio difference scaling exists in the fragments produced in the spallation and fission reactions. Methods: The isobaric ratio difference scaling, denoted by SΔ lnR21 , is in theory deduced within the framework of the canonical ensemble theory at the grand-canonical limitation. The fragments measured in a series of projectile fragmentation, spallation, and fission reactions have been analyzed. Results: A good SΔ lnR21 scaling phenomenon is shown for the fragments produced both in the projectile fragmentation reactions and in the spallation reactions, whereas the SΔ lnR21 scaling phenomenon for the fragments in the fission reaction is less obvious. Conclusions: The SΔ lnR21 scaling is used to probe the properties of the equilibrium system at the time of fragment formation. The good scaling of SΔ lnR21 suggests that the equilibrium state can be achieved in the projectile fragmentation and spallation reactions. Whereas in the fission reaction, the result of SΔ lnR21 indicates that the equilibrium of the system is hard to achieve.

  15. The mechanical reliability of alumina scales and coatings

    SciTech Connect

    Alexander, K.B.; Pruebner, K.; Tortorelli, P.F.

    1996-08-01

    The mechanical integrity of oxide scales ultimately determines their ability to protect materials from corrosion and other environmental effects arising from deleterious reactions with gases and condensable products. The microstructure and mechanical behavior of alumina products thermally grown or deposited on Fe-28 at.% Al intermetallic alloys are being characterized in order to develop the knowledge and means to control the mechanical reliability of alumina scales by microstructural manipulation through design and processing. Mechanical characterization involved gravimetric data from cyclic oxidation experiments, in-situ observation of oxidized specimens undergoing flexural loading in a scanning electron microscope, and measurements of hardness, elastic modulus and cracking resistance by nanoindentation. Values of cracking thresholds for Al{sub 2}O{sub 3} scales were consistent with other measurements for surface and bulk alumina. The oxidation behavior of Fe{sub 3}Al alloys coated with a thin (0.5 - 1 {mu}m) alumina film deposited by plasma synthesis has been studied. During exposure in the oxidizing environment, new oxide was formed between the coating and the substrate. The presence of the deposited amorphous oxide inhibited the subsequent thermal oxidation of the metal. Because the thermally grown alumina forms under the deposit, the adherence of the coating is controlled by the strength of the metal/oxide interface that develops during oxidation.

  16. Mitigation and Prediction of Spallation of Oxide Scales on Ferritic Stainless Steel

    SciTech Connect

    Chou, Y. S.; Stephens, Elizabeth V.; Xu, Zhijie; Xu, Wei; Koeppel, Brian J.; Stevenson, Jeffry W.

    2015-02-04

    This report summarizes results from experimental and modeling studies performed by researchers at Pacific Northwest National Laboratory on behalf of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program. The results indicate that application of physical surface modifications, such as surface blasting, prior to application of protective surface coatings can substantially increase oxide scale spallation resistance during long-term exposure to elevated temperatures (e.g., 800-850ºC). To better understand and predict the benefits of surface modification, an integrated modeling framework was developed and applied to the obtained experimental results.

  17. Conduction in alumina with atomic scale copper filaments

    SciTech Connect

    Xu, Xu; Liu, Jie; Anantram, M. P.

    2014-10-28

    The conductance of atomic scale filaments with three and seven Cu atoms in α-alumina are calculated using ab initio density functional theory. We find that the filament with 3 Cu atoms is sufficient to increase the conductance of 1.3 nm thick alumina film by more than 10{sup 3} times in linear response. As the applied voltage increases, the current quickly saturates and differential resistance becomes negative. Compared to the filament with three Cu atoms, while the conductance of the filament with seven Cu atoms is comparable in linear response, they carry as much as twenty times larger current at large biases. The electron transport is analyzed based on local density of states, and the negative differential resistance in the seven Cu filaments occurs due to their narrow bandwidth.

  18. Corrosion performance of alumina scales in coal gasification environments

    SciTech Connect

    Natesan, K.

    1997-02-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S and Cl as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques.

  19. Lightweight alumina refractory aggregate. Phase 2, Pilot scale development

    SciTech Connect

    Swansiger, T.G.; Pearson, A.

    1994-11-01

    Kilogram quantities of refractory aggregate were prepared from both a paste and a pelletized form of extruder feed material in both bench and pilot-scale equipment. The 99{sup +} % alumina aggregate exhibited a bulk density approaching 2.5 g/cm{sup 3} and a fired strength slightly lower than fused alumina. Based on initial evaluation by two refractory manufacturers in brick or castable applications, the new aggregate offered adequate strength with thermal conductivity reductions up to 34%, depending on the temperature and application of the new aggregate in these initial trials. The new aggregate was simply substituted for Tabular{trademark} in the refractory formulation. Thus, there is room for improvement through formulation optimization with the lightweight aggregate. The new aggregate offers a unique combination of density, strength, and thermal properties not available in current aggregate. To this point in time, technical development has led to a pelletized formulation with borderline physical form leaving the Eirich mixer. The formulation requires further development to provide more latitude for the production of pelletized material without forming paste, while still reducing the bulk density slightly to reach the 2.5 g/cm{sup 3} target. The preferred, pelletized process flowsheet was outlined and a preliminary economic feasibility study performed based on a process retrofit into Alcoa`s Arkansas tabular production facilities. Based on an assumed market demand of 20,000 mt/year and an assumed selling price of $0.65/lb (25% more than the current selling price of Tabular{trademark}, on a volume basis), economics were favorable. Decision on whether to proceed into Phase 3 (full- scale demonstration) will be based on a formal market survey in 1994 October.

  20. Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating (Preprint)

    DTIC Science & Technology

    2009-04-01

    crystal superalloys . But it is less widely appreciated that such phenomena may also occur for commercial platinum aluminide coatings . This has...examined for samples of a Ni(Pt)Al- coated CMSX4 single crystal superalloy , cyclically oxidized at 1150oC for 2000 hr. One sample exhibited... coated CMSX4 single crystal superalloy , cyclically oxidized at 1150oC for 2000 hr. One sample exhibited accentuated coating grain boundary wrinkling

  1. Diffusivity in Alumina Scales Grown on Al-MAX Phases

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2014-01-01

    Ti3AlC2, Ti2AlC, and Cr2AlC are oxidation resistant MAX phase compounds distinguished by the formation of protective Al2O3 scales with well controlled kinetics. A modified Wagner treatment was used to obtain interfacial grain boundary diffusivity, deltaD(sub gb,O,int.), from scale growth rates and corresponding grain size. It is based on the p(O2)(exp -1/6) dependency of the double charged oxygen vacancy and oxygen diffusivity, coupled with the effective diffusion constant for short circuit grain boundary paths. Data from the literature for MAX phases was analyzed accordingly, and deltaD(sub gb,O,int.) was found to nearly coincide with the Arrhenius line developed for Zr-doped FeCrAl, where: deltaD(sub gb,O,int.) = 1.8x10(exp -10) exp(-375 kJ/RT) cubic meters/s. Furthermore, this oxidation relation suggests the more general format applicable to bulk samples under ambient conditions: deltaD(sub gb,O) = 7.567x10(exp -8) exp(-544 kJ/RT) p(O2)(exp -1/6) cubic meters/[s x Pa(exp -1/6)]. Data from many other FeCrAl(X) studies were similarly assessed to show general agreement with the relation for deltaD(sub gb,O,int.). This analysis reinforces the view that protective alumina scales grow by similar mechanisms for these Al-MAX phases and oxidation resistant FeCrAl alloys.

  2. Lightweight alumina refractory aggregate: Phase 3, Full-scale demonstration

    SciTech Connect

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Technical problems (higher than target fired density, and poor intermediate strength after burnout but before sintering) were addressed and solved; solution involved use of large loading of CP-5 alumina (controlled pore, rehydratable), increased loading of one of the binders, and a steam aging step. Resistance of the lightweight aggregate in a brick formulation to steel slag penetration was assessed in a preliminary test and found to be almost as good as that of T-64. Pelletized process economic feasibility study was updated, based on production levels of 10,000 and 20,000 mt/year, the most up- to-date raw material costs, and the assumption of a retrofit into the Arkansas plant tabular production facility. For the 10,000 mt/y production level, the required selling price of 35% more than the T- 64 selling price exceeds the {le}25% objective. The market survey will determine whether to proceed with the full scale demonstration that will produce at least 54.4 mt (120,000 lb) of the aggregate for incorporation into products, followed by end-user testing and evaluation.

  3. Moisture-Induced TBC Spallation on Turbine Blade Samples

    NASA Technical Reports Server (NTRS)

    Smialek, James

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. The weekend effect or DeskTop Spallation (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond coat are reported. Cut sections were intermittently oxidized at 1100, 1150, and 1200 C and monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that embrittle the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  4. Moisture-Induced TBC Spallation on Turbine Blade Samples

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. "The weekend effect" or "DeskTop Spallation" (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that 'embrittle' the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  5. Formation of x-ray Newton's rings from nano-scale spallation shells of metals in laser ablation

    NASA Astrophysics Data System (ADS)

    Nishikino, Masaharu; Hasegawa, Noboru; Tomita, Takuro; Minami, Yasuo; Eyama, Takashi; Kakimoto, Naoya; Izutsu, Rui; Baba, Motoyoshi; Kawachi, Tetsuya; Suemoto, Tohru

    2017-01-01

    The initial stages of the femtosecond (fs) laser ablation process of gold, platinum, and tungsten were observed by single-shot soft x-ray imaging technique. The formation and evolution of soft x-ray Newton's rings (NRs) were found for the first time. The soft x-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer; they originate from the metal surface at pump energy fluence of around 1 J/cm2 and work as a flying soft x-ray beam splitter.

  6. EFFECT OF SURFACE CONDITION ON SPALLATION BEHAVIOR OF OXIDE SCALE ON SS 441 SUBSTRATE USED IN SOFC

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-03-01

    As operating temperature of SOFC decreases, ferritic stainless steel has attracted a great deal of attention for its use as an interconnect in SOFCs because of its gas-tightness, low electrical resistivity, ease of fabrication, and cost-effectiveness. However, oxidation reaction of the metallic interconnects in a typical SOFC working environment is unavoidable. The growth stresses in the oxide scale and on the scale/substrate interface combined with the thermal stresses induced by thermal expansion coefficient mismatch between the oxide scale and the substrate may lead to scale delamination/buckling and eventual spallation during stack cooling, which can lead to serious cell performance degradation. Therefore, the interfacial adhesion strength between the oxide scale and substrate is crucial to the reliability and durability of the metallic interconnect in SOFC operating environments. In this paper, we investigated the effect of the surface conditions on the interfacial strength of oxide scale and SS441 substrate experimentally. Contrary to the conventional sense, it was found that rough surface of SS441 substrate will decrease the interfacial adhesive strength of the oxide scale and SS441 substrate

  7. Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats

    DOE PAGES

    Nordhorn, Christian; Mücke, Robert; Unocic, Kinga A.; ...

    2014-08-20

    In this paper, furnace cycling experiments were performed on free-standing high-velocity oxygen-fuel bond coat samples to investigate the effect of material composition, surface texture, and cycling conditions on the average stresses in the formed oxide scales after cooling. The oxide scale thicknesses were determined by SEM image analyses and information about the stresses were acquired by photo-stimulated luminescence-spectroscopy. Additionally, the scale thickness dependent stress fields were calculated in finite-element analyses including approximation functions for the surface roughness derived on the basis of profilometry data. The evolution of the average residual stress as a function of oxide scale thickness was subjectmore » to stochastic fluctuations predominantly caused by local scale spallations. In comparison to the supplemental modeling results, thermal stresses due to mismatch of thermal expansion coefficients are identified as the main contribution to the residual stresses. Finally, the theoretical results emphasize that analyses of spectroscopic data acquired for average stress investigations of alumina scales rely on detailed information about microstructural features.« less

  8. Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats

    SciTech Connect

    Nordhorn, Christian; Mücke, Robert; Unocic, Kinga A.; Lance, Michael J.; Pint, Bruce A.; Vaßen, Robert

    2014-08-20

    In this paper, furnace cycling experiments were performed on free-standing high-velocity oxygen-fuel bond coat samples to investigate the effect of material composition, surface texture, and cycling conditions on the average stresses in the formed oxide scales after cooling. The oxide scale thicknesses were determined by SEM image analyses and information about the stresses were acquired by photo-stimulated luminescence-spectroscopy. Additionally, the scale thickness dependent stress fields were calculated in finite-element analyses including approximation functions for the surface roughness derived on the basis of profilometry data. The evolution of the average residual stress as a function of oxide scale thickness was subject to stochastic fluctuations predominantly caused by local scale spallations. In comparison to the supplemental modeling results, thermal stresses due to mismatch of thermal expansion coefficients are identified as the main contribution to the residual stresses. Finally, the theoretical results emphasize that analyses of spectroscopic data acquired for average stress investigations of alumina scales rely on detailed information about microstructural features.

  9. Finite element modeling of the effect of interface anomalies on thermal stresses in alumina scales

    SciTech Connect

    Wright, J.K.; Williamson, R.L.; Hou, P.Y.; Cannon, R.M.; Renusch, D.; Veal, B.; Grimsditch, M.

    1998-07-01

    The scales that grow from oxidation often develop a convoluted morphology or interface pores. High thermal stresses can develop locally and are potentially detrimental to the scale or interface integrity. Finite element simulations are used to examine residual thermal stresses and strains that result when these deviations from a flat interface have formed, and the resulting geometry is subsequently cooled to room temperature. A variety of geometries will be considered for alumina scales on a FeCrAl substrate.

  10. Finite element modeling of the effect of interface anomalies on thermal stresses in alumina scales.

    SciTech Connect

    Wright, J. K.

    1998-06-10

    The scales that grow from oxidation often develop a convoluted morphology or interface pores. High thermal stresses can develop locally and are potentially detrimental to the scale or interface integrity. Finite element simulations are used to examine residual thermal stresses and strains that result when these deviations from a flat interface have formed, and the resulting geometry is subsequently cooled to room temperature. A variety of geometries will be considered for alumina scales on a FeCrAl substrate.

  11. Effect of Impurities on O and Al Boundary Diffusion in Alumina: Application Alumina Scale Growth in Alloys

    DTIC Science & Technology

    2012-01-24

    uniform dispersion of Ni marker particles (0.5 vol%). The extent of the alumina spinel oxidation layer was measured as a function of the wedge...of Ni alone enhances transport by approximately a factor of 2 relative to undoped alumina. The diffusive transport of chromium in both pure and Y...doped fine-grained alumina has been investigated over the temperature range 1250 -1650 C. From a quantitative assessment of the chromium diffusion

  12. The mechanical reliability of alumina scales and coatings

    SciTech Connect

    Alexander, K.B.; Pruebner, K.; Tortorelli, P.F.

    1996-06-01

    In many high-temperature fossil energy systems, corrosion and deleterious reactions with gases and condensable products in the operating environment often compromise materials performance. The presence of a stable surface oxide (either as thermally-grown scales or deposited coatings) can effectively protect the materials from these reactions if the oxides are slow-growing, dense and adherent to the substrate. The protection these brittle oxide films provide has long been a critical issue, particularly for applications involving severe high-temperature thermal cycles or very aggressive (for example, sulfidizing) environments. The various factors which control the scale/coating integrity and adherence are not well understood. The present multilaboratory collaborative work is intended to define the relationships between substrate characteristics (composition, microstructure, and mechanical behavior) and the structure and protective properties of deposited oxide coatings and/or thermally grown scales. Through such studies, the ultimate goal is to assure environmental protection through effective processing and materials selection leading to the development of corrosion-resistant, high-temperature materials for improved energy and environmental control systems.

  13. Development and Exploratory Scale-Up of Alumina-Forming Austenitic (AFA) Stainless Steels

    SciTech Connect

    Brady, Michael P; Magee, John H; Yamamoto, Yukinori; Maziasz, Philip J; Santella, Michael L; Pint, Bruce A; Bei, Hongbin

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  14. Microstructural and mechanical characterization of alumina scales thermally developed on iron aluminide alloys

    SciTech Connect

    Natesan, K.; Renusch, D.; Veal, B.W.; Grimsditch, M.

    1996-11-01

    To understand the underlying phenomena when characterizing material performance, we must know the chemistry and physics of the early stages of oxidation, chemistry, and bonding at the substrate/oxide interface, effect of segregants on the strength of bonding, transport processes through the scale formed during corrosion, mechanisms of residual stress generation and relief, and fracture behavior at the oxide/substrate interface. Specific objectives of the program described here are to (a) systematically investigate the relationships among substrate composition and properties and scale/coating adherence, damage tolerance, and micromechanical properties; (b) use results from the investigation to prevent scale/coating failure at elevated temperatures; and (c) identify conditions that lead to coatings that are more damage tolerant and scales that are amenable to legitimate synthesis routes. This report presents experimental data on the microstructural characteristics of alumina scales that have been thermally developed on several Fe-based alumina-forming intermetallic alloys. In addition, data are presented on scale adhesion, along with determinations of strain from data obtained by ruby fluorescence.

  15. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  16. Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing

    PubMed Central

    Nishinaga, Osamu; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2013-01-01

    Anodic porous alumina has been widely investigated and used as a nanostructure template in various nanoapplications. The porous structure consists of numerous hexagonal cells perpendicular to the aluminum substrate and each cell has several tens or hundreds of nanoscale pores at its center. Because the nanomorphology of anodic porous alumina is limited by the electrolyte during anodizing, the discovery of additional electrolytes would expand the applicability of porous alumina. In this study, we report a new self-ordered nanoporous alumina formed by selenic acid (H2SeO4) anodizing. By optimizing the anodizing conditions, anodic alumina possessing 10-nm-scale pores was rapidly assembled (within 1 h) during selenic acid anodizing without any special electrochemical equipment. Novel sub-10-nm-scale spacing can also be achieved by selenic acid anodizing and metal sputter deposition. Our new nanoporous alumina can be used as a nanotemplate for various nanostructures in 10-/sub-10-nm-scale manufacturing. PMID:24067318

  17. European Spallation Source

    NASA Astrophysics Data System (ADS)

    Eshraqi, Mohammad; McGinnis, David; Lindroos, Mats

    The following sections are included: * Neutron usage and historical background * Spallation * History of spallation sources * The ESS facility * The ESS linac * Beam physics * The front-end and the normal conducting linac * Superconducting linac * RF sources * Summary * References

  18. Effect of edges and corners on stresses in thermally grown alumina scales

    SciTech Connect

    Renusch, D.; Muralidharan, G.; Uran, S.; Grimsditch, M.; Veal, B.W.; Wright, J.K.; Williamson, R.L.

    2000-02-01

    Residual stress near edges and corners of thermally grown alumina scales were investigated. In this study, an edge is the intersection of two orthogonal flat surfaces and a corner is the intersection of three such surfaces. Microfluorescence measurements, performed on alloys with composition Fe-28Al-5Cr (at.%, bal. Fe) oxidized at 900 C, showed a large (>50%) reduction in hydrostatic stress in the vicinity of edges and corners. Surprisingly, significant stress reduction persists out to distances twenty to fifty times the scale thickness from the edge. Finite-element analysis calculations confirm the experimental results and provide a considerably more detailed picture of the stress distribution and its components and show that much of the observed stress reduction near an edge, is due to plastic deformation of the underlying metal.

  19. Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Jacobson, Nathan S.; Gleeson, Brian; Hovis, David B.; Heuer, Arthur H.

    2013-01-01

    High-temperature oxygen permeability measurements had determined grain-boundary diffusivities (deltaD(sub gb)) in bulk polycrystalline alumina (Wada, Matsudaira, and Kitaoka). They predict that oxygen deltaD(sub gb,O) varies with oxygen pressure as P(O2)(sup -1/6) at low pressure whereas aluminum deltaD(sub gb),Al varies with P(O2)(sup +3/16) at high pressure. These relations were used to evaluate alumina scale growth in terms of diffusivity and grain size. A modified Wagner treatment for dominant inward oxygen growth produces the concise solution: ?(sub i) = k(sub p,i)×G(sub i) = 12 deltaD(sub gb,O,int), where ?(sub i) is a constant and k(sub p,i) and G(sub i) refer to instantaneous values of the scale parabolic growth constant and grain size, respectively. A commercial FeCrAl(Zr) alloy was oxidized at 1100 to 1400 degC to determine k(sub p,i), interfacial grain size, ?, and thus deltaD(sub gb,O,int). The deltaD(sub gb,O,int) values predicted from oxidation at (375 kJ/mole) were about 20 times less than those obtained above (at 298 kJ/mole), but closer than extrapolations from high-temperature bulk measurements. The experimental oxidation results agree with similar FeCrAl(X) studies, especially where both k(sub p,i) and G(sub i) were characterized. This complete approach accounts for temperature-sensitive oxidation effects of grain enlargement, equilibrium interface pressure variation, and grain-boundary diffusivity.

  20. Wear degradation of long-term in vivo exposed alumina-on-alumina hip joints: linking nanometer-scale phenomena to macroscopic joint design.

    PubMed

    Takahashi, Yasuhito; Sugano, Nobuhiko; Zhu, Wenliang; Nishii, Takashi; Sakai, Takashi; Takao, Masaki; Pezzotti, Giuseppe

    2012-02-01

    The wear behavior of alumina femoral heads was examined at follow-up periods between 7.7 and 10.7 years. Four head retrievals of the same size (28 mm in diameter) were divided into two groups with different design characteristics. Systematically using scanning electron and atomic force microscopy procedures, wear characteristics could be classified on the entire heads according to five zones with increasing degrees of wear damage (Grade 1-5), in addition to one zone of stripe wear (Grade SW). The stripe wear zone showed quite different topographical features as compared to frictionally worn zones. Furthermore, hip implants designed with different clearances are shown to lead to different wear patterns on the femoral head surface, the smaller the clearance the wider the worn surface area. Cathodoluminescence piezo-spectroscopy provided information about the residual stress state in surfaces worn to different degrees and helped clarifying the wear mechanisms on the microscopic scale.

  1. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.

    PubMed

    Peng, Shan; Tian, Dong; Yang, Xiaojun; Deng, Wenli

    2014-04-09

    In this study, a large-area superhydrophobic alumina surface with a series of superior properties was fabricated via an economical, simple, and highly effective one-step anodization process, and subsequently modified with low-surface-energy film. The effects of the anodization parameters including electrochemical anodization time, current density, and electrolyte temperature on surface morphology and surface wettability were investigated in detail. The hierarchical alumina pyramids-on-pores (HAPOP) rough structure which was produced quickly through the one-step anodization process together with a low-surface-energy film deposition [1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES) and stearic acid (STA)] confer excellent superhydrophobicity and an extremely low sliding angle. Both the PDES-modified superhydrophobic (PDES-MS) and the STA-modified superhydrophobic (STA-MS) surfaces present fascinating nonwetting and extremely slippery behaviors. The chemical stability and mechanical durability of the PDES-MS and STA-MS surfaces were evaluated and discussed. Compared with the STA-MS surface, the as-prepared PDES-MS surface possesses an amazing chemical stability which not only can repel cool liquids (water, HCl/NaOH solutions, around 25 °C), but also can show excellent resistance to a series of hot liquids (water, HCl/NaOH solutions, 30-100 °C) and hot beverages (coffee, milk, tea, 80 °C). Moreover, the PDES-MS surface also presents excellent stability toward immersion in various organic solvents, high temperature, and long time period. In particular, the PDES-MS surface achieves good mechanical durability which can withstand ultrasonication treatment, finger-touch, multiple fold, peeling by adhesive tape, and even abrasion test treatments without losing superhydrophobicity. The corrosion resistance and durability of the diverse-modified superhydrophobic surfaces were also examined. These fascinating performances makes the present method suitable for large-scale

  2. Mechanically reliable scales and coatings

    SciTech Connect

    Tortorelli, P.F.; Alexander, K.B.

    1995-07-01

    As the first stage in examining the mechanical reliability of protective surface oxides, the behavior of alumina scales formed on iron-aluminum alloys during high-temperature cyclic oxidation was characterized in terms of damage and spallation tendencies. Scales were thermally grown on specimens of three iron-aluminum composition using a series of exposures to air at 1000{degrees}C. Gravimetric data and microscopy revealed substantially better integrity and adhesion of the scales grown on an alloy containing zirconium. The use of polished (rather than just ground) specimens resulted in scales that were more suitable for subsequent characterization of mechanical reliability.

  3. The European Spallation Source

    SciTech Connect

    Peggs, S; Eshraqi, M; Hahn, H; Jansson, A; Lindroos, M; Ponton, A; Rathsman, K; Trahern, G; Bousso, S; Calaga, R; Devanz, G; Duperrier, R D; Eguia, J; Gammino, S; Moller, S P; Oyon, C; Ruber, R.J.M.Y.; Satogata, T

    2011-03-01

    The European Spallation Source (ESS) is a 5 MW, 2.5 GeV long pulse proton linac, to be built and commissioned in Lund, Sweden. The Accelerator Design Update (ADU) project phase is under way, to be completed at the end of 2012 by the delivery of a Technical Design Report. Improvements to the 2003 ESS design will be summarised, and the latest design activities will be presented.

  4. Pulsed spallation Neutron Sources

    SciTech Connect

    Carpenter, J.M.

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  5. Pulsed spallation neutron sources

    SciTech Connect

    Carpenter, J.M.

    1996-05-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology.

  6. Oxidation of Alumina-Forming MAX Phases in Turbine Environments

    NASA Technical Reports Server (NTRS)

    Smialek, James; Garg, Anita; Harder, Bryan; Nesbitt, James; Gabb, Timothy; Gray, SImon

    2017-01-01

    Protective coatings for high temperature turbine components are based on YSZ thermal barriers and oxidation resistant, alumina-forming NiAl or NiCoCrAlY bond coats. Ti2AlC and Cr2AlC MAX phases are thus of special interest because of good oxidation resistance and CTE that can match Al2O3 and YSZ. Their alumina scales grow according to cubic kinetics due to grain growth in the scale, with initial heating dominated by fast TiO2 growth. Protective cubic kinetics are also found in high pressure burner rig tests of MAXthal 211 Ti2AlC, but with reduced rates due to volatile TiO(OH)2 formation in water vapor. YSZ-coatings on bulk Ti2AlC exhibit remarkable durability up to 1300C in furnace tests and at least a 25x life advantage compared to superalloys. At another extreme, Cr2AlC is resistant to low temperature Na2SO4 hot corrosion and exhibits thermal cycling stability bonded to a superalloy disk material. Accordingly, sputtered Cr2AlC coatings on disk specimens prevented hot corrosion detriments on LCF. Breakaway oxidation (Ti2AlC), scale spallation (Cr2AlC), interdiffusion, and processing as coatings still present serious challenges. However the basic properties of MAX phases provide some unusual opportunities for use in high temperature turbines.

  7. The European Spallation Source

    SciTech Connect

    Lindroos M.; Calaga R.; Bousson S.; Danared H.; Devanz G. et al

    2011-04-20

    In 2003 the joint European effort to design a European Spallation Source (ESS) resulted in a set of reports, and in May 2009 Lund was agreed to be the ESS site. The ESS Scandinavia office has since then worked on setting all the necessary legal and organizational matters in place so that the Design Update and construction can be started in January 2011, in collaboration with European partners. The Design Update phase is expected to end in 2012, to be followed by a construction phase, with first neutrons expected in 2018-2019.

  8. Enigmatic Moisture Effects on Al2O3 Scale and TBC Adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    Alumina scale adhesion to high temperature alloys is known to be affected primarily by sulfur segregation and reactive element additions. However adherent scales can become partially compromised by excessive strain energy and cyclic cracking. With time, exposure of such scales to moisture can lead to spontaneous interfacial decohesion, occurring while the samples are maintained at ambient conditions. Examples of this Moisture-Induced Delayed Spallation (MIDS) are presented for NiCrAl and single crystal superalloys, becoming more severe with sulfur level and cyclic exposure conditions. Similarly, delayed failure or Desk Top Spallation (DTS) results are reviewed for TBC s, culminating in the water drop failure test. Both phenomena are discussed in terms of moisture effects on bulk alumina and bulk aluminides. A mechanism is proposed based on hydrogen embrittlement and is supported by a cathodic hydrogen charging experiment. Hydroxylation of aluminum from the alloy interface appears to be the relevant basic reaction.

  9. Enigmatic Moisture Effects on Al2O3 Scale and TBC Adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    Alumina scale adhesion to high temperature alloys is known to be affected primarily by sulfur segregation and reactive element additions. However, adherent scales can become partially compromised by excessive strain energy and cyclic cracking. With time, exposure of such scales to moisture can lead to spontaneous interfacial decohesion, occurring while the samples are maintained at ambient conditions. Examples of this Moisture-Induced Delayed Spallation (MIDS) are presented for NiCrAl and single crystal superalloys, becoming more severe with sulfur level and cyclic exposure conditions. Similarly, delayed failure or Desk Top Spallation (DTS) results are reviewed for thermal barrier coatings (TBCs), culminating in the water drop failure test. Both phenomena are discussed in terms of moisture effects on bulk alumina and bulk aluminides. A mechanism is proposed based on hydrogen embrittlement and is supported by a cathodic hydrogen charging experiment. Hydroxylation of aluminum from the alloy interface appears to be the relevant basic reaction.

  10. Feasibility and process scale-up low cost alumina fibers for advanced Re-usable Surface Insulation (RSI)

    NASA Technical Reports Server (NTRS)

    Pearson, A.

    1975-01-01

    The objective of this program was to establish feasibility of a process to produce low cost aluminum oxide fibers having sufficient strength, flexibility, and thermal stability for multiple re-use at temperatures to 1480 C in advanced RSI type heat shields for reentry vehicles. Using bench-scale processing apparatus, the Alcoa 'Saphiber' process was successfully modified to produce nominally 8 microns diameter polycrystalline alpha-alumina fiber. Thermal stability was demonstrated in vacuum reheating tests to 1371 C and in atmospheric reheating to 1483 C. Individual fiber properties of strength, modulus, and flexibility were not determined because of friability and short length of the fiber. Rigidized tile produced from fiber of nominally 8, 20 and 40 micron diameter had thermal conductivities significantly higher than those of RSI SiO2 or mullite at relatively low temperature but became comparable above about 1000 C. Tile densities were high due to short fiber length, especially in the coarser diameter fiber. No significant effect of fiber diameter on thermal properties could be determined form the data. Mechanical properties of tiles deteriorated as fiber diameter increased.

  11. Further considerations of spallation effects

    NASA Technical Reports Server (NTRS)

    Dyer, C.

    1973-01-01

    Trapped photon and cosmic ray effects on spallation in the UK-5 (hard X ray telescope) central crystal were measured. Both low dose and high dose effects were considered. Decay results are presented in tables.

  12. The thermal spallation drilling process

    SciTech Connect

    Williams, R.E.

    1986-01-01

    Holes can be produced in very hard rock more easily and less expensively by thermal spallation than by conventional means. This drilling process has been used for producing blast holes in the taconite iron mines and for quarrying granite. It is potentially valuable for drilling holes in very hard rock for the exploitation of geothermal energy and the storage of various commodities. However, investigation and development of the thermal spallation drilling process is proceeding slowly.

  13. Hypervelocity impact damage in alumina

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng

    2007-12-01

    Ceramics are important engineering materials for their outstanding hardness. One of the most widely used ceramics is alumina, a candidate for armor in defense and aerospace industry. Deformation and fracture mechanisms in alpha-alumina under hypervelocity impact up to 18km/s are investigated using molecular dynamics (MD) simulations containing 540-million atoms. Impacting projectile causes melting and local amorphization of the substrate in a spherical surrounding region. Away from the impact face, a wide range of deformations emerge and disappear under the influence of local stress fields, e.g., basal and pyramidal slips, basal and rhombohedral twins, which show good agreement with the experimental and theoretical results. Furthermore, new deformation modes such as twin along {01¯11} are observed, and the relation between deformation patterns and local stress levels are probed. During unloading, micro-cracks nucleate extensively at the intersections of previous deformations. These micro-cracks grow and coalesce to form fractures under tensile stresses by the unloading wave. The substrate eventually fails along the surface of an hourglass-shaped region, when spallation ejects clusters of substrate material into the vacuum. We also carried out planar shock simulations of alpha-alumina single crystal and nanophase systems. The results show correlations between the atomistic deformation mechanisms and the elastic-plastic response of ceramic material observed in shock loading experiments.

  14. Preparation and testing of corrosion and spallation-resistant coatings

    SciTech Connect

    Hurley, John P.; Cavalli, Matthew N.

    2016-06-30

    The goal of this project was to take a recently developed method of bonding oxide dispersion-strengthened (ODS) FeCrAl plating to nickel superalloys closer to commercial use in syngas-fired turbines. The project was designed to better understand and develop the bonding process and to determine if plating APMT®, a specific highly oxidation-resistant ODS FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The superalloys investigated for protection were CM247LC and Rene® 80, both alumina scale-forming alloys. The method for bonding the APMT plate to the superalloys is called evaporative metal bonding, which involves placing a thin foil of zinc between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the zinc melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The zinc then diffuses through the alloys and evaporates from their surfaces, creating a bond between the APMT and the superalloy that is stronger than the APMT itself. Testing showed that the diffusivity of zinc in both APMT and CM247LC is quite similar at 700°C but 15 times higher in the APMT at 1214°C. Coefficients of thermal expansion were determined for each of the alloys as a function of temperature. This information was entered into a finite-element model using ANSYS, which was used to design a clamping jig for pressing the APMT to the superalloys at the bonding temperature. Scanning electron microscopy analyses of representative joints showed that no zinc remained in the alloys after bonding Unfortunately, the analyses also showed some small pieces of broken aluminum oxide scale near the bond lines, indicating that its scale was not sufficiently removed during prebonding cleaning. Samples from each of the bonded blocks were sent to Siemens for

  15. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  16. Spallation-induced fission reactions

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodríguez-Sánchez, J. L.

    2017-03-01

    During the last decade spallation-induced fission reactions have received particular attention because of their impact in the design of spallation-neutron sources or radioactive beam facilities, but also in the understanding of the fission process at high excitation energy. In this paper, we review the main progress brought by modern experimental techniques, in particular those based in the inverse kinematic, as well as the achievements in modelling these reactions. We will also address future possibilities for improving the investigation of fission dynamics.

  17. Microstructure and Residual Stress of Alumina Scale Formed on Ti2AlC at High Temperature in Air

    SciTech Connect

    Byeon, J; Liu, j; Hopkins, m; Fischer, W; Park, K; Brady, Michael P; Radovic, Miladin; Sohn, Yong Ho

    2007-01-01

    Ti2AlC ternary carbide is being explored for various high temperature applications owing to its high strength at high temperatures, excellent thermal-shock resistance, and high electrical conductivity. In this study, isothermal oxidation at 1000 XC, 1200 XC, and 1400 XC for up to 25 hours, as well as 1,000 1-hour cyclic oxidation at 1200 XC were performed in air to examine the oxidation behavior of Ti2AlC. Characteristics of the oxide scale developed in air, including mass change, residual stress in the -Al2O3 scale, phase constituents and microstructure, were examined as functions of time and temperature by thermogravimetry, photostimulated luminescence, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy via focused ion beam in-situ lift-out. A continuous and adherent -Al2O3 scale underneath a discontinuous-transient rutile-TiO2 scale was identified in the oxide scale developed at 1000 XC and 1200 XC. At 1400 XC, Al2TiO5 was identified as the discontinuous-transient scale above the continuous and adherent -Al2O3 scale. The -Al2O3 scale thickened to more than 15 m after 25 hours of isothermal oxidation at 1400 XC, and after 1,000 1-hour cyclic oxidation at 1200 XC, yet remained adherent and protective. The compressive residual stress determined by photoluminescence for the -Al2O3 scale remained under 0.65 GPa for the specimens oxidized up to 1400 XC for 25 hours. The small magnitude of the compressive residual stress may impart the high spallation-resistance of the protective -Al2O3 scale developed on Ti2AlC.

  18. Developing a Small-scale De-fluoridation Filter for use in Rural Northern Ghana with Activated Alumina as the Sorbent

    NASA Astrophysics Data System (ADS)

    Craig, L.; Stillings, L. L.; Decker, D.; Thomas, J.

    2013-12-01

    reaction time). The F- loading onto activated alumina did not change with grain size. However time to equilibrium increased dramatically with a decrease in grain size - after one hour of reaction time, the larger grain size adsorbed only 59% of F-, while at the finer grain size 90% was adsorbed. Future work will determine the volume of high F- water that can be treated before activated alumina needs to be regenerated or changed. These data will be incorporated into the design of a small-scale F-1 adsorption filter in the study area, and will predict the longevity of activated alumina as the sorbent.

  19. Developing a Small-Scale De-Fluoridation Filter for Use in Rural Northern Ghana with Activated Alumina As the Sorbent

    NASA Astrophysics Data System (ADS)

    Craig, L.; Stillings, L. L.

    2014-12-01

    reaction time, the larger grain size adsorbed only 59% of F-, while at the finer grain size 90% was adsorbed. Future work will determine the volume of high F- water that can be treated before activated alumina needs to be regenerated or changed. These data will aid in the design of a small-scale F- adsorption filter in the study area, and will predict the longevity of activated alumina as the sorbent.

  20. Spallation radiation effects in materials

    SciTech Connect

    Mansur, L.K.; Farrell, K.; Wechsler, M.S.

    1996-06-01

    Spallation refers to the process whereby particles (chiefly neutrons) are ejected from nuclei upon bombardment by high-energy protons. Spallation neutron sources (SNS`s) use these neutrons for neutron scattering and diffraction research, and SNS`s are proposed as the basis for systems for tritium production and transmutation of nuclear waste. Materials in SNS`s are exposed to the incident proton beam (energies typically about 1000 MeV) and to the spallation neutrons (spectrum of energies extending up to about 1000 MeV). By contrast the fission neutrons in nuclear reactors have an average energy of only about 2 MeV, and the neutrons in fusion reactors would have energies below about 14 MeV. Furthermore, the protons and neutrons in SNS`s for scattering and diffraction research are pulsed at frequencies of about 10 to 60 Hz, from which significant changes in the kinetics of point and extended defects may be expected. In addition, much higher transmutation rates occur in SNS-irradiated materials, On the whole, then, significant differences in microstructural development and macroscopic properties may result upon exposure in SNS systems, as compared with fission and fusion irradiations. In a more general sense, subjecting materials to new radiation environments has almost routinely led to new discoveries. To the extent that data are avaiable, however, the spallation environment appears to increase the degree of damage without introducing totally new effects. The first part of this presentation is an overview of radiation effects in materials, outlining essential concepts and property changes and their physical bases. This background is followed by a description of SNS irradiation environments and the effects on materials of exposure to these environments. A special discussion is given of the selection of target (e.g., liquid mercury), container (e.g., austenitic stainless steel or ferritic/martensitic steel), and structural materials in SNS systems.

  1. Preliminary waste management plan of European spallation

    SciTech Connect

    Ene, Daniela

    2013-07-01

    The European Spallation Source (ESS) is the European common effort in designing and building a next generation large-scale user facility for studies of the structure and dynamics of materials. The proposed schematic layout of the ESS facility is based on a linear driver (linac) directing the proton beam (5 MW of 2.5 GeV) of 2.8 ms long pulses with a 20 Hz on a tungsten target where neutrons are produced via spallation reactions. Further the neutrons will be moderated to thermal and sub-thermal energies in a couple of moderators placed around the target. The moderators feed 22 beamlines guiding the neutrons to the scattering instruments, mainly for neutron scattering research, as has been previously mentioned. The objective of this work is to develop a waste management plan for ESS facility. In this respect two important aspects are analyzed. First the present status of the problem is outlined as follow. Estimate types and quantities of waste that the ESS project will generate at different stages: commission, operation, decommissioning were derived using: i) precise Monte Carlo calculations ii) scaling the activity from the operation experience of the existing spallation source installations for waste such it is difficult to predict level of activation or for components of the facility in stage of the preconceptual model. Associated waste treatment/conditioning options and final disposal route were further analyzed in order to define the waste type and packet descriptions in agreement with Swedish regulations and policy. It was found that the compilation of completely new waste type descriptions for qualification of the ESS waste for disposal will be necessary. Particular attention was devoted to 'problematic waste' as Beryllium reflector, C-14 from graphite used as core zone of the beam-dump and collimators or waste arising from the purification systems of both Helium and water cooling circuits. Management of waste on ESS site: collection/segregation systems

  2. Protein crystallography with spallation neutrons

    SciTech Connect

    Langan, P.; Schoenborn, Benno P.

    2003-01-01

    proteins and oriented molecular complexes. With spallation neutrons and their time dependent wavelength structure, one can select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved diffraction data. This optimizes data quality with best peak to background ratios and provides spatial and energy resolution to eliminate peak overlaps. Such a Protein Crystallography Station (PCS) has been built and tested at Los Alamos Neutron Science Center. A partially coupled moderator is used to increase flux and data are collected by a Cylindrical He3 detector covering 120' with 200mm height. The PCS is described along with examples of data collected from a number of proteins.

  3. The BLAIRR Irradiation Facility Hybrid Spallation Target Optimization

    SciTech Connect

    Simos N.; Hanson A.; Brown, D.; Elbakhshawn, M.

    2016-04-11

    BLAIRR STUDY STATUS OVERVIEW Beamline Complex Evaluation/Assessment and Adaptation to the Goals Facility Radiological Constraints ? Large scale analyses of conventional facility and integrated shield (concrete, soil)Target Optimization and Design: Beam-target interaction optimization Hadronic interaction and energy deposition limitations Single phase and Hybrid target concepts Irradiation Damage Thermo-mechanical considerations Spallation neutron fluence optimization for (a) fast neutron irradiation damage (b) moderator/reflector studies, (c) NTOF potential and optimization (d) mono-energetic neutron beam

  4. Spallator: a new option for nuclear power

    SciTech Connect

    Steinberg, M.; Grand, P.; Takahashi, H.; Powell, J.R.; Kouts, H.J.

    1983-06-01

    The principles of the spallator reactor are reviewed. Advances in linear accelerator technology allow the design and construction of high current (hundreds of mA) continuous wave high energy (thousands of MeV) proton machines in the near term. Spallation neutronic calculations building on existing experimental results, indicate substantial neutron yields on uranium targets. Spallator target assembly designs based on water cooled reactor technology indicate operable efficient systems. Fuel cycles are presented which supply fissile material to thermal power reactors and reduce fission product waste. Preliminary comparative analysis indicates an economically competitive system in which a single purpose self-sufficient spallator supplies fuel to a number of LWRs. The spallator assures a long-term LWR power reactor economy. International interest in advancing the technology is indicated.

  5. Dose measurements around spallation neutron sources.

    PubMed

    Fragopoulou, M; Stoulos, S; Manolopoulou, M; Krivopustov, M; Zamani, M

    2008-01-01

    Neutron dose measurements and calculations around spallation sources appear to be of great importance in shielding research. Two spallation sources were irradiated by high-energy proton beams delivered by the Nuclotron accelerator (JINR), Dubna. Neutrons produced by the spallation sources were measured by using solid-state nuclear track detectors. In addition, neutron dose was calculated after polyethylene and concrete, using a phenomenological model based on empirical relations applied in high-energy physics. The study provides an analytical and experimental neutron benchmark analysis using the transmission factor and a comparison between the experimental results and calculations.

  6. Spallation Neutron Source reaches megawatt power

    SciTech Connect

    Dr. William F. Brinkman

    2009-09-30

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  7. Overview of Spallation Neutron Source Physics

    NASA Astrophysics Data System (ADS)

    Russell, G. J.; Pitcher, E. J.; Muhrer, G.; Mezei, F.; Ferguson, P. D.

    In December 1971 , the world's most advanced steady-state research reactor, the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble, France, reached full power operation. The reactor has recently undergone an extensive renovation, is equipped with hot and cold sources, and has a complement of word class instruments. As such, the ILL reactor is the worldwide center for neutron research at a reactor installation. With present technology, the constraints of heat removal and fuel cost place a limit on the available flux of a steadystate research reactor at levels not much higher than that of the ILL reactor. There has been extensive progress worldwide to realize new high-flux neutron facilities using the technology of spallation. When coupled with the spallation process in appropriate target materials, highpower accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation technology has recently become increasingly focussed on pulsed spallation neutron sources. Pulsed spallation neutron sources avoid the limitations of high time-average heat removal by producing neutrons for only a small fraction of the time. Also, the amount of energy deposited per useful neutron produced from spallation is less than that from fission. During the pulse, the available neutron flux from a pulsed spallation source can be much more intense than that obtainable in a steady-state reactor. Furthermore, pulsed neutron sources have certain unique features, which open up qualitatively new areas of science, which are not accessible to steady-state reactors. We discuss here the spallation process and spallation neutron sources. We compare the qualitative differences between fission and spallation and provide absolute neutron intensities for cold neutron production from a liquid H2, moderator at the Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) short-pulse pulsed spallation

  8. Spallation Neutron Source reaches megawatt power

    ScienceCinema

    Dr. William F. Brinkman

    2016-07-12

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  9. Reconciling in vivo and in vitro kinetics of the polymorphic transformation in zirconia-toughened alumina for hip joints: III. Molecular scale mechanisms.

    PubMed

    Pezzotti, Giuseppe; Bal, B Sonny; Zanocco, Matteo; Marin, Elia; Sugano, Nobuhiko; McEntire, Bryan J; Zhu, Wenliang

    2017-02-01

    Understanding the intrinsic reason(s) for the enhanced tetragonal to monoclinic (t→m) polymorphic phase transformation observed on metal-stained surfaces of zirconia-toughened alumina (ZTA) requires detailed knowledge of off-stoichiometry reactions at the molecular scale. In this context, knowledge of the mechanism(s) for oxygen vacancy creation or annihilation at the material surface is a necessary prerequisite. The crucial aspect of the surface destabilization phenomenon, namely the availability of electrons and holes that allow for vacancy creation/annihilation, is elucidated in this paper. Metal-enhanced alterations of the oxygen sublattice in both Al2O3 and ZrO2 of the ZTA composite play a decisive role in accelerating the polymorphic transformation. According to spectroscopic evidences obtained through nanometer-scale analyses, enhanced annihilation of oxygen vacancies triggers polymorphic transformation in ZrO2 near the metal stain, while the overall Al2O3 lattice tends to dehydroxylate by forming oxygen vacancies. A mechanism for chemically driven "reactive metastability" is suggested, which results in accelerating the polymorphic transformation. The Al2O3 matrix is found to play a key-role in the ZrO2 transformation process, with unambiguous confirmation of oxygen and hydrogen transport at the material surface. It is postulated that this transport is mediated by migration of dissociated O and H elements at the surface of the stained transition metal as they become readily available by the thermally activated surrounding.

  10. Thermal spallation drilling. Final report

    SciTech Connect

    Miska, S.; Williams, R.E.; Potter, R.M.

    1992-04-30

    Work that was performed on a previous contract with the Los Alamos National Laboratory and subsequent work at NM Tech indicated that an intermittent heating and cooling cycle, produced by heating with the conventional blast from a small jet engine and then cooled with a stream of water, would prove to be successful in spalling additional rocks. New Mexico Tech has attempted to further the use of spallation drilling to suit applications for mining and oil and gas drilling by showing that the use of a heating and cooling system would successfully penetrate otherwise unspallable rocks. This process, while showing some success in previous experimentation, has proved to work only spasmodically. The rocks tested had zones that were not spallable or were so slowly spallable that non-uniform holes were produced. Because of these irregularities, further field experimentation is not now profitable.

  11. New head picked for European Spallation Source

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2016-06-01

    The UK physicist John Womersley is to become the next director-general of the €1.8bn European Spallation Source (ESS), which is currently being built in Lund, Sweden, by a 17-member consortium of European countries.

  12. European Spallation Source and Neutron Science

    NASA Astrophysics Data System (ADS)

    Yeck, James

    2014-03-01

    International collaborations in large-scale scientific projects can link Sciences and Society. Following this goal, the European Spallation Source (ESS) is a multi-disciplinary research centre under design and construction in Lund, Sweden. This new facility is funded by a collaboration of 17 European countries. Scandinavia is providing 50 percent of the construction cost whilst the other member states are providing financial support mainly via in-kind contribution from institutes, laboratories or industries of the given countries. Scientists and engineers from 35 different countries are members of the workforce in Lund who participate in its design and construction. The ESS will enable new opportunities for researchers in fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics by producing very high flux neutrons to study condensed matter physics, chemistry, biology, nuclear physics and materials science. The ESS will be up to 30 times brighter than today's leading facilities and neutron sources. A tungsten target and a 5 MW long pulse proton accelerator, composed mainly of superconducting Radio-Frequency components, are used to achieve these goals.

  13. Spallation source materials test program

    SciTech Connect

    Maloy, S.A.; Sommer, W.F.

    1997-12-01

    A spallation source materials program has been developed to irradiate and test candidate materials (Inconel 718, 316L and 304L stainless steel, modified 9Cr-1Mo(T91), Al6061-T6, Al5052-O) for use in the Accelerator Production of Tritium (APT) target and blanket in prototypic proton and neutron fluxes at prototypic temperatures. The study uses the 800 MeV, 1mA proton accelerator at the Los Alamos Neutron Science Center (LANSCE) which produces a Gaussian beam with 2 sigma = 3 cm. The experimental set-up contains prototypic modules of the tungsten neutron source and the lead/aluminum blanket with mechanical testing specimens of candidate APT materials placed in specific locations in the irradiation area. These specimens have been irradiated for greater than 3,600 hours with a maximum proton fluence of 4--5 {times} 10{sup 21} p/cm{sup 2} in the center of the proton beam. Specimens will yield some of the first data on the effect of proton irradiation to high dose on the materials` properties from tensile tests, 3 pt. bend tests, fracture toughness tests, pressurized tubes, U-bend stress corrosion cracking specimens, corrosion measurements and microstructural characterization of transmission electron microscopy specimens.

  14. Effect of mineral surface properties (alumina, kaolinite) on the sorptive fractionation mechanisms of soil fulvic acids: Molecular-scale ESI-MS studies

    NASA Astrophysics Data System (ADS)

    Fleury, Guillaume; Del Nero, Mirella; Barillon, Rémi

    2017-01-01

    We addressed the effects of mineral surface properties (kaolinite versus Al-oxide) on the sorption-driven fractionation of a soil fulvic acid (FA) at acidic pH, mainly by means of ESI(-)-FTMS analysis of initial and supernatant solutions of FA sorption batch experiments. The MS data provided clear molecular-scale evidence of distinct mechanisms and molecular parameters controlling the FA fractionation upon its sorption on clay and oxide surfaces, respectively. Identification of sorbing and not-sorbing FA compounds in kaolinite-solution systems revealed a weak fractionation among members of sbnd CO2 series of aliphatics or not-condensed aromatics (NCAs) at pH 3.8, and almost no sorption of poorly-oxygenated polycyclic aromatic compounds (PACs) and NCAs. This first molecular-scale description of a FA fractionation in a clay-solution system suggests that H-bonding with low affinity sites (aluminol/silanol) on the basal planes of the clay particles is the main mechanism of sorption. Due to the predominance of such weak and poorly-selective mechanism, the sorption of aliphatic and NCA molecules bearing oxygenated functionalities was prevented at pH 5, due to dissolved Al competing successfully for their coordination. In contrast, a strong FA fractionation was observed onto alumina, with a preferential retention of PACs and highly-oxygenated aliphatics and NCAs. The major part of the poorly oxygenated aliphatics was left in solution. The sorption degree of NCAs and aliphatics was strongly correlated with molecular acidity. For PACs and poorly-oxygenated NCAs, the sorption was driven by reactions of surface ligand exchange (for the most oxygenated compounds) or by hydrophobic interactions (for the least oxygenated compounds).

  15. Bauxite and alumina

    USGS Publications Warehouse

    Bray, E.L.

    2009-01-01

    The article provides information on bauxite and alumina mining. U.S. states like Alabama, Arkansas and Georgia produced small amounts of bauxite and bauxitic clays for nonmetallurgical uses. Total metallurgical-grade bauxite imports in 2008 is cited. The leading suppliers of bauxite to the U.S. are Jamaica, Guinea and Brazil. The estimated domestic production of alumina in 2008 is mentioned. It also discusses consumption and prices of both bauxite and alumina.

  16. Large Scale Laser Crystallization of Solution-based Alumina-doped Zinc Oxide (AZO) Nanoinks for Highly Transparent Conductive Electrode

    PubMed Central

    Nian, Qiong; Callahan, Michael; Saei, Mojib; Look, David; Efstathiadis, Harry; Bailey, John; Cheng, Gary J.

    2015-01-01

    A new method combining aqueous solution printing with UV Laser crystallization (UVLC) and post annealing is developed to deposit highly transparent and conductive Aluminum doped Zinc Oxide (AZO) films. This technique is able to rapidly produce large area AZO films with better structural and optoelectronic properties than most high vacuum deposition, suggesting a potential large-scale manufacturing technique. The optoelectronic performance improvement attributes to UVLC and forming gas annealing (FMG) induced grain boundary density decrease and electron traps passivation at grain boundaries. The physical model and computational simulation developed in this work could be applied to thermal treatment of many other metal oxide films. PMID:26515670

  17. Large Scale Laser Crystallization of Solution-based Alumina-doped Zinc Oxide (AZO) Nanoinks for Highly Transparent Conductive Electrode.

    PubMed

    Nian, Qiong; Callahan, Michael; Saei, Mojib; Look, David; Efstathiadis, Harry; Bailey, John; Cheng, Gary J

    2015-10-30

    A new method combining aqueous solution printing with UV Laser crystallization (UVLC) and post annealing is developed to deposit highly transparent and conductive Aluminum doped Zinc Oxide (AZO) films. This technique is able to rapidly produce large area AZO films with better structural and optoelectronic properties than most high vacuum deposition, suggesting a potential large-scale manufacturing technique. The optoelectronic performance improvement attributes to UVLC and forming gas annealing (FMG) induced grain boundary density decrease and electron traps passivation at grain boundaries. The physical model and computational simulation developed in this work could be applied to thermal treatment of many other metal oxide films.

  18. Large Scale Laser Crystallization of Solution-based Alumina-doped Zinc Oxide (AZO) Nanoinks for Highly Transparent Conductive Electrode

    NASA Astrophysics Data System (ADS)

    Nian, Qiong; Callahan, Michael; Saei, Mojib; Look, David; Efstathiadis, Harry; Bailey, John; Cheng, Gary J.

    2015-10-01

    A new method combining aqueous solution printing with UV Laser crystallization (UVLC) and post annealing is developed to deposit highly transparent and conductive Aluminum doped Zinc Oxide (AZO) films. This technique is able to rapidly produce large area AZO films with better structural and optoelectronic properties than most high vacuum deposition, suggesting a potential large-scale manufacturing technique. The optoelectronic performance improvement attributes to UVLC and forming gas annealing (FMG) induced grain boundary density decrease and electron traps passivation at grain boundaries. The physical model and computational simulation developed in this work could be applied to thermal treatment of many other metal oxide films.

  19. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  20. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  1. Spallation of the Galileo probe heat shield

    NASA Astrophysics Data System (ADS)

    Lundell, J. H.

    1982-06-01

    The Galileo probe heat shield will encounter severe radiative and convective heating during entry into Jupiter's atmosphere. The shield is made of two different carbon phenolic composites; one is chopped-molded, and the other is tape-wrapped, both of which tend to spall under intense heating conditions. To characterize this phenomenon, an experimental program, using a gasdynamic laser, was initiated. Tests were performed at a variety of radiation intensities, and both the total and spallation mass-loss rates were measured and correlated with intensity. These correlations were then applied to calculated flight heating conditions for two model atmospheres. Entry of a 310-kg probe into the nominal atmosphere would result in a spallation mass loss of 6.3 kg, or 7.4% of the expected thermochemical mass loss. Similarly, entry of that probe into the cool-dense atmosphere would result in 11.9 kg of spallation, or about 10% of the expected thermochemical mass loss.

  2. Reuse of activated alumina

    SciTech Connect

    Hobensack, J.E.

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  3. Characterization of Alumina Interfaces in TBC Systems

    SciTech Connect

    Pint, Bruce A; More, Karren Leslie

    2009-01-01

    Interfacial segregants in thermally grown {alpha}-Al{sub 2}O{sub 3} scales formed during high temperature exposure of thermal barrier coating systems reflect the oxygen-active dopants present in the bond coating and substrate, such as Y and Hf. These dopants diffuse outward and segregate to the substrate-alumina interface and the alumina grain boundaries. Related studies suggest that these segregants affect the growth and mechanical properties of the alumina-scale; however, the characterization of segregation in alumina formed on coated superalloy systems has been limited. Segregation examples evaluated using analytical transmission electron microscopy are given from traditional Pt-modified aluminide coatings and newer Pt diffusion coatings. Model systems are used to illustrate that grain boundary segregants on the columnar alumina boundaries are not because of the reverse diffusion of cations from the Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} top coating, and that interstitial elements in the substrate likely affect the outward flux of cation dopants. The dynamic nature of this segregation and oxygen-potential gradient-driven diffusion is discussed in light of observations of substrate dopant and interstitial contents affecting coating performance.

  4. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  5. Bauxite and alumina

    USGS Publications Warehouse

    Bray, E.L.

    2011-01-01

    The article discusses the latest developments in the bauxite and alumina industry, particularly in the U.S., as of June 2011. It claims that the U.S. mainly relies on imports for its bauxite consumption. Several states, including Alabama, Arkansas and Georgia, however, produce small amounts of bauxite and bauxitic clays for nonmetallurgical purposes. The major exporters of alumina to the U.S. include Australia, Brazil and Jamaica.

  6. INJECTION CHOICE FOR SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; BRODOWSKI,J.; FEDOTOV,A.; GARDNER,C.; LEE,Y.Y.; RAPARIA,D.; DANILOV,V.; HOLMES,J.; PRIOR,C.; REES,G.; MACHIDA,S.

    2001-06-18

    Injection is key in the low-loss design of high-intensity proton facilities like the Spallation Neutron Source (SNS). During the design of both the accumulator and the rapid-cycling-synchrotron version of the SNS, extensive comparison has been made to select injection scenarios that satisfy SNS's low-loss design criteria. This paper presents issues and considerations pertaining to the final choice of the SNS injection systems.

  7. COHERENT at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Scholberg, Kate; Coherent Collaboration

    2016-03-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense isotropic flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure which is beneficial for background rejection. This talk will describe aspects of COHERENT, the experimental program underway to measure CEvNS (Coherent Elastic Neutrino-Nucleus Scattering) using low-energy nuclear recoil detectors.

  8. Spallation target cryogenic cooling design challenges at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Jurns, J.; Ringnér, J.; Quack, H.; Arnold, P.; Weisend, J. G., II; Lyngh, D.

    2015-12-01

    The European Spallation Source (ESS) project is a neutron spallation source research facility currently being designed and built outside of Lund, Sweden. A linear accelerator delivers a 5 MW, 2.0 GeV, 62.5 mA proton beam to a spallation target to generate fast neutrons. Supercritical hydrogen circulates through two moderators surrounding the target, and transforms the fast neutrons emitted into slow neutrons, which are the final form of useful radiation. The supercritical hydrogen is in turn cooled from a helium cryogenic plant operating at 15-20 K. The supercritical cryogenic hydrogen circuit is a dynamic system, subject to significant changes in heat load. Proper pressure control of this system is critical to assure safe operation. The interaction between the hydrogen system and helium cryoplant poses unique challenges. This paper investigates the impact of the hydrogen system constraints on operation and control of the helium cryoplant, and suggests design options for the helium circuit.

  9. Prototype Spallation Neutron Source Rotating Target Assembly Final Test Report

    SciTech Connect

    McManamy, Thomas J; Graves, Van; Garmendia, Amaia Zarraoa; Sorda, Fernando; Etxeita, Borja; Rennich, Mark J

    2011-01-01

    A full-scale prototype of an extended vertical shaft, rotating target assembly based on a conceptual target design for a 1 to 3-MW spallation facility was built and tested. Key elements of the drive/coupling assembly implemented in the prototype include high integrity dynamic face seals, commercially available bearings, realistic manufacturing tolerances, effective monitoring and controls, and fail-safe shutdown features. A representative target disk suspended on a 3.5 meter prototypical shaft was coupled with the drive to complete the mechanical tests. Successful operation for 5400 hours confirmed the overall mechanical feasibility of the extended vertical shaft rotating target concept. The prototype system showed no indications of performance deterioration and the equipment did not require maintenance or relubrication.

  10. Alumina Technology Roadmap

    SciTech Connect

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  11. Solid Lubricant For Alumina

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1993-01-01

    Outer layer of silver lubricates, while intermediate layer of titanium ensures adhesion. Lubricating outer films of silver deposited on thin intermediate films of titanium on alumina substrates found to reduce sliding friction and wear. Films provide effective lubrication for ceramic seals, bearings, and other hot sliding components in advanced high-temperature engines.

  12. Prediction of alumina penetration

    SciTech Connect

    Mandell, D A

    1993-02-01

    The MESA hydrocode was used to predict two-dimensional tests of L/D 10 and L/D 15 tungsten rods impacting AD 90 alumina with a steel backing. The residual penetration into the steel is the measured quantity in these experiments conducted at the Southwest Research Institute (SWR). The interface velocity as a function of time between an alumina target and a lithium fluoride window, impacted by an alumina disk at velocities between 544 m/s and 2329 m/s, was also predicted. These one-dimensional flyer plate experiments were conducted at Sandia National Laboratories using Coors AD 995 alumina. The material strength and fracture models are important in the prediction of ceramic experiments. The models used in these predictions are discussed. The penetrations in the two-dimensional tests were predicted to 11.4 percent or better. In five of the six experiments, the predicted penetration depth was deeper than the measured value. This trend is expected since the calculation is based on ideal conditions. The results show that good agreement between the 1-D flyer plate data and the MESA predictions exists at the lower impact velocities, but the maximum velocity is overpredicted as the flyer plate velocity increases. At a flyer plate velocity of 2329 m/s the code overpredicted the data by 12.3 percent.

  13. Bauxite and alumina

    USGS Publications Warehouse

    Bray, E.L.

    2010-01-01

    The article reports on the global market performance of bauxite and alumina in 2009 and presents an outlook for their 2010 performance. There were only several U.S. states that could produce bauxite and bauxitic clays including Georgia, Arkansas, and Alabama. The prices for imported refractory-grade calcined bauxite ranged between 426 U.S. dollars and 554 dollars per ton.

  14. Numerical and experimental analysis of spallation phenomena

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Bailey, Sean C. C.; Panerai, Francesco; Davuluri, Raghava S. C.; Zhang, Huaibao; Vazsonyi, Alexander R.; Lippay, Zachary S.; Mansour, Nagi N.; Inman, Jennifer A.; Bathel, Brett F.; Splinter, Scott C.; Danehy, Paul M.

    2016-12-01

    The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post-shock layer. Results from a test campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of short exposure images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30-s test at 100 W/cm2 of cold-wall heat flux, more than 722 particles were detected, with an average velocity of 110 m/s.

  15. Muon-induced spallation backgrounds in DUNE

    NASA Astrophysics Data System (ADS)

    Zhu, Guanying; Li, Shirley; Beacom, John

    2017-01-01

    Galactic supernovae are rare, just a few per century, so it is important to be prepared. If we are, then the long-baseline detector DUNE could detect thousands of events, compared to the tens from SN 1987A. An important question is backgrounds from muon-induced spallation reactions. We simulate particle energy-loss processes in liquid argon, and compare relevant isotope yields with those in the water-Cherenkov detector SuperK. Our approach will help optimize the design of DUNE and further benefit the study of supernova neutrinos. GZ, SWL, and JFB are supported by NSF Grant PHY-1404311.

  16. Target Systems Overview for the Spallation Neutron Source

    SciTech Connect

    Gabriel, Tony A.; Barnes, John M.; Charlton, Lowell A.; Di Stefano, James; Farrell, Ken; Haines, John; Johnson, Jeffrey O.; Mansur, Louis K.; Pawel, Steve J.; Siman-Tov, Moshe; Taleyarkhan, Rusi; Wendel, Mark W.; McManamy, Thomas J.; Rennich, Mark J.

    2000-10-15

    The purpose and requirements of target systems as well as the technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the Spallation Neutron Source, are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis, and planned hardware research and development program are also described.

  17. Fundamental physics possibilities at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Klinkby, Esben; N-Nbar Collaboration; Soldner, Torsten; ANNI Collaboration

    2016-09-01

    The construction of the European Spallation Source ESS is ongoing in Lund, Sweden. This new high power spallation source with its long-pulse structure opens up new possibilities for fundamental physics experiments. This paper focusses on two proposals for fundamental physics at the ESS: The ANNI instrument and the neutron-anti-neutron oscillation experiment.

  18. The national spallation neutron source target station: A general overview

    SciTech Connect

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1997-06-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described.

  19. NOBLE GAS PRODUCTION FROM MERCURY SPALLATION AT SNS

    SciTech Connect

    DeVore, Joe R; Lu, Wei; Schwahn, Scott O

    2013-01-01

    Calculations for predicting the distribution of the products of spallation reactions between high energy protons and target materials are well developed and are used for design and operational applications in many projects both within DOE and in other arenas. These calculations are based on theory and limited experimental data that verifies rates of production of some spallation products exist. At the Spallation Neutron Source, a helium stream from the mercury target flows through a system to remove radioactivity from this mercury target offgas. The operation of this system offers a window through which the production of noble gases from mercury spallation by protons may be observed. This paper describes studies designed to measure the production rates of twelve noble gas isotopes within the Spallation Neutron Source mercury target.

  20. Mechanical characterization of thin film structures using a laser spallation technique

    NASA Astrophysics Data System (ADS)

    Wu, Jianxin

    The laser spallation technique has been developed to measure the interface strength between different materials, especially thin film structures. In this work, it is refined and applied to various material systems. With these advances, the laser spallation technique is now fully mature for applications not only to measurement of material interface strength, but also to the study of laser-material interaction, dynamic fracture mechanics, as well as to the measurement of material bulk properties. In the first part of this work, the laser spallation technique was examined quantitatively for signal processing and stress wavefield recovery. It is shown that the short time Fourier transformation is another appropriate means for recovering the free surface displacement from the acquired optical signal. Two methods have been chosen to recover the stress field inside the sample. When the displacement of the coating's free surface is recorded directly, it is convenient to use a special finite difference strategy. When the free surface displacement is recorded on the bare substrate surface, it is more convenient to use the finite element method to calculate the interface strength. The application work includes several topics. The first one was the evaluation of the effect of substrate orientation and deposition mode on the interface strength of Nb-sapphire interfaces. The interface strength is higher for the sapphire substrate with prismatic orientation, and RF deposition mode yields higher interface strength than the DC mode. The second application estimated the effect of substrate roughness on the interface strength of Nb-alumina system. The effect of chemical composition of thin films on the interface strength was also investigated. The final application investigated the dynamic fracture mechanics of thin film structures. The purpose of this chapter is to clarify the controversial topic regarding the limit speed of bimaterial interface crack propagation. We were successful

  1. Management of tritium European Spallation Source

    SciTech Connect

    Ene, D.; Andersson, K.; Jensen, M.; Nielsen, S.; Severin, G.

    2015-03-15

    The European Spallation Source (ESS) will produce tritium via spallation and activation processes during operational activities. Within the location of ESS facility in Lund, Sweden site it is mandatory to demonstrate that the management strategy of the produced tritium ensures the compliance with the country regulation criteria. The aim of this paper is to give an overview of the different aspects of the tritium management in ESS facility. Besides the design parameter study of the helium coolant purification system of the target the consequences of the tritium releasing into the environment were also analyzed. Calculations show that the annual release of tritium during the normal operations represents a small fraction from the estimated total dose. However, more refined calculations of migration of activated-groundwater should be performed for higher hydraulic conductivities, with the availability of the results on soil examinations. With the assumption of 100% release of tritium to the atmosphere during the occurring of the extreme accidents, it was found as well that the total dose complies with the constraint. (authors)

  2. Spallation studies on shock loaded uranium

    SciTech Connect

    Tonks, D.L.; Hixson, R.; Gustavsen, R.L.; Vorthman, J.E.; Kelly, A.; Zurek, A.K.; Thissel, W.R.

    1997-12-31

    Uranium samples at two different purity levels were used for spall strength measurements at three different stress levels. A 50 mm single-stage gas-gun was used to produce planar impact conditions using Z-cut quartz impactors. Samples of depleted uranium were taken from very high purity material and from material that had 300 ppm of carbon added. A pair of shots was done for each impact strength, one member of the pair with VISAR diagnostics and the second with soft recovery for metallographical examination. A series of increasing final stress states were chosen to effectively freeze the microstructural damage at three places in the development to full spall separation. This allowed determination of the dependence of spall mechanisms on stress level and sample purity. This report will discuss both the results of the metallurgical examination of soft recovered samples and the modeling of the free surface VISAR data. The micrographs taken from the recovered samples show brittle cracking as the spallation failure mechanism. Deformation induced twins are plentiful and obviously play a role in the spallation process. The twins are produced in the initial shock loading and, so, are present already before the fracture process begins. The 1 d characteristics code CHARADE has been used to model the free surface VISAR data.

  3. Spallation recoil II: Xenon evidence for young SiC grains

    NASA Astrophysics Data System (ADS)

    Ott, U.; Altmaier, M.; Herpers, U.; Kuhnhenn, J.; Merchel, S.; Michel, R.; Mohapatra, R. K.

    2005-11-01

    We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ˜1190 and ˜268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ˜0.19 μm, which implies retention of ˜70% for 126Xe produced in "typical" presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ˜66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ-spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe-N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ˜5% lower in Xe-N than in Q-Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe-N (e.g., as in Q-Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale

  4. Alumina forming iron base superalloy

    DOEpatents

    Yamamoto, Yukinori; Muralidharan, Govindarajan; Brady, Michael P.

    2014-08-26

    An austenitic stainless steel alloy, consists essentially of, in weight percent 2.5 to 4 Al; 25 to 35 Ni; 12 to 19 Cr; at least 1, up to 4 total of at least one element selected from the group consisting of Nb and Ta; 0.5 to 3 Ti; less than 0.5 V; 0.1 to 1 of at least on element selected from the group consisting of Zr and Hf; 0.03 to 0.2 C; 0.005 to 0.1 B; and base Fe. The weight percent Fe is greater than the weight percent Ni. The alloy forms an external continuous scale including alumina, and contains coherent precipitates of .gamma.'-Ni.sub.3Al, and a stable essentially single phase FCC austenitic matrix microstructure. The austenitic matrix is essentially delta-ferrite-free and essentially BCC-phase-free.

  5. Deformation Behaviour of Coarse Grain Alumina under Shock Loading

    NASA Astrophysics Data System (ADS)

    Gupta, Satish

    2013-06-01

    To develop better understanding of the shock wave induced deformation behavior of coarse grain alumina ceramics, and for measurement of its Hugoniot Elastic Limit (HEL), in-situ and recovery gas gun experiments have been carried out on coarse grain alumina (grain size ~ 10 μm), prepared in the form of discs (>99.9% TMD) by pressure-less sintering of alpha alumina powder at 1583 K. The HEL value of 1.9 GPa has been determined from the kink in the pressure history recorded using piezoresistance gauge and also from the free surface velocity history of the sample shocked to 9 GPa. The nano-indentation measurements on the alumina samples shocked to 6.5 GPa showed hardness value 15% lower than 21.3 GPa for unshocked alumina, and strong Indentation Size Effect (ISE); the hardness value was still lower and the ISE was stronger for the sample shocked to 12 GPa. The XRD measurements showed reduced particle size and increased microstrains in the shocked alumina fragments. SEM, FESEM and TEM measurements on shock treated samples showed presence of grain localized micro- and nano-scale deformations, micro-cleavages, grain-boundary microcracks, extensive shear induced deformations, and localized micro-fractures, etc. These observations led to the development of a qualitative model for the damage initiation and its subsequent growth mechanisms in shocked alumina. The work performed in collaboration with K.D. Joshi of BARC and A.K. Mukhopadhyay of CGCRI.

  6. Development of a gas layer to mitigate cavitation damage in liquid mercury spallation targets

    SciTech Connect

    Felde, David K; Wendel, Mark W; Riemer, Bernie

    2008-01-01

    Establish of a gas layer between the flowing liquid and container wall is proposed for mitigating the effects of cavitation in mercury spallation targets. Previous work has shown an order of magnitude decrease in damage for a gas layer developed in a stagnant mercury target for an in-beam experiment. This work is aimed at extending these results to the more complex conditions introduced by a flowing mercury target system. A water-loop has been fabricated to provide initial insights on potential gas injection methods into a flowing liquid. An existing full-scale flow loop designed to simulate the Spallation Neutron Source target system will be used to extend these studies to mercury. A parallel analytical effort is being conducted using computational fluid dynamics (CFD) modeling to provide direction to the experimental effort. Some preliminary simulations of gas injection through a single hole have been completed and show behavior of the models that is qualitatively meaningful.

  7. Determination of spallation neutron flux through spectral adjustment techniques

    SciTech Connect

    Mosby, Michelle A.; Engle, Jonathan Ward; Jackman, Kevin Richard; Nortier, Francois Meiring; Birnbaum, Eva R.

    2016-05-30

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed in this paper. However, the energy distribution and magnitude of the flux is not well understood. Finally, a modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  8. SPALLATION STUDIES ON SHOCK LOADED U-6 WT PCT NB.

    SciTech Connect

    D. TONKS; ET AL

    2001-01-10

    Several spallation experiments have been performed on the 6 wt pct alloy of uranium using gas gun driven normal plate impacts with VISAR instrumentation and soft recovery. The nominal shock pressures achieved were 28, 34, 42, 50, 55, and 82 kbar. This paper will focus on spallation modeling, e.g. using the 1 D characteristics code CHARADE to simulate the free surface particle velocity. The spallation model involves the ductile growth and coalescence of voids. Metallographical examination of recovered samples and details of the experimental apparatus are discussed in a separate paper.

  9. Determination of spallation neutron flux through spectral adjustment techniques

    NASA Astrophysics Data System (ADS)

    Mosby, M. A.; Engle, J. W.; Jackman, K. R.; Nortier, F. M.; Birnbaum, E. R.

    2016-08-01

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  10. Status of the AUSTRON spallation project

    NASA Astrophysics Data System (ADS)

    Rauch, H.; Regler, M.; Weber, H.

    2000-03-01

    The characteristic parameters of the present version of the planned AUSTRON neutron spallation source are: (a) 10 Hz repetition rate at the target, (b) 500 kW average beam power, (c) 1.6 GeV proton energy and (d) strongly dedicated to cold neutron research. The machine can be built based on existing techniques and would provide a performance gain between 3 and 10 compared to existing installations. Progress has been made in the planning of the instrumentation where an improved standard instrumentation and several new systems have been designed and evaluated by an international group of neutron scientists. A clean room area with vibration, temperature and humidity control provides new possibilities for neutron optics, neutron reflectometry and nuclear orientation experiments. A proposed magnetic focusing line with an active energy transfer system indicates the capability to achieve a further intensity gain by a factor of 10. The status of the ongoing internationalization process will be reported as well.

  11. Spallation neutron source target station issues

    SciTech Connect

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1996-10-01

    In many areas of physics, materials and nuclear engineering, it is extremely valuable to have a very intense source of neutrons so that the structure and function of materials can be studied. One facility proposed for this purpose is the National Spallation Neutron Source (NSNS). This facility will consist of two parts: (1) a high-energy ({approximately}1 GeV) and high powered ({approximately} 1 MW) proton accelerator, and (2) a target station which converts the protons to low-energy ({le} 2 eV) neutrons and delivers them to the neutron scattering instruments. This paper deals with the second part, i.e., the design and development of the NSNS target station and the scientifically challenging issues. Many scientific and technical disciplines are required to produce a successful target station. These include engineering, remote handling, neutronics, materials, thermal hydraulics, and instrumentation. Some of these areas will be discussed.

  12. The European scene regarding spallation neutron sources

    SciTech Connect

    Bauer, G.S.

    1996-06-01

    In Europe, a short pulse spallation neutron source, ISIS, has been operating for over 10 years, working its way up to a beam power level of 200 kW. A continuous source, SINQ, designed for a beam power of up to 1 MW, is scheduled to start operating at the end of 1996, and a detailed feasibility study has been completed for a 410 kW short pulse source, AUSTRON. Each of these sources seems to have settled for a target concept which is at or near the limits of its feasibility: The ISIS depleted uranium plate targets, heavy water cooled and Zircaloy clad, have so far not shown satisfactory service time and operation is likely to continue with a Ta-plate target, which, in the past has been used successfully for the equivalent of one full-beam-year before it was taken out of service due to degrading thermal properties. SINQ will initially use a rod target, made of Zircaloy only, but plans exist to move on to clad lead rods as quickly as possible. Apart from the not yet explored effect of hydrogen and helium production, there are also concerns about the generation of 7-Be in the cooling water from the spallation of oxygen, which might result in undesirably high radioactivity in the cooling plant room. A Liquid metal target, also under investigation for SINQ, would not only reduce this problem to a level of about 10 %, but would also minimize the risk of radiolytic corrosion in the beam interaction zone. Base on similar arguments, AUSTRON has been designed for edge cooled targets, but thermal and stress analyses show, that this concept is not feasible at higher power levels.

  13. Spallation nucleosynthesis by accelerated charged-particles

    SciTech Connect

    Goriely, S.

    2008-05-12

    Recent observations have suggested the presence of radioactive elements, such as Pm and 84{<=}Z{<=}99 elements) at the surface of the magnetic star HD101065, also known as Przybylski's star. This star is know to be a chemically peculiar star and its anomalous 38spallation processes resulting from the interaction of the stellar material with stellar energetic particle can by themselves only explain the abundances determined by observation at the surface of HD101065. We show that specific parametric simulations can explain many different observational aspects, and in particular that a significant production of Z>30 heavy elements can be achieved. In this nucleosynthesis process, the secondary-neutron captures play a crucial role. The most attractive feature of the spallation process is the systematic production of Pm and Tc and the possible synthesis of actinides and sub-actinides.Based on such a parametric model, it is also shown that intense fluences of accelerated charged-particles interacting with surrounding material can efficiently produce elements heavier than iron. Different regimes are investigated and shown to be at the origin of p- and s-nuclei in the case of high-fluence low-flux events and r-nuclei for high-fluence high-flux irradiations. The possible existence of such irradiation events need to be confirmed by hydrodynamics simulations, but most of all by spectroscopic observations through the detection of short-lived radio-elements.

  14. Strain rate effects for spallation of concrete

    NASA Astrophysics Data System (ADS)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  15. High Temperature Stability of Potassium Beta Alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  16. A Compendium of Scale Surface Microstructures: Ni(pt)al Coatings Oxidized at 1150 C for 2000 1-h Cycles

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita

    2010-01-01

    The surface structure of scales formed on Ni(Pt)Al coatings was characterized by SEM/EDS/BSE in plan view. Two nominally identical {100} samples of aluminide coated CMSX4 single crystal were oxidized at 1150 C for 2000 1-h cycles and were found to produce somewhat disparate behavior. One sample, with less propensity for coating grain boundary ridge deformation, presented primarily alpha-Al2O3 scale structures, with minimal weight loss and spallation. The original scale structure, still retained over most of the sample, consisted of the classic theta-alpha transformation-induced ridge network structure, with approx. 25 nm crystallographic steps and terraces indicative of surface rearrangement to low energy alumina planes. The scale grain boundary ridges were often decorated with a fine, uniform distribution of (Hf,Ti)O2 particles. Another sample, producing steady state weight losses, exhibited much interfacial spallation and a complex assortment of different structures. Broad areas of interfacial spalling, crystallographically-faceted (Ni,Co)(Al,Cr)2O4 spinel, with an alpha-Al2O3 base scale, were the dominant features. Other regions exhibited nodular spinel grains, with fine or (Ta,Ti)-rich (rutile) particles decorating or interspersed with the spinel. While these features were consistent with a coating that presented more deformation at extruded grain boundaries, the root cause of the different behavior between the duplicate samples could not be conclusively identified.

  17. Mechanism of spallation in platinum aluminide/electron beam physical vapor-deposited thermal barrier coatings

    SciTech Connect

    Gell, M.; Vaidyanathan, K.; Barber, B.; Cheng, J.; Jordan, E.

    1999-02-01

    The spallation failure of a commercial thermal barrier coating (TBC), consisting of a single-crystal RENE N5 superalloy, a platinum aluminide (Pt-Al) bond coat, and an electron beam-deposited 7 wt pct yttria-stabilized zirconia ceramic layer (7YSZ), was studied following cyclic furnace testing. In the uncycled state and prior to deposition of the ceramic, the Pt-Al bond-coat surface contains a cellular network of ridges corresponding to the underlying bond-coat grain-boundary structure. With thermal cycling, the ridges and associated grain boundaries are the sites of preferential oxidation and cracking, which results in the formation of cavities that are partially filled with oxide. Using a fluorescent penetrant dye in conjunction with a direct-pull test, it is shown that, when specimens are cycled to about 80 pct of life, these grain-boundary regions show extensive debonding. The roles of oxidation and cyclic stress in localized grain boundary region spallation are discussed. The additional factors leading to large-scale TBC spallation are described.

  18. Proceedings of the international workshop on spallation materials technology

    SciTech Connect

    Mansur, L.K.; Ullmaier, H.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  19. Benchmarking Geant4 for spallation neutron source calculations

    NASA Astrophysics Data System (ADS)

    DiJulio, Douglas D.; Batkov, Konstantin; Stenander, John; Cherkashyna, Nataliia; Bentley, Phillip M.

    2016-09-01

    Geant4 is becoming increasingly used for radiation transport simulations of spallation neutron sources and related components. Historically, the code has seen little usage in this field and it is of general interest to investigate the suitability of Geant4 for such applications. For this purpose, we carried out Geant4 calculations based on simple spallation source geometries and also with the the European Spallation Source Technical Design Report target and moderator configuration. The results are compared to calculations performed with the Monte Carlo N- Particle extended code. The comparisons are carried out over the full spallation neutron source energy spectrum, from sub-eV energies up to thousands of MeV. Our preliminary results reveal that there is generally good agreement between the simulations using both codes. Additionally, we have also implemented a general weight-window generator for Geant4 based applications and present some results of the method applied to the ESS target model.

  20. Mesoscale Modelling of the Response of Aluminas

    SciTech Connect

    Bourne, N. K.

    2006-07-28

    The response of polycrystalline alumina to shock is not well addressed. There are several operating mechanisms that only hypothesized which results in models which are empirical. A similar state of affairs in reactive flow modelling led to the development of mesoscale representations of the flow to illuminate operating mechanisms. In this spirit, a similar effort is undergone for a polycrystalline alumina. Simulations are conducted to observe operating mechanisms at the micron scale. A method is then developed to extend the simulations to meet response at the continuum level where measurements are made. The approach is validated by comparison with continuum experiments. The method and results are presented, and some of the operating mechanisms are illuminated by the observed response.

  1. Impact cratering experiments into quartzite, sandstone and tuff: The effects of projectile size and target properties on spallation

    NASA Astrophysics Data System (ADS)

    Poelchau, Michael H.; Kenkmann, Thomas; Hoerth, Tobias; Schäfer, Frank; Rudolf, Michael; Thoma, Klaus

    2014-11-01

    Impact cratering experiments were performed on quartzite, tuff, and dry and water-saturated sandstones in the framework of the MEMIN research unit. 2.5-12 mm diameter projectiles were accelerated to ∼5 km/s. Evaluation of the resulting craters shows that crater volumes and crater efficiencies of large-scale experiments are greater than predicted by strength scaling laws. A method to approximate the transient crater volume shows that this effect is largely due to an increase in spallation. Strength scaling laws are used to determine the reduction of tensile strength in large-scale experiments and show a decrease by a factor of 1.8-3.6. This strength reduction can be correlated with a decrease in strain rate for larger projectiles, and with the Weibull theory of strength reduction for larger rock sample sizes. Further variations in spallation are observed between different target materials; a decrease in spall is suggested to be controlled by increased porosity.

  2. Overview of target systems for the Spallation Neutron Source

    SciTech Connect

    Gabriel, Tony A.; Barnes, John M.; Charlton, Lowell A.; DiStefano, James; Farrell, Ken; Haines, John; Johnson, Jeffrey O.; Mansur, Louis K.; Pawel, Steve J.; Siman-Tov, Moshe; Taleyarkhan, Rusi; Wendel, Mark W.; McManamy, Thomas J.; Rennich, Mark J.

    1997-01-01

    The purpose and requirements of target systems as well as the technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the Spallation Neutron Source (SNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis, and the planned hardware research and development program are also described.

  3. Bauxite Mining and Alumina Refining

    PubMed Central

    Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  4. Branchy alumina nanotubes

    NASA Astrophysics Data System (ADS)

    Zou, Jianping; Pu, Lin; Bao, Ximao; Feng, Duan

    2002-02-01

    Branchy alumina nanotubes (bANTs) have been shown to exist in aluminum oxide. Electron-beam evaporated 400 nm Al film on Si substrate is stepwise anodized in dilute sulfuric acid under the constant dc voltage 40 V at 10.0 °C. This electrochemical-anodizing route resulted in the formation of individual bANTs. Transmission electron microscopy showed that the length of the bANTs was around 450 nm, and the inner diameter was around 10-20 nm. We deduced that the bANTs, the completely detached multibranchy cells of anodic porous alumina (APA) film, should be evolved from the stagnant cells of the APA mother film. The bANTs may be used as templates in fabrication of individual branchy nanoscale cables, jacks, and heterojunctions. The proposed formation mechanisms of the bANTs and the stagnant cells should give some insights into the long-standing problem of APA film, i.e., the self-ordering mechanism of the cells arrangement in porous anodization of aluminum.

  5. Production and characterization of alumina-titania biocomposite

    NASA Astrophysics Data System (ADS)

    Cetiner, B. N.; Erkmen, Z. E.

    2015-03-01

    Alumina is a biomaterial of choice for more than 20 years due to its high hardness accompanied by low friction, wear and inertness to in vivo environment. It has been reported that titanium oxidized to the rutile phase is bioactive. This is a property discovered for certain ceramics such as Bioglass and sintered hydroxylapatite (HA). But the combination of alumina and titania forming tialite (Aluminium titanate-50 mol % Al2O3 and 50 mol % TiO2) is a new challenge. In this work we made firstly the beneficiation of the Seydişehir alumina by leaching it in the acidic solution "the Aqua Regia" followed by preparation of batches containing 2,5 wt %, 3,5 wt % and 4,5 wt % of MgO as the sintering aid, 1 wt % of SiO2 and the balance; the alumina and titania powder mixture (1:1 mole). After sintering these batches at 1600°C for about 12 h, their mechanical properties (the compression and hardness testings) and phase ratios (the XRD analysis) were analyzed and compared with the control group containing the laboratory scale alumina instead of the Seydişehir alumina. Following the characterization (the SEM and the EDS analysis) of the substrate material, the comparison of two different materials was carried out.

  6. Effects of Platinum Additions and Sulfur Impurities on the Microstructure and Scale Adhesion Behavior of Single-Phase CVD Aluminide Bond Coatings

    SciTech Connect

    Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Pint, B.A.; Wright, I.G.; Zhang, Y.

    1999-02-28

    The adhesion of alumina scales to aluminide bond coats is a life-limiting factor for some advanced thermal barrier coating systems. This study investigated the effects of aluminide bond coat sulfur and platinum contents on alumina scale adhesion and coating microstructural evolution during isothermal and cyclic oxidation testing at 1150 C. Low-sulfur NiAl and NiPtAl bond coats were fabricated by chemical vapor deposition (CVD). Lowering the sulfur contents of CVD NiAl bond coatings significantly improved scale adhesion, but localized scale spallation eventually initiated along coating grain boundaries. Further improvements in scale adhesion were obtained with Pt additions. The observed influences of Pt additions included: (1) mitigation of the detrimental effects of high sulfur levels, (2) drastic reductions in void growth along the scale-metal interface, (3) alteration of the oxide-metal interface morphology, and (4) elimination of Ta-rich oxides in the Al{sub 2}O{sub 3} scales during thermal cycling. The results of this study also suggested that the microstructure (especially the grain size) of CVD aluminide bond coatings plays a significant role in scale adhesion.

  7. Adsorptive desulfurization by activated alumina.

    PubMed

    Srivastav, Ankur; Srivastava, Vimal Chandra

    2009-10-30

    This study reports usage of commercial grade activated alumina (aluminum oxide) as adsorbent for the removal of sulfur from model oil (dibenthiophene (DBT) dissolved in n-hexane). Bulk density of alumina was found to be 1177.77 kg/m(3). The BET surface area of alumina was found to decrease from 143.6 to 66.4 m(2)/g after the loading of DBT at optimum conditions. The carbon-oxygen functional groups present on the surface of alumina were found to be effective in the adsorption of DBT onto alumina. Optimum adsorbent dose was found to be 20 g/l. The adsorption of DBT on alumina was found to be gradual process, and quasi-equilibrium reached in 24 h. Langmuir isotherm best represented the equilibrium adsorption data. The heat of adsorption and change in entropy for DBT adsorption onto alumina was found to be 19.5 kJ/mol and 139.2 kJ/mol K, respectively.

  8. Cryogenics at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Weisend, J. G., II; Arnold, P.; Hees, J. Fydrych. W.; Jurns, J. M.; Wang, X. L.

    Cryogenics plays an important role at the European Spallation Source, a world class neutron science center, currently under construction in Lund, Sweden. Three principal applications of cryogenics are found at ESS. The SRF cryomodules of the ESS proton linac require cooling at 2 K, 4.5 K and 40 K; the hydrogenmoderator surrounding the target that produces neutrons, requires cooling via 16.5 K helium and LHe is required for many of the scientific instruments. These needs will be met by a set of three cryogenic refrigeration/liquefaction plants and an extensive cryogenic distribution system. Significant progress has been made on the ESS cryogenic system in preparation for the expected first beam on target in 2019. This work includes: funding of industry studies for the accelerator cryoplant, preliminary design of the cryogenic distribution system, investigation of possible in kind contributors and release of the invitation to tender for the accelerator cryoplant.This paper describes the requirements, design solutions and current status of the ESS cryogenic system. The planned recovery of waste heat from the cryogenic plants, a unique aspect of ESS, is described. The procurement of the cryogenic system, expected to be done via a combination of purchase via competitive bids and in kind contributions is also discussed.

  9. Cryogenic System for the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Arenius, D.; Chronis, W.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2004-06-01

    The Spallation Neutron Source (SNS) is a neutron-scattering facility being built at Oak Ridge, TN for the US Department of Energy. The SNS accelerator linac consists of superconducting radio-frequency (SRF) cavities in cryostats (cryomodules). The linac cryomodules are cooled to 2.1 K by a 2300 watt cryogenic refrigeration system. As an SNS partner laboratory, Jefferson Lab is responsible for the installed integrated cryogenic system design for the SNS linac accelerator consisting of major subsystem equipment engineered and procured from industry. Jefferson Lab's work included developing the major vendor subsystem equipment procurement specifications, equipment procurement, and the integrated system engineering support of the field installation and commissioning. The major cryogenic system components include liquid nitrogen storage, gaseous helium storage, cryogen distribution transfer line system, 2.1-K cold box consisting of four stages of cold compressors, 4.5-K cold box, warm helium compressors with its associated oil removal, gas management, helium purification, gas impurity monitoring systems, and the supportive utilities of electrical power, cooling water and instrument air. The system overview, project organization, the important aspects, and the capabilities of the cryogenic system are described.

  10. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  11. Gelcasting Polycrystalline Alumina

    SciTech Connect

    Janney, M.A.; Zuk, K.J.; Wei, G.C.

    2000-01-01

    OSRAM SYLVANIA INC. is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux TM line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency ({approximately}97% total transmittance in the visible), their refractoriness (inner wall temperature can reach l2OOC), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, up to 100 initial lumens per watt. (Compare incandescent lamps 10-20 lumens per watt, fluorescent lamps 25-90 lumens per watt.)

  12. On the Loss of Protective Scale Formation in Creep-Resistant, Alumina-Forming Austenitic Stainless Steels at 900?aC in Air

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Pint, Bruce A; Santella, Michael L; Maziasz, Philip J; Walker, Larry R

    2008-01-01

    A family of creep-resistant, Al2O3-forming austenitic (AFA) stainless steels was recently developed. The alloys exhibit excellent oxidation resistance up to 800 aC, but are susceptible to internal attack of Al at higher temperatures. In the present work, higher levels of Ni, Cr, Al, and Nb additions were found to correlate with improved oxidation behavior at 900 aC in air. The alloys generally appeared to be initially capable of external Al2O3 scale formation, with a subsequent transition to internal attack of Al (internal oxidation and internal nitridation) that is dependent on alloy composition. Compositional profiles at the alloy/scale interface suggest that the transition to internal oxidation is preceded by subsurface depletion of Al. Alloy design directions to increase the upper-temperature limit of protective Al2O3 scale formation in these alloys are discussed

  13. Global Mechanical Response and Its Relation to Deformation and Failure Modes at Various Length Scales Under Shock Impact in Alumina AD995 Armor Ceramic

    DTIC Science & Technology

    2008-03-01

    Computed Tomography: scale 0.1 mm – 1 cm: X-ray computed tomography (XCT) may be applied to any material through which a beam of penetrating... DRAWER 28510 SAN ANTONIO TX 78284 2 UNIV OF DELAWARE DEPT OF MECH ENGR J GILLESPIE NEWARK DE 19716 3 SRI INTERNATIONAL D

  14. Alumina-Reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  15. Tagging spallation backgrounds with showers in water Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Li, Shirley Weishi; Beacom, John F.

    2015-11-01

    Cosmic-ray muons and especially their secondaries break apart nuclei ("spallation") and produce fast neutrons and beta-decay isotopes, which are backgrounds for low-energy experiments. In Super-Kamiokande, these beta decays are the dominant background in 6-18 MeV, relevant for solar neutrinos and the diffuse supernova neutrino background. In a previous paper, we showed that these spallation isotopes are produced primarily in showers, instead of in isolation. This explains an empirical spatial correlation between a peak in the muon Cherenkov light profile and the spallation decay, which Super-Kamiokande used to develop a new spallation cut. However, the muon light profiles that Super-Kamiokande measured are grossly inconsistent with shower physics. We show how to resolve this discrepancy and how to reconstruct accurate profiles of muons and their showers from their Cherenkov light. We propose a new spallation cut based on these improved profiles and quantify its effects. Our results can significantly benefit low-energy studies in Super-Kamiokande, and will be especially important for detectors at shallower depths, like the proposed Hyper-Kamiokande.

  16. Gelcast zirconia-alumina composites

    SciTech Connect

    Omatete, O.O.; Bleier, A.; Westmoreland, C.G.; Young, A.C.

    1991-01-01

    Near net-shaped parts of zirconia-alumina composites have been successfully formed by gelcasting, a technique which utilizes in situ polymerization of acrylamide monomers. The high solids loading required for gelcasting ({approximately}50 vol %) was obtained by controlling the pH-dependent stability of the aqueous zirconia-alumina suspensions. A strong correspondence was found among the surface charges on the particles, colloidal stability, and the maximum solids loading. 14 refs., 3 figs., 2 tabs.

  17. China Spallation Neutron Source: Design, R&D, and outlook

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Chen, Hesheng; Chen, Yanwei; Chen, Yuanbo; Chi, Yunlong; Deng, Changdong; Dong, Haiyi; Dong, Lan; Fang, Shouxian; Feng, Ji; Fu, Shinian; He, Lunhua; He, Wei; Heng, Yuekun; Huang, Kaixi; Jia, Xuejun; Kang, Wen; Kong, Xiangcheng; Li, Jian; Liang, Tianjiao; Lin, Guoping; Liu, Zhenan; Ouyang, Huafu; Qin, Qing; Qu, Huamin; Shi, Caitu; Sun, Hong; Tang, Jingyu; Tao, Juzhou; Wang, Chunhong; Wang, Fangwei; Wang, Dingsheng; Wang, Qingbin; Wang, Sheng; Wei, Tao; Xi, Jiwei; Xu, Taoguang; Xu, Zhongxiong; Yin, Wen; Yin, Xuejun; Zhang, Jing; Zhang, Zong; Zhang, Zonghua; Zhou, Min; Zhu, Tao

    2009-02-01

    The China Spallation Neutron Source (CSNS) is an accelerator based multidiscipline user facility planned to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an negative hydrogen linear accelerator, a rapid cycling proton synchrotron accelerating the beam to 1.6 GeV energy, a solid tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. The primary challenge is to build a robust and reliable user's facility with upgrade potential at a fraction of "world standard" cost. We report the status, design, R&D, and upgrade outlook including applications using spallation neutron, muon, fast neutron, and proton, as well as related programs including medical therapy and accelerator-driven sub-critical reactor (ADS) programs for nuclear waste transmutation.

  18. Characterization of the radiation background at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.; Hall-Wilton, Richard J.; Bentley, Phillip M.

    2016-09-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden.

  19. Modeling of water radiolysis at spallation neutron sources

    SciTech Connect

    Daemen, L.L.; Kanner, G.S.; Lillard, R.S.; Butt, D.P.; Brun, T.O.; Sommer, W.F.

    1998-12-01

    In spallation neutron sources neutrons are produced when a beam of high-energy particles (e.g., 1 GeV protons) collides with a (water-cooled) heavy metal target such as tungsten. The resulting spallation reactions produce a complex radiation environment (which differs from typical conditions at fission and fusion reactors) leading to the radiolysis of water molecules. Most water radiolysis products are short-lived but extremely reactive. When formed in the vicinity of the target surface they can react with metal atoms, thereby contributing to target corrosion. The authors describe the results of calculations and experiments performed at los alamos to determine the impact on target corrosion of water radiolysis in the spallation radiation environment. The computational methodology relies on the use of the Los Alamos radiation transport code, LAHET, to determine the radiation environment, and the AEA code, FACSIMILE, to model reaction-diffusion processes.

  20. Monte Carlo modeling of spallation targets containing uranium and americium

    NASA Astrophysics Data System (ADS)

    Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2014-09-01

    Neutron production and transport in spallation targets made of uranium and americium are studied with a Geant4-based code MCADS (Monte Carlo model for Accelerator Driven Systems). A good agreement of MCADS results with experimental data on neutron- and proton-induced reactions on 241Am and 243Am nuclei allows to use this model for simulations with extended Am targets. It was demonstrated that MCADS model can be used for calculating the values of critical mass for 233,235U, 237Np, 239Pu and 241Am. Several geometry options and material compositions (U, U + Am, Am, Am2O3) are considered for spallation targets to be used in Accelerator Driven Systems. All considered options operate as deep subcritical targets having neutron multiplication factor of k∼0.5. It is found that more than 4 kg of Am can be burned in one spallation target during the first year of operation.

  1. Neutron scattering instrumentation for biology at spallation neutron sources

    SciTech Connect

    Pynn, R.

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  2. BEAM LOSS MITIGATION IN THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Plum, Michael A

    2012-01-01

    The Oak Ridge Spallation Neutron Source (SNS) accelerator complex routinely delivers 1 MW of beam power to the spallation target. Due to this high beam power, understanding and minimizing the beam loss is an ongoing focus area of the accelerator physics program. In some areas of the accelerator facility the equipment parameters corresponding to the minimum loss are very different from the design parameters. In this presentation we will summarize the SNS beam loss measurements, the methods used to minimize the beam loss, and compare the design vs. the loss-minimized equipment parameters.

  3. Detection of supernova neutrinos at spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  4. Influence of Alumina Reaction Tube Impurities on the Oxidation of Chemically-Vapor-Deposited Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth

    1995-01-01

    Pure coupons of chemically vapor deposited (CVD) SiC were oxidized for 100 h in dry flowing oxygen at 1300 C. The oxidation kinetics were monitored using thermogravimetry (TGA). The experiments were first performed using high-purity alumina reaction tubes. The experiments were then repeated using fused quartz reaction tubes. Differences in oxidation kinetics, scale composition, and scale morphology were observed. These differences were attributed to impurities in the alumina tubes. Investigators interested in high-temperature oxidation of silica formers should be aware that high-purity alumina can have significant effects on experiment results.

  5. Gelcasting polycrystalline alumina

    SciTech Connect

    Janney, M.A.

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  6. RESULTS FROM CAVITATION DAMAGE EXPERIMENTS WITH MERCURY SPALLATION TARGETS AT THE LANSCE WNR IN 2008

    SciTech Connect

    Riemer, Bernie; Abdou, Ashraf A; Felde, David K; Sangrey, Robert L; Wendel, Mark W

    2010-01-01

    Damage assessment from proton beam induced cavitation experiments on mercury spallation targets done at the LANSCE WNR facility has been completed. The experiments investigated two key questions for the Spallation Neutron Source target, namely, how damage is affected by flow velocity in the SNS coolant channel geometry, and how damage scales with proton beam intensity at a given constant charge per pulse. With regard to the former question, prior in-beam experiments indicated that the coolant channel geometry with stagnant mercury was especially vulnerable to damage which might warrant a design change. Yet other results indicated a reduction in damage with the introduction of flow. Using more prototypic to the SNS, the 2008 experiment damage results show the channel is less vulnerable than the bulk mercury side of the vessel wall. They also show no benefit from increasing channel flow velocity beyond nominal SNS speeds. The second question probed a consensus belief that damage scales with beam intensity (protons per unit area) by a power law dependence with exponent of around 4. Results from a 2005 experiment did not support this power law dependence but some observations were inconsistent and unexplained. These latest results show weaker damage dependence.

  7. Development of Cast Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-11-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  8. Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)

    SciTech Connect

    Efremenko, Yuri; Hix, William Raphael

    2009-01-01

    In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

  9. Supporting technologies for a long-pulse spallation source

    SciTech Connect

    Russell, G.J.; Weinacht, D.J.; Ferguson, P.D.; Pitcher, E.J.; Court, J.D.; Greene, G.L.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project is directed toward the development of the technologies required for a long-pulse, spallation neutron source (LPSS). Traditionally, spallation neutron sources have used proton accelerators that provide intense, short ({le} 1{micro}s) pulses of high-energy protons to a spallation target. A LPSS uses a proton pulse with longer time duration ({approx} 1 ms) and offers the possibility of achieving very high spallation neutron fluxes at substantially lower cost. The performance of a LPSS is very dependent on the neutronic performance of the target-moderator system. A detailed study of this performance has been carried out using Monte Carlo simulations. It should be noted that a LPSS is optimally suited to a fully coupled moderator. Neutron production per proton from such a moderator is a factor of five to seven greater than that produce d by moderators used at short pulse sources. The results of these efforts have been published in a series of articles.

  10. Muon Induced Spallation Neutrons in the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Orrell, J. L.; Ahmad, Q. R.; Hazama, R.; Wilkerson, J. F.

    2001-05-01

    Neutrons produced as spallation products from muon passage through the Sudbury Neutrino Observatory (SNO) are studied. Muons can produce spallation neutrons through inelastic scattering on nuclei. Thermalized neutrons capture on the deuterium in SNO's heavy water detector volume via d(n,γ)t. The γ-ray has an energy of 6.25-MeV and produces a detectable signal in the SNO detector. We show it is possible to extract a nearly pure sample of thermalized neutrons. The observed capture time and energy are used to confirm the events' identity as neutrons. The total detection efficiency for muon induced spallation of neutrons is estimated and used to calculate the total muon induced spallation rate of neutrons in the SNO detector. This rate will impact the analysis of the Neutral Current Detectors (NCDs). The NCDs are ^3He proportional counters which will be inserted into SNO and used to measure the neutral current reaction of neutrinos, d(ν_x,n)p, in SNO's heavy water.

  11. Neutron science opportunities at pulsed spallation neutron sources

    SciTech Connect

    Carpenter, J.M.

    1996-12-31

    Using the IPNS Upgrade plan developed at Argonne National Laboratory as a worked example of the design of a pulsed spallation neutron source, this paper explores some of the scientific applications of an advanced facility for materials science studies and the instrumentation for those purposes.

  12. Post irradiation examination of the Spallation Neutron Source target vessels

    SciTech Connect

    McClintock, David A; Ferguson, Phillip D; Mansur, Louis K

    2010-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of target vessel. Though mitigation of cavitation erosion and radiation damage to the target vessel will be a critical for successful high-power operation of the SNS facility, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  13. Gamma ray line production from cosmic ray spallation reactions

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1985-01-01

    The gamma ray line intensities due to cosmic ray spallation reactions in clouds, the galactic disk and accreting binary pulsars are calculated. With the most favorable plausible assumptions, only a few lines may be detectable to the level of 0.0000001 per sq. cm per sec. The intensities are compared with those generated in nuclear excitation reactions.

  14. Overview of the Target Systems for the Spallation Neutron Source

    SciTech Connect

    Gabriel, T.A.; Haines, J.R.; McManamy, T.J.

    1998-10-15

    The technologies that are being utilized to design and build the target systems for a state-of-the-art accelerator- based neutron source, the Spallation Neutron Source (SNS), are discussed. Emphasis is given to the technology issues that present the greatest challenges. The present facility configuration, ongoing analysis, and planned research and development program are also described.

  15. Precursor decay in several aluminas

    NASA Astrophysics Data System (ADS)

    Murray, N. H.; Bourne, N. K.; Rosenberg, Z.

    1996-05-01

    Plate impact experiments were performed on three ceramics with alumina content varying from 88 to 99.9% using a 50 mm single stage gas gun. Tiles of ceramic with thicknesses varying from 2 to 12 mm were impacted above their Hugoniot Elastic Limits (HELs) and the rate dependent strength was investigated by monitoring the variation in amplitude of the elastic precursor with propagation distance. Stress levels in the target were recorded using manganin stress transducers and a 1 GS s-1 storage oscilloscope. All grades of alumina were found to exhibit some elastic precursor decay indicating strain rate sensitivity.

  16. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  17. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  18. Transport properties of alumina nanofluids.

    PubMed

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  19. Gas chromatographic separation of hydrogen isotopes on columns packed with alumina, modified alumina and sol-gel alumina.

    PubMed

    Naik, Y P; Gupta, N K; Pillai, K T; Rao, G A Rama; Venugopal, V

    2012-01-06

    The stationary phase of alumina adsorbents, prepared by different chemical processes, was used to study the separation behaviour of hydrogen isotopes. Three types of alumina, obtained by conventional hydroxide route alumina coated with silicon oxide and alumina prepared by internal gelation process (IGP), were used as packing material to study the separation of HT and T(2) in a mixture at various temperatures. The conventional alumina and silicon oxide coated alumina resolved HT and T(2) at 77K temperature with different retention times. The retention times on SiO(2) coated columns were found to be higher than those of other adsorbents. However, the column filled with IGP alumina was found to be ideal for the separation of HT and T(2) at 240 K. The peaks were well resolved in less than 5 min on this column.

  20. Alumina-Enhanced Thermal Barrier

    NASA Technical Reports Server (NTRS)

    Smith, Marnell; Leiser, Dan; Goldstein, Howard

    1989-01-01

    Rigid, fibrous ceramic tile material called "alumina-enhanced thermal barrier" (AETB) extends temperature capability of insulating materials. Material has obvious potential for terrestrial use in kilns, furnaces, heat engines, and other applications in which light weight and high operating temperature are specified. Three kinds of ceramic fibers are blended, molded, and sintered to make refractory tiles.

  1. Effects of surface deposition, hole blockage, and thermal barrier coating spallation on vane endwall film cooling

    SciTech Connect

    Sundaram, N.; Thole, K.A.

    2007-07-15

    With the increase in usage of gas turbines for power generation and given that natural gas resources continue to be depleted, it has become increasingly important to search for alternate fuels. One source of alternate fuels is coal derived synthetic fuels. Coal derived fuels, however, contain traces of ash and other contaminants that can deposit on vane and turbine surfaces affecting their heat transfer through reduced film cooling. The endwall of a first stage vane is one such region that can be susceptible to depositions from these contaminants. This study uses a large-scale turbine vane cascade in which the following effects on film cooling adiabatic effectiveness were investigated in the endwall region: the effect of near-hole deposition, the effect of partial film cooling hole blockage, and the effect of spallation of a thermal barrier coating. The results indicated that deposits near the hole exit can sometimes improve the cooling effectiveness at the leading edge, but with increased deposition heights the cooling deteriorates. Partial hole blockage studies revealed that the cooling effectiveness deteriorates with increases in the number of blocked holes. Spallation studies showed that for a spalled endwall surface downstream of the leading edge cooling row, cooling effectiveness worsened with an increase in blowing ratio.

  2. High-Power Linac for the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Rej, D. J.

    2002-04-01

    The Spallation Neutron Source (SNS) will be the world’s most intense source of neutrons for fundamental science and industrial applications. Design and construction of this facility, located at Oak Ridge, is a joint venture between six DOE laboratories. Construction began in 1999 and is currently ahead of the scheduled 2006 completion date. Injecting a high-power, pulsed proton beam into a mercury target produces neutrons. In this talk, we review the physics requirements, design, and status of the construction of the 1-GeV, 1.4-MW average power RF linac for SNS. The accelerator consists of a drift tube linac (DTL), a coupled-cavity linac (CCL), and a superconducting rf (SRF) linac. The phase and quadrupole settings are set to avoid structure and parametric resonances, with coherent resonances posing minimal risk for emittance growth. The DTL is 37 m long and accelerates the ions to 87 MeV. The CCL is 55 m long and accelerates the ions to 186 MeV. The rf structure design and stability for both the DTL and CCL have been validated with scale models. The SRF linac has a modular design to accelerate ions to 1000 MeV, with a straightforward upgrade to 1.3 GeV at a later date. 3D particle-in-cell simulations of beam dynamics are performed to validate performance. The accelerator utilizes 93 MW of pulsed power operating continuously at 60-Hz with an 8factor. Approximately one hundred 402.5 or 805-MHz klystrons, with outputs between 0.55 and 5 MW, are used. The klystrons are powered by a novel converter-modulator that takes advantage of recent advances in IGBT switch plate assemblies and low-loss material cores for boost transformer. Beam diagnostics include position, phase, profile, and current monitors. They are designed to enable accurate beam steering and matching, and to minimize beam loss that would lead to activation and prevent hands-on maintenance.

  3. LATIS modeling of laser induced midplane and backplane spallation

    SciTech Connect

    Glinksky, M.E.; Bailey, D.S.; London, R.A.

    1997-03-05

    The computer code LATIS is used to simulate midplane and backplane spallation resulting from short pulsed laser absorption. A 1-D planar geometry is simulated with an exponential laser absorption profile. The laser pulse length is assumed to be much shorter than the sound transit time across the laser absorption length. The boundary conditions are a fixed front plane and free backplane (backplane spall) and a free front plane and a fixed midplane (midplane spall). The NBS/NRC equation of state for water is used with a self- consistent yet empirical material strength and failure model. The failure model includes the effects of void nucleation, growth and coalescence. Definite signatures of the nucleation and coalescence thresholds are found in the back surface motion for backplane spallation.

  4. Target Operational Experience at the Spallation Neutron Source

    SciTech Connect

    Riemer, Bernie; Janney, Jim G; Kaminskas, Saulius; McClintock, David A; Rosenblad, Peter M

    2013-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) has operated at unprecedented power levels for a short-pulse spallation source. Target operations have been successful but not without difficulties. Three targets out of the eight used to date have ended life unexpectedly causing interruptions to the neutron science users. The first of a kind mercury target design experiences beam-pulse induced cavitation damage that is suspected in one of the target leaks. The two other targets suffered early failures due to defective welds. Diagnosing the causes of target leaks and understanding of the progression of cavitation erosion and radiation damage effects has made use of post-irradiation examination (PIE) capabilities. As a result of PIE, review of quality assurance practices and related investigations, design changes are being implemented and manufacturing oversight improved. This paper describes SNS target operating experience, including the more important observations and lessons learned.

  5. SPALLATION NEUTRON SOURCE OPERATIONAL EXPERIENCE AT 1 MW

    SciTech Connect

    Galambos, John D

    2011-01-01

    The Spallation Neutron Source (SNS) has been operating at the MW level for about one year. Experience in beam loss control and machine activation at this power level is presented. Also experience with machine protection systems is reviewed, which is critical at this power level. One of the most challenging operational aspects of high power operation has been attaining high availability, which is also discussed

  6. Decommissioning and PIE of the MEGAPIE spallation target

    SciTech Connect

    Latge, C.; Henry, J.; Wohlmuther, M.; Dai, Y.; Gavillet, D.; Hammer, B.; Heinitz, S.; Neuhausen, J.; Schumann, D.; Thomsen, K.; Tuerler, A.; Wagner, W.; Gessi, A.; Guertin, A.; Konstantinovic, M.; Lindau, R.; Maloy, S.; Saito, S.

    2013-07-01

    A key experiment in the Accelerated Driven Systems roadmap, the MEGAwatt PIlot Experiment (MEGAPIE) (1 MW) was initiated in 1999 in order to design and build a liquid lead-bismuth spallation target, then to operate it into the Swiss spallation neutron facility SINQ at Paul Scherrer Institute. The target has been designed, manufactured, and tested during integral tests, before irradiation carried out end of 2006. During irradiation, neutron and thermo hydraulic measurements were performed allowing deep interpretation of the experiment and validation of the models used during design phase. The decommissioning, Post Irradiation Examinations and waste management phases were defined properly. The phases dedicated to cutting, sampling, cleaning, waste management, samples preparation and shipping to various laboratories were performed by PSI teams: all these phases constitute a huge work, which allows now to perform post-irradiation examination (PIE) of structural material, irradiated in relevant conditions. Preliminary results are presented in the paper, they concern chemical characterization. The following radio-nuclides have been identified by γ-spectrometry: {sup 60}Co, {sup 101}Rh, {sup 102}Rh, {sup 108m}Ag, {sup 110m}Ag, {sup 133}Ba, {sup 172}Hf/Lu, {sup 173}Lu, {sup 194}Hg/Au, {sup 195}Au, {sup 207}Bi. For some of these nuclides the activities can be easily evaluated from γ-spectrometry results ({sup 207}Bi, {sup 194}Hg/Au), while other nuclides can only be determined after chemical separations ({sup 108m}Ag, {sup 110m}Ag, {sup 195}Au, {sup 129}I, {sup 36}Cl and α-emitting {sup 208-210}Po). The concentration of {sup 129}I is lower than expected. The chemical analysis already performed on spallation and corrosion products in the lead-bismuth eutectic (LBE) are very relevant for further applications of LBE as a spallation media and more generally as a coolant.

  7. Spallation and fracture resulting from reflected and intersecting stress waves.

    NASA Technical Reports Server (NTRS)

    Kinslow, R.

    1973-01-01

    Discussion of the effects of stress waves produced in solid by explosions or high-velocity impacts. These waves rebound from free surfaces in the form of tensile waves that are capable of causing internal fractures or spallation of the material. The high-speed framing camera is shown to be an important tool for observing the stress waves and fracture in transparent targets, and its photographs provide valuable information on the mechanics of fracture.

  8. Spallation neutron source and other high intensity froton sources

    SciTech Connect

    Weiren Chou

    2003-02-06

    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.

  9. Material issues relating to high power spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Futakawa, M.

    2015-02-01

    Innovative researches using neutrons are being performed at the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), in which a mercury target system is installed for MW-class pulse spallation neutron sources. In order to produce neutrons by the spallation reaction, proton beams are injected into the mercury target. At the moment, when the intense proton beam hits the target, pressure waves are generated in mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel, leading to negative pressure that may cause cavitation along the vessel wall, i.e. on the interface between liquid and solid metals. On the other hand, the structural materials are subjected to irradiation damage due to protons and neutrons, very high cycle fatigue damages and so-called "liquid metal embrittlement". That is, the structural materials must be said to be exposed to the extremely severe environments. In the paper, research and development relating to the material issues in the high power spallation neutron sources that has been performed so far at J-PARC is summarized.

  10. Energy deposition calculated by PHITS code in Pb spallation target

    NASA Astrophysics Data System (ADS)

    Yu, Quanzhi

    2016-01-01

    Energy deposition in a Pb spallation target irradiated by high energetic protons was calculated by PHITS2.52 code. The validation of the energy deposition and neutron production calculated by PHITS code was performed. Results show good agreements between the simulation results and the experimental data. Detailed comparison shows that for the total energy deposition, PHITS simulation result was about 15% overestimation than that of the experimental data. For the energy deposition along the length of the Pb target, the discrepancy mainly presented at the front part of the Pb target. Calculation indicates that most of the energy deposition comes from the ionizations of the primary protons and the produced secondary particles. With the event generator mode of PHITS, the deposit energy distribution for the particles and the light nulclei is presented for the first time. It indicates that the primary protons with energy more than 100 MeV are the most contributors to the total energy deposition. The energy depositions peaking at 10 MeV and 0.1 MeV, are mainly caused by the electrons, pions, d, t, 3He and also α particles during the cascade process and the evaporation process, respectively. The energy deposition density caused by different proton beam profiles are also calculated and compared. Such calculation and analyses are much helpful for better understanding the physical mechanism of energy deposition in the spallation target, and greatly useful for the thermal hydraulic design of the spallation target.

  11. Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation

    NASA Technical Reports Server (NTRS)

    Olive, Keith A.; Schramm, David N.

    1992-01-01

    The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.

  12. Wettability of Aluminum on Alumina

    NASA Astrophysics Data System (ADS)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  13. Alumina as a Thermoluminescent Material

    SciTech Connect

    Uzun, Erdem; Yarar, Yasemin

    2007-04-23

    Thermoluminescence dosimeters are extensively used for quantitative dose measurements in various irradiation fields. They are also important for environmental monitoring after nuclear accident and weapon tests. In this work, the principles of TLD dosimeter and characteristics of several TLD materials are presented. Besides, taken into account the importance as a raw material, the utilization of domestic alumina (Al2O3) in TLDs as a thermoluminescent material is discussed.

  14. Method for preparing Pb-. beta. ''-alumina ceramic

    DOEpatents

    Hellstrom, E.E.

    1984-08-30

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-..beta..''-alumina ceramic from Na-..beta..''-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-..beta..''-alumina ceramic that is substantially crack-free.

  15. Structural Effects of Lanthanide Dopants on Alumina

    NASA Astrophysics Data System (ADS)

    Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond

    2017-01-01

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.

  16. Physical chemistry of carbothermic reduction of alumina

    SciTech Connect

    Frank, Robert A.

    1985-09-01

    Production of aluminium, by means of carbothermic reduction of alumina, is discussed. By employing a solvent metal bath to absorb the alumina metal, carbothermic reduction of alumina was accomplished at temperatures 300/degree/C lower than the temperatures reported in the literature. Reduction occurred without the formation of intermediate compounds and without the high volatilization of aluminum bearing species. Reduction of alumina immersed in a solvent bath appeared to be rate limited by chemical reaction control. The rates seemed to be a function of the activity of aluminum in the solvent metal bath. Reduction of alumina particles, above the surface of the bath, seemed to occur via vapor transport with carbon in the particles or in the crucible walls. Mass transport in the gas phase appeared to be rate limiting. The rates seemed to be a function of the distance separating the alumina and carbon sources. With both submerged alumina and alumina particles, increasing the surface area of the alumina increased the rate of reduction. 58 refs., 65 figs., 9 tabs.

  17. Structural Effects of Lanthanide Dopants on Alumina

    DOE PAGES

    Patel, Ketan; Blair, Victoria; Douglas, Justin; ...

    2017-01-06

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α), and alteration of powdermore » morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less

  18. Structural Effects of Lanthanide Dopants on Alumina

    PubMed Central

    Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond

    2017-01-01

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications. PMID:28059121

  19. Characterisation of dynamic behaviour of alumina ceramics: evaluation of stress uniformity

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong; Li, Peifeng

    2015-10-01

    Accurate characterisation of dynamic behaviour of ceramics requires the reliable split-Hopkinson pressure bar (SHPB) technique and the condition of uniaxial homogeneous specimen deformation. In this study, an experimentally validated 3D finite element model of the full scale SHPB experiment was developed to quantitatively evaluate the wave propagation in the bars and the stress distribution/evolution in the alumina specimen. Wave signals in both the SHPB experiments and the finite element model were analysed to characterise the dynamic behaviour of alumina. It was found that the equilibrium of both stresses within the specimen and forces at the specimen ends can be established in the intermediate stage of deformation. The validity of stress uniformity in the alumina specimen supports the assumption of uniaxial homogeneous specimen deformation in the SHPB and validates the characterisation of dynamic behaviour of alumina ceramics.

  20. Stability of trapped charges in sapphires and alumina ceramics: Evaluation by secondary electron emission

    NASA Astrophysics Data System (ADS)

    Zarbout, K.; Si Ahmed, A.; Moya, G.; Bernardini, J.; Goeuriot, D.; Kallel, A.

    2008-03-01

    The stability of trapped charges in sapphires and alumina ceramics is characterized via an experimental parameter expressing the variation of the secondary electron emission yield between two electron injections performed in a scanning electron microscope. Two types of sapphires and polycrystalline alumina, which differ mainly by their impurity content, are investigated in the temperature range 300-663K. The stable trapping behavior in sapphires is attributed to trapping in different defects, whose nature depends on the purity level. In alumina ceramics, the ability to trap charges in a stable way is stronger in samples of high impurity content. In the low impurity samples, stable trapping is promoted when the grain diameter decreases, whereas the reverse is observed in high impurity materials. These behaviors can stem from a gettering effect occurring during sintering. The strong dependence of the variation of the secondary electron emission yield on the grain diameter and impurities enables a scaling of the stable trapping ability of alumina materials.

  1. Numerical modelling of spallation in 2D hydrodynamics codes

    NASA Astrophysics Data System (ADS)

    Maw, J. R.; Giles, A. R.

    1996-05-01

    A model for spallation based on the void growth model of Johnson has been implemented in 2D Lagrangian and Eulerian hydrocodes. The model has been extended to treat complete separation of material when voids coalesce and to describe the effects of elevated temperatures and melting. The capabilities of the model are illustrated by comparison with data from explosively generated spall experiments. Particular emphasis is placed on the prediction of multiple spall effects in weak, low melting point, materials such as lead. The correlation between the model predictions and observations on the strain rate dependence of spall strength is discussed.

  2. VESPA: The vibrational spectrometer for the European Spallation Source.

    PubMed

    Fedrigo, Anna; Colognesi, Daniele; Bertelsen, Mads; Hartl, Monika; Lefmann, Kim; Deen, Pascale P; Strobl, Markus; Grazzi, Francesco; Zoppi, Marco

    2016-06-01

    VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

  3. VESPA: The vibrational spectrometer for the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Fedrigo, Anna; Colognesi, Daniele; Bertelsen, Mads; Hartl, Monika; Lefmann, Kim; Deen, Pascale P.; Strobl, Markus; Grazzi, Francesco; Zoppi, Marco

    2016-06-01

    VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

  4. Target station shielding issues at the spallation neutron source.

    PubMed

    Ferguson, P D; Gallmeier, F X; Iverson, E B; Popova, I I

    2005-01-01

    Recent spallation neutron source shielding activities in support of the neutron beam shutters and the hot cell walls are presented. Existing neutron beam shutters can be replaced with concrete at low power or with concrete and steel at approximately 500 kW of beam power. Potential voids in the hot cell walls are analysed to determine the impact on dose rates as a function of void size. A change in the type of shielding work is noted as the project moved from the early design stages as a 'green field' site to the current stage as a construction project nearing completion, where issues to be addressed are approaching retrofit-type analyses.

  5. Optical model methods of predicting nuclide production from spallation reactions.

    PubMed

    Ramsey, C R; Townsend, L W; Tripathi, R K; Cucinotta, F A

    1998-02-01

    Quantum mechanical optical model methods for calculating isotope production cross sections from the spallation of heavy nuclei by high-energy protons are developed from a modified abrasion-ablation collision formalism. The abrasion step is treated quantum-mechanically as a knockout process which leaves the residual prefragment nucleus in an excited state. In ablation the prefragment deexcites to produce the final fragment. The excitation energies of the prefragments are estimated from a combination of liquid drop and frictional-spectator interaction considerations. Estimates of elemental and isotopic production cross sections are in good agreement with recently published cross section measurements.

  6. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  7. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Bei, Hongbin; Santella, Michael L; Maziasz, Philip J

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750 C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750 C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  8. Overview of the national spallation neutron source with emphasis on the target station

    SciTech Connect

    Gabriel, T.A.; Barnes, J.N.; Charlton, L.A.

    1997-06-01

    The technologies that are being utilized to design and build a state-of-the-art neutron spallation source, the National Spallation Neutron Source (NSNS), are discussed. Emphasis is given to the technology issues that present the greatest scientific challenges. The present facility configuration, ongoing analysis and the planned hardware research and development program are also described.

  9. Formation of alumina-nickel-molybdenum catalysts

    SciTech Connect

    Erofeev, V.I.; Basov, V.G.; Vagin, A.I.; Kalechits, I.V.

    1982-06-01

    On the basis of the results obtained in physical and chemical studies of alumina-nickel-molybdenum oxide catalysts as well as binary system and the individual oxides, the conclusions show that the commercial catalyst consists mainly of nickel and aluminium molybdates, aluminium molybdates, molybdenum oxide, and the alumina support. 4 figures.

  10. Hydrogen and the structure of transition aluminas

    SciTech Connect

    Sohlberg, K.; Pennycook, S.J.; Pantelides, S.T.

    1999-08-25

    {alpha}-Alumina results from the complete dehydration of several minerals of the form Al{sub 2}O{sub 3}{center{underscore}dot}nH{sub 2}O. The ``transition'' aluminas, {gamma}-alumina, {eta}-alumina, and {delta}-alumina are known to have a spinel structure but the possibility that they contain hydrogen (H) has been the subject of debate. The authors present a series of density-functional theory calculations which, together with available experimental data, show that the spinel aluminas exist over a range of hydrogen content captured by the empirical formula H{sub 3m}Al{sub 2{minus}m}O{sub 3}, with a different greek-letter phases corresponding to different distributions of the Aluminum (Al) ions on the two cation sublattices. Calculations of densities and vibrational frequencies of bulk OH bonds are in excellent agreement with available data. The theory reconciles seemingly inconsistent data and reveals a remarkable property of the spinel aluminas: They are ``reactive sponges'' in that they can store and release water in a reactive way. This chemical activity offers a basis for understanding long-standing puzzles in the behavior of aluminas in catalytic systems.

  11. Effects of Impurities on Alumina-Niobium InterfacialMicrostructures

    SciTech Connect

    McKeown, Joseph T.; Sugar, Joshua D.; Gronsky, Ronald; Glaeser,Andreas M.

    2005-06-20

    Optical microscopy, scanning electron microscopy, and transmission electron microscopy were employed to examine the interfacial microstructural effects of impurities in alumina substrates used to fabricate alumina-niobium interfaces via liquid-film-assisted joining. Three types of alumina were used: undoped high-purity single-crystal sapphire; a high-purity, high-strength polycrystalline alumina; and a lower-purity, lower-strength polycrystalline alumina. Interfaces formed between niobium and both the sapphire and high-purity polycrystalline alumina were free of detectable levels of impurities. In the lower-purity alumina, niobium silicides were observed at the alumina-niobium interface and on alumina grain boundaries near the interface. These silicides formed in small-grained regions of the alumina and were found to grow from the interface into the alumina along grain boundaries. Smaller silicide precipitates found on grain boundaries are believed to form upon cooling from the bonding temperature.

  12. ARSENIC REMOVAL FROM DRINKING WATER BY ACTIVATED ALUMINA AND ANION EXCHANGE TREATMENT

    EPA Science Inventory

    This paper discusses the results of a one year performance evaluation study of two full scale ion exchange plants and two full scale activated alumina plant that were designed and operated for the removal of arsenic from well water. All the plants were shown to be capable of red...

  13. Oak Ridge Spallation Neutron Source (ORSNS) target station design integration

    SciTech Connect

    McManamy, T.; Booth, R.; Cleaves, J.; Gabriel, T.

    1996-06-01

    The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improved as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.

  14. Generic guide concepts for the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Zendler, C.; Martin Rodriguez, D.; Bentley, P. M.

    2015-12-01

    The construction of the European Spallation Source (ESS) faces many challenges from the neutron beam transport point of view: the spallation source is specified as being driven by a 5 MW beam of protons, each with 2 GeV energy, and yet the requirements in instrument background suppression relative to measured signal vary between 10-6 and 10-8. The energetic particles, particularly above 20 MeV, which are expected to be produced in abundance in the target, have to be filtered in order to make the beamlines safe, operational and provide good quality measurements with low background. We present generic neutron guides of short and medium length instruments which are optimised for good performance at minimal cost. Direct line of sight to the source is avoided twice, with either the first point out of line of sight or both being inside the bunker (20 m) to minimise shielding costs. These guide geometries are regarded as a baseline to define standards for instruments to be constructed at ESS. They are used to find commonalities and develop principles and solutions for common problems. Lastly, we report the impact of employing the over-illumination concept to mitigate losses from random misalignment passively, and that over-illumination should be used sparingly in key locations to be effective. For more widespread alignment issues, a more direct, active approach is likely to be needed.

  15. Mercury Cavitation Phenomenon in Pulsed Spallation Neutron Sources

    SciTech Connect

    Futakawa, Masatoshi; Naoe, Takashi; Kawai, Masayoshi

    2008-06-24

    Innovative researches will be performed at Materials and Life Science Experimental Facility in J-PARC, in which a mercury target system will be installed as MW-class pulse spallation neutron sources. Proton beams will be injected into mercury target to induce the spallation reaction. At the moment the intense proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by micro-jets and/or shock waves which are caused by cavitation bubble collapse impose pitting damage on the vessel wall. The pitting damage which degrades the structural integrity of target vessels is a crucial issue for high power mercury targets. Micro-gas-bubbles injection into mercury may be useful to mitigate the pressure wave and the pitting damage. The visualization of cavitation-bubble and gas-bubble collapse behaviors was carried out by using a high-speed video camera. The differences between them are recognized.

  16. Separation of spallation and terrestrial C-14 in chondrites

    NASA Technical Reports Server (NTRS)

    Cresswell, R. G.; Beukens, R. P.; Rucklidge, J. C.

    1993-01-01

    Weathering products and contamination severely hamper our ability to accurately measure the C-14 spallation component in meteorites, but can give insights into a sample's terrestrial history. A procedure was developed to measure the C-14 in these components using CO and CO2 separations from temperature extractions from 200-500 mg of material. The Bruderheim (L6) chondrite was chosen as a standard following the practice of previous researchers, crosschecked against Peace River (L6), Abee (EH4), and Juvinas (EUC). Low temperature fractions (less than 900 C) give C-14 signatures consistent with a modern terrestrial C-14 source; melt fractions show elevated levels attesting to a spallogenic origin. Higher yields of CO in the melt fraction are less affected by the low levels of experimental contamination than the CO2. This fraction gave a mean CO:CO2 ratio in Bruderheim of 81.6 +/- 7.7; the ratio of the spallation component is 79.8 +/- 8.1. These values suggest equilibrium release of gases on the olivine-silica-pyroxene-iron buffer. This is corroborated by approximately equal release of the two components at 900 C. The chondrites gave an average saturation level of 54.3 +/- 2.9 dpm/kg; the achondrite gave 49.6 +/- 2.0 dpm/kg. No clear correlation with oxygen content is apparent, though shielding effects have yet to be evaluated. A further evaluation of this subject matter is given.

  17. Materials considerations for the National Spallation Neutron Source target

    SciTech Connect

    Mansur, L.K.; DiStefano, J.R.; Farrell, K.; Lee, E.H.; Pawel, S.J.; Wechsler, M.S.

    1997-08-01

    The National Spallation Neutron Source (NSNS), in which neutrons are generated by bombarding a liquid mercury target with 1 GeV protons, will place extraordinary demands on materials performance. The target structural material will operate in an aggressive environment, subject to intense fluxes of high energy protons, neutrons, and other particles, while exposed to liquid mercury and to water. Components that require special consideration include the Hg liquid target container and protective shroud, beam windows, support structures, moderator containers, and beam tubes. In response to these demands a materials R and D program has been developed for the NSNS that includes: selection of materials; calculations of radiation damage; irradiations, post irradiation testing, and characterization; compatibility testing and characterization; design and implementation of a plan for monitoring of materials performance in service; and materials engineering and technical support to the project. Irradiations are being carried out in actual and simulated spallation environments. Compatibility experiments in Hg are underway to ascertain whether the phenomena of liquid metal embrittlement and temperature gradient mass transfer will be significant. Results available to date are assessed in terms of the design and operational performance of the facility.

  18. Characterization and application of electrospun alumina nanofibers

    PubMed Central

    2014-01-01

    Alumina nanofibers were prepared by a technique that combined the sol–gel and electrospinning methods. The solution to be electrospun was prepared by mixing aluminum isopropoxide (AIP) in ethanol, which was then refluxed in the presence of an acid catalyst and polyvinylpyrolidone (PVP) in ethanol. The characterization results showed that alumina nanofibers with diameters in the range of 102 to 378 nm were successfully prepared. On the basis of the results of the XRD and FT-IR, the alumina nanofibers calcined at 1,100°C were identified as comprising the α-alumina phase, and a series of phase transitions such as boehmite → γ-alumina → α-alumina were observed from 500°C to 1,200°C. The pore size of the obtained γ-alumina nanofibers is approximately 8 nm, and it means that they are mesoporous materials. The kinetic study demonstrated that MO adsorption on alumina nanofibers can be seen that the pseudo-second-order kinetic model fits better than the pseudo-first-order kinetic model. PMID:24467944

  19. Size-controlled Synthesis and Evaluation of Optical Properties of Alumina Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gangwar, J.; Srivastava, A. K.; Tripathi, S. K.

    2011-12-01

    We report the synthesis of nano-scaled alumina of varied dimensions through an optimized processing of aluminum nitrate. The X-ray diffractometry confirmed the formation of α-phase of alumina particles in the nano region, depending on the annealing conditions during processing. Subsequently, a detailed electron microscopy revealed the morphological alterations and crystallographic information even at lattice scale. The band energies were investigated by employing photoluminescence spectrometry. The evolution of fascinating microstructure, phase formations and optical bands has been presented and discussed.

  20. Noise in Sodium Beta Alumina Crystals.

    DTIC Science & Technology

    1985-09-01

    Washington, D.C. 20375 .I- 7. 7- NOISE INI SODIUM r ALUMINA SINGLE CRYSTALS James J. Brophy and Steven W. Smith University of Utah Salt Lake City, Utah 84112...RD-Ai56 025 NOISE IN SODiUN BETA ALUMINA CRYSTALS(U) UTAH UNIV SALT II LAKE CITY DEPT OF PHYSICS J J BROPHY ET AL. SEP 85 TR-7 N88814-82-K-e603...h.0- "bf’ ; -28242 ’ITLE (andSubsist&) S. TYPE OF REPORT & PERIOD COVERED L Noise in Sodium B" Alumina Crystals Technical Report #7 CJ S. PERFORMING

  1. Fabrication of thin layer beta alumina

    NASA Technical Reports Server (NTRS)

    Tennenhouse, G. J.

    1977-01-01

    Beta alumina tubes having walls 700 microns, 300 microns, and 140 microns were processed by extrusion and sintering utilizing Ford proprietary binder and fabrication systems. Tubes prepared by this method have properties similar to tubes prepared by isostatic pressing and sintering, i.e. density greater than 98% of theoretical and a helium leak rate less than 3 x 10 to the -9th power cc/sq cm/sec. Ford ultrasonic bonding techniques were used for bonding beta alumina end caps to open ended beta -alumina tubes prior to sintering. After sintering, the bond was hermetic, and the integrity of the bonded area was comparable to the body of the tube.

  2. Dissolution Kinetics of Alumina Calcine

    SciTech Connect

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  3. Spallation occurrence from polyamide materials irradiated by thermal plasma with water absorption

    NASA Astrophysics Data System (ADS)

    Nakano, Tomoyuki; Tanaka, Yasunori; Nakagawa, T.; Shinsei, N.; Uesugi, Y.; Ishijima, T.

    2016-09-01

    This paper first describes the effect of water absorption in polyamide material irradiated by thermal plasmas on the occurrence of spallation phenomena. The interaction between polyamide materials and arc plasmas occurs particularly in the low voltage circuit breaker and aerospace fields. Spallation phenomena are those in which polymer particles are ejected from polymer bulk materials irradiated by high heat flux. To confirm the effect of water absorption into the polyamide material on spallation phenomena, polyamide specimens with and without water absorption were irradiated by Ar inductively coupled thermal plasma. The results show that the polyamide specimen with water absorption ejected spallation particles, whereas the polyamide specimen without water absorption were only slightly ejected, indicating that water absorption promotes the occurrence of spallation. The cooling effects of the spallation polyamide 66 (PA66) particles ablation were also estimated in hot air to assess the arc quenching ability from the spallation particle inclusion. This estimation showed that 10 and more PA66 particles inclusion might decrease the air temperature by 3000 K effectively, which can be useful to enhance arc quenching in circuit breakers working in air.

  4. Radiological Hazard of Spallation Products in Accelerator-Driven System

    SciTech Connect

    Saito, M.; Stankovskii, A.; Artisyuk, V.; Korovin, Yu.; Shmelev, A.; Titarenko, Yu.

    2002-09-15

    The central issue underlying this paper is related to elucidating the hazard of radioactive spallation products that might be an important factor affecting the design option of accelerator-driven systems (ADSs). Hazard analysis based on the concept of Annual Limit on Intake identifies alpha-emitting isotopes of rare earths (REs) (dysprosium, gadolinium, and samarium) as the dominant contributors to the overall toxicity of traditional (W, Pb, Pb-Bi) targets. The matter is addressed from several points of view: code validation to simulate their yields, choice of material for the neutron producing targets, and challenging the beam type. The paper quantitatively determines the domain in which the toxicity of REs exceeds that of polonium activation products broadly discussed now in connection with advertising lead-bismuth technology for the needs of ADSs.

  5. STATUS OF THE SPALLATION NEUTRON SOURCE SUPERCONDUCTING RF FACILITIES

    SciTech Connect

    Stout, Daniel S; Assadi, Saeed; Campisi, Isidoro E; Casagrande, Fabio; Crofford, Mark T; DeVan, Bill; Hardek, Thomas W; Henderson, Stuart D; Howell, Matthew P; Kang, Yoon W; Geng, Xiaosong; Stone Jr, William C; Strong, William Herb; Williams, Derrick C; Wright, Paul Alan

    2007-01-01

    The Spallation Neutron Source (SNS) project was completed with only limited superconducting RF (SRF) facilities installed as part of the project. A concerted effort has been initiated to install the infrastructure and equipment necessary to maintain and repair the superconducting Linac, and to support power upgrade research and development (R&D). Installation of a Class10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is underway. A horizontal cryostat, which can house a helium vessel/cavity and fundamental power coupler for full power, pulsed testing, is being procured. Equipment for cryomodule assembly and disassembly is being procured. This effort, while derived from the experience of the SRF community, will provide a unique high power test capability as well as long term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF facilities.

  6. THE SPALLATION NEUTRON SOURCE CRYOMODULE TEST STAND RF SYSTEM

    SciTech Connect

    Crofford, Mark T; Ball, Jeffrey Allen; Davidson Jr, Taylor L; Hardek, Thomas W; Heidenreich, Dale A; Kasemir, Kay; Kim, Sang-Ho; Kang, Yoon

    2008-01-01

    The Spallation Neutron Source (SNS) has recently commissioned a cryomodule test facility for the repair and testing of the super-conducting radio-frequency (SRF) cavities. This facility utilizes the original 402.5/805 MHz Radio Frequency (RF) Klystron Test Stand as its power source along with dual Low Level RF (LLRF) control systems. One control system is based on the standard SNS Linac LLRF controls with a second system for open-loop only control. The system is designed to allow simultaneous testing of devices in the test cave and other devices which can be tested outside of the enclosure. Initial tests have shown good results; some improvements are yet to be implemented.

  7. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  8. The Spallation Neutron Source Beam Commissioning and Initial Operations

    SciTech Connect

    Henderson, Stuart; Aleksandrov, Alexander V.; Allen, Christopher K.; Assadi, Saeed; Bartoski, Dirk; Blokland, Willem; Casagrande, F.; Campisi, I.; Chu, C.; Cousineau, Sarah M.; Crofford, Mark T.; Danilov, Viatcheslav; Deibele, Craig E.; Dodson, George W.; Feshenko, A.; Galambos, John D.; Han, Baoxi; Hardek, T.; Holmes, Jeffrey A.; Holtkamp, N.; Howell, Matthew P.; Jeon, D.; Kang, Yoon W.; Kasemir, Kay; Kim, Sang-Ho; Kravchuk, L.; Long, Cary D.; McManamy, T.; Pelaia, II, Tom; Piller, Chip; Plum, Michael A.; Pogge, James R.; Purcell, John David; Shea, T.; Shishlo, Andrei P; Sibley, C.; Stockli, Martin P.; Stout, D.; Tanke, E.; Welton, Robert F; Zhang, Y.; Zhukov, Alexander P

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  9. COMMISSIONING OF THE SPALLATION NEUTRON SOURCE ACCELERATOR SYSTEMS

    SciTech Connect

    Plum, Michael A

    2007-01-01

    The Spallation Neutron Source accelerator complex consists of a 2.5 MeV H- front-end injector system, a 186 MeV normal-conducting linear accelerator, a 1 GeV superconducting linear accelerator, an accumulator ring, and associated beam transport lines. The linac was commissioned in five discrete runs, starting in 2002 and completed in 2005. The accumulator ring and associated beam transport lines were commissioned in two runs from January to April 2006. With the completed commissioning of the SNS accelerator, the facility has begun initial low-power operations. In the course of beam commissioning, most beam performance parameters and beam intensity goals have been achieved at low duty factor. A number of beam dynamics measurements have been performed, including emittance evolution, transverse coupling in the ring, beam instability thresholds, and beam distributions on the target. The commissioning results, achieved beam performance and initial operating experience of the SNS will be discussed

  10. Electron Cloud Mitigation in the Spallation Neutron Source Ring

    SciTech Connect

    Wei, J.; Blaskiewicz, Michael; Brodowski, J.; Cameron, P.; Davino, Daniele; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Ludewig, H.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Catalan-Lasheras, N.; Macek, R.J.; Furman, Miguel A.; Aleksandrov, A.; Cousineau, S.; Danilov, V.; Henderson, S.; /Brookhaven /CERN /LANL, Ctr. for Nonlinear Studies /LBL, Berkeley /Oak Ridge /SLAC

    2008-03-17

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H{sup -} injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron-cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation.

  11. Electron-cloud mitigation in the spallation neutron source ring

    SciTech Connect

    Wei, J.; Blaskiewicz, M.; Brodowski, J.; Cameron, P.; Davino, D.; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Danilov, V.; Henderson, S.; Furman, M.; Pivi, M.; Macek, R.

    2003-05-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H- injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation.

  12. Core Vessel Insert Handling Robot for the Spallation Neutron Source

    SciTech Connect

    Graves, Van B; Dayton, Michael J

    2011-01-01

    The Spallation Neutron Source provides the world's most intense pulsed neutron beams for scientific research and industrial development. Its eighteen neutron beam lines will eventually support up to twenty-four simultaneous experiments. Each beam line consists of various optical components which guide the neutrons to a particular instrument. The optical components nearest the neutron moderators are the core vessel inserts. Located approximately 9 m below the high bay floor, these inserts are bolted to the core vessel chamber and are part of the vacuum boundary. They are in a highly radioactive environment and must periodically be replaced. During initial SNS construction, four of the beam lines received Core Vessel Insert plugs rather than functional inserts. Remote replacement of the first Core Vessel Insert plug was recently completed using several pieces of custom-designed tooling, including a highly complicated Core Vessel Insert Robot. The design of this tool are discussed.

  13. Preliminary Numerical and Experimental Analysis of the Spallation Phenomenon

    NASA Technical Reports Server (NTRS)

    Martin, Alexandre; Bailey, Sean C. C.; Panerai, Francesco; Davuluri, Raghava S. C.; Vazsonyi, Alexander R.; Zhang, Huaibao; Lippay, Zachary S.; Mansour, Nagi N.; Inman, Jennifer A.; Bathel, Brett F.; Splinter, Scott C.; Danehy, Paul M.

    2015-01-01

    The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post shock layer. Preliminary results from a test-campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of high-speed images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30 second test at 100 W/cm2 of cold-wall heat-flux, more than 1300 particles were detected, with an average velocity of 102 m/s, and most frequent observed velocity of 60 m/s.

  14. Shielding Design of the Spallation Neutron Source (SNS)

    SciTech Connect

    Johnson, J.O.

    1998-09-17

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements, calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented.

  15. EVOLUTION OF THE SPALLATION NEUTRON SOURCE RING LATTICE.

    SciTech Connect

    WEI,J.; CATALAN - LASHERAS,N.; FEDOTOV,A.; GARDNER,C.J.; LEE,Y.Y.; PAPAPHILIPPOU,Y.; RAPARIA,D.; TSOUPAS,N.; HOLMES,J.

    2002-04-08

    Requirements of minimum beam loss for hand-on maintenance and flexibility for future operations are essential for the lattice design of the Spallation Neutron Source (SNS) accumulator ring. During the past seven years, the lattice has evolved from an all-FODO to a FODO/doublet hybrid, the circumference has been increased to accommodate for a higher energy foreseen with a super-conducting RF linac, and the layout has evolved from an {alpha}- to an {Omega}-geometry. Extensive studies are performed to determine working points that accommodate injection painting and minimize beam losses due to space charge and resonances. In this paper, we review the evolution of the SNS ring lattice and discuss the rationales.

  16. Evolution of the Spallation Neutron Source Ring Lattice

    NASA Astrophysics Data System (ADS)

    Wei, J.; Catalan-Lasheras, N.; Fedotov, A.; Gardner, C. J.; Lee, Y. Y.; Papaphilippou, Y.; Raparia, D.; Tsoupas, N.; Holmes, J.

    2002-12-01

    Requirements of minimum beam loss for hand-on maintenance and flexibility for future operations are essential for the lattice design of the Spallation Neutron Source (SNS) accumulator ring. During the past seven years, the lattice has evolved from an all-FODO to a FODO/doublet hybrid, the circumference has been increased to accommodate for a higher energy foreseen with a super-conducting RF linac, and the layout has evolved from an α- to an Ω- geometry. Extensive studies are performed to determine working points that accommodate injection painting and minimize beam losses due to space charge and resonances. In this paper, we review the evolution of the SNS ring lattice and discuss the rationales.

  17. Probing neutrino magnetic moments at the Spallation Neutron Source facility

    NASA Astrophysics Data System (ADS)

    Kosmas, T. S.; Miranda, O. G.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2015-07-01

    Majorana neutrino electromagnetic properties are studied through neutral current coherent neutrino-nucleus scattering. We focus on the potential of the recently planned COHERENT experiment at the Spallation Neutron Source to probe muon-neutrino magnetic moments. The resulting sensitivities are determined on the basis of a χ2 analysis employing realistic nuclear structure calculations in the context of the quasiparticle random phase approximation. We find that they can improve existing limits by half an order of magnitude. In addition, we show that these facilities allow for standard model precision tests in the low energy regime, with a competitive determination of the weak mixing angle. Finally, they also offer the capability to probe other electromagnetic neutrino properties, such as the neutrino charge radius. We illustrate our results for various choices of experimental setup and target material.

  18. Mesoscale polycrystal calculations of damage in spallation in metals

    SciTech Connect

    Tonks, Davis L; Bingert, John F; Livescu, Veronica; Luo, Shengnian; Bronkhorst, C A

    2010-01-01

    The goal of this project is to produce a damage model for spallation in metals informed by the polycrystalline grain structure at the mesoscale. Earlier damage models addressed the continuwn macroscale in which these effects were averaged out. In this work we focus on cross sections from recovered samples examined with EBSD (electron backscattered diffraction), which reveal crystal grain orientations and voids. We seek to understand the loading histories of specific sample regions by meshing up the crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydro code, FLAG. The stresses and strain histories are the fundamental drivers of damage and must be calculated. The calculated final damage structures are compared with those from the recovered samples to validate the simulations.

  19. CONSTRUCTION STATUS AND ISSUES OF THE SPALLATION NEUTRON SOURCE RING.

    SciTech Connect

    WEI,J.

    2004-07-05

    The Spallation Neutron Source (SNS) ring is designed to accumulate beam pulses of 1.5 x 10{sup 14} protons of 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity and power, key design challenges include control of beam loss and radio-activation, construction of high-quality large-aperture magnets and power supplies, design of robust injection and extraction systems, minimization of beam-coupling impedances, and mitigation of electron-cloud effects. This paper discusses the status of the ring systems with emphasis on technical challenges and issues, and presents future perspectives towards a next-generation high-intensity facility.

  20. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  1. Joining of alumina ceramics and nickel alloy

    SciTech Connect

    Ariga, Tadashi; Nitta, Yuji; Miyazawa, Yasuyuki

    1994-12-31

    Joining of alumina ceramics to nickel alloy was made using the various types of Ag-Cu-Ti brazing filler metal. Ti-containing brazing filler metal was produced by physical vapor deposition (PVD) method on the joining area of the alumina ceramics. The joinability of the brazing filler metal was estimated by its mechanical properties. And the composition and structure of the ceramic-metal bond zone in the alumina ceramics-nickel alloy joints were analyzed by SEM, EPMA and X-ray diffraction examinations. Some of brazing filler metal achieved the highest shear strength 100 MPa at room temperature. The elemental distributions of the interface between alumina ceramics and Ag-Cu-Ti brazing filler metal was shown to form the reaction layer consisting titanium oxide.

  2. Electrical Properties of Thin Films of Alumina.

    DTIC Science & Technology

    The report consists of a literature survey on the electrical properties of alumina and aluminum oxide thin films . A bibliographic listing of reports is included along with abstracts from most of them.

  3. Loss tangent measurements on unirradiated alumina

    SciTech Connect

    Zinkle, S.J.; Goulding, R.H.

    1996-04-01

    Unirradiated room temperature loss tangent for sapphire and several commercial grades of polycrystalline alumina are complied for frequencies between 10{sup 5} and 4x10{sup 11} Hz. Sapphire exhibits significantly lower values for the loss tangent at frequencies up to 10{sup 11} Hz. The loss tangents of 3 different grades of Wesgo alumina (AL300, AL995, AL998) and 2 different grades of Coors alumina (AD94, AD995) have typical values near {approx}10{sup -4} at a frequency of 10{sup 8} Hz. On the other hand, the loss tangent of Vitox alumina exhibits a large loss peak tan d{approx} 5x10{sup -3} at this frequency.

  4. Processing of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  5. Simulation of a beam rotation system for a spallation source

    NASA Astrophysics Data System (ADS)

    Reiss, Tibor; Reggiani, Davide; Seidel, Mike; Talanov, Vadim; Wohlmuther, Michael

    2015-04-01

    With a nominal beam power of nearly 1 MW on target, the Swiss Spallation Neutron Source (SINQ), ranks among the world's most powerful spallation neutron sources. The proton beam transport to the SINQ target is carried out exclusively by means of linear magnetic elements. In the transport line to SINQ the beam is scattered in two meson production targets and as a consequence, at the SINQ target entrance the beam shape can be described by Gaussian distributions in transverse x and y directions with tails cut short by collimators. This leads to a highly nonuniform power distribution inside the SINQ target, giving rise to thermal and mechanical stresses. In view of a future proton beam intensity upgrade, the possibility of homogenizing the beam distribution by means of a fast beam rotation system is currently under investigation. Important aspects which need to be studied are the impact of a rotating proton beam on the resulting neutron spectra, spatial flux distributions and additional—previously not present—proton losses causing unwanted activation of accelerator components. Hence a new source description method was developed for the radiation transport code MCNPX. This new feature makes direct use of the results from the proton beam optics code TURTLE. Its advantage to existing MCNPX source options is that all phase space information and correlations of each primary beam particle computed with TURTLE are preserved and transferred to MCNPX. Simulations of the different beam distributions together with their consequences in terms of neutron production are presented in this publication. Additionally, a detailed description of the coupling method between TURTLE and MCNPX is provided.

  6. Materials compatibility studies for the Spallation Neutron Source

    SciTech Connect

    DiStefano, J.R.; Pawel, S.J.; Manneschmidt, E.T.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R and D programs. In addition, corrosion studies also include evaluation of Inconel 718 because it has been successfully used in previous spallation neutron systems as a window material. Two types of compatibility issues relative to 316 SS/mercury and Inconel 718/mercury are being examined: (1) liquid metal embrittlement (LME) and (2) temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275 C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 C. Inconel 718 also showed no change in room temperature properties when tested in mercury or mercury-gallium. However, there was evidence that the fracture was less ductile. Preliminary evaluation of mass transfer of either type 316 SS or Inconel 718 in mercury or mercury-gallium at 350 C (maximum temperature) did not reveal significant effects. Two 5,000 h thermal convection loop tests of type 316 SS are in progress, with specimens in both hot and cold test regions, at 300 and 240 C, respectively.

  7. Effects of water vapor on the high temperature oxidation of alumina-forming coatings and nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Maris-Sida, Monica C.

    Oxidation studies were performed at 1100°C, 900°C and 700°C in dry, air and air containing fixed partial pressures of water vapor on specimens of Ni base superalloys and coatings on these alloys that form alpha-alumina scales under oxidizing conditions. The materials studied included Rene N5, PWA1484, CMSX4, diffusion aluminide coatings (with or without Pt addition) on Rene N5, Thermal Barrier Coatings on Rene N5, and a Ni-8wt%Cr-6wt%Al model. All of these alloys and metallic coatings are normally alpha-alumina-formers under oxidization conditions. The observed important effects of water vapor include: (1) Increased severity of cracking and spalling of alpha-alumina scales in wet environments especially for those systems with alumina only moderately adherent in dry air; (2) Water vapor affects the nucleation and growth of alpha-alumina scales---the growth rate of alpha-alumina is increased in water vapor conditions; (3) Thicker oxides form during oxidation in wet air than dry air. The transient oxidation phenomenon is affected by the presence of water vapor due to more rapid growth of NiO during the transient period. The selective oxidation of aluminum is inhibited in water vapor conditions, even more adverse effects of water vapor are observed as the oxidation temperature is lowered; (4) Spinel phase forms on top of the alumina scales during long term oxidation. Current results indicate that nickel diffusion at alumina grain boundaries significantly contributes to the formation of new spinel phase at the oxide/gas interface and water vapor is found to enhance this process. Mechanisms for these observations are proposed.

  8. Preparation and Characterization of Electrospun Alumina Nanofibers

    NASA Astrophysics Data System (ADS)

    Pinti, Marie J.; Tacastacas, Stephen N.; Stojilovic, Nenad; O'Brien, John P.; Pischera, Anna; Espe, Matthew P.

    2008-10-01

    Alumina nanofibers are promising materials for use in high- temperature applications since they are chemically inert up to very high temperatures. Applications include use as catalyst support in high-temperature chemical reactions, fire protection materials, and as a high-temperature insulator. Electrospinning is a relatively simple and inexpensive method for obtaining nanometer-size fibers and has become a popular technique for producing metal-oxide nanofibers in recent years. The electrospinning mixture for the production of alumina nanofibers typically contains aluminum acetate stabilized with boric acid as the alumina precursor; but the observed presence of boron and sodium on the surface of these nanofibers may affect their use as catalytic supports. We have produced alumina nanofibers from an aluminum reagent devoid of the boric acid stabilizer and calcined the fibers at different temperatures to produce nanofibers with different phases of alumina. Characterization of the fibers by TGA, FE-SEM equipped with the XEDS, powder XRD, DRIFTS, and SSNMR methods to determine the fate of the precursors, fiber morphology and the composition and structure of the calcined alumina nanofibers.

  9. New generation high performance in situ polarized 3He system for time-of-flight beam at spallation sources

    NASA Astrophysics Data System (ADS)

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Glavic, A.; Ambaye, H.; Goyette, R.; Hoffmann, M.; Parizzi, A. A.; Robertson, L.; Lauter, V.

    2017-02-01

    Modern spallation neutron sources generate high intensity neutron beams with a broad wavelength band applied to exploring new nano- and meso-scale materials from a few atomic monolayers thick to complicated prototype device-like systems with multiple buried interfaces. The availability of high performance neutron polarizers and analyzers in neutron scattering experiments is vital for understanding magnetism in systems with novel functionalities. We report the development of a new generation of the in situ polarized 3He neutron polarization analyzer for the Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. With a new optical layout and laser system, the 3He polarization reached and maintained 84% as compared to 76% in the first-generation system. The polarization improvement allows achieving the transmission function varying from 50% to 15% for the polarized neutron beam with the wavelength band of 2-9 Angstroms. This achievement brings a new class of experiments with optimal performance in sensitivity to very small magnetic moments in nano systems and opens up the horizon for its applications.

  10. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  11. Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Riemer, Bernie; Ferguson, Phillip D; Carroll, Adam J; Dayton, Michael J

    2012-01-01

    During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316L target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.

  12. Technology and science at a high-power spallation source: Proceedings

    SciTech Connect

    Not Available

    1994-01-01

    These proceedings cover many aspects of the usefulness of spallation neutrons. Nine different areas are considered: surfaces and interfaces, engineering, materials science, polymers and complex fluids, chemistry, structural biology, nuclear engineering and radiation effects, condensed matter physics and fundamental physics.

  13. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING.

    SciTech Connect

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-05-16

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND.

  14. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Yamamoto, Yukinori; Brady, Michael P; Santella, Michael L; Bei, Hongbin; Maziasz, Philip J; Pint, Bruce A

    2008-01-01

    Work in fiscal year 2008 focused on the development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of an excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides [1-8]. High levels of Nb additions (> 1 wt.% Nb) and/or Ni additions (25-30 wt.%), at Al levels of 2.5-4 wt.%, were found to correlate with increased upper-temperature limit for Al2O3 scale formation in air ( 900 aC) and air with 10% water vapor ( 800 aC). Creep resistance also showed a strong dependence on the level of Nb additions, and was correlated with volume fraction of MC-type carbides using thermodynamic computational tools. A trial heat of a 50 lb AFA alloy ingot was made using conventional single-melt vacuum techniques, and the alloy was successfully hot-rolled without any cracking [2]. This heat showed good weldability, using filler material of the same alloy.

  15. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes

    NASA Astrophysics Data System (ADS)

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-08-01

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.

  16. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes

    PubMed Central

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-01-01

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas. PMID:27498607

  17. Device for Writing the Time Tail from Spallation Neutron Pulses

    SciTech Connect

    Langan, P.; Schoenborn, Benno P.; Langan, P.; Schoenborn, Benno P.; Daemen, L. L.

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  18. Materials Compatibility Studies for the Spallation Neutron Source

    SciTech Connect

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1998-09-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. The energy deposited in the target is transported by two separate mercury flow streams: one to transport heat in the interior target region and one to cool the stainless steel container. Three-dimensional computational fluid dynamics simulations have been performed to predict temperature, velocity, and pressure distributions in the target. Results have generally shown that the power deposited in the bulk mercury can be effectively transported with reasonable flow rates and the bulk mercury temperature should not exceed 160{deg}C. Assuming good thermal contact, the maximum stainless steel wall temperature should be 130 {deg}C. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R&D programs. In addition, corrosion studies include evaluation of Inconel 718 because it has been successfully used in previous water cooled spallation neutron systems as a window material. With type 316 SS selected to contain the mercury target of the SNS, two types of compatibility issues have been examined: LME and temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275{deg}C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 {deg}C. Inconel 718 also showed no change in room temperature properties when tested in mercwy or mercury-gallium. However, there

  19. Synthesis of high thermally-stable mesoporous alumina particles.

    PubMed

    Song, Lee-Hwa; Park, Seung Bin

    2010-01-01

    The mesoporous undoped and Si-doped alumina were prepared with an ultrasonic spray process, and found to have well-developed mesopore structures and large surface areas. The mesoporous Si-doped alumina has a high thermal stability up to 1473 K. Its surface area and pore volume were found to slowly decrease with increasing temperature. Mesoporous undoped alumina is transformed to gamma-alumina at 1073 K, whereas the amorphous nature of the pore walls of the Si-doped alumina is maintained up to 1073 K. When heat treatment was carried out at 1473 K for 2 h, the mesopore-networks of the undoped alumina collapsed, and then all the pore walls were converted into the alpha-alumina phase. In contrast, the mesoporosity of the Si-doped alumina persisted during heat treatment, and its pore walls were transformed to gamma-alumina. The decreases in the pore volume of the undoped alumina at 1073 K and 1473 K were found to be 36% and 99% respectively, but for the Si-doped alumina were only 24% and 36% respectively. The surface area of the undoped alumina at 1473 K was found to be 11 m2/g but that of the Si-doped samples at the same temperature is higher than 100 m2/g. Thus this mesoporous Si-doped alumina can be used as a catalytic support in reactions at high temperatures.

  20. Overview of the conceptual design of the future VENUS beamline at the Spallation Neutron Source

    SciTech Connect

    Bilheux, Hassina Z; Herwig, Kenneth W; Keener, Wylie S; Davis, Larry E

    2015-01-01

    VENUS will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to m). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beamline 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS

  1. Design and Testing of a Prototype Spallation Neutron Source Rotating Target Assembly

    SciTech Connect

    Rennich, Mark J; McManamy, Thomas J; Graves, Van; Garmendia, Amaia Zarraoa; Sorda, Fernando

    2010-01-01

    The mechanical aspects of an extended vertical shaft rotating target have been evaluated in a full-scale mockup test. A prototype assembly based on a conceptual target design for a 1 to 3-MW spallation facility was built and tested. Key elements of the drive/coupling assembly implemented in the prototype include high integrity dynamic face seals, commercially available bearings, realistic manufacturing tolerances, effective monitoring and controls, and fail-safe shutdown features. A representative target disk suspended on a 3.5 meter prototypical shaft was coupled with the drive to complete the mechanical tests. After1800 hours of operation the test program has confirmed the overall mechanical feasibility of the extended vertical shaft rotating target concept. Precision alignment of the suspended target disk; successful containment of the water and verification of operational stability over the full speed range of 30 to 60 rpm were primary indications the proposed mechanical design is valid for use in a high power target station.

  2. Investigation of Spheromak Plasma Cooling through Metallic Liner Spallation during Compression

    NASA Astrophysics Data System (ADS)

    Ross, Keeton; Mossman, Alex; Young, William; Ivanov, Russ; O'Shea, Peter; Howard, Stephen

    2016-10-01

    Various magnetic-target fusion (MTF) reactor concepts involve a preliminary magnetic confinement stage, followed by a metallic liner implosion that compresses the plasma to fusion conditions. The process is repeated to produce a pulsed, net-gain energy system. General Fusion, Inc. is pursuing one scheme that involves the compression of spheromak plasmas inside a liner formed by a collapsing vortex of liquid Pb-Li. The compression is driven by focused acoustic waves launched by gas-driven piston impacts. Here we describe a project to exploring the effects of possible liner spallation during compression on the spheromaks temperature, lifetime, and stability. We employ a 1 J, 10 ns pulsed YAG laser at 532nm focused onto a thin film of Li or Al to inject a known quantity of metallic impurities into a spheromak plasma and then measure the response. Diagnostics including visible and ultraviolet spectrometers, ion Doppler, B-probes, and Thomson scattering are used for plasma characterization. We then plan to apply the trends measured under these controlled conditions to evaluate the role of wall impurities during `field shots', where spheromaks are compressed through a chemically driven implosion of an aluminum flux conserver. The hope is that with further study we could more accurately include the effect of wall impurities on the fusion yield of a reactor-scale MTF system. Experimental procedures and results are presented, along with their relation to other liner-driven, MTF schemes. -/a

  3. Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.

    PubMed

    Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W

    2014-02-01

    The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.

  4. Evaluation of Alumina-Forming Austenitic Foil for Advanced Recuperators

    SciTech Connect

    Pint, Bruce A; Brady, Michael P; Yamamoto, Yukinori; Santella, Michael L; Maziasz, Philip J; Matthews, Wendy

    2011-01-01

    A corrosion- and creep-resistant austenitic stainless steel has been developed for advanced recuperator applications. By optimizing the Al and Cr contents, the alloy is fully austenitic for creep strength while allowing the formation of a chemically stable external alumina scale at temperatures up to 900 C. An alumina scale eliminates long-term problems with the formation of volatile Cr oxy-hydroxides in the presence of water vapor in exhaust gas. As a first step in producing foil for primary surface recuperators, three commercially cast heats have been rolled to 100 m thick foil in the laboratory to evaluate performance in creep and oxidation testing. Results from initial creep testing are presented at 675 C and 750 C, showing excellent creep strength compared with other candidate foil materials. Laboratory exposures in humid air at 650 800 C have shown acceptable oxidation resistance. A similar oxidation behavior was observed for sheet specimens of these alloys exposed in a modified 65 kW microturbine for 2871 h. One composition that showed superior creep and oxidation resistance has been selected for the preparation of a commercial batch of foil. DOI: 10.1115/1.4002827

  5. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  6. Spallation Neutron Source Accident Terms for Environmental Impact Statement Input

    SciTech Connect

    Devore, J.R.; Harrington, R.M.

    1998-08-01

    This report is about accidents with the potential to release radioactive materials into the environment surrounding the Spallation Neutron Source (SNS). As shown in Chap. 2, the inventories of radioactivity at the SNS are dominated by the target facility. Source terms for a wide range of target facility accidents, from anticipated events to worst-case beyond-design-basis events, are provided in Chaps. 3 and 4. The most important criterion applied to these accident source terms is that they should not underestimate potential release. Therefore, conservative methodology was employed for the release estimates. Although the source terms are very conservative, excessive conservatism has been avoided by basing the releases on physical principles. Since it is envisioned that the SNS facility may eventually (after about 10 years) be expanded and modified to support a 4-MW proton beam operational capability, the source terms estimated in this report are applicable to a 4-MW operating proton beam power unless otherwise specified. This is bounding with regard to the 1-MW facility that will be built and operated initially. See further discussion below in Sect. 1.2.

  7. Neutron diffractometers for structural biology at spallation neutron sources

    SciTech Connect

    Schoenborn, B.P.; Pitcher, E.

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  8. The cryomodule test stand at the European Spallation Source

    SciTech Connect

    Hees, W.; Weisend II, J. G.; Wang, X. L.; Köttig, T.

    2014-01-29

    The European Spallation Source (ESS) is an intergovernmental project building a multidisciplinary research laboratory based upon the world's most powerful neutron source to be built in Lund, Sweden. The ESS will use a linear accelerator which will deliver protons with 5 MW of power to the target at 2.5 GeV with a nominal current of 50 mA. The superconducting part of the linac consists of over 150 niobium cavities cooled with superfluid helium at 2 K. A dedicated cryoplant will supply the cryomodules with single phase helium through an external cryogenic transfer line. The elliptical cavity cryomodules will undergo their site acceptance tests at the ESS cryomodule test stand in Lund. This test stand will use a 4.5 K cryoplant and warm sub-atmospheric compression to supply the 2 K helium. We will show the requirements for the test stand, a layout proposal and discuss the factors determining the required cryogenic capacity, test sequence and schedule.

  9. rf improvements for Spallation Neutron Source H- ion source.

    PubMed

    Kang, Y W; Fuja, R; Goulding, R H; Hardek, T; Lee, S-W; McCarthy, M P; Piller, M C; Shin, K; Stockli, M P; Welton, R F

    2010-02-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering approximately 38 mA H(-) beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.

  10. Iron films deposited on porous alumina substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  11. Interface Engineering in Alumina/Glass Composites

    DTIC Science & Technology

    1992-02-29

    BN coating applied to the fibers disappeared during the fabrication process. Coating thicknesses as much as 0.3 jim was found to be assimilated during...E-200 Alumina Fiber Tin Dioxide ’ -300 - PD - 166 coating,30 -1(0.8 un) -400 00, -600 " 9.4 9.6 9.S 10.0 10.2 r ( jim ) Fig. 2. Fracture surface of...of the specimens Chemical composition’(wt.%) were polished, with 0.5 jim alumina powder, to mini- .i. 71 mize surface flaw effects. Strengih

  12. Contact Noise in Sodium Beta Alumina.

    DTIC Science & Technology

    1987-05-01

    AD-Al~i 128 CONTACT NOISE IN SODIUM BETA ALUMINA(U) UTANHUNIV SALT i/i LAKE CITY DEPT OF PHYSICS C K KUD ET AL MAY 87 UN SLR55IF IED FG 1,b2 NL UN...by Chu Kun Kuo* and James J. Brophy Physics Department University of Utah Salt Lake City, Utah 84112 ABSTRACT/ Contact noise in sodium 0alumina cells...ZIPCo*I) UNIVERSITY OF UTAH UNIVERISTY OF NEW MEXICO SALT LAKE CITY UT 84112 Bandelier Hall West Alhkq..u u. m (1 71-11 so NAME of FUNDING /SPONSORING Sb

  13. Current Noise in Sodium Beta Alumina Ceramic.

    DTIC Science & Technology

    1983-11-01

    7 ’FD-i49 549 CURRENT NOISE IN SODIUM BET ALUMINA CERAIC(U) UTAH i/iUNIV SALT LAKE CITY DEPT OF PHYSICS J J BROPHY ET AL.NOV 83 TR-5 N08814-82-K...REPORT NO. 5 CURRENT NOISE IN SODIUM 0" ALUMINA CERAMIC ID by James J. Brophy and Steven W. Smith * Prepared for Publication in the Journal of Applied...Physics D T IC ELECTE JAIN 1 Department of Physics $ ) University of Utah Salt Lake City, Utah 84112 November 1983 Reproduction in whole or in part is

  14. Chlorination of alumina in kaolinitic clay

    NASA Astrophysics Data System (ADS)

    Grob, B.; Richarz, W.

    1984-09-01

    The chlorination of alumina in kaolinitic clay with Cl2 and CO gas mixtures was studied gravimetrically. The effects of the calcination method and of NaCl addition on the reactivity of the clay were examined. Fast reaction rates were achieved only with samples previously exposed to a sulfating treatment. Optimum conditions, with maximum yield and selectivity to A1C13 and minimum SiO2 conversion, were found between 770 and 970 K. At higher temperatures the SiCl4 formed poisons the reactive alumina surface by selective chemisorption with a marked decrease of the reaction rate.

  15. REMOVING RADIUM FROM WATER BY PLAIN AND TREATED ACTIVATED ALUMINA

    EPA Science Inventory

    The research determined the feasibility of using BaSO4-impregnated activated alumina and plain activated alumina for radium removal from groundwater by fixed-bed adsorption. The major factors influencing radium adsorption onto the two types of alumina were identified. The radium ...

  16. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white,...

  17. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white,...

  18. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white,...

  19. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white,...

  20. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white,...

  1. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels

    DOE PAGES

    Yanar, N. M.; Lutz, B. S.; Garcia-Fresnillo, L.; ...

    2015-08-19

    The isothermal oxidation behavior of three alumina forming austenitic (AFA) stainless steels with varying composition was studied at 650 and 800 °C in dry air and gases which contained water vapor. The AFA alloys exhibited better oxidation resistance than a “good chromia former” at 650 °C, particularly in H2O-containing atmospheres by virtue of alumina-scale formation. Although the AFA alloys were more resistant than chromia formers, their oxidation resistance was degraded at 650 °C in the presence of water vapor. In dry air the AFA alloys formed, thin continuous alumina scales, whereas in Ar–4%H2–3%H2O the areas of continuous alumina were reducedmore » and Fe oxide-rich nodules and regions of Cr, Mn-rich oxides formed. In some regions internal oxidation of the aluminum occurred in the H2O-containing gas. The alloy OC8 had slightly better resistance than OC4 or OC5 in this atmosphere. The alumina-forming capability of the AFA alloys decreases with increasing temperature and, at 800 °C, they are borderline alumina formers, even in dry air. The oxidation resistance of all three alloys was degraded at 800 °C in atmospheres, which contained water vapor (Air–10%H2O, Ar–3%H2O and Ar–4%H2–3%H2O). The areas, which formed continuous alumina, were reduced in these atmospheres and areas of internal oxidation occurred. However, as a result of the borderline alumina-forming capability of the AFA alloys it was not possible to determine which of the H2O-containing atmospheres was more severe or to rank the alloys in terms of their performance. The experimental results indicate that the initial microstructure of the AFA alloys also plays a role in their oxidation performance. Less protective oxides formed at 800 °C when alloy OC8 was equilibrated before exposure rather than being exposed in the as-processed condition. As a result, the reason for this is the presence of different phases in the bulk of the two specimens.« less

  2. The effects of water vapor on the oxidation behavior of alumina forming austenitic stainless steels

    SciTech Connect

    Yanar, N. M.; Lutz, B. S.; Garcia-Fresnillo, L.; Brady, Michael P.; Meier, G. H.

    2015-08-19

    The isothermal oxidation behavior of three alumina forming austenitic (AFA) stainless steels with varying composition was studied at 650 and 800 °C in dry air and gases which contained water vapor. The AFA alloys exhibited better oxidation resistance than a “good chromia former” at 650 °C, particularly in H2O-containing atmospheres by virtue of alumina-scale formation. Although the AFA alloys were more resistant than chromia formers, their oxidation resistance was degraded at 650 °C in the presence of water vapor. In dry air the AFA alloys formed, thin continuous alumina scales, whereas in Ar–4%H2–3%H2O the areas of continuous alumina were reduced and Fe oxide-rich nodules and regions of Cr, Mn-rich oxides formed. In some regions internal oxidation of the aluminum occurred in the H2O-containing gas. The alloy OC8 had slightly better resistance than OC4 or OC5 in this atmosphere. The alumina-forming capability of the AFA alloys decreases with increasing temperature and, at 800 °C, they are borderline alumina formers, even in dry air. The oxidation resistance of all three alloys was degraded at 800 °C in atmospheres, which contained water vapor (Air–10%H2O, Ar–3%H2O and Ar–4%H2–3%H2O). The areas, which formed continuous alumina, were reduced in these atmospheres and areas of internal oxidation occurred. However, as a result of the borderline alumina-forming capability of the AFA alloys it was not possible to determine which of the H2O-containing atmospheres was more severe or to rank the alloys in terms of their performance. The experimental results indicate that the initial microstructure of the AFA alloys also plays a role in their oxidation performance. Less protective oxides formed at 800 °C when alloy OC8 was equilibrated before exposure rather than being exposed in the as-processed condition. As a result, the reason for this is the presence of different

  3. Dielectric breakdown of polycrystalline alumina: A weakest-link failure analysis

    NASA Astrophysics Data System (ADS)

    Block, Benjamin

    The effects of varying electrode geometry (ball and ring) and size (radius), dielectric media (castor oil and DialaRTM oil), specimen thickness, and concentration of defects on the dielectric breakdown strength of commercial-grade alumina and high-purity fine-grained (HPFG) alumina were investigated. The breakdown strength was expressed in terms of the maximum electric field in the ceramic at the breakdown voltage calculated by finite element analysis (FEA). The breakdown strength decreased systematically with increasing electrode radius and specimen thickness. The breakdown strength increased with decreasing concentration of defects. The breakdown strength was higher in the Diala RTM oil (dielectric constant, epsilonr = 2.3 +/- 0.12) as compared to the castor oil (epsilonr = 4.59 +/- 0.06). The breakdown strength was higher for the HPFG alumina as compared to the commercial- grade alumina. These effects of the electrode geometry, specimen thickness, concentration of defects, and of the dielectric media were analyzed with a weakest-link failure model employing the Laplace and Weibull distributions for a population of defects in the material. The measured size or scaling effects of the electrodes, specimen thickness, concentration of defects, and of the liquid media on breakdown strength were in better agreement with the Laplace distribution for the population. The measured concentration of surface defects was in good agreement with the concentration of surface defects estimated from the surface area scaling of the breakdown field with the Laplace distribution.

  4. Measurement of interface strength by a laser spallation technique

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Argon, A. S.; Parks, D. M.; Cornie, J. A.

    A LASER spallation experiment has been developed to measure the strength of planar interfaces between a substrate and a thin coating (in the thickness range of 0.3-3 μm). In this technique a laser pulse of a high enough energy and a pre-determined duration is converted into a pressure pulse of a critical amplitude and width that is sent through the substrate toward the free surface with the coating. The reflected tensile wave from the free surface of the coating pries-off the coating. The critical stress amplitude that accomplishes the removal of the coating is determined from a computer simulation of the process. The simulation itself is verified by means of a piezo-electric crystal probe that is capable of mapping out the profile of the stress pulse generated by the laser pulse. Interface strength values ranging from 3.7 to 10.5 GPa were determined for the Si/SiC system. For the interfaces between pyrolytic graphite and SiC coatings an average strength of 7.2 GPA was measured, while the corresponding interface strength between a Pitch-55 type ribbon with a fiber-like morphology and SiC coatings was found to be 0.23 GPa. Intrinsic strengths of SiC coatings and Si crystal were also determined using this technique. These were, on the average, 8.6 GPa for Si crystals and 11.9 GPa for a SiC coating. Furthermore, the potential of the laser technique to determine the interface toughness was also demonstrated, provided well-characterizable flaws can be planted on the interface.

  5. 5 MW pulsed spallation neutron source, Preconceptual design study

    SciTech Connect

    Not Available

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  6. Superconducting Prototype Cavities for the Spallation Neutron Source (SNS) Project

    SciTech Connect

    Gianluigi Ciovati

    2001-09-01

    The Spallation Neutron Source project includes a superconducting linac section in the energy range from 186 MeV to 1000 MeV. For this energy range two types of cavities are needed with geometrical {beta} values of {beta} = 0.61 and {beta} = 0.81. An aggressive cavity prototyping program is being pursued at Jefferson Lab, which calls for fabricating and testing four {beta} = 0.61 cavities and two {beta} = 0.81 cavities. Both types consist of six cells made from high purity niobium and feature one HOM coupler on each beam pipe and a port for a high power coaxial input coupler. Three of the four {beta} = 0.61 cavities will be used for a cryomodule test in early 2002. At this time four medium beta cavities and one high beta cavity have been completed at JLab. The first tests on the {beta} = 0.61 and {beta} = 0.81 exceeded the design values for gradient and Q value: E{sub acc} = 10.1 MV/m and Q = 5 x 10{sup 9} at 2.1K for the {beta} = 0.61 and E{sub acc} = 12.3 MV/m and Q = 5 x 10{sup 9} at 2.1 K for the {beta} = 0.81. One of the medium beta cavities has been equipped with an integrated helium vessel and measurements of the static Lorentz force detuning have been done and compared to the ''bare'' cavities. In addition two single cell cavities have been fabricated, equipped with welded-on HOM couplers. They are being used to evaluate the HOM couplers with respect to multipacting, fundamental mode rejection and HOM damping as far as possible in a single cell. This paper describes the cavity design with respect to electromagnetic and mechanical features, the fabrication efforts and the results obtained with the different cavities existing at the time of this workshop.

  7. The COHERENT Experiment at the Spallation Neutron Source

    SciTech Connect

    Elliott, Steven Ray

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  8. H- radio frequency source development at the Spallation Neutron Sourcea)

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Dudnikov, V. G.; Gawne, K. R.; Han, B. X.; Murray, S. N.; Pennisi, T. R.; Roseberry, R. T.; Santana, M.; Stockli, M. P.; Turvey, M. W.

    2012-02-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ˜38 mA peak current in the linac and an availability of ˜90%. H- beam pulses (˜1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ˜60 kW) of a copper antenna that has been encased with a thickness of ˜0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ˜99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ˜75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ˜100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  9. H- radio frequency source development at the Spallation Neutron Source

    SciTech Connect

    Welton, Robert F; Pennisi, Terry R; Roseberry, Ron T; Stockli, Martin P

    2012-01-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. H{sup -} beam pulses ({approx}1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, {approx}60 kW) of a copper antenna that has been encased with a thickness of {approx}0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of {approx}99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of {approx}75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance/installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to {approx}100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  10. H- radio frequency source development at the Spallation Neutron Source.

    PubMed

    Welton, R F; Dudnikov, V G; Gawne, K R; Han, B X; Murray, S N; Pennisi, T R; Roseberry, R T; Santana, M; Stockli, M P; Turvey, M W

    2012-02-01

    The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ∼38 mA peak current in the linac and an availability of ∼90%. H(-) beam pulses (∼1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ∼60 kW) of a copper antenna that has been encased with a thickness of ∼0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ∼99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ∼75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance∕installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ∼100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.

  11. Modeling astatine production in liquid lead-bismuth spallation targets

    NASA Astrophysics Data System (ADS)

    David, J. C.; Boudard, A.; Cugnon, J.; Ghali, S.; Leray, S.; Mancusi, D.; Zanini, L.

    2013-03-01

    Astatine isotopes can be produced in liquid lead-bismuth eutectic targets through proton-induced double charge exchange reactions on bismuth or in secondary helium-induced interactions. Models implemented into the most common high-energy transport codes generally have difficulties to correctly estimate their production yields as was shown recently by the ISOLDE Collaboration, which measured release rates from a lead-bismuth target irradiated by 1.4 and 1 GeV protons. In this paper, we first study the capability of the new version of the Liège intranuclear cascade model, INCL4.6, coupled to the deexcitation code ABLA07 to predict the different elementary reactions involved in the production of such isotopes through a detailed comparison of the model with the available experimental data from the literature. Although a few remaining deficiencies are identified, very satisfactory results are found, thanks in particular to improvements brought recently on the treatment of low-energy helium-induced reactions. The implementation of the models into MCNPX allows identifying the respective contributions of the different possible reaction channels in the ISOLDE case. Finally, the full simulation of the ISOLDE experiment is performed, taking into account the likely rather long diffusion time from the target, and compared with the measured diffusion rates for the different astatine isotopes, at the two studied energies, 1.4 and 1 GeV. The shape of the isotopic distribution is perfectly reproduced as well as the absolute release rates, assuming in the calculation a diffusion time between 5 and 10hours. This work finally shows that our model, thanks to the attention paid to the emission of high-energy clusters and to low-energy cluster induced reactions, can be safely used within MCNPX to predict isotopes with a charge larger than that of the target by two units in spallation targets, and, probably, more generally to isotopes created in secondary reactions induced by composite

  12. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  13. Dielectric Performance of High Purity HTCC Alumina at High Temperatures - A Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2012-01-01

    A very high purity (99.99+) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this co-fired material. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96 polycrystalline alumina (96 Al2O3), where 96 alumina was used as the benchmark. A prototype packaging system based on regular 96 alumina with Au thick-film metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500C. In order to evaluate this new HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96 alumina and a LTCC alumina from room temperature to 550C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96 alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  14. Study of alumina-trichite reinforcement of a nickel-based matric by means of powder metallurgy

    NASA Technical Reports Server (NTRS)

    Walder, A.; Hivert, A.

    1982-01-01

    Research was conducted on reinforcing nickel based matrices with alumina trichites by using powder metallurgy. Alumina trichites previously coated with nickel are magnetically aligned. The felt obtained is then sintered under a light pressure at a temperature just below the melting point of nickel. The halogenated atmosphere technique makes it possible to incorporate a large number of additive elements such as chromium, titanium, zirconium, tantalum, niobium, aluminum, etc. It does not appear that going from laboratory scale to a semi-industrial scale in production would create any major problems.

  15. Application of Origen2.1 in the decay photon spectrum calculation of spallation products

    NASA Astrophysics Data System (ADS)

    Hong, Shuang; Yang, Yong-Wei; Xu, Hu-Shan; Meng, Hai-Yan; Zhang, Lu; Liu, Zhao-Qing; Gao, Yu-Cui; Chen, Kang

    2016-11-01

    Origen2.1 is a widely used computer code for calculating the burnup, decay, and processing of radioactive materials. However, the nuclide library of Origen2.1 is used for existing reactors like pressurized water reactors. To calculate the photon spectrum released by the decay of spallation products, we have made specific libraries for the ADS tungsten spallation target, based on the results given by the FLUKA Monte Carlo code. All the data used to make the Origen2.1 libraries are obtained from Nuclear structure & decay Data (NuDat2.6). The accumulated activity of spallation products and the contribution of nuclides to photon emission are given in this paper. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03030102)

  16. Oxidative Recession, Sulfur Release, and Al203 Spallation for Y-Doped Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2001-01-01

    Second-order spallation phenomena have been noted for Y-doped Rene'N5 after long term oxidation at 1150 degrees C. The reason for this behavior has not been conclusively identified. A mass equivalence analysis has shown that the surface recession resulting from oxidation has the potential of releasing about 0.15 monolayer of sulfur for every 1 mg/sq cm of oxygen reacted for an alloy containing 5 ppmw of sulfur. This amount is significant in comparison to levels that have been shown to result in first-order spallation behavior for undoped alloys. Oxidative recession is therefore speculated to be a contributing source of sulfur and second-order spallation for Y-doped alloys.

  17. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    SciTech Connect

    Li, Chuanping

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  18. Dissertation: Precompound Emission of Energetic Light Fragments in Spallation Reactions

    SciTech Connect

    Kerby, Leslie Marie

    2015-08-04

    Emission of light fragments (LF) from nuclear reactions is an open question. Different reaction mechanisms contribute to their production; the relative roles of each, and how they change with incident energy, mass number of the target, and the type and emission energy of the fragments is not completely understood. None of the available models are able to accurately predict emission of LF from arbitrary reactions. However, the ability to describe production of LF (especially at energies ≳ 30 MeV) from many reactions is important for different applications, such as cosmic-ray-induced Single Event Upsets (SEUs), radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The Cascade-Exciton Model (CEM) version 03.03 and the Los Alamos version of the Quark-Gluon String Model (LAQGSM) version 03.03 event generators in Monte Carlo N-Particle Transport Code version 6 (MCNP6) describe quite well the spectra of fragments with sizes up to ⁴He across a broad range of target masses and incident energies (up to ~ 5 GeV for CEM and up to ~ 1 TeV/A for LAQGSM). However, they do not predict the high energy tails of LF spectra heavier than ⁴He well. Most LF with energies above several tens of MeV are emitted during the precompound stage of a reaction. The current versions of the CEM and LAQGSM event generators do not account for precompound emission of LF larger than ⁴He. The aim of our work is to extend the precompound model in them to include such processes, leading to an increase of predictive power of LF-production in MCNP6. This entails upgrading the Modified Exciton Model currently used at the preequilibrium stage in CEM and LAQGSM. It also includes expansion and examination of the coalescence and Fermi break-up models used in the precompound stages of spallation reactions within CEM and LAQGSM. Extending our models to include emission of fragments heavier than ⁴He at the precompound stage has indeed provided results that have much

  19. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    SciTech Connect

    Hurley, John

    2015-11-01

    with the Rene 80. One-inch-diameter buttons were machined from each of the bonded blocks and sent to Siemens for standard oxidation, spallation, and corrosion testing, which should be complete in the spring of 2016.

  20. Development of solid state bonding processes for spallation neutron targets

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew T.

    Solid state bonding techniques are of vital interest to current and future spallation target design efforts for both cladding and wider fabrication requirements. The distinct needs of both water and liquid metal cooled sources were considered in this study. Development of hot isostatic pressing techniques and process controls necessary for successful cladding of tungsten with tantalum as needed for existing water cooled designs constituted the first component of this work. A second independent study performed with an emphasis on high temperature lead bismuth coolants focused on exploration of uniaxial diffusion bonding methods to join tungsten and tantalum to HT9, a ferritic-martensitic stainless steel. A technique for evaluation of the thermal performance of joined interfaces was also developed and employed to study the diffusion bonded systems. Hot isostatic pressing performed at 1500°C for 3 hours and 200 MPa was found to produce an acceptable tantalum-tungsten bond provided extensive tantalum getter foil was used to wrap the target during the process. Excellent interface coherency was observed along with no oxidation or carburization on the tantalum surface. Uniaxial diffusion bonding at a temperature of 1060°C for 3 hours at pressures below 7 MPa resulted in excessive intermetallic formation at the HT9-tungsten and HT9-tantalum interfaces and significant residual interface porosity. Nickel and NiP interlayers were also observed to impart little benefit but did stabilize austenite with the HT9. A transition to lower temperatures and higher pressures improved bond quality. Conditions of 900°C for 3 hours and 70 MPa significantly improved both the HT9-tungsten and HT9-tantalum interfaces compared with the high temperature bond. An exploratory investigation of vanadium interlayers enhanced the result even further under these conditions and warrants further investigation. All interfaces produced in this study possessed a thermal resistance well below that needed

  1. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  2. Microwave joining of high-purity alumina

    SciTech Connect

    Cozzi, A.D.; Clark, D.E.; Ferber, M.K.

    1996-12-31

    Microwave hybrid heating (MHH) was used to join 99.5% pure alumina pieces 25 mm diameter and 25 mm long using 94% pure alumina as the interlayer material. The interlayer material was cut from a rod into discs approximately 2 mm thick. Joining was performed in a home model microwave oven. Temperatures for joining ranged from 1450{degrees}C to 1550{degrees}C and pressures from 1-3 MPa. For comparison, similar joints were made in a conventional furnace. Joined specimens were tested using four-point bend at room temperature. Statistical analysis was utilized to determine the relative effect of the different processing parameters on the strength of the joint.

  3. Li + ion diffusion in nanoscale alumina coatings

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle; Bernstein, Noam

    Nanoscale coatings of alumina are used to stabilize surfaces for a variety of technologies. Diffusion of ions through these coatings is of primary importance: in some cases, diffusion is unwanted (e.g. corrosion) and in others (e.g. electrode materials), it is necessary. In this work DFT and AIMD calculations are used to investigate Li+ ion diffusion through a nano-layer of alumina, examining the phase (alpha, gamma, and amorphous), ion concentration, and electron count dependence. We look at the role of the surface itself in promoting diffusion. One of our main findings is that as the number of ions or charge increases, the diffusivity rises. We show how our data can explain electrochemical data from coated LiCoO2 cathodes and may point toward better and more efficient coatings for stabilizing electrodes.

  4. Silica containing highly porous alumina ceramic

    NASA Astrophysics Data System (ADS)

    Svinka, R.; Svinka, V.; Zake, I.

    2011-04-01

    Porous alumina ceramic were produced by slip casting of aqueous alumina slurry with added small amount of metallic aluminium powder. Pores form in result of chemical reaction of aluminum with water by hydrogen gas evolution reaction and solidification of suspension. Porosity of such materials sintered at a temperature of 1600 - 1750°C varies from 60 to 90%. Pore size distribution and mechanical strength of these materials depend largely on the grain size of used raw materials. The major part of pores in the materials produced without additive of silica are larger than 10 ±m, but with 5 - 10 wt.% additive of silica in the raw mix pore size decreases considerably. The sintering shrinkage decreases to 2.5%. Coefficient of thermal expansion equally decreases from 8.9-10-6 K-1 to 7.1 10-6 K-1 and classification temperature increases to 1600°C, while deformation at high temperature decreases considerably.

  5. Activation of consolidation processes of alumina ceramics

    NASA Astrophysics Data System (ADS)

    Matrenin, S. V.; Zenin, B. S.; Tayukin, R. V.

    2016-02-01

    The methods for activating sintering ceramics based on Al2O3 by mechanical activation in the planetary mill, by adding in the mixture of nanopowders (NP) Al, Al2O3, and submicron powder TiO2, and by applying the technology of spark plasma sintering (SPS) are developed. It has been shown that adding the nanopowder up to 20 wt. % Al2O3 in a coarse powder α-Al2O3 activates the sintering process resulting in increased density and hardness of the sintered alumina ceramics. Substantial effect of increasing density of alumina ceramics due to adding the submicron powder TiO2 in the compound of initial powder mixtures has been established.

  6. Tribology of alumina-graphite composites

    NASA Astrophysics Data System (ADS)

    Yu, Chih-Yuan

    Alumina-graphite composites, which combine high wear resistance and self-lubricity, are a potential and promising candidate for advanced tribological applications. The processing, mechanical properties and tribology of alumina-graphite composites are discussed. Full density is difficult to achieve by a pressureless sintering route. Porosity of the composites increases with graphite content which causes the strength, modulus of elasticity, and hardness of the composites to decrease. The increased porosity does cause the fracture toughness to slightly increases. Tribology of alumina-graphite composites was studied with a pin-on-disk tribometer with emphasis on the following aspects: the graphite content in both pin and disk, the graphite flake size and the orientation of the graphite flakes. Scan electronic microscopy (SEM) and X-ray diffraction are utilized to examine and characterize the wear debris and the worn surface. Results confirmed that it is necessary to optimize the structure and the supply of lubricant to improve the tribological behavior and that the arrangements of sliding couples also affect the tribology of self-lubricated ceramic composites. Continuous measurements of the friction coefficients were collected at high frequency in an attempt to correlate the tribology of alumina-graphite composites to vibrations introduced by friction. While these measurements indicate that the time frequency behavior of tribology is an important area of study, conclusions regarding the frequency response of different sliding couples could not be definitively stated. Finally, a new concept connecting instantaneous wear coefficient and instantaneous contact stress is proposed for prediction of wear behavior of brittle materials.

  7. Decay of elastic waves in alumina

    NASA Astrophysics Data System (ADS)

    Marom, H.; Sherman, D.; Rosenberg, Z.

    2000-11-01

    The dynamic response of alumina under shock compression was studied using planar impact experiments with different tile thicknesses. Stress-time measurements were made with manganin gauges backed by different backing materials in order to optimize gauge response. The results show an apparent decay in the Hugoniot elastic limit with propagation distance. However, further analysis reveals that this phenomenon is probably a measurement artifact, resulting from the relatively slow response times of manganin gauges.

  8. Luminescence of Cu+ Beta’ Alumina.

    DTIC Science & Technology

    1987-07-01

    the ion exchange procedure using melts of pure cuprous salts often resulted in crystals which were discolored and which lumi- nesced only weakly...importance is the stabil- ity of the cuprous ions in the fil-alumina host. We have begun to explore some of these questions. Very high intensity UV radia...SCHEDULE dis tribut ion is unlimited 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) Technical Report No. 12 Ga

  9. First principles study of oxygen diffusion in a α-alumina ? twin grain boundary

    NASA Astrophysics Data System (ADS)

    Tohei, Tetsuya; Watanabe, Yuito; Takahashi, Nobuaki; Nakagawa, Tsubasa; Shibata, Naoya; Ikuhara, Yuichi

    2015-12-01

    We have investigated atomistic scale behaviour of oxygen diffusion along the ? twin grain boundary in α-Al2O3 (alumina) using molecular dynamics simulation and first principles total energy calculations. Based on the GB structure model which is verified by atomic-scale STEM observations on the bicrystal sample, quantitative evaluation of migration energies for dominant migration paths were performed by atomistic calculations. The preset calculation results confirmed fast oxygen diffusion behaviour along the GB. Our analysis shows that the dominant migration path or difference in the migration energies can be well correlated with the geometry of local atomic coordination around the migrating oxygen; lower migration energies are generally expected for paths with less change in coordination environment on migration. This trend holds both among gain boundary paths and bulk paths in α-alumina examined in the present study.

  10. Compression Testing of Alumina Fiber Insulation

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.

    2006-01-01

    A series of tests were conducted to measure the response of alumina fiber insulation to compression loading. The alumina fiber insulation is a candidate gasket material for the Space Shuttle Government Furnished Equipment (GFE) Tile Overlay Repair. Tests were conducted at room temperature and 2300 F. The alumina fiber insulation is a fibrous insulation blanket which was supplied to Langley in two forms, a nominal 3 lb/ft3 version and a nominal 9 lb/ft3 version. The 3 lb/ft3 material was tested as sheets 0.15 and 0.25 inches thick and the 9 lb/ft3 material in sheets 1 inch thick. The material showed very non-linear compression behavior with the compressive resistance of the material increasing as the material was compressed. The 3 lb/ft3 0.15-inch thick material required 4.1 psi to reach the nominal installation thickness of 0.045 inches and retain a load of 2.1 lbs during unloading. Testing at 2300 F resulted in a stiffer more board-like material. The 3 lb/ft3 0.15-inch thick material retained 1 psi of compressive resistance after a 10 minute hold at 2300 F and 0.045 inches thickness.

  11. High contrast laser marking of alumina

    NASA Astrophysics Data System (ADS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-05-01

    Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  12. Comparison of Different INC Physical Models of MCNPX to Compute Spallation Neutronics of LBE Target

    NASA Astrophysics Data System (ADS)

    Feghhi, Seyed Amir Hossein; Gholamzadeh, Zohreh; Tenreiro, Claudio; Alipoor, Zahra

    2015-04-01

    Spallation particles can utilize in different fields such as neutron scattering studies, external source for burning spent fuel as well as running subcritical reactors. Different computational particle transport codes are widely used to model spallation process into the heavy targets. Among these codes, MCNPX 2.6.0 comprises various intra nuclear cascade models for spallation calculations. Impact of different intra nuclear cascade models on calculation of neutronic parameters of LBE target has been evaluated in this work. Escaped neutron yield, energy deposition and residual nuclei production in the spallation target has been calculated using the physical models. A comparison between the computational and experimental has been carried out to validate the computational data. The simulation data showed there is a good conformity between the obtained data from Bertini/Drenser and Isabel/Drenser. The data achieved by Bertini/Abla and Isabel/Abla models are close to each other for the studied parameters as well. Among the studied models, CEM showed more discrepancies with experimental and other computational data. According to the obtained data, INCL4/Drenser, INCL4/Abla and Isabel/Drenser models can meet more agreements with experimental data.

  13. Post-irradiation examination of the Spallation Neutron Source target module

    NASA Astrophysics Data System (ADS)

    McClintock, D. A.; Ferguson, P. D.; Mansur, L. K.

    2010-03-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of the target module. Though cavitation erosion and radiation damage to the target vessel are expected to dictate its lifetime, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post-irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  14. Behind the Scenes of the Spallation Neutron Source – The Linear Accelerator

    SciTech Connect

    Galambos, John

    2016-03-11

    The Spallation Neutron Source at Oak Ridge National Laboratory is a one-of-a-kind research facility that provides the most intense pulsed neutron beams in the world for scientific research and industrial development. Take a look inside the facility's linear accelerator.

  15. Multimaterial lamination as a means of retarding penetration and spallation failures in plates

    NASA Technical Reports Server (NTRS)

    Dibattista, J. D.; Humes, D. H.

    1972-01-01

    Experimental data are presented which show that hypervelocity impact spallation and penetration failures of a single solid aluminum plate and of a solid aluminum plate spaced a distance behind a Whipple meteor bumper may be retarded by replacing the solid aluminum plate with a laminated plate. Four sets of experiments were conducted. The first set of experiments was conducted with projectile mass and velocity held constant and with polycarbonate cylinders impacted into single plates of different construction. The second set of experiments was done with single plates of various construction and aluminum spherical projectiles of similar mass but different velocities. These two experiments showed that a laminated plate of aluminum and polycarbonate or aluminum and methyl methacrylate could prevent spallation and penetration failures with a lower areal density than either an all-aluminum laminated plate or a solid aluminum plate. The aluminum laminated plate was in turn superior to the solid aluminum plate in resisting spallation and penetration failures. In addition, through an example of 6061-T6 aluminum and methyl methacrylate, it is shown that a laminated structure ballistically superior to its parent materials may be built. The last two sets of experiments were conducted using bumper-protected main walls of solid aluminum and of laminated aluminum and polycarbonate. Again, under hypervelocity impact conditions, the laminated main walls were superior to the solid aluminum main walls in retarding spallation and penetration failures.

  16. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    SciTech Connect

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  17. Behind the Scenes of the Spallation Neutron Source – The Linear Accelerator

    ScienceCinema

    Galambos, John

    2016-07-12

    The Spallation Neutron Source at Oak Ridge National Laboratory is a one-of-a-kind research facility that provides the most intense pulsed neutron beams in the world for scientific research and industrial development. Take a look inside the facility's linear accelerator.

  18. Influence of microstructural anisotropy on the spallation of 1080 eutectoid steel

    SciTech Connect

    Bourne, N. K.; Millett, J. C. F.; Lopez, M. F.; Vecchio, K. S.; Gray, G. T. , III

    2001-01-01

    While the influence of crystallographic texture on elastic and plastic constitutive response has seen extensive investigation in recent years, the influence of texture on the dynamic fracture of engineering materials remains less extensively explored. In particular, the influence of anisotropy, both textural and morphological, on the spallation behavior of materials remains poorly quantified. In this study, the spallation response of 1080-steel has been studied as a function of microstructural morphological anisotropy. In this study the influence of elongated MnS stringers, resident within a crystallographically isotropic eutectoid steel, on the spallation response of 1080 steel was investigated. That of a fully-pearlitic 1080 steel loaded to 5 GPa was found to be dominated by the heterogeneous nucleation of damage normal and orthogonal to the MnS stringers. Delamination between the matrix pearlitic microstructure and the MnS stringers was seen to correlate to a significantly lower pull-back signal during transverse loading than to that parallel to the stringer axis. The 'pull-back' signals and post-spallation metallographic observations are discussed with reference to the influence of microstructural anisotropy on void nucleation and growth.

  19. INFLUENCE OF MICROSTRUCTURAL ANISOTROPY ON THE SPALLATION OF 1080 EUTECTOID STEEL

    SciTech Connect

    G.T. GRAY; M.F. LOPEZ; ET AL

    2001-06-01

    While the influence of crystallographic texture on elastic and plastic constitutive response has seen extensive investigation in recent years, the influence of texture on the dynamic fracture of engineering materials remains less extensively explored. In particular, the influence of anisotropy, both textural and morphological, on the spallation behavior of materials remains poorly quantified. In this study, the spallation response of 1080-steel has been studied as a function of microstructural morphological anisotropy. In this study the influence of elongated MnS stringers, resident within a crystallographically isotropic eutectoid steel, on the spallation response of 1080 steel was investigated. That of a fully-pearlitic 1080 steel loaded to 5 GPa was found to be dominated by the heterogeneous nucleation of damage normal and orthogonal to the MnS stringers. Delamination between the matrix pearlitic microstructure and the MnS stringers was seen to correlate to a significantly lower pull-back signal during transverse loading than to that parallel to the stringer axis. The ''pull-back'' signals and post-spallation metallographic observations are discussed with reference to the influence of microstructural anisotropy on void nucleation and growth.

  20. Role of alumina phase and size in tungsten CMP

    SciTech Connect

    STEIN,DAVID J.; HER,ROBERT Y.-S.

    2000-02-01

    The role of the alumina particle phase and size on polish rate and process temperature was studied to elucidate removal mechanisms involved in tungsten CMP using potassium iodate-based slurries. Additional work including polishing of blanket PETEOS and titanium films, and polishing of M1 to V1 to M2 electrical test structures was performed to determine the performance of the various aluminas in production CMP. The polish rate of tungsten was highest with alpha alumina. Delta/theta and gamma alumina showed lower polish rates. Tungsten and PETEOS polish rates increased with particle size. Only alpha alumina was able to clear the titanium barrier stack. The size of the alpha alumina did not effect the electrical characteristics of short loop electrical test structures.

  1. A simple procedure to prepare spherical {alpha}-alumina powders

    SciTech Connect

    Liu Hongyu; Ning Guiling Gan Zhihong; Lin Yuan

    2009-04-02

    Spherical {alpha}-alumina powders were prepared by the controlled hydrolysis of aluminum isopropoxide in a hydrolysis system consisting of octanol and acetonitrile. Diverse solvents to dissolve reactant formed diverse hydrolysis systems and affected particle shape of {alpha}-alumina powders. The precursors crystallized to {gamma}-alumina at 1000 deg. C and converted to {alpha}-alumina at 1150 deg. C without intermediate phases. The particle morphology of precursor was retained after it crystallized to {alpha}-alumina. The heating rate influenced the particle shape and the state of agglomeration during calcination process. The thermal properties of the precursors were characterized by thermal gravimetric and differential thermal analysis. X-ray diffraction technique was used to confirm the conversion of crystalline phase of alumina powders from amorphous to {alpha}-phase. Transmission electron microscopy was used to investigate the morphologies and size of the precursors and products.

  2. VERITAS: a high-flux neutron reflectometer with vertical sample geometry for a long pulse spallation source

    NASA Astrophysics Data System (ADS)

    Mattauch, S.; Ioffe, A.; Lott, D.; Menelle, A.; Ott, F.; Medic, Z.

    2016-04-01

    An instrument concept of a reflectometer with a vertical sample geometry fitted to the long pulse structure of a spallation source, called “VERITAS” at the ESS, is presented. It focuses on designing a reflectometer with high intensity at the lowest possible background following the users' demand to investigate thin layers or interfacial areas in the sub-nanometer length scale. The high intensity approach of the vertical reflectometer fits very well to the long pulse structure of the ESS. Its main goal is to deliver as much usable intensity as possible at the sample position and be able to access a reflectivity range of 8 orders of magnitude and more. The concept assures that the reflectivity measurements can be performed in its best way to maximize the flux delivered to the sample. The reflectometer is optimized for studies of (magnetic) layers having thicknesses down to 5Å and a surface area of 1x1cm2. With reflectivity measurements the depth-resolved, laterally averaged chemical and magnetic profile can be investigated. By using polarised neutrons, additional vector information on the in-plane magnetic correlations (off-specular scattering at the pm length scale, GISANS at the nm length scale) can be studied. The full polarisation analysis could be used for soft matter samples to correct for incoherent scattering which is presently limiting neutron reflectivity studies to a reflectivity range on the order of 10-6.

  3. Free-standing alumina nanobottles and nanotubes pre-integrated into nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Fang, Jinghua; Levchenko, Igor; (Ken Ostrikov, Kostya

    2014-08-01

    A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage.

  4. Free-standing alumina nanobottles and nanotubes pre-integrated into nanoporous alumina membranes

    PubMed Central

    Fang, Jinghua; Levchenko, Igor; Ostrikov, Kostya (Ken)

    2014-01-01

    A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage. PMID:27877705

  5. Role of Hf4+ Doping on Oxygen Grain Boundary Diffusion in Alumina

    DTIC Science & Technology

    2014-09-01

    Normal alloying elements presented in Ni-based superalloys [84] 8 Figure 1.2: Cross section view of thermal barrier coating system [3] 9...Schematic plot for Fisher’s model [109] 28 Figure 2.3: O concentration profile plot against depth x (cm) (68) 31 Figure 2.4: Oxygen grain...values of the parabolic rate constants for different samples xvui Abstract The growth of protective alumina scales in Al203-fonning alloys can be

  6. Method for preparing Pb-.beta."-alumina ceramic

    DOEpatents

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  7. A technical and economic evaluation of thermal spallation drilling technology

    SciTech Connect

    1984-07-10

    Thermal spallation of rock may be defined as a type of progressive rock failure caused by the creation of thermal stresses induced by a sudden application of heat from a high temperature source. This technology is applicable to only certain types of hard rock, such as dolomite, taconite, and granite. In 1981 and 1982, the deepest holes ever drilled by this process were drilled in granite to depths of 1086 feet and 425 feet respectively. Penetration rates at the bottom of the deeper hole reached a maximum of 100 ft/hr. Because of these high rates, considerable interest was generated concerning the use of this technology for the drilling of deep holes. Based on this interest, this study was undertaken to evaluate the technical and economic aspects of the technology in general. This methodology has been used for blasthole drilling, the cutting of chambers at the bottom of drilled holes, and the cutting of narrow grooves in rock. However, because of the very high temperatures generated by the flame jet and the application of the technology to only certain types of rock, other areas of use have been very limited. In this report, evaluation of the technology was performed by conceptually designing and costing a theoretical flame jet drilling rig. The design process reviews a number of different concepts of the various components needed, and then chooses those pieces of equipment that best suit the needs of the system and have the best chance of being properly developed. The final concept consists of a flexible umbilical hose containing several internal hoses for carrying the various required fluids. An evaluation of this system was then made to determine its operational characteristics. The drilling capabilities and the economics of this rig were then compared to a conventional rotary drilling rig by theoretically drilling two holes of approximately 15,000 feet in depth. This comparison was done by use of a spread sheet type computer program. The results of this study

  8. Plasma sintering of beta″-alumina

    NASA Astrophysics Data System (ADS)

    Henrichsen, Matthew

    Sintering and phase conversion of beta″-alumina were investigated with static and ultra-rapid passthrough plasma firing. Ultra-rapid passthrough induction firing was used to differentiate the effects of rapid heating rates from plasma effects. Static plasma sintering at low pressures resulted in excessive sodium loss which prohibited the use of dilatometry. Sintering was characterized using the diameter profiles of partially fired tubes. Phase conversion was examined with x-ray diffraction of powdered sections of partially fired tubes. Ultra-rapid passthrough firing speeds ranged from 8 to ˜240 mm/min. Instantaneous shrinkage rates as large as 8%/sec were measured. Phase conversion and sintering were both rapid, and were complete in seconds. Tubes with densities above 97%, beta″-phase content above 98%, and ionic resistivity as low as 13.8 Ocm were produced. Two modes of cracking were identified for tubes in ultra-rapid firing. Both were related to the thickness of the tube wall and sinterability of the powder being fired. A finite element model of sintering and heat transfer was developed to aid in determining the causes of cracking. Cracks formed because of mechanical stress rather than thermal shock. Low levels of cobalt in the precursor materials greatly reduced specimen heating in the plasma. The surface of beta″-alumina, like that of alpha-alumina, is catalytic for recombination of ions and radical components from the plasma. Induction furnace firing produced heating rates lower than those in plasma heating. Fired tubes were oversintered and had duplex microstructures. Some specimens fired in the induction furnace were contaminated by carbon from the graphite susceptor. Two peaks were observed in shrinkage rate profiles of some tubes. A model of dimensional change from simultaneous sintering and phase conversion was constructed. The model produced shrinkage rate profiles similar to those observed in both plasma and induction firing. The multiple peaks

  9. Sintering of beta-type alumina bodies using alpha-alumina encapsulation

    DOEpatents

    McEntire, Bryan J.; Virkar, Anil V.

    1981-01-01

    A method of sintering a shaped green, beta-type alumina body comprising: (A) inserting said body into an open chamber prepared by exposing the interior surface of a container consisting essentially of at least about 50 weight percent of alpha-alumina and a remainder of other refractory material to a sodium oxide or sodium oxide producing environment; (B) sealing the chamber; and heating the chamber with the shaped body encapsulated therein to a temperature and for a time necessary to sinter said body to the desired density. The encapsulation chamber prepared as described above is also claimed.

  10. Samarium and europium beta”-alumina derivatives characterized by XPS

    DOE PAGES

    Myhre, Kristian; Meyer, Harry; Du, Miting

    2017-01-04

    Characterization of sodium, samarium and europium beta -alumina derivatives has been carried out using X-ray photoelectron spectroscopy. Beta -alumina has been widely studied as a material capable of incorporating many different cations into its lattice structure, such as sodium and many of the lanthanide elements. The X-ray photoelectron spectra of samarium and europium in the beta -alumina structure are reported here. Additionally, the spectra of the precursor sodium beta -alumina as well as the europium and samarium trichloride starting materials are presented.

  11. First-principles study of hydrogen diffusion in α-Al2O3 and liquid alumina

    NASA Astrophysics Data System (ADS)

    Belonoshko, A. B.; Rosengren, A.; Dong, Q.; Hultquist, G.; Leygraf, C.

    2004-01-01

    We have studied the energetics and mobility of neutral hydrogen in alumina Al2O3 using ab initio density-functional calculations. The mobility of hydrogen was studied in corundum (α-Al2O3) as well as in liquid alumina. Using both static as well as molecular-dynamics calculations, and applying classical transition state theory, we derive the temperature-dependent diffusivity of hydrogen in α-Al2O3 as D(T)=(21.7×10-8 m2/s)exp(-1.24 eV/kT). The corresponding diffusivity of hydrogen in liquid/amorphous alumina, derived directly from ab initio molecular dynamics calculations, is D(T)=(8.71×10-7 m2/s)exp(-0.91 eV/kT). The computed diffusivity compares very well to experimental data. We conclude that diffusion of neutral hydrogen through the bulk of alumina is a good approximation of the mechanism for hydrogen mobility in corrosion scales. The representation of grain-boundary structures by amorphous alumina is, probably, realistic at higher temperatures.

  12. The effect of different powder particle size on mechanical properties of sintered alumina, resin- and glass-infused alumina.

    PubMed

    Chaiyabutr, Yada; Giordano, Russell; Pober, Richard

    2009-02-01

    In this study, the compaction and sintering behavior of fine alumina powders of different particle sizes and the effect of matrix particle size on biaxial strength and fracture toughness of infused matrices were investigated. Three different alumina powders, In-Ceram alumina, A16SG, and RC172 were selected, representing a range of particle size and shape. RC172 and A16SG were dry-pressed. In-Ceram alumina was slip-cast following manufacturer's recommendations. Dry-pressed ceramic blocks were sectioned into disks with a thickness of 1.5-mm. Uninfused disks were sintered at four temperatures between 1250 degrees C and 1400 degrees C. For glass or resin infused specimens, alumina disks were sintered at 1250 degrees C for 2 h and separated into two groups for glass infusion and resin (UDMA/TEGDMA) infusion. Disks were tested for biaxial flexural strength with a universal testing machine (Instron) at 0.5-mm/min crosshead speeds. One-way ANOVA and Duncan's multiple range tests revealed that alumina disks with different smaller particle sizes have significantly higher biaxial strength (p < 0.05). The strength of the alumina matrix was greatly increased by glass and resin infusion. The biaxial strength of resin-infused alumina increased as particle size decreased, whereas strength of glass-infused alumina was constant.

  13. Damping Behavior of Alumina Epoxy Nano-Composites

    NASA Astrophysics Data System (ADS)

    Katiyar, Priyanka; Kumar, Anand

    2016-10-01

    Polymer nano composites, consisting of a polymer matrix with nanoparticle filler, have been predicted to be one of the most beneficial applications of nanotechnology. Addition of nano particulates to a polymer matrix enhances its performance by capitalizing on the nature and properties of the nano-scale fillers. The damping behavior of composites with nano structured phases is significantly different from that of micro structured materials. Viscoelastic homopolymer exhibit a high material damping response over a relatively narrow range of temperature and frequencies. In many practical situations, a polymeric structure is required to possess better strength and stiffness properties together with a reasonable damping behavior. Viscoelastic polymers show higher loss factor beyond the glassy region which comes with a significant drop in the specific modulus. Addition of nano alumina particles to epoxy leads to improved strength and stiffness properties with an increase in glass transition temperature while retaining its damping capability. Experimental investigations are carried out on composite beam specimen fabricated with different compositions of alumina nano particles in epoxy to evaluate loss factor, tan δ. Impact damping method is used for time response analysis. A single point Laser is used to record the transverse displacement of a point on the composite beam specimen. The experimental results are compared with theoretical estimation of loss factor using Voigt estimation. The effect of inter phase is included in theoretical estimation of loss factor. The result reveals that the study of interface properties is very important in deriving the overall loss factor of the composite since interface occupies a significant volume fraction in the composite.

  14. Segregation phenomena at growing alumina/alloy interfaces

    SciTech Connect

    Hou, Peggy Y.

    2005-03-30

    The chemistry and structure at the scale/alloy interface are important factors governing scale adhesion. The chemical changes can occur from segregation of impurities in the alloy, such as sulphur and carbon, or alloying elements such as chromium, aluminium and reactive elements. This paper reviews studies of the changes of interfacial composition with oxidation time for Al{sub 2}O{sub 3} formed on several model alumina-forming alloys, and tries to relate that to the interfacial strength. Results show that sulphur segregation to oxide/metal interfaces can indeed occur, but the type and amount of segregants at the interface depend on the alloy composition and the interface structure. Co-segregation of impurities with alloying elements can also occur, resulting in multi-layer segregants at the interface. Sulphur-containing interfaces are indeed weaker, but the major role of sulphur is to enhance interfacial void formation. Reactive elements in the alloy not only gather sulfur but also exert an additional positive effect on scale adhesion.

  15. Improved Synthesis Of Potassium Beta' '-Alumina

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Underwood, Mark

    1996-01-01

    Improved formulations of precursor materials synthesize nearly-phase-pure potassium beta' '-alumina solid electrolyte (K-BASE) powder. Materials are microhomogeneous powders (or, alternatively, gels) containing K(+,) Mg(2+), and Al(3+). K-BASE powder produced used in potassium-working-fluid alkali-metal thermal-to-electric conversion (K-AMTEC), in which heat-input and heat-rejection temperatures lower than sodium-working-fluid AMTEC (Na-AMTEC). Additional potential use lies in purification of pottassium by removal of sodium and calcium.

  16. On the inelastic shock profile in alumina

    NASA Astrophysics Data System (ADS)

    Marom, H.; Sherman, D.; Rosenberg, Z.; Murray, N.

    2002-11-01

    The dynamic response of alumina specimens, above their elastic limits, was studied using planar impact experiments with different tile thickness. Stress-time measurements with manganin gauges show a steady spreading of the inelastic portion of the shock profile with increasing tile thickness. Such behavior is typical of elastic waves moving at a constant speed that depends on their amplitude. This finding supports recent interpretations of the failure ramp, by which the elastic response of these materials should be extended to higher stresses than the initial jump. However, further analysis of these profiles raises some questions regarding the exact determination of the Hugoniot elastic limit.

  17. Laser Surface Treatment of Sintered Alumina

    NASA Astrophysics Data System (ADS)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  18. Anisotropic shrinkage characteristics of tape cast alumina

    NASA Astrophysics Data System (ADS)

    Patwardhan, Jaideep Suresh

    Dimensional control during sintering is a major issue in ceramics processing to avoid high post-sintering costs associated with machining of the fired ceramic part to desired tolerances and dimensions. Ceramic forming processes such as tape casting, injection molding, and extrusion involve shear of anisotropic particles resulting in preferential alignment of the particles in the green body. This preferential alignment causes directionality in mechanical, electrical, optical, and magnetic properties and most importantly warpage or distortion during sintering. A large effort has been devoted to synthesizing ceramic green bodies with minimal density gradients and uniform packing and modeling the sintering behavior evolution but little effort has been devoted to characterizing orientation of particles and the effect of preferential alignment on sintering shrinkage anisotropy. A systematic study was initiated to study the effect of processing variables such as shear rate, solids loading, temperature, and binder content on aqueous tape cast alumina. Three different alumina systems: A16-SG, Baikowski RC-UFX DBM and RC-LS DBM were investigated. Aqueous tapes of high solids loading alumina (56 vol. %) were tape cast at various speeds and thicknesses and assuming plane Couette flow a shear rate regime of 21--270 s-1 was investigated. Higher shear rates and high solids loading resulted in higher in-plane anisotropy whereas the anisotropy in the thickness direction was higher for low solids loading systems. The anisotropy was found to be fairly constant above a certain critical shear rate (˜100 s-1) irrespective of the temperature and the solids loading and this correlated with the viscosity-shear rate relationship of the cast slips. The higher shrinkage anisotropy in the thickness direction for the low solids loading systems (35 and 45 vol. %) was attributed to the higher amount of organics in the slip required to sustain the suitable viscosity for tape casting and

  19. Intercalation of water into lithium. beta. -alumina

    SciTech Connect

    Dudney, N J; Bates, J B; Wang, J C; Brown, G M; Larson, B C; Engstrom, H

    1981-01-01

    Infrared absorption, neutron diffraction and weight loss techniques have been used to investigate the hydration of single crystals of Li ..beta..-alumina. The hydration is a reversible intercalation reaction. Up to approximately two water molecules per formula unit can penetrate the conduction plane. Other protonated species are formed from the dissociation of the molecular water. The rate of hydration is controlled by the diffusion of water in the conduction plane. A likely diffusion mechanism requires dissociation of the water and an interstitialcy motion of the oxygen.

  20. Quantum dots confined in nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Xia, Jianfeng; Wang, Jun; Shinar, Joseph; Lin, Zhiqun

    2006-09-01

    CdSe /ZnS core/shell quantum dots (QDs) were filled into porous alumina membranes (PAMs) by dip coating. The deposition of QDs induced changes in the refractive index of the PAMs. The amount of absorbed QDs was quantified by fitting the reflection and transmission spectra observed experimentally with one side open and freestanding (i.e., with two sides open) PAMs employed, respectively. The fluorescence of the QDs was found to be retained within the cylindrical nanopores of the PAMs.

  1. Conduction mechanism of single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The fully guarded three-terminal technique was used to perform conductivity measurements on single-crystal alumina at temperatures of 400-1300 C. The conductivity was also determined as a function of time at various temperatures and applied fields. Further, the fractions of the current carried by Al and O ions (ionic transference numbers) were determined from long-term transference experiments in the temperature range 1100-1300 C. A mathematical model of the conduction mechanism is proposed, and model predictions are compared with experimental results.

  2. Issues in nanocomposite ceramic engineering: focus on processing and properties of alumina-based composites.

    PubMed

    Palmero, Paola; Kern, Frank; Sommer, Frank; Lombardi, Mariangela; Gadow, Rainer; Montanaro, Laura

    2014-12-30

    Ceramic nanocomposites, containing at least one phase in the nanometric dimension, have received special interest in recent years. They have, in fact, demonstrated increased performance, reliability and lifetime with respect to monolithic ceramics. However, a successful approach to the production of tailored composite nanostructures requires the development of innovative concepts at each step of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering.This review aims to deepen understanding of some of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on alumina-based composite systems. Two case studies are presented and briefly discussed. The former illustrates the benefits, in terms of sintered microstructure and related mechanical properties, resulting from the application of an engineering approach to a laboratory-scale protocol for the elaboration of nanocomposites in the system alumina-ZrO2-YAG (yttrium aluminium garnet). The latter illustrates the manufacturing of alumina-based composites for large-scale applications such as cutting tools, carried out by an injection molding process. The need for an engineering approach to be applied in all processing steps is demonstrated also in this second case study, where a tailored manufacturing process is required to obtain the desired results.

  3. Microstructural and Mechanical Characterization of Actively Brazed Alumina Specimens

    SciTech Connect

    Hosking, F.M.; Cadden, C.H.; Stephens, J.J.; Glass, S.J.; Yang, N.Y.C.; Vianco, P.V.; Walker, C.A.

    1999-08-26

    Alumina (94 and 99.8% grade compositions) was brazed directly to itself with gold-based active brazing alloys (ABA's) containing vanadium additions of 1,2 and 3 weight percent. The effects of brazing conditions on the joint properties were investigated. Wetting behavior, interfacial reactions, microstructure, hermeticity and tensile strength were determined. Wetting was fair to good for the ABA and base material combinations. Microanalysis identified a discontinuous Al-V-O spinel reaction product at the alumina-braze interface. Tensile strength results for 94% alumina were uniformly good and generally not sensitive to the vanadium concentration, with tensile values of 85-105 MPa. There was more variability in the 99.8% alumina strength results, with values ranging from 25-95 MPa. The highest vanadium concentration (3 wt. %) yielded the highest joint strength for the brazed 99.8% alumina. Failures in the 99.8% alumina samples occurred at the braze-alumina interface, while the 94% alumina specimens exhibited fracture of the ceramic substrate.

  4. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    SciTech Connect

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-28

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr{sub 2}O{sub 3} decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  5. Process for the recovery of alumina from fly ash

    DOEpatents

    Murtha, M.J.

    1983-08-09

    An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

  6. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this...

  7. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-01

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100-1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  8. Treatment of chrome plating wastewater (Cr+6) using activated alumina.

    PubMed

    Sarkar, Sudipta; Gupta, Anirban

    2003-01-01

    Suitability of activated alumina for removal of hexavalent chromium from electroplating wastewater has been investigated. Activated alumina exhibited good sorption capacity for hexavalent chromium and pH has no pronounced effect on the sorption capacity. Both batch and column adsorption studies have been carried out and an adsorption column design indicated reasonable depth of column for practical application.

  9. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ

    PubMed Central

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-01-01

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles. PMID:25996055

  10. Experimental study of 248nm excimer laser etching of alumina

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Shao, Jingzhen; Wang, Xi; Fang, Xiaodong

    2016-10-01

    The 248 nm excimer laser etching characteristic of alumina ceramic and sapphire had been studied using different laser fluence and different number of pulses. And the interaction mechanism of 248 nm excimer laser with alumina ceramic and sapphire had been analyzed. The results showed that when the laser fluence was less than 8 J/cm2, the etching depth of alumina ceramic and sapphire were increased with the increase of laser fluence and number of pulses. At the high number pulses and high-energy, the surface of the sapphire had no obvious melting phenomenon, and the alumina ceramic appeared obvious melting phenomenon. The interaction mechanism of excimer laser with alumina ceramics and sapphire was mainly two-photon absorption. But because of the existence of impurities and defects, the coupling between the laser radiation and ceramic and sapphire was strong, and the thermal evaporation mechanism was also obvious.

  11. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  12. Dynamics of spallation during femtosecond laser ablation studied by time-resolved reflectivity with double pump pulses

    SciTech Connect

    Kumada, Takayuki Otobe, Tomohito; Nishikino, Masaharu; Hasegawa, Noboru; Hayashi, Terutake

    2016-01-04

    The dynamics of photomechanical spallation during femtosecond laser ablation of fused silica was studied by time-resolved reflectivity with double pump pulses. Oscillation of reflectivity was caused by interference between the probe pulses reflected at the sample surface and the spallation layer, and was enhanced when the surface was irradiated with the second pump pulse within a time interval, Δτ, of several picoseconds after the first pump pulse. However, as Δτ was increased, the oscillation amplitude decreased with an exponential decay time of 10 ps. The oscillation disappeared when Δτ exceeded 20 ps. This result suggests that the formation time of the spallation layer is approximately 10 ps. A second pump pulse with Δτ shorter than 10 ps excites the bulk sample. The spallation layer that is photo-excited by the first and second pump pulses is separated afterward. In contrast, a pulse with Δτ longer than the formation time excites and breaks up the spallation layer that has already been separated from the bulk. The formation time of the spallation layer, as determined in this experiment, is attributed to the characteristic time of the mechanical equilibration corresponding to the thickness divided by the sound velocity of the photo-excited layer.

  13. Spallation model for the titanium-rich supernova remnant cassiopeia A.

    PubMed

    Ouyed, Rachid; Leahy, Denis; Ouyed, Amir; Jaikumar, Prashanth

    2011-10-07

    Titanium-rich subluminous supernovae are rare and challenge current SN nucleosynthesis models. We present a model in which ejecta from a standard supernova is impacted by a second explosion of the neutron star (a quark nova), resulting in spallation reactions that lead to (56)Ni destruction and (44)Ti creation under the right conditions. Basic calculations of the spallation products shows that a delay between the two explosions of ∼5  days reproduces the observed abundance of (44)Ti in Cas A and explains its low luminosity as a result of the destruction of (56)Ni. Our results could have important implications for light curves of subluminous as well as superluminous supernovae.

  14. Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves.

    PubMed

    Stan, Claudiu A; Willmott, Philip R; Stone, Howard A; Koglin, Jason E; Liang, Mengning; Aquila, Andrew L; Robinson, Joseph S; Gumerlock, Karl L; Blaj, Gabriel; Sierra, Raymond G; Boutet, Sébastien; Guillet, Serge A H; Curtis, Robin H; Vetter, Sharon L; Loos, Henrik; Turner, James L; Decker, Franz-Josef

    2016-06-02

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below -100 MPa were reached in the drops. We model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  15. Systematic neutron guide misalignment for an accelerator-driven spallation neutron source

    NASA Astrophysics Data System (ADS)

    Zendler, C.; Bentley, P. M.

    2016-08-01

    The European Spallation Source (ESS) is a long pulse spallation neutron source that is currently under construction in Lund, Sweden. A considerable fraction of the 22 planned instruments extend as far as 75-150 m from the source. In such long beam lines, misalignment between neutron guide segments can decrease the neutron transmission significantly. In addition to a random misalignment from installation tolerances, the ground on which ESS is built can be expected to sink with time, and thus shift the neutron guide segments further away from the ideal alignment axis in a systematic way. These systematic errors are correlated to the ground structure, position of buildings and shielding installation. Since the largest deformation is expected close to the target, even short instruments might be noticeably affected. In this study, the effect of this systematic misalignment on short and long ESS beam lines is analyzed, and a possible mitigation by overillumination of subsequent guide sections investigated.

  16. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    SciTech Connect

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend II, J. G.; Beßler, Y.; Klaus, M.

    2014-01-29

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  17. A neutron resonance capture analysis experimental station at the ISIS spallation source.

    PubMed

    Pietropaolo, Antonino; Gorini, Giuseppe; Festa, Giulia; Reali, Enzo; Grazzi, Francesco; Schooneveld, Erik M

    2010-09-01

    Neutron resonance capture analysis (NRCA) is a nuclear technique that is used to determine the elemental composition of materials and artifacts (e.g., bronze objects) of archaeological interest. NRCA experiments are mostly performed at the GELINA facility in Belgium, a pulsed neutron source operating with an electron linear accelerator. Very intense fluxes of epithermal neutrons are also provided by spallation neutron sources, such as the ISIS spallation neutron source in the United Kingdom. In the present study, the suitability of the Italian Neutron Experimental Station (INES) beam line for NRCA measurements is assessed using a compact (n, γ) resonance detector made of a Yttrium-Aluminum-Perovskite (YAP) scintillation crystal coupled with a silicon photomultiplier (SiPM) readout. The measurements provided a qualitative recognition of the composition of the standard sample, a lower limit for the sensitivity for NRCA for almost-in-traces elements, and an estimation of the relative isotopic concentration in the sample.

  18. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    SciTech Connect

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; Koglin, Jason E.; Liang, Mengning; Aquila, Andrew L.; Robinson, Joseph S.; Gumerlock, Karl L.; Blaj, Gabriel; Sierra, Raymond G.; Boutet, Sebastien; Guillet, Serge A. H.; Curtis, Robin H.; Vetter, Sharon L.; Loos, Henrik; Turner, James L.; Decker, Franz -Josef

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPa were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.

  19. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    NASA Astrophysics Data System (ADS)

    Mishustin, Igor; Malyshkin, Yury; Pshenichnov, Igor; Greiner, Walter

    2015-04-01

    A possibility of synthesizing neutron-rich superheavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to 249Bk can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector could turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

  20. Spallation Model for the Titanium-Rich Supernova Remnant Cassiopeia A

    SciTech Connect

    Ouyed, Rachid; Leahy, Denis; Ouyed, Amir; Jaikumar, Prashanth

    2011-10-07

    Titanium-rich subluminous supernovae are rare and challenge current SN nucleosynthesis models. We present a model in which ejecta from a standard supernova is impacted by a second explosion of the neutron star (a quark nova), resulting in spallation reactions that lead to {sup 56}Ni destruction and {sup 44}Ti creation under the right conditions. Basic calculations of the spallation products shows that a delay between the two explosions of {approx}5 days reproduces the observed abundance of {sup 44}Ti in Cas A and explains its low luminosity as a result of the destruction of {sup 56}Ni. Our results could have important implications for light curves of subluminous as well as superluminous supernovae.

  1. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend, J. G., II; Beßler, Y.; Klaus, M.

    2014-01-01

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  2. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  3. Adsorption of carboxymethyl cellulose on alumina particles.

    PubMed

    Zhivkov, Alexandar M; Hristov, Rosen P

    2015-06-01

    The polyelectrolyte adsorption on colloid particles is often used for stabilization or flocculation of water suspensions. The aim of this work is to study the adsorption of carboxymethyl cellulose (CMC) on alumina (γ-Al2O3) colloid particles. The particles and polymer are chosen because of the capability of the metal-oxide ampholyte surface and the weak polyelectrolytes to alter their charge by pH. The measurements are done at pH 6.0 where the CMC carboxylic gropes are almost fully dissociated and the alumina surface is positively charged. The high linear charge density of the polyelectrolyte chain provides Na(+) counterions condensation on the COO(-) groups. The main employed method is the electric light scattering based on particle orientation in sinusoidal electric field. The electric polarizability and the relaxation time after field switching off (both depending on the particle charge and size) are used as criteria for polymer adsorption and particle aggregation. Micro-electrophoresis is applied as additional techniques indicating the sign and density of the surface charge. The results obtained give the conditions (time dependence, particle and polymer concentrations) where the CMC adsorption is complete and the suspension is stable.

  4. Combination for electrolytic reduction of alumina

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  5. Properties of Transition Metal Doped Alumina

    NASA Astrophysics Data System (ADS)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  6. Parsing abnormal grain growth in specialty aluminas

    NASA Astrophysics Data System (ADS)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  7. Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper

    SciTech Connect

    Akimov, D.; Bernstein, A.; BarbeauP.,; Barton, P. J.; Bolozdynya, A.; Cabrera-Palmer, B.; Cavanna, F.; Cianciolo, Vince; Collar, J.; Cooper, R. J.; Dean, D. J.; Efremenko, Yuri; Etenko, A.; Fields, N.; Foxe, M.; Figueroa-Feliciano, E.; Fomin, N.; Gallmeier, F.; Garishvili, I.; Gerling, M.; Green, M.; Greene, Geoffrey; Hatzikoutelis, A.; Henning, Reyco; Hix, R.; Hogan, D.; Hornback, D.; Jovanovic, I.; Hossbach, T.; Iverson, Erik B; Klein, S. R.; Khromov, A.; Link, J.; Louis, W.; Lu, W.; Mauger, C.; Marleau, P.; Markoff, D.; Martin, R. D.; Mueller, Paul Edward; Newby, J.; Orrell, John L.; O'Shaughnessy, C.; Penttila, Seppo; Patton, K.; Poon, A. W.; Radford, David C; Reyna, D.; Ray, H.; Scholberg, K.; Sosnovtsev, V.; Tayloe, R.; Vetter, K.; Virtue, C.; Wilkerson, J.; Yoo, J.; Yu, Chang-Hong

    2013-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).

  8. Process technology and effects of spallation products: Circuit components, maintenance, and handling

    SciTech Connect

    Sigg, B.; Haines, S.J.; Dressler, R.; McManamy, T.

    1996-06-01

    Working Session D included an assessment of the status of the technology and components required to: (1) remove impurities from the liquid metal (mercury or Pb-Bi) target flow loop including the effects of spallation products, (2) provide the flow parameters necessary for target operations, and (3) maintain the target system. A series of brief presentations were made to focus the discussion on these issues. The subjects of these presentations, and presenters were: (1) Spallation products and solubilities - R. Dressler; (2) Spallation products for Pb-Bi - Y. Orlov; (3) Clean/up/impurity removal components - B. Sigg; (4) {open_quotes}Road-Map{close_quotes} and remote handling needs - T. McManamy; (5) Remote handling issues and development - M. Holding. The overall conclusion of this session was that, with the exception of (i) spallation product related processing issues, (ii) helium injection and clean-up, and (iii) specialized remote handling equipment, the technology for all other circuit components (excluding the target itself) exists. Operating systems at the Institute of Physics in Riga, Latvia (O. Lielausis) and at Ben-Gurion University in Beer Shiva, Israel (S. Lesin) have demonstrated that other liquid metal circuit components including pumps, heat exchangers, valves, seals, and piping are readily available and have been reliably used for many years. In the three areas listed above, the designs and analysis are not judged to be mature enough to determine whether and what types of technology development are required. Further design and analysis of the liquid metal target system is therefore needed to define flow circuit processing and remote handling equipment requirements and thereby identify any development needs.

  9. Automatic beam position control at Los Alamos Spallation Radiation Effects Facility (LASREF)

    SciTech Connect

    Oothoudt, M.; Pillai, C.; Zumbro, M.

    1997-08-01

    Historically the Los Alamos Spallation Radiation Effects Facility (LASREF) has used manual methods to control the position of the 800 kW, 800 MeV proton beam on targets. New experiments, however, require more stringent position control more frequently than can be done manually for long periods of time. Data from an existing harp is used to automatically adjust steering magnets to maintain beam position to required tolerances.

  10. Fundamental neutron physics beamline at the spallation neutron source at ORNL

    DOE PAGES

    Fomin, N.; Greene, G. L.; Allen, R. R.; ...

    2014-11-04

    In this paper, we describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. Finally, we present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

  11. RESULTS OF BACKGROUND SUBTRACTION TECHNIQUES ON THE SPALLATION NEUTRON SOURCE BEAM LOSS MONITORS

    SciTech Connect

    Pogge, James R; Zhukov, Alexander P

    2010-01-01

    Recent improvements to the Spallation Neutron Source (SNS) beam loss monitor (BLM) designs have been made with the goal of significantly reducing background noise. This paper outlines this effort and analyzes the results. The significance of this noise reduction is the ability to use the BLM sensors [1], [2], [3] distributed throughout the SNS accelerator as a method to monitor activation of components as well as monitor beam losses.

  12. Spallation backgrounds in Super-Kamiokande are made in muon-induced showers

    NASA Astrophysics Data System (ADS)

    Li, Shirley Weishi; Beacom, John F.

    2015-05-01

    Crucial questions about solar and supernova neutrinos remain unanswered. Super-Kamiokande has the exposure needed for progress, but detector backgrounds are a limiting factor. A leading component is the beta decays of isotopes produced by cosmic-ray muons and their secondaries, which initiate nuclear spallation reactions. Cuts of events after and surrounding muon tracks reduce this spallation decay background by ≃ 90 % (at a cost of ≃ 20 % deadtime), but its rate at 6-18 MeV is still dominant. A better way to cut this background was suggested in a Super-Kamiokande paper by Bays et al. [Phys. Rev. D 85, 052007 (2012)] on a search for the diffuse supernova neutrino background. They found that spallation decays above 16 MeV were preceded near the same location by a peak in the apparent Cherenkov light profile from the muon; a more aggressive cut was applied to a limited section of the muon track, leading to decreased background without increased deadtime. We put their empirical discovery on a firm theoretical foundation. We show that almost all spallation decay isotopes are produced by muon-induced showers and that these showers are rare enough and energetic enough to be identifiable. This is the first such demonstration for any detector. We detail how the physics of showers explains the peak in the muon Cherenkov light profile and other Super-K observations. Our results provide a physical basis for practical improvements in background rejection that will benefit multiple studies. For solar neutrinos, in particular, it should be possible to dramatically reduce backgrounds at energies as low as 6 MeV.

  13. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGES

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; ...

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  14. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    SciTech Connect

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; He, Junhong; Weiss, Kevin L.; McFeeters, Hana; Tomanicek, Stephen J.; Vandavasi, Venu Gopal; Langan, Paul; Iverson, Erik B.

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  15. CHINA SPALLATION NEUTRON SOURCE PROJECT: DESIGN ITERATIONS AND R AND D STATUS.

    SciTech Connect

    WEI,J.

    2006-09-21

    The China Spallation Neutron Source (CSNS) is an accelerator based high power project currently under preparation in China. The accelerator complex is based on an H{sup -} linear accelerator and a rapid cycling proton synchrotron. During the past year, the design of most accelerator systems went through major iterations, and initial research and developments were started on the prototyping of several key components. This paper summarizes major activities of the past year.

  16. Final report on the application of chaos theory to an alumina sensor for aluminum reduction cells

    SciTech Connect

    Williford, R.E.; Windisch, C.F. Jr.

    1992-03-01

    Four chaos-related digital signal analysis (DSA) methods were applied to the analysis of voltage and current signals collected from aluminum electrolysis cells. Two separate data bases were analyzed: bench-scale laboratory experiments and a pilot-scale test. The objective was to assess the feasibility of using these types of data and analysis methods as the basis for a non-intrusive sensor to measure the alumina content in the electrolysis bath. This was the first time chaos theory approaches have been employed to analyze aluminum electrolysis cells.

  17. Status of R&D on mitigating the effects of pressure waves for the Spallation Neutron Source mercury target

    NASA Astrophysics Data System (ADS)

    Riemer, Bernard W.; Wendel, Mark W.; Felde, David K.; Abdou, Ashraf A.; McClintock, David A.

    2012-12-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory has been conducting R&D on mitigating the effects of pressure waves in mercury spallation targets since 2001. More precisely, cavitation damage of the target vessel caused by the short beam pulse threatens to limit its lifetime more severely than radiation damage as well as limit its ultimate power capacity - and hence its neutron intensity performance. The R&D program has moved from verification of the beam-induced damage phenomena to study of material and surface treatments for damage resistance to the current emphasis on gas injection techniques for damage mitigation. Two techniques are being worked on: injection of small dispersed gas bubbles that mitigate the pressure waves volumetrically; and protective gas walls that isolate the vessel from the damaging effects of collapsing cavitation bubbles. The latter has demonstrated good damage mitigation during in-beam testing with limited pulses, and adequate gas wall coverage at the beam entrance window has been demonstrated with the SNS mercury target flow configuration using a full scale mercury test loop. A question on the required area coverage remains which depends on results from SNS target post irradiation examination. The small gas bubble technique has been less effective during past in-beam tests but those results were with un-optimized and un-verified bubble populations. Another round of in-beam tests with small gas bubbles is planned for 2011. The first SNS target was removed from service in mid 2009 and samples were cut from two locations at the target's beam entrance window. Through-wall damage was observed at the innermost mercury vessel wall (not a containment wall). The damage pattern suggested correlation with the local mercury flow condition which is nearly stagnant at the peak damage location. Detailed post irradiation examination of the samples is under way that will assess the erosion and measure irradiation-induced changes

  18. Status of R&D on Mitigating the Effects of Pressure Waves for the Spallation Neutron Source Mercury Target

    SciTech Connect

    Riemer, Bernie; Wendel, Mark W; Felde, David K; Abdou, Ashraf A; McClintock, David A

    2012-01-01

    The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory has been conducting R&D on mitigating the effects of pressure waves in mercury spallation targets since 2001. More precisely, cavitation damage of the target vessel caused by the short beam pulse threatens to limit its lifetime more severely than radiation damage as well as limit its ultimate power capacity and hence its neutron intensity performance. The R&D program has moved from verification of the beam-induced damage phenomena to study of material and surface treatments for damage resistance to the current emphasis on gas injection techniques for damage mitigation. Two techniques are being worked on: injection of small dispersed gas bubbles that mitigate the pressure waves volumetrically; and protective gas walls that isolate the vessel from the damaging effects of collapsing cavitation bubbles. The latter has demonstrated good damage mitigation during in-beam testing with limited pulses, and adequate gas wall coverage at the beam entrance window has been demonstrated with the SNS mercury target flow configuration using a full scale mercury test loop. A question on the required area coverage remains which depends on results from SNS target post irradiation examination. The small gas bubble technique has been less effective during past in-beam tests but those results were with un-optimized and un-verified bubble populations. Another round of in-beam tests with small gas bubbles is planned for 2011. The first SNS target was removed from service in mid 2009 and samples were cut from two locations at the target s beam entrance window. Through-wall damage was observed at the innermost mercury vessel wall (not a containment wall). The damage pattern suggested correlation with the local mercury flow condition which is nearly stagnant at the peak damage location. Detailed post irradiation examination of the samples is under way that will assess the erosion and measure irradiation-induced changes

  19. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    SciTech Connect

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste.

  20. Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation

    SciTech Connect

    Belikov, R S; Khishchenko, K V; Krasyuk, I K; Semenov, A Yu; Stuchebryukhov, I A; Rinecker, T; Schoenlein, A; Rosmej, O N; Tomut, M

    2015-05-31

    We present the results of experiments on the spallation phenomena in graphite targets under shock-wave nano- and picosecond irradiation, which have been performed on Kamerton-T (GPI, Moscow, Russia) and PHELIX (GSI, Darmstadt, Germany) laser facilities. In the range of the strain rates of 10{sup 6} – 10{sup 7} s{sup -1}, the data on the dynamic mechanical strength of the material at rapure (spallation) have been for the first time obtained. With a maximal strain rate of 1.4 × 10{sup 7} s{sup -1}, the spall strength of 2.1 GPa is obtained, which constitutes 64% of the theoretical ultimate tensile strength of graphite. The effect of spallation is observed not only on the rear side of the target, but also on its irradiated (front) surface. With the use of optical and scanning electron microscopes, the morphology of the front and rear surfaces of the targets is studied. By means of Raman scattering of light, the graphite structure both on the target front surface under laser exposure and on its rear side in the spall zone is investigated. A comparison of the dynamic strength of graphite and synthetic diamond is performed. (extreme light fields and their applications)

  1. NON-DESTRUCTIVE THERMAL BARRIER COATING SPALLATION PREDICTION BY A LOADBASED MICRO-INDENTATION TECHNIQUE

    SciTech Connect

    J. M. Tannenbaum; K. Lee; B. S.-J. Kang; M.A. Alvin

    2010-11-18

    Currently, the durability and life cycle of thermal barrier coatings (TBC) applied to gas turbine blades and combustor components are limiting the maximum temperature and subsequent efficiency at which gas turbine engines operate. The development of new materials, coating technologies and evaluation techniques is required if enhanced efficiency is to be achieved. Of the current ceramic coating materials used in gas turbine engines, yttria stabilized zirconia (YSZ) is most prevalent, its low thermal conductivity, high thermal expansion coefficient and outstanding mechanical strength make it ideal for use in TBC systems. However, residual stresses caused by coefficients of thermal expansion mismatches within the TBC system and unstable thermally grown oxides are considered the primary causes for its premature and erratic spallation failure. Through finite element simulations, it is shown that the residual stresses generated within the thermally grown oxide (TGO), bond coat (BC), YSZ and their interfaces create slight variations in indentation unloading surface stiffness response prior to spallation failure. In this research, seven air plasma sprayed and one electron beam physical vapor deposition yttria partially stabilized zirconia TBCs were subjected to isothermal and cyclic loadings at 1100°C. The associated coating degradation was evaluated using a non-destructive multiple partial unloading micro-indentation procedure. The results show that the proposed non-destructive micro-indentation evaluation technique can be an effective and specimenindependent TBC failure prediction tool capable of determining the location of initial spallation failure prior to its actual occurrence.

  2. Technical concepts for a long-wavelength target station for the Spallation Neutron Source.

    SciTech Connect

    Carpenter, J. M.

    2002-12-04

    The Spallation Neutron Source (SNS), a major new user facility for materials research funded by the U.S. Department of Energy (DOE), is under construction at Oak Ridge National Laboratory (ORNL), see the Spallation Neutron Source web site at: www.sns.gov/aboutsns/source/htm. The SNS will operate at a proton beam power of 1.4 MW delivered in short pulses at 60 Hz; this power level is an order of magnitude higher than that of the current most intense pulsed spallation neutron facility in the world, ISIS at the Rutherford-Appleton Laboratory in the United Kingdom: 160 kW at 50 Hz. When completed in 2006, the SNS will supply the research community with neutron beams of unprecedented intensity and a powerful, diverse instrument suite with exceptional capabilities. Together, these will enable a new generation of experimental studies of interest to chemists, condensed matter physicists, biologists, materials scientists, and engineers, in an ever-increasing range of applications. The Long-Wavelength Target Station (LWTS) complements the High-Power Target Station (HPTS) facility, which is already under construction, and will leverage the significant investment in the remainder of the complex, providing important new scientific opportunities. The fully equipped SNS will offer capabilities for neutron scattering studies of the structure and dynamics of materials with sensitivity, resolution, dynamic range, and speed that are unparalleled in the world.

  3. Dislocation-kinetic analysis of FCC and BCC crystal spallation under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Ogarkov, S. L.; Andriyash, A. V.

    2015-09-01

    Within the dislocation-kinetic model of the formation and propagation of shock waves in crystals under their intense shock-wave loading, the crystal spallation mechanism at micro- and macrolevels has been discussed taking into account published empirical data. It has been shown that the spallation time t f for Cu, Ni, α-Fe, and Ta crystals in the time interval of 10-6-10-9 s at the macroscopic level changes with variations in the wave pressure σ as , where = is the plastic strain rate according to the Swegle-Grady relation; K f , K σ, and ɛ f = K f K σ ≈ 3-5% are the pressure-independent spallation coefficients and strain, respectively; and E is the Young's modulus. At the microlevel, the dislocation-kinetic calculation of plastic zones around pore nuclei as stress concentrators and plastic strain localization regions at the shock wave front has been performed. It has been shown that the pore coalescence and spall fracture formation result from the superposition of shear stresses and plastic deformations in interpore spacings when the latter decrease to a size of the order of two pore sizes.

  4. Improvements to the internal and external antenna H{sup −} ion sources at the Spallation Neutron Source

    SciTech Connect

    Welton, R. F. Han, B. X.; Murray, S. N.; Pennisi, T. R.; Pillar, C.; Santana, M.; Stockli, M. P.; Dudnikov, V. G.; Turvey, M. W.

    2014-02-15

    The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30–40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H{sup −} beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H{sup −} yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.

  5. Steps Towards Large Scale Production of High-Spin Hafnium Isomers by Spallation Reactions

    DTIC Science & Technology

    2008-02-25

    protons of energies around 150 MeV are order of magnitude lower than those for the operation of the Los Alamos 800 MeV meson factory facility. By the...MeV energy of a ~1 kg Ta beam dump at the Los Alamos National Laboratory LAMPF meson factory [27]. The resulting σm/σg ratio is intermediate between

  6. Scales

    ScienceCinema

    Murray Gibson

    2016-07-12

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  7. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  8. Fabrication of Alumina Nanowires from Porous Alumina Membranes by Etching in Phosphoric Acid Solution

    NASA Astrophysics Data System (ADS)

    Wang, Xuehua; Li, Chengyong; Ma, Lianjiao; Cao, Hong; Zhang, Baohua

    Alumina nanowires (ANWs) with high aspect ratios were synthesized by the chemical etching of porous alumina membranes (PAMs) in phosphoric acid solution. The morphology and structure of ANWs were analyzed by SEM and XRD, respectively. The results showed that the typical features of ANWs are around 35 nm in diameter and around 20 μm in length, the crystalline structure of the ANWs was amorphous, which was in accordance with that of the PAMs. Furthermore, the morphology of the PAMs was characterized by AFM and SEM in detail. On the basis of AFM and SEM observations, a possible formation mechanism of ANWs was discussed, and the inhomogeneous of the dissolution between the triple points and the side walls was considered to be the essential factor deciding the formation of ANWs.

  9. Terbium luminescence in alumina xerogel fabricated in porous anodic alumina matrix under various excitation conditions

    SciTech Connect

    Gaponenko, N. V.; Kortov, V. S.; Orekhovskaya, T. I.; Nikolaenko, I. A.; Pustovarov, V. A.; Zvonarev, S. V.; Slesarev, A. I.; Prislopski, S. Ya.

    2011-07-15

    Terbium-doped alumina xerogel layers are synthesized by the sol-gel method in pores of a porous anodic alumina film 1 {mu}m thick with a pore diameter of 150-180 nm; the film is grown on a silicon substrate. The fabricated structures exhibit terbium photoluminescence with bands typical of trivalent terbium terms. Terbium X-ray luminescence with the most intense band at 542 nm is observed for the first time for such a structure. Morphological analysis of the structure by scanning electron microscopy shows the presence of xerogel clusters in pore channels, while the main pore volume remains unfilled and pore mouths remain open. The data obtained confirm the promising applications of fabricated structures for developing matrix converters of X-rays and other ionizing radiations into visible light. The possibilities of increasing luminescence intensity in the matrix converter are discussed.

  10. Processing and mechanical characterization of alumina laminates

    NASA Astrophysics Data System (ADS)

    Montgomery, John K.

    2002-08-01

    Single-phase ceramics that combine property gradients or steps in monolithic bodies are sought as alternatives to ceramic composites made of dissimilar materials. This work describes novel processing methods to produce stepped-density (or laminated) alumina single-phase bodies that maintain their mechanical integrity. One arrangement consists of a stiff, dense bulk material with a thin, flaw tolerant, porous exterior layer. Another configuration consists of a lightweight, low-density bulk material with a thin, hard, wear resistant exterior layer. Alumina laminates with strong interfaces have been successfully produced in this work using two different direct-casting processes. Gelcasting is a useful near-net shape processing technique that has been combined with several techniques, such as reaction bonding of aluminum oxide and the use of starch as a fugative filler, to successfully produced stepped-density alumina laminates. The other direct casting process that has been developed in this work is thermoreversible gelcasting (TRG). This is a reversible gelation process that has been used to produce near-net shape dense ceramic bodies. Also, individual layers can be stacked together and heated to produce laminates. Bilayer laminate samples were produced with varied thickness of porous and dense layers. It was shown that due to the difference in modulus and hardness, transverse cracking is found upon Hertzian contact when the dense layer is on the exterior. In the opposite arrangement, compacted damage zones formed in the porous material and no damage occurred in the underlying dense layer. Flaw tolerant behavior of the porous exterior/dense underlayer was examined by measuring biaxial strength as a function of Vickers indentation load. It was found that the thinnest layer of porous material results in the greatest flaw tolerance. Also, higher strength was exhibited at large indentation loads when compared to dense monoliths. The calculated stresses on the surfaces

  11. Fabrication of alumina films with laminated structures by ac anodization.

    PubMed

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-02-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50-200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  12. Porous alumina based ordered nanocomposite coating for wear resistance

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Muthukumar, M.; Bobji, M. S.

    2016-08-01

    Uniformly dispersed nanocomposite coating of aligned metallic nanowires in a matrix of amorphous alumina is fabricated by pulsed electrodeposition of copper into the pores of porous anodic alumina. Uniform deposition is obtained by controlling the geometry of the dendritic structure at the bottom of pores through stepwise voltage reduction followed by mild etching. The tribological behaviour of this nanocomposite coating is evaluated using a ball on flat reciprocating tribometer under the dry contact conditions. The nanocomposite coating has higher wear resistance compared to corresponding porous alumina coating. Wear resistant nanocomposite coating has wide applications especially in protecting the internal surfaces of aluminium internal combustion engines.

  13. Self-diffusion of oxygen in single crystal alumina

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Ando, Ken; Kubota, Y.

    1980-08-01

    The self-diffusion coefficient of oxygen in (polished slices of a Verneuil) single-crystal alumina was determined in the temperature range 1500-1770 °C by means of the gas-solid isotope exchange technique. The results were represented by D=1.12×103 exp (-155×103/RT) cm2/s. The activation energy was interpreted to be for intrinsic diffusion. By comparison of the results with the oxygen self-diffusion coefficients previously reported for crushed particles of a Verneuil alumina and a vapor-grown alumina, the extrinsic diffusion exhibited by the crushed particles was confirmed to be due to a dislocation enhancement process.

  14. Fabrication of alumina films with laminated structures by ac anodization

    NASA Astrophysics Data System (ADS)

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-02-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50-200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  15. Processing of silicon nitride and alumina nanosize powders

    SciTech Connect

    Gonzalez, E.J.; Piermarini, G.; Hockey, B.; Malghan, S.G.

    1995-08-01

    The effects of pressure on the compaction and subsequent processing of nanosize {gamma} alumina powders were studied. A 3 mm diameter piston/cylinder die was used to compact the nanosize powders to pressures of 1 and 2.5 GPa. The green bodies were sintered at temperatures up to 1600{degrees}C. Results show that green body density can be increased by higher compaction pressures. It appears that as a result of the {gamma}-to-{alpha} transformation in alumina, higher green density does not necessarily produce a higher density sintered alumina body. The microstructures of the sintered bodies are described in terms of porosity and phase content.

  16. Effects of long term inhalation of alumina fibres in rats.

    PubMed Central

    Pigott, G. H.; Gaskell, B. A.; Ishmael, J.

    1981-01-01

    Groups of rats were exposed by inhalation to atmospheres containing a refractory alumina fibre (Saffil Fibres, I.C.I.) either as manufactured or in a thermally aged form. Similar groups were exposed to UICC chrysotile A asbestos or clean air to serve as positive and negative controls respectively. Exposures continued for 86 weeks after which the animals were maintained to 85% mortality. Pulmonary reaction to both forms of alumina fibre was minimal; chrysotile asbestos provoked the expected progressive fibrosis. Pulmonary tumours (both benign and malignant) were confined to rats dosed with asbestos. The results support the predicted inert nature of these alumina fibres. Images Fig. 2 PMID:7248173

  17. Boria modified alumina probed by methanol dehydration and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    de Farias, Andréa M. Duarte; Esteves, Angela M. Lavogade; Ziarelli, Fabio; Caldarelli, Stefano; Fraga, Marco A.; Appel, Lucia G.

    2004-04-01

    Al 2O 3·B 2O 3 catalysts were synthesized by co-precipitation and impregnation methods applying two calcination temperatures and boria loadings. Catalysts were analyzed by IR spectroscopy of pyridine and CO 2 adsorption and were evaluated in methanol dehydration. Results showed that boron addition to alumina causes a decrease of the number of basic and Lewis acid sites on alumina surface. It could also be observed an enhancement in acid strength of Lewis sites for impregnated samples. The results of methanol dehydration show that strong Brönsted sites are not formed on borate alumina.

  18. Alumina Paste Sublimation Suppression Barrier for Thermoelectric Device

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah (Inventor); Caillat, Thierry (Inventor)

    2014-01-01

    Alumina as a sublimation suppression barrier for a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000K, is disclosed. The Zintl thermoelectric material may comprise Yb.sub.14MnSb.sub.11. The alumina may be applied as an adhesive paste dried and cured on a substantially oxide free surface of the Zintl thermoelectric material and polished to a final thickness. The sublimation suppression barrier may be finalized by baking out the alumina layer on the Zintl thermoelectric material until it becomes substantially clogged with ytterbia.

  19. Preparation ways and photoluminescence of mesoporous alumina

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Liu, J.; Zhao, X.; Wu, G.

    2010-12-01

    High specific surface area (SSA) mesoporous alumina (MA) is synthesized by a sol-gel method using pelagic clay as the raw material. The MA synthesized with a (1-hexadecyl) trimethylammonium bromide (CTAB): utea mixed template shows a SSA of 385.56 m2/g and a mean pore size of 3.6 nm. And the SSA of the MA synthesized with the mixed template is increased compared with the MA synthesized with a CTAB single template. Simultaneously, the MA exhibits a blue photoluminescence which come from the defect F+ and F centers, and the higher PL emission of the MA synthesized with a CTAB: utea mixed template is attributed to the high defect center density in the MA.

  20. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  1. Crystallography of Alumina-YAG-Eutectic

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  2. Optimized alumina coagulants for water treatment

    DOEpatents

    Nyman, May D [Albuquerque, NM; Stewart, Thomas A [Albuquerque, NM

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  3. Electrostatic-based model for alumina surfaces

    NASA Astrophysics Data System (ADS)

    Streitz, F. H.; Mintmire, J. W.

    1994-12-01

    As most technologically important metals will form oxides readily, any complete study of adhesion at real metal surfaces must include the metal-oxide interface. The role of this ubiquitous oxide layer cannot be overlooked, as the adhesive properties of the oxide or oxide-metal system can be expected to differ profoundly from the adhesive properties of a bare metal surface. We report on the development of a novel computational method for molecular dynamics simulations which explicitly includes variable charge transfer between anions and cations. This method is found to be capable of describing the elastic properties, surface energies, and surface relaxation of crystalline metal-oxides accurately. We discuss in detail results using this method of alpha-alumina and several of its low index faces.

  4. Compositional characterization of atomic layer deposited alumina

    SciTech Connect

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev

    2014-01-28

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al{sub 2}O{sub 3} is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra.

  5. Microstructure and creep properties of alumina.

    SciTech Connect

    Moreno, J. M. C.; Lopez, A. R.; Rodriguez, A. D.; Routbort, J. L.; Materials Science Division; Univ. of Seville

    1995-01-01

    High temperature creep of two zirconia toughened alumina ceramics, fabricated by powder processing and sol-gel precursors processing, has been studied in order to determine plastic deformation mechanisms. Compressive creep tests were carried out between 1300 and 1450 C, under stresses from 10 to 150 MPa. For the sample fabricated from powders, a stress exponent of 1.4 and an activation energy of 580 kJ/mol were found below a critical stress of 40 MPa. For larger stresses, accelerated creep rates developed. In the specimens processed from precursors, values of 1.8 for the stress exponent and 540 kJ/mol for the activation energy, over the entire range of stresses have been determined. Creep parameters and microstructural evolution of the samples during the experiments have been correlated with models to establish the dominant creep mechanism.

  6. Quantum Dots Confined in Nanoporous Alumina Membranes

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Xia, Jianfeng; Wang, Jun; Shinar, Joseph; Lin, Zhiqun

    2007-03-01

    Precise control over the dispersion and lateral distribution of quantum dots (QDs) within nanoscopic porous media provides a unique route to manipulate the optical and/or electronic properties of QDs in a very simple and controllable manner for applications related to light emitting, optoelectronic, and sensor devices. Here we filled nanoporous alumina membranes (PAMs) with CdSe/ZnS core/shell QDs by dip coating. The deposition of QDs induced changes in the refractive index of PAMs. The amount of absorbed QDs was quantified by fitting the reflection and transmission spectra observed experimentally with one side open and freestanding (i.e., with two sides open) PAMs employed, respectively. The fluorescence of the QDs was found to be retained within the cylindrical nanopores of PAMs.

  7. Nanoporous alumina as templates for multifunctional applications

    NASA Astrophysics Data System (ADS)

    Sousa, C. T.; Leitao, D. C.; Proenca, M. P.; Ventura, J.; Pereira, A. M.; Araujo, J. P.

    2014-09-01

    Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

  8. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  9. Impact spallation experiments - Fracture patterns and spall velocities

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1990-01-01

    The spall velocities produced by nine experimental impacts of 1 to 6.5 km/sec into San Marcos gabbro targets, using projectiles of Fe, Al, Pb, and basalt of various sizes, have been measured in conjunction with fragment-velocity high-speed filmings of the events. A detailed comparison is made between measured spall velocities and those predicted by the model of Melosh (1984), with a view to the compatibility of small-scale results and large planetary impacts. Attention is also given to the patterns of internal fracture generated by impact within the targets.

  10. Impact spallation experiments - Fracture patterns and spall velocities

    SciTech Connect

    Polanskey, C.A.; Ahrens, T.J. California Institute of Technology, Pasadena )

    1990-09-01

    The spall velocities produced by nine experimental impacts of 1 to 6.5 km/sec into San Marcos gabbro targets, using projectiles of Fe, Al, Pb, and basalt of various sizes, have been measured in conjunction with fragment-velocity high-speed filmings of the events. A detailed comparison is made between measured spall velocities and those predicted by the model of Melosh (1984), with a view to the compatibility of small-scale results and large planetary impacts. Attention is also given to the patterns of internal fracture generated by impact within the targets. 29 refs.

  11. The Effect of Fine Alumina Type on Composition of in Situ Spinel Formation in Alumina-Magnesia Castables

    NASA Astrophysics Data System (ADS)

    Paghandeh, M.; Monshi, A.; Emadi, R.

    Three types of low cement castables (LCC) were prepared from 5% reactive alumina (R5), 5% calcined alumina (A5) and equal proportions of 2.5% (AR). The nest of the composition was fine bauxite (0-1 mm, 57%), coarse bauxite (1-3 mm, 20%), calcined magnesia (5%), secar 71 refractory cemet (7%) and microsilica (1%). By the addition of 5% water, castables were moulded, aged, dried and fired to 1400°C for 2 h. XRD studies showed higher amount of in situ spinel formation in A5. The lattice constants of spinels in A5, AR and R5 were, respectively, 8.0348, 8.0688 and 8.0847 Å. This accounted for respectively alumina rich, stochiometry and magnesia rich spinels. Since calcined alumina is cheaper, produce higher amounts of spinel with the aid of alumina from the aggregate of bauxite and the binder of cement, and alumina rich spinel has better corrosion resistance properties, use of calcined alumina is recommended in LCC.

  12. Effects of ball milling and sintering on alumina and alumina-boron compounds

    NASA Astrophysics Data System (ADS)

    Cross, Thomas

    Alumina has a wide variety of applications, but the processing of alumina based materials can be costly. Mechanically milling alumina has been shown to enhance the sintering properties while decreasing the sintering temperature. Additions of boron have also proven to increase sintering properties of alumina. These two processes, mechanical milling and boron additions, will be combined to test the sintering properties and determine if they are improved upon even further compared to the individual processes. Multiple samples of pure alumina, 0.2 weight percent boron, and 1.0 weight percent boron are batched and processed in a ball mill for different time intervals. These samples are then characterized to observe the structure and properties of the samples after milling but before sintering. Pellets are dry pressed from the milled powders, sintered at 1200°C for one to 10 hours, and characterized to determine the impact of processing. X-ray diffractometry (XRD) was used on each sample to determine crystallite size and lattice parameters at different stages throughout the experiment. XRD was also used to identify any samples with an aluminum borate phase. Scanning electron microscopy (SEM) was used to observe the powder and pellet morphology and to measure bulk chemical composition. Samples were sputter coated with an Au-Pd coating observed in the SEM to characterize the topography as a function of variables such as milling time, boron composition, and sintering time. Additionally, porosity and change in diameter were measured to track the sintering process. Milling sample for longer periods of time would be unnecessary due to the crystallite size leveling off between 10 and 12 hours of milling time. Samples of alumina with 0.2 weight percent boron prove to have very little effect on the sintering properties. At 1.0 weight percent boron, there are changes in diffraction patterns and topography after being sintered for one hour. The porosities of all of the sintered

  13. Alumina Inlay Failure in Cemented Polyethylene-backed Total Hip Arthroplasty

    PubMed Central

    Iwaki, Hiroyoshi; Minoda, Yukihide; Ohashi, Hirotsugu; Takaoka, Kunio

    2008-01-01

    Alumina-on-alumina bearings for THA have markedly improved in mechanical properties through advances in technology; however, alumina fracture is still a concern. We retrospectively reviewed 77 patients (82 hips) with cemented alumina-on-alumina THAs to identify factors relating to alumina failure. The mean age of the patients at surgery was 63 years. The prostheses had a cemented polyethylene-backed acetabular component with an alumina inlay and a 28-mm alumina head. Revision surgery was performed because of alumina inlay failure in four hips (three fractures and one dissociation; 5.6%), deep infection in two, and recurrent dislocation in one. The 8-year survival rate was 90.7% with revision for any reason and 94.4% with revision for alumina failure as the end point. There were no differences in age, body mass index, gender, mobility, function, abduction angle, or size of component among the four hips with alumina failure and the remaining 68 hips without it; however, radiolucent lines in the sockets were more apparent in four cases with alumina inlay failure. This alumina-on-alumina THA thus yielded unsatisfactory medium-term results because we observed a high rate of catastrophic alumina inlay failure. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18288546

  14. Alumina-Forming MAX Phases in Turbine Material Systems

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Harder, Bryan J.; Garg, Arnita; Nesbitt, James A.

    2015-01-01

    Coatings for high temperature turbine components are based on low conductivity YSZ thermal barriers and protective NiAl, NiCoCrAlY bond coats. Good oxidation hot corrosion resistance, intermediate CTE, and strain tolerance of Ti2AlC and Cr2AlC MAX phases are thus of special interest. Their alumina scale growth follows a cubic law in accord with FeCrAlY alloys, with oxygen grain boundary diffusivity: Dgb 1.8 x 10-10 exp(-375 kJmole) m3s. Protective cubic kinetics are also found in high pressure burner rig (6 atm., 25 ms) and TGA tests of MAXthal 211Ti2AlC. The initial portion (0.1 hr) is dominated by fast TiO2 growth (with little evidence of scale volatility in high pressure water vapor, as found for SiO2 scales). Bulk Ti2AlC and Cr2AlC substrates show promise as potential bond coats for YSZ TBCs in 1000-1200 C furnace life (500 h) tests. Cr2AlC is proving to be very resistant to 700-900 C Na2SO4 hot corrosion and is of interest for disk alloys. Preliminary diffusion bonded Cr2AlC-superalloy hybrid couples have survived 1000 hr interrupted furnace tests at 800C with no indication of cracking or debonding. Diffusion zones of -NiAl+Cr7C3 were produced in these above 1000 C, but did not grow to any great extent after 1000 hr at 800 C. Processing as coatings presents challenges, however the basic properties of MAX phases provide novel opportunities for high temperature turbine components.

  15. Fabrication of whisker-toughened alumina tubes. Final report

    SciTech Connect

    Loutfy, R.O.

    1993-09-01

    A process has been developed to fabricate whisker toughened alumina composites by slip casting dense colloidal suspensions of Al{sub 2}O{sub 3}-15% SiC{sub w}. Optimum processing parameters for slip casting we developed with slip viscosity of 60--70 centipoise and solids content 78--79 wt %. Slip-cast parts with green densities 65 to 68% theoretical were achieved. Composite parts were pressureless sintered to 96--97% theoretical density with <1% open porosity. The composites exhibited strengths of 500 MPa, toughness of 6.5 MPa m{sup 1/2}, and hardness of 17.26 GPa (1765 kg/mm{sup 2}). High temperature strength retention was maintained up to 1200C. Good thermal shock resistance with {Delta}T{sub cr} = 500C was also achieved. The process technology was transferred into pilot scale for producing prototype heat exchanger tubing up to 4 inches in diameter at the facilities of Vesuvius/McDanel.

  16. Removing Fluoride Ions with Continously Fed Activated Alumina.

    ERIC Educational Resources Information Center

    Wu, Yeun C.; Itemaking, Isara Cholapranee

    1979-01-01

    Discussed is the mathematical basis for determining fluoride removal during water treatment with activated alumina. The study indicates that decreasing particle size decreases the pore diffusion effect and increases fluoride removal. (AS)

  17. Growth of Zircone on Nanoporous Alumina Using Molecular Layer Deposition

    NASA Astrophysics Data System (ADS)

    Hall, Robert A.; George, Steven M.; Kim, Yeongae; Hwang, Woonbong; Samberg, Meghan E.; Monteiro-Riviere, Nancy A.; Narayan, Roger J.

    2014-04-01

    Molecular layer deposition (MLD) is a sequential and self-limiting process that may be used to create hybrid organic/inorganic thin films from organometallic precursors and organic alcohol precursors. In this study, films of a zirconium-containing hybrid organic/inorganic polymer known as zircone were grown on nanoporous alumina using MLD. Scanning electron microscopy data showed obliteration of the pores in zircone-coated nanoporous alumina. An in vitro cell viability study indicated that the growth of human epidermal keratinocytes was the greatest on zircone-coated nanoporous alumina than on uncoated nanoporous alumina. Our results suggest that MLD may be used to create biocompatible coatings for use in many types of medical devices.

  18. Potassium Beta-Alumina/Molybdenum/Potassium Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Williams, R.; Kisor, A.; Ryan, M.; Nakamura, B.; Kikert, S.; O'Connor, D.

    1994-01-01

    potassium alkali metal thermal-to-electric converter (K-AMTEC) cells utilizing potassium beta alumina solid electrolyte (K-BASE) are predicted to have improved properties for thermal to electric conversion at somewhat lower temperatures than sodium AMTEC's.

  19. Fabrication method produces high-grade alumina crucibles

    NASA Technical Reports Server (NTRS)

    Palmour, H.

    1965-01-01

    Alumina-binder mixture, which has been dry pressed in a die using a mating punch, forms crucibles of various configurations and after firing results in a ceramic structure for use in diffusion experiments.

  20. Voltage Fluctuations at Sodium Beta Alumina/Mercury Electrodes.

    DTIC Science & Technology

    1987-06-01

    008 VOLTAGE FLUCTUATIONS AT SODIUM 0" ALUMINA/MERCURY ELECTRODES by Chu Kun Kuo* and James J. Brophy Physics Department University of Utah Salt Lake...ADDRESS (Cty. State, and ZIP Code) 7b. ADDRESS (City. State, and ZIP Code) UNIVERSITY OF UTAH UNIVERSITY OF NEW MEXICO SALT LAKE CITY, UTAH 84112...Include Security Classification) VOLTAGE FLUCTUATIONS AT SODIUM BETA" ALUMINA/MERCURY ELECTRODES -, J l.. 0 12 PERSONAL AUTHOR(S) Chu Kun Kuo and James

  1. I. Impact Spallation Experiments: Fracture Patterns and Spall Velocities. I. Craters in Carbonate Rocks: AN Electron Paramagnetic Resonance Analysis of Shock Damage.

    NASA Astrophysics Data System (ADS)

    Polanskey, Carol Ann

    This work is divided into two independent papers. Paper 1. Spall velocities were measured for nine experimental impacts into San Marcos gabbro targets. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles were iron, aluminum, lead, and basalt of varying sizes. The projectile masses ranged from a 4 g lead bullet to a 0.04 g aluminum sphere. The velocities of fragments were measured from high-speed films taken of the events. The maximum spall velocity observed was 30 m/sec, or 0.56 percent of the 5.4 km/sec impact velocity. The measured velocities were compared to the spall velocities predicted by the spallation model of Melosh (1984). The compatibility between the spallation model for large planetary impacts and the results of these small scale experiments are considered in detail. The targets were also bisected to observe the pattern of internal fractures. A series of fractures were observed, whose location coincided with the boundary between rock subjected to the peak shock compression and a theoretical "near surface zone" predicted by the spallation model. Thus, between this boundary and the free surface, the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below. Paper 2. Carbonate samples from the nuclear explosion crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron paramagnetic resonance, EPR. The first series of samples for OAK Crater were obtained from six boreholes within the crater, and the second series were ejecta samples recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to spectra of Solenhofen limestone, which had been shocked to known pressures. The results of the OAK borehole analysis have identified a thin zone of highly shocked carbonate material underneath the crater floor. This zone has a maximum depth of approximately 200 ft below sea floor

  2. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    NASA Astrophysics Data System (ADS)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of <2°. Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  3. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, T.R.; Golden, T.C.; Mayorga, S.G.; Brzozowski, J.R.; Taylor, F.W.

    1999-06-29

    A pressure swing adsorption process for absorbing CO[sub 2] from a gaseous mixture containing CO[sub 2] comprises introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100 C and 500 C to adsorb CO[sub 2] to provide a CO[sub 2] laden alumina adsorbent and a CO[sub 2] depleted gaseous mixture and contacting the CO[sub 2] laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO[sub 2] from the CO[sub 2] laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100 C and 600 C, is not degraded by high concentrations of water under process operating conditions. 1 fig.

  4. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, Thomas Richard; Golden, Timothy Christopher; Mayorga, Steven Gerard; Brzozowski, Jeffrey Richard; Taylor, Fred William

    1999-01-01

    A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.

  5. Porous alumina and zirconia ceramics with tailored thermal conductivity

    NASA Astrophysics Data System (ADS)

    Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, J.

    2012-11-01

    The thermal conductivity of porous ceramics can be tailored by slip casting and uniaxial dry pressing, using either fugitive pore formers (saccharides) or partial sintering. Porous alumina and zirconia ceramics have been prepared using appropriate powder types (ungranulated for casting, granulated for pressing) and identical firing regimes (but different maximum temperatures in the case of partial sintering). Thermal diffusivities have been measured by the laser- and xenon-flash method and transformed into relative thermal conductivities, which enable a temperature-independent comparison between different materials. While the porosity can be controlled in a similar way for both materials when using pore formers, partial sintering exhibits characteristic differences between alumina and zirconia (for alumina porosities below 45 %, full density above 1600 °C, for zirconia porosities below 60 %, full density above 1300 °C). The different compaction behavior of alumina and zirconia (porosity after pressing 0.465 and 0.597, respectively) is reflected in the fact that for alumina the relative conductivity data of partially sintered materials are below the exponential prediction, while for zirconia they coincide with the latter. Notwithstanding these characteristic differences, for both alumina and zirconia it is possible to tailor the thermal conductivity from 100 % down to approx. 15 % of the solid phase value.

  6. Dynamic yield and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M.; Frage, N.

    2014-05-01

    Fully dense alumina samples with 0.6 μm grain size were produced from alumina powder using Spark Plasma Sintering and tested in two types of VISAR-instrumented planar impact tests. In the tests of the first type the samples of 0.28 to 6-mm thickness were loaded by 1-mm tungsten impactors accelerated up to a velocity of about 1 km/s. These tests were aimed to study the Hugoniot elastic limit (HEL) of the SPS-processed alumina and the decay of the elastic precursor wave with propagation distance. In the second type of test the samples of ~3-mm thickness were loaded by 1-mm copper impactors accelerated up to velocities 100-1000 m/s. These tests were aimed to study the dynamic tensile (spall) strength of the alumina. The data on tensile fracture of the alumina demonstrate a monotonic decline of the spall strength with the amplitude of the loading stress pulse. The data on the decay of the elastic precursor wave allows for determining the rates of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of shock-induced inelastic deformation and, thus, to derive some conclusions concerning the mechanisms responsible of the deformation.

  7. Dynamic yield and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, Inna; Zaretsky, E.; Kalabukhov, S.; Dariel, M.; Frage, N.

    2013-06-01

    Fully dense alumina samples with 0.6- μ grain size were produced from alumina powder using Spark Plasma Sintering and tested in two types of VISAR-instrumented planar impact tests.. In the tests of the first type the samples of 0.28 to 6-mm thickness were loaded by 1-mm tungsten impactors accelerated up to velocity of about 1 km/s. These tests were aimed to study of the Hugoniot elastic limit (HEL) of the SPS-processed alumina and the decay of the elastic precursor wave with the propagation distance. In the second type of the tests the samples of ~ 3-mm thickness were loaded by 1-mm copper impactors accelerated up to velocities 100-1000 m/s was. These tests were aimed to the study of the dynamic tensile (spall) strength of the alumina. The data on the decay of the elastic precursor wave allow determining the rates of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced plastic deformation and, thus, to derive some conclusions concerning the mechanisms responsible of the deformation. The data on the tensile fracture of the alumina demonstrate a monotonous decline of the spall strength with the amplitude of the loading stress pulse.

  8. Wetting and strength issues at Al/alpha-alumina interfaces

    SciTech Connect

    Saiz, Eduardo; Tomsia, Antoni P.; Suganuma, Katsuaki

    2003-04-15

    The wetting behavior and strength at aluminum/alumina interfaces has been an active subject of research. Al/alumina applications include ceramic-metal composites and several applications for electronic industries. In this paper the interface strength and microstructure of Al/alpha-alumina was investigated. We discovered that in a solid-state joining, the strength of the joint increases with increasing joining temperature. In a liquid-state joining, the strength of the joint gradually decreases due to the formation of unbonded areas. The strength, sigma sub b, is expressed by the following equation as a function of unbonded area, A: sigma sub b = 2.22 A + 143 (70 percent {le} A {le} 100 percent). The highest strength reached 400 MPa when the interface was formed at around the melting temperature of aluminum. An aluminum layer close to the interface became a single crystal when it was bonded to a sapphire. The following crystallographic orientation relationship is established: (1{bar 1}1){sub Al}//(001){sub {alpha}}-Al{sub 2} O{sub 3}, (110){sub Al}//<100>{sub {alpha}}-Al{sub 2}O{sub 3}. Amorphous alumina islands were formed at the interface. In the amorphous alumina, gamma-alumina nanocrystals grew from the sapphire, with the same orientation relationship to sapphire as above.

  9. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia.

    PubMed

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H Jay; Nicholson, Wayne L

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.

  10. Target delamination by spallation and ejecta dragging: An example from the Ries crater's periphery

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Ivanov, Boris A.

    2006-11-01

    Subhorizontal shear planes (detachments) are observed in bedded limestones in the periphery of the Ries impact crater, Germany. These detachments occur at 0.8-1.8 crater radii distance from the crater center beneath deposits of the continuous ejecta blanket. Striations on detachment planes and offsets of markers indicate top-outward shearing with radial slip vectors. Detachments were found at depths between a few meters and more than 50 m beneath the target surface. The displacements along these faults range from meters to decameters and decrease with increasing depth and distance from the crater center. With increasing crater distance, detachment horizons tend to climb to shallower levels. Cross-cutting relationships to faults associated with the crater collapse indicate that detachment faulting started prior to the collapse but continued during crater modification. Numerical modeling of the cratering process shows that near-surface deformation outside the transient crater is induced by two separate mechanisms: (i) weak spallation by interference of shock and release waves near the target surface and (ii) subsequent dragging by the deposition of the ejecta curtain. Spallation causes an upward and outward directed motion of target material that increases in magnitude toward the target surface. It leads to decoupling of the uppermost target layers in the early cratering stage without totally disintegrating the rock. The subsequent arrival of the oblique impact shower of the ejecta curtain at the target surface delivers a horizontal momentum to the uppermost target area and results in a second horizontal displacement increment by dragging. With increasing depth this effect vanishes rapidly. Spallation decoupling and subsequent ejecta dragging of near-surface rocks is probably a general cratering mechanism around craters in layered targets with weak interbeds.

  11. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Kim, S.-H.; Afanador, R.; Barnhart, D. L.; Crofford, M.; Degraff, B. D.; Doleans, M.; Galambos, J.; Gold, S. W.; Howell, M. P.; Mammosser, J.; McMahan, C. J.; Neustadt, T. S.; Peters, C.; Saunders, J. W.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2017-04-01

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.

  12. Spallation neutron source saddle antenna H{sup -} ion source project

    SciTech Connect

    Dudnikov, Vadim; Johnson, Rolland P.; Dudnikova, Galina; Stockli, Martin; Welton, Robert

    2010-02-15

    In this project we are developing an H{sup -} source which will synthesize the most important developments in the field of negative ion sources to provide high current, high brightness, good lifetime, high reliability, and high power efficiency. We describe two planned modifications to the present spallation neutron source external antenna source in order to increase the plasma density near the output aperture: (1) replacing the present 2 MHz plasma-forming solenoid antenna with a 13 MHz saddle-type antenna and (2) replacing the permanent multicusp magnetic system with a weaker electromagnet.

  13. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  14. Cavitation and spallation in liquid metal droplets produced by subpicosecond pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Krivokorytov, M. S.; Vinokhodov, A. Yu.; Sidelnikov, Yu. V.; Krivtsun, V. M.; Kompanets, V. O.; Lash, A. A.; Koshelev, K. N.; Medvedev, V. V.

    2017-03-01

    The deformation and fragmentation of liquid metal microdroplets by intense subpicosecond Ti:sapphire laser pulses is experimentally studied with stroboscopic shadow photography. The experiments are performed at a peak intensity of 1014W /c m2 at the target's surface, which produces shock waves with pressures in the Mbar range. As a result of such a strong impact, the droplet is transformed into a complex-shaped hollow structure that undergoes asymmetrical expansion and eventually fragments. The hollow structure of the expanding target is explained by the effects of cavitation and spallation that follow the propagation of the laser-induced shock wave.

  15. Overview of ten-year operation of the superconducting linear accelerator at the Spallation Neutron Source

    DOE PAGES

    Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.; ...

    2017-02-04

    The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenancemore » activities for cryomodules are introduced.« less

  16. Testing Procedures and Results of the Prototype Fundamental Power Coupler for the Spallation Neutron Source

    SciTech Connect

    Stirbet, M; Campisi, I E; Daly, E F; Davis, G K; Drury, M; Kneisel, P; Myneni, G; Powers, T; Schneider, W J; Wilson, K M; Kang, Y; Cummings, K A; Hardek, T

    2001-06-01

    High-power RF testing with peak power in excess of 500 kW has been performed on prototype Fundamental Power Couplers (FPC) for the Spallation Neutron Source superconducting (SNS) cavities. The testing followed the development of procedures for cleaning, assembling and preparing the FPC for installation in the test stand. The qualification of the couplers has occurred for the time being only in a limited set of conditions (travelling wave, 20 pps) as the available RF system and control instrumentation are under improvement.

  17. Emittance studies of the Spallation Neutron Source external-antenna H- ion source.

    PubMed

    Han, B X; Stockli, M P; Welton, R F; Pennisi, T R; Murray, S N; Santana, M; Long, C D

    2010-02-01

    A new Allison-type emittance scanner has been built to characterize the ion sources and low energy beam transport systems at Spallation Neutron Source. In this work, the emittance characteristics of the H(-) beam produced with the external-antenna rf-driven ion source and transported through the two-lens electrostatic low energy beam transport are studied. The beam emittance dependence on beam intensity, extraction parameters, and the evolution of the emittance and twiss parameters over beam pulse duration are presented.

  18. Electron cloud development in the Proton Storage Ring and in theSpallation Neutron Source

    SciTech Connect

    Pivi, M.T.F.; Furman, M.A.

    2002-10-08

    We have applied our simulation code "POSINST" to evaluatethe contribution to the growth rate of the electron-cloud instability inproton storage rings. Recent simulation results for the main features ofthe electron cloud in the storage ring of the Spallation Neutron Source(SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR)at Los Alamos are presented in this paper. A key ingredient in our modelis a detailed description of the secondary emitted-electron energyspectrum. A refined model for the secondary emission process includingthe so-called true secondary, rediffused and backscattered electrons hasrecently been included in the electron-cloud code.

  19. Edge-defined film-fed growth of beta-alumina and Mg-substituted beta-alumina

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.; Stormont, R. W.; Cocks, F. H.

    1975-01-01

    High Na vapor pressure, peritectic decomposition, and high reactivity of the melt complicate the growth of beta-alumina crystals. These difficulties were overcome by using a high-pressure (300 psig) growth chamber, Na2O-rich melts, and Ir for all surfaces in contact with the melt. These procedures were combined with the edge-defined film-fed growth technique to produce single-crystal beta-alumina tubes and ribbons.

  20. Spallation Neutrons and Pressure SNAP DE-FG02-03ER46085 CLOSE-OUT MAY 2009

    SciTech Connect

    Parise, John B

    2009-05-22

    The purpose of the grant was to build a community of scientist and to draw upon their expertise to design and build the world's first dedicated high pressure beamline at a spallation source - the so called Spallation Neutron And Pressure (SNAP) beamline at the Spallation Neutron Source (SNS) at OAk Ridge NAtional LAboratory. . Key to this endeavor was an annual meeting attended by the instrument design team and the executive committee. The discussions at those meeting set an ambitious agenda for beamline design and construction and highlighted key science areas of interest for the community. This report documents in 4 appendices the deliberations at the annual SNAP meetings and the evolution of the beamline optics from concept to construction. The appendices also contain key science opportunities for extreme conditions research.

  1. Big-bang nucleosynthesis with a long-lived charged massive particle including {sup 4}He spallation processes in a bound state

    SciTech Connect

    Jittoh, Toshifumi; Kohri, Kazunori; Koike, Masafumi; Sato, Joe; Sugai, Kenichi; Yamanaka, Masato; Yazaki, Koichi

    2012-07-27

    We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.

  2. Effect of alumina composition and surface integrity in alumina/epoxy composites on the ultrasonic attenuation properties.

    PubMed

    Cho, Eikhyun; Park, Gwanwoo; Lee, Jae-Wan; Cho, Sung-Min; Kim, Taekyung; Kim, Joongeok; Choi, Wonjoon; Ohm, Won-Suk; Kang, Shinill

    2016-03-01

    We report a method of fabricating backing blocks for ultrasonic imaging transducers, using alumina/epoxy composites. Backing blocks contain scatterers such as alumina particles interspersed in the epoxy matrix for the effective scattering and attenuation of ultrasound. Here, the surface integrity can be an issue, where the composite material may be damaged during machining because of differences in strength, hardness and brittleness of the hard alumina particles and the soft epoxy matrix. Poor surface integrity results in the formation of air cavities between the backing block and the piezoelectric element upon assembly, hence the increased reflection off the backing block and the eventual degradation in image quality. Furthermore, with an issue of poor surface integrity due to machining, it is difficult to increase alumina as scatterers more than a specific mass fraction ratio. In this study, we increased the portion of alumina within epoxy matrix by obtaining an enhanced surface integrity using a net shape fabrication method, and verified that this method could allow us to achieve higher ultrasonic attenuation. Backing blocks were net-shaped with various mass fractions of alumina to characterize the formability and the mechanical properties, including hardness, surface roughness and the internal micro-structure, which were compared with those of machined backing blocks. The ultrasonic attenuation property of the backing blocks was also measured.

  3. PREPARATION AND TESTING OF CORROSIONAND SPALLATION-RESISTANT COATINGS

    SciTech Connect

    Hurley, John

    2014-11-01

    has been entered into a finite element model using ANSYS so that appropriate force-applying structures can be designed for use in joining structures composed of APMT and the nickel alloys. Finite element modeling has been performed to finalize the fabrication geometry for the corrosion-testing phase. The addition of another bolt increases stress uniformity away from the region where the clamping is applied. It appears that a bolt spacing of approximately 25 mm in each jig is appropriate. This will allow the fabrication of 50-mm-wide sections of joints for the corrosion-testing task. Gasifier sampling activities continue to determine what types of trace contaminants may occur in cleaned syngas that could lead to corrosion or deposition in turbines firing coal syngas. The EERC has several pilot-scale gasifiers that are continually used in a variety of test configurations as determined by the needs of the projects that are funding the tests. We are sampling both noncombusted and combusted syngas produced during some of the pilot-scale gasifier tests. This year sampling was performed of both syngas and combusted syngas while the entrained-flow gasifier (EFG) was firing subbituminous coal from the Antelope Mine in Wyoming. Results of scanning electron microscope analyses of the syngas before combustion showed no submicron particles, only flakes of iron oxide that had likely formed on steel surfaces inside the combustor. As shown in the 2013 annual report, soot was also collected from the syngas when the much-lower-temperature fluid-bed gasifier (FBG) was fired, indicating that the much higher temperature of the EFG prevented soot formation. However, particles collected from the combusted syngas consist almost entirely of submicron soot, and little to no vaporized metals made it past the warm-gas filters and scrubbers in the high-temperature EFG system which could then deposit in a turbine system burning a higher hydrogen syngas. These results are consistent with the

  4. Microstructure evolution and densification of alumina in liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Dong, Weimin

    The microstructure evolution and densification of alumina during liquid phase sintering were quantified. Quantification included the evolution of pore-size distribution, the redistribution of liquid phase, the densification kinetics, and the fraction of closed and open pores. The results revealed that the small and large pores were filled simultaneously. This is inconsistent with Shaw's model in which liquid fills preferentially the smaller low-coordination-number pores in order to reach a low-energy configuration. The results also recommended that the pressure build-up of the trapped gases in pores due to the closure of open pores might have a significantly negative contribution to the driving force, and consequently cause the termination of the densification of alumina. To demonstrate whether the trapped gases played an important role in the microstructure evolution and the densification of alumina during liquid phase sintering, the following two experiments have been conducted. First, alumina preforms containing artificial pores were penetrated by glass. The results indicated that the trapped gases in pores had a considerable influence on the pore filling process, and ultimately caused the termination of the densification of the alumina preforms. Second, alumina compacts containing different amount of glass were sintered in vacuum. The alumina compact containing 20 vol. % reached full density during vacuum sintering, indicating that the pressure build-up of the trapped gases in pores was the main factor causing the termination of the densification of alumina in the final stage of liquid phase sintering. The limiting relative densities of compacts were calculated theoretically on the basis of a comprehensive analysis of the variation of the capillary pressure and gas pressure in pores with pore size and pore number. The capillary pressure and gas pressure in alumina compact during liquid phase sintering were analyzed on the basis of the above theoretical models

  5. Dopant effect of yttrium and the growth and adherence of alumina on nickel-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Anderson, A. B.; Mehandru, S. P.; Smialek, J. L.

    1985-01-01

    The atom superposition and electron delocalization molecular orbital theory and large cluster models have been employed to study cation vacancy diffusion in alpha-Al2O3 and the bonding of alpha-Al2O3 to nickel, aluminum, and yttrium surfaces. Al(3+) diffusion barriers in alpha-Al2O3 by the vacancy mechanism are in reasonable agreement with experiment. The barrier to Y(3+) diffusion is predicted to be much higher. Since addition of yttrium to transition metal alloys is known to reduce the growth rate and stress convolutions in protective alumina scales, this result suggests the rate-limiting step in scale growth is cation vacancy diffusion. This may partially explain the beneficial effect of yttrium dopants on scale adhesion. The theory also predicts a very strong bonding between alumina and yttrium at the surface of the alloy. This may also be important to the adhesion phenomenon. It is also found that aluminum and yttrium atoms bond very strongly to nickel because of charge transfer from their higher lying valence orbitals to the lower lying nickel s-d band.

  6. Preparation and testing of corrosion and spallation-resistant coatings

    SciTech Connect

    Hurley, John

    2012-09-30

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding. It involves placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn then diffuses through the alloys and evaporates from their surfaces. Laboratory testing has shown that the diffusion rate of Zn through the FeCrAl alloy is much faster than through the nickel superalloys. This means that the FeCrAl will serve as a sink for the Zn bonding alloy during the evaporative metal bonding process. Also, the testing has shown that the Zn diffusion mechanism is bulk diffusion, and not intergranular. This is a surprise. However, it means that quantification of the Zn diffusivities in these samples will be significantly simpler than would have been the case if grain boundary diffusion dominated. In addition to the laboratory testing, gas impinger and particulate samples are being collected from a combustor firing syngas and natural gas to determine what types of microcontaminants may reach a turbine firing syngas. The syngas is created in one of two different pilot-scale pressurized coal gasifiers. The initial analysis of the impinger solutions was for standard U.S. Environmental Protection Agency (EPA) Method 29 determination of hazardous metals and did not include major element analysis. When syngas is fired, the amount of Mn in the combustor gas increases substantially. Halogens (Br2 and Cl2) and hydrogen

  7. Joining of alumina by vacuum brazing

    NASA Astrophysics Data System (ADS)

    Heikinheimo, Liisa; Siren, Mika; Kauppinen, Pentti

    1993-08-01

    The active brazing method for diffusion bonding of ceramics to metals is addressed. This method is very flexible compared to the traditional Mo-manganese coating with subsequent brazing that includes four process steps: in active brazing the process is done in one step. The joint properties are favorable, the residual stress build up is limited if the braze is correctly selected and the thermal cycle is controlled, and the resulting strength and leak tightness are good. In experimental work the joinability of alumina to titanium and Ni superalloys was studied by wetting experiments, nondestructive test and shear strength measurements. The spreading of the braze is affected not only by the surface conditions of mating materials but also by the type of the brazing alloy. The Ag-Cu base alloys give better wetting, strength and leak tightness properties than the Ag base alloys. A shear test method was developed for the mechanical testing of metal-ceramic joints. However, the sample geometry affects the measured values, namely a smaller specimen size provides better results. The correlation between the C-SAM results, which describe the ratio between the true bonded area and unbonded area, and measured shear strength values is presented. The dependence between the measured strength and the area of the joint defects becomes obvious and should be studied in more detail.

  8. Thermal Conductivity of Alumina and Silica Nanofluids

    NASA Astrophysics Data System (ADS)

    Castellanos, Julian G. Bernal

    This thesis studies the effects of the base fluid, particle type/size, and volumetric concentration on the thermal conductivity of Alumina and Silica nanofluids. The effects of base fluid were observed by preparing samples using ethylene glycol (EG), water, and mixtures of EG/water as the base fluid and Al2O3 (10 nm) nanoparticles. The particles type/size and volumetric concentration effects were tested by preparing samples of nanofluids using Al2O3 (10nm), Al2O3 (150nm), SiO2 (15 nm), and SiO2 (80 nm) nanoparticles and ionized water as base fluid at different volumetric concentrations. All samples were mixed using a sonicator for 30 minutes and a water circulator to maintain the sample at room temperature. The thermal conductivity was measured using a Thermtest Transient Plane Source TPS 500S. The effects of gravity, Brownian motion and thermophoresis were also studied. EG produced the highest thermal conductivity enhancement out of all base fluids tested. Smaller particle size produced a higher enhancement of thermal conductivity, while the volumetric concentration did not have a significant effect in the thermal conductivity enhancement. Finally, gravity, Brownian diffusion and thermophoresis effects played a role in the total enhancement of the thermal conductivity. The nanoparticles were observed to settle rapidly after sonication suggesting gravity effects may play a significant role.

  9. Annealing Would Improve beta" - Alumina Solid Electrolyte

    NASA Technical Reports Server (NTRS)

    Williams, Roger; Homer, Margie; Ryan, Margaret; Cortez, Roger; Shields, Virgil; Kisor, Adam

    2003-01-01

    A pre-operational annealing process is under investigation as a potential means of preventing a sudden reduction of ionic conductivity in a Beta"-alumina solid electrolyte (BASE) during use. On the basis of tests, the sudden reduction of ionic conductivity, followed by a slow recovery, has been found to occur during testing of the solid electrolyte and electrode components of an alkali metal thermal-to-electric converter (AMTEC) cell. At this time, high-temperature tests of limited duration have indicated the superiority of the treated BASE, but reproducible tests over thousands of hours are necessary to confirm that microcracking has been eliminated. The ionic conductivity of the treated BASE is also measured to be higher than untreated BASE at 1,073 K in low-pressure sodium vapor. Microcracking resulting in loss of conductivity was not observed with treated BASE in one high-temperature experiment, but this result must be duplicated over very long testing times to be sure of the effect. Shorter annealing times (10 to 20 hours) were found to result in significantly less loss of mass; it may be necessary for the packed powder mixture to evolve some Na2O before the Na2O can leave the ceramic.

  10. Mechanical properties of alumina porcelain during heating

    NASA Astrophysics Data System (ADS)

    Šín, Peter; Podoba, Rudolf; ŠtubÅa, Igor; Trník, Anton

    2014-11-01

    The mechanical strength and Young's modulus of green alumina porcelain (50 wt. % of kaolin, 25 wt. % of Al2O3, and 25 wt. % of feldspar) were measured during heating up to 900 °C and 1100 °C, respectively. To this end, we used the three point-bending method and modulated force thermomechanical analysis (mf-TMA). The loss liberation - of the physically bound water (20 - 250 °C) strengthens the sample and Young's modulus increases its values significantly. The dehydroxylation that takes place in the range of 400 - 650 °C causes a slight decrease in Young's modulus. On the other hand, the mechanical strength slightly increases in this temperature range, although it has a sudden drop at 420 °C. Beyond the dehydroxylation range, above 650 °C, both Young's modulus and mechanical strength increase. Above 950 °C, a sharp increase of Young's modulus is caused by the solid-state sintering and the new structure created by the high-temperature reactions in metakaolinite.

  11. Effect of Zirconia and Alumina Fillers on the Microstructure and Mechanical Strength of Dental Glass Ionomer Cements

    PubMed Central

    Souza, Júlio C. M.; Silva, Joel B.; Aladim, Andrea; Carvalho, Oscar; Nascimento, Rubens M.; Silva, Filipe S.; Martinelli, Antonio E.; Henriques, Bruno

    2016-01-01

    Background: Glass-ionomer cements perform a protective effect on the dentin-pulp complex considering the F ions release and chemical bonding to the dental structures. On the other hand, those materials have poor physic-mechanical properties in comparison with the restorative resin composite. The main aim of this work was to evaluate the influence of zirconia and/or alumina fillers on the microstructure and strength of a resin modified glass-ionomer cement after thermal cycling. Methods: An in vitro experimental study was carried out on 9 groups (n = 10) of cylindrical samples (6 x 4 mm) made from resin modified glass-ionomer (Vitremer, 3M, USA) with different contents of alumina and/or zirconia fillers. A nano-hybrid resin composite was tested as a control group. Samples were mechanically characterized by axial compressive tests and electron scanning microscopy (SEM) coupled to energy dispersive X-ray spectrophotometry (EDS), before and after thermal cycling. Thermal cycling procedures were performed at 3000, 6000 and 10000 cycles in Fusayama´s artificial saliva at 5 and 60 oC. Results: An improvement of compressive strength was noticed on glass-ionomer reinforced with alumina fillers in comparison with the commercial glass ionomer. SEM images revealed the morphology and distribution of alumina or zirconia in the microstructure of glass-ionomers. Also, defects such as cracks and pores were detected on the glass-ionomer cements. The materials tested were not affected by thermal cycling in artificial saliva. Conclusion: Addition of inorganic particles at nano-scale such as alumina can increase the mechanical properties of glass-ionomer cements. However, the presence of cracks and pores present in glass-ionomer can negatively affect the mechanical properties of the material because they are areas of stress concentration. PMID:27053969

  12. Proceedings of the workshop on ion source issues relevant to a pulsed spallation neutron source: Part 2 workshop presentations

    SciTech Connect

    Schroeder, L.; Leung, Ka-Ngo; Alonso, J.

    1994-10-01

    As part of the Lawrence Berkeley Laboratory Pulsed Spallation Source study, this Workshop was convened to address ion-source technology`s present status with respect to the next-generation Pulsed Spallation Source in the 1-5 MW range for the neutron scattering community. Considerations of Low Energy Beam Transport (LEBT) parameters and designs were included in the discussions throughout the Workshop. Ion-source requirements and actually-achieved performances were assessed, resulting in a determination of research and development requirements to bridge the gap. Part 1 of these Proceedings summarizes the Workshop; Part 2 contains viewgraphs of Workshop presentations.

  13. Ion polarization behavior in alumina under pulsed gate bias stress

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Diallo, Abdou Karim; Katz, Howard E.

    2015-03-01

    Alkali metal ion incorporation in alumina significantly increases alumina capacitance by ion polarization. With high capacitance, ion-incorporated aluminas become promising high dielectric constant (high-k) gate dielectric materials in field-effect transistors (FETs) to enable reduced operating voltage, using oxide or organic semiconductors. Alumina capacitance can be manipulated by incorporation of alkali metal ions, including potassium (K+), sodium (Na+), and lithium (Li+), having different bond strengths with oxygen. To investigate the electrical stability of zinc tin oxide-based transistors using ion incorporated alumina as gate dielectrics, pulsed biases at different duty cycles (20%, 10%, and 2% representing 5 ms, 10 ms, and 50 ms periods, respectively) were applied to the gate electrode, sweeping the gate voltage over series of these cycles. We observed a particular bias stress-induced decrease of saturation field-effect mobility accompanied by threshold voltage shifts (ΔVth) in potassium and sodium-incorporated alumina (abbreviated as PA and SA)-based FETs at high duty cycle that persisted over multiple gate voltage sweeps, suggesting a possible creation of new defects in the semiconductor. This conclusion is also supported by the greater change in the mobility-capacitance (μC) product than in capacitance itself. Moreover, a more pronounced ΔVth over shorter times was observed in lithium-incorporated alumina (abbreviated as LA)-based transistors, suggesting trapping of electrons in existing interfacial states. ΔVth from multiple gate voltage sweeps over time were fit to stretched exponential forms. All three dielectrics show good stability using 50-ms intervals (20-Hz frequencies), corresponding to 2% duty cycles.

  14. Ion polarization behavior in alumina under pulsed gate bias stress

    SciTech Connect

    Liu, Yu; Diallo, Abdou Karim; Katz, Howard E.

    2015-03-16

    Alkali metal ion incorporation in alumina significantly increases alumina capacitance by ion polarization. With high capacitance, ion-incorporated aluminas become promising high dielectric constant (high-k) gate dielectric materials in field-effect transistors (FETs) to enable reduced operating voltage, using oxide or organic semiconductors. Alumina capacitance can be manipulated by incorporation of alkali metal ions, including potassium (K{sup +}), sodium (Na{sup +}), and lithium (Li{sup +}), having different bond strengths with oxygen. To investigate the electrical stability of zinc tin oxide-based transistors using ion incorporated alumina as gate dielectrics, pulsed biases at different duty cycles (20%, 10%, and 2% representing 5 ms, 10 ms, and 50 ms periods, respectively) were applied to the gate electrode, sweeping the gate voltage over series of these cycles. We observed a particular bias stress-induced decrease of saturation field-effect mobility accompanied by threshold voltage shifts (ΔV{sub th}) in potassium and sodium-incorporated alumina (abbreviated as PA and SA)-based FETs at high duty cycle that persisted over multiple gate voltage sweeps, suggesting a possible creation of new defects in the semiconductor. This conclusion is also supported by the greater change in the mobility-capacitance (μC) product than in capacitance itself. Moreover, a more pronounced ΔV{sub th} over shorter times was observed in lithium-incorporated alumina (abbreviated as LA)-based transistors, suggesting trapping of electrons in existing interfacial states. ΔV{sub th} from multiple gate voltage sweeps over time were fit to stretched exponential forms. All three dielectrics show good stability using 50-ms intervals (20-Hz frequencies), corresponding to 2% duty cycles.

  15. Assessment of the neutron cross section database for mercury for the ORNL spallation source

    SciTech Connect

    Leal, L.C.; Spencer, R.R.; Ingersoll, D.T.; Gabriel, T.A.

    1996-06-01

    Neutron source generation based on a high energy particle accelerator has been considered as an alternative to the canceled Advanced Neutron Source project at Oak Ridge National Laboratory. The proposed technique consists of a spallation neutron source in which neutrons are produced via the interaction of high-energy charged particles in a heavy metal target. Preliminary studies indicate that liquid mercury bombarded with GeV protons provides an excellent neutron source. Accordingly, a survey has been made of the available neutron cross-section data. Since it is expected that spectral modifiers, specifically moderators, will also be incorporated into the source design, the survey included thermal energy, resonance region, and high energy data. It was found that data of individual isotopes were almost non-existent and that the only evaluation found for the natural element had regions of missing data or discrepant data. Therefore, it appears that to achieve the desired degree of accuracy in the spallation source design it is necessary to re-evaluate the mercury database including making new measurements. During the presentation the currently available data will be presented and experiments proposed which can lead to design quality cross sections.

  16. Three-dimensional computational fluid dynamics for the Spallation Neutron Source liquid mercury target

    SciTech Connect

    Wendel, M.W.; Siman-Tov, M.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.

  17. Target designs for the Brookhaven National Laboratory 5-MW pulsed spallation neutron source

    SciTech Connect

    Ludewig, H.; Todosow, M.; Powell, J.R.

    1996-03-01

    A feasibility study of a compact high power density target for a spallation neutron source was under-taken. The target arrangement consists primarily of heavy metal, with appropriate cooling passages. A high intensity proton beam of intermediate energy is directed at the target, where it interacts with the heavy metal nuclei. The subsequent spallation reactions produce several neutrons per proton resulting in an intense neutron source. The proton beam is assumed to havean energy of 5 MW, and to be cyclic with a repetition rate of 10Hz and 50Hz. The study was divided into two broad sections. First, an analysis of preliminary target designs was undertaken to ensure the overall feasibility of the concepts involved in the design and eventual construction of such a high power density target. Second, two proposed target designs, based on the first set of analyses, are investigated in more detail. Special care is taken to ensure that the neutron fluxes in the moderator are at the desired level no material compatibility problems exist,and the target is able to operate in a reliable and safe manner. Several target materials, coolant types, and target arrangements are investigated in the first section. The second section concentrates on a single target material and geometric arrangement. However, several structural material choices continue to be investigated with the aim of minimizing the effects of structural heating, and associated thermally induced stresses. In the final section the conclusions of this preliminary study are summarized.

  18. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  19. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    SciTech Connect

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O'Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  20. Plans for a Collaboratively Developed Distributed Control System for the Spallation Neutron Source

    SciTech Connect

    DeVan, W.R.; Gurd, D.P.; Hammonds, J.; Lewis, S.A.; Smith, J.D.

    1999-03-29

    The Spallation Neutron Source (SNS) is an accelerator-based pulsed neutron source to be built in Oak Ridge, Tennessee. The facility has five major sections - a ''front end'' consisting of a 65 keV H{sup -} ion source followed by a 2.5 MeV RFQ; a 1 GeV linac; a storage ring; a 1MW spallation neutron target (upgradeable to 2 MW); the conventional facilities to support these machines and a suite of neutron scattering instruments to exploit them. These components will be designed and implemented by five collaborating institutions: Lawrence Berkeley National Laboratory (Front End), Los Alamos National Laboratory (Linac); Brookhaven National Laboratory (Storage Ring); Argonne National Laboratory (Instruments); and Oak Ridge National Laboratory (Neutron Source and Conventional Facilities). It is proposed to implement a fully integrated control system for all aspects of this complex. The system will be developed collaboratively, with some degree of local autonomy for distributed systems, but centralized accountability. Technical integration will be based upon the widely-used EPICS control system toolkit, and a complete set of hardware and software standards. The scope of the integrated control system includes site-wide timing and synchronization, networking and machine protection. This paper discusses the technical and organizational issues of planning a large control system to be developed collaboratively at five different institutions, the approaches being taken to address those issues, as well as some of the particular technical challenges for the SNS control system.

  1. The test beamline of the European Spallation Source - Instrumentation development and wavelength frame multiplication

    NASA Astrophysics Data System (ADS)

    Woracek, R.; Hofmann, T.; Bulat, M.; Sales, M.; Habicht, K.; Andersen, K.; Strobl, M.

    2016-12-01

    The European Spallation Source (ESS), scheduled to start operation in 2020, is aiming to deliver the most intense neutron beams for experimental research of any facility worldwide. Its long pulse time structure implies significant differences for instrumentation compared to other spallation sources which, in contrast, are all providing short neutron pulses. In order to enable the development of methods and technology adapted to this novel type of source well in advance of the first instruments being constructed at ESS, a test beamline (TBL) was designed and built at the BER II research reactor at Helmholtz-Zentrum Berlin (HZB). Operating the TBL shall provide valuable experience in order to allow for a smooth start of operations at ESS. The beamline is capable of mimicking the ESS pulse structure by a double chopper system and provides variable wavelength resolution as low as 0.5% over a wide wavelength band between 1.6 Å and 10 Å by a dedicated wavelength frame multiplication (WFM) chopper system. WFM is proposed for several ESS instruments to allow for flexible time-of-flight resolution. Hence, ESS will benefit from the TBL which offers unique possibilities for testing methods and components. This article describes the main capabilities of the instrument, its performance as experimentally verified during the commissioning, and its relevance to currently starting ESS instrumentation projects.

  2. GEANT4 simulations of the n_TOF spallation source and their benchmarking

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Cortés-Giraldo, M. A.; Massimi, C.; Lerendegui-Marco, J.; Barbagallo, M.; Colonna, N.; Guerrero, C.; Mancusi, D.; Mingrone, F.; Quesada, J. M.; Sabate-Gilarte, M.; Vannini, G.; Vlachoudis, V.

    2015-12-01

    Neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with GEANT4. The results obtained with different models of high-energy nucleon-nucleus interaction have been compared with the measured characteristics of the neutron beam, in particular the flux and its dependence on neutron energy, measured in the first experimental area. The best agreement at present, within 20% for the absolute value of the flux, and within few percent for the energy dependence in the whole energy range from thermal to 1 GeV, is obtained with the INCL++ model coupled with the GEANT4 native de-excitation model. All other available models overestimate by a larger factor, of up to 70%, the n_TOF neutron flux. The simulations are also able to accurately reproduce the neutron beam energy resolution function, which is essentially determined by the moderation time inside the target/moderator assembly. The results here reported provide confidence on the use of GEANT4 for simulations of spallation neutron sources.

  3. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    SciTech Connect

    Abe, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Kibe, Y.; Kishimoto, Y.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  4. Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration

    SciTech Connect

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi; Ikeda, Dr. Yujiro; Riemer, Bernie; Wendel, Mark W; Haines, John R; Bauer, Guenter; Naoe, Dr. Takashi; Okita, Dr. Kohei; Fujiwara, Dr. Akiko; Matsumoto, Dr. Yoichiro; Tanaka, Dr. Nobuatsu

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalent pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.

  5. Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.

  6. Influence of free surface nanorelief on the rear spallation threshold: Molecular-dynamics investigation

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander E.; Ebel, Andrej A.

    2016-10-01

    By means of molecular dynamics simulation, we investigate the interaction of picosecond-duration compression pulses excited by a flat impactor with flat and nano-structured rear surfaces of copper and aluminum samples. It is shown that protrusions on the rear surface can increase the threshold value of the impact velocity, leading to spallation. As the shock wave reaches the perturbed rear surface, an unloading on the lateral surfaces of the protrusions begins; it leads to an intensive plastic deformation in the surface layer of metal. A part of the compression pulse energy is spent on the plastic deformation that restricts the rarefaction wave amplitude and suppresses the spall fracture. An increase in threshold velocity can be observed for all investigated thicknesses of the targets. The increase is substantial with respect to comparability between the protrusion height and the compression pulse width (the impactor thickness). Another condition is the ratio of the protrusion cross-section to the total surface area, which should be neither small nor large-approximately 0.3-0.4 for the best case. At high protrusion heights (higher than the compression pulse width), as well as at large protrusion cross sections, instability develops on the rear surface of the target and is accompanied by mass ejection. The instability violates the rear surface integrity and restricts the threshold velocity, although the loss of integrity in this case goes through mass ejection, not spallation.

  7. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Kelton, K. F.; Rustan, G. E.; Quirinale, D. G.; Goldman, A. I.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Egami, T.

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)

  8. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source.

    PubMed

    Mauro, N A; Vogt, A J; Derendorf, K S; Johnson, M L; Rustan, G E; Quirinale, D G; Kreyssig, A; Lokshin, K A; Neuefeind, J C; An, Ke; Wang, Xun-Li; Goldman, A I; Egami, T; Kelton, K F

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg).

  9. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGES

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; ...

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  10. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).

  11. Corrosion resistance characterization of porous alumina membrane supports

    SciTech Connect

    Dong Yingchao; Lin Bin; Zhou Jianer; Zhang Xiaozhen; Ling Yihan; Liu Xingqin; Meng Guangyao; Hampshire, Stuart

    2011-04-15

    Tubular porous alumina ceramic membrane supports were fabricated by an extrusion-drying-sintering process and then characterized in detail in terms of corrosion resistance in both H{sub 2}SO{sub 4} and NaOH aqueous solutions. Variations in the properties of the alumina supports such as mass loss percent, mechanical strength, open porosity and pore size distribution were studied before and after corrosion under different conditions. In addition, the microstructures were analyzed using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction before and after corrosion. The fabricated porous alumina supports offer possibilities for some potential applications as micro-filtration or ultra-filtration membrane supports, as well as in the pre-treatment of strongly acidic industrial waste-liquids. - Research highlights: {yields} Porous alumina membrane supports fabricated by extrusion-drying-sintering process. {yields} Corrosion resistance in 20 wt.% H{sub 2}SO{sub 4} and 1, 5, 10 wt.% NaOH aqueous solutions. {yields} Rapid mass loss and loss of flexural strength occurred in hot NaOH solution. {yields} Resistant to strong acid corrosion with low mass loss, low flexural strength loss. {yields} Porous alumina supports have potential for treatment of strong acid waste liquids.

  12. Enriched fluoride sorption using alumina/chitosan composite.

    PubMed

    Viswanathan, Natrayasamy; Meenakshi, S

    2010-06-15

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F(-)/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F(-)/kg than the alumina and chitosan (52 mg F(-)/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology.

  13. Biocompatibility of atomic layer-deposited alumina thin films.

    PubMed

    Finch, Dudley S; Oreskovic, Tammy; Ramadurai, Krishna; Herrmann, Cari F; George, Steven M; Mahajan, Roop L

    2008-10-01

    Presented in this paper is a study of the biocompatibility of an atomic layer-deposited (ALD) alumina (Al2O3) thin film and an ALD hydrophobic coating on standard glass cover slips. The pure ALD alumina coating exhibited a water contact angle of 55 degrees +/- 5 degrees attributed, in part, to a high concentration of -OH groups on the surface. In contrast, the hydrophobic coating (tridecafluoro-1,1,2,2-tetrahydro-octyl-methyl-bis(dimethylamino)silane) had a water contact angle of 108 degrees +/- 2 degrees. Observations using differential interference contrast microscopy on human coronary artery smooth muscle cells showed normal cell proliferation on both the ALD alumina and hydrophobic coatings when compared to cells grown on control substrates. These observations suggested good biocompatibility over a period of 7 days in vitro. Using a colorimetric assay technique to assess cell viability, the cellular response between the three substrates can be differentiated to show that the ALD alumina coating is more biocompatible and that the hydrophobic coating is less biocompatible when compared to the control. These results suggest that patterning a substrate with hydrophilic and hydrophobic groups can control cell growth. This patterning can further enhance the known advantages of ALD alumina, such as conformality and excellent dielectric properties for bio-micro electro mechanical systems (Bio-MEMS) in sensors, actuators, and microfluidics devices.

  14. The nature of hydrogen in γ-alumina

    SciTech Connect

    Li, Yunguo Lousada, Cláudio M. Korzhavyi, Pavel A.

    2014-05-28

    Gibbs free energy models are derived from the calculated electronic and phonon structure of two possible models of γ-alumina, a defective spinel phase and a hydrogenated spinel phase. The intrinsic vacancies and hydrogen in the two structural models give rise to a considerable configurational (residual) entropy and significantly contribute to thermodynamic stability and physical-chemical properties of γ-alumina, which was neglected in previous studies but considered in this work. The electronic densities of states, calculated using a hybrid functional for the two structural models of γ-alumina, are presented. The dynamic stability of the two phases is confirmed by full-spectrum phonon calculations. The two phases share many similarities in their electronic structure, but can be distinguished by their vibrational spectra and specific heat. The defective spinel is found to be the ground state of γ-alumina, while the hydrogenated spinel to be a metastable phase. However, dehydration of the metastable phase into the ground state is expected to be slow due to the low diffusion rate of H, which leaves hydrogen as a locked-in impurity in γ-alumina.

  15. HEIMDAL: A thermal neutron powder diffractometer with high and flexible resolution combined with SANS and neutron imaging - Designed for materials science studies at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Holm, Sonja L.; Lefmann, Kim; Henry, Paul F.; Bertelsen, Mads; Schefer, Jürg; Christensen, Mogens

    2016-08-01

    HEIMDAL will be a multi length scale neutron scattering instrument for the study of structures covering almost nine orders of magnitude from 0.01 nm to 50 mm. The instrument is accepted for construction at the European Spallation Source (ESS) and features a variable resolution thermal neutron powder diffractometer (TNPD), combined with small angle neutron scattering (SANS) and neutron imaging (NI). The instrument uses a novel combination of a cold and a thermal guide to fulfill the diverse requirements for diffraction and SANS. With an instrument length of 170 m, HEIMDAL will take advantage of the high neutron flux of the long pulse at ESS, whilst maintaining a high q-resolution due to the long flight path. The q-range coverage is up to 20 Å-1 allowing low-resolution PDF analysis. With the addition of SANS, HEIMDAL will be able to cover a uniquely broad length scale within a single instrumental set-up. HEIMDAL will be able to accommodate modern materials research in a broad variety of fields, and the task of the instrument will be to study advanced functional materials in action, as in situ and in operandi at multiple length scales (0.01-100 nm) quasi simultaneously. The instrument combines state-of-the-art neutron scattering techniques (TNPD, SANS, and NI) with the goal of studying real materials, in real time, under real conditions. This article describes the instrument design ideas, calculations and results of simulations and virtual experiments.

  16. Effect of humic acid on sorption of technetium by alumina.

    PubMed

    Kumar, S; Rawat, N; Kar, A S; Tomar, B S; Manchanda, V K

    2011-09-15

    Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using (95)Tc(m) as a tracer. Measurements were carried out at fixed ionic strength (0.1M NaClO(4)) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10(-6)M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  17. The surface reaction kinetics of salicylate on alumina

    SciTech Connect

    Wang, Z.; Ainsworth, C.C.; Friedrich, D.M.; Joly, A.G.; Gassman, P.L.

    1997-12-31

    The kinetics of reaction of salicylate with colloidal alumina in aqueous suspension and with Al(III) in homogeneous aqueous solution were studied by stopped-flow laser fluorescence spectroscopy. The emission spectra confirmed the formation of both monodentate complexes and more stable bidentate chelates. Temporal evolution of the spectra indicated that the reaction was fast (within first few minutes) for both the homogeneous and heterogeneous reactions but slowed down afterwards for the latter. Reactions completed within 10 minutes in homogeneous phase at pH 3.3 but took more than 12 hours in alumina suspension. Analysis of the fluorescence intensity within first four minutes showed that in homogeneous phase the reaction followed a single pseudo-first-order kinetics. In alumina suspension log plots were nonlinear and characteristic of multiple heterogeneous reaction paths. The kinetics are interpreted in terms of the simultaneous formation of multiple species as well as subsequent conversion between species.

  18. Alumina composites for oxide/oxide fibrous monoliths

    SciTech Connect

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-03-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si{sub 3}N{sub 4}/BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented.

  19. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    PubMed

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  20. Plastic deformation and sintering of alumina under high pressure

    SciTech Connect

    Liu, Fangming; Liu, Pingping; Wang, Haikuo; Xu, Chao; Yin, Shuai; Yin, Wenwen; Li, Yong; He, Duanwei

    2013-12-21

    Plastic deformation of alumina (Al{sub 2}O{sub 3}) under high pressure was investigated by observing the shape changes of spherical particles, and the near fully dense transparent bulks were prepared at around 5.5 GPa and 900 °C. Through analyzing the deformation features, densities, and residual micro-strain of the Al{sub 2}O{sub 3} compacts prepared under high pressures and temperatures (2.0–5.5 GPa and 600–1200 °C), the effects of plastic deformation on the sintering behavior of alumina have been demonstrated. Under compression, the microscopic deviatoric stress caused by grain-to-grain contact could initiate the plastic deformation of individual particles, eliminate pores of the polycrystalline samples, and enhance the local atomic diffusion at the grain boundaries, thus produced transparent alumina bulks.

  1. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  2. Fabrication of alumina films with laminated structures by ac anodization

    PubMed Central

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-01-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50–200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials. PMID:27877636

  3. Modifying alumina red mud to support a revegetation cover

    NASA Astrophysics Data System (ADS)

    Xenidis, A.; Harokopou, A. D.; Mylona, E.; Brofas, G.

    2005-02-01

    Alumina red mud, a fine-textured, iron-rich, alkaline residue, is the major waste product of bauxite digestion with caustic soda to remove alumina. The high alkalinity and salinity as well as the poor nutrient status are considered to be the major constraints of red mud revegetation. This research was conducted to evaluate the ameliorating effect of gypsum, sewage sludge, ferrous sulfate, ammonium sulfate, ammonium nitrate, and calcium phosphate on alumina red mud. The effectiveness of the mixtures was evaluated by applying extraction tests and performing experiments using six plant species. Gypsum amendment significantly reduced the pH, electrical conductivity, and sodium and aluminum content of red mud. Sewage sludge application had an extended effect in improving both the soil structure and the nutrient status of the gypsum-amended red mud. Together with the gypsum and sewage sludge, calcium phosphate application into red mud enhanced plant growth and gave the most promising results.

  4. Characteristics of alumina particles in dispersion-strengthened copper alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-hui; Li, Xiao-xian

    2014-11-01

    Two types of alumina dispersion-strengthened copper (ADSC) alloys were fabricated by a novel in-situ reactive synthesis (IRS) and a traditional internal oxidation (IO) process. The features of alumina dispersoids in these ADSC alloys were investigated by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is found that nano-sized γ-Al2O3 particles of approximately 10 nm in diameter are homogeneously distributed in the IRS-ADSC composites. Meanwhile, larger-sized, mixed crystal structure alumina with rod-shaped morphology is embedded in the IO-ADSC alloy. The IRS-ADSC composites can obtain better mechanical and physical properties than the IO-ADSC composites; the tensile strength of the IRS-ADSC alloy can reach 570 MPa at room temperature, its electrical conductivity is 85% IACS, and the Rockwell hardness can reach 86 HRB.

  5. Factors contributing to the breakdown of sodium beta-alumina

    SciTech Connect

    Buechele, A.C.

    1982-05-01

    Clarification of the breakdown process occurring during charge transfer in sodium beta alumina solid electrolytes was derived from: (1) studying the effects of molten sodium contact at 350/sup 0/C on single crystal sodium beta alumina and polycrystalline sodium beta alumina; (2) determination of critical current density by monitoring acoustic emissions accompanying crack growth in sodium/sodium beta alumina/sodium cells subjected to linear current ramping at 1 mA cm/sup -2/ sec/sup -1/; (3) failure analysis conducted on cycled electrolytes, some from commercial sodium/sulfur cells, which had been subjected to up to 703 Ahr cm/sup -2/ of charge transfer. Gray coloration developing in beta aluminas in contact with molten sodium was found to be a consequence of formation, through reduction by sodium, of oxygen vacancies charge compensated by electrons. Electronic conductivity of the electrolyte increases as a result. No second phase formation was detected. Colored electrolytes from sodium/sulfur cells show evidence of a newly recognized degradation mechanism in which fracture occurs when sodium is reduced and deposited internally under pressure as metal in regions where an electronic conductivity gradient exists. Heating colored beta aluminas in air produces reoxidation and bleaching. Kinetics and other properties of the coloration and bleaching processes were determined. Critical current density was found to bear an inverse relation to average electrolyte grain size. Evidence was found in the cycled electrolytes for a slow crack growth mechanism and a progressive mode of degradation advancing from the sulfur electrode interface. Implications of the findings for the construction and operation of sodium/sulfur battery systems are discussed.

  6. Effects of atmospheres on bonding characteristics of silver and alumina

    SciTech Connect

    Kim, Jin Yong; Engelhard, Mark H.; Choi, Jung-Pyung; Weil, K. Scott

    2008-03-12

    Joints prepared using a silver-copper oxide based reactive air brazing (RAB) technique is known to experience a significant decrease in joint strength when exposed in a reducing atmosphere at high temperature. To investigate the effects of atmospheres on the bonding characteristics of ceramic joints brazed with Ag-CuO braze filler metals, alumina joints prepared using a series of Ag-CuO compositions were exposed to a reducing atmosphere in hydrogen and also reoxidized in air at 800°C. All the brazed joints exposed to hydrogen revealed significant reduction in flexural strength and exhibited debonding of the interface between the braze filler and the alumina substrate. In the case of the joints brazed with a braze filler containing a high copper content of 8 mol%, the formation of interfacial porosity caused by the reduction of interfacial oxide phases led to an extremely weak interface, which was not recovered after subsequent reoxidation in air at 800°C. However, no significant microstructural change or interfacial porosity formation was observed in the braze filler metals containing no or low copper contents, and the interface remained intact even though interfacial strength was weak. Subsequent reoxidation of the joints with these filler materials resulted in the recovery of interfacial strength and flexural strength. This result clearly indicates that the bonding characteristics of the silver/alumina interface are by and large influenced by atmospheres of high temperature exposure. XPS analysis conducted on the in-situ¬ fractured surfaces of as-brazed and hydrogen-treated samples prepared using a braze filler with 2 mol% Cu indicated that oxygen in the silver matrix plays a critical role in bond strength between silver and alumina. The sample exposed in inert atmosphere also revealed low flexural strength and debonding of the silver/alumina interface, confirming the role of oxygen on the bond strength between silver and alumina.

  7. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  8. Quantifying Alumina Nanoparticle Dispersion in Hybrid Carbon Fiber Composites Using Photoluminescent Spectroscopy.

    PubMed

    Hanhan, Imad; Selimov, Alex; Carolan, Declan; Taylor, Ambrose C; Raghavan, Seetha

    2017-02-01

    Composites modified with nanoparticles are of interest to many researchers due to the large surface-area-to-volume ratio of nano-scale fillers. One challenge with nanoscale materials that has received significant attention is the dispersion of nanoparticles in a matrix material. A random distribution of particles often ensures good material properties, especially as it relates to the thermal and mechanical performance of composites. Typical methods to quantify particle dispersion in a matrix material include optical, scanning electron, and transmission electron microscopy. These utilize images and a variety of analysis methods to describe particle dispersion. This work describes how photoluminescent spectroscopy can serve as an additional technique capable of quickly and comprehensively quantifying particle dispersion of photoluminescent particles in a hybrid composite. High resolution 2D photoluminescent maps were conducted on the front and back surfaces of a hybrid carbon fiber reinforced polymer containing varying contents of alumina nanoparticles. The photoluminescent maps were analyzed for the intensity of the alumina R1 fluorescence peak, and therefore yielded alumina particle dispersion based on changes in intensity from the embedded nanoparticles. A method for quantifying particle sedimentation is also proposed that compares the photoluminescent data of the front and back surfaces of each hybrid composite and assigns a single numerical value to the degree of sedimentation in each specimen. The methods described in this work have the potential to aid in the manufacturing processes of hybrid composites by providing on-site quality control options, capable of quickly and noninvasively providing feedback on nanoparticle dispersion and sedimentation.

  9. Current Noise in Sodium Beta Alumina Ceramics and Single Crystals.

    DTIC Science & Technology

    1986-08-01

    AD-Ai7O 412 CURRENT NOISE IN SODIUM BETA ALUMINA CERAMICS AIND t/l SINGLE CRYSTALS(U) UTAH UNIV SALT LAKE CITY DEPT OF PHYSICS J J BROPHY’ 81 AUG 86...ZIP C-0- UNIVERSITY OF UTAH UNIVERSITY OF NEW MEXICO SALT LAKE CITY, UTAH 84112 Bandelier Hall West Albuquerque, NM 87131 go NAME OF FUNDING...bloeS nIumbe Conductivity fluctuations and contact noise observed in ceramic and single crystal silver 811 alumina are very pilar to those in sodium 8

  10. Atomistic force field for alumina fit to density functional theory

    SciTech Connect

    Sarsam, Joanne; Finnis, Michael W.; Tangney, Paul

    2013-11-28

    We present a force field for bulk alumina (Al{sub 2}O{sub 3}), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.

  11. Fabrication and characterization of alumina tube by thermal spray forming

    NASA Astrophysics Data System (ADS)

    Mohammed, M. A.; Zaidan, Sh. A.; Smich, H. E.

    2017-02-01

    In the present study spray forming of alumina tube with a wall thickness of 0.4-0.6 mm and the diameter of 38-62 mm on graphite substrate with two different sizes of alumina feedstock powders was used for flame spraying to form matrix of Al2O3 structures which have been fabricated. A detailed characterization of the spray-formed Al2O3 structure has been performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), (AFM) and Micro Hardness measurements. This study proves that a variety of structured materials and their combinations can be fabricated to near net shapes.

  12. The influence of aluminum grain size on alumina nanoporous structure

    SciTech Connect

    Feil, A. F.; Costa, M. V. da; Amaral, L.; Teixeira, S. R.; Migowski, P.; Dupont, J.; Machado, G.; Peripolli, S. B.

    2010-01-15

    An approach to control the interpore distances and nanopore diameters of 150-nm-thick thin aluminum films is reported here. The Al thin films were grown by sputtering on p-type silicon substrate and anodized with a conventional anodization process in a phosphoric acid solution. It was found that interpore distance and pore diameter are related to the aluminum grain size and can be controlled by annealing. The grain contours limit the sizes of alumina cells. This mechanism is valid for grain sizes supporting only one alumina cell and consequently only one pore.

  13. Mechanical properties of tricalcium phosphate-alumina composites

    NASA Astrophysics Data System (ADS)

    Sakka, S.; Ben Ayed, F.; Bouaziz, J.

    2012-02-01

    Tricalcium phosphate and alumina powder were mixed in order to elaborate biphasic ceramics composites. This study deals to produce bioceramics composites sintered at various temperatures for differents times. The characterization of samples, before and after the sintering process was investigated, using X-Ray diffraction, scanning electronic microscopy, 31P and 27Al nuclear magnetic resonance and differential thermal analysis. Mechanical properties of biphasic composites were studied using Brazilian test. The tricalcium phosphate - 75 wt% alumina composites mechanical resistance increased with sintered temperature. The mechanical resistance reach it's optimum value (8.6 MPa) at 1550°C for two hours.

  14. Study on surface properties of gamma-alumina catalytic membrane

    SciTech Connect

    Mengchenu Lu; Guoxing Xiong; Bauser, H.

    1994-12-31

    In recent years, preparation and separation applications of gamma-alumina membranes have been extensively studied. In catalysis research field, this membrane can be used not only as a separating medium but also as a catalyst or catalyst support. In this paper, a gamma-alumina catalytic membrane was prepared by a sol-gel technique, then special attention was paid to its surface properties related to catalysis, its surface acidity, hydroxyl, microstructure and pore properties was studied by IR with pyridine adsorption, XRD and N{sub 2} adsorption at low temperature, 1-butanol dehydration as a probe reaction was used to study its reaction property.

  15. Simulations towards optimization of a neutron/anti-neutron oscillation experiment at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Frost, Matthew; Kamyshkov, Yuri; Castellanos, Luis; Klinkby, Esben; US NNbar Collaboration

    2015-04-01

    The observation of Neutron/Anti-neutron oscillation would prove the existence of Baryon Number Violation (BNV), and thus an explanation for the dominance of matter over anti-matter in the universe. The latest experiments have shown the oscillation time to be greater than 8.6 x 107 seconds, whereas current theoretical predictions suggest times on the order of 108 to 109 seconds. A neutron oscillation experiment proposed at the European Spallation Source (ESS) would provide sensitivity of more than 1000 times previous experiments performed, thus providing a result well-suited to confirm or deny current theory. A conceptual design of the proposed experiment will be presented, as well as the optimization of key experiment components using Monte-Carlo simulation methods, including the McStas neutron ray-trace simulation package. This work is supported by the Organized Research Units Program funded by The University of Tennessee, Knoxville Office of Research and Engagement.

  16. Experiment Automation with a Robot Arm using the Liquids Reflectometer Instrument at the Spallation Neutron Source

    SciTech Connect

    Zolnierczuk, Piotr A; Vacaliuc, Bogdan; Sundaram, Madhan; Parizzi, Andre A; Halbert, Candice E; Hoffmann, Michael C; Greene, Gayle C; Browning, Jim; Ankner, John Francis

    2013-01-01

    The Liquids Reflectometer instrument installed at the Spallation Neutron Source (SNS) enables observations of chemical kinetics, solid-state reactions and phase-transitions of thin film materials at both solid and liquid surfaces. Effective measurement of these behaviors requires each sample to be calibrated dynamically using the neutron beam and the data acquisition system in a feedback loop. Since the SNS is an intense neutron source, the time needed to perform the measurement can be the same as the alignment process, leading to a labor-intensive operation that is exhausting to users. An update to the instrument control system, completed in March 2013, implemented the key features of automated sample alignment and robot-driven sample management, allowing for unattended operation over extended periods, lasting as long as 20 hours. We present a case study of the effort, detailing the mechanical, electrical and software modifications that were made as well as the lessons learned during the integration, verification and testing process.

  17. Geant4 simulations of the neutron production and transport in the n_TOF spallation target

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.

    2016-11-01

    The neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with Geant4. The results obtained with the different hadronic Physics Lists provided by Geant4 have been compared with the experimental neutron flux in n_TOF-EAR1. The best overall agreement in both the absolute value and the energy dependence of the flux from thermal to 1GeV, is obtained with the INCL++ model coupled with the Fritiof Model(FTFP). This Physics List has been thus used to simulate and study the main features of the new n_TOF-EAR2 beam line, currently in its commissioning phase.

  18. Low-level rf control of Spallation Neutron Source: System and characterization

    NASA Astrophysics Data System (ADS)

    Ma, Hengjie; Champion, Mark; Crofford, Mark; Kasemir, Kay-Uwe; Piller, Maurice; Doolittle, Lawrence; Ratti, Alex

    2006-03-01

    The low-level rf control system currently commissioned throughout the Spallation Neutron Source (SNS) LINAC evolved from three design iterations over 1 yr intensive research and development. Its digital hardware implementation is efficient, and has succeeded in achieving a minimum latency of less than 150 ns which is the key for accomplishing an all-digital feedback control for the full bandwidth. The control bandwidth is analyzed in frequency domain and characterized by testing its transient response. The hardware implementation also includes the provision of a time-shared input channel for a superior phase differential measurement between the cavity field and the reference. A companion cosimulation system for the digital hardware was developed to ensure a reliable long-term supportability. A large effort has also been made in the operation software development for the practical issues such as the process automations, cavity filling, beam loading compensation, and the cavity mechanical resonance suppression.

  19. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    SciTech Connect

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  20. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect

    Stone, M. B.; Abernathy, D. L.; Ehlers, G.; Garlea, O.; Podlesnyak, A.; Winn, B.; Niedziela, J. L.; DeBeer-Schmitt, L.; Graves-Brook, M.; Granroth, G. E.; Kolesnikov, A. I.

    2014-04-15

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  1. The Los Alamos study for a next-generation spallation-neutron-source driver

    SciTech Connect

    Jason, A.J.; Woods, R.

    1994-07-01

    A study has been conducted at Los Alamos to determine the feasibility of constructing a linac/accumulator-ring configuration that provides an 790-MeV 1-M proton beam to a new target system for the LANSCE neutron-scattering research facility. The study advocates use of the LAMPF side-coupled-cavity linac with an upgraded front end as an effective means of using present facilities and to provide a path for upgrade to 5 M of beam power. The ring accumulates 1.3 {times} 10{sup 14} particles in 1.2 ms by charge-changing injection with subsequent single-turn extraction to provide a 560-ns burst to the spallation targets at a 60-pps rate. A brief outline of the study results is given with emphasis on recent issues studied.

  2. Micro-punching process based on spallation delamination induced by laser driven-flyer

    NASA Astrophysics Data System (ADS)

    Di, Jianke; Zhou, Ming; Li, Jian; Li, Chen; Zhang, Wei; Amoako, George

    2012-01-01

    In this article, we proposed a micro-punching process for microstructure on films based on laser driven-flyer induced spallation delamination phenomenon at the interface between a film and its substrate. To validate such a micro-punching process, a series of experiments were carried out for fabrication of microstructures on Au films coated on K9 glass substrates and polyimide substrate. Results show that through such a punching process, the microstructure on Au films can be fabricated efficiently and the spatial resolution is able to reach micron level. Moreover, we found that this method was more suitable for films coated on soft substrates rather than that coated on brittle substrates due to the additional destruction of the brittle substrate. This micro-punching process has a wide range of potential application in microfluidic devices, biodevices and other MEMS devices.

  3. Chemistry control analysis of lead alloys systems to be used as nuclear coolant or spallation target

    NASA Astrophysics Data System (ADS)

    Courouau, J.-L.; Robin, J.-C.

    2004-11-01

    This study presents the lead alloy system chemistry analysis for use as nuclear coolant or spallation target in ADS related systems in order to set down the needs for purification processes and monitoring. The study is limited here to the two main impurities, oxygen and iron. The analysis of the various potential pollution sources that may occur during the various operating modes is given, as well as a first pollution rate assessment. In order to limit the consequences in term of contamination (clogging) and corrosion, it is necessary to define specifications for operation as regards oxygen and iron content in the fluid. As iron cannot be measured and controlled up to now, the best specification is to set the oxygen as high as possible, defined by the cold leg interface temperature to ensure tolerable contamination, in order to maximize the oxidation area to ensure corrosion protection by self-healing oxide layer for the entire system.

  4. ACCELERATOR SYSTEMS MODIFICATIONS FOR A SECOND TARGET STATION AT THE OAK RIDGE SPALLATION NEUTRON SOURCE

    SciTech Connect

    Galambos, John D; Kim, Sang-Ho; Plum, Michael A

    2014-01-01

    A second target station is planned for the Oak Ridge Spallation Neutron Source. The ion source will be upgraded to increase the peak current from 38 to 49 mA, additional superconducting RF cavities will be added to the linac to increase the H beam energy from 938 to 1300 MeV, and the accumulator ring will receive modifications to the injection and extraction systems to accommodate the higher beam energy. After pulse compression in the storage ring one sixth of the beam pulses (10 out of 60 Hz) will be diverted to the second target by kicker and septum magnets added to the existing Ring to Target Beam Transport (RTBT) line. No further modifications will be made to the RTBT so that when the kicker and septum magnets are turned off the original beam transport lattice will be unaffected. In this paper we will discuss these and other planned modifications and upgrades to the accelerator facility.

  5. Coincidence Doppler broadening study of Eurofer 97 irradiated in spallation environment

    NASA Astrophysics Data System (ADS)

    Sabelová, V.; Kršjak, V.; Kuriplach, J.; Dai, Y.; Slugeň, V.

    2015-03-01

    The behavior of transmutation helium during isochronal annealing of irradiated Eurofer 97 was investigated using coincidence Doppler broadening spectroscopy (CDBS). The investigated ferritic martensitic steel was irradiated in 2000 and 2001 in the frame of the STIP-II project at the Swiss neutron spallation source (SINQ) (irradiation with neutrons and protons) at the Paul Scherrer Institute (PSI). During isochronal annealing experiment, coarsening of vacancy clusters and/or growth of helium bubbles was observed at T ⩾ 500 °C. This process causes an increase of low-momentum annihilation events and related increase of the S parameter during thermal treatment of material. On the other hand, the maximum concentration of helium in small vacancy clusters (Vn) was observed after annealing at 400 °C, where an excellent correlation with the calculated CDBS profiles of Vn + Hem clusters was found.

  6. VSI@ESS: Case study for a vibrational spectroscopy instrument at the european spallation source

    NASA Astrophysics Data System (ADS)

    Zoppi, Marco; Fedrigo, Anna; Celli, Milva; Colognesi, Daniele

    2015-01-01

    Neutron Vibrational Spectroscopy is a well-established experimental technique where elementary excitations at relatively high frequency are detected via inelastic neutron scattering. This technique attracts a high interest in a large fraction of the scientific community in the fields of chemistry, materials science, physics, and biology, since one of its main applications exploits the large incoherent scattering cross section of the proton with respect to all the other elements, whose dynamics can be spectroscopically detected, even if dissolved in very low concentration in materials composed of much heavier atoms. We have proposed a feasibility study for a Vibrational Spectroscopy Instrument (VSI) at the European Spallation Source ESS. Here, we will summarize the preliminary design calculations and the corresponding McStas simulation results for a possible ToF, Inverted Geometry, VSI beamline.

  7. Beamline Performance Simulations for the Fundamental Neutron Physics Beamline at the Spallation Neutron Source

    PubMed Central

    Huffman, P. R.; Greene, G. L.; Allen, R. R.; Cianciolo, V.; Huerto, R. R.; Koehler, P.; Desai, D.; Mahurin, R.; Yue, A.; Palmquist, G. R.; Snow, W. M.

    2005-01-01

    Monte Carlo simulations are being performed to design and characterize the neutron optics components for the two fundamental neutron physics beamlines at the Spallation Neutron Source. Optimization of the cold beamline includes characterization of the guides and benders, the neutron transmission through the 0.89 nm monochromator, and the expected performance of the four time-of-flight choppers. The locations and opening angles of the choppers have been studied using a simple spreadsheet-based analysis that was developed for other SNS chopper instruments. The spreadsheet parameters are then optimized using Monte Carlo techniques to obtain the results presented in this paper. Optimization of the 0.89 nm beamline includes characterizing the double crystal monochromator and the downstream guides. The simulations continue to be refined as components are ordered and their exact size and performance specifications are determined. PMID:27308115

  8. Beamline Performance Simulations for the Fundamental Neutron Physics Beamline at the Spallation Neutron Source.

    PubMed

    Huffman, P R; Greene, G L; Allen, R R; Cianciolo, V; Huerto, R R; Koehler, P; Desai, D; Mahurin, R; Yue, A; Palmquist, G R; Snow, W M

    2005-01-01

    Monte Carlo simulations are being performed to design and characterize the neutron optics components for the two fundamental neutron physics beamlines at the Spallation Neutron Source. Optimization of the cold beamline includes characterization of the guides and benders, the neutron transmission through the 0.89 nm monochromator, and the expected performance of the four time-of-flight choppers. The locations and opening angles of the choppers have been studied using a simple spreadsheet-based analysis that was developed for other SNS chopper instruments. The spreadsheet parameters are then optimized using Monte Carlo techniques to obtain the results presented in this paper. Optimization of the 0.89 nm beamline includes characterizing the double crystal monochromator and the downstream guides. The simulations continue to be refined as components are ordered and their exact size and performance specifications are determined.

  9. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source.

    PubMed

    Stone, M B; Niedziela, J L; Abernathy, D L; DeBeer-Schmitt, L; Ehlers, G; Garlea, O; Granroth, G E; Graves-Brook, M; Kolesnikov, A I; Podlesnyak, A; Winn, B

    2014-04-01

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  10. Application of automated weight windows to spallation neutron source shielding calculations using Geant4

    NASA Astrophysics Data System (ADS)

    Stenander, John; DiJulio, Douglas D.

    2015-10-01

    We present an implementation of a general weight-window generator for global variance reduction in Geant4 based applications. The implementation is flexible and can be easily adjusted to a user-defined model. In this work, the weight-window generator was applied to calculations based on an instrument shielding model of the European Spallation Source, which is currently under construction in Lund, Sweden. The results and performance of the implemented methods were evaluated through the definition of two figures of merit. It was found that the biased simulations showed an overall improvement in performance compared to the unbiased simulations. The present work demonstrates both the suitability of the generator method and Geant4 for these types of calculations.

  11. Development of the activation analysis calculational methodology for the Spallation Neutron Source (SNS)

    SciTech Connect

    Odano, N.; Johnson, J.O.; Charton, L.A.; Barnes, J.M.

    1998-03-01

    For the design of the proposed Spallation Neutron Source (SNS), activation analyses are required to determine the radioactive waste streams, on-line material processing requirements remote handling/maintenance requirements, potential site contamination and background radiation levels. For the conceptual design of the SNS, the activation analyses were carried out using the high-energy transport code HETC96 coupled with MCNP to generate the required nuclide production rates for the ORIHET95 isotope generation code. ORIHET95 utilizes a matrix-exponential method to study the buildup and decay of activities for any system for which the nuclide production rates are known. In this paper, details of the developed methodology adopted for the activation analyses in the conceptual design of the SNS are presented along with some typical results of the analyses.

  12. Evidence of a halo formation mechanism in the Spallation Neutron Source linac

    NASA Astrophysics Data System (ADS)

    Jeon, Dong-O.

    2013-04-01

    A new halo formation mechanism and its mitigation scheme [D. Jeon, J. Stovall, A. Aleksandrov, J. Wei, J. Staples, R. Keller, L. Young, H. Takeda, and S. Nath, Phys. Rev. ST Accel. Beams 5, 094201 (2002)PRABFM1098-440210.1103/PhysRevSTAB.5.094201] are verified experimentally through a series of emittance measurements performed during the drift tube linac tank 1 commissioning of the Spallation Neutron Source. This is a rare experiment evidence of a halo formation mechanism. As the simulation predicts, the emittance measurements clearly show a visible halo reduction as well as a significant rms emittance reduction when the proposed round beam optics is employed. The emittance measurement results are consistent with multiparticle simulations and also consistent with wire scanner results. These measurements serve as a valuable code benchmarking for a beam under an intense space charge effect.

  13. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect

    Stone, Matthew B; Niedziela, Jennifer L; Abernathy, Douglas L; Debeer-Schmitt, Lisa M; Garlea, Vasile O; Granroth, Garrett E; Graves-Brook, Melissa K; Ehlers, Georg; Kolesnikov, Alexander I; Podlesnyak, Andrey A; Winn, Barry L

    2014-04-01

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments is not exclusive and overlaps significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  14. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  15. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  16. Optimized concept design of the target station of Chinese spallation neutron source

    NASA Astrophysics Data System (ADS)

    Yan, Q. W.; Yin, W.; Yu, B. L.

    2005-08-01

    CSNS (Chinese spallation neutron source) target station, with proton beam power of 100 kW, consists of Tungsten rectangular target surrounded by a beryllium/steel reflector, three wing-moderators and the shield having 18 beam tubes. The leakage neutron intensity from the target (with reflector) and heat deposition on the target, reflector and shield were calculated using Monte Carlo code NMTC/JAM respectively. It is reported that the target having rectangular section will produce more leakage neutron intensity than a square one for the same proton power. The temperature and thermal stress distribution in the target disks were calculated by the finite element method. The performances of moderators were calculated using MCNP-4A code.

  17. Computer simulations for rf design of a Spallation Neutron Source external antenna H ion source

    SciTech Connect

    Lee, Sung-Woo; Goulding, Richard Howell; Kang, Yoon W; Shin, Ki; Welton, Robert F

    2010-01-01

    Electromagnetic modeling of the multicusp external antenna H ion source for the Spallation Neutron Source SNS has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as . Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  18. Computer simulations for rf design of a Spallation Neutron Source external antenna H- ion source.

    PubMed

    Lee, S W; Goulding, R H; Kang, Y W; Shin, K; Welton, R F

    2010-02-01

    Electromagnetic modeling of the multicusp external antenna H(-) ion source for the Spallation Neutron Source (SNS) has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as sigma. Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  19. Final report on the application of chaos theory to an alumina sensor for aluminum reduction cells. Inert Electrodes Program

    SciTech Connect

    Williford, R.E.; Windisch, C.F. Jr.

    1992-03-01

    Four chaos-related digital signal analysis (DSA) methods were applied to the analysis of voltage and current signals collected from aluminum electrolysis cells. Two separate data bases were analyzed: bench-scale laboratory experiments and a pilot-scale test. The objective was to assess the feasibility of using these types of data and analysis methods as the basis for a non-intrusive sensor to measure the alumina content in the electrolysis bath. This was the first time chaos theory approaches have been employed to analyze aluminum electrolysis cells.

  20. Thermal-hydraulic simulation of mercury target concepts for a pulsed spallation neutron source

    SciTech Connect

    Siman-Tov, M.; Wendel, M.; Haines, J.

    1996-06-01

    The Oak Ridge Spallation Neutron Source (ORSNS) is a high-power, accelerator-based pulsed spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory to achieve very high fluxes of neutrons for scientific experiments. The ORSNS is projected to have a 1 MW proton beam upgradable to 5 MW. About 60% of the beam power (1-5 MW, 17-83 kJ/pulse in 0.5 microsec at 60 cps) is deposited in the liquid metal (mercury) target having the dimensions of 65x30x10 cm (about 19.5 liter). Peak steady state power density is about 150 and 785 MW/m{sup 3} for 1 MW and 5 MW beam respectively, whereas peak pulsed power density is as high as 5.2 and 26.1 GW/m{sup 3}, respectively. The peak pulse temperature rise rate is 14 million C/s (for 5 MW beam) whereas the total pulse temperature rise is only 7 C. In addition to thermal shock and materials compatibility, key feasibility issues for the target are related to its thermal-hydraulic performance. This includes proper flow distribution, flow reversals, possible {open_quotes}hot spots{close_quotes} and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles throughout the mercury volume or other concepts. The general computational fluid dynamics (CFD) code CFDS-FLOW3D was used to simulate the thermal and flow distribution in three preliminary concepts of the mercury target. Very initial CFD simulation of He bubbles injection demonstrates some potential for simulating behavior of He bubbles in flowing mercury. Much study and development will be required to be able to `predict`, even in a crude way, such a complex phenomena. Future direction in both design and R&D is outlined.