Science.gov

Sample records for aluminium foam produced

  1. ALUHAB — The Superior Aluminium Foam

    NASA Astrophysics Data System (ADS)

    Babcsan, N.; Beke, S.; Makk, P.; Soki, P.; Számel, Gy; Degischer, H. P.; Mokso, R.

    A new metal foaming technology has been developed to produce aluminum foams with controlled cell sizes, a wide range of alloy compositions, and attractive mechanical properties. ALUHAB aluminium foams are manufactured from a special foamable aluminium alloy containing ultrafine particles (80-3000 nm). The technology uses high temperature ultrasonication to homogeneously disperse the particles and thus create a stable, foamable aluminum melt. Oscillating gas injector (loud-nozzle) technology permits the injection of optimally sized bubbles into the melt that are independent of the injector orifice diameter. Using this direct gas injection method, bubble size is regulated by the frequency and the power of the ultrasound, producing uniform bubble sizes in the sub-millimeter range. The technology results in extremely stable metal foams which can be cast into complex forms and re-melted without loss of foam integrity. Processing methods and properties of the ALUHAB foams will be discussed.

  2. Foaming of aluminium-silicon alloy using concentrated solar energy

    SciTech Connect

    Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.; Martinez, D.

    2010-06-15

    Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mould design. (author)

  3. Indentation of aluminium foam at low velocity

    NASA Astrophysics Data System (ADS)

    Shi, Xiaopeng; Miao, Yinggang; Liu, Shuangyan; Li, Yulong; Lu, Guoxing

    2015-09-01

    The indentation behaviour of aluminium foams at low velocity (10 m/s ˜ 30 m/s) was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ˜10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ˜10 m/s velocity may be caused by plastic wave effect.

  4. Production and Compressive Characterization of Aluminium MMC Foam Manufactured Using Dual Foaming Agent

    NASA Astrophysics Data System (ADS)

    Haidar, S.; Ansary, S.; Rahman, A.

    2016-02-01

    Aluminium foams, produced by melting Aluminium alloy (LM6) containing blowing agent(s) and vigorous stirring. TiH2 is a known agent for this. As TiH2 begins to decompose into Ti and gaseous H2 when heated above about 465°C, large volumes of hydrogen gas are rapidly produced, creating bubbles that leads to a closed cell foam. A novel Strategy to enhance the mechanical properties of Al-MMC foams is discussed here, and it is demonstrated that titanium hydride (TiH2) in the form of 10-15 μm diameter particles can be pre-treated by selective oxidation to produce more uniform foams having better compressive properties (yield strength and energy absorption). It is found that the mechanical properties of the foams and the uniformity of cell size distribution is improved when the foam is blown with an optimized mixture of CaCO3 and pretreated TiH2. In order to define the relationship of mechanical properties with relative density of this material, correlations which uniquely defines the compressive behaviour of this modified Al- MMC foam has been developed.

  5. High-Rate Compaction of Aluminium Alloy Foams

    SciTech Connect

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-07-28

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  6. High-Rate Compaction of Aluminium Alloy Foams

    NASA Astrophysics Data System (ADS)

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-07-01

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  7. High-Rate Compaction of Aluminium Alloy Foams

    NASA Astrophysics Data System (ADS)

    Harrigan, J. J.; Millett, J. C. F.; Milne, A. M.

    2005-07-01

    The response of aluminium foams to impact can be categorised by the impact velocity. Tests are reported ranging from quasi-static to impact velocities greater than the speed of sound in the foam. The techniques used ranging from drop-hammer and pneumatic launcher tests, to plate impact at velocities greater than 1000 m s-1. The quasi-static compression behaviour was elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities, post-impact examination of partially crushed specimens showed that deformation was through the cumulative multiplication of crush bands. If the impact velocity is less than the velocity of sound, but above a certain critical impact velocity, the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. At higher impact velocities the compaction front is not preceded by an elastic wave. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was input as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  8. On the compression of Aluminium foam structures under shock

    NASA Astrophysics Data System (ADS)

    Townsend, David; Bourne, Neil K.; Appleby-Thomas, G. J.; Hameed, A.; Wood, D.

    2015-06-01

    Foam-based materials have an important role as both blast and impact mitigators, with their extended sub-surface structures providing multiple redundant routes for load management and distribution in the event of failure. In order to further elucidate underlying stress management mechanisms at high strain-rates, here, a series of Aluminium foams manufactured via rapid prototyping techniques were investigated via the plate-impact technique. These experiments allowed the material to be loaded under a quasi one-dimensional state of strain. The nature of pore collapse was monitored via manganin stress gauges at the target rear surface, with resultant data related back to changes in microstructure via microstructural and topographical analysis of both un-impacted and recovered target material.

  9. Numerical modelling of closed-cell aluminium foam under dynamic loading

    NASA Astrophysics Data System (ADS)

    Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.

    2015-06-01

    Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.

  10. On the compression of aluminium foam structures under shock

    NASA Astrophysics Data System (ADS)

    Townsend, D.; Parry, S.; Bourne, N. K.; Withers, P. J.; Wood, D. C.; Appleby-Thomas, G. J.; Hameed, A.

    2017-01-01

    Foam-based materials have an important role as both blast and impact mitigators, with their extended sub-surface structures providing multiple redundant routes for load management and distribution in the event of failure. In order to further elucidate underlying stress management mechanisms at high strain-rates, here, open cell and closed cell Aluminium were investigated via the plate-impact technique. These experiments allowed the material to be loaded under a macroscale one-dimensional state of strain. The nature of pore collapse was monitored via manganin stress gauges at the target rear surface, with resultant data related back to changes in microstructure via microstructural analysis of both un-impacted and recovered target material. Results indicated crushing of the open cell foam occurred without retarding the flyer plate and the observed shock pressures suggested the degree of compaction increased with impact velocity. The higher density closed cell foam caused significant deceleration of the flyer plate during passage through the specimen and significantly lower shock pressures were observed at the anvil compared to the open cell material.

  11. Dynamic crushing response of closed-cell aluminium foams during shock loading

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Kader, M. A.; Hazell, P. J.; Escobedo-Diaz, J. P.; Brown, A. D.; Appleby-Thomas, G. J.; Saadatfar, M.; Quadir, M. Z.

    2017-01-01

    Understanding the impact response of aluminium foams is essential for assessing their energy absorption capacity under dynamic loading. In this paper, the dynamic compaction behavior of closed-cell aluminium foam (CYMAT ™) has been tested using the plate-impact technique. Post-impacted samples have been examined using optical microscopy to observe the microstructural changes with the objective of elucidating the pore-collapse mechanism.

  12. Numerical modelling of closed-cell aluminium foams under shock loading

    NASA Astrophysics Data System (ADS)

    Kader, M. A.; Islam, M. A.; Hazell, P. J.; Escobedo, J. P.; Saadatfar, M.; Brown, A. D.

    2017-01-01

    The present research numerically investigates shock propagation through closed-cell aluminium foam via flyer-plate impact. The mechanics of foam deformation was elucidated using the finite element (FE) software ABAQUS/explicit. X-ray computed micro-tomography was performed to render a full 3D foam geometry mesh for understanding detailed macrostructural response due to shock propagation. Elastic wave propagation and pore collapse mechanism with time were studied. The free surface velocity of the foam was measured at two different flyer-plate impact velocities to observe the profile of the shock wave with time. Good correlations were observed between experimental data and FE predictions for both test conditions.

  13. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    NASA Astrophysics Data System (ADS)

    Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling

    2016-05-01

    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  14. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.469 Quantity of foam producing materials. (a) Except as provided in paragraph (b) of this section, each foam... 46 Shipping 4 2012-10-01 2012-10-01 false Quantity of foam producing materials. 108.469 Section...

  15. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.469 Quantity of foam producing materials. (a) Except as provided in paragraph (b) of this section, each foam... 46 Shipping 4 2014-10-01 2014-10-01 false Quantity of foam producing materials. 108.469 Section...

  16. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.469 Quantity of foam producing materials. (a) Except as provided in paragraph (b) of this section, each foam... 46 Shipping 4 2013-10-01 2013-10-01 false Quantity of foam producing materials. 108.469 Section...

  17. Organic reactants rapidly produce plastic foam

    NASA Technical Reports Server (NTRS)

    Look, G. F.

    1965-01-01

    Adding trichlorofluoromethane to polyether resin accelerates the reaction between the resin and toluene diisocyanate. This accelerated reaction instantaneously produces a plastic foam of low density and uniform porosity needed to provide buoyancy for flotation recovery of instrument packages dropped into the sea from spacecraft.

  18. A numerical analysis of empty and foam-filled aluminium conical tubes under oblique impact loading

    NASA Astrophysics Data System (ADS)

    Mat, Fauziah; Ismail, Khairul Azwan; Yaacob, Sazali

    2015-05-01

    In real impact applications, an energy absorber rarely sustains dynamic loading either axial or oblique but a combination of both. Established studies have proved that thin-walled tube is an excellent energy absorber under dynamic loading. Furthermore, the introduction of foam filling successfully enhanced the energy absorption capacity of thin-walled tube. However, the understanding of its response under oblique loading has yet been fully explored. Moreover, emerging in automotive industry has lead to increase interests on lightweight materials such as aluminium alloy. As such, this paper presents the crushing behaviour of empty and foam-filled aluminium alloy (AA6061-T6) conical tubes under oblique impact loading using a validated nonlinear finite element (FE) code, LS-DYNA. The study aims to assess the effect of foam filling on the energy absorption of AA6061-T6 tubes for variations in filler density. In fact, to the best of our knowledge, this study is the first attempt to evaluate a response of empty and foam-filled aluminum conical tube by using an experimentally validated model under oblique dynamic loading conditions. Good correlations between the numerical and experimental results were observed. The study show that initial peak force and the energy absorption increase with increasing filler density under axial and oblique loading. On the other hand, the effect of foam filling (0.534 g/cm3 aluminium foam filler) is less pronounced for the initial peak force under axial impact loading. Furthermore, the initial peak force and dynamic force of empty and foam-filled AA6061-T6 conical tubes decrease as the load angle increases from 0 deg to 20 deg hence reduces the energy absorption capacity.

  19. Development and Mechanical Behavior of FML/Aluminium Foam Sandwiches

    NASA Astrophysics Data System (ADS)

    Baştürk, S. B.; Tanoğlu, M.

    2013-10-01

    In this study, the Fiber-Metal Laminates (FMLs) containing glass fiber reinforced polypropylene (GFPP) and aluminum (Al) sheet were consolidated with Al foam cores for preparing the sandwich panels. The aim of this article is the comparison of the flexural properties of FML/Al foam sandwich panels bonded with various surface modification approaches (silane treatment and combination of silane treatment with polypropylene (PP) based film addition). The FML/foam sandwich systems were fabricated by laminating the components in a mould at 200 °C under 1.5 MPa pressure. The energy absorbtion capacities and flexural mechanical properties of the prepared sandwich systems were evaluated by mechanical tests. Experiments were performed on samples of varying foam thicknesses (8, 20 and 30 mm). The bonding among the sandwich components were achieved by various surface modification techniques. The Al sheet/Al foam sandwiches were also consolidated by bonding the components with an epoxy adhesive to reveal the effect of GFPP on the flexural performance of the sandwich structures.

  20. A modified Tessari method for producing more foam.

    PubMed

    Xu, Jie; Wang, Yi-Fei; Chen, An-Wei; Wang, Tao; Liu, Shao-Hua

    2016-01-01

    This study aimed to develop a modified Tessari method for producing more sclerosing foam in treatment of extensive venous malformations. Sclerosing foam was produced by using Tessari method and the modified Tessari method. The procedure of the later was as follows: prepared foam in a sclerosant-air ratio of 1:4; connected three disposable 10 ml syringes to two medical three-way taps; drawn 4 ml of liquid sclerosant into one syringe and 16 ml averagely of air into the other two; then moved the plungers of all syringes back and forth for 20 times to produce sclerosing foam. The volume and foam half time (FHT) of foam produced by the two methods were compared. The average volume of sclerosing foam produced by Tessari method and the modified Tessari method were 9.8 and 19.7 ml, and assessed to have statistical difference. The FHT of foam produced by the two methods were 120 and 150 s, and assessed to have statistical difference. In conclusion, the modified Tessari method could produce more fresh and stable sclerosing foam.

  1. Experimental study on heat transfer performance of aluminium foam parallel-flow condenser in air conditioner

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wan, Z. M.; Chang, H. W.; Wang, Y. D.

    2017-01-01

    Open cell aluminium foam was used in parallel-flow condenser in air conditioner, and two condensers with different pore density were fabricated. The experimental study was conducted on the heat transfer performance and temperature distribution. The experimental results show that both of the heat transfer load and air pressure drop increase with the increase of pore density, air velocity is 2.5m/s, the heat transfer capacities of the condenser with 10PPI and 8PPI are 4.786kw and 3.344kW respectively. Along the flow direction of refrigerant, the outlet temperatures of refrigerant drop with the rise of air velocity when the inlet temperature is constant. The outlet temperature of the refrigerant decreases with the increase of pore density.

  2. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-05-17

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  3. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    NASA Astrophysics Data System (ADS)

    Filice, Luigino; Gagliardi, Francesco; Shivpuri, Rajiv; Umbrello, Domenico

    2007-05-01

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D®) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  4. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with the largest liquid surface....

  5. 46 CFR 108.469 - Quantity of foam producing materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or space, the system need have only enough foam producing material to cover the largest space that the system covers or, if the liquid surface of a tank covered by the system is larger, the tank with the largest liquid surface....

  6. Are extrusive rhyolites produced from permeable foam eruptions?

    USGS Publications Warehouse

    Friedman, I.

    1989-01-01

    The permeable foam hypothesis is suggested by Eichelberger el al. (1986) to explain a major loss of water from rhyolithic magmas in the volcanic conduit. Evidence for the high-water content of the major portion of the magmas is herein examined and rejected. Eichelberger's hypothesis does not take into account the large (~2 orders of magnitude) viscosity change that would occur in the conduit as a result of water loss. It also requires that the permeable foam collapse and weld to form an obsidian that in thin section displays no evidence of the foam. An alternate hypothesis to explain the existence of small amounts of high water content rhyolite glasses in acid volcanoes is that rhyolite magmas are relatively dry (0.1-0.3% H2O) and that water enters the magma from the environment to produce a water-rich selvage which then is kneaded into the body of the magma. -Author

  7. Spacecraft Shielding: An Experimental Comparison Between Open Cell Aluminium Foam Core Sandwich Panel Structures and Whipple Shielding.

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.

  8. Influence of Nano Aluminium Powder Produced by Wire Explosion Process at Different Ambience on Hydrogen Generation

    NASA Astrophysics Data System (ADS)

    Sarathi, Ramanujam; Sankar, Binu; Chakravarthy, Satyanarayanan R.

    2010-07-01

    Nano-aluminium particles are produced through the wire explosion process in different gas medium. The particles produced by wire explosion process, in helium medium are of smaller size compared to argon/nitrogen medium. The nano aluminium powder on reaction with water forms oxides having bayerite and boehmite structure. It is observed that nano aluminium on reaction with KOH solution at room temperature it forms bayerite. The results of the study were confirmed through Wide Angle X-ray diffraction (WAXD) and by Transmission Electron Microscope (TEM) studies. The reaction of nano aluminium powder with KOH solution/water indicates that the rate of hydrogen generation is high when nano aluminium powder reacts with KOH solution than with water. The rate of hydrogen generation gets reduced drastically when the nano aluminium powder which is exposed to air medium for some period is used for reaction with KOH/water. It is also observed that the rate of hydrogen generation is high with nano size aluminium particles compared with ultrafine particles.

  9. Fatigue failure of an open cell and a closed cell aluminium alloy foam

    SciTech Connect

    Harte, A.M.; Fleck, N.A.; Ashby, M.F. . Engineering Dept.)

    1999-06-22

    The tension-tension and compression-compression cyclic properties are measured for an open cell Duocel foam of composition Al 6101-T6, and a closed cell Alporas foam of composition Al-5Ca-3Ti (wt%). the Duocel foam has a relatively uniform microstructure, and undergoes homogeneous straining in both monotonic and fatigue tests. In contrast, the Alporas foam is more irregular in microstructure, and exhibits crush-band formation at random locations under uniaxial compression; in compression-compression fatigue, a single crush band forms and broadens with additional fatigue cycles. Progressive shortening of the specimen in compression-compression fatigue, and progressive lengthening in tension-tension fatigue are due to a combination of low cycle fatigue failure and cyclic ratchetting. S-N fatigue curves are presented for the onset of progressive shortening in the compression tests, and material separation in the tension tests; it is envisaged that such curves will be of practical use in design.

  10. Optical diagnostics of laser-produced aluminium plasmas under water

    NASA Astrophysics Data System (ADS)

    Walsh, N.; Costello, J. T.; Kelly, T. J.

    2017-06-01

    We report on the findings of double-pulse studies performed on an aluminium target submerged in water using Nd:YAG laser pulses. Shadowgraphy measurements were performed to examine the dynamic behaviour of the cavitation bubble that eventually forms some considerable time post-plasma ignition. These measurements were used to inform subsequent investigations designed to probe the bubble environment. The results of time-resolved imaging from within the cavitation bubble following irradiation by a second laser pulse reveal the full dynamic evolution of a plasma formed in such an environment. Rapid displacement of the plasma plume in a direction normal to the target surface followed by a diffusive outwards expansion is observed and a qualitative model is proposed to explain the observed behaviour. Line profiles of several ionic and atomic species were observed within the irradiated cavitation bubble. Electron densities were determined using the Stark broadening of the Al II line at 466.3 nm and electron temperatures inferred using the ratio of the Al II (466.3 nm) and Al I (396.15 nm) lines. Evidence of self-reversal of neutral emission lines was observed at times corresponding to growth and collapse phases of the cavitation bubble suggesting high population density for ground state atoms during these times.

  11. Investigation of Vehicle Rear Under Run Protection Device (RUPD) Using Aluminium Foam

    NASA Astrophysics Data System (ADS)

    Nagaraj Goud, B.; pachori, Avinash

    2017-08-01

    Whenever the passenger cars meet with accidents with the heavy duty truck from rear, it will tend to penetrate under the truck bed called truck trailer under-ride crash. This is responsible for the thousands of accidents, causing severe injuries and spot death. This is mostly due to the lack of effective guarding system. The Present paper gives an importance on energy absorption mechanism of a Rear under Run Protection Device (RUPD) under crash effect of the truck. The aim of the study is to replace Steel RUPD with aluminum foam, which promises an improvement of vehicle crashworthiness as well as to reduce weight of the vehicle. The aluminum foam is selected due to the high specific strength and specific stiffness. This inborn character makes it a promising candidate in the modern lightweight structures in the automotive engineering which can contribute to the improvement of mileage in addition to safety of the occupants.

  12. Process for producing carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1998-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  13. Process for producing carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1998-08-04

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g--1,000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  14. Innovative User Defined Density Profile Approach To FSW Of Aluminium Foam

    SciTech Connect

    Contorno, Dorotea; Fratini, Livan; Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-04-07

    Metallic foams are one of the most exciting materials in the world of mechanical industry due to their reduced mass and the good mechanical, thermal and acoustic characteristics. Consequently, their application, is increasing day by day even with the important drawbacks that reduce their suitability and diffusion such as high manufacturing cost and difficulty in processing. An innovative approach is outlined in this paper that enables the production of complex shapes taking advantage of deformation processing and friction stir welding (FSW). The aim is to create customized tailored manufactured parts. The cellular construction of foams makes this approach rather challenging as the cell walls are extremely thin and deform unpredictably especially in the presence of rotating and moving hard tool. In this paper, an integrated approach to overcome some of the above challenges is proposed. The initial density is modified by using simple deformation processes, in order to obtained the desired 'crushed density', customized for the intended application. Then, the panels are joined to specially designed solid blocks by using FSW process with a proper set-up. Finally, the obtained specimens are evaluated for mechanical performance and the quality of the joint.

  15. Assessments of low emission asphalt mixtures produced using combinations of foaming agents

    NASA Astrophysics Data System (ADS)

    Mohd Hasan, Mohd Rosli

    The asphalt foaming techniques have been used over the last couple of decades as an alternative to the traditional method of preparing asphalt mixtures. Based on positive feedback from the industry, this study was initiated to explore and evaluate the performance of the Warm Mix Asphalt (WMA) mixture produced through a foaming process using physical and chemical foaming agents, which are ethanol and sodium bicarbonate (NaHCO3), respectively. The success of this project may lead to new theories and provide an environmentally friendly technique to produce asphalt mixtures. This may advance the understanding of the foaming process and improve the performance of WMA to support sustainable development. Theoretically, ethanol can function in the same manner as water but requires less energy to foam due to its lower boiling point, 78°C. During the asphalt foaming process, numerous bubbles were generated by the vaporized ethanol, which significantly increased the volume of the asphalt binder, hence the coating potential of aggregates improves. The sodium bicarbonate was incorporated to enhance the quantity of bubbles and its stability. Therefore, understanding foaming agents, their solubility, chemical reactions, chemical function groups and rheological properties of the foamed binder are essential to help control the foam structure and final properties of the foamed WMA mixture. In order to understand the overall performance of newly developed foaming WMA, this material was evaluated for moisture susceptibility, rutting potential, and resistance to fracture and thermal cracking. The coatability, workability and compactability of foamed asphalt mixtures during production were also evaluated. Based on the results, it was found that the newly proposed foaming WMA has high potential to promote sustainable development by lowering the energy consumption and impacts on the environment. The ethanol is efficient in lowering the viscosity of asphalt binders, enhancing the

  16. Enzymatic cross-linking of α-lactalbumin to produce nanoparticles with increased foam stability.

    PubMed

    Dhayal, Surender K; Delahaije, Roy J B M; de Vries, Renko J; Gruppen, Harry; Wierenga, Peter A

    2015-10-28

    Hard colloidal nanoparticles (e.g. partly hydrophobised silica), are known to make foams with very high foam-stability. Nanoparticles can also be produced from proteins by enzymatic cross-linking. Such protein based particles are more suitable for food applications, but it is not known if they provide Pickering foam stabilisation to the same extent as hard colloidal particles. α-Lactalbumin (α-LA) was cross-linked with either microbial transglutaminase (mTG) or horseradish peroxidase (HRP) to produce α-LA/mTG and α-LA/HRP nanoparticles. With both enzymes a range of nanoparticles were produced with hydrodynamic radii ranging from 20-100 nm. The adsorption of nanoparticles to the air-water interface was probed by increase in surface pressure (Π) with time. In the beginning of the Π versus time curves, there was a lag time of 10-200 s, for nanoparticles with Rh of 30-100 nm, respectively. A faster increase of Π with time was observed by increasing the ionic strength (I = 0-125 mM). The foam-ability of the nanoparticles was also found to increase with increasing ionic strength. At a fixed I, the foam-ability of the nanoparticles decreased with increasing size while their foam-stability increased. Foams produced by low-shear whipping were found to be 2 to 6 times more stable for nanoparticles than for monomeric α-LA (Rh≈ 2 nm). At an ionic strength of 125 mM ionic strength and protein concentration ≥ 10 g L(-1), the foam-stability of α-LA/mTG nanoparticles (Rh = 100 nm, ρapp = 21.6 kg m(-3)) was 2-4 times higher than α-LA/HRP nanoparticles (Rh = 90 nm, ρapp = 10.6 kg m(-3)). This indicated that foam-stablity of nanoparticles is determined not only by size but also by differences in mesoscale structure. So, indeed enzymatic cross-linking of proteins to make nanoparticles is moving a step towards particle like behavior e.g. slower adsorption and higher foam stability. However, the cross-link density should be further increased to obtain hard particle

  17. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    SciTech Connect

    Aghion, E. Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  18. Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.

    PubMed

    Wang, Kuen-Sheng; Chiou, Ing-Jia

    2004-10-01

    The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.

  19. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.

    PubMed

    Carriço, Camila S; Fraga, Thaís; Carvalho, Vagner E; Pasa, Vânya M D

    2017-07-02

    Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL) content and blowing agents in the foams' properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane) allowed foams with smaller cells to be obtained in comparison with the foams produced with a chemical blowing agent (water). The increase of the water content caused a decrease in density, thermal conductivity, compressive strength, and Young's modulus, which indicates that the increment of CO₂ production contributes to the formation of larger cells. Higher amounts of catalyst in the foam formulations caused a slight density decrease and a small increase of thermal conductivity, compressive strength, and Young's modulus values. These green foams presented properties that indicate a great potential to be used as thermal insulation: density (23-41 kg·m(-3)), thermal conductivity (0.0128-0.0207 W·m(-1)·K(-1)), compressive strength (45-188 kPa), and Young's modulus (3-28 kPa). These biofoams are also environmentally friendly polymers and can aggregate revenue to the biodiesel industry, contributing to a reduction in fuel prices.

  20. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    SciTech Connect

    Dong, Yunsong; Zhang, Lu; Yang, Jiamin; Shang, Wanli

    2013-12-15

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wave front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.

  1. Effect of blowing agents on the oxidation resistance of carbon foams prepared from molten sucrose

    NASA Astrophysics Data System (ADS)

    Narasimman, R.; Prabhakaran, K.

    2013-06-01

    We have prepared low density carbon foams from molten sucrose using aluminium nitrate and boric acid blowing agents. A comparative study of the oxidation resistance of the carbon foams prepared using the two blowing agents are reported in the present paper. Oxidation of the carbon foams was evaluated under isothermal and non-isothermal conditions in air atmosphere using thermogravimetric analysis (TGA). We have observed that the alumina produced from the aluminium nitrate blowing agent acts as a catalyst whereas the boron produced from boric acid inhibits the oxidation of the carbon foams. The oxidation resistance of carbon foams increases with boron concentration. The oxidation onset temperature for the carbon foams prepared using boric acid blowing agent was nearly 60°C higher than that prepared using aluminium nitrate blowing agent. Carbon foams prepared using aluminium nitrate blowing agent undergoes complete oxidation at temperature less than 700°C. Whereas that prepared using boric acid blowing agent leave ˜ 50 wt.% residue at 900°C. Further evidence is provided by the kinetic analysis of the TGA using Coats-Redfern (CR) equation.

  2. Springback Foam

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A decade ago, NASA's Ames Research Center developed a new foam material for protective padding of airplane seats. Now known as Temper Foam, the material has become one of the most widely-used spinoffs. Latest application is a line of Temper Foam cushioning produced by Edmont-Wilson, Coshocton, Ohio for office and medical furniture. The example pictured is the Classic Dental Stool, manufactured by Dentsply International, Inc., York, Pennsylvania, one of four models which use Edmont-Wilson Temper Foam. Temper Foam is an open-cell, flameresistant foam with unique qualities.

  3. Forming foam structures with carbon foam substrates

    SciTech Connect

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  4. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  5. Effect of Magnesium Addition on the Cell Structure of Foams Produced From Re-melted Aluminum Alloy Scrap

    NASA Astrophysics Data System (ADS)

    Vinod-Kumar, G. S.; Heim, K.; Jerry, J.; Garcia-Moreno, F.; Kennedy, A. R.; Banhart, J.

    2017-10-01

    Closed-cell foams were produced from re-melted aluminum alloy scrap that contained 0.13 wt pct Mg magnesium in the as-received state and higher levels after adding 1, 2, or 5 wt pct Mg. The excess Mg gave rise to the fragmentation of long oxide filaments present in the scrap alloy into smaller filaments and improved its distribution and wetting by the Al matrix. Foaming the re-melted scrap alloy containing 1, 2, and 5 wt pct Mg excess showed stability and good expansion in comparison to the scrap alloy containing 0.13 wt pct Mg only, but the cells became non-equiaxed when the Mg concentration was high (≥2 wt pct excess) due to cell wall rupture during solidification. Compressibility and energy absorption behavior were studied for scrap alloy foams containing 1 wt pct Mg excess, which is the optimum level to obtain good expansion, stability, and uniform cell size. Foams with densities in the range of 0.2 to 0.4 g cm-1 produced by holding at the foaming temperature for different times were used for the investigation. A uniform cell structure led to flatter stress plateaus, higher energy absorption efficiencies, and reduced "knockdown" in strength compared with commercial foams made by gas bubbling. The mechanical performance found is comparable to that of commercial foams made by a similar method but the expected costs are lower.

  6. Glycolipids produced by Rouxiella sp. DSM 100043 and isolation of the biosurfactants via foam-fractionation.

    PubMed

    Kügler, Johannes H; Muhle-Goll, Claudia; Hansen, Silla H; Völp, Annika R; Kirschhöfer, Frank; Kühl, Boris; Brenner-Weiss, Gerald; Luy, Burkhard; Syldatk, Christoph; Hausmann, Rudolf

    2015-12-01

    Microorganisms produce a great variety of secondary metabolites that feature surface active and bioactive properties. Those possessing an amphiphilc molecular structure are also termed biosurfactant and are of great interest due to their often unique properties. Rouxiella sp. DSM 100043 is a gram negative enterobacter isolated from peat-bog soil and described as a new biosurfactant producing species in this study. Rouxiella sp. produces glycolipids, biosurfactants with a carbohydrate moiety in its structure. This study characterizes the composition of glycolipids with different hydrophobicities that have been produced during cultivation in a bioreactor and been extracted and purified from separated foam. Using two dimensional nuclear magnetic resonance spectroscopy, the hydrophilic moieties are elucidated as glucose with various acylation sites and as talose within the most polar glycolipids. The presence of 3' hydroxy lauroleic acid as well as myristic and myristoleic acid has been detected.

  7. Fire performances of foam core particleboards continuously produced in a one-step process

    Treesearch

    Ali Shalbafan; Mark A. Dietenberger; Johannes. Welling

    2013-01-01

    For further progress of novel foam core particleboards, their fire performance was examined with cone calorimetry tests (ASTM E 1354-11a). Specimens with varying surface layer thicknesses, foam densities (polystyrene foam), and processing temperatures were tested. Using the initially recommended cone irradiance of 35 kW/m2, different flammability...

  8. Foaming volume and foam stability

    NASA Technical Reports Server (NTRS)

    Ross, Sydney

    1947-01-01

    A method of measuring foaming volume is described and investigated to establish the critical factors in its operation. Data on foaming volumes and foam stabilities are given for a series of hydrocarbons and for a range of concentrations of aqueous ethylene-glycol solutions. It is shown that the amount of foam formed depends on the machinery of its production as well as on properties of the liquid, whereas the stability of the foam produced, within specified mechanical limitations, is primarily a function of the liquid.

  9. Combined column and cell flotation process for the treatment of PAH contaminated hazardous wastes produced by an aluminium production plant.

    PubMed

    Dhenain, Aurélie; Mercier, Guy; Blais, Jean-François; Chartier, Myriam

    2009-06-15

    The aluminium electrolytic plants generate PAH and fluoride contaminated wastes which are usually classified as hazardous material. These residues are generally disposed in secure landfill sites. A flotation cell process was previously developed to remove PAH from these aluminium industry wastes. The tests were done on composite samples made of particle size fractions under 50mm. The efficiency of the flotation cell process was demonstrated but the high quantity of concentrate produced (14.0%) during the air injection period, because of the solid entrainment, raised the treatment cost. The aim of this study was to reduce the entrainment of fine particles in order to obtain an efficient and economic technology. The process initially developed was modified: the smallest particle size fraction (<0.5mm) of the composite sample was treated in a flotation column, whereas the other particle size fractions (0.5-50mm) were treated in a flotation cell. The separated treatment allowed to reduce the entrainment during the air injection period of the flotation cell step from 14.0% to 10.1%. The optimum total solids of the pulp and cocamidopropylhydroxysultaine (CAS) concentration were 3.33% and 0.50% (ww(-1)) for the flotation column, and 15% and 0.25% (ww(-1)) for the flotation cell. This combined flotation process minimized the total entrainment which allowed a 23.6% abatement of the concentrate quantity initially produced, and reduced the PAH concentrations of the wastes under the authorized limit of 1000 mg kg(-1).

  10. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering

    SciTech Connect

    Belkerk, B. E.; Soussou, A.; Carette, M.; Djouadi, M. A.; Scudeller, Y.

    2012-10-08

    This Letter reports the thermal conductivity of aluminium nitride (AlN) thin-films deposited by reactive DC magnetron sputtering on single-crystal silicon substrates (100) with varying plasma and magnetic conditions achieving different crystalline qualities. The thermal conductivity of the films was measured at room temperature with the transient hot-strip technique for film thicknesses ranging from 100 nm to 4000 nm. The thermal conductivity was found to increase with the thickness depending on the synthesis conditions and film microstructure. The conductivity in the bulk region of the films, so-called intrinsic conductivity, and the boundary resistance were in the range [120-210] W m{sup -1} K{sup -1} and [2-30 Multiplication-Sign 10{sup -9}] K m{sup 2} W{sup -1}, respectively, in good agreement with microstructures analysed by x-ray diffraction, high-resolution-scanning-electron-microscopy, and transmission-electron-microscopy.

  11. Ultralight reactive metal foams produced as structural shapes in space: System design

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.; Morrill, J. P.; Feldman, M. R.

    1984-01-01

    This autonomous experiment for foaming metals in space involved: (1) payload support structure; (2) furnace and foaming apparatus; (3) electronic controls; (4) battery power; and (5) metallurgy. Emphasis was laid on a modular design which was easily modifiable and which offered maximum durability, safety, and failure tolerance.

  12. Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia).

    PubMed

    Pakrashi, Sunandan; Dalai, Swayamprava; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2014-07-01

    The transfer of nanoparticles through the food chain can lead to bioaccumulation and biomagnification resulting in a long term negative impact on the ecosystem functions. The primary objective of this study was evaluation of aluminium oxide nanoparticles transfer from primary producers to primary consumers. A simple set up consisting of a primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia) was used. Here, C. ellipsoides were exposed to the varying concentrations of the nanoparticles ranging from 20 to 120μg/mL (196 to 1176μM) for 48h and the infested algal cells were used as the feed to C. dubia. The bioaccumulation of the nanoparticles into the daphnids was noted and the biomagnification factors were computed. The exposure was noted to cause subtle alterations in the feeding behaviour of the daphnids. This might have long term consequences in the energy flow through the food chain. The reproductive behaviour of the daphnids remained unaffected upon exposure to nanoparticle infested algal feed. Distinct observations at ultra-structural scale using transmission electron microscopy provided visual evidences for the disrupted feeding behaviour upon exposure to nanoparticle treated algae. Internalization of nanoparticle like inclusion bodies in the intracellular space of algae was also detected. The findings were further substantiated by a detailed analysis of hydrodynamic stability, bioavailability and dissolution of ions from the nanoparticles over the exposure period. Altogether, the study brings out the first of its kind of observation of trophic transfer potential/behaviour of aluminium oxide nanoparticles and its probable impacts on the energy flow in the fresh water aquatic ecosystem.

  13. Experimental and numerical investigation of the residual yield strength of aluminium alloy EN AW-2024-T3 affected by artificially produced pitting corrosion

    NASA Astrophysics Data System (ADS)

    Pippig, R.; Schmidl, E.; Steinert, P.; Schubert, A.; Lampke, T.

    2017-03-01

    In this study, the behaviour of the residual yield strength of aluminium alloy EN AW-2024-T3 affected by the morphology and numbers of corrosion pits (defects) is presented. Since specific defect structures are not reproducible during experimental corrosion tests, metal sheets with different numbers of pits and pit shapes are produced using laser micro structuring. The defect structures are measured using laser scanning microscopy. To compare the stress states of the micro structured and real corroded metal sheets, FE-analysis is used. Afterwards, uniaxial tensile tests are carried out and critical defect parameters in terms of yield strength reduction of the investigated aluminium alloy are detected.

  14. Structural insulated panels produced from recycled Expanded-Polystrene (EPS) foam scrap. Final report

    SciTech Connect

    Grinnell, A.

    1996-11-01

    This report documents a research project undertaken to assess the feasibility of using scrap reground expanded polystyrene (EPS) in the manufacture of structural insulated panels (SIPs) in order to save material costs and reduce the amount of EPS waste products to be disposed. The project team, managed by Steven Winter Associates, Inc., a Norwalk, Connecticut-based building systems research and consulting firm included: Thermal Foams, Inc., a Buffalo-based manufacturer of EPS products; BASF Corp., the world`s largest producer of EPS beads; Oak Ridge National Laboratory, which performed thermal tests (ASTM C-518); RADCO, Inc. which performed material properties tests: density (ASTM C-303), flexural strength (ASTM C-203), tensile strength (ASTM D-1623), and transverse load test of SIPs panels (ASTM E-72). The report documents the manufacturing and testing process and concludes that there was relatively little difference in the thermal and structural characteristics under normal loading conditions of the panels tested with varying amount of regrind (from 10% - 25%) and those made with 100% virgin beads. The report recommends that additional tests be undertaken, but suggests that, based on the test results, reground EPS can be successfully used in the cores of SIPs in amounts up to 25%.

  15. Intraperitoneal Administration of Low Dose Aluminium in The Rat: How Good is It to Produce a Model for Alzheimer Disease.

    PubMed

    Ulusoy, H B; Sonmez, M F; Kilic, E; Caliskan, K; Karaca, B; Kara, M; Ercal, O; Gunduz, Y; Karabulut, D; Bitiktas, S; Tan, B; Kavraal, S; İnal, A; Suer, C

    2015-12-01

    Since neurotoxicity of aluminium (Al) resembles the progressive neurodegeneration observed in Alzheimer Disease (AD), Al administration in several ways has been used to produce AD model. Intraperitoneal (ip) low dose (4.2 mg/ kg) Al injection in rats for long periods is the preferred method by some researchers. In this paper, the efficiency of this method for producing an AD model was evaluated. In this study, we looked at the neuropathology of Al and the characteristic lesions of AD by histological and immunohistochemical techniques and determined oxidative stress markers in the brains of Al-treated and control rats. We also made electrophysiological recordings at the hippocampus and evaluated possible behavioural changes by Morris water maze test. However, no pathologic changes occurred in the animals except for an impairment in long-term potentiation (LTP) in the hippocampus (e.g. the LTPs of population spike (PS) amplitude at 15 min post-tetanus were measured as 217±27% in Al-treated rats and as 240±42% in sham-treated rats, of baseline PS amplitude). According to the findings of the present study, low dose of ip Al in rats is not sufficient to produce a good AD model. Higher doses (≥10 mg/kg) should be used.

  16. Aluminium plasmonics

    NASA Astrophysics Data System (ADS)

    Gérard, Davy; Gray, Stephen K.

    2015-05-01

    We present an overview of ‘aluminium plasmonics’, i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  17. Aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  18. Aluminium plasmonics

    DOE PAGES

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  19. Closed-cell foams produced from sputter-deposited aluminum. [experiments on earth and in space environment

    NASA Technical Reports Server (NTRS)

    Patten, J. W.; Greenwell, E. N.

    1977-01-01

    Sputter deposited aluminum containing argon was melted to produce foam, both in the earth's gravitational field and in a zero-gravity space environment. Experiments leading to trapping of up to 270 ppm argon sputtering gas in pure aluminum during high-rate dc triode sputter deposition are discussed. Conduct of the melting experiments and design of the furnace used are described. Metallography; an analysis of bubble size, distribution, and morphology; and a preliminary description of the kinetics are also presented.

  20. Closed-cell foams produced from sputter-deposited aluminum. [experiments on earth and in space environment

    NASA Technical Reports Server (NTRS)

    Patten, J. W.; Greenwell, E. N.

    1977-01-01

    Sputter deposited aluminum containing argon was melted to produce foam, both in the earth's gravitational field and in a zero-gravity space environment. Experiments leading to trapping of up to 270 ppm argon sputtering gas in pure aluminum during high-rate dc triode sputter deposition are discussed. Conduct of the melting experiments and design of the furnace used are described. Metallography; an analysis of bubble size, distribution, and morphology; and a preliminary description of the kinetics are also presented.

  1. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production

    PubMed Central

    Xue, Bai-Liang; Wen, Jia-Long; Sun, Run-Cang

    2015-01-01

    Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5–30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight (MW) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam. PMID:28787959

  2. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.

    PubMed

    Xue, Bai-Liang; Wen, Jia-Long; Sun, Run-Cang

    2015-02-10

    Lignin-based polyols were synthesized through microwave-assisted liquefaction under different microwave heating times (5-30 min). The liquefaction reactions were carried out using polyethylene glycol (PEG-400)/glycerol as liquefying solvents and 97 wt% sulfur acid as a catalyst at 140 °C. The polyols obtained were analyzed for their yield, composition and structural characteristics using gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra. FT-IR and NMR spectra showed that the liquefying solvents reacted with the phenol hydroxyl groups of the lignin in the liquefied product. With increasing microwave heating time, the viscosity of polyols was slightly increased and their corresponding molecular weight (MW) was gradually reduced. The optimal condition at the microwave heating time (5 min) ensured a high liquefaction yield (97.47%) and polyol with a suitable hydroxyl number (8.628 mmol/g). Polyurethane (PU) foams were prepared by polyols and methylene diphenylene diisocyanate (MDI) using the one-shot method. With the isocyanate/hydroxyl group ([NCO]/[OH]) ratio increasing from 0.6 to 1.0, their mechanical properties were gradually increased. This study provided some insight into the microwave-assisted liquefied lignin polyols for the production of rigid PU foam.

  3. Stability of metallic foams studied under microgravity

    NASA Astrophysics Data System (ADS)

    Wübben, Th; Stanzick, H.; Banhart, J.; Odenbach, S.

    2003-01-01

    Metal foams are prepared by mixing a metal powder and a gas-releasing blowing agent, by densifying the mix to a dense precursor and finally foaming by melting the powder compact. The foaming process of aluminium foams is monitored in situ by x-ray radioscopy. One observes that foam evolution is accompanied by film rupture processes which lead to foam coalescence. In order to elucidate the importance of oxides for foam stability, lead foams were manufactured from lead powders having two different oxide contents. The two foam types were generated on Earth and under weightlessness during parabolic flights. The measurements show that the main function of oxide particles is to prevent coalescence, while their influence on bulk viscosity of the melt is of secondary importance.

  4. Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient

    DOEpatents

    Klett, James W [Knoxville, TN; Cameron, Christopher Stan [Sanford, NC

    2010-03-02

    A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

  5. Light weight cellular structures based on aluminium

    SciTech Connect

    Prakash, O.; Embury, J.D.; Sinclair, C.; Sang, H.; Silvetti, P.

    1997-02-01

    An interesting form of lightweight material which has emerged in the past 2 decades is metallic foam. This paper deals with the basic concepts of making metallic foams and a detailed study of foams produced from Al-SiC. In addition, some aspects of cellular solids based on honeycomb structures are outlined including the concept of producing both two-phase foams and foams with composite walls.

  6. Abnormal lung function in polyurethane foam producers. Weak relationship to toluene diisocyanate exposures.

    PubMed

    Jones, R N; Rando, R J; Glindmeyer, H W; Foster, T A; Hughes, J M; O'Neil, C E; Weill, H

    1992-10-01

    Exposures to toluene diisocyanate (TDI) were studied for effects on respiratory health of workers in two plants manufacturing polyurethane foams. Intensive personal monitoring was used to characterize job exposures. Of 4,845 12-min personal samples, 9% exceeded 5 ppb and 1% exceeded 20 ppb. Initial questionnaire and spirometry were obtained in 386 workers (88.7% of target population). Current smoking was associated with lower mean FEV1 and FEF25-75, but percent predicted (% pred) means were normal in all smoking categories. Multiple regression showed significant adverse effects of cumulative TDI exposure on initial level of FVC and FEV1 of current smokers, and an effect at borderline significance (p less than 0.063) on FEF25-75 over all smoking categories. Logistic regression showed that chronic bronchitis was more prevalent among those with higher cumulative exposures, after controlling for smoking, age, and sex. Methacholine (MCh) reactivity was associated with reduced airway function, -8.5% pred for FEV1 and -20.0% pred for FEF25-75. In 227 with adequate follow-up, the slopes of annual change were abnormal, for example, FEV1 of -67 ml/yr in current and -53 ml/yr in never smokers. Men had worse FEV1 declines than did women, -71 ml/yr versus -43 ml/yr. TDI exposure, lifetime or concurrent, had no significant effect on slopes, despite its demonstrated effects on initial level of lung function and on prevalence of chronic bronchitis.

  7. Polyimide Foams

    NASA Technical Reports Server (NTRS)

    Vazquez, Juan M. (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Weiser, Erik S. (Inventor)

    2005-01-01

    A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam-in an open container, or in a closed mold-under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.

  8. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Vazquez, Juan M. (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Weiser, Erik S. (Inventor)

    2005-01-01

    A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam?in an open container, or in a closed mold?under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.

  9. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Vazquez, Juan M. (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Weiser, Erik S. (Inventor)

    2009-01-01

    A fully imidized, solvent-free polyimide foam having excellent mechanical, acoustic, thermal, and flame resistant properties is produced. A first solution is provided, which includes one or more aromatic dianhydrides or derivatives of aromatic dianhydrides, and may include one or more aromatic diamines, dissolved in one or more polar solvents, along with an effective amount of one or more blowing agents. This first solution may also advantageously include effective amounts respectively of one or mores catalysts, one or more surfactants, and one or more fire retardants. A second solution is also provided which includes one or more isocyanates. The first and second solutions are rapidly and thoroughly mixed to produce an admixture, which is allowed to foam--in an open container, or in a closed mold--under ambient conditions to completion produce a foamed product. This foamed product is then cured by high frequency electromagnetic radiation, thermal energy, or a combination thereof. Alternatively, the process is adapted for spraying or extrusion.

  10. Orbital foamed material extruder

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2009-01-01

    This invention is a process for producing foamed material in space comprising the steps of: rotating the material to simulate the force of gravity; heating the rotating material until it is molten; extruding the rotating, molten material; injecting gas into the extruded, rotating, molten material to produce molten foamed material; allowing the molten foamed material to cool to below melting temperature to produce the foamed material. The surface of the extruded foam may be heated to above melting temperature and allowed to cool to below melting temperature. The extruded foam may also be cut to predetermined length. The starting material may be metal or glass. Heating may be accomplished by electrical heating elements or by solar heating.

  11. Structural graphitic carbon foams

    SciTech Connect

    Kearns, K.M.; Anderson, H.J.

    1998-12-31

    Graphitic carbon foams are a unique material form with very high structural and thermal properties at a light weight. A process has been developed to produce microcellular, open-celled graphitic foams. The process includes heating a mesophase pitch preform above the pitch melting temperature in a pressurized reactor. At the appropriate time, the pressure is released, the gas nucleates bubbles, and these bubbles grow forming the pitch into the foam structure. The resultant foamed pitch is then stabilized in an oxygen environment. At this point a rigid structure exists with some mechanical integrity. The foam is then carbonized to 800 C followed by a graphitization to 2700 C. The shear action from the growing bubbles aligns the graphitic planes along the foam struts to provide the ideal structure for good mechanical properties. Some of these properties have been characterized for some of the foam materials. It is known that variations of the blowing temperature, blowing pressure and saturation time result in foams of variously sized with mostly open pores; however, the mechanism of bubble nucleation is not known. Therefore foams were blown with various gases to begin to determine the nucleation method. These gases are comprised of a variety of molecular weights as well as a range of various solubility levels. By examining the resultant structures of the foam, differences were noted to develop an explanation of the foaming mechanism.

  12. Responsive foams for nanoparticle delivery.

    PubMed

    Tang, Christina; Xiao, Edward; Sinko, Patrick J; Szekely, Zoltan; Prud'homme, Robert K

    2015-09-01

    We have developed responsive foam systems for nanoparticle delivery. The foams are easy to make, stable at room temperature, and can be engineered to break in response to temperature or moisture. Temperature-responsive foams are based on the phase transition of long chain alcohols and could be produced using medical grade nitrous oxide as a propellant. These temperature-sensitive foams could be used for polyacrylic acid (PAA)-based nanoparticle delivery. We also discuss moisture-responsive foams made with soap pump dispensers. Polyethylene glycol (PEG)-based nanoparticles or PMMA latex nanoparticles were loaded into Tween 20 foams and the particle size was not affected by the foam formulation or foam break. Using biocompatible detergents, we anticipate this will be a versatile and simple approach to producing foams for nanoparticle delivery with many potential pharmaceutical and personal care applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fire-retardant foams

    NASA Technical Reports Server (NTRS)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  14. Fire-retardant foams

    NASA Technical Reports Server (NTRS)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  15. Aerobic biodegradation of 2 fluorotelomer sulfonamide-based aqueous film-forming foam components produces perfluoroalkyl carboxylates.

    PubMed

    D'Agostino, Lisa A; Mabury, Scott A

    2017-08-01

    The biodegradation of 2 common fluorotelomer surfactants used in aqueous film forming foams (AFFFs), 6:2 fluorotelomer sulfonamide alkylamine (FTAA) and 6:2 fluorotelomer sulfonamide alkylbetaine (FTAB), was investigated over 109 d with aerobic wastewater-treatment plant (WWTP) sludge. Results show that biodegradation of 6:2 FTAA and 6:2 FTAB produces 6:2 fluorotelomer alcohol (FTOH), 6:2 fluorotelomer carboxylic acid (FTCA), 6:2 fluorotelomer unsaturated carboxylic acid (FTUCA), 5:3 FTCA, and short-chain perfluoroalkyl carboxylates (PFCAs). Additional degradation products included 6:2 fluorotelomer sulfonamide (FTSAm), which was a major degradation product in the presence of either active or sterilized sludge, whereas 6:2 fluorotelomer sulfonate (FTSA) production was measured with sterilized sludge only. Six additional degradation products were tentatively identified by quadrupole time-of-flight mass spectrometry (qTOF-MS) and attributed to N-dealkylation and oxidation of 6:2 FTAA. Environ Toxicol Chem 2017;36:2012-2021. © 2017 SETAC. © 2017 SETAC.

  16. Foam Dispenser

    NASA Technical Reports Server (NTRS)

    1985-01-01

    William G. Simpson, a NASA/Marshall employee, invented and patented a foam mixing dispensing device. He is supplying his Simpson mixer to a number of foam applications where it is used to apply foam for insulation purposes.

  17. Ocean foam generation and modeling

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A laboratory investigation was conducted to determine the physical and microwave properties of ocean foam. Special foam generators were designed and fabricated, using porous glass sheets, known as glass frits, as the principal element. The glass frit was sealed into a water-tight vertical box, a few centimeters from the bottom. Compressed air, applied to the lower chamber, created ocean foam from sea water lying on the frit. Foam heights of 30 cm were readily achieved, with relatively low air pressures. Special photographic techniques and analytical procedures were employed to determine foam bubble size distributions. In addition, the percentage water content of ocean foam was determined with the aid of a particulate sampling procedure. A glass frit foam generator, with pore diameters in the range 70 - 100 micrometers, produced foam with bubble distributions very similar to those found on the surface of natural ocean foam patches.

  18. Use of sputtered zinc oxide film on aluminium foil substrate to produce a flexible and low profile ultrasonic transducer.

    PubMed

    Hou, Ruozhou; Fu, Yong Qing; Hutson, David; Zhao, Chao; Gimenez, Esteban; Kirk, Katherine J

    2016-05-01

    A flexible and low profile ultrasonic transducer was fabricated for non-destructive testing (NDT) applications by DC sputtering of 3 μm thick, c-axis oriented, ZnO film on 50 μm aluminium foil. Due to the thin foil-based construction, the transducer can be applied to curved objects and used in sites of restricted accessibility. The device has been used to demonstrate detection of simulated defects in a 45 mm diameter steel pipe, and for thickness measurement on a 3.1 mm thick flat carbon steel plate. Centre frequency measured on the flat plate was 24-29 MHz, with -6 dB bandwidth 4-7 MHz. The pulse duration depended on the couplant, at best 3 cycles or 0.12 μs using SONO Ultragel or epoxy couplant. Transducer performance was found to be comparable to a commercial 10 MHz piezoelectric ultrasonic transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Microstructure of high-strength foam concrete

    SciTech Connect

    Just, A.; Middendorf, B.

    2009-07-15

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  20. Low density metal hydride foams

    DOEpatents

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  1. High Temperature Structural Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.

    1997-01-01

    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.

  2. Some preliminary evaluations of black coating on aluminium AA2219 alloy produced by plasma electrolytic oxidation (PEO) process for space applications

    NASA Astrophysics Data System (ADS)

    Shrestha, S.; Merstallinger, A.; Sickert, D.; Dunn, B. D.

    2003-09-01

    This paper describes the results of a study of a black coating produced on aluminium AA2219 alloy using a process that involves creation of a hard ceramic oxide layer on the surface of the alloy by plasma electrolytic oxidation (PEO) known as the 'KERONITE®' process. Coating microstructure has been examined and the coating characteristics such as porosity, hardness, adhesion and phase composition were measured. The thermo-optical properties such as solar absorptance 'as' and normal infrared emittance 'en-IR' of the coating were measured in the 'as-prepared' condition and after environmental exposures to humidity, thermal cycling and UV-radiation in vacuum and to thermal shock. Comparison was made with alternative coatings produced using standard black anodising processes. The study also looked at the cold welding and friction behaviours of the coated alloy in vacuum and in an ambient laboratory environment. Standard spacecraft materials tests were conducted on the coated disc against an AISI 52100 steel ball and also against a coated pin using a pin-on-disc apparatus. Parameters such as friction coefficient and wear depth were measured and the cold welding behaviours were investigated. Test results were compared with the data generated for NiCr plated and anodised coatings. Corrosion performance was assessed using a salt spray exposure test and using an accelerated electrochemical test method. In addition, the study looked at the effect of post coating sealing with a sol-gel solution.

  3. Fiber-reinforced syntactic foams

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jen

    Long fibers are generally preferred for reinforcing foams for performance reasons. However, uniform dispersion is difficult to achieve because they must be mixed with liquid resin prior to foam expansion. New approaches aiming to overcome such problem have been developed at USC's Composites Center. Fiber-reinforced syntactic foams with long fibers (over 6 mm in length) manufactured at USC's Composites Center have achieved promising mechanical properties and demonstrated lower density relative to conventional composite foams. Fiber-reinforced syntactic foams were synthesized from thermosetting polymeric microspheres (amino and phenolic microspheres), as well as thermoplastic PVC heat expandable microspheres (HEMs). Carbon and/or aramid fibers were used to reinforce the syntactic foams. Basic mechanical properties, including shear, tensile, and compression, were measured in syntactic foams and fiber-reinforced syntactic foams. Microstructure and crack propagation behavior were investigated by scanning electron microscope and light microscopy. Failure mechanisms and reinforcing mechanisms of fiber-reinforced syntactic foams were also analyzed. As expected, additions of fiber reinforcements to foams enhanced both tensile and shear properties. However, only limited enhancement in compression properties was observed, and fiber reinforcement was of limited benefit in this regard. Therefore, a hybrid foam design was explored and evaluated in an attempt to enhance compression properties. HEMs were blended with glass microspheres to produce hybrid foams, and hybrid foams were subsequently reinforced with continuous aramid fibers to produce fiber-reinforced hybrid foams. Mechanical properties of these foams were evaluated. Findings indicated that the production of hybrid foams was an effective way to enhance the compressive properties of syntactic foams, while the addition of fiber reinforcements enhanced the shear and tensile performance of syntactic foams. Another approach

  4. Method of casting pitch based foam

    DOEpatents

    Klett, James W.

    2002-01-01

    A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.

  5. Distinct catalytic capacities of two aluminium-repressed Arabidopsis thaliana xyloglucan endotransglucosylase/hydrolases, XTH15 and XTH31, heterologously produced in Pichia.

    PubMed

    Shi, Yuan Zhi; Zhu, Xiao Fang; Miller, Janice G; Gregson, Timothy; Zheng, Shao Jian; Fry, Stephen C

    2015-04-01

    Xyloglucan plays an important structural role in primary cell walls, possibly tethering adjacent microfibrils and restraining cell expansion. There is therefore considerable interest in understanding the role of xyloglucan endotransglucosylase/hydrolases (XTHs), which are encoded in Arabidopsis by a 33-member gene family. We compared the key catalytic properties of two very different Arabidopsis XTHs (heterologously produced in Pichia), both of which are aluminium-repressed. Reductively tritiated oligosaccharides of xyloglucan were used as model acceptor substrates. Untransformed Pichia produced no xyloglucan-acting enzymes; therefore purification of the XTHs was unnecessary. XTH15, a classical group-I/II XTH, had high XET and undetectable XEH activity in vitro; its XET Km values were 31 μM XXXGol (acceptor substrate) and 2.9 mg/ml xyloglucan (donor substrate). In contrast, XTH31, a group-III-A XTH, showed predominant XEH activity and only slight XET activity in vitro; its XET Km was 86μM XXXGol (acceptor), indicating a low affinity of this predominantly hydrolytic protein for a transglycosylation acceptor substrate. The Km of XTH31's XEH activity was 1.6 mg/ml xyloglucan. For both proteins, the preferred XET acceptor substrate, among five cellotetraitol-based oligosaccharides tested, was XXXGol. XTH31's XET activity was strongly compromised when the second Xyl residue was galactosylated. XTH15's XET activity, in contrast, tolerated substitution at the second Xyl residue. The two enzymes also showed different pH preferences, XTH31 exhibiting an unusually low pH optimum and XTH15 an unusually broad optimum. XTH31's hydrolase activity increased almost linearly with decreasing pH in the apoplastic range, 6.2-4.5, consistent with a possible role in 'acid growth'. In conclusion, these two Al(3+)-repressed XTHs differ, in several important enzymic features, from other members of the Arabidopsis XTH family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Low density microcellular foams

    DOEpatents

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  7. Low density microcellular foams

    DOEpatents

    Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.

    1987-01-01

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  8. Foam For Filtering

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Like nature's honeycomb, foam is a structure of many-sided cells, apparently solid but actually only three percent material and 97 percent air. Foam is made by a heat-producing chemical reaction which expands a plastic material in a manner somewhat akin to the heat-induced rising of a loaf of bread. The resulting structure of interconnected cells is flexible yet strong and extremely versatile in applicati6n. Foam can, for example, be a sound absorber in one form, while in another it allows sound to pass through it. It can be a very soft powder puff material and at the same time a highly abrasive scrubber. A sampling of foam uses includes stereo speaker grilles, applying postage meter ink, filtering lawnmower carburetor air; deadening noise in trucks and tractors, applying cosmetics, releasing fabric softener and antistatic agents in home clothes dryers, painting, filtering factory heating and ventilating systems, shining shoes, polishing cars, sponge-mopping floors, acting as pre-operative surgical scrubbers-the list is virtually limitless. The process by which foam is made produces "windows," thin plastic membranes connecting the cell walls. Windowed foam is used in many applications but for certain others-filtering, for example-it is desirable to have a completely open network. Scott Paper Company's Foam Division, Chester, Pennsylvania, improved a patented method of "removing the windows," to create an open structure that affords special utility in filtering applications. NASA technology contributed to Scott's improvement.

  9. Aluminium in human sweat.

    PubMed

    Minshall, Clare; Nadal, Jodie; Exley, Christopher

    2014-01-01

    It is of burgeoning importance that the human body burden of aluminium is understood and is measured. There are surprisingly few data to describe human excretion of systemic aluminium and almost no reliable data which relate to aluminium in sweat. We have measured the aluminium content of sweat in 20 healthy volunteers following mild exercise. The concentration of aluminium ranged from 329 to 5329μg/L. These data equate to a daily excretion of between 234 and 7192μg aluminium and they strongly suggest that perspiration is the major route of excretion of systemic aluminium in humans. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Evidence of aluminium accumulation in aluminium welders.

    PubMed Central

    Elinder, C G; Ahrengart, L; Lidums, V; Pettersson, E; Sjögren, B

    1991-01-01

    Using atomic absorption spectrometry the aluminium concentrations in blood and urine and in two iliac bone biopsies obtained from welders with long term exposure to fumes containing aluminium were measured. The urinary excretion of two workers who had welded for 20 and 21 years varied between 107 and 351 micrograms Al/l, more than 10 times the concentration found in persons without occupational exposure. Urinary aluminium excretion remained high many years after stopping exposure. Blood and bone aluminium concentrations (4-53 micrograms Al/l and 18-29 micrograms Al/g respectively) were also raised but not to the same extent as urine excretion. It is concluded that long term exposure to aluminium by inhalation gives rise to accumulation of aluminium in the body and skeleton of health persons, and that the elimination of retained aluminium is very slow, in the order of several years. PMID:1954151

  11. Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam.

    PubMed

    Chen, S N; Iwawaki, T; Morita, K; Antici, P; Baton, S D; Filippi, F; Habara, H; Nakatsutsumi, M; Nicolaï, P; Nazarov, W; Rousseaux, C; Starodubstev, M; Tanaka, K A; Fuchs, J

    2016-02-29

    The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5-10 eV and densities around 10(21) cm(-3) are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations.

  12. Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam

    PubMed Central

    Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.

    2016-01-01

    The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471

  13. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Change in the ionisation state of a near-surface laser-produced aluminium plasma in double-pulse ablation modes

    NASA Astrophysics Data System (ADS)

    Burakov, V. S.; Bokhonov, A. F.; Nedel'ko, M. I.; Tarasenko, N. V.

    2003-12-01

    The near-surface plasma produced upon irradiation of an aluminium target by two successive laser pulses with nonresonance and resonance wavelengths is studied by the spectroscopic and probe-assisted methods. The feasibility of increasing the ion fraction in the laser-produced plasma in double-pulse ablation modes is demonstrated. The conditions are determined under which processes on the surface as well as selective excitation and ionisation in the plasma have a determining effect on the formation of its ionisation state.

  14. Human exposure to aluminium.

    PubMed

    Exley, Christopher

    2013-10-01

    Human activities have circumvented the efficient geochemical cycling of aluminium within the lithosphere and therewith opened a door, which was previously only ajar, onto the biotic cycle to instigate and promote the accumulation of aluminium in biota and especially humans. Neither these relatively recent activities nor the entry of aluminium into the living cycle are showing any signs of abating and it is thus now imperative that we understand as fully as possible how humans are exposed to aluminium and the future consequences of a burgeoning exposure and body burden. The aluminium age is upon us and there is now an urgent need to understand how to live safely and effectively with aluminium.

  15. Low density microcellular foams

    DOEpatents

    LeMay, James D.

    1991-01-01

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  16. Low density microcellular foams

    DOEpatents

    LeMay, J.D.

    1991-11-19

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.

  17. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.

    PubMed

    Rouholamin, Davood; van Grunsven, William; Reilly, Gwendolen C; Smith, Patrick J

    2016-08-01

    A novel supercritical CO2 foaming technique was used to fabricate scaffolds of controllable morphology and mechanical properties, with the potential to tailor the scaffolds to specific tissue engineering applications. Biodegradable scaffolds are widely used as temporary supportive structures for bone regeneration. The scaffolds must provide a sufficient mechanical support while allowing cell attachment and growth as well as metabolic activities. In this study, supercritical CO2 foaming was used to prepare fully interconnected porous scaffolds of poly-d,l-lactic acid and poly-d,l-lactic acid/hydroxyapatite. The morphological, mechanical and cell behaviours of the scaffolds were measured to examine the effect of hydroxyapatite on these properties. These scaffolds showed an average porosity in the range of 86%-95%, an average pore diameter of 229-347 µm and an average pore interconnection of 103-207 µm. The measured porosity, pore diameter, and interconnection size are suitable for cancellous bone regeneration. Compressive strength and modulus of up to 36.03 ± 5.90 and 37.97 ± 6.84 MPa were measured for the produced porous scaffolds of various compositions. The mechanical properties presented an improvement with the addition of hydroxyapatite to the structure. The relationship between morphological and mechanical properties was investigated. The matrices with different compositions were seeded with bone cells, and all the matrices showed a high cell viability and biocompatibility. The number of cells attached on the matrices slightly increased with the addition of hydroxyapatite indicating that hydroxyapatite improves the biocompatibility and proliferation of the scaffolds. The produced poly-d,l-lactic acid/hydroxyapatite scaffolds in this study showed a potential to be used as bone graft substitutes. © IMechE 2016.

  18. Polyimide Foams Offer Superior Insulation

    NASA Technical Reports Server (NTRS)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  19. Ultralight metal foams

    PubMed Central

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-01-01

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory. PMID:26349002

  20. Ultralight metal foams

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-01

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain ɛD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  1. Ultralight metal foams.

    PubMed

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-08

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  2. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  3. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  4. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor); Sorathia, Usman A. K. (Inventor)

    1982-01-01

    Copolymide foams derived from a diester of 3,3',4,4'-benzophenonetetracarboxylic acid, an aromatic diamine, and a heterocyclic diamine. A molar concentration of the heterocyclic diamine approaching but not exceeding 0.42 is employed. This results in a flexible foam with a homogeneous cellular structure and a reduced compression set loss.

  5. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor); Sorathia, Usman A. K. (Inventor)

    1983-01-01

    Copolyimide foams derived from a diester of 3,3',4,4'-benzophenonetetracarboxylic acid, an aromatic diamine, and a heterocyclic diamine. A molar concentration of the heterocyclic diamine approaching but not exceeding 0.42 is employed. This results in a flexible foam with a homogeneous cellular structure and a reduced compression set loss.

  6. Polyimide foams

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor); Sorathia, Usman A. K. (Inventor)

    1982-01-01

    Copolyimide foams derived from a diester of 3,3',4,4'-benzophenonetetracarboxylic acid, an aromatic diamine, and a heterocyclic diamine. A molar concentration of the heterocyclic diamine approaching but not exceeding 0.42 is employed. This results in a flexible foam with a homogeneous cellular structure and a reduced compression set loss.

  7. Composite foams

    DOEpatents

    Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.

    1991-01-01

    Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.

  8. Composite foams

    DOEpatents

    Williams, Jr., Joel M.; Nyitray, Alice M.; Wilkerson, Mark H.

    1990-01-01

    Composite foams are provided comprising a first rigid, microcellular, open-celled organic polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 1 micron to about 30 microns, said first foam containing a second polymer having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 or a second polymer foam having a density of from about 0.015 g/cm.sup.3 to about 0.20 g/cm.sup.3 and a pore size of from about 0.01 microns to about 1.0 micron within the open cells of said first foam.

  9. Foam clogging.

    PubMed

    Rouyer, F; Haffner, B; Louvet, N; Khidas, Y; Pitois, O

    2014-09-28

    To what extent are aqueous foams prone to clogging? Foam permeability is measured as a function of particulate loading (trapped hydrophilic particles) under conditions where the particle to bubble size ratio is allowed to increase when the number of particles per bubble is fixed. In addition to experiments performed on the foam scale, we investigated experimentally and numerically the hydrodynamic resistance of a single foam node loaded with one particle. It is shown that, with respect to solid porous media, aqueous foams clog more efficiently due to two reasons: (i) the deformation of interfaces allows for larger particles to be incorporated within the interstitial network and (ii) the interfacial mobility contributes to lowering of the reduced permeability.

  10. Study on aluminium-based single films.

    PubMed

    Vinod Kumar, G S; García-Moreno, F; Babcsán, N; Brothers, A H; Murty, B S; Banhart, J

    2007-12-28

    In the present paper the authors studied isolated metallic films made from the same material used for making metallic foams, and then characterised their properties. Metal films were made from a liquid aluminium alloy reinforced with ceramic particles of known concentration. Melts without such particles were also investigated. It is shown that stable films could not be made from Al-Si alloy having no particles, and just extremely thin and fragile films could be made from commercially-pure Al. In contrast, aluminium alloys containing particles such as SiC and TiB(2) allowed pulling thin, stable films, which did not rupture. Significant thinning of films was observed when the particle concentration in the melt decreased. By in situ X-ray monitoring of liquid films during pulling, film thickness and drainage effects within the liquid film could be studied. The morphology and microstructure of films was characterised after solidification. Our work shows that the question of how foams are stabilised can be studied using a simplified system such as a film, instead of having to deal with the multitude of different structural elements present in a foam.

  11. Novel method for joining CFRP to aluminium

    NASA Astrophysics Data System (ADS)

    Möller, F.; Thomy, C.; Vollertsen, F.; Schiebel, P.; Hoffmeister, C.; Herrmann, A. S.

    The current state of the art in joining of carbon-fibre reinforced composites (CFRP) to metals such as aluminium is - for the case of aircraft structures, e.g.- riveting or bolting. However, to reduce structural weight and improve structural performance, integral, load-bearing aluminium-CFRP-structures are desirable. To produce such structures, a novel joint configuration together with an appropriate thermal, laser-based joining process is suggested by the authors. In this paper, the joint configuration (based on CFRP-Ti-aluminium joints) and the laser beam conduction welding process will be presented, and first specimens obtained will be discussed with respect to their properties. It will be shown that the novel approach is in principle suitable to produce load-bearing CFRP-aluminium structures.

  12. An ultrafast rechargeable aluminium-ion battery

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-01

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g-1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g-1 (equivalent to ~3,000 W kg-1), and to withstand more than 7,500 cycles without capacity decay.

  13. Foam patterns

    DOEpatents

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  14. Composite foam structures

    NASA Technical Reports Server (NTRS)

    Williams, Brian E. (Inventor); Brockmeyer, Jerry (Inventor); Tuffias, Robert H. (Inventor)

    2005-01-01

    A composite rigid foam structure that has a skin or coating on at least one of its surfaces. The skin is formed in situ by thermal spray techniques. The skin is bonded substantially throughout the surface of the porous substrate to the peripheries of the pores. The skin on the average does not penetrate the surface of the substrate by more than the depth of about 2 to 5 pores. Thus, thermal spraying the skin onto the rigid foam produces a composite that is tightly and uniformly bonded together without unduly increasing the weight of the composite structure. Both thermal conductivity and bonding are excellent.

  15. Foam Microrheology

    SciTech Connect

    KRAYNIK,ANDREW M.; LOEWENBERG,MICHAEL; REINELT,DOUGLAS A.

    1999-09-01

    The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams.

  16. Rigid closed-cell polyimide foams for aircraft applications and foam-in-place technology

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Straub, P.; Gagliani, J., Jr.

    1983-01-01

    Significant accomplishments generated are summarized. Testing of closed cell foams, which has resulted in the characterization of compositions which produce rigid foams for use in galley structure applications is reported. It is shown that the density, compressive strength and shear strength of the foams are directly related to the concentrations of the microballoons. The same properties are also directly related to the resin loading. Prototype samples of rigid closed cell foams meeting the requirements of the program were submitted. Investigation of the apparatus to produce polyimide foams using foam in place techniques, resulted in the selection of a spray gun apparatus, capable to deliver a mixture of microballoons and resin binder on substrates which cures to yield a closed cell foam. It is found that the adhesion of the foam on aluminum, titanium and steel substrates is satisfactory. It is concluded that the material meets the mechanical and thermal requirements of the program.

  17. Foam Micromechanics

    SciTech Connect

    Kraynik, A.M.; Neilsen, M.K.; Reinelt, D.A.; Warren, W.E.

    1998-11-03

    Foam evokes many different images: waves breaking at the seashore, the head on a pint of Guinness, an elegant dessert, shaving, the comfortable cushion on which you may be seated... From the mundane to the high tech, foams, emulsions, and cellular solids encompass a broad range of materials and applications. Soap suds, mayonnaise, and foamed polymers provide practical motivation and only hint at the variety of materials at issue. Typical of mukiphase materiaIs, the rheoIogy or mechanical behavior of foams is more complicated than that of the constituent phases alone, which may be gas, liquid, or solid. For example, a soap froth exhibits a static shear modulus-a hallmark of an elastic solid-even though it is composed primarily of two Newtonian fluids (water and air), which have no shear modulus. This apparent paradox is easily resolved. Soap froth contains a small amount of surfactant that stabilizes the delicate network of thin liq- uid films against rupture. The soap-film network deforms in response to a macroscopic strain; this increases interracial area and the corresponding sur- face energy, and provides the strain energy of classical elasticity theory [1]. This physical mechanism is easily imagined but very challenging to quantify for a realistic three-dimensional soap froth in view of its complex geome- try. Foam micromechanics addresses the connection between constituent properties, cell-level structure, and macroscopic mechanical behavior. This article is a survey of micromechanics applied to gas-liquid foams, liquid-liquid emulsions, and cellular solids. We will focus on static response where the foam deformation is very slow and rate-dependent phenomena such as viscous flow can be neglected. This includes nonlinear elasticity when deformations are large but reversible. We will also discuss elastic- plastic behavior, which involves yield phenomena. Foam structures based on polyhedra packed to fill space provide a unify- ing geometrical theme. Because a two

  18. Temper Foam

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Fabricated by Expanded Rubber & Plastics Corporation, Temper Foam provides better impact protection for airplane passengers and enhances passenger comfort on long flights because it distributes body weight and pressure evenly over the entire contact area. Called a "memory foam" it matches the contour of the body pressing against it and returns to its original shape once the pressure is removed. As a shock absorber, a three-inch foam pad has the ability to absorb the impact of a 10-foot fall by an adult. Applications include seat cushioning for transportation vehicles, padding for furniture and a variety of athletic equipment medical applications including wheelchair padding, artificial limb socket lining, finger splint and hand padding for burn patients, special mattresses for the bedridden and dental stools. Production and sales rights are owned by Temper Foam, Inc. Material is manufactured under license by the Dewey and Almy Division of Grace Chemical Corporation. Distributors of the product are Kees Goebel Medical Specialties, Inc. and Alimed, Inc. They sell Temper Foam in bulk to the fabricators who trim it to shapes required by their customers.

  19. Foam drainage

    SciTech Connect

    Kraynik, A.M.

    1983-11-01

    Transient drainage from a column of persistent foam has been analyzed theoretically. Gravity-driven flow was assumed to occur through an interconnected network of Plateau borders that define the edges of foam cells taken to be regular pentagonal dodecahedrons. A small liquid volume fraction and monodisperse cell size distribution were assumed. In the basic model, it is assumed that all liquid is contained in Plateau borders that are bounded by rigid gas-liquid interfaces. The predicted half life, the time required for one half of the liquid to drain from the foam, is inversely proportional to the square of the cell diameter, illustrating the importance of foam structure in drainage. Liquid hold up in the films separating adjacent cells, nonuniform initial liquid volume fraction distribution and interfacial mobility are explored. Border suction due to reduced pressure in the Plateau borders provides a mechanism for film drainage. Simultaneous film drainage and flow through the Plateau borders are analyzed. Sufficient conditions for neglecting film drainage kinetics are obtained. The results indicate that improved foam stability is related to small cells, liquid hold up in the films and slow film drainage kinetics.

  20. Bio-based Polymer Foam from Soyoil

    NASA Astrophysics Data System (ADS)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  1. The kinetics of polyurethane structural foam formation: Foaming and polymerization

    DOE PAGES

    Rao, Rekha R.; Mondy, Lisa A.; Long, Kevin N.; ...

    2017-02-15

    We are developing kinetic models to understand the manufacturing of polymeric foams, which evolve from low viscosity Newtonian liquids, to bubbly liquids, finally producing solid foam. Closed-form kinetics are formulated and parameterized for PMDI-10, a fast curing polyurethane, including polymerization and foaming. PMDI- 10 is chemically blown, where water and isocyanate react to form carbon dioxide. The isocyanate reacts with polyol in a competing reaction, producing polymer. Our approach is unique, though it builds on our previous work and the polymerization literature. This kinetic model follows a simplified mathematical formalism that decouples foaming and curing, including an evolving glass transitionmore » temperature to represent vitrification. This approach is based on IR, DSC, and volume evolution data, where we observed that the isocyanate is always in excess and does not affect the kinetics. Finally, the kinetics are suitable for implementation into a computational fluid dynamics framework, which will be explored in subsequent papers.« less

  2. FOAM-IN-PLACE FORM FITTING HELMET LINERS

    DTIC Science & Technology

    A urethane foam formulation has been developed to produce foamed-in-place helmet liners for Air Force crash or flying helmets. High density urethane...foam helmet liners has been foamed-in-place directly on the flying crew member’s head, producing a perfectly fitting helmet liner with a minimum of...time, labor and inconvenience. These liners were produced at an extremely modest cost. Design and fabrication of a suitable mold in which the helmet

  3. Low density microcellular foams

    DOEpatents

    LeMay, James D.

    1992-01-01

    Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  4. Foam structure :from soap froth to solid foams.

    SciTech Connect

    Kraynik, Andrew Michael

    2003-01-01

    The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of the entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.

  5. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    SciTech Connect

    Kinoshita, Hajime; Swift, Paul; Utton, Claire; Carro-Mateo, Beatriz; Collier, Nick; Milestone, Neil

    2013-08-15

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.

  6. Aluminium toxicity during regular haemodialysis.

    PubMed

    Elliott, H L; Dryburgh, F; Fell, G S; Sabet, S; Macdougall, A I

    1978-04-29

    In the west of Scotland the incidence of dialysis encephalopathy has been confined to three geographical areas where the concentration of aluminium in the water supply is greatly increased owing to the addition of aluminium sulphate. Eight patients with encephalopathy who dialysed at home in these areas had greatly increased serum aluminium concentrations, and a significant correlation was found between serum aluminium concentrations and the concentrations of aluminium in the water supply. This study provides further evidence that the dialysis encephalopathy syndrome is due to aluminium intoxication, the major source of aluminium being the water supply from which dialysis fluid prepared.

  7. Aluminium toxicity during regular haemodialysis.

    PubMed Central

    Elliott, H L; Dryburgh, F; Fell, G S; Sabet, S; Macdougall, A I

    1978-01-01

    In the west of Scotland the incidence of dialysis encephalopathy has been confined to three geographical areas where the concentration of aluminium in the water supply is greatly increased owing to the addition of aluminium sulphate. Eight patients with encephalopathy who dialysed at home in these areas had greatly increased serum aluminium concentrations, and a significant correlation was found between serum aluminium concentrations and the concentrations of aluminium in the water supply. This study provides further evidence that the dialysis encephalopathy syndrome is due to aluminium intoxication, the major source of aluminium being the water supply from which dialysis fluid prepared. PMID:638617

  8. Carbon foams from different coals

    SciTech Connect

    Montserrat Calvo; Roberto Garcia; Sabino R. Moinelo

    2008-09-15

    Carbon foams were obtained from several bituminous coals with different plasticity and volatile matter content by a two-stage thermal process. The first stage, a controlled carbonization treatment under pressure at 450-500 {sup o}C, is responsible for the final textural properties of the foam. In the second stage, the carbonization product was baked at 1100{sup o}C. The foams produced display a macroporous texture with fluidity, volatile matter content, and maceral composition of the precursor coals, having an influence on the apparent density and the pore size of the resultant porous products. Coals with low fluidity, volatile matter content, and liptinite content give rise to foams with lower pore size and lower apparent density. In the case of high fluidity coals, their foams display an increase of flexural strength with the increasing relative density. In general, the carbon foams obtained in this study display good electrical properties (electrical resistivity comparable to that of commercial foams). 27 refs., 7 figs., 4 tabs.

  9. Compact assembly generates plastic foam, inflates flotation bag

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Device for generating plastic foam consists of an elastomeric bag and two containers with liquid resin and a liquid catalyst. When the walls of the containers are ruptured the liquids come into contact producing foam which inflates the elastomeric bag.

  10. Metal-doped organic foam

    DOEpatents

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  11. The impact of low-Z impurities on x-ray conversion efficiency from laser-produced plasmas of low-density gold foam targets

    SciTech Connect

    Dong, Yunsong; Shang, Wanli; Yang, Jiamin; Zhang, Lu; Zhang, Wenhai; Li, Zhichao; Guo, Liang; Zhan, Xiayu; Du, Huabing; Deng, Bo; Pu, Yikang

    2013-12-15

    It is an important approach to improve the x-ray conversion efficiency of laser-ablated high-Z plasmas by using low initial density materials for various applications. However, unavoidable low-Z impurities in the manufacture process of low-density high-Z foam targets will depress this effect. A general easy-to-use analytical model based on simulations was developed to evaluate the quantitative impact of impurities within the gold foam target on laser to x-ray conversion efficiency. In addition, the x-ray conversion efficiencies of 1 g/cm{sup 3} gold foams with two different initial contents of impurities were experimentally investigated. Good agreements have been achieved between the model results and experiments.

  12. Pitch-based carbon foam and composites

    SciTech Connect

    Klett, James W.

    2002-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  13. Pitch-based carbon foam and composites

    SciTech Connect

    Klett, James W.

    2003-12-16

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  14. Pitch-based carbon foam and composites

    SciTech Connect

    Klett, James W.

    2003-12-02

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  15. Pitch-based carbon foam and composites

    SciTech Connect

    Klett, James W.

    2001-01-01

    A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  16. Foam Cushioning

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One innovation developed by a contractor at Ames Research Center was an open cell polymeric foam material with unusual properties. Intended as padding for aircraft seats the material offered better impact protection against accidents, and also enhanced passenger comfort because it distributed body weight evenly over the entire contact area. Called a slow springback foam, it flows to match the contour of the body pressing against it, and returns to its original shape once the pressure is removed. It has many applications including aircraft cushions and padding, dental stools, and athletic equipment. Now it's used by Dynamic Systems, Inc. for medical applications such as wheel chairs for severely disabled people which allow them to sit for 3-8 hours where they used to be uncomfortable in 15-30 minutes.

  17. Infiltrated carbon foam composites

    NASA Technical Reports Server (NTRS)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  18. Optimization of Design and Manufacturing Process of Metal Foam Filled Anti-Intrusion Bars

    NASA Astrophysics Data System (ADS)

    Villa, Andrea; Strano, Matteo; Mussi, Valerio

    2011-05-01

    The role of an anti-intrusion bar for automotive use is to absorb the kinetic energy of the colliding bodies that is partially converted into internal work of the bodies involved in the crash. The aim of this paper is to investigate the performances of a new kind of anti-intrusion bars for automotive use, filled with metallic foams. The reason for using a cellular material as a filler deals with its capacity to absorb energy during plastic deformation, while being lightweight. The study is the evolution of a previous paper presented by the authors at Esaform 2010 and will present new results and findings. It is conducted by evaluating some key technical issues of the manufacturing problem and by conducting experimental and numerical analyses. The evaluation of materials and shapes of the closed sections to be filled is made in the perspective of a car manufacturer (production costs, weight reduction, space availability in a car door, etc.). Experimentally, foams are produced starting from an industrial aluminium precursor with a TiH2 blowing agent. Bars are tested in three point bending, in order to evaluate their performances in terms of force-displacement response and other specific performance parameters. In order to understand the role of interface between the inner surface of the tube and the external surface of the foam, different kinds of interface are tested.

  19. Optimization of Design and Manufacturing Process of Metal Foam Filled Anti-Intrusion Bars

    SciTech Connect

    Villa, Andrea; Mussi, Valerio; Strano, Matteo

    2011-05-04

    The role of an anti-intrusion bar for automotive use is to absorb the kinetic energy of the colliding bodies that is partially converted into internal work of the bodies involved in the crash. The aim of this paper is to investigate the performances of a new kind of anti-intrusion bars for automotive use, filled with metallic foams. The reason for using a cellular material as a filler deals with its capacity to absorb energy during plastic deformation, while being lightweight. The study is the evolution of a previous paper presented by the authors at Esaform 2010 and will present new results and findings. It is conducted by evaluating some key technical issues of the manufacturing problem and by conducting experimental and numerical analyses. The evaluation of materials and shapes of the closed sections to be filled is made in the perspective of a car manufacturer (production costs, weight reduction, space availability in a car door, etc.). Experimentally, foams are produced starting from an industrial aluminium precursor with a TiH{sub 2} blowing agent. Bars are tested in three point bending, in order to evaluate their performances in terms of force-displacement response and other specific performance parameters. In order to understand the role of interface between the inner surface of the tube and the external surface of the foam, different kinds of interface are tested.

  20. An ultrafast rechargeable aluminium-ion battery.

    PubMed

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-16

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g(-1) and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g(-1) (equivalent to ~3,000 W kg(-1)), and to withstand more than 7,500 cycles without capacity decay.

  1. Aluminium salt slag characterization and utilization--a review.

    PubMed

    Tsakiridis, P E

    2012-05-30

    Aluminium salt slag (also known as aluminium salt cake), which is produced by the secondary aluminium industry, is formed during aluminium scrap/dross melting and contains 15-30% aluminium oxide, 30-55% sodium chloride, 15-30% potassium chloride, 5-7% metallic aluminium and impurities (carbides, nitrides, sulphides and phosphides). Depending on the raw mix the amount of salt slag produced per tonne of secondary aluminium ranges from 200 to 500 kg. As salt slag has been classified as toxic and hazardous waste, it should be managed in compliance with the current legislation. Its landfill disposal is forbidden in most of the European countries and it should be recycled and processed in a proper way by taking the environmental impact into consideration. This paper presents a review of the aluminium salt slag chemical and mineralogical characteristics, as well as various processes for metal recovery, recycling of sodium and potassium chlorides content back to the smelting process and preparation of value added products from the final non metallic residue. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Process for preparing silicon carbide foam

    DOEpatents

    Whinnery, L.L.; Nichols, M.C.; Wheeler, D.R.; Loy, D.A.

    1997-09-16

    A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolyzed in an inert atmosphere to form a SiC foam. 9 figs.

  3. Process for preparing silicon carbide foam

    DOEpatents

    Whinnery, LeRoy Louis; Nichols, Monte Carl; Wheeler, David Roger; Loy, Douglas Anson

    1997-01-01

    A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolized in an inert atmosphere to form a SiC foam.

  4. Blowing Agents for Fabrication of Polyimide Foams

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Sorathia, U. A. K.; Lee, R.

    1982-01-01

    Polyimide resin can be foamed by agent generated within matrix of powder precursor. Blowing agent is mixture of water and methanol that are byproducts of condensation/polymerization reaction in resin. Expansion of these two compounds produces cellular foam structure that is flexible and resilient but that tends to have very-fine cellular structure. More open structure with lower density can be attained by modifying mechanism of foam formation. Foams have applications as fillers for seat cushions, wall panels, floor sheets, and thermal and acoustical insulation.

  5. One-step microwave foaming and curing

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Lee, R.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1981-01-01

    Process that combines microwave foaming and curing of polyimide precursors in single step produces fire-resistant foam slabs of much larger volume than has previously been possible. By adding selected conductive fillers to powder precursors and by using high-power microwave oven, foam slabs with dimensions in excess of 61 by 61 by 7.6 cm are made. Typical foaming and curing and curing time is 35 minutes in microwave oven with additional 1 to 2 hour postcure in conventional oven.

  6. One-step microwave foaming and curing

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Lee, R.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1981-01-01

    Process that combines microwave foaming and curing of polyimide precursors in single step produces fire-resistant foam slabs of much larger volume than has previously been possible. By adding selected conductive fillers to powder precursors and by using high-power microwave oven, foam slabs with dimensions in excess of 61 by 61 by 7.6 cm are made. Typical foaming and curing and curing time is 35 minutes in microwave oven with additional 1 to 2 hour postcure in conventional oven.

  7. Crosslinked polyethylene foams, via EB radiation

    NASA Astrophysics Data System (ADS)

    Cardoso, E. C. L.; Lugão, A. B.; Andrade E. Silva, L. G.

    1998-06-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to theses foams, imparts opitmum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine: building and insulation: packaging: domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203° C as the right blowing agent decomposition temperature. At a 22.7 kGy/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time.

  8. Nanostructured metal foams: synthesis and applications

    SciTech Connect

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  9. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  10. Activated, coal-based carbon foam

    SciTech Connect

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  11. Low density microcellular carbon foams and method of preparation

    DOEpatents

    Arnold, C. Jr.; Aubert, J.H.; Clough, R.L.; Rand, P.B.; Sylwester, A.P.

    1988-06-20

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  12. Low density microcellular carbon foams and method of preparation

    DOEpatents

    Arnold, Jr., Charles; Aubert, James H.; Clough, Roger L.; Rand, Peter B.; Sylwester, Alan P.

    1989-01-01

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  13. Prevalence of beryllium sensitization among aluminium smelter workers

    PubMed Central

    Slade, M. D.; Cantley, L. F.; Kirsche, S. R.; Wesdock, J. C.; Cullen, M. R.

    2010-01-01

    Background Beryllium exposure occurs in aluminium smelters from natural contamination of bauxite, the principal source of aluminium. Aims To characterize beryllium exposure in aluminium smelters and determine the prevalence rate of beryllium sensitization (BeS) among aluminium smelter workers. Methods A population of 3185 workers from nine aluminium smelters owned by four different aluminium-producing companies were determined to have significant beryllium exposure. Of these, 1932 workers participated in medical surveillance programmes that included the serum beryllium lymphocyte proliferation test (BeLPT), confirmation of sensitization by at least two abnormal BeLPT test results and further evaluation for chronic beryllium disease in workers with BeS. Results Personal beryllium samples obtained from the nine aluminium smelters showed a range of <0.01–13.00 μg/m3 time-weighted average with an arithmetic mean of 0.25 μg/m3 and geometric mean of 0.06 μg/m3. Nine workers were diagnosed with BeS (prevalence rate of 0.47%, 95% confidence interval = 0.21–0.88%). Conclusions BeS can occur in aluminium smelter workers through natural beryllium contamination of the bauxite and further concentration during the refining and smelting processes. Exposure levels to beryllium observed in aluminium smelters are similar to those seen in other industries that utilize beryllium. However, compared with beryllium-exposed workers in other industries, the rate of BeS among aluminium smelter workers appears lower. This lower observed rate may be related to a more soluble form of beryllium found in the aluminium smelting work environment as well as the consistent use of respiratory protection. PMID:20610489

  14. Aqueous foam toxicology evaluation and hazard review

    SciTech Connect

    Archuleta, M.M.

    1995-10-01

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  15. Foam shell project: Progress report

    SciTech Connect

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-03-25

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 {mu}m thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D{sub 2} or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE.

  16. Foam-Mixing-And-Dispensing Machine

    NASA Technical Reports Server (NTRS)

    Chong, Keith Y.; Toombs, Gordon R.; Jackson, Richard J.

    1996-01-01

    Time-and-money-saving machine produces consistent, homogeneously mixed foam, enhancing production efficiency. Automatically mixes and dispenses polyurethane foam in quantities specified by weight. Consists of cart-mounted, air-driven proportioning unit; air-activated mechanical mixing gun; programmable timer/counter, and controller.

  17. Foam-Mixing-And-Dispensing Machine

    NASA Technical Reports Server (NTRS)

    Chong, Keith Y.; Toombs, Gordon R.; Jackson, Richard J.

    1996-01-01

    Time-and-money-saving machine produces consistent, homogeneously mixed foam, enhancing production efficiency. Automatically mixes and dispenses polyurethane foam in quantities specified by weight. Consists of cart-mounted, air-driven proportioning unit; air-activated mechanical mixing gun; programmable timer/counter, and controller.

  18. Galvanised steel to aluminium joining by laser and GTAW processes

    SciTech Connect

    Sierra, G.; Peyre, P.; Deschaux Beaume, F. Stuart, D.; Fras, G.

    2008-12-15

    A new means of assembling galvanised steel to aluminium involving a reaction between solid steel and liquid aluminium was developed, using laser and gas tungsten arc welding (GTAW) processes. A direct aluminium melting strategy was investigated with the laser process, whereas an aluminium-induced melting by steel heating and heat conduction through the steel was carried out with the GTAW process. The interfaces generated during the interaction were mainly composed of a 2-40 {mu}m thick intermetallic reaction layers. The linear strength of the assemblies can be as high as 250 N/mm and 190 N/mm for the assemblies produced respectively by laser and GTAW processes. The corresponding failures were located in the fusion zone of aluminium (laser assemblies), or in the reaction layer (GTAW assemblies)

  19. Multilayer roll bonded aluminium foil: processing, microstructure and flow stress

    SciTech Connect

    Barlow, C.Y.; Nielsen, P.; Hansen, N

    2004-08-02

    Bulk aluminium has been produced by warm-rolling followed by cold-rolling of commercial purity (99% purity) aluminium foil. The bonding appeared perfect from observation with the naked eye, light and transmission electron microscopy. By comparison with bulk aluminium of similar purity (AA1200) rolled to a similar strain (90%RA), the roll-bonded metal showed a much higher density of high-angle grain boundaries, similar strength and improved thermal stability. This study has implications for a number of applications in relation to the processing of aluminium. Roll bonding is of interest as a method for grain size refinement; oxide-containing materials have increased strength, enhanced work-hardening behaviour, and exhibit alterations in recrystallisation behaviour. The behaviour of the hard oxide film is of interest in aluminium processing, and has been investigated by characterising the size and distribution of oxide particles in the roll-bonded samples.

  20. Flame Resistant Foam

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Solimide manufactured by Imi-Tech Corporation, is a lightweight fire resistant material produced under a manufacturing process that allows it to be uniformly foamed. Can be produced in a variety of densities and structural configurations and remains resilient under exposure to temperatures ranging from minus 300 to plus 500 degrees Fahrenheit. Is resistant to open flame and generates virtually no smoke or toxic by-products. Used in aircraft for its superior damping characteristics, lighter weight and fire barrier properties, it's also applicable to ships and surface transportation systems such as transit cars, trains, buses and automobiles.

  1. Quantum Foam

    SciTech Connect

    Lincoln, Don

    2014-10-24

    The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isn’t empty at all – it’s a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs “quantum foam.” In this video, Fermilab’s Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.

  2. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    SciTech Connect

    Rapp, F. E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A. E-mail: anja.schneider@ict.fraunhofer.de; Elsner, P.

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  3. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    NASA Astrophysics Data System (ADS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  4. Investigation of pore initiation in metal foams by synchrotron-radiation tomography

    NASA Astrophysics Data System (ADS)

    Helfen, L.; Baumbach, T.; Pernot, P.; Cloetens, P.; Stanzick, H.; Schladitz, K.; Banhart, J.

    2005-06-01

    Synchrotron-radiation tomography was used to investigate early foaming stages of aluminium alloys. Monochromatic radiation, high spatial resolution down to the micrometer scale, partial beam coherence, and holographic reconstruction techniques permit the distinction between different foam constituents which are not visible by other volume imaging techniques. In combination with three-dimensional image analysis, the differences in the pore initiation processes in two different aluminium alloys are shown. We find that, in powder compacts made from prealloyed AA6061 alloy powder, pores appear predominantly around the blowing agent particles whereas, in compacts made from a powder blend of Al and Si, pores tend to initiate around Si particles.

  5. Foam formation in low gravity

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C.; Mcmanus, Samuel P.; Matthews, John; Patel, Darayas

    1990-01-01

    An apparatus that produced the first polyurethane foam in low gravity has been described. The chemicals were mixed together in an apparatus designed for operation in low gravity. Mixing was by means of stirring the chemicals with an electric motor and propeller in a mixing chamber. The apparatus was flown on Consort 1, the first low-gravity materials payload launched by a commercial rocket launch team. The sounding rocket flight produced over 7 min of low gravity during which a polyurethane spheroidal foam of approximately 2300 cu cm was formed. Photographs of the formation of the foam during the flight show the development of the spheroidal form. This begins as a small sphere and grows to approximately a 17-cm-diam spheroid. The apparatus will be flown again on subsequent low-gravity flights.

  6. Macroporous polymer foams by hydrocarbon templating.

    PubMed

    Shastri, V P; Martin, I; Langer, R

    2000-02-29

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control over pore structure, porosity, and other structural and bulk characteristics of the polymer foam. Polymer foams with densities as low as 120 mg/cc, porosity as high as 87%, and high surface areas (20 m(2)/g) have been produced. Foams of poly(l-lactic acid), a biodegradable polymer, produced by this process have been used to engineer a variety of different structures, including tissues with complex geometries such as in the likeness of a human nose.

  7. Macroporous polymer foams by hydrocarbon templating

    PubMed Central

    Shastri, Venkatram Prasad; Martin, Ivan; Langer, Robert

    2000-01-01

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control over pore structure, porosity, and other structural and bulk characteristics of the polymer foam. Polymer foams with densities as low as 120 mg/cc, porosity as high as 87%, and high surface areas (20 m2/g) have been produced. Foams of poly(l-lactic acid), a biodegradable polymer, produced by this process have been used to engineer a variety of different structures, including tissues with complex geometries such as in the likeness of a human nose. PMID:10696111

  8. Fatal aluminium phosphide poisoning

    PubMed Central

    Mittal, Sachin; Rani, Yashoda

    2015-01-01

    Aluminium phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law. PMID:27486362

  9. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium.

    PubMed

    Lee, Woo; Schwirn, Kathrin; Steinhart, Martin; Pippel, Eckhard; Scholz, Roland; Gösele, Ulrich

    2008-04-01

    Nanoporous anodic aluminium oxide has traditionally been made in one of two ways: mild anodization or hard anodization. The first method produces self-ordered pore structures, but it is slow and only works for a narrow range of processing conditions; the second method, which is widely used in the aluminium industry, is faster, but it produces films with disordered pore structures. Here we report a novel approach termed "pulse anodization" that combines the advantages of the mild and hard anodization processes. By designing the pulse sequences it is possible to control both the composition and pore structure of the anodic aluminium oxide films while maintaining high throughput. We use pulse anodization to delaminate a single as-prepared anodic film into a stack of well-defined nanoporous alumina membrane sheets, and also to fabricate novel three-dimensional nanostructures.

  10. Diamond grooving of rapidly solidified optical aluminium

    NASA Astrophysics Data System (ADS)

    Abou-El-Hossein, Khaled; Hsu, Wei-Yao; Ghobashy, Sameh; Cheng, Yuan-Chieh; Mkoko, Zwelinzima

    2015-10-01

    Traditional optical aluminium grades such as Al 6061 are intensively used for making optical components for applications ranging from mould insert fabrication to laser machine making. However, because of their irregular microstructure and relative inhomogeneity of material properties at micro scale, traditional optical aluminium may exhibit some difficulties when ultra-high precision diamond turned. Inhomogeneity and micro-variation in the material properties combined with uneven and coarse microstructure may cause unacceptable surface finish and accelerated tool wear, especially in grooving operation when the diamond tool edge is fully immersed in the material surface. Recently, new grades of optical aluminium that are featured by their ultra-fine microstructure and improved material properties have been developed to overcome the problem of high tool wear rates. The new aluminium grades have been developed using rapid solidification process which results in extremely small grain sizes combined with improved mechanical properties. The current study is concerned with investigating the performance of single-point diamond turning when grooving two grades of rapidly solidified aluminium (RSA) grades: RSA905 which is a high-alloyed aluminium grade and RSA443 which has a high silicon content. In this study, two series of experiments employed to create radial microgrooves on the two RSA grades. The surface roughness obtained on the groove surface is measured when different combinations of cutting parameters are used. Cutting speed is varied while feed rate and depth of cut were kept constant. The results show that groove surface roughness produced on RSA443 is higher than that obtained on RSA905. Also, the paper reports on the effect of cutting speed on surface roughness for each RSA grade.

  11. EOS measurements for CH foams using smoothed laser beams

    NASA Astrophysics Data System (ADS)

    Koenig, Michel; Benuzzi, Alessandra; Faral, Bernard; Philippe, Franc; Batani, Dimitri; Scianitti, Francesca; Müller, Laura; Torsiello, Flavia; Hall, Tom; Grandjouan, Nicholas; Nazarov, Wigen

    1998-11-01

    Porous material studies are of great interest in ICF physics, e. g. as a way to suppress laser nonuniformities (1), in material physics (2), or in astrophysics where foams have already been used to simulate supernovae remnants (3). The knowledge of foam Equation of State (EOS) is therefore needed. Here we present the first EOS data of CH foams obtained with lasers. The data, in the pressure range of 0.04-4 Mbar, have been obtained by reverse mismatch impedance technique, using aluminium as the reference material and foams with densities ranging from 20 to 400 mg/cc. We performed also measurements on the plastic at normal density (1100 mc/cc). A specific target design makes it possible to measure shock velocities in aluminium and in foams on the same shot. The results are compared to SESAME EOS and QEOS model which include the initial low density effects. [1]M. Dunee et al, Phys. Rev. Lett. 75,3858 (1995). [2] N. Holmes, Proceedings of APS Topical Conference on Shock Compression of Condensed Matter, Colorado Springs USA (1994). [3]B. Remington et al., Phys. Plasmas 4(5),1994.

  12. Expanded polylactide bead foaming - A new technology

    NASA Astrophysics Data System (ADS)

    Nofar, M.; Ameli, A.; Park, C. B.

    2015-05-01

    Bead foaming technology with double crystal melting peak structure has been recognized as a promising method to produce low-density foams with complex geometries. During the molding stage of the bead foams, the double peak structure generates a strong bead-to-bead sintering and maintains the overall foam structure. During recent years, polylactide (PLA) bead foaming has been of the great interest of researchers due to its origin from renewable resources and biodegradability. However, due to the PLA's low melt strength and slow crystallization kinetics, the attempts have been limited to the manufacturing methods used for expanded polystyrene. In this study, for the first time, we developed microcellular PLA bead foams with double crystal melting peak structure. Microcellular PLA bead foams were produced with expansion ratios and average cell sizes ranging from 3 to 30-times and 350 nm to 15 µm, respectively. The generated high melting temperature crystals during the saturation significantly affected the expansion ratio and cell density of the PLA bead foams by enhancing the PLA's poor melt strength and promoting heterogeneous cell nucleation around the crystals.

  13. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H{sub 2}O{sub 2} as foaming agents

    SciTech Connect

    Ducman, V. Korat, L.

    2016-03-15

    Recent innovations in geopolymer technology have led to the development of various different types of geopolymeric products, including highly porous geopolymer-based foams, which are formed by the addition of foaming agents to a geopolymer fly-ash based matrix. These agents decompose, or react with the liquid matrix or oxygen in the matrix, resulting in the release of gases which form pores prior to the hardening of the gel. The hardened structure has good mechanical and thermal properties, and can therefore be used for applications in acoustic panels and in lightweight pre-fabricated components for thermal insulation purposes. This study presents the results of the pore-forming process in the case when two different foaming agents, i.e. aluminium powder amounting to 0.07, 0.13 and 0.20 mass. % and H{sub 2}O{sub 2} amounting to 0.5, 1.0, 1.5 and 2.0 mass. %, were added to a fly-ash geopolymer matrix. The physical, mechanical, and microstructural properties of the thus obtained foams, and the effects of the type and amount of the added foaming agent, are presented and discussed. Highly porous structures were obtained in the case of both of the investigated foaming agents, with overall porosities up to 59% when aluminium powder was added, and of up 48% when H{sub 2}O{sub 2} was added. In the latter case, when 2% of the H{sub 2}O{sub 2} foaming agent was added, finer pores (with diameters up to 500 μm) occurred in the structure, whereas somewhat larger pores (some had diameters greater than 1 mm) occurred when the same amount of aluminium powder was added. The mechanical properties of the investigated foams depended on their porosity. In the case of highly porous structures a compressive strength of 3.3 MPa was nevertheless achieved for the samples containing 0.2% of aluminium powder, and 3.7 MPa for those containing 2.0% of H{sub 2}O{sub 2}. - Highlights: • Preparation of geopolymer foams based on fly ash with the addition of Al powder or H{sub 2}O{sub 2} as

  14. Quantum Foam

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isn’t empty at all – it’s a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs “quantum foam.” In this video, Fermilab’s Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.

  15. Electrochemical synthesis of nickel-aluminium oxide system from metals obtained by ore processing

    NASA Astrophysics Data System (ADS)

    Korobochkin, V. V.; Usoltseva, N. V.; Shorokhov, K. G.; Popova, E. V.

    2015-11-01

    Separate and combined electrochemical oxidation of aluminium and nickel has been conducted by alternating current of industrial frequency. Concentration increase of electrolyte solution (sodium chloride) in the range from 3 to 25 wt. % and current density from 0.5 to 1.5 A/cm2 was found to result in the increasing metal oxidation rate, excluding aluminium oxidation which oxidation rate is independent of the electrolyte solution concentration. At the current density of 1.5 A/cm2 the products of separate oxidation of nickel and aluminium are nickel oxyhydroxides, nickel hydroxides and aluminium oxyhydroxide (boehmite), respectively. In addition to these compounds, the nickel-aluminium oxide hydrate is included in the products of nickel and aluminium co-oxidation. Its content grows with the increasing electrolyte solution concentration. Varying the concentration and current density within the limits indicated, the nickel-aluminium oxide system with nickel oxide content from 3 to 10 wt. % is produced.

  16. The Current Efficiency for Aluminium Deposition from Molten Fluoride Electrolytes with Dissolved Alumina

    NASA Astrophysics Data System (ADS)

    Haarberg, Geir Martin

    Controlled laboratory experiments were carried out to determine the current efficiency for aluminium deposition from fluoride electrolytes containing dissolved alumina. Electrolysis was performed at constant current density, and the amount of deposited aluminium was determined. Effects of temperature, cathodic current density, electrolyte composition and the presence of dissolved impurities were studied. The loss in current efficiency is strongly linked to the solubility of dissolved aluminium. The rate of the so called back reaction between dissolved aluminium and CO2 depends on the diffusion of dissolved aluminium near the cathode. Both dissolved aluminium and dissolved alkali metals must be considered. Impurities with several oxidation states, such as phosphorus, cause a loss in current efficiency by undergoing cyclic red/ox reactions at the electrodes. The results are of interest for the industrial process of producing aluminium.

  17. Efficient conversion of brown grease produced by municipal wastewater treatment plant into biofuel using aluminium chloride hexahydrate under very mild conditions.

    PubMed

    Pastore, Carlo; Lopez, Antonio; Mascolo, Giuseppe

    2014-03-01

    Wastes produced by oil/water separation at the wastewater treatment plant of Bari West (Southern Italy) were taken, characterized and converted. About 12% of this material was composed of greases, mainly made of free fatty acids (50%) and soaps (34%), and was easily separable by the aqueous phase through a hot centrifugation. After chemical activation of this fatty fraction, a direct esterification was carried out under very mild conditions (320K and atmospheric pressure), converting more than 90% of the original free fatty acids into the respective methyl esters in less than 4h, by using AlCl3·6H2O. The activation energy correlated to the use of this catalyst was also calculated (Eaest=43.9kJmol(-1)). The very low cost of the biodiesel produced (0.45€L(-1)) and the associated relevant specific energy (5.02MJ kgFAMEs(-1)) make such a process a really sustainable and effective example of valorization of a waste.

  18. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  19. Low density carbonized composite foams

    SciTech Connect

    Fungming Kong.

    1993-08-03

    A carbonized composite foam which has two cellular structures is described, comprising: a first cellular structure formed from the polymerization of a monomer, and a second cellular structure formed from a high-carbon-yield prepolymer which occupies the cells of the first cellular structure, whereby the second cellular structure has cell diameters smaller than the first cellular structure, producing a bimodal cell size distribution; and wherein the second cellular structure has cell diameters less than about 1 micron, wherein the composite foam has a density less than about 50 mg/cm[sub 3], and wherein the first and second cellular structures are carbonized.

  20. Pitch based foam with particulate

    SciTech Connect

    Klett, James W.

    2001-01-01

    A thermally conductive, pitch based foam composite having a particulate content. The particulate alters the mechanical characteristics of the foam without severely degrading the foam thermal conductivity. The composite is formed by mixing the particulate with pitch prior to foaming.

  1. Biodegradable foam plastics based on castor oil.

    PubMed

    Wang, Hong Juan; Rong, Min Zhi; Zhang, Ming Qiu; Hu, Jing; Chen, Hui Wen; Czigány, Tibor

    2008-02-01

    In this work, a simple but effective approach was proposed for preparing biodegradable plastic foams with a high content of castor oil. First of all, castor oil reacted with maleic anhydride to produce maleated castor oil (MACO) without the aid of any catalyst. Then plastic foams were synthesized through free radical initiated copolymerization between MACO and diluent monomer styrene. With changes in MACO/St ratio and species of curing initiator, mechanical properties of MACO foams can be easily adjusted. In this way, biofoams with comparable compressive stress at 25% strain as commercial polyurethane (PU) foams were prepared, while the content of castor oil can be as high as 61 wt %. The soil burial tests further proved that the castor oil based foams kept the biodegradability of renewable resources despite the fact that some petrol-based components were introduced.

  2. Foam generator and viscometer apparatus and process

    DOEpatents

    Reed, Troy D.; Pickell, Mark B.; Volk, Leonard J.

    2004-10-26

    An apparatus and process to generate a liquid-gas-surfactant foam and to measure its viscosity and enable optical and or electronic measurements of physical properties. The process includes the steps of pumping selected and measured liquids and measured gases into a mixing cell. The mixing cell is pressurized to a desired pressure and maintained at a desired pressure. Liquids and gas are mixed in the mixing cell to produce a foam of desired consistency. The temperature of the foam in the mixing cell is controlled. Foam is delivered from the mixing cell through a viscometer under controlled pressure and temperature conditions where the viscous and physical properties of the foam are measured and observed.

  3. Treatment of oilfield produced water using Fe/C micro-electrolysis assisted by zero-valent copper and zero-valent aluminium.

    PubMed

    Zhang, Qi

    2015-01-01

    In this study, the Fe/Cu/C and Fe/Al/C inner micro-electrolysis systems were used to treat actual oilfield produced water to evaluate the feasibility of the technology. Effects of reaction time, pH value, the dosage of metals and activated carbon, and Fe:C mass ratio on the treatment efficiency of wastewater were studied. The results showed that the optimum conditions were reaction time 120 min, initial solution pH 4.0, Fe dosage 13.3 g/L, activated carbon dosage 6.7 g/L, Cu dosage 2.0 g/L or Al dosage 1.0 g/L. Under the optimum conditions, the removal efficiencies of chemical oxygen demand (COD) were 39.3%, 49.7% and 52.6% in the Fe/C, Fe/Cu/C and Fe/Al/C processes, respectively. Meanwhile, the ratio of five-day biochemical oxygen demand to COD was raised from 0.18 to above 0.35, which created favourable conditions for the subsequent biological treatment. All these led to an easy maintenance and low operational cost.

  4. Development of Steel Foam Materials and Structures

    SciTech Connect

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  5. Polyurethane-Foam Maskant

    NASA Technical Reports Server (NTRS)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  6. Fire retardant polyisocyanurate foam

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Parker, J. A.

    1972-01-01

    Fire retardant properties of low density polymer foam are increased. Foam has pendant nitrile groups which form thermally-stable heterocyclic structures at temperature below degradation temperature of urethane linkages.

  7. Fuel Stability Foam

    DTIC Science & Technology

    1988-08-01

    rupture 1161. Foams containing either polyether or polyester polyols are fuel-compatible, but the polyether variety is considerably less susceptible to...General details of the foams are given in Table 2. Foams containing polyether and polyester polyols , either with reticulated on non- 3 - reticulated...mainly for fuel slosh attenuation, and explosion suppression properties [161. Foams containing either polyether or polyester polyols can be fuel

  8. Metallized polymeric foam material

    NASA Technical Reports Server (NTRS)

    Birnbaum, B. A.; Bilow, N.

    1974-01-01

    Open-celled polyurethane foams can be coated uniformly with thin film of metal by vapor deposition of aluminum or by sensitization of foam followed by electroless deposition of nickel or copper. Foam can be further processed to increase thickness of metal overcoat to impart rigidity or to provide inert surface with only modest increase in weight.

  9. Viscoelastic foam cushion

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.; Yost, C.

    1977-01-01

    Foam is viscous and elastic with unusual and useful temperature, humidity, and compression responses. Applied weight and pressure distributed equally along entire interface with foam eliminates any pressure points. Flexible urethane foam is ideal for orthopedic and prosthetic devices, sports equipment, furniture, and crash protection.

  10. Aluminium and human breast diseases.

    PubMed

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 ± 28 μg/l) compared with control healthy subjects (mean 131 ± 10 μg/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 μg/l) compared with human serum (median 6 μg/l) or human milk (median 25 μg/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Effect of oxide particles on the stabilization and final microstructure in aluminium

    PubMed Central

    Bachmaier, Andrea; Pippan, Reinhard

    2011-01-01

    Bulk aluminium samples containing alumina particles have been produced by different severe plastic deformation methods. Aluminium foils with different initial foil thicknesses were cold rolled to different amounts of strain and aluminium powders were consolidated and deformed by high pressure torsion (HPT). During processing, alumina particles from the foil or particle surface are easily incorporated and dispersed in the bulk material. The influence of these alumina particles on the developing microstructures and the mechanical properties has been studied. PMID:21976787

  12. Incremental forming of aluminium alloys in cryogenic environment

    NASA Astrophysics Data System (ADS)

    Vanhove, Hans; Mohammadi, Amirahmad; Duflou, Joost R.

    2016-10-01

    Incremental Sheet Forming processes suffer from stringent forming limits, restricting the range of producible geometries. Through in-process cooling of the sheet to cryogenic level, this paper explores the potential of altering material properties benefiting the formability and residual hardness of different aluminium alloys. Global cooling of aluminium sheets with liquid nitrogen and dry ice allows to reach temperatures of 78K and 193K respectively. Extended with experiments at room temperature (293K), these tests form a base for comparison of surface quality, formability and residual hardness. As an aluminium alloy commonly used for its high strength to weight ratio, but suffering from limited formability compared to draw-quality steels, AA5083-H111 is of interest for cryogenic treatment. AA1050-H24 is included in the test campaign as a base for commercially pure aluminium.

  13. Microcellular foam injection molding with cellulose nanofibers (CNFs)

    NASA Astrophysics Data System (ADS)

    Ohshima, Masahiro; Kubota, Masaya; Ishihara, Shota; Hikima, Yuta; Sato, Akihiro; Sekiguchi, Takafumi

    2016-03-01

    Cellulose nanofibers (CNFs) nanocomposites polypropylene foams are prepared by microcellular foam injection molding with core-back operation. The modified CNFs were blended with isotactic-polypropylene (i-PP) at different CNFs weight percentages and foamed to investigate the effect of CNFs on cell morphology. CNFs in i-PP increased the elastic modulus and induced a strain hardening behavior. CNFs also shifted the crystallization temperature of i-PP to higher temperature and enhanced crystallization. With these changes in rheological and thermal properties, CNFs could reduce the cell size and increase the cell density of the foams. By adjusting the core-back timing i.e., foaming temperature, the closed cell and the nano-fibrillated open cellular structure could be produced. The flexural modulus and bending strength of foams were measured by three point flexural tester. The flexural modulus and bending strength were increased as the CNFs content in i-PP was increased at any foam expansion ratio.

  14. Foam droplet separation for nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Tyree, Corey A.; Allen, Jonathan O.

    2008-03-01

    A novel approach to nanoparticle synthesis was developed whereby foam bubble bursting produced aerosol droplets, an approach patterned after the marine foam aerosol cycle. The droplets were dried to remove solvent, leaving nanometer-sized particles composed of precursor material. Nanoparticles composed of sodium chloride (mean diameter, bar{D}_p≈ 100 nm), phosphotungstic acid (bar{D}_p≈ 55 nm), and bovine insulin ({D}_p≈ 5-30 nm) were synthesized. Foam droplet separation can be carried out at ambient temperature and pressure. The `soft' nature of the process makes it compatible with a wide range of materials.

  15. Shooting in a foam.

    PubMed

    Le Goff, Anne; Quéré, David; Clanet, Christophe

    2014-09-21

    We study the motion of a solid sphere after its fast impact on a bath of liquid foam. We identify two regimes of deceleration. At short times, the velocity is still large and the foam behaves similar to a Newtonian fluid of constant viscosity. Then we measure a velocity threshold below which the sphere starts experiencing the foam's elasticity. We interpret this behavior using a visco-elasto-plastic model for foam rheology. Finally we discuss the possibility of stopping a projectile in the foam, and evaluate the capture efficiency.

  16. Coated foams, preparation, uses and articles

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  17. Foam consolidation and drainage.

    PubMed

    Jun, S; Pelot, D D; Yarin, A L

    2012-03-27

    A theoretical model of foam as a consolidating continuum is proposed. The general model is applied to foam in a gravity settler. It is predicted that liquid drainage from foam in a gravity settler begins with a slow drainage stage. Next, a stage with faster drainage occurs where the drainage rate doubles compared to the initial stage. The experiments conducted within the framework of this work confirmed the theoretical predictions and allowed measurements of foam characteristics. Foams of three different concentrations of Pantene Pro-V Classic Care Solutions shampoo were studied, as well as the addition of polyethylene oxide (PEO) in one case. The shampoo's main foaming components are sodium lauryl sulfate and sodium laureth sulfate. It is shown to what extent foam drainage is slowed down by using higher shampoo concentrations and how it is further decreased by adding polymer (PEO).

  18. Foam process models.

    SciTech Connect

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A.; Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  19. Monoclonal antibody probe for assessing beer foam stabilizing proteins.

    PubMed

    Onishi, A; Proudlove, M O; Dickie, K; Mills, E N; Kauffman, J A; Morgan, M R

    1999-08-01

    A monoclonal antibody (Mab; IFRN 1625) has been produced, which is specific for the most hydrophobic polypeptides responsible for foam stabilization. The binding characteristics of the Mab suggest that it is the conformation of certain hydrophobic polypeptides which is important for foam stabilization. An enzyme-linked immunosorbent assay (ELISA) for assessing the foam-positive form of the foam-stabilizing polypeptides in beer was developed using IFRN 1625. A good correlation was obtained between ELISA determination of foam-stabilizing polypeptides and an empirical means of determining foaming, that is, the Rudin head retention values, for a collection of beers of various foam qualities. Application of the ELISA to different stages of the brewing process showed that the amounts of foam-positive polypeptides increased during barley germination. During the brewing process the proportion of foam-positive polypeptides present after fermentation increased slightly, although a large amount was lost along with other beer proteins during subsequent steps, such as filtering. The present study demonstrates that the amounts of beer polypeptide present in a foam-positive form have a direct relationship with the foaming potential of beer, that their levels are altered by processing, and that there is potential for greater quality control.

  20. TEPIC -- A new high temperature structural foam

    SciTech Connect

    L. L. Whinnery; S. H. Goods; M. L. Tootle; C. L. Neuschwanger

    1998-10-01

    The formulation, processing characteristics, microstructure and mechanical properties of a new structural foam, suitable for use at service temperatures up to 200 C, are reported. In each of these respects, the foam is compared to an existing material, called APO-BMI that is currently in use. When these two foams are directly compared, the new foam, called TEPIC, is found to be superior in its mechanical performance. TEPIC is formulated from a non-carcinogenic isocyanate, a di-functional epoxide, and glass microballoons. The authors' approach was to combine chemistries known to form thermally stable products. The principal polymerization products are an oxizolidinone produced by the reaction of the isocyanate with the epoxide and isocyanurate rings formed by the trimerization of the isocyanate. Processing has been examined and large-scale production is discussed in detail. Compared to APO-BMI processing, TEPIC processing is facile and economical. The structure of the foam resembles a traditional rigid polyurethane foam rather than that of the APO-BMI. That is, the foam is comprised of a continuous resin phase rather than weakly bonded glass microballoons. At a density of 0.42 g/cm{sup 3} or greater, maximum pore size in TEPIC was less than 2 mm, as required for the application.

  1. Influence of magnetic treatment of surfactant solutions on the properties of foams and on foam formation

    SciTech Connect

    Zal'tsman, M.D.; Dyusebaev, M.K.; Sulyaeva, N.G.

    1986-09-10

    One of the fields of application of surfactants is dust suppression by the foam method. Its effectiveness may be raised both by selection of suitable surfactants and by electrophysical methods of treatment of the surfactant solutions and of foam. The purpose of the present work was to study the influence of preliminary magnetic treatment of solutions of anionic and nonionic surfactants on the formation and properties of foam. The chosen surfactants were: the technical foaming agent PO-1 (disodium salts of alkyl-aromatic sulfonic acids based on kerosine), foaming agent PO-12, specially formulated for dust suppression (mixture of sodium primary alkylsulfates and alkylsulfonate with additions of glycerol and sodium hexametaphosphate), wetting agent OP-10 (monoalkylphenyl ether of polyethylene glycol based on polymer distillate), all made in the USSR, and Ditalon OTS (mixture of aliphatic alkyl sulfates), produced in East Germany.

  2. Aluminium Pneumoconiosis II. Effect on the Rat Lung of Intratracheal Injections of Stamped Aluminium Powders Containing Different Lubricating Agents and of a Granular Aluminium Powder

    PubMed Central

    Corrin, B.

    1963-01-01

    Three stamped aluminium powders were injected into the lungs of rats. One powder contained stearine and another mineral oil, whilst the third had had its lubricant removed. The powders produced a rapid and marked fibrosis of equal severity. It is concluded that aluminium rather than any additive in the powders is the fibrogenic agent. The protective action of stearine demonstrated in vitro was not confirmed in vivo, suggesting that pulmonary fibrosis may also occur in men handling stearine-containing powders. Such a case has recently been reported by McLaughlin et al. (1962), but this is exceptional to the general industrial experience. A granular aluminium powder was also injected into the lungs of rats. In accordance with the results of in vitro experiments, this produced only minimal fibrosis, contrasting strongly with the action of the stamped powders. Images PMID:14072617

  3. Effects of Melt-to-Solid Insert Volume Ratio on the Microstructures and Mechanical Properties of Al/Mg Bimetallic Castings Produced by Lost Foam Casting

    NASA Astrophysics Data System (ADS)

    Jiang, Wenming; Fan, Zitian; Li, Guangyu; Yang, Li; Liu, Xinwang

    2016-12-01

    A356 aluminum and AZ91D magnesium alloys, which act as a solid insert and a melt, respectively, were used to prepare Al/Mg bimetallic castings using the lost-foam casting process, and the effects of the melt-to-solid volume ratio (VR) on the microstructures, mechanical properties, and fractographies of the Al/Mg bimetallic castings were investigated in this paper. Obtained results show that the average thickness of the reaction layer between aluminum and magnesium significantly increased with increasing VR, and a compact and uniform interface was obtained with a VR of 14.6. The reaction layers of all the bimetallic castings obtained by different VRs mainly consisted of the Al12Mg17 + δ eutectic layer close to the magnesium matrix, the Al12Mg17 + Mg2Si intermediate layer as well as the Al3Mg2 + Mg2Si layer next to the aluminum base. The microhardnesses of reaction layers of all the bimetallic castings with different VRs were considerably higher than those of the magnesium and aluminum matrix alloys, particularly the Al3Mg2 layer. Excessive thick reaction layer and pore defects remarkably weakened the bonding strength of the bimetallic castings, especially pore defects, and a relative maximum shear strength was obtained with a VR of 14.6. The fractographs of the push-out samples showed a change in the fracture surface from a mixed brittle and ductile fracture nature to that of a brittle fracture nature with the increase of VR.

  4. Fabrication of Reticulated Graphitic Foam.

    DTIC Science & Technology

    2007-11-02

    mesophase pitch (MP). Mesophase pitch is...goes through several heat treatments to stabilize the mesophase pitch , burn out the polyurethane, carbonize and finally graphitize the foam, all the while maintaining the same morphology as the initial polyurethane foam....struts gives some initial molecular orientation. The dipped foam is dried, leaving behind a the polyurethane foam coated with the pitch . The foam

  5. Operator spin foam models

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Hellmann, Frank; Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-05-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  6. Hydrodynamics of wet foams

    NASA Astrophysics Data System (ADS)

    Langevin, Dominique; Saint-Jalmes, Arnaud; Marze, Sébastien; Cox, Simon; Hutzler, Stefan; Drenckhan, Wiebke; Weaire, Denis; Caps, Hervé; Vandewalle, Nicolas; Adler, Micheàle; Pitois, Olivier; Rouyer, Florence; Cohen-Addad, Sylvie; Höhler, Reinhard; Ritacco, Hernan

    2005-10-01

    Foams and foaming pose important questions and problems to the chemical industry. As a material, foam is unusual in being a desired product while also being an unwanted byproduct within industry. Liquid foams are an essential part of gas/liquid contacting processes such as distillation and absorption, but over-production of foam in these processes can lead to downtime and loss of efficiency. Solid polymeric foams, such as polystyrene and polyurethane, find applications as insulation panels in the construction industry. Their combination of low weight and unique elastic/plastic properties make them ideal as packing and cushioning materials. Foams made with proteins are extensively used in the food industry. Despite the fact that foam science is a rapidly maturing field, critical aspects of foam physics and chemistry remain unclear. Several gaps in knowledge were identified to be tackled as the core of this MAP project. In addition, microgravity affords conditions for extending our understanding far beyond the possibilities offered by ground-based investigation. This MAP project addresses the challenges posed by the physics of foams under microgravity.

  7. Frog Foam Nest Protein Diversity and Synthesis.

    PubMed

    Hissa, Denise Cavalcante; Bezerra, Walderly Melgaço; Freitas, Cléverson Diniz Teixeira De; Ramos, Márcio Viana; Lopes, José Luiz De Souza; Beltramini, Leila Maria; Roberto, Igor Joventino; Cascon, Paulo; Melo, Vânia Maria Maciel

    2016-08-01

    Some amphibian species have developed a breeding strategy in which they deposit their eggs in stable foam nests to protect their eggs and larvae. The frog foam nests are rich in proteins (ranaspumin), especially surfactant proteins, involved in the production of the foam nest. Despite the ecological importance of the foam nests for evolution and species conservation, the biochemical composition, the long-term stability and even the origin of the components are still not completely understood. Recently we showed that Lv-RSN-1, a 23.5-kDa surfactant protein isolated from the nest of the frog Leptodacylus vastus, presents a structural conformation distinct from any protein structures yet reported. So, in the current study we aimed to reveal the protein composition of the foam nest of L. vastus and further characterize the Lv-RSN-1. Proteomic analysis showed the foam nest contains more than 100 of proteins, and that Lv-RSN-1 comprises 45% of the total proteins, suggesting a key role in the nest construction and stability. We demonstrated by Western blotting that Lv-RSN-1 is mainly produced only by the female in the pars convoluta dilata, which highlights the importance of the female preservation for conservation of species that depend on the production of foam nests in the early stages of development. Overall, our results showed the foam nest of L. vastus is composed of a great diversity of proteins and that besides Lv-RSN-1, the main protein in the foam, other proteins must have a coadjuvant role in building and stability of the nest.

  8. IEC 61267: Feasibility of type 1100 aluminium and a copper/aluminium combination for RQA beam qualities.

    PubMed

    Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C

    2016-01-01

    In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Processing and structures of solids foams

    NASA Astrophysics Data System (ADS)

    Salvo, Luc; Martin, Guilhem; Suard, Mathieu; Marmottant, Ariane; Dendievel, Rémy; Blandin, Jean-Jacques

    2014-10-01

    This paper aims at presenting the main processing routes that are used to produce foams in their general definition and the typical structure that can be obtained according to the process. We first describe the main classification of the foam according to the level of porosity (open cells, closed cells, partially open cells and mixed cells). We present briefly the main processes to obtain such structures (non-removable space holder stacking and impregnation, removable space holder, foaming from gas or from precursor and shortly additive manufacturing) with a specific focus on the metal foam processing. We finally indicate the main structure that can be obtained with these types of processes and the main characteristics that are necessary to quantify at the various scale of the structure. xml:lang="fr"

  10. Foam inflated rigidized structures for space applications

    NASA Astrophysics Data System (ADS)

    Lester, D. M.; Warner, M. J.; Blair, M.

    1993-11-01

    Large lightweight stowable structures that can be deployed in space without astronaut extra vehicular activity are vital to expanding space exploration and utilization. To meet this challenge Foam Inflated Rigidized (FIR) structures have been developed by Thiokol Corporation on the Air Forces's Gossamer Baggie Torus program. In this paper the development, proof of concept demonstration of an eight foot diameter octagonal torus, and design application of this technology for structural elements to stabilize the solar collector of a solar thermal rocket are discussed. A FIR structure uses foam to inflate and pre-stress a resin impregnated fabric skin. The predeployed foam used was a solvent swelled polymer that foams immediately when exposed to vacuum due to rapid solvent loss. This property allows a very simple deployment mechanism to be used in erecting these structures. Once inflated, the skin resin is cured using the available ultraviolet radiation. By using high strength and stiffness fiber materials a stiff, strong lightweight structure was produced.

  11. Amorphous metallic foam

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Veazey, Chris; Johnson, William L.

    2003-01-01

    The bulk glass forming alloy Pd43Ni10Cu27P20 is processed into a low-density amorphous metallic foam. Pd43Ni10Cu27P20 is mixed with hydrated B2O3, which releases gas at elevated temperature and/or low pressure. Very homogeneous foams are achieved due to the high viscosity of the alloy even at its liquidus temperature. By processing at the liquidus temperature and decreasing the pressure to 10-2 mbar, well-distributed bubbles expand to foam the material. Foam densities as low as 1.4×103 kg/m3 were obtained, corresponding to a bubble volume fraction of 84%. The bubble diameter ranges between 2×10-4 and 1×10-3 m. Thermal analysis by differential scanning calorimetry confirms the amorphous nature of the foam. Furthermore, it reveals that the foam's thermal stability is comparable to the bulk material.

  12. Structure of random foam.

    SciTech Connect

    Reinelt, Douglas A.; van Swol, Frank B.; Kraynik, Andrew Michael

    2004-06-01

    The Surface Evolver was used to compute the equilibrium microstructure of dry soap foams with random structure and a wide range of cell-size distributions. Topological and geometric properties of foams and individual cells were evaluated. The theory for isotropic Plateau polyhedra describes the dependence of cell geometric properties on their volume and number of faces. The surface area of all cells is about 10% greater than a sphere of equal volume; this leads to a simple but accurate theory for the surface free energy density of foam. A novel parameter based on the surface-volume mean bubble radius R32 is used to characterize foam polydispersity. The foam energy, total cell edge length, and average number of faces per cell all decrease with increasing polydispersity. Pentagonal faces are the most common in monodisperse foam but quadrilaterals take over in highly polydisperse structures.

  13. Structure of Random Foam

    NASA Astrophysics Data System (ADS)

    Kraynik, Andrew M.; Reinelt, Douglas A.; van Swol, Frank

    2004-11-01

    The Surface Evolver was used to compute the equilibrium microstructure of dry soap foams with random structure and a wide range of cell-size distributions. Topological and geometric properties of foams and individual cells were evaluated. The theory for isotropic Plateau polyhedra describes the dependence of cell geometric properties on their volume and number of faces. The surface area of all cells is about 10% greater than a sphere of equal volume; this leads to a simple but accurate theory for the surface free energy density of foam. A novel parameter based on the surface-volume mean bubble radius R32 is used to characterize foam polydispersity. The foam energy, total cell edge length, and average number of faces per cell all decrease with increasing polydispersity. Pentagonal faces are the most common in monodisperse foam but quadrilaterals take over in highly polydisperse structures.

  14. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  15. Silica Foams for Fire Prevention and Firefighting.

    PubMed

    Vinogradov, Alexander V; Kuprin, D S; Abduragimov, I M; Kuprin, G N; Serebriyakov, Evgeniy; Vinogradov, Vladimir V

    2016-01-13

    We report the new development of fire-extinguishing agents employing the latest technology of fighting and preventing fires. The in situ technology of fighting fires and explosions involves using large-scale ultrafast-gelated foams, which possess new properties and unique characteristics, in particular, exceptional thermal stability, mechanical durability, and full biocompatibility. We provide a detailed description of the physicochemical processes of silica foam formation at the molecular level and functional comparison with current fire-extinguishing and fire-fighting agents. The new method allows to produce controllable gelation silica hybrid foams in the range from 2 to 30 s up to 100 Pa·s viscosity. Chemical structure and hierarchical morphology obtained by scanning electron microscopy and transmission electron microscopy images develop thermal insulation capabilities of the foams, reaching a specific heat value of more than 2.5 kJ/(kg·°C). The produced foam consists of organized silica nanoparticles as determined by X-ray photoelectron spectroscopy and X-ray diffraction analysis with a narrow particle size distribution of ∼10-20 nm. As a result of fire-extinguishing tests, it is shown that the extinguishing efficiency exhibited by silica-based sol-gel foams is almost 50 times higher than that for ordinary water and 15 times better than that for state-of-the-art firefighting agent aqueous film forming foam. The biodegradation index determined by the time of the induction period was only 3 d, while even for conventional foaming agents this index is several times higher.

  16. Control of Microthrix parvicella by aluminium salts addition.

    PubMed

    Durban, N; Juzan, L; Krier, J; Gillot, S

    2016-01-01

    Aluminium and iron chloride were added to a biological nutrient removal pilot plant (1,500 population equivalent) treating urban wastewater to investigate the control of Microthrix parvicella bulking and foaming by metallic salts. Monitoring plant performance over two 6-month periods showed a slight impact on the removal efficiencies. Addition of metallic salts (Me; aluminium or aluminium + iron) at a concentration of 41 mmol Me(kg MLSS·d) (MLSS: mixed liquor suspended solids) over 70 days allowed a stabilization of the diluted sludge volume index (DSVI), whereas higher dosages (94 mmol Me(kg MLSS·d) over 35 days or 137 mmol Me(kg MLSS·d) over 14 days induced a significant improvement of the settling conditions. Microscopic observations showed a compaction of biological aggregates with an embedding of filamentous bacteria into the flocs that is not specific to M. parvicella as bacteria from phylum Chloroflexi are embedded too. The quantitative polymerase chain reaction targeting M. parvicella further indicated a possible growth limitation in addition to the flocculation impact at the high dosages of metallic salts investigated. DSVI appeared to be correlated with the relative abundance of M. parvicella.

  17. Polyurethane foam application for high voltage insulation

    NASA Astrophysics Data System (ADS)

    Argin, Mehmet

    Polyurethane foams have been in use for decades by the industry. The use of polyurethane foams is common in low voltage switchgears, but few applications are reported in medium and high-voltage (HV) systems. At high voltages, sulfur hexafluoride (SF6) and/or nitrogen (N2) is applied in hollow insulation systems like Optical Instrument Transformers (OIT) to avoid internal flashover. Firmly sealing these gases within the insulating system over a long period of time as well as over variable temperatures is difficult. As a result of this sealing problem, gas pressure drops, moisture may penetrate into the insulation medium, and the dielectric strength of the insulation system decreases. This work proposes the use of polyurethane foams to fill the hollow spaces in insulation systems. Much of the research effort focused on the demonstration of the dielectric strength of three different foams which are investigated using alternating current (AC) and lightning impulse voltages under different humidity and temperature conditions. It is shown that polyurethane foams have 2-3 times better dielectric strength than air. The breakdown strength decreases with the thickness of the foam; temperature and humidity have negligible effects on the breakdown voltage. The foam breakdown stress depends on the void size and distribution. The high density foams, with smaller void diameters, have higher breakdown stress. As the breakdown mechanism within polyurethane foam was explained, a hypothesis was developed to describe the mechanism that leads to electrical breakdown of polyurethane foams. Partial discharge measurements revealed that electrical breakdown of polyurethane foam is not the result of progress of discharges in time, as in other polymeric materials; discharges are very low and increase immediately before breakdown, suddenly increasing the electric field and producing an avalanche. Therefore, the mechanism that leads to breakdown in polyurethane foam is an avalanche breakdown

  18. Aluminium, antiperspirants and breast cancer.

    PubMed

    Darbre, P D

    2005-09-01

    Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metalloestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer.

  19. Polyimide foams provide thermal insulation and fire protection

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.

    1972-01-01

    Chemical reactions to produce polyimide foams for application as thermal insulation and fire prevention materials are discussed. Thermal and physical properties of the polyimides are described. Methods for improving basic formulations to produce desired qualitites are included.

  20. The toxicity of aluminium in humans.

    PubMed

    Exley, C

    2016-06-01

    We are living in the 'aluminium age'. Human exposure to aluminium is inevitable and, perhaps, inestimable. Aluminium's free metal cation, Alaq(3+), is highly biologically reactive and biologically available aluminium is non-essential and essentially toxic. Biologically reactive aluminium is present throughout the human body and while, rarely, it can be acutely toxic, much less is understood about chronic aluminium intoxication. Herein the question is asked as to how to diagnose aluminium toxicity in an individual. While there are as yet, no unequivocal answers to this problem, there are procedures to follow to ascertain the nature of human exposure to aluminium. It is also important to recognise critical factors in exposure regimes and specifically that not all forms of aluminium are toxicologically equivalent and not all routes of exposure are equivalent in their delivery of aluminium to target sites. To ascertain if Alzheimer's disease is a symptom of chronic aluminium intoxication over decades or breast cancer is aggravated by the topical application of an aluminium salt or if autism could result from an immune cascade initiated by an aluminium adjuvant requires that each of these is considered independently and in the light of the most up to date scientific evidence. The aluminium age has taught us that there are no inevitabilities where chronic aluminium toxicity is concerned though there are clear possibilities and these require proving or discounting but not simply ignored. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Monopropellant engine investigation for space shuttle reaction control system. Volume 3: Improvement of metal foam for catalyst retention

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The retention of granular catalyst in a metal foam matrix was demonstrated to greatly increase the life capability of hydrazine monopropellant reactors. Since nickel foam used in previous tests was found to become degraded after long-term exposure the cause of degradation was examined and metal foams of improved durability were developed. The most durable foam developed was a rhodium-coated nickel foam. An all-platinum foam was found to be incompatible in a hot ammonia (hydrazine) environment. It is recommended to scale up the manufacturing process for the improved foam to produce samples sufficiently large for space shuttle APU gas generator testing.

  2. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  3. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  4. Surface chemical studies of anodically oxidised aluminium membranes

    NASA Astrophysics Data System (ADS)

    Treverton, J. A.; West, R.; Johnson, D.; Thornton, M.

    1993-12-01

    X-ray photoelectron spectroscopy (XPS) and fast atom bombardment secondary ion mass spectrometry (FAB-SIMS) have been used to study the surfaces of inorganic microfiltration membranes produced by controlled removal of anodic films formed on aluminium in phosphoric and oxalic acid electrolytes. The results are compared with those of similar analyses of membranes produced from anodic films formed in mixed oxalic/phosphoric acid electrolyte. Both techniques established that phosphates were concentrated on the surface of membranes formed in phosphoric acid and oxalic/phosphoric acid and that oxalate ions were present on the surfaces of membranes formed in oxalic acid. The low intensity of the AlO -x fragments implies that all of the aluminium ions in the surface are coordinated to phosphates or oxalates. However, any differences its the chemical state of the aluminium on the different membranes were not detectable by either technique.

  5. Evolution of shock through a void in foam

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Smidt, J. M.; Murphy, T. J.; Douglass, M. R.; Devolder, B. G.; Fincke, J. R.; Schmidt, D. W.; Cardenas, T.; Newman, S. G.; Hamilton, C. E.; Sedillo, T. J.; Los Alamos, NM 87544 Team

    2016-10-01

    Marble implosion is an experimental campaign intended to study the effects of heterogeneous mix on fusion burn. A spherical capsule is composed of deuterated plastic foam of controlled pore (or void) size with tritium fill in pores. As capsule implosion evolves, the initially separated deuterium and tritium will mix, producing DT yields. Void evolution during implosion is of interest for the Marble campaign. A shock tube, driven by the laser at Omega, was designed to study the evolution of a shock through a foam-filled ``void'' and subsequent void evolution. Targets were comprised of a 100 mg/cc CH foam tube containing a 200-µm diameter, lower density doped foam sphere. High-quality, radiographic images were obtained from both 2% iodine-doped in plastic foam and 15% tin-doped in aerogel foam. These experiments will be used to inform simulations.

  6. Strain-rate dependence for Ni/Al hybrid foams

    NASA Astrophysics Data System (ADS)

    Jung, Anne; Larcher, Martin; Jirousek, Ondrej; Koudelka, Petr; Solomos, George

    2015-09-01

    Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT) system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE) mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  7. Hafnium carbide structural foams synthesized from polymer precursors

    NASA Astrophysics Data System (ADS)

    Fan, Haibo

    2005-11-01

    A study was conducted to investigate a new low cost approach to produce Hafnium Carbide (HfC) structural foams through the thermolysis and pyrolysis of polymer precursors. Hafnium carbide has a melting point of over 3900 °C, the highest melting point of any known binary alloy. HfC structural foams can be fabricated into high temperature components or used as a thermal insulation material. Current available methods for creating HfC structural foams are time consuming, expensive or the material produced lacks mechanical strength. The objectives of this research were to produce HfC foam through the thermolysis and pyrolysis of Hf containing polymer mixture, optimize the properties of the HfC foam, and develop a knowledge base of acceptable process parameters. With the proposed method, HfC foam was produced by mixing a hafnium containing Macromolecular Metal Complex (MMC) and carbon source polymers, followed by heat treating the mixture under vacuum. XRD analysis showed that the produced foam was largely composed of HfC, with small amounts of hafnium oxide. The foam total porosity was measured to be over 85%. The HfC lattice parameter was found to range from 0.4613 nm to 0.4647 nm. The HfC conversion mechanism was investigated using Residual Gas Analysis, where it was observed that polymer decomposition occurred from 80 through 550 °C and HfC conversion started around 1100 °C. The HfC foam mechanical properties and microstructure were improved by optimizing the process methods and parameters. The initial research yielded an HfC foam with a compression strength of 15.16 +/- 4.66 MPa and evenly distributed foam cells with diameter sizes up to 50 mum. Continued research showed that HfC foams with total porosity of about 85% (density 1.9g/cm 3), and a foam compression strength of 212 +/- 25MPa were achievable. The proposed methodology for synthesizing HfC foam was found to be simple, inexpensive and require less production time. The process can be controlled to produce

  8. Aluminium Involvement in Neurotoxicity

    PubMed Central

    Fulgenzi, Alessandro; Vietti, Daniele; Ferrero, Maria Elena

    2014-01-01

    The aetiology of neurodegenerative diseases (ND) seems to involve susceptibility genes and environmental factors. Toxic metals are considered major environmental pollutants. Following our study of a case of multiple sclerosis (MS) improvement due to removal of aluminium (Al) and other toxic metals, we have examined the possible relationship between Al intoxication and ND. We used the slow intravenous treatment with the chelating agent EDTA (calcium disodium ethylene diamine tetraacetic acid) (chelation test) to remove Al and detected it in the urine collected from the patients for 12 hours. Patients affected by MS represented 85.6% of total ND. Al was present in 44.8% of cases comprehensive of ND and healthy patients. Al levels were significantly higher in ND patients than in healthy subjects. We here show that treatment of patients affected by Al burden with ten EDTA chelation therapies (EDTA intravenous administration once a week) was able to significantly reduce Al intoxication. PMID:25243176

  9. Method for foam encapsulating laser targets

    DOEpatents

    Hendricks, Charles D.

    1977-01-01

    Foam encapsulated laser fusion targets are made by positioning a fusion fuel-filled sphere within a mold cavity of suitable configuration and dimensions, and then filling the cavity with a material capable of producing a low density, microcellular foam, such as cellulose acetate dissolved in an acetone-based solvent. The mold assembly is dipped into an ice water bath to gel the material and thereafter soaked in the water bath to leach out undesired components, after which the gel is frozen, then freeze-dried wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam, thereafter the resulting foam encapsulated target is removed from the mold cavity. The fuel-filled sphere is surrounded by foam having a thickness of about 10 to 100 .mu.m, a cell size of less than 2 .mu.m, and density of 0.065 to 0.6 .times. 10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by this encapsulation method are illustrated.

  10. Fundamentals of foam transport in porous media

    SciTech Connect

    Kovscek, A.R.; Radke, C.J.

    1993-10-01

    Foam in porous media is a fascinating fluid both because of its unique microstructure and because its dramatic influence on the flow of gas and liquid. A wealth of information is now compiled in the literature describing foam generation, destruction, and transport mechanisms. Yet there are conflicting views of these mechanisms and on the macroscopic results they produce. By critically reviewing how surfactant formulation and porous media topology conspire to control foam texture and flow resistance, we attempt to unify the disparate viewpoints. Evolution of texture during foam displacement is quantified by a population balance on bubble concentration, which is designed specifically for convenient incorporation into a standard reservoir simulator. Theories for the dominant bubble generation and coalescence mechanisms provide physically based rate expressions for the proposed population balance. Stone-type relative permeability functions along with the texture-sensitive and shear-thinning nature of confined foam complete the model. Quite good agreement is found between theory and new experiments for transient foam displacement in linear cores.

  11. Treated and Untreated foam core particleboards with intumescent veneer

    Treesearch

    Mark A. Dietenberger; Ali Shalbafan; Johannes Welling; Charles Boardman

    2013-01-01

    The effectiveness of treatments for the surface layer of novel foam core particleboards was evaluated by means of Cone calorimeter tests, Foam cote particleboards with variations of surface layer treatment, adhesives, and surface layer thicknesses under similar processing conditions were used to produce the test specimen for the Cone calorimeter tests. Ignitability,...

  12. Stabilized aqueous foam systems and concentrate and method for making them

    DOEpatents

    Rand, Peter B.

    1984-01-01

    This invention comprises a combination of a water soluble polymer of the polyacrylic acid type, a foam stabilizer of dodecyl alcohol, a surfactant, a solvent and water as a concentrate for use in producing stabilized aqueous foams. In another aspect, the invention comprises a solution of the concentrate with water. In still another aspect the invention includes a method of generating stabilized aqueous foams.

  13. Chronicles of foam films.

    PubMed

    Gochev, G; Platikanov, D; Miller, R

    2016-07-01

    The history of the scientific research on foam films, traditionally known as soap films, dates back to as early as the late 17th century when Boyle and Hooke paid special attention to the colours of soap bubbles. Their inspiration was transferred to Newton, who began systematic study of the science of foam films. Over the next centuries, a number of scientists dealt with the open questions of the drainage, stability and thickness of foam films. The significant contributions of Plateau and Gibbs in the middle/late 19th century are particularly recognized. After the "colours" method of Newton, Reinold and Rücker as well as Johhonnot developed optical methods for measuring the thickness of the thinner "non-colour" films (first order black) that are still in use today. At the beginning of the 20th century, various aspects of the foam film science were elucidated by the works of Dewar and Perrin and later by Mysels. Undoubtedly, the introduction of the disjoining pressure by Derjaguin and the manifestation of the DLVO theory in describing the film stability are considered as milestones in the theoretical development of foam films. The study of foam films gained momentum with the introduction of the microscopic foam film methodology by Scheludko and Exerowa, which is widely used today. This historical perspective serves as a guide through the chronological development of knowledge on foam films achieved over several centuries.

  14. Microcellular foams; Here's how

    SciTech Connect

    Aubert, J.H.; Sylwester, A.P. )

    1991-05-01

    Close to a million tons of polystyrene foams are manufactured in the United States each year. This product is prepared by diffusing a blowing agent (usually 6% pentane) into beads and expanding the beads above the glass transition temperature of polystyrene (100{degrees} C). Each bubble nucleation site becomes the center of a roughly spherical foam cell, which has a diameter of 50 to 150 {mu}m. The use of these is based on their insulating and shockabsorbing capabilities. What if one wanted to make a package with a thickness of only 200{mu}m This paper reports that at Sandia National Laboratories, this is not as uncommon a request as one might think. A number of targets for high-energy physical experiments require low-density foam coatings or small low-density foam supports with dimensions smaller than a millimeter. The foam coatings within such a target could be made with a conventional foam, but because the entire thickness would contain as few as two or three cells it would look nonuniform. This is undesirable for physics applications that require homogeneous structural supports. For a given foam density, smaller celled foams have a larger interfacial area, a property useful in materials ranging from medical devices to catalyst supports.

  15. Foamed Bulk Metallic Glass (Foam) Investigation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This soldering iron has an evacuated copper capsule at the tip that contains a pellet of Bulk Metallic Glass (BMG) aboard the International Space Station (ISS). Prior to flight, researchers sealed a pellet of bulk metallic glass mixed with microscopic gas-generating particles into the copper ampoule under vacuum. Once heated in space, such as in this photograph, the particles generated gas and the BMG becomes a viscous liquid. The released gas made the sample foam within the capsule where each microscopic particle formed a gas-filled pore within the foam. The inset image shows the oxidation of the sample after several minutes of applying heat. Although hidden within the brass sleeve, the sample retained the foam shape when cooled, because the viscosity increased during cooling until it was solid.

  16. Dependence in Classification of Aluminium Waste

    NASA Astrophysics Data System (ADS)

    Resti, Y.

    2015-06-01

    Based on the dependence between edge and colour intensity of aluminium waste image, the aim of this paper is to classify the aluminium waste into three types; pure aluminium, not pure aluminium type-1 (mixed iron/lead) and not pure aluminium type 2 (unrecycle). Principal Component Analysis (PCA) was employed to reduction the dimension of image data, while Bayes’ theorem with the Gaussian copula was applied to classification. The copula was employed to handle dependence between edge and colour intensity of aluminium waste image. The results showed that the classifier has been correctly classifiable by 88.33%.

  17. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  18. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  19. Computer modelling of age hardening for cast aluminium alloys

    NASA Astrophysics Data System (ADS)

    Wu, Linda; Ferguson, W. George

    2009-08-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  20. Pressure-driven and free-rise foam flow.

    SciTech Connect

    Bourdon, Christopher Jay; Moffat, Harry K.; Grillet, Anne Mary; Noble, David R.; Kropka, Jamie Michael; Rao, Rekha Ranjana; Kraynik, Andrew Michael; Leming, Sarah Kathryn; Brotherton, Christopher M.; Celina, Mathias C.; Mondy, Lisa Ann

    2008-08-01

    Many weapons components (e.g. firing sets) are encapsulated with blown foams. Foam is a strong lightweight material--good compromise between conflicting needs of structural stability and electronic function. Current foaming processes can lead to unacceptable voids, property variations, cracking, and slipped schedules which is a long-standing issue. Predicting the process is not currently possible because the material is polymerizing and multiphase with changing microstructure. The goals of this project is: (1) Produce uniform encapsulant consistently and improve processability; (2) Eliminate metering issues/voids; (3) Lower residual stresses, exotherm to protect electronics; and (4) Maintain desired properties--lightweight, strong, no delamination/cracking, and ease of removal. The summary of achievements in the first year are: (1) Developed patentable chemical foaming chemistry - TA; (2) Developed persistent non-curing foam for systematic evaluation of fundamental physics of foams--Initial testing of non-curing foam shows that surfactants very important; (3) Identified foam stability strategy using a stacked reaction scheme; (4) Developed foam rheology methodologies and shear apparatuses--Began testing candidates for shear stability; (5) Began development of computational model; and (6) Development of methodology and collection of property measurements/boundary conditions for input to computational model.

  1. A study on compressive shock wave propagation in metallic foams

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Zhang, Yifen; Ren, Huilan; Zhao, Longmao

    2010-02-01

    Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau, which makes it widely applicable in the design of structural crashworthiness. However, in some experimental studies, stress enhancement has been observed when the specimens are subjected to intense impact loads, leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model, a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived, where an explicit integration algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses, considerable energy is dissipated during the progressive collapse of foam cells, which then reduces the crush of objects. When the pulse is sufficiently high, on the other hand, stress enhancement may take place, especially in the heterogeneous foams, where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material, amplitude and period of the pulse, as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.

  2. Foaming in membrane bioreactors: identification of the causes.

    PubMed

    Di Bella, Gaetano; Torregrossa, Michele

    2013-10-15

    Membrane bioreactors (MBRs) represent by now a well established alternative for wastewater treatment. Their increasing development is undoubtedly related to the several advantages that such technology is able to guarantee. Nevertheless, this technology is not exempt from operational problems; among them the foaming still represents an "open challenge" of the MBR field, due to the high complexity of phenomenon. Unfortunately, very little work has been done on the foaming in MBRs and further studies are required. Actually, there is not a distinct difference between conventional activated system and MBR: the main difference is that the MBR plants can retain most Extracellular Polymeric Substances (EPSs) in the bioreactor. For these reason, unlike conventional activated sludge systems, MBRs have experienced foaming in the absence of foam-forming micro-organisms. Nevertheless, the actual mechanisms of EPS production and the role of bacteria in producing foam in activated sludge in MBRs are still unclear. In this paper, the authors investigated the roles of EPS and foam-forming filamentous bacteria by analyzing samples from different pilot plants using MBRs. In particular, in order to define the macroscopic features and the role of EPS and filamentous bacteria, a Modified Scum Index (MSI) test was applied and proposed. Based on the MSI and the foam power test, the causes of biological foaming were identified in terms of the potential for foaming, the quality and the quantity of the foam. The results indicated that the MBR foaming was influenced significantly by the concentration of bound EPSs in the sludge. In addition, the quantity and stability of MBR scum increased when both bound EPSs and foam-forming filamentous bacteria were present in the activated sludge.

  3. Improvement of stability of polidocanol foam for nonsurgical permanent contraception.

    PubMed

    Guo, Jian Xin; Lucchesi, Lisa; Gregory, Kenton W

    2015-08-01

    Polidocanol foam (PF), used clinically as a venous sclerosant, has recently been studied as a safe and inexpensive means for permanent contraception. Delivering the sclerosant to the fallopian tubes as a foam rather than a liquid increases the surface areas and thus enhances the desired epithelial disrupting activity of the agent. However, the foam is inherently unstable and degrades with time. Therefore, increasing foam stability and thus duration of the agent exposure time could increase epithelial effect while allowing reduction in agent concentration and potential toxicity. We studied methods to improve foam properties that might improve safety and efficacy of PF for intrauterine application. Several types of microporous filters adapted to a syringe-based foaming device were used to study the effect of pore structures on the formation of PF. The foam drainage time and bubble size were characterized. The addition of benzalkonium chloride (BZK) to polidocanol was also investigated for its effects on foam characteristics. A syringe-based foaming device adapted with an inline filter produced smaller bubble PF with a longer foam drainage time. PF generated with a circular pore filter lasts longer than with a noncircular pore filter. The addition of 0.01% of BZK also improved the stability of PF. The stability of PF is affected by the pore characteristics of the filter used for foam generation and enhanced by the presence of a small amount of BZK. The improved foam, if shown to be efficacious in animal models of contraception, could lead to a safe, simple and inexpensive method alternative to surgical contraception. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Orbital fabrication of aluminum foam and apparatus therefore

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2010-01-01

    A process for producing foamed aluminum in space comprising the steps of: heating aluminum until it is molten; applying the force of gravity to the molten aluminum; injecting gas into the molten aluminum to produce molten foamed aluminum; and allowing the molten foamed aluminum to cool to below melting temperature. The apparatus for carrying out this invention comprises: a furnace which rotates to simulate the force of gravity and heats the aluminum until it is molten; a door on the furnace, which is opened for charging the aluminum into the furnace, closed for processing and opened again for removal of the foamed aluminum; a gas injection apparatus for injecting gas into the molten aluminum within the furnace; and an extraction apparatus adjacent the door for removing the foamed aluminum from the furnace.

  5. Mechanical properties and network structure of wheat gluten foams.

    PubMed

    Blomfeldt, Thomas O J; Kuktaite, Ramune; Johansson, Eva; Hedenqvist, Mikael S

    2011-05-09

    This Article reports the influence of the protein network structure on the mechanical properties of foams produced from commercial wheat gluten using freeze-drying. Foams were produced from alkaline aqueous solutions at various gluten concentrations with or without glycerol, modified with bacterial cellulose nanosized fibers, or both. The results showed that 20 wt % glycerol was sufficient for plasticization, yielding foams with low modulus and high strain recovery. It was found that when fibers were mixed into the foams, a small but insignificant increase in elastic modulus was achieved, and the foam structure became more homogeneous. SEM indicated that the compatibility between the fibers and the matrix was good, with fibers acting as bridges in the cell walls. IR spectroscopy and SE-HPLC revealed a relatively low degree of aggregation, which was highest in the presence of glycerol. Confocal laser scanning microscopy revealed distinct differences in HMW-glutenin subunits and gliadin distributions for all of the different samples.

  6. The foaming of lavas

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.; Walton, W.

    1976-01-01

    Foaming is of great practical and theoretical significance for volcanic processes on the earth, the moon, and perhaps the meteorite parent bodies. The theory of foams agrees with steelmaking experience to indicate that their presence depends on the existence of solutes in the lavas which reduce the surface tension, and are not saturated. These solutes concentrate at the surface, and are called surfactants. The surfactant responsible for the formation of volcanic ash was not identified; it appears to be related to the oxygen partial pressure above the lava. This fact may explain why lunar and meteoritic melts are not observed to foam. Experimental studies are needed to clarify the process.

  7. Foam encapsulated targets

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.; Dahlbacka, Glen H.

    1983-01-01

    Foam encapsulated laser-fusion targets wherein a quantity of thermonuclear fuel is embedded in low density, microcellular foam which serves as an electron conduction channel for symmetrical implosion of the fuel by illumination of the target by one or more laser beams. The fuel, such as DT, is contained within a hollow shell constructed of glass, for example, with the foam having a cell size of preferably no greater than 2 .mu.m, a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3, and external diameter of less than 200 .mu.m.

  8. Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors.

    PubMed

    Kougias, P G; Boe, K; Angelidaki, I

    2013-09-01

    Foaming is one of the major problems that occasionally occur in biogas plants, affecting negatively the overall digestion process. In the present study, the effect of organic loading rate (OLR) and feedstock composition on foaming was elucidated in continuous reactor experiments. By stepwise increasing the OLR and the concentration of proteins or lipids in the substrate, foaming in biogas reactors was investigated. No foam formation was observed at the OLR of 3.5 g volatile solids/(L-reactor·day). Organic loading was the main factor affecting foam formation in manure digester, while the organic composition, such as content of proteins or lipids were factors that in combination with the organic loading were triggering foaming. More specifically, gelatine could initiate foam formation at a lower OLR than sodium oleate. Moreover, the volume of foam produced by gelatine was relatively stable and was not increased when further increasing either OLR or gelatine concentration in the feed.

  9. Biocompatibility of 17-4 PH stainless steel foam for implant applications.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2011-01-01

    In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.

  10. Special issue on aluminium plasmonics

    DOE PAGES

    Gerard, Davy; Gray, Stephen K.

    2015-04-08

    Plasmonics is a rapidly growing field that takes advantage of the intense and confined electromagnetic fields that appear near metallic nanostructures illuminated at frequencies near their surface plasmon resonances. As plasmonics continues to develop, it faces the need to find new materials supporting well-defined surface plasmon resonances in different frequency ranges. In the visible and near-infrared ranges the noble metals, most typically gold and silver, exhibit relatively low losses. This is why they are quite ubiquitous in plasmonics literature. However it is somewhat ironic to see that a non-noble metal, aluminium, the metal upon which surface plasmons where first evidencedmore » in the 1950s, is now reappearing after fifty years of near oblivion as one of the 'hottest' materials for plasmonics. Several reasons explain the return of aluminium to the centre stage. First, aluminium exhibits good plasmonic properties in the ultraviolet and deep ultraviolet—a spectral range where gold and silver no longer behave as metals. Second, aluminium is cheap and widely available (Al is the third most abundant element in the earth's crust), criteria of paramount importance when discussing industry-related applications. It is furthermore compatible with complementary metal–oxide–semiconductor (CMOS) technology. In conclusion, this is why an ever-increasing number of papers report new advances on aluminium plasmonics.« less

  11. Special issue on aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2015-04-08

    Plasmonics is a rapidly growing field that takes advantage of the intense and confined electromagnetic fields that appear near metallic nanostructures illuminated at frequencies near their surface plasmon resonances. As plasmonics continues to develop, it faces the need to find new materials supporting well-defined surface plasmon resonances in different frequency ranges. In the visible and near-infrared ranges the noble metals, most typically gold and silver, exhibit relatively low losses. This is why they are quite ubiquitous in plasmonics literature. However it is somewhat ironic to see that a non-noble metal, aluminium, the metal upon which surface plasmons where first evidenced in the 1950s, is now reappearing after fifty years of near oblivion as one of the 'hottest' materials for plasmonics. Several reasons explain the return of aluminium to the centre stage. First, aluminium exhibits good plasmonic properties in the ultraviolet and deep ultraviolet—a spectral range where gold and silver no longer behave as metals. Second, aluminium is cheap and widely available (Al is the third most abundant element in the earth's crust), criteria of paramount importance when discussing industry-related applications. It is furthermore compatible with complementary metal–oxide–semiconductor (CMOS) technology. In conclusion, this is why an ever-increasing number of papers report new advances on aluminium plasmonics.

  12. Metallic syntactic foams synthesis, characterization and mechanical properties

    NASA Astrophysics Data System (ADS)

    Castro, Gerhard

    In this study, we report two procedures for producing lab-scale syntactic steel by melt infiltration of millimeter-sized alumina microspheres: mechanical pressure infiltration and gravity-fed infiltration. Both methods yield foam with uniform distributions of microspheres and negligible unintended porosity. The most critical parameters in the manufacture of the syntactic steel foams are the melt temperature and the preheat temperature of the microspheres prior to infiltration. The preheatment temperature of the microspheres must be close to the melting temperature of steel. Syntactic steel foams with relative density of about half of solid steel densities were produced using monosized microspheres randomly situated in a mold. Microspheres with a diameter of 1.27 mm were used for the mechanical pressure infiltration method and microspheres with a diameter of 4.45 mm for the gravity-fed infiltration method. Different steel chemical compositions were selected to produce steel foams of different inherent yield strength: including several ferritic-pearlitic steels and one TRIP steel (TRansformation-Induced Plasticity). The resultant foams were characterized by chemical and microstructural analysis. The microstructure of the samples consisted of blends of ferritic and pearlitic constituents in varying proportions for the ferritic-pearlitic steels, while the cast TRIP steel matrix presented an austenitic microstructure. The basic mechanical properties of the steel syntactic foams were studied under compression loading. The pearlitic syntactic foams have greater compression strength and energy absorption capacity than the ferritic syntactic foams, but the TRIP steel syntactic foam exhibited the highest compression strength and highest energy absorption capacity. The properties of the steel syntactic foams were compared to those of other steel foams, aluminum foams and other cellular structures reported in the literature. We present also the compression and impact behavior

  13. Aging of clean foams

    NASA Astrophysics Data System (ADS)

    Weon, Byung Mook; Stewart, Peter S.

    2014-11-01

    Aging is an inevitable process in living systems. Here we show how clean foams age with time through sequential coalescence events: in particular, foam aging resembles biological aging. We measure population dynamics of bubbles in clean foams through numerical simulations with a bubble network model. We demonstrate that death rates of individual bubbles increase exponentially with time, independent on initial conditions, which is consistent with the Gompertz mortality law as usually found in biological aging. This consistency suggests that clean foams as far-from-equilibrium dissipative systems are useful to explore biological aging. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.

  14. Rheology of aqueous foams

    NASA Astrophysics Data System (ADS)

    Dollet, Benjamin; Raufaste, Christophe

    2014-10-01

    Aqueous foams are suspensions of bubbles inside aqueous phases. Their multiphasic composition leads to a complex rheological behavior that is useful in numerous applications, from oil recovery to food/cosmetic processing. Their structure is very similar to the one of emulsions, so that both materials share common mechanical properties. In particular, the presence of surfactants at the gas-liquid interfaces leads to peculiar interfacial and dissipative properties. Foam rheology has been an active research topics and is already reported in several reviews, most of them covering rheometry measurements at the scale of the foam, coupled with interpretations at the local scale of bubbles or interfaces. In this review, we start following this approach, then we try to cover the multiscale features of aqueous foam flows, emphasizing regimes where intermediate length scales need to be taken into account or regimes fast enough regarding internal time scales so that the flow goes beyond the quasi-static limit. xml:lang="fr"

  15. Mechanical Foam Remover

    NASA Technical Reports Server (NTRS)

    Streech, Neil

    1994-01-01

    Filter removes foam from soapy water stream discharged by primary phase separator of water-reclamation system. Uses no antifoam chemicals, contains no moving parts and requires no energy input other than small energy needed to pump water through filter.

  16. Hydrodynamics of foams

    NASA Astrophysics Data System (ADS)

    Karakashev, Stoyan I.

    2017-08-01

    This brief review article is devoted to all the aspects related to hydrodynamics of foams. For this reason, we focused at first on the methods for studying the basic structural units of the foams—the foam films (FF) and the Plateau borders (PB), thus reviewing the literature about their drainage. After this, we scrutinized in detail the Derjaguin's works on the electrostatic disjoining pressure along with its Langmuir's interpretation, the microscopic and macroscopic approaches in the theory of the van der Waals disjoining pressure, the DLVO theory, the steric disjoining pressure of de Gennes, and the more recent works on non-DLVO forces. The basic methods for studying of foam drainage are presented as well. Engineering and other applications of foam are reviewed as well. All these aspects are presented from retrospective and perspective viewpoints.

  17. Auxetic polyurethane foam: Manufacturing and processing analysis

    NASA Astrophysics Data System (ADS)

    Jahan, Md Deloyer

    Materials with negative Poisson's ratio are referred to as auxetic materials. They are different from conventional materials in their deformation behavior when responding to external stresses. The cross-section of the materials widens in the lateral direction when being stretched in the longitudinal direction and becomes narrower when being compressed longitudinally. While a number of natural auxetic materials exist, most auxetic materials are synthetic. They show interesting properties and have potential in several important applications. Auxetic materials exhibit better mechanical properties than conventional materials such as enhanced indentation resistance, shear resistance, toughness, damping and energy absorption capacity, sound absorption, variable permeability and capability of producing complex curvature. These properties are beneficial in a wide range of applications including personal protective equipments, sound absorbers, packaging, smart filtration, drug delivery, tissue scaffolding, seat cushioning, etc. A wide range of auxetic materials has been synthesized. They include different polymers, metals, composites and ceramics. Among these, auxetic polyurethane (PU) foam is one of the most widely studied types of auxetic materials. Auxetic PU foams are usually fabricated by altering the microstructure of conventional foams and the unusual mechanical properties originate from the deformation characteristics of the microstructures. Three most important processing parameters in fabricating auxetic PU foam that dictate auxetic behavior are processing temperature, heating time and volumetric compression ratio. This study addresses several important issues in the manufacturing and characterization of auxetic PU foam. First, an improved automatic measuring technique has been developed to determine Poisson's ratio of auxetic PU foam. The technique involves development of a Matlab based image processing program. The second part of the study includes an

  18. Foam fracturing laboratory

    SciTech Connect

    Earl, R.B.; Wendroff, C.L.

    1983-10-01

    A new laboratory has been constructed with test equipment designed to expose foam fracturing fluids to test conditions simulating treatment conditions of shear, time, temperature and pressure during the tests. The goal for designing this laboratory was to simulate treating and downhole conditions as closely as possible and to determine fracturing foam properties under these conditions. This paper describes the design parameters and equipment in this unique laboratory.

  19. Modeling of skeletal members using polyurethane foam

    SciTech Connect

    Sena, J.M.F.; Weaver, R.W.

    1983-11-01

    At the request of the University of New Mexico's Maxwell Museum of Anthropology, members of the Plastic Section in the Process Development Division at SNLA undertook the special project of the Chaco Lady. The project consisted of polyurethane foam casting of a disinterred female skull considered to be approximately 1000 years old. Rubber latex molds, supplied by the UNM Anthropology Department, were used to produce the polymeric skull requested. The authors developed for the project a modified foaming process which will be used in future polyurethane castings of archaeological artifacts and contemporary skeletal members at the University.

  20. Rigid molecular foams

    SciTech Connect

    Steckle, W.P. Jr.; Mitchell, M.A.; Aspen, P.G.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Organic analogues to inorganic zeolites would be a significant step forward in engineered porous materials and would provide advantages in range, selectivity, tailorability, and processing. Rigid molecular foams or {open_quotes}organic zeolites{close_quotes} would not be crystalline materials and could be tailored over a broader range of pore sizes and volumes. A novel process for preparing hypercrosslinked polymeric foams has been developed via a Friedel-Crafts polycondensation reaction. A series of rigid hypercrosslinked foams have been prepared using simple rigid polyaromatic hydrocarbons including benzene, biphenyl, m-terphenyl, diphenylmethane, and polystyrene, with dichloroxylene (DCX) as the pore size. After drying the foams are robust and rigid. Densities of the resulting foams can range from 0.15 g/cc to 0.75 g/cc. Nitrogen adsorption studies have shown that by judiciously selecting monomers and the crosslinking agent along with the level of crosslinking and the cure time of the resulting gel, the pore size, pore size distribution, and the total surface area of the foam can be tailored. Surface areas range from 160 to 1,200 m{sup 2}/g with pore sizes ranging from 6 {angstrom} to 2,000 {angstrom}.

  1. Aromatic Polyimide Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2000-01-01

    A mechanically undensified aromatic polyimide foam is made from an aromatic polyimide precursor solid residuum and has the following combination of properties: a density according to ASTM D-3574A of about 0.5 pounds/cu.ft to about 20 pounds/cu.ft; a compression strength according to ASTM D-3574C of about 1.5 psi to about 1500 psi; and a limiting oxygen index according to ASTM D-2863 of about 35% oxygen to about 75% oxygen at atmospheric pressure. The aromatic polyimide foam has no appreciable solid inorganic contaminants which are residues of inorganic blowing agents. The aromatic polyimide which constitutes the aromatic polyimide foam has a glass transition temperature (Tg) by differential scanning calorimetry of about 235 C to about 400 C; and a thermal stability of 0 to about 1% weight loss at 204 C as determined by thermogravinietric analysis (TGA). The aromatic polyimide foam has utility as foam insulation and as structural foam, for example, for aeronautical, aerospace and maritime applications.

  2. Foam Optics and Mechanics

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.; Zimmerli, Gregory A.

    2002-01-01

    The Foam Optics and Mechanics (FOAM) project will exploit the microgravity environment to more accurately measure the rheological and optical characteristics of wet aqueous foams. Using both rheology and laser light scattering diagnostics, the goal is to quantify the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Of particular interest is determining how the elastic character vanishes, i.e., how the foam 'melts' into a simple viscous liquid, as a function of both increasing liquid content and increasing shear strain rate. The unusual elastic character of foams will be quantified macroscopically by measurement of the shear stress as a function of shear strain rate and of time following a step strain. Such data will be analyzed in terms of a yield stress, shear moduli, and dynamical time scales. Microscopic information about bubble packing and rearrangement dynamics, from which the macroscopic non-Newtonian properties ultimately arise, will be obtained non-invasively by multiple-light scattering: diffuse transmission spectroscopy (DTS) and diffusing wave spectroscopy (DWS). Quantitative trends with materials parameters, most importantly average bubble size and liquid content, will be sought in order to elucidate the fundamental connection between the microscopic structure and dynamics and the macroscopic rheology.

  3. Replacements For Ozone-Depleting Foaming Agents

    NASA Technical Reports Server (NTRS)

    Blevins, Elana; Sharpe, Jon B.

    1995-01-01

    Fluorinated ethers used in place of chlorofluorocarbons and hydrochlorofluorocarbons. Replacement necessary because CFC's and HCFC's found to contribute to depletion of ozone from upper atmosphere, and manufacture and use of them by law phased out in near future. Two fluorinated ethers do not have ozone-depletion potential and used in existing foam-producing equipment, designed to handle liquid blowing agents soluble in chemical ingredients that mixed to make foam. Any polyurethane-based foams and several cellular plastics blown with these fluorinated ethers used in processes as diverse as small batch pours, large sprays, or double-band lamination to make insulation for private homes, commercial buildings, shipping containers, and storage tanks. Fluorinated ethers proved useful as replacements for CFC refrigerants and solvents.

  4. Replacements For Ozone-Depleting Foaming Agents

    NASA Technical Reports Server (NTRS)

    Blevins, Elana; Sharpe, Jon B.

    1995-01-01

    Fluorinated ethers used in place of chlorofluorocarbons and hydrochlorofluorocarbons. Replacement necessary because CFC's and HCFC's found to contribute to depletion of ozone from upper atmosphere, and manufacture and use of them by law phased out in near future. Two fluorinated ethers do not have ozone-depletion potential and used in existing foam-producing equipment, designed to handle liquid blowing agents soluble in chemical ingredients that mixed to make foam. Any polyurethane-based foams and several cellular plastics blown with these fluorinated ethers used in processes as diverse as small batch pours, large sprays, or double-band lamination to make insulation for private homes, commercial buildings, shipping containers, and storage tanks. Fluorinated ethers proved useful as replacements for CFC refrigerants and solvents.

  5. Microcellular ceramic foams for radar absorbing structures

    SciTech Connect

    Huling, J.; Phillips, D.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to develop a lightweight, semi-structural, radar-absorbing ceramic foam that can be incorporated into aircraft exhaust systems to replace many of the currently used dense ceramic parts and thereby improve the radar cross section. Although the conventional processes for producing ceramic foams have not been able to provide materials that meet the design specifications for high strength at low density, we have developed and demonstrated a novel sol-gel emulsion process for preparing microcellular ceramic foams in which compositional and microstructural control is expected to provide the requisite high-temperature radar-absorption, strength-to-weight ratio, and thermal insulative properties.

  6. Aluminium phosphide-induced leukopenia

    PubMed Central

    Ntelios, Dimitrios; Mandros, Charalampos; Potolidis, Evangelos; Fanourgiakis, Panagiotis

    2013-01-01

    Acute intoxication from the pesticide aluminium phosphide is a relatively rare, life-threatening condition in which cardiovascular decompensation is the most feared problem. We report the case of a patient exposed to aluminium phosphide-liberated phosphine gas. It resulted in the development of a gastroenteritis-like syndrome accompanied by severe reduction in white blood cell numbers as an early and prominent manifestation. By affecting important physiological processes such as mitochondrial function and reactive oxygen species homeostasis, phosphine could cause severe toxicity. After presenting the characteristics of certain leucocyte subpopulations we provide the current molecular understanding of the observed leukopenia which in part seems paradoxical. PMID:24172776

  7. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, Charles B.

    1985-01-01

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 .ANG.. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  8. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, C.B.

    1984-05-18

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 A. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  9. Breathing air from protein foam.

    PubMed

    Ackermann, Douglas; Jewell, David N; Stedman, Matthew L; Burapatana, Vorakan; Atukorale, Prabhani V; Pinson, Michelle L; Wardle, Alison E; Zhu, Wenyan; Tanner, Robert D

    2003-01-01

    Protein foams can be used to extinguish fires. If foams are to be used to extinguish fires where people are present, such as in high-rise buildings or ships, then a method for allowing people to breathe in a foam-filled environment is needed. It is proposed that the air, used to create the foam be used for breathing. A canister that will break incoming air-filled foam has been designed for attachment to a standard gas mask, in order to provide breathable air to a trapped person. Preliminary results for the modified mask indicate feasibility of breathing air from air-filled protein foam.

  10. Ambient cure polyimide foams. [thermal resistant foams

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Riccitiello, S. R.; Hamermesh, C. L. (Inventor)

    1978-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, (pyromellitic dianhydride) with an aromatic polyisocyanate, (polymethylene polyphenylisocyanate), in the presence of an inorganic acid and furfuryl alcohol. Usable acids include dilute sulfuric acid, dilute nitric acid, hydrochloric acid, polyphosphoric acid, and phosphoric acid, with the latter being preferred. The dianhydride and the isocyanate in about equimolar proportions constitute about 50% of the reaction mixture, the rest being made up with the acid and the alcohol in a ratio of about 1:10. An exothermic reaction between the acid and the alcohol provides the heat necessary for the other components to polymerize without recourse to external heat sources. The mixture can be sprayed on any surface to form polymeric foam in locations where the application of heat is not practical or possible, for instance, between walls or on mine tunnel surfaces.

  11. Bio-based polyurethane foams from renewable resources

    NASA Astrophysics Data System (ADS)

    Stanzione, M.; Russo, V.; Sorrentino, A.; Tesser, R.; Lavorgna, M.; Oliviero, M.; Di Serio, M.; Iannace, S.; Verdolotti, L.

    2016-05-01

    In the last decades, bio-derived natural materials, such as vegetable oils, polysaccharides and biomass represent a rich source of hydroxyl precursors for the synthesis of polyols which can be potentially used to synthesize "greener" polyurethane foams. Herein a bio-based precursor (obtained from succinic acid) was used as a partial replacement of conventional polyol to synthesize PU foams. A mixture of conventional and bio-based polyol in presence of catalysts, silicone surfactant and diphenylmethane di-isocyanate (MDI) was expanded in a mold and cured for two hours at room temperature. Experimental results highlighted the suitability of this bio-precursor to be used in the production of flexible PU foams. Furthermore the chemo-physical characterization of the resulting foams show an interesting improvement in thermal stability and elastic modulus with respect to the PU foams produced with conventional polyol.

  12. Electrical properties of foamed polypropylene/carbon black composites

    NASA Astrophysics Data System (ADS)

    Iliev, M.; Kotzev, G.; Vulchev, V.

    2016-02-01

    Polypropylene composites containing carbon black fillers were produced by vibration assisted extrusion process. Solid (unfoamed) composite samples were molded by conventional injection molding method, while structural foams were molded by a low pressure process. The foamed samples were evidenced to have a solid skin-foamed core structure which main parameters were found to depend on the quantity of material injected in the mold. The average bubbles' sizes and their distribution were investigated by scanning electron microscopy. It is established that the conductivity of the foamed samples gradually decreases when reducing the sample density. Nevertheless, the conductivity is found to be lower than the conductivity of the unfoamed samples both being of the same order. The flexural properties of the composites were studied and the results were discussed in the context of the structure parameters of the foamed samples.

  13. Electroless plating of Ni thin films using foam of electrolyte

    NASA Astrophysics Data System (ADS)

    Furuhashi, Takahiro; Yamada, Yoshiyasu; Ichihara, Shoji; Takai, Akihiro; Usui, Hiroaki

    2016-02-01

    Electroless plating of Ni thin films was achieved in foam of electroplating solution in place of electroplating liquid. Commercial hypophosphite-based solution for Ni electroless plating was added with a surfactant of sulfuric acid monododecyl ester sodium salt (SDS) and bubbled with nitrogen gas to produce airy foam. Ni thin films were deposited by immersing iron substrates in the foam. Although stationary foam was inconvenient for electrodeposition by itself, film growth was enhanced by generating a flow of foam using substrate rotation and by adding SDS to a concentration of 0.1 to 0.3 wt %. No defects attributed to pinholes were observed on the film surface. This method was effective in reducing the net amount of plating solution necessary for film deposition.

  14. Complex foamed aluminum parts as permanent cores in aluminum castings

    SciTech Connect

    Simancik, F.; Schoerghuber, F.

    1998-12-31

    The feasibility of complex shaped aluminum foam parts as permanent cores in aluminum castings has been investigated. The foamed samples were prepared by injection of the foam into sand molds. It turned out that sound castings can be produced if the foam core is properly preheated and/or surface treated before casting. The effect of the foam core on the performance of the casting was evaluated by in compression testing and by measuring structural damping. The gain in the related properties turned out to be much higher than the weight increase of the casting due to the presence of the core. The weight increase may be partially offset through a reduction of the wall-thickness of the shell.

  15. Vacuum Foam Drying: An Alternative to Lyophilization for Biomolecule Preservation

    PubMed Central

    Jangle, R. D.; Pisal, S. S.

    2012-01-01

    Vacuum foam drying is evaluated as an alternative for lyophilization for enhanced process and storage stability of bovine serum albumin. The protein protective efficiency of different stabilizers was compared in vacuum foam drying and lyophilization. Sucrose mixtures produced better foam characters than mannitol. Unlike calcium lactate, incorporation of polyvinyl pyrrolidone to sucrose synergistically enhanced the recovery of bovine serum albumin. The conformational stability and bovine serum albumin content further increased with sodium phosphate as compared to potassium phosphate. All sucrose mixtures, except calcium lactate showed large α-helix amide-I band at approximately 1656 cm-1. The amorphous powder diffraction in case of sodium phosphate monobasic mixture retained maximum bovine serum albumin content. The crystallization of similar mixtures in lyophilization reduced its bovine serum albumin content. Vacuum foam drying showed better processing and storage stability of bovine serum albumin than lyophilization process. Hence vacuum foam drying is short, simple and industrially economical process for biomolecules preservation. PMID:23325988

  16. Interaction of soft-x-ray thermal radiation with foam-layered targets.

    PubMed

    Batani, D; Desai, T; Löwer, Th; Hall, T A; Nazarov, W; Koenig, M; Benuzzi-Mounaix, A

    2002-06-01

    We have studied the interaction of soft-x-ray thermal radiation with foam-layered metal targets. X-ray radiation was produced by focusing a high-energy laser inside a small size hohlraum. An increment in shock pressure, up to a factor of approximately 4 for 50 mg/cm(3) foam density, was observed with the foam layer as compared to bare metal targets. This follows from the propagation of radiation-driven shock wave in the foam and the impedance mismatch at the foam-payload interface.

  17. Variables affecting the foam separation of Escherichia coli.

    PubMed

    Bretz, H W; Wang, S L; Grieves, R B

    1966-09-01

    The removal of washed and standardized Escherichia coli from distilled-water suspension by foam separation with nitrogen gas and 30 mug/ml of ethylhexadecyldimethylammonium bromide surfactant was increased by increasing the gas rate from 4.3 to 9.3 liters per min and by lowering the port level at which foam was removed from 60.4 to 20.4 cm, but with concomitant increases in foam volumes. The concentrations of cells and of surfactant in the residual suspensions were related to foam volumes; a given number of cells adsorbed a constant amount of surfactant. The addition of from 10 to 500 mug/ml of inorganic salts decreased the total cell removal, with magnesium sulfate producing an anomalously large effect. The addition of surfactant in several doses (compared with a single dose) together with an increase in foaming time from 10 to 24 min produced residual suspensions with lower cell concentrations, and, when salts were present in the initial suspensions, produced lower foam volumes and more concentrated foams.

  18. Variables Affecting the Foam Separation of Escherichia coli

    PubMed Central

    Bretz, H. W.; Wang, S. L.; Grieves, R. B.

    1966-01-01

    The removal of washed and standardized Escherichia coli from distilled-water suspension by foam separation with nitrogen gas and 30 μg/ml of ethylhexadecyldimethylammonium bromide surfactant was increased by increasing the gas rate from 4.3 to 9.3 liters per min and by lowering the port level at which foam was removed from 60.4 to 20.4 cm, but with concomitant increases in foam volumes. The concentrations of cells and of surfactant in the residual suspensions were related to foam volumes; a given number of cells adsorbed a constant amount of surfactant. The addition of from 10 to 500 μg/ml of inorganic salts decreased the total cell removal, with magnesium sulfate producing an anomalously large effect. The addition of surfactant in several doses (compared with a single dose) together with an increase in foaming time from 10 to 24 min produced residual suspensions with lower cell concentrations, and, when salts were present in the initial suspensions, produced lower foam volumes and more concentrated foams. PMID:5339303

  19. Characterization of carbon nanofibre-reinforced polypropylene foams.

    PubMed

    Antunes, M; Velasco, J I; Realinho, V; Arencón, D

    2010-02-01

    In this paper, carbon-nanofibre-reinforced polypropylene foams were prepared and characterized regarding their foaming behaviour, cellular structure and both thermo-mechanical as well as electrical properties. Polypropylene (PP) nanocomposites containing 5, 10 and 20 wt% of carbon nanofibres (CNF) and a chemical blowing agent were prepared by melt-mixing inside a twin-screw extruder and subsequently water-cooled and pelletized. The extruded nanocomposites were later foamed using a one-step compression-moulding process. The thermo-mechanical properties of the CNF-reinforced PP foams were studied, analyzing the influence of the carbon nanofibres on the cellular structure and subsequent thermo-mechanical behaviour of the foams. Carbon nanofibres not only seemed to act as nucleating agents, reducing the average cell size of the foams and increasing their cell density for similar expansion ratios, but also helped produce mechanically-improved foams, even reaching for the 20 wt% CNF-reinforced ones a specific modulus around 1.2 GPa x cm3/g for densities as low as 300 kg/m3. An increasingly higher electrical conductivity was assessed for both the solids as well as the foams with increasing the amount of carbon nanofibres.

  20. Ultralight anisotropic foams from layered aligned carbon nanotube sheets.

    PubMed

    Faraji, Shaghayegh; Stano, Kelly L; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D

    2015-10-28

    In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm(-3), the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.

  1. Recovery of flexible polyurethane foam from shredder residue.

    SciTech Connect

    Daniels, E. J.; Jody, b. J.

    1999-06-29

    Argonne National Laboratory has developed a patented, continuous process for the recovery of flexible polyurethane foam (PUF) from auto shredder residue (ASR). To test the process, Argonne researchers conceived of, designed, and built a continuous foam washing and drying system that was pilot-tested at a shredder facility for six months. Economic analysis of the process, using manufacturers' quotes and operating data from Argonne's pilot plant, indicates a payback of less than two years for a plant producing about 1,000 ton/yr of foam. Samples of clean foam were shipped to three major foam reprocessors; all three indicated that the quality of the PUF recovered by the Argonne process met their requirements. Tests of the recovered foam by an independent testing laboratory showed that the recycled foam met the specifications for several automotive applications, including carpet padding, headliner, and sound-suppression support materials. Recovery of foam reduces the mass and the volume of material going to the landfill by about 5% and 30%, respectively. Annually, recovery will save about 1.2 x 10{sup 12} Btu of energy, cut the amount of solid waste being landfilled by about 150,000 tons, and eliminate the emission of about 250 tons of volatile organic compounds (VOCs) into the air.

  2. Quantitative Analysis of the Microstructure of Auxetic Foams

    SciTech Connect

    Gaspar, N.; Smith, C.W.; Miller, E.A.; Seidler, G.T.; Evans, K.E.

    2008-07-28

    The auxetic foams first produced by Lakes have been modelled in a variety of ways, each model trying to reproduce some observed feature of the microscale of the foams. Such features include bent or broken ribs or inverted angles between ribs. These models can reproduce the Poisson's ratio or Poisson's function of auxetic foam if the model parameters are carefully chosen. However these model parameters may not actually reflect the internal structure of the foams. A big problem is that measurement of parameters such as lengths and angles is not straightforward within a 3-d sample. In this work a sample of auxetic foam has been imaged by 3-d X-ray computed tomography. The resulting image is translated to a form that emphasises the geometrical structure of connected ribs. This connected rib data are suitably analysed to describe both the microstructural construction of auxetic foams and the statistical spread of structure, that is, the heterogeneity of an auxetic foam. From the analysis of the microstructure, observations are made about the requirements for microstructural models and comparisons made to previous existing models. From the statistical data, measures of heterogeneity are made that will help with future modelling that includes the heterogeneous aspect of auxetic foams.

  3. The prophylactic reduction of aluminium intake.

    PubMed

    Lione, A

    1983-02-01

    The use of modern analytical methods has demonstrated that aluminium salts can be absorbed from the gut and concentrated in various human tissues, including bone, the parathyroids and brain. The neurotoxicity of aluminium has been extensively characterized in rabbits and cats, and high concentrations of aluminium have been detected in the brain tissue of patients with Alzheimer's disease. Various reports have suggested that high aluminium intakes may be harmful to some patients with bone disease or renal impairment. Fatal aluminium-induced neuropathies have been reported in patients on renal dialysis. Since there are no demonstrable consequences of aluminium deprivation, the prophylactic reduction of aluminium intake by many patients would appear prudent. In this report, the major sources of aluminium in foods and non-prescription drugs are summarized and alternative products are described. The most common foods that contain substantial amounts of aluminium-containing additives include some processed cheeses, baking powders, cake mixes, frozen doughs, pancake mixes, self-raising flours and pickled vegetables. The aluminium-containing non-prescription drugs include some antacids, buffered aspirins, antidiarrhoeal products, douches and haemorrhoidal medications. The advisability of recommending a low aluminium diet for geriatric patients is discussed in detail.

  4. Occupational asthma caused by aluminium welding.

    PubMed

    Vandenplas, O; Delwiche, J P; Vanbilsen, M L; Joly, J; Roosels, D

    1998-05-01

    Work-related asthma has been documented in workers employed in the primary aluminium industry and in the production of aluminium salts. The role of aluminium in the development of occupational asthma has, however, never been convincingly substantiated. We investigated a subject who experienced asthmatic reactions related to manual metal arc welding on aluminium. Challenge exposure to aluminium welding with flux-coated electrodes, as well as with electrodes without flux, elicited marked asthmatic reactions. Manual metal arc welding on mild steel did not cause significant bronchial response. The results of inhalation challenges combined with exposure assessments provided evidence that aluminium can cause asthmatic reactions in the absence of fluorides. Awareness of this possibility may be relevant to the investigation of asthma in workers exposed to aluminium.

  5. Aluminium toxicity in chronic renal insufficiency

    SciTech Connect

    Savory, J.; Bertholf, R.L.; Wills, M.R.

    1985-08-01

    Aluminium is a ubiquitous element in the environment and has been demonstrated to be toxic, especially in individuals with impaired renal function. Not much is known about the biochemistry of aluminium and the mechanisms of its toxic effects. Most of the interest in aluminium has been in the clinical setting of the hemodialysis unit. Here aluminium toxicity occurs due to contamination of dialysis solutions, and treatment of the patients with aluminium-containing phosphate binding gels. Aluminium has been shown to be the major contributor to the dialysis encephalopathy syndrome and an osteomalacic component of dialysis osteodystrophy. Other clinical disturbances associated with aluminium toxicity are a microcytic anemia and metastatic extraskeletal calcification. Aluminium overload can be treated effectively by chelation therapy with desferrioxamine and hemodialysis. Aluminium is readily transferred from the dialysate to the patient's -bloodstream during hemodialysis. Once transferred, the aluminium is tightly bound to non-dialysable plasma constituents. Very low concentrations of dialysate aluminium in the range of 10-15 micrograms/l are recommended to guard against toxic effects. Very few studies have been directed towards the separation of the various plasma species which bind eluminium. Gel filtration chromatography has been used to identify five major fractions, one of which is of low molecular weight and the others appear to be protein-aluminium complexes. Recommendations on aluminium monitoring have been published and provide safe and toxic concentrations. Also, the frequency of monitoring has been addressed. Major problems exist with the analytical methods for measuring aluminium which result from inaccurate techniques and contamination difficulties. 136 references.

  6. Sclerosant foam structure and stability is strongly influenced by liquid air fraction.

    PubMed

    Cameron, E; Chen, T; Connor, D E; Behnia, M; Parsi, K

    2013-10-01

    To determine the effects of sclerosant foam preparation and composition on foam structure, the time course of liquid drainage, and foam coarsening. Sodium tetradecyl sulphate (STS) and polidocanol (POL) foams were investigated in a range of concentrations (0.5-3%) and liquid-plus-air fractions (LAF; 1 + 2 to 1 + 8). Foam was injected into a vein simulation model (polyvinyl chloride tubing, inner diameter 3 mm, constant pressure 5-7 mmHg) filled with saline or blood. Liquid drainage, bubble count, and diameter were measured and documented by serial photography. Liquid drainage was faster in the vertical position than the horizontal one. In all variations, very small bubbles (diameter <30 μm) were generated initially that coarsened to form micro-foams (<250 μm). By 3 minutes mini-foams (>250 μm) and by 7.5 minutes macro-foams (>500 μm) were formed. Following injection, the upper regions of foam coarsened faster as liquid drained to the bottom of the vessel. Wet preparations produced significantly smaller bubbles. Low concentration POL foam produced significantly higher bubble counts and coarsened slower than STS. Foam structure is strongly influenced by the LAF. Despite the initial formation of micro-bubbles in the syringe, mini- and macro-bubbles are formed in target vessels with time post-injection. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Foam Insulation for Cryogenic Flowlines

    NASA Technical Reports Server (NTRS)

    Sonju, T. R.; Carbone, R. L.; Oves, R. E.

    1985-01-01

    Welded stainless-steel vacuum jackets on cryogenic ducts replaced by plastic foam-insulation jackets that weigh 12 percent less. Foam insulation has 85 percent of insulating ability of stainless-steel jacketing enclosing vacuum of 10 microns of mercury. Foam insulation easier to install than vacuum jacket. Moreover, foam less sensitive to damage and requires minimal maintenance. Resists vibration and expected to have service life of at least 10 years.

  8. Production of low-density poly (4-methyl-1-pentene) foam via phase inversion from binary solvent/nonsovent systems

    SciTech Connect

    Simandl, R.F.; Robinson, D.N.; Bolinger, W.L.; Davis, W.E.

    1991-11-01

    Phase inversion from durene/naphthalene, durene/tmpdo, and durene/hexadecanol binary solvent/nonsolvent systems produced well interconnected, radiographically homogeneous, open-celled poly (4- methyl-1-pentene) or pmp foams. These foams ranged in density from 5 to 50 mg/cm{sup 2}. Foam homogeneity and casting efficiency were dependent on casting scheme, durene quality, solvent-to-nonsolvent ratio, and quench temperature. Foam density tracked linearly with dissolved-polymer content. Homogeneous, ultralow-density (5 to 6 mg/cm{sup 3}) foams were produced by using a 49/51 durene/naphthalene solvent eutectic. Foam hardness or firmness tracked somewhat linearly with foam density. Foams with densities above 20 mg/cm{sup 3} were too fragile to handle without damage.

  9. Cells on foam and fiber

    SciTech Connect

    Clyde, R.

    1995-11-01

    Cells growing on high area foam and when a screen is put around the foam, it is made heavier so it can be fluidized. When foam is rotated in a half full RBC, drops are formed and mass transfer of oxygen to drops in much faster. Most fungi and some mammalian cells need oxygen. Corrugated fibers with holes in the valleys also produce drops. White rot fungus needs oxygen and it degrades many chlorine compounds, azo dyes, and TNT. Old cardboard boxes are readily available and when buried in soil, oxygen is entrapped. In a lake, the boxes expose high area. Fibers have high surface area for immobilizing cells and when the fibers are rotated, fast reactions occur, converting one chemical to another. Sugar has been fermented to alcohol in 10-15 minutes. Ethanol has high octane and does not need lead. Old cars and trucks still use lead and high levels have been found in the drinking water of several large cities. Bacteria on fibers can remove lead in a few seconds. When an RBC of plain fiber discs is rotated and a light shone in the top the light hits a thin moving film to degrade chlorine compounds. Microbes and light remove sulfur from oil. Calcium magnesium acetate is a non corrosive road deicer. Salt on roads causes millions of dollars damage to bridges and cars. An inexpensive reactor has been made for organization studies of mammalian and plant cells. A magnet is near the bottom but not touching and oxygen is put on the top where there is no seal that can leak.

  10. Aqueous foams and foam films stabilised by surfactants. Gravity-free studies

    NASA Astrophysics Data System (ADS)

    Langevin, Dominique

    2017-01-01

    There are still many open questions and problems in both fundamental research and practical applications of foams. Despite the fact that foams have been extensively studied, many aspects of foam physics and chemistry still remain unclear. Experiments on foams performed under microgravity allow studying wet foams, such as those obtained early during the foaming process. On Earth, wet foams evolve too quickly due to gravity drainage and only dry foams can be studied. This paper reviews the foam and foam film studies that we have performed in gravity-free conditions. It highlights the importance of surface rheology as well as of confinement effects in foams and foam films behaviour.

  11. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  12. Ambient curing fire resistant foams

    NASA Technical Reports Server (NTRS)

    Hamermesh, C. L.; Hogenson, P. A.; Tung, C. Y.; Sawko, P. M.; Riccitiello, S. R.

    1979-01-01

    The feasibility of development of an ambient curing foam is described. The thermal stability and flame spread index of the foams were found to be comparable to those of the high-temperature cured polyimide foams by Monsanto two-foot tunnel test and NASA T-3 Fire test. Adaptation of the material to spray in place applications is described

  13. Ambient curing fire resistant foams

    NASA Technical Reports Server (NTRS)

    Hamermesh, C. L.; Hogenson, P. A.; Tung, C. Y.; Sawko, P. M.; Riccitiello, S. R.

    1979-01-01

    The feasibility of development of an ambient curing foam is described. The thermal stability and flame spread index of the foams were found to be comparable to those of the high-temperature cured polyimide foams by Monsanto two-foot tunnel test and NASA T-3 Fire test. Adaptation of the material to spray in place applications is described

  14. Polypropylenes foam consisting of thermally expandable microcapsule as blowing agent

    NASA Astrophysics Data System (ADS)

    Jeoung, Sun Kyung; Hwang, Ye Jin; Lee, Hyun Wook; Kwak, Sung Bok; Han, In-Soo; Ha, Jin Uk

    2016-03-01

    The structure of thermally expandable microcapsule (TEMs) is consisted of a thermoplastic shell which is filled with liquid hydrocarbon at core. The shell of TEMs becomes soft when the temperature is higher than boiling temperature of liquid hydrocarbon. The shell of TEMs is expanded under the high temperature because the inner pressure of TEMs is increased by vaporization of hydrocarbon core. Therefore, the TEMs are applicable for blowing agents and light weight fillers. In this research, we fabricated the polypropylene (PP) foam by using the TEMs and chemical blowing agents and compared to their physical properties. The density of the specimen was decreased when the contents of chemical blowing agents and TEMs were increased. In addition, the mechanical properties (i.e. tensile strength and impact strength) of specimens were deteriorated with increasing amount of chemical blowing agents and TEMs. However, PP foam produced with TEMs showed higher impact strength than the one with the chemical blowing agent. In order to clarify the dependence of impact strength of PP foam as the blowing agent, the morphology difference of the PP foams was investigated. Expanding properties of PP foams produced with TEMs was changed with TEMs content of PP foams. Processing conditions also influenced the mechanical properties of PP foam containing TEMs.

  15. Foaming in stout beers

    NASA Astrophysics Data System (ADS)

    Lee, W. T.; Devereux, M. G.

    2011-10-01

    We review the differences between bubble formation in champagne and other carbonated drinks, and stout beers which contain a mixture of dissolved nitrogen and carbon dioxide. The presence of dissolved nitrogen in stout beers gives them several properties of interest to connoisseurs and physicists. These remarkable properties come at a price: stout beers do not foam spontaneously and special technology, such as the widgets used in cans, is needed to promote foaming. Nevertheless, the same mechanism, nucleation by gas pockets trapped in cellulose fibers, responsible for foaming in carbonated drinks is active in stout beers, but at an impractically slow rate. This gentle rate of bubble nucleation makes stout beers an excellent model system for investigating the nucleation of gas bubbles. The equipment needed is modest, putting such experiments within reach of undergraduate laboratories. We also consider the suggestion that a widget could be constructed by coating the inside of a beer can with cellulose fibers.

  16. Microcellular foams; For what

    SciTech Connect

    Aubert, J.H.; Sylwester, A.P. )

    1991-04-01

    This paper discusses the cells of microcellular foams which are thousands of times smaller than those found in conventional foams. They can be used for a whole range of applications, from porous electrodes and high-temperature insulation to electrically conductive composites, and as porous media for studying comet dust. First, the authors will show you how to make them so you can envision their unique characteristics. Then they will show some uses already developed. By far the most versatile preparation technique involves thermally induced phase separation (TIPS) of polymer solutions. In this technique a polymer solution is quenched in order to induce phase separation, either through liquid-liquid phase separation or polymer crystallization. If the TIPS process results in the formation of a continuous polymer-rich phase, two additional processing steps can lead to a microcellular foam.

  17. Limits on spacetime foam

    SciTech Connect

    Christiansen, Wayne A.; Ng, Y. Jack; Floyd, David J. E.; Perlman, Eric S.

    2011-04-15

    Plausibly spacetime is foamy on small distance scales, due to quantum fluctuations. We elaborate on the proposal to detect spacetime foam by looking for seeing disks in the images of distant quasars and active galactic nuclei. This is a null test in the sense that the continued presence of unresolved point sources at the milliarcsecond level in samples of distant compact sources puts severe constraints on theories of quantized spacetime foam at the Planckian level. We discuss the geometry of foamy spacetime, and the appropriate distance measure for calculating the expected angular broadening. We then deal with recent data and the constraints they put on spacetime foam models. While time lags from distant pulsed sources such as gamma ray bursts have been posited as a possible test of spacetime foam models, we demonstrate that the time-lag effect is rather smaller than has been calculated, due to the equal probability of positive and negative fluctuations in the speed of light inherent in such models. Thus far, images of high-redshift quasars from the Hubble ultra-deep field provide the most stringent test of spacetime foam theories. While random-walk models ({alpha}=1/2) have already been ruled out, the holographic ({alpha}=2/3) model remains viable. Here {alpha}{approx}1 parametrizes the different spacetime foam models according to which the fluctuation of a distance l is given by {approx}l{sup 1-{alpha}l}{sub P}{sup {alpha}} with l{sub P} being the Planck length. Indeed, we see a slight wavelength-dependent blurring in the ultra-deep field images selected for this study. Using existing data in the Hubble Space Telescope (HST) archive we find it is impossible to rule out the {alpha}=2/3 model, but exclude all models with {alpha}<0.65. By comparison, current gamma ray burst time-lag observations only exclude models with {alpha}<0.3.

  18. Bumblebee Pupae Contain High Levels of Aluminium

    PubMed Central

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer’s disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline. PMID:26042788

  19. Bumblebee pupae contain high levels of aluminium.

    PubMed

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer's disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline.

  20. Aluminium content of Spanish infant formula.

    PubMed

    Navarro-Blasco, I; Alvarez-Galindo, J I

    2003-05-01

    Levels of aluminium in 82 different infant formulae from nine different manufacturers in Spain were determined by acid-microwave digestion and graphite furnace atomic absorption spectrophotometry. The influence of aluminium content in tap water in reconstituted powder formulae was examined and an estimate was made of the theoretical toxic aluminium intake in comparison with the provisional tolerable weekly intake (PTWI). Possible interactions between aluminium and certain essential trace elements added to infant formulations have been studied according to the type or main protein-based infant formula. In general, the infant formulae contained a higher aluminium content than that found in human milk, especially in the case of soya, preterm or hydrolysed casein-based formulae. Standard formulae gave lower aluminium intakes amounting to about 4% PTWI. Specialized and preterm formulae resulted in a moderate intake (11-12 and 8-10% PTWI, respectively) and soya formulae contributed the highest intake (15% PTWI). Aluminium exposure from drinking water used for powder formula reconstitution was not considered a potential risk. In accordance with the present state of knowledge about aluminium toxicity, it seems prudent to call for continued efforts to standardize routine quality control and reduce aluminium levels in infant formula as well as to keep the aluminium concentration under 300 microg l(-1) for all infant formulae, most specifically those formulae for premature and low birth neonates.

  1. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization

    SciTech Connect

    Darsh T. Wasan

    2002-02-20

    Radioactive waste treatment processes usually involve concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like sludge chemical processing and melter operations. Hence, the objective of this research was to study the mechanisms that produce foaming during nuclear waste treatment, to identify key parameters which aggravate foaming, and to identify effective ways to eliminate or mitigate foaming. Experimental and theoretical investigations of the surface phenomenon, suspension rheology, and bubble generation and interactions that lead to the formation of foam during waste processing were pursued under this EMSP project. Advanced experimental techniques including a novel capillary force balance in conjunction with the combined differential and common interferometry were developed to characterize particle-particle interactions at the foam lamella surfaces as well as inside the foam lamella. Laboratory tests were conducted using a non-radioactive simulant slurry containing high levels of noble metals and mercury similar to the High-Level Waste. We concluded that foaminess of the simulant sludge was due to the presence of colloidal particles such as aluminum, iron, and manganese. We have established the two major mechanisms of formation and stabilization of foams containing such colloidal particles: (1) structural and depletion forces; and (2) steric stabilization due to the adsorbed particles at the surfaces of the foam lamella. Based on this mechanistic understanding of foam generation and stability, an improved antifoam agent was developed by us, since commercial antifoam agents were found to be ineffective in the aggressive physical and chemical environment present in the sludge processing. The improved antifoamer was subsequently tested in a pilot plant at the Savannah River Site (SRS) and was found to be effective. Also, in the SRTC experiment, the irradiated

  2. Synthesis of palm oil fatty acid as foaming agent for firefighting application

    NASA Astrophysics Data System (ADS)

    Rivai, M.; Hambali, E.; Suryani, A.; Fitria, R.; Firmansyah, S.; Pradesi, J.

    2017-05-01

    Many factors including natural factor, human carelessness, new land clearance or agricultural burning/act of vandalism and ground fire are suspected as the causes of forest fire. Foam, which cools the fire down, covers the burning material/fuel, and avoids contact between burning materials with oxygen, is an effective material used to fight large-scale fires. For this purpose, surfactant which can facilitate foam formation and inhibit the spread of smoke is required. This study was aimed at producing prototype product of foaming agent from palm oil and its formulation as a fire fighting material. Before the formulation stage, the foaming agent was resulted from saponification process of oleic, lauric, and palmitic acids by using NaOH and KOH alkaline. Foam stability was used as the main indicator of foaming agent. Results showed that potassium palmitate had the highest foam stability of 82% until the 3rd day. The best potassium palmitate concentration was 7%.

  3. Polyimide foam for the thermal insulation and fire protection

    NASA Technical Reports Server (NTRS)

    Rosser, R. W. (Inventor)

    1973-01-01

    The preparation of chemically resistant and flame retardant foams from polyfunctional aromatic carboxylic acid derivatives and organic polyisocyanates is outlined. It was found that polyimide foams of reproducible density above 1 lb./ft. and below 6 lbs./cu ft. can be obtained by employing in the reaction of least 2% by weight of siloxane-glycol copolymer as a surfactant which acts as a specific density control agent. Polyimide foams into which reinforcing fibers such as silicon dioxide and carbon fibers may be incorporated were also produced.

  4. Long lasting decontamination foam

    DOEpatents

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  5. Fabrication, Micro-structural Analysis, and Mechanical Testing of High Density Polymeric Foam

    NASA Astrophysics Data System (ADS)

    Marks, Trevor Gustov

    Foams, or what are often called cellular solids, are some of the most widely used materials in the modern era. In general, foam is a porous substance formed by the introduction of gas filled pores into condensed matter; the result is typically a light weight substance with properties related to the base (non-porous) medium. Applications of foams include: vibration dampening, energy mitigation (such as packaging and bike helmets), insulation, filtration, and flotation. The focus of this work is on the properties of flexible elastomeric foam of high relative-density. The bulk of existing literature on elastomeric foam is concerned with foam of low relative-density (ratio of the foam density to the density of the material from which the foam is formed ≤ 0.1). The relationship between the micro-structure of high relative-density foam and its mechanical response has, in large part, not been subjected to systematic investigation heretofore. The present work examines how the micro-structural features of pore shape, size, and location affect the macro-structural response of relative high density foam to compressive loading. In order to carry out this study, methods were developed and employed to control a foam's micro-structure, and hence its mechanical response, with the use of temporary pore forming particles and micron scale inclusions. Advanced microscopy techniques were used to observe, in situ, the evolution of a foam's micro-structure under compressive loading, and the results were correlated with the evolution of the foam's stress - strain response. Additionally, quantitative methods were developed and employed to describe numerically the foam's micro-structural features, such as: (i), pore shape, (ii), pore size, and (iii), the arrangement of the pores with respect to each other. Numerous foams were produced, tested, and subjected to the

  6. Convective Instabilities in Liquid Foams

    NASA Technical Reports Server (NTRS)

    Veretennikov, Igor; Glazier, James A.

    2004-01-01

    The main goal of this work is to better understand foam behavior both on the Earth and in microgravity conditions and to determine the relation between a foam's structure and wetness and its rheological properties. Our experiments focused on the effects of the bubble size distribution (BSD) on the foam behavior under gradual or stepwise in the liquid flow rate and on the onset of the convective instability. We were able to show experimentally, that the BSD affects foam rheology very strongly so any theory must take foam texture into account.

  7. Effect of Fiber Surface Structure on Interfacial Reaction between Carbon Fiber and Aluminium

    NASA Astrophysics Data System (ADS)

    Chang, Kuang-Chih; Matsugi, Kazuhiro; Sasaki, Gen; Yanagisawa, Osamu

    Surface structure of carbon fiber and interfacial reaction between fiber and aluminium in carbon fiber reinforced aluminium composites were investigated by high-resolution transmission electron microscopy. Low and high graphitized carbon fiber reinforced pure aluminium composites were prepared by ultrasonic liquid infiltration. Vapor grown carbon nano fiber (VGCF) reinforced pure aluminium composites were prepared by hot-pressing. Heteroatoms, which existed abundantly in the surface of low graphitized carbon fiber, caused carbon lamellar structure in the fiber surface pronounced curvature. VGCF surface structure appeared regular and linear graphitic lamellae. Low graphitized fiber reinforced pure aluminium composites revealed serious interfacial reaction produced crystalline aluminium carbides (Al4C3), compared to composites reinforced by high graphitized fiber. On the other hand, Al4C3 crystalline reactants were not found at the interface of VGCF reinforced pure aluminium composites, but formation of interlayer was observed. In order to promote Al4C3 growth, carbon fiber reinforced composites were heat-treated at 573K and 873K for 1.8ks. Al4C3 interfacial phases in low and high graphitized fiber reinforced aluminium composites grew with the rise in the temperature. The heat-treatment resulted in the formation of non-crystalline Al4C3 interlayer by energy dispersive X-ray spectroscopy analysis of electron microscopy. At high temperature, Al4C3 was not grew and increased merely at the interface between carbon fiber and pure aluminium matrix, and moreover, the formation of new Al4C3 crystal occurred in this interlayer.

  8. DOE applied to study the effect of process parameters on silicon spacing in lost foam Al-Si-Cu alloy casting

    NASA Astrophysics Data System (ADS)

    Shayganpour, A.; Idris, M. H.; Izman, S.; Jafari, H.

    2012-09-01

    Lost foam casting as a relatively new manufacturing process is extensively employed to produce sound complicated castings. In this study, an experimental investigation on lost foam casting of an Al-Si-Cu aluminium cast alloy was conducted. The research was aimed in evaluating the effect of different pouring temperatures, slurry viscosities, vibration durations and sand grain sizes on eutectic silicon spacing of thin-wall castings. A stepped-pattern was used in the study and the focus of the investigations was at the thinnest 3 mm section. A full two-level factorial design experimental technique was used to plan the experiments and afterwards identify the significant factors affecting casting silicon spacing. The results showed that pouring temperature and its interaction with vibration time have pronounced effect on eutectic silicon phase size. Increasing pouring temperature coarsened the eutectic silicon spacing while the higher vibration time diminished coarsening effect. Moreover, no significant effects on silicon spacing were found with variation of sand size and slurry viscosity.

  9. DNA strand patterns on aluminium thin films.

    PubMed

    Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Majid, Wan Haliza Abd; Rahman, Saadah Abdul; Shahhosseini, Fatemeh

    2011-01-01

    A new patterning method using Deoxyribose Nucleic Acid (DNA) strands capable of producing nanogaps of less than 100 nm is proposed and investigated in this work. DNA strands from Bosenbergia rotunda were used as the fundamental element in patterning DNA on thin films of aluminium (Al) metal without the need for any lithographic techniques. The DNA strands were applied in buffer solutions onto thin films of Al on silicon (Si) and the chemical interactions between the DNA strands and Al creates nanometer scale arbitrary patterning by direct transfer of the DNA strands onto the substrate. This simple and cost-effective method can be utilized in the fabrication of various components in electronic chips for microelectronics and Nano Electronic Mechanical System (NEMS) applications in general.

  10. Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor.

    PubMed

    Beuker, Janina; Steier, Anke; Wittgens, Andreas; Rosenau, Frank; Henkel, Marius; Hausmann, Rudolf

    2016-03-01

    Heterologeous production of rhamnolipids in Pseudomonas putida is characterized by advantages of a non-pathogenic host and avoidance of the native quorum sensing regulation in Pseudomonas aeruginosa. Yet, downstream processing is a major problem in rhamnolipid production and increases in complexity at low rhamnolipid titers and when using chemical foam control. This leaves the necessity of a simple concentrating and purification method. Foam fractionation is an elegant method for in situ product removal when producing microbial surfactants. However, up to now in situ foam fractionation is nearly exclusively reported for the production of surfactin with Bacillus subtilis. So far no cultivation integrated foam fractionation process for rhamnolipid production has been reported. This is probably due to excessive bacterial foam enrichment in that system. In this article a simple integrated foam fractionation process is reported for heterologous rhamnolipid production in a bioreactor with easily manageable bacterial foam enrichments. Rhamnolipids were highly concentrated in the foam during the cultivation process with enrichment factors up to 200. The described process was evaluated at different pH, media compositions and temperatures. Foam fractionation processes were characterized by calculating procedural parameter including rhamnolipid and bacterial enrichment, rhamnolipid recovery, YX/S, YP/X, and specific as well as volumetric productivities. Comparing foam fractionation parameters of the rhamnolipid process with the surfactin process a high effectiveness of the integrated foam fractionation for rhamnolipid production was demonstrated.

  11. Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization.

    PubMed

    Tong, Mingming; Cole, Katie; Brito-Parada, Pablo R; Neethling, Stephen; Cilliers, Jan J

    2017-04-05

    Pseudo-two-dimensional (2D) foams are commonly used in foam studies as it is experimentally easier to measure the bubble size distribution and other geometric and topological properties of these foams than it is for a 3D foam. Despite the widespread use of 2D foams in both simulation and experimental studies, many important geometric and topological relationships are still not well understood. Film size, for example, is a key parameter in the stability of bubbles and the overall structure of foams. The relationship between the size distribution of the films in a foam and that of the bubbles themselves is thus a key relationship in the modeling and simulation of unstable foams. This work uses structural simulation from Surface Evolver to statistically analyze this relationship and to ultimately formulate a relationship for the film size in 2D foams that is shown to be valid across a wide range of different bubble polydispersities. These results and other topological features are then validated using digital image analysis of experimental pseudo-2D foams produced in a vertical Hele-Shaw cell, which contains a monolayer of bubbles between two plates. From both the experimental and computational results, it is shown that there is a distribution of sizes that a film can adopt and that this distribution is very strongly dependent on the sizes of the two bubbles to which the film is attached, especially the smaller one, but that it is virtually independent of the underlying polydispersity of the foam.

  12. Fracture and Fatigue Behaviour of Aluminium Matrix Composite Automotive Pistons

    NASA Astrophysics Data System (ADS)

    García-Romero, Ane M.; Egizabal, Pedro; Irisarri, Angel M.

    2010-02-01

    The fracture and fatigue behaviour of prototype automotive pistons produced in an aluminium alloy matrix composite in industrial conditions has been studied. Fracture toughness increased when the testing temperature rose from 20° to 75°C and kept near constant up to 250°C, when a significantly lower value was recorded. A change in the failure operating mechanism, which can explain this trend, was observed by analysing the fracture surfaces in the scanning electron microscope. Room temperature fatigue tests performed with R = 0.1 stress ratio led to an average value of the Paris law exponent higher than those reported in aluminium alloys but low for an industrially produced brittle composite. A higher exponent and a much larger scattering were observed in those fatigue tests carried out under R = 0.5 stress ratio.

  13. Observation of ionization fronts in low density foam targets

    SciTech Connect

    Hoarty, D. |; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.

    1999-05-01

    Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved {ital K}-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained. {copyright} {ital 1999 American Institute of Physics.}

  14. Fire retardant cellulosic foam

    NASA Technical Reports Server (NTRS)

    Luttinger, M.

    1973-01-01

    Method mixture of cyanamide, phosphoric acid, and monobasic ammonium phosphates for preliminary treatment of paper. Papier-mache, in second step, is pulped in water and latex is added. Urea formaldehyde solution mixed to maximize foaming and resin dispersion is added. Mixture is then cast within 30 to 60 seconds and dried twice.

  15. Polyurethane Foam Roofing.

    DTIC Science & Technology

    1987-04-01

    use of asphaltic . bitumen , or coal tar based mastics and plastic type patching materials should be avoided. For purposes of this Guide, maintenance...Applicator Skills......................49 *Spray Foam Equipment and Material Problems. ........ 49 Excess Isocyanate or "A" Component. ............ 50 Excess...surface .. ......... ... 46 35. Isocyanate rich surface .... .............. . 50 36 Resin rich surface ...... ................. ... 51 37 UV

  16. Foam, Foam-resin composite and method of making a foam-resin composite

    NASA Technical Reports Server (NTRS)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  17. The precipitation of potassium aluminium sulphate from aqueous solution

    NASA Astrophysics Data System (ADS)

    Mullin, J. W.; Žáček, S.

    1981-06-01

    A precipitation study has been made with potassium aluminium sulphate (potash alum) produced by mixing aqueous solutions of its constituent salts. Rates of nucleation, as indicated by the induction period, were measured for both agitated and non-agitated solutions over the temperature range 15-35°C. Nucleation rates increase with increases in agitation, temperature and supersaturation, but the latter has the dominant effect, as predicted by classical nucleation theory. The temperature-dependence of the interfacial tension is evaluated.

  18. Synthesis of Aluminium Nanoparticles in A Water/Polyethylene Glycol Mixed Solvent using μ-EDM

    NASA Astrophysics Data System (ADS)

    Sahu, R. K.; Hiremath, Somashekhar S.

    2017-08-01

    Nanoparticles present a practical way of retaining the results of the property at the atomic or molecular level. Due to the recent use of nanoparticles in scientific, industrial and medical applications, synthesis of nanoparticles and their characterization have become considerably important. Currently, aluminium nanoparticles have attracted significant research attention because of their reasonable cost, unique properties and interdisciplinary emerging applications. The present paper reports the synthesis of aluminium nanoparticles in the mixture of Deionized water (DI water) and Polyethylene Glycol (PEG) using a developed micro-Electrical Discharge Machining (μ-EDM) method. PEG was used as a stabilizer to prevent nanoparticles from agglomeration produced during the μ -EDM process. The synthesized aluminium nanoparticles were examined by Transmission Electron Microscopy (TEM), Energy Dispersive Analysis by X-rays (EDAX) and Selected Area Electron Diffraction (SAED) pattern to determine their size, shape, chemical nature and crystal structure. The average size of the polyhedral aluminium nanoparticles is found to be 196 nm.

  19. Studies of aluminium coatings deposited by vacuum evaporation and magnetron sputtering.

    PubMed

    Garbacz, H; Wieciński, P; Adamczyk-Cieślak, B; Mizera, J; Kurzydłowski, K J

    2010-03-01

    The paper presents the results of investigations of the microstructures and properties of the aluminium coatings deposited by vacuum evaporation and magnetron sputtering. These coatings generally have a very refined microstructure with elongated nano-grains. However, the surface topography of the aluminium coating deposited by vacuum evaporation is more developed, its microstructure is less homogeneous and more porous. The residual tensile stresses in the aluminium coating deposited by magnetron sputtering are close to 130 MPa, and the texture is relatively pronounced. Vacuum evaporation does not induce residual stresses in the coatings and the texture is very weak. The results obtained indicate that the aluminium coatings produced by magnetron sputtering are more suitable for the diffusive Ti-Al intermetallic layers.

  20. Morphological Study of Directionally Freeze-Cast Nickel Foams

    NASA Astrophysics Data System (ADS)

    Jo, Hyungyung; Kim, Min Jeong; Choi, Hyelim; Sung, Yung-Eun; Choe, Heeman; Dunand, David C.

    2016-03-01

    Nickel foams, consisting of 51 to 62 pct aligned, elongated pores surrounded by a network of Ni walls, were fabricated by reduction and sintering of directionally cast suspensions of nanometric NiO powders in water. Use of dispersant in the slurry considerably affected the foam morphology and microstructure at both the micro- and macro-scale, most likely by modifying ice solidification into dendrites (creating the aligned, elongated macro-pores) and NiO powder accumulation in the inter-dendritic space (creating the Ni walls with micro-pores). The mean width of the Ni walls, in foams solidified with and without dispersant, was 21 ± 5 and 75 ± 13 µm, respectively. Additionally, the foams with the dispersant showed less dense walls and rougher surfaces than those without the dispersant. Moreover, the fraction of closed pores present in the foam walls with the dispersant was higher than that of the samples without dispersant. We finally verified the potential energy application of the Ni foam produced in this study by carrying out a preliminary single-cell performance test with the Ni foam sample as the gas diffusion layer on the anode side of a polymer electrolyte membrane fuel cell.

  1. Simulation of bubble growth and coalescence in reacting polymer foams

    NASA Astrophysics Data System (ADS)

    Marchisio, Daniele; Karimi, Mohsen

    2015-11-01

    This work concerns with the simulation of reacting polymer foams with computational fluid dynamics (CFD). In these systems upon mixing of different ingredients polymerization starts and some gaseous compounds are produced, resulting in the formation of bubbles that growth and coalesce. As the foam expands, the polymerization proceeds resulting in an increase of the apparent viscosity. The evolution of the collective behavior of the bubbles within the polymer foam is tracked by solving a master kinetic equation, formulated in terms of the bubble size distribution. The rate with which individual bubbles grow is instead calculated by resolving the momentum and concentration boundary layers around the bubbles. Moreover, since it is useful to track the evolution of the interface between the foam and the surrounding air, a volume-of-fluid (VOF) model is adopted. The final computational model is implemented in the open-source CFD code openFOAM by making use of the compressibleInterFoam solver. The master kinetic equation is solved with a quadrature-based moment method (QBMM) directly implemented in openFOAM, whereas the bubble growth model is solved independently and ''called'' from the CFD code by using an unstructured database. Model predictions are validated against experimental data. This work was funded by the European Commission under the grant agreement number 604271 (Project acronym: MoDeNa; call identifier: FP7-NMP-2013-SMALL-7).

  2. Aqueous particulate foams stabilized solely with polymer latex particles.

    PubMed

    Fujii, S; Iddon, P D; Ryan, A J; Armes, S P

    2006-08-29

    In this article, a wide range of latexes are evaluated as possible foam stabilizers. These include near-monodisperse, poly(N-vinyl pyrrolidone)-stabilized polystyrene [PNVP-PS] latexes with diameters ranging from 170 nm to 1.62 microm, submicrometer-sized poly(ethylene glycol)-stabilized polystyrene [PEGMA-PS] latex particles, a PNVP-stabilized poly(4-bromostyrene) [PNVP-PBrS] latex with a mean diameter of 870 nm, two PNVP-stabilized poly(methyl methacrylate) [PNVP-PMMA] latexes with mean diameters of 730 nm and 1.20 microm, a PNVP-stabilized poly(2-hydroxypropyl methacrylate) [PNVP-PHPMA] latex with a mean diameter of 630 nm, and a charge-stabilized anionic PS latex of 220 nm diameter. The effect of varying the particle size, latex concentration, and latex surface composition on foam stability were studied in detail. The larger PNVP-PS latexes, the PNVP-PBrS, and the two PNVP-PMMA latexes gave highly stable foams, whereas PEGMA-PS, PNVP-PHPMA, and the charge-stabilized PS latex produced either no foams or foams with inferior long-term stabilities. Scanning electron microscopy studies revealed hexagonally close-packed latex arrays in the walls of the dried foam, which leads to localized moiré patterns being observed by optical microscopy. Moreover, these dried foams are highly iridescent in bright transmitted light.

  3. Lightweight and Ultrastrong Polymer Foams with Unusually Superior Flame Retardancy.

    PubMed

    Xu, Linli; Xiao, Linhong; Jia, Pan; Goossens, Karel; Liu, Peng; Li, Hui; Cheng, Chungui; Huang, Yong; Bielawski, Christopher W; Geng, Jianxin

    2017-08-09

    High-performance flame-retardant materials are urgently needed to address outstanding issues that pertain to safety. Traditional flame retardants are toxic to the environment and/or lack the physical properties required for use in many contemporary applications. Here, we show that isocyanate-based polyimide (PI) foam, a flammable material, can exhibit unusually superior flame retardancy as well as other excellent properties, such as being lightweight and displaying high mechanical strength, by incorporating red phosphorus (RP)-hybridized graphene. The covalent bonds formed between the graphene platelets and the PI matrix provide the resultant PI foam with a specific Young's modulus (83 kNm kg(-1)) that is comparable to or even higher than those displayed by state-of-the-art foams, including silica aerogels, polystyrene foams, and polyurethane foams. In addition, even a low content of the RP-hybridized graphene (2.2 wt %) results in an exceptionally higher limiting oxygen index (39.4) than those of traditional flame-retardant polymer-based materials (typically 20-30). The resultant PI foam also exhibits thermal insulation properties that are similar to that of air. Moreover, the RP-hybridized graphene is prepared using a one-step ball milling process in 100% yield, and does not require solvent or produce waste. The preparation of the flame-retardant PI foams can be scaled as the starting materials are commercially available and the techniques employed are industrially compatible.

  4. Aluminium in foodstuffs and diets in Sweden.

    PubMed

    Jorhem, L; Haegglund, G

    1992-01-01

    The levels of aluminium have been determined in a number of individual foodstuffs on the Swedish market and in 24 h duplicate diets collected by women living in the Stockholm area. The results show that the levels in most foods are very low and that the level in vegetables can vary by a factor 10. Beverages from aluminium cans were found to have aluminium levels not markedly different from those in glass bottles. Based on the results of the analysis of individual foods, the average Swedish daily diet was calculated to contain about 0.6 mg aluminium, whereas the mean content of the collected duplicate diets was 13 mg. A cake made from a mix containing aluminium phosphate in the baking soda was identified as the most important contributor of aluminium to the duplicate diets. Tea and aluminium utensils were estimated to increase the aluminium content of the diets by approximately 4 and 2 mg/day, respectively. The results also indicate that a considerable amount of aluminium must be introduced from other sources.

  5. Interfacial Stabilization of Fiber-Laden Foams with Carboxymethylated Lignin toward Strong Nonwoven Networks.

    PubMed

    Li, Shuai; Xiang, Wenchao; Järvinen, Marjo; Lappalainen, Timo; Salminen, Kristian; Rojas, Orlando J

    2016-08-03

    Wet foams were produced via agitation and compressed air bubbling of aqueous solutions of carboxymethylated lignin (CML). Bubble size and distribution were assessed in situ via optical microscopy. Foamability, bubble collapse rate, and foam stability (half-life time) were analyzed as a function of CML concentration, temperature, pH, and air content. Dynamic changes of the CML liquid foam were monitored by light transmission and backscattering. Cellulosic fibers of different aspect ratios (long pine fibers and short birch fibers) were suspended under agitation by the liquid foams (0.6% CML in the aqueous phase) with an air (bubble) content as high as 75% in volume. Remarkably, the half-life time of fiber-laden CML foams was 10-fold higher than that of the corresponding fiber-free liquid foam. Such lignin-based foams were demonstrated, after dewatering, as a precursor for the synthesis of nonwoven, layered structures. The resulting fiber networks (paper), obtained here for the first time with lignin-based foams, were characterized for pore size distribution, lignin retention, morphology, and physical-mechanical properties (network formation quality, density, air permeability, surface roughness, and tensile and internal bond strengths). The results were compared against structures obtained from foams stabilized with an anionic surfactant (SDS) as well as those from foam-free, water-based web-laying. Remarkably, compared to SDS, the foam-formed materials produced with CML displayed better bonding and tensile strengths. Overall, CML-based foams were found to be suitable carriers of cellulosic fibers and have opened the possibility for integrating fully biobased systems in foam-forming. This is an emerging option to increase the effective solids content in the system without compromising the quality of formed nonwoven materials while achieving reductions in water and energy consumption.

  6. Aluminium Pneumoconiosis I. In Vitro Comparison of Stamped Aluminium Powders Containing Different Lubricating Agents and a Granular Aluminium Powder

    PubMed Central

    Corrin, B.

    1963-01-01

    The discrepancy in previous reports of the action of aluminium on the lung may be explained by differences between stamped and granular aluminium powders. A stamped powder of the variety causing pulmonary fibrosis showed a brisk reaction with water, but a granular powder was unreactive. This difference is primarily due to the granular particles being covered by inert aluminium oxide, the formation of which is partially prevented in the stamping process by stearine and mineral oil. The reactivity of the flake-like stamped particles is also dependent on their large surface area per unit volume. The appearance of aluminium pneumoconiosis in Britain is explained by the introduction of mineral oil into the stamping industry for, in contrast to stearine, mineral oil permits the powder to react with water. The lung damage is believed to be caused by a soluble form of aluminium. PMID:14072616

  7. An overview of polyurethane foams in higher specification foam mattresses.

    PubMed

    Soppi, Esa; Lehtiö, Juha; Saarinen, Hannu

    2015-02-01

    Soft polyurethane foams exist in thousands of grades and constitute essential components of hospital mattresses. For pressure ulcer prevention, the ability of foams to control the immersion and envelopment of patients is essential. Higher specification foam mattresses (i.e., foam mattresses that relieve pressure via optimum patient immersion and envelopment while enabling patient position changes) are claimed to be more effective for preventing pressure ulcers than standard mattresses. Foam grade evaluations should include resiliency, density, hardness, indentation force/load deflection, progressive hardness, tensile strength, and elongation along with essential criteria for higher specification foam mattresses. Patient-specific requirements may include optimal control of patient immersion and envelopment. Mattress cover characteristics should include breathability, impermeability to fluids, and fire safety and not affect mattress function. Additional determinations such as hardness are assessed according to the guidelines of the American Society for Testing and Materials and the International Organization for Standardization. At this time, no single foam grade provides an optimal combination of the above key requirements, but the literature suggests a combination of at least 2 foams may create an optimal higher specification foam mattress for pressure ulcer prevention. Future research and the development of product specification accuracy standards are needed to help clinicians make evidence-based decisions about mattress use.

  8. Pyrolytic Graphite Foam: A Passive Magnetic Susceptibility Matching Material

    PubMed Central

    Lee, Gary C.; Goodwill, Patrick W.; Phuong, Kevin; Inglis, Ben A.; Scott, Greig C.; Hargreaves, Brian A.; Li, Lizabeth; Chen, Alex C.; Shah, Rachana N.; Conolly, Steven M.

    2012-01-01

    Purpose To evaluate a novel soft, lightweight cushion that can match the magnetic susceptibility of human tissue. The magnetic susceptibility difference between air and tissue produces field inhomogeneities in the B0 field, which leads to susceptibility artifacts in MR studies. Materials and Methods Pyrolytic graphite (PG) microparticles are uniformly embedded into a foam cushion to reduce or eliminate field inhomogeneities at accessible air and tissue interfaces. 3T MR images and field maps of an air/water/PG foam phantom were acquired. Q measurements on a 4T tuned head coil and pulse sequence heating tests at 3T were also performed. Results The PG foam improved susceptibility matching, reduced the field perturbations in phantoms, does not heat, and is non-conductive. Conclusion The susceptibility matched PG foam is lightweight, safe for patient use, adds no noise or MRI artifacts, is compatible with RF coil arrays, and improves B0 homogeneity, which enables more robust MR studies. PMID:20815067

  9. Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams

    NASA Astrophysics Data System (ADS)

    Ries, S.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.

  10. Method of making metal-doped organic foam products

    DOEpatents

    Rinde, James A.

    1981-01-01

    Organic foams having a low density and very small cell size and method for roducing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  11. Development of nonflammable cellulosic foams

    NASA Technical Reports Server (NTRS)

    Luttinger, M.

    1972-01-01

    The development of a moldable cellulosic foam for use in Skylab instrument storage cushions is considered. Requirements include density of 10 lb cu ft or less, minimal friability with normal handling, and nonflammability in an atmosphere of 70 percent oxygen and 30 percent nitrogen at 6.2 psia. A study of halogenated foam components was made, including more highly chlorinated binders, halogen-containing additives, and halogenation of the cellulose. The immediate objective was to reduce the density of the foam through reduction in inorganic phosphate without sacrificing flame-retarding properties of the foams. The use of frothing techniques was investigated, with particular emphasis on a urea-formaldehyde foam. Halogen-containing flame retardants were deemphasized in favor of inorganic salts and the preparation of phosphate and sulphate esters of cellulose. Utilization of foam products for civilian applications was also considered.

  12. Metal Foam Shields

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2006-01-01

    This paper compares the ballistic performance of metallic foam sandwich structures with honeycomb structures. Honeycomb sandwich structures, consisting of metallic or composite facesheets and honeycomb cores, are often used in spacecraft construction due to their light-weight and structural stiffness. Honeycomb panels, however, are considered rather poor candidates for protection from micrometeoroid orbital debris (MMOD) particles because the honeycomb channels the debris cloud from MMOD impacts on outer facesheet causing a concentrated load on the second facesheet. Sandwich structures with light-weight, open-cell metallic cores and metal or composite facesheets provide improved MMOD protection because channeling does not occur and because the core is more effective at disrupting hypervelocity impacts then honeycomb. This paper describes hypervelocity impact tests on metallic foam sandwich structures (aluminum and titanium) with metallic facesheets, compare them to equivalent mass and thickness honeycomb panels, based on the results of hypervelocity impact tests.

  13. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  14. Electron Conditioning of Technical Aluminium Surfaces

    SciTech Connect

    Le Pimpec, F

    2004-09-02

    The effect of electron conditioning on commercially aluminium alloys 1100 and 6063 were investigated. Contrary to the assumption that electron conditioning, if performed long enough, can reduce and stabilize the SEY to low values (= 1.3, value of many pure elements [1]), the SEY of aluminium did not go lower than 1.8. In fact, it reincreases with continued electron exposure dose.

  15. High aluminium content of infant milk formulas.

    PubMed Central

    Weintraub, R; Hams, G; Meerkin, M; Rosenberg, A R

    1986-01-01

    The aluminium content of several commercially available infant milk formulas was measured by electrothermal atomic absorption spectrometry. Results were compared with those for fresh breast milk, cow's milk, and local tap water. Differences in aluminium concentration of greater than 150-fold were found, with the lowest concentrations in breast milk. PMID:3767424

  16. Materials for foam type insulation

    NASA Technical Reports Server (NTRS)

    Hill, W. E.

    1971-01-01

    An internal foam fabrication is one of the concepts being considered for cryogenic insulation on the hydrogen tanks of the shuttle vehicle. The three-dimensional polyurethane used on the S-4 B tanks failed to meet the higher temperature requirements of the shuttle vehicle, however, and other foams under consideration include polyisocyanurates, polyphenylene oxides, polyimides, and polybenzimidazoles. Improved adhesive systems for attaching the foams to the interior tank wall are under study.

  17. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  18. Design of metallic foams as insulation in thermal protection systems

    NASA Astrophysics Data System (ADS)

    Zhu, Huadong

    Metallic foams are novel materials that can be used as thermal insulation in many applications. The low volume fraction of solid, the small cell size and the low conductivity of enclosed gases limit the heat flow in foams. Varying the density, geometry and or material composition from point to point within the foam, one can produce functionally graded foams that may insulate more efficiently. The goal of this research is to investigate the use of functionally graded metal foam in thermal protection systems (TPS) for reusable launch vehicles. First, the effective thermal conductivity of the foam is derived based on a simple cubic unit cell model. Then two problems under steady state of heat transfer have been considered. The first one is the optimization of functionally graded foam insulation for minimum heat transmitted to the structure and the second is minimizing the mass of the functionally graded foam insulation for a given aerodynamic heating. In both cases optimality conditions are derived in closed-form, and numerical methods are used to solve the resulting differential equations to determine the optimal grading of the foam. In order to simplify the analysis the insulation was approximated by finite layers of uniform foams when studying the transient heat transfer case. The maximum structure temperature was minimized by varying the solidity profile for a given total thickness and mass. The principles that govern the design of TPS for transient conditions were identified. To take advantage of the load bearing ability of metallic foams, an integrated sandwich TPS/structure with metallic foam core is proposed. Such an integrated TPS will insulate the vehicle interior from aerodynamic heating as well as carry the primary vehicle loads. Thermal-structural analysis of integrated sandwich TPS panel subjected to transient heat conduction is developed to evaluate their performances. The integrated TPS design is compared with a conventional fibrous Safill TPS design

  19. Design, characterization and modeling of biobased acoustic foams

    NASA Astrophysics Data System (ADS)

    Ghaffari Mosanenzadeh, Shahrzad

    Polymeric open cell foams are widely used as sound absorbers in sectors such as automobile, aerospace, transportation and building industries, yet there is a need to improve sound absorption of these foams through understanding the relation between cell morphology and acoustic properties of porous material. Due to complicated microscopic structure of open cell foams, investigating the relation between foam morphology and acoustic properties is rather intricate and still an open problem in the field. The focus of this research is to design and develop biobased open cell foams for acoustic applications to replace conventional petrochemical based foams as well as investigating the link between cell morphology and macroscopic properties of open cell porous structures. To achieve these objectives, two industrially produced biomaterials, polylactide (PLA) and polyhydroxyalkanoate (PHA) and their composites were examined and highly porous biobased foams were fabricated by particulate leaching and compression molding. Acoustic absorption capability of these foams was enhanced utilizing the effect of co-continuous blends to form a bimodal porous structure. To tailor mechanical and acoustic properties of biobased foams, blends of PLA and PHA were studied to reach the desired mechanical and viscoelastic properties. To enhance acoustic properties of porous medium for having a broad band absorption effect, cell structure must be appropriately graded. Such porous structures with microstructural gradation are called Functionally Graded Materials (FGM). A novel graded foam structure was designed with superior sound absorption to demonstrate the effect of cell arrangement on performance of acoustic fixtures. Acoustic measurements were performed in a two microphone impedance tube and acoustic theory of Johnson-Champoux-Allard was applied to the fabricated foams to determine micro cellular properties such as tortuosity, viscous and thermal lengths from sound absorption impedance tube

  20. TCAP Aluminium Dissolution Flowsheet Basis

    SciTech Connect

    PIERCE, ROBERTA.

    2004-03-01

    The Actinide Technology Section has proposed the use of an nitric acid HNO3 and potassium fluoride KF flowsheet for stripping palladium Pd from palladium-coated kieselguhr Pd/K and removing aluminum (Al) metal foam from the TCAP coils. The basis for the HNO3-KF flowsheet is drawn from many sources. A brief review of the sources will be presented. The basic flowsheet involves three process steps, each with its own chemistry.

  1. Chelometric determination of aluminium in vaccines*

    PubMed Central

    Meijerman, G. W.; van Lier, K. L.

    1965-01-01

    A rapid and accurate chelometric method is described for the determination of aluminium in aluminium-phosphate-adsorbed vaccines. Thiomersal preservative in the vaccine is first destroyed and the aluminium content is determined by addition of excess disodium edetate (Na2-EDTA) and back-titration with zinc sulfate using dithizone as an indicator. Phosphate does not interfere with the method. The aluminium content of the samples under investigation varied from 0.3 mg/ml to 1.0 mg/ml. In analysis of vaccines containing inactivated poliomyelitis virus, aluminium was determined with a standard deviation of 0.0014 mg and in other vaccines with a standard deviation of approximately 0.0040 mg. PMID:5294262

  2. Aluminium Diphosphamethanides: Hidden Frustrated Lewis Pairs.

    PubMed

    Styra, Steffen; Radius, Michael; Moos, Eric; Bihlmeier, Angela; Breher, Frank

    2016-07-04

    The synthesis and characterisation of two aluminium diphosphamethanide complexes, [Al(tBu)2 {κ(2) P,P'-Mes*PCHPMes*}] (3) and [Al(C6 F5 )2 {κ(2) P,P'-Mes*PCHPMes*}] (4), and the silylated analogue, Mes*PCHP(SiMe3 )Mes* (5), are reported. The aluminium complexes feature four-membered PCPAl core structures consisting of diphosphaallyl ligands. The silylated phosphine 5 was found to be a valuable precursor for the synthesis of 4 as it cleanly reacts with the diaryl aluminium chloride [(C6 F5 )2 AlCl]2 . The aluminium complex 3 reacts with molecular dihydrogen at room temperature under formation of the acyclic σ(2) λ(3) ,σ(3) λ(3) -diphosphine Mes*PCHP(H)Mes* and the corresponding dialkyl aluminium hydride [tBu2 AlH]3 . Thus, 3 belongs to the family of so-called hidden frustrated Lewis pairs.

  3. Fiber reinforced hybrid phenolic foam

    NASA Astrophysics Data System (ADS)

    Desai, Amit

    Hybrid composites in recent times have been developed by using more than one type of fiber reinforcement to bestow synergistic properties of the chosen filler and matrix and also facilitating the design of materials with specific properties matched to end use. However, the studies for hybrid foams have been very limited because of problems related to fiber dispersion in matrix, non uniform mixing due to presence of more than one filler and partially cured foams. An effective approach to synthesize hybrid phenolic foam has been proposed and investigated here. Hybrid composite phenolic foams were reinforced with chopped glass and aramid fibers in varied proportions. On assessing mechanical properties in compression and shear several interesting facts surfaced but overall hybrid phenolic foams exhibited a more graceful failure, greater resistance to cracking and were significantly stiffer and stronger than foams with only glass and aramid fibers. The optimum fiber ratio for the reinforced hybrid phenolic foam system was found to be 1:1 ratio of glass to aramid fibers. Also, the properties of hybrid foam were found to deviate from rule of mixture (ROM) and thus the existing theories of fiber reinforcement fell short in explaining their complex behavior. In an attempt to describe and predict mechanical behavior of hybrid foams a statistical design tool using analysis of variance technique was employed. The utilization of a statistical model for predicting foam properties was found to be an appropriate tool that affords a global perspective of the influence of process variables such as fiber weight fraction, fiber length etc. on foam properties (elastic modulus and strength). Similar approach could be extended to study other fiber composite foam systems such as polyurethane, epoxy etc. and doing so will reduce the number of experimental iterations needed to optimize foam properties and identify critical process variables. Diffusivity, accelerated aging and flammability

  4. Foaming properties of wheat gliadin.

    PubMed

    Thewissen, Bert G; Celus, Inge; Brijs, Kristof; Delcour, Jan A

    2011-02-23

    We studied gliadin solubility, surface tension and foam behavior, and the presence of different gliadin types in gliadin aqueous solutions and foams as a function of pH. Gliadin has excellent foaming properties only at neutral and alkaline pH. Its solubility is minimal near neutral pH, while almost complete at acidic and alkaline pH. Surface tensions of gliadin solutions are minimal around neutral pH, higher at alkaline pH, and highest at acidic pH, which corresponds well with their respective foaming properties. Foams at acidic and alkaline pH values are enriched in γ-gliadin, while foams at pH 8.0 have a similar distribution of α- and γ-gliadins. Thus, γ-gliadin predominantly contributes to the foaming properties of gliadin. The poor foaming properties of gliadin at pH 2.0 improve in the presence of 0.25 and 1.0% NaCl. It follows that the presence of positively charged amino acid residues hinders the formation of stable foam at acidic pH.

  5. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    PubMed Central

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-01-01

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation and minimum reduction in the thickness of the tube. PMID:28793629

  6. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.

    PubMed

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-23

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  7. A separation method to overcome the interference of aluminium on zinc determination by inductively coupled plasma atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    de Jesus, Djane S.; das Graças Korn, Maria; Ferreira, Sérgio L. C.; Carvalho, Marcelo S.

    2000-04-01

    The use of polyurethane foam (PUF) to separate zinc from large amounts of aluminium and its determination by inductively coupled plasma atomic emission spectroscopy technique (ICP-AES) in aluminium matrices is described. The proposed method is based on the solid-phase extraction of the zinc(II) cation as a thiocyanate complex. Parameters such as effect of pH on zinc sorption, zinc desorption from the foam and analytical features of the procedure were studied. Results showed that the zinc(II) cation within the range from 0.02 to 65.0 μg in 0.2 mol l -1 thiocyanate solution and pH range from 1.0 to 4.0, could be quantitatively extracted by 0.1 g of PUF. The precision of the method was calculated as the relative standard deviation from a series of seven measurements. It was 3.9% for 1.0 μg of zinc in a volume solution of 50 ml. The proposed procedure was used for zinc determination in both aluminium alloys and salts with zinc concentration in the range from 50 to 300 μg g -1. A standard addition technique was used and achieved results showing that this procedure has good accuracy and precision.

  8. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2002-01-01

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  9. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2007-01-23

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  10. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2006-03-21

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  11. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2007-01-02

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  12. Pitch-based carbon foam heat sink with phase change material

    DOEpatents

    Klett, James W.; Burchell, Timothy D.

    2000-01-01

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  13. Pitch-based carbon foam heat sink with phase change material

    SciTech Connect

    Klett, James W.; Burchell, Timothy D.

    2004-08-24

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  14. Position Paper External Tank Thermal Protection System (TPS) Manually Sprayed fly-as-is Foam Certification

    NASA Technical Reports Server (NTRS)

    Stadler, John H.

    2009-01-01

    During manufacture of the existing External Tanks (ETs), the Thermal Protection System (TPS) foam manual spray application processes lacked the enhanced controls/procedures to ensure that defects produced were less than the critical size. Therefore the only remaining option to certify the "fly-as-is" foam is to verify ET120 tank hardware meets the new foam debris requirements. The ET project has undertaken a significant effort studying the existing "fly-as-is" TPS foam. This paper contains the findings of the study.

  15. Pitch-based carbon foam heat sink with phase change material

    SciTech Connect

    Klett, J.W.; Burchell, T.D.

    2000-03-14

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  16. Self inflicted death following inhalation and ingestion of Builders Polyurethane expandable foam.

    PubMed

    Morgan, D R; Musa, M

    2010-11-01

    Builders Polyurethane (PU) expandable foam is a product used to fill voids and provide insulation in the building industry. It is easily available from DIY and hardware stores. Other uses include pest control. It can produce fumes, while curing, which can be toxic to humans, or induce asthma and there are reports of polyurethane foam being combustible unless a fire retardant is incorporated. Death due to can explosion when heated has occurred. A literature review revealed one definite case of attempted suicide, one possible attempt by ingestion of Builders PU expandable foam and one accidental non fatal injection of such foam into the lower urinary tract. There is one report of accidental non fatal inhalation of foam. To our knowledge this is the first case of fatal inhalation and ingestion of Builders Polyurethane expandable foam. Copyright © 2010 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  17. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    NASA Technical Reports Server (NTRS)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  18. Fracture Toughness Evaluation of Space Shuttle External Tank Thermal Protection System Polyurethane Foam Insulation Materials

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Wells, Doug; Morgan, Kristin

    2006-01-01

    Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.

  19. Fracture Toughness Evaluation of Space Shuttle External Tank Thermal Protection System Polyurethane Foam Insulation Materials

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Wells, Doug; Morgan, Kristin

    2006-01-01

    Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.

  20. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    EPA Science Inventory

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  1. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    EPA Science Inventory

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  2. Biological indicators of exposure to total and respirable aluminium dust fractions in a primary aluminium smelter.

    PubMed Central

    Röllin, H B; Theodorou, P; Cantrell, A C

    1996-01-01

    OBJECTIVES: The study attempts to define biological indicators of aluminium uptake and excretion in workers exposed to airborne aluminium compounds in a primary aluminium smelter. Also, this study defines the total and respirable aluminium dust fractions in two different potrooms, and correlates their concentrations with biological indicators in this group of workers. METHODS: Air was sampled at defined work sites. Non-destructive and conventional techniques were used to find total and respirable aluminium content of the dust. Blood and urine was collected from 84 volunteers employed at various work stations throughout the smelter and from two different cohorts of controls matched for sex, age, and socioeconomic status. Aluminium in serum samples and urine specimens was measured by flameless atomic absorption with a PE 4100 ZL spectrometer. RESULTS: The correlation of aluminium concentrations in serum and urine samples with the degree of exposure was assessed for three arbitrary exposure categories; low (0.036 mg Al/m3), medium (0.35 mg Al/m3) and high (1.47 mg Al/m3) as found in different areas of the smelter. At medium and high exposure, the ratio of respirable to total aluminium in the dust samples varied significantly. At high exposure, serum aluminium, although significantly raised, was still within the normal range of an unexposed population. The workers with low exposure excreted aluminium in urine at levels significantly higher than the controls, but still within the normal range of the population. However, potroom workers with medium and high exposure had significantly higher urinary aluminium than the normal range. CONCLUSIONS: It is concluded that only urinary aluminium constitutes a practical index of occupational exposure at or above 0.35 mg Al/m3, and that the respirable fraction of the dust may play a major role in the biological response to exposure to aluminium in a smelter environment. PMID:8758038

  3. Method of preparation of removable syntactic foam

    DOEpatents

    Arnold, Jr., Charles; Derzon, Dora K.; Nelson, Jill S.; Rand, Peter B.

    1995-01-01

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications.

  4. Method of preparation of removable syntactic foam

    DOEpatents

    Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.; Rand, P.B.

    1995-07-11

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.

  5. Intestinal absorption of aluminium in renal failure.

    PubMed

    Drüeke, Tilman B

    2002-01-01

    The proportion of the daily ingested aluminium that is absorbed in the intestinal tract has remained a matter of debate for many years because no reliable method of measurement was available. Studies with earlier analytic techniques reported fractional absorption of aluminium from as little as 0.001% to as much as 27% of an oral dose. Measurement of (26)Al by high-energy accelerator mass spectrometry has permitted more accurate analyses. In normal young rats, 0.05-0.1% of ingested aluminium is absorbed in the intestine, of which roughly half goes to the skeleton within 2 h, whereas the remaining half is excreted in the urine, most of it within 48 h. Deposition in organs other than the skeleton appears to be negligible. In healthy human volunteers, the most recent estimates of fractional intestinal (26)Al absorption were also in the range of 0.06-0.1%. In both rats and humans, intestinal absorption of aluminium is subject to many systemic and local factors. The latter include various compounds with which aluminium is complexed in the gut lumen, and gastric acidity. The influence of food is controversial; however, absorption appears higher in the fasted than the post-prandial state. Luminal phosphate concentration decreases aluminium absorption, whereas citrate increases it. For theoretical reasons, silicates should prevent aluminium absorption, but experimental evidence has not supported this theory. Whether water hardness affects aluminium bioavailability remains a matter of debate. General conditions may also modify aluminium absorption and deposition in bone. Examples of these general factors include the uraemic syndrome, diabetes mellitus, secondary hyperparathyroidism, vitamin D status, Alzheimer's disease and Down's syndrome. Awareness of intestinal absorption of aluminium is particularly important, given that aluminium-based binders continue to be used in uraemic patients, despite the hazards of aluminium accumulation. The lessons we have learned about

  6. Ultralight anisotropic foams from layered aligned carbon nanotube sheets

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh; L. Stano, Kelly; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D.

    2015-10-01

    In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than

  7. Synergism and foaming properties in mixed nonionic/fatty acid soap surfactant systems.

    PubMed

    Theander, Katarina; Pugh, Robert J

    2003-11-01

    The synergism and foaming behavior of a mixed surfactant system consisting of a nonionic surfactant (polyethoxylated alkyl ether C(n)E(m)) and a fatty acid soap (sodium oleate) were studied. The micellar interaction parameter (the beta-parameter) was determined from the cmc following the approach of Rubingh's regular solution theory. For both the C(12)E(6)/sodium oleate and the C(14)E(6)/sodium oleate mixtures, the results indicate a fairly strong attractive interaction (negative beta-values), which were in agreement with previous data reported for other nonionic/anionic surfactant systems. The characteristics of the foam produced from the surfactants were evaluated using a glass column equipped with a series of electrodes measuring the conductance of the foam, which enabled the water content of the foam to be determined. From these measurements, since the total foam volume was almost the same for all concentrations and surfactants, we compared the amount of liquid in the foam produced under dynamic foaming and the ability of the foam to entrain the liquid after the airflow was switched-off (static foam stability). The amount of liquid in the foam 100 s after the air was switched-off followed the order NaOl > C(12)E(6) > C(14)E(6). Also, the mixtures had the same foam volumes as the pure surfactants at the same concentration. However, both mixtures had higher concentrations of liquid in the foam when the mole fraction of the nonionic surfactant in the mixed surfactant system was greater than about >0.3 in the solution.

  8. Thermal Resistance Variations of Fly Ash Geopolymers: Foaming Responses

    PubMed Central

    Cheng-Yong, Heah; Yun-Ming, Liew; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin

    2017-01-01

    This paper presents a comparative study of the characteristic of unfoamed and foamed geopolymers after exposure to elevated temperatures (200–800 °C). Unfoamed geopolymers were produced with Class F fly ash and sodium hydroxide and liquid sodium silicate. Porous geopolymers were prepared by foaming with hydrogen peroxide. Unfoamed geopolymers possessed excellent strength of 44.2 MPa and degraded 34% to 15 MPa in foamed geopolymers. The strength of unfoamed geopolymers decreased to 5 MPa with increasing temperature up to 800 °C. Foamed geopolymers behaved differently whereby they deteriorated to 3 MPa at 400 °C and increased up to 11 MPa at 800 °C. Even so, the geopolymers could withstand high temperature without any disintegration and spalling up to 800 °C. The formation of crystalline phases at higher temperature was observed deteriorating the strength of unfoamed geopolymers but enhance the strength of foamed geopolymers. In comparison, foamed geopolymer had better thermal resistance than unfoamed geopolymers as pores provide rooms to counteract the internal damage. PMID:28345643

  9. Eco-friendly Synthesis of Ceria Foam via Carboxymethylcellulose Gelation: Application for the Epoxidation of Chalcone

    EPA Science Inventory

    A simple and innovative process is described for the eco-friendly preparation of ceria foams via the carboxymethylcellulose gelation by Ce4+ cations; heat treatment of the ensuing xerogels produces ceria foams. The influence of the concentration of cerium and of the calcination t...

  10. Eco-friendly Synthesis of Ceria Foam via Carboxymethylcellulose Gelation: Application for the Epoxidation of Chalcone

    EPA Science Inventory

    A simple and innovative process is described for the eco-friendly preparation of ceria foams via the carboxymethylcellulose gelation by Ce4+ cations; heat treatment of the ensuing xerogels produces ceria foams. The influence of the concentration of cerium and of the calcination t...

  11. Low-density polybenzimidazole foams for thermal insulation and fire protection

    NASA Technical Reports Server (NTRS)

    Kourtides, D.; Parker, J. A.; Deland, C.; Milligan, R.

    1975-01-01

    Fire-resistant and nonsmoking foam can be prepared in desirable density range of 24 to 50 kg/cu m by controlled thermal crosslinking of polybenzimidazole prepolymer. Reproducible foams of specific density can be produced by controlling volative content and melting temperature of prepolymer.

  12. Cone Calorimeter Analysis of FRT Intumescent and Untreated Foam Core Particleboards

    Treesearch

    Mark A. Dietenberger; Ali Shalbafan; Johannes Welling; Charles Boardman

    2012-01-01

    The effectiveness of treatments of the surface layer of novel foam core particleboards were evaluated by means of Cone calorimeter tests. Foam core particleboards with variations of surface layer treatment, adhesives and surface layer thicknesses under similar processing conditions were used to produce the test specimen for the Cone calorimeter tests. Ignitability,...

  13. Influence of filler selection on twin screw foam granulation.

    PubMed

    Rocca, K E; Weatherley, S; Sheskey, P J; Thompson, M R

    2015-01-01

    The influence of filler selection in wet granulation was studied for the novel case where the binder is delivered as an unstable, semi-rigid aqueous foam to an extrusion process. The work primarily examined the impact of differing concentrations of microcrystalline cellulose (Avicel PH® 101) in a formulation with spray-dried α-lactose monohydrate (Flowlac® 100) in regards to wetting and granule nucleation for this relatively new technique known as continuous foam granulation. Foam stability was varied within the work to change its drainage and coarsening behavior atop these powder excipients, by use of different foamable binding agents (METHOCEL™ F4 PLV and METHOCEL™ Premium VLV) as well as by adjusting the foam quality. A static bed penetration test was first used to study the foam behavior in wetting these powders without the processing constraints of an extruder which limit possible liquid-to-solids ratios as well as introduce shear which may complicate interpretation of the mechanism. The test found that the penetration time to saturate these powders decreased as their water absorption capacity increased which in turn decreased the size of the formed nuclei. Differences in the stability of the foamed binder had minimal influence on these attributes of wetting despite its high spread-to-soak behavior. The size of granules produced by extrusion similarly demonstrated sensitivity to the increasing water absorption capacity of the filler and little dependency on foam properties. The different liquid-to-solids ratios required to granulate these different formulations inside the extruder highlighted an evolving concept of powder lubricity for continuous foam granulation.

  14. Is latex surface charge an important parameter for foam stabilization?

    PubMed

    Kettlewell, Sarah L; Schmid, Andreas; Fujii, Syuji; Dupin, Damien; Armes, Steven P

    2007-11-06

    We describe the facile production of highly stable foams stabilized solely by cationic polystyrene latex particles. Three model polystyrene latexes were synthesized using either a cationic 2,2'-azobis(2-diisobutyramidine) dihydrochloride (AIBA) or an anionic ammonium persulfate (APS) radical initiator: a 724 +/- 81 nm charge-stabilized cationic polystyrene latex [AIBA-PS], an 800 +/- 138 nm sterically stabilized cationic latex prepared using a poly(ethylene glycol) monomethacrylate macromonomer [PEGMA-AIBA-PS], and a 904 +/- 131 nm charge-stabilized anionic polystyrene latex [APS-PS], respectively. The effect of particle surface charge, latex concentration, and solution pH on foam stability was studied in detail. The PEGMA-AIBA-PS latex proved to be the best foam stabilizer even at relatively low latex concentrations (3.0 wt %), with long-term foam stabilities being obtained after drying. The AIBA-PS latex also produced stable foams, albeit only at higher latex concentrations. However, the APS-PS latex proved to be an ineffective foam stabilizer. This is believed to be primarily due to the anionic surface character of this latter latex, which prevents its adsorption at the anionic air-water interface. This hypothesis is supported by the observation that the AIBA-PS latex no longer acts as an effective foam stabilizer above its isoelectric point (pH 7.04). Scanning electron microscopy studies revealed the formation of well-defined latex bilayers within dried foams, which indicates that the wet air bubbles are stabilized by latex monolayers prior to drying. However, little or no long-range ordering of the latex particles was observed on the surface of the bubbles, which is presumably related to the latex polydispersity.

  15. Generation of ozone foam and its application for disinfection

    NASA Astrophysics Data System (ADS)

    Hiragaki, Keisuke; Ishimaru, Tomiya; Nakanishi, Masaru; Muraki, Ryouji; Nieda, Masanori; Yamabe, Chobei

    2015-07-01

    Generated ozone foam was applied to the disinfection of Pseudomonas fluorescens. The effect of disinfection has been confirmed experimentally and new equipment for the disinfection of hands using this ozone foam has been put on the market for the practical use. The ozone foam was produced in the foam generator after mixing the water including surfactant (30 mL/min) and air including ozone (1000 ppm = 2.14 g/m3 ~ 1600 ppm = 3.4 g/m3, 300 mL/min). The liquid-to-gas ratio is 100 L/m3. The concentration of dissolved ozone in the thin liquid films of the bubbles was about 3 mg/L which was measured by the chemical method of the KI absorption and titration of sodium thiosulfate solution. The disinfection test samples were prepared using the PET disk on which Pseudomonas fluorescens of its number of more than 108 were attached. Test sample was inserted into ozone foam set on the glass plate for one to 6 min. The survival rate log (N/N0 decreased with time and its value of about-2.6 (i.e., ~1/400) was obtained at 6 min (2 min × 3 times repeated). It was also confirmed that the ozone foam was useful for the disinfection of hands. For more effective disinfection (in case of taking a long time for foam melting), the ozone foam was broken by force and changed into ozone water by which the survival rate decreased ×4 (i.e., N/N0 = 1/10 000) at 4 ~ 6 min. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  16. Alveolar proteinosis associated with aluminium dust inhalation.

    PubMed

    Chew, R; Nigam, S; Sivakumaran, P

    2016-08-01

    Secondary alveolar proteinosis is a rare lung disease which may be triggered by a variety of inhaled particles. The diagnosis is made by detection of anti-granulocyte-macrophage colony-stimulating factor antibodies in bronchoalveolar lavage fluid, which appears milky white and contains lamellar bodies. Aluminium has been suggested as a possible cause, but there is little evidence in the literature to support this assertion. We report the case of a 46-year-old former boilermaker and boat builder who developed secondary alveolar proteinosis following sustained heavy aluminium exposure. The presence of aluminium was confirmed both by histological examination and metallurgical analysis of a mediastinal lymph node. Despite cessation of exposure to aluminium and treatment with whole-lung lavage which normally results in improvements in both symptoms and lung function, the outcome was poor and novel therapies are now being used for this patient. It may be that the natural history in aluminium-related alveolar proteinosis is different, with the metal playing a mediating role in the disease process. Our case further supports the link between aluminium and secondary alveolar proteinosis and highlights the need for measures to prevent excessive aluminium inhalation in relevant industries. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Aluminium in Biological Environments: A Computational Approach

    PubMed Central

    Mujika, Jon I; Rezabal, Elixabete; Mercero, Jose M; Ruipérez, Fernando; Costa, Dominique; Ugalde, Jesus M; Lopez, Xabier

    2014-01-01

    The increased availability of aluminium in biological environments, due to human intervention in the last century, raises concerns on the effects that this so far “excluded from biology” metal might have on living organisms. Consequently, the bioinorganic chemistry of aluminium has emerged as a very active field of research. This review will focus on our contributions to this field, based on computational studies that can yield an understanding of the aluminum biochemistry at a molecular level. Aluminium can interact and be stabilized in biological environments by complexing with both low molecular mass chelants and high molecular mass peptides. The speciation of the metal is, nonetheless, dictated by the hydrolytic species dominant in each case and which vary according to the pH condition of the medium. In blood, citrate and serum transferrin are identified as the main low molecular mass and high molecular mass molecules interacting with aluminium. The complexation of aluminium to citrate and the subsequent changes exerted on the deprotonation pathways of its tritable groups will be discussed along with the mechanisms for the intake and release of aluminium in serum transferrin at two pH conditions, physiological neutral and endosomatic acidic. Aluminium can substitute other metals, in particular magnesium, in protein buried sites and trigger conformational disorder and alteration of the protonation states of the protein's sidechains. A detailed account of the interaction of aluminium with proteic sidechains will be given. Finally, it will be described how alumnium can exert oxidative stress by stabilizing superoxide radicals either as mononuclear aluminium or clustered in boehmite. The possibility of promotion of Fenton reaction, and production of hydroxyl radicals will also be discussed. PMID:24757505

  18. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    NASA Technical Reports Server (NTRS)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  19. First Results from Shocked Foam XRTS on Z

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Ao, T.; Bailey, J. E.; Hansen, S. B.; Lemke, R. W.; Sinars, D. B.; Rochau, G. A.; Desjarlais, M. P.; Smith, I. C.; Reneker, J.; Romero, D.; Benage, J. F.; Golovkin, I.; Gregori, G.

    2014-10-01

    For the first time, a space-resolved X-ray Thomson Scattering (XRTS) spectra from shocked foam was recorded on the Z machine. The large electrical current produced by Z was used to launch an Al flyer plate to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.47 g/cc, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data comprises of three, spatially distinct spectra that were simultaneously captured with a single spectrometer. These three spectra originated from the following target locations: the laser spot, the unshocked foam, and the shocked foam. The spatial resolution was made possible by the use of a spherically-bent crystal spectrometer. The analysis of this data using the new SPECT3D scattering tool will be presented, as well as future improvements to the experimental hardware. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  20. Structure of random bidisperse foam.

    SciTech Connect

    Reinelt, Douglas A.; van Swol, Frank B.; Kraynik, Andrew Michael

    2005-02-01

    The Surface Evolver was used to compute the equilibrium microstructure of random soap foams with bidisperse cell-size distributions and to evaluate topological and geometric properties of the foams and individual cells. The simulations agree with the experimental data of Matzke and Nestler for the probability {rho}(F) of finding cells with F faces and its dependence on the fraction of large cells. The simulations also agree with the theory for isotropic Plateau polyhedra (IPP), which describes the F-dependence of cell geometric properties, such as surface area, edge length, and mean curvature (diffusive growth rate); this is consistent with results for polydisperse foams. Cell surface areas are about 10% greater than spheres of equal volume, which leads to a simple but accurate relation for the surface free energy density of foams. The Aboav-Weaire law is not valid for bidisperse foams.

  1. Closed cell metal foam method

    DOEpatents

    Patten, James W.

    1978-01-01

    Foamed metals and metal alloys which have a closed cellular structure are prepared by heating a metal body containing entrapped inert gas uniformly distributed throughout to a temperature above the melting point of the metal and maintaining the body at this temperature a period of time sufficient to permit the entrapped gas to expand, forming individual cells within the molten metal, thus expanding and foaming the molten metal. After cell formation has reached the desired amount, the foamed molten metal body is cooled to below the melting temperature of the metal. The void area or density of the foamed metal is controlled by predetermining the amount of inert gas entrapped in the metal body and by the period of time the metal body is maintained in the molten state. This method is useful for preparing foamed metals and metal alloys from any metal or other material of which a body containing entrapped inert gas can be prepared.

  2. High temperature ablative foam

    NASA Technical Reports Server (NTRS)

    Liu, Matthew T. (Inventor)

    1992-01-01

    An ablative foam composition is formed of approximately 150 to 250 parts by weight polymeric isocyanate having an isocyanate functionality of 2.6 to 3.2; approximately 15 to 30 parts by weight reactive flame retardant having a hydroxyl number range from 200-260; approximately 10 to 40 parts by weight non-reactive flame retardant; approximately 10 to 40 parts by weight nonhydrolyzable silicone copolymer having a hydroxyl number range from 75-205; and approximately 3 to 16 parts by weight amine initiated polyether resin having an isocyanate functionality greater than or equal to 3.0 and a hydroxyl number range from 400-800.

  3. Spin foams without spins

    NASA Astrophysics Data System (ADS)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  4. Isolation of E. coli from foam and effects of fluoroquinolones on E. coli and foam production in male Japanese quail.

    PubMed

    Mohan, Jag; Sastry, Kochiganti Venkata Hanumat; Tyagi, Jagbir Singh; Singh, Dhirendra Kumar

    2004-11-01

    Sexually active male Japanese quail (Coturnix coutrnix Japonica) produce a foamy substance from their cloacal gland. It was postulated that bacteria played an important role in production of foam. The primary objective of this study was to isolate and identify bacteria present in the cloacal foam. The secondary objective was to evaluate the effect of fluoroquinolone treatment on bacterial counts and foam production. Healthy adult Japanese quail were maintained in individual cages under uniform husbandry conditions and allocated arbitrarily into three groups (each group consisted of 12 male and 12 female birds). Foam was collected from the cloacal gland of male birds of each group separately into sterile petri dishes and was cultured to isolate and identify bacteria and to determine their sensitivity to various antibiotics. Escherichia coli bacteria, sensitive to various antibacterials (including the fluoroquinolones ciprofloxacin and pefloxacin), were isolated. In the second part of the study, male quails of Group I (control) received I mL vehicle (normal saline 0.9% (w/v) NaCl) daily (via the intraperitoneal route) for 12 days. Male birds from groups II and III were treated intraperitoneally with ciprofloxacin or pefloxacin at the rate of 10 mg and 12 mg per/kg body weight respectively, for 12 days. In antibiotic-treated birds, there was a gradual reduction in foam production during treatment. At the end of treatment, the cloacal gland area was smaller (P < 0.05) in pefloxacin-treated birds compared to the other groups. Furthermore, a trend towards decreasing body weight and fertilizing ability was noted in the same group. A drastic reduction in bacterial counts of foam was recorded only in fluoroquinolone-treated groups during treatment period. After cessation of treatment, all end points were increasing back to pre-treatment levels. In conclusion, E. coli were present in the foam of the cloacal gland of Japanese quail and may have a role in foam production.

  5. Finite Element Modeling of Metal Foam Structures Subject to Compressive Loading

    DTIC Science & Technology

    2001-12-01

    TERMS aluminum metal foam, composite metal foam, metal foam compressive loading, metal foam stiffness, metal foam strength 16. PRICE CODE 17...EXPERIMENTS........................................................................................................ 23 A. OPEN CELL ALUMINUM METAL FOAM...23 B. ALUMINUM METAL FOAM FILLED WITH ELASTO-PLASTIC MATERIAL

  6. A constitutive model for the compressive response of metallic closed-cell foams including micro-inertia effects

    NASA Astrophysics Data System (ADS)

    Barthélémy, Romain; Jacques, Nicolas; Vermeersch, François; Kerampran, Steven

    2015-09-01

    Metallic foams have known a keen interest in the last decades. Their ability to undergo very large deformations while transmitting low stress levels make them capable of performing functions of protective layers against intense loadings and of energy absorbers, for instance. The behaviour of metal foams varies considerably between quasi-static and dynamic regimes. Those differences can be linked to the strain-rate sensitivity of the skeleton material and to micro-inertial effects (induced by the crushing of the foam cells). In the present work, a micromechanical model has been developed to take into account micro-inertia effects on the macroscopic behaviour of closed-cell foams under dynamic loading conditions. The proposed modelling is based on the dynamic homogenisation procedure introduced by Molinari and Mercier (J. Mech. Phys. Solids 49 (2001) 1497-1516). Within this framework, the macrostress is the sum of two terms. The first one is a static stress, that can be described with any existing model of metal foam. The second contribution is a dynamic stress related to micro-inertia effects. Considering an initially spherical shell as a Representative Volume Element (RVE) of the foam material, a closed-form expression of the dynamic stress was obtained. The proposed modelling was applied to shock propagation in aluminium foams (it should however be noted that the present theory is not restricted to uniaxial deformation but can be applied to arbitrary loadings). From experimental data of the literature, it is observed that incorporating micro-inertia effects allows one to achieve a better description of the foam shock response. This indicates that micro-inertia may have a significant influence on the dynamic behaviour of metallic foams.

  7. The Potential of the Cold Spray Process for the Repair and Manufacture of Aluminium Alloy Parts

    NASA Astrophysics Data System (ADS)

    Harvey, David; Marrocco, Tiziana

    Being capable of producing deposits up to several centimetres thick, the cold spray process is emerging as an attractive technology for the manufacture and repair of high value aluminium and magnesium components. During the cold spray process fine aluminium or aluminium alloy powders are propelled at high velocities in the solid state at the target substrate. Due to the high velocity particle impacts, strong bonds are formed between the coating and the substrate and between particles within the deposited layer. Metallographic sections of cold sprayed coatings reveal microstructures characterised by very low porosity. With the objective of improving the abrasive wear and erosion resistance of cold sprayed coatings, ceramic reinforcements such as SiC, B4C and Al2O3 have been introduced in the feedstock to produce composite coatings, and these composite materials have been deposited with thicknesses in excess of 25mm. Several applications employing commercially available equipment have achieved industrialisation.

  8. Void Filler Foam Accelerated Load Testing

    DTIC Science & Technology

    1976-11-01

    filler foam for use in military aircraft. Phases 1, I1, and III of this task also are summarized in this report to show the evolution of the void filler...this program, MCAIR evaluated four types of foam material. i. Scott LAS-103ZF ( reticulated foam) 2. Goodyear DZ-70D461 (flexible foam) 3. NOPCO BX-249

  9. Foam as a Fire Suppressant: An Evaluation

    Treesearch

    Paul Schlobohm; Ron Rochna

    1987-01-01

    The ability of fire suppressant foams to improve ground-applied fire control efforts was evaluated. Foaming agents and foam-generating systems were examined. Performance evaluations were made for direct attack, indirect attack, and mop-up. Foam was determined to suppress and repel fire in situations where water did not. Cost comparisons of mop-up work showed straight...

  10. Novel developments in foam sclerotherapy: Focus on Varithena® (polidocanol endovenous microfoam) in the management of varicose veins.

    PubMed

    Star, Phoebe; Connor, David E; Parsi, Kurosh

    2017-01-01

    Scope Varithena® is a recently approved commercially available drug/delivery unit that produces foam using 1% polidocanol for the management of varicose veins. The purpose of this review is to examine the benefits of foam sclerotherapy, features of the ideal foam sclerosant and the strengths and limitations of Varithena® in the context of current foam sclerotherapy practices. Method Electronic databases including PubMed, Medline (Ovid) SP as well as trial registries and product information sheets were searched using the keywords, 'Varithena', 'Varisolve', 'polidocanol endovenous microfoam', 'polidocanol' and/or 'foam sclerotherapy/sclerosant'. Articles published prior to 20 September 2016 were identified. Results Foam sclerosants have effectively replaced liquid agents due to their physiochemical properties resulting in better clinical outcomes. Medical practitioners commonly prepare sclerosant foam at the bedside by agitating liquid sclerosant with a gas such as room air, using techniques as described by Tessari or the double syringe method. Such physician-compounded foams are highly operator dependent producing inconsistent foams of different gas/liquid compositions, bubble size, foam behaviour and varied safety profiles. Varithena® overcomes the variability and inconsistencies of physician-compounded foam. However, Varithena® has limited applications due to its fixed sclerosant type and concentration, cost and lack of worldwide availability. Clinical trials of Varithena® have demonstrated efficacy and safety outcomes equivalent or better than physician-compounded foam but only in comparison to placebo alone. Conclusion Varithena® is a promising step towards the creation of an ideal sclerosant foam. Further assessment in independent randomised controlled clinical trials is required to establish the advantages of Varithena® over and above the current best practice physician-compounded foam.

  11. Multifunctional Carbon Foams for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Rogers, D. K.; Plucinski, J.

    2001-01-01

    Carbon foams produced by the controlled thermal decomposition of inexpensive coal extracts exhibit a combination of structural and thermal properties that make them attractive for aerospace applications. Their thermal conductivity can be tailored between 0.5 and 100 W/mK through precursor selection/modification and heat treatment conditions; thus, they can serve in either thermal protection or heat transfer systems such as heat exchangers. Because their structure is essentially a 3D random network of graphite-like members, they also can be considered low-cost, easily fabricated replacements for multi-directional structural carbon fiber preforms. Strengths of over 4000 psi in compression are common. Their density can be designed between 0.1 and 0.8 g/cc, and they can be impregnated with a variety of matrices or used, unfilled, in sandwich structures. These foams also exhibit intriguing electrochemical properties that offer potential in high-efficiency fuel cell and battery applications, mandrels and tooling for composite manufacture, ablative performance, and fire resistance. This paper presents the results of research conducted under NASA SBIR Topic 99.04.01, General Aviation Technology, supported from Langley Research Center. The potential of foam design through precursor selection, cell size and density control, density grading, and heat treatment is demonstrated.

  12. Mechanical Characterization of Rigid Polyurethane Foams

    SciTech Connect

    Lu, Wei-Yang

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  13. Monolithic Nanocrystalline Au Fabricated by the Compaction of Nanoscale Foam

    SciTech Connect

    Hodge, A M; Biener, J; Hsiung, L M; Hamza, A V; Satcher Jr., J H

    2004-07-28

    We describe a two-step dealloying/compaction process to produce nanocrystalline Au. First, nanocrystalline/nanoporous Au foam is synthesized by electrochemically-driven dealloying. The resulting Au foams exhibit porosities of 60 and 70% with pore sizes of {approx} 40 and 100 nm, respectively, and a typical grain size of <50 nm. Second, the nanoporous foams are fully compacted to produce nanocrystalline monolithic Au. The compacted Au was characterized by TEM and X-ray diffraction and tested by depth-sensing nanoindentation. The compacted nanocrystalline Au exhibits an average grain size of <50 nm and hardness values ranging from 1.4 to 2.0 GPa, which are up to 4.5 times higher than the hardness values obtained from polycrystalline Au.

  14. Sensory and foaming properties of sparkling cider.

    PubMed

    Picinelli Lobo, Anna; Fernández Tascón, Norman; Rodríguez Madrera, Roberto; Suárez Valles, Belén

    2005-12-28

    The effect of yeast strain and aging time on the chemical composition, analytical, and sensory foam properties of sparkling ciders has been studied. The analytical foam parameters (foamability, HM; Bikerman coefficient, sigma; and foam stability time, T(s)) were significantly influenced by aging and yeast strain. The sensory attributes (initial foam, foam area persistence, bubble size, foam collar, and overall foam quality) improved with aging time. Likewise, the yeast strain positively influenced the assessment of initial foam, foam area persistence, number of bubble chains, and overall foam quality. Significant and positive correlations were found between alcoholic proof, dry extract, total and volatile acidities, total phenols and total proteins, and sigma, whereas HM was negatively correlated with specific gravity, alcoholic proof, dry extract, and total proteins.

  15. pH stability and comparative evaluation of ranaspumin-2 foam for application in biochemical reactors

    NASA Astrophysics Data System (ADS)

    Choi, Hyo-Jick; Ebersbacher, Charles F.; Quan, Fu-Shi; Montemagno, Carlo D.

    2013-02-01

    Aqueous channels of foam represent a simplified, natural bioreactor on the micro-/nano-scale. Previous studies have demonstrated the feasibility and potential application of foams in replicating cellular process in vitro, but no research has been performed to establish a basis for designing stable and biocompatible foam formulations. Our research has been directed specifically to the evaluation of ranaspumin-2 (RSN-2), a frog foam nest protein. The strong surfactant activity of RSN-2 enabled us to produce foams using low protein concentration (1 mg ml-1) over a wide pH range (pH ≥ 3). Importantly, the RSN-2 formulation exhibited the best foam stability at a near neutral pH condition, which shows a potential for application to various biosynthesis applications. Model cellular systems such as liposomes and inactivated A/PR/8/34 influenza virus maintained their physicochemical stability and full hemagglutination activity, indicating biocompatibility of RSN-2 with both cellular membranes and proteins both in bulk solution and in foam. Moreover, the addition of RSN-2 did not exert any deteriorative effects on bacterial cell growth kinetics. In contrast, Tween 20, Triton X-100, and BSA did not show satisfactory performance in terms of foamability, foam stability, physicochemcial stability, and biochemical stability. Although our study has been limited to representative formulations composed of only surfactant molecules, a number of unique advantages make RSN-2 a promising candidate for in vitro foam biosynthesis.

  16. Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.

    PubMed

    Alfaro, N; Cano, R; Fdz-Polanco, F

    2014-10-01

    Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences.

  17. Role of Pickering stabilization and bulk gelation for the preparation and properties of solid silica foams.

    PubMed

    Lesov, I; Tcholakova, S; Kovadjieva, M; Saison, T; Lamblet, M; Denkov, N

    2017-10-15

    Foaming of particulate suspensions, followed by foam drying, is developed as an efficient method for production of highly porous materials with various applications. A key factor for success is the appropriate choice of surfactants which both modify the particle surface and stabilize the foam. Here we compare the efficiency of this method for silica suspensions containing two surfactants which lead to very different types of foam stabilization. Cationic TTAB leads to particle-stabilized foams (Pickering stabilization) whereas zwitterionic CAPB - to surfactant-stabilized foams. Thus we determined the general (common) features shared between the various surfactant systems: (1) The foaminess is controlled exclusively by the suspension viscosity under shearing conditions which mimic precisely the foaming process; (2) The foam stability to drainage and coarsening is controlled exclusively by the suspension yield stress; (3) The surfactant adsorption on the particle surface should occur in the time scale of seconds to minutes, thus ensuring appropriate rheological properties of the foaming suspension. Similar kinetic effects could be of high interest to other colloid systems and processes, e.g. for kinetic control of the internal structure and properties of aerogels produced from sheared suspensions, and for control of the transient rheological properties and non-Newtonian flow of particulate gels. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The removal of iron from molten aluminium

    SciTech Connect

    Donk, H.M. van der; Nijhof, G.H.; Castelijns, C.A.M.

    1995-12-31

    In this work an overview is given about the techniques available for the removal of metallic impurities from molten aluminium. The overview is focused on the removal of iron. Also, some experimental results are given about the creation of iron-rich intermetallic compounds in an aluminium system, which are subsequently removed by gravity segregation and filtration techniques. This work is part of an ongoing research project of three major European aluminium companies who are co-operating on the subject of recycling of aluminium packaging materials recovered from household waste by means of Eddy-Current techniques. Using this technique the pick-up of some contaminating metals, particularly iron, is almost unavoidable.

  19. Injectable Foams for Regenerative Medicine

    PubMed Central

    Prieto, Edna M.; Page, Jonathan M.; Harmata, Andrew J.

    2013-01-01

    The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements, have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable calcium phosphate cements, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and non-cytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures. PMID:24127230

  20. Laguerre approximation of random foams

    NASA Astrophysics Data System (ADS)

    Liebscher, André

    2015-09-01

    Stochastic models for the microstructure of foams are valuable tools to study the relations between microstructure characteristics and macroscopic properties. Owing to the physical laws behind the formation of foams, Laguerre tessellations have turned out to be suitable models for foams. Laguerre tessellations are weighted generalizations of Voronoi tessellations, where polyhedral cells are formed through the interaction of weighted generator points. While both share the same topology, the cell curvature of foams allows only an approximation by Laguerre tessellations. This makes the model fitting a challenging task, especially when the preservation of the local topology is required. In this work, we propose an inversion-based approach to fit a Laguerre tessellation model to a foam. The idea is to find a set of generator points whose tessellation best fits the foam's cell system. For this purpose, we transform the model fitting into a minimization problem that can be solved by gradient descent-based optimization. The proposed algorithm restores the generators of a tessellation if it is known to be Laguerre. If, as in the case of foams, no exact solution is possible, an approximative solution is obtained that maintains the local topology.

  1. Drainage in a rising foam.

    PubMed

    Yazhgur, Pavel; Rio, Emmanuelle; Rouyer, Florence; Pigeonneau, Franck; Salonen, Anniina

    2016-01-21

    Rising foams created by continuously blowing gas into a surfactant solution are widely used in many technical processes, such as flotation. The prediction of the liquid fraction profile in such flowing foams is of particular importance since this parameter controls the stability and the rheology of the final product. Using drift flux analysis and recently developed semi-empirical expressions for foam permeability and osmotic pressure, we build a model predicting the liquid fraction profile as a function of height. The theoretical profiles are very different if the interfaces are considered as mobile or rigid, but all of our experimental profiles are described by the model with mobile interfaces. Even the systems with dodecanol are well known to behave as rigid in forced drainage experiments. This is because in rising foams the liquid fraction profile is fixed by the flux at the bottom of the foam. Here the foam is wet with higher permeability and the interfaces are not in equilibrium. These results demonstrate once again that it is not only the surfactant system that controls the mobility of the interface, but also the hydrodynamic problem under consideration. For example liquid flow through the foam during generation or in forced drainage is intrinsically different.

  2. Structure of random monodisperse foam

    NASA Astrophysics Data System (ADS)

    Kraynik, Andrew M.; Reinelt, Douglas A.; van Swol, Frank

    2003-03-01

    The Surface Evolver was used to calculate the equilibrium microstructure of random monodisperse soap froth, starting from Voronoi partitions of randomly packed spheres. The sphere packing has a strong influence on foam properties, such as E (surface free energy) and (average number of faces per cell). This means that random foams composed of equal-volume cells come in a range of structures with different topological and geometric properties. Annealing—subjecting relaxed foams to large-deformation, tension-compression cycles—provokes topological transitions that can further reduce E and . All of the foams have ⩽14. The topological statistics and census of cell types for fully annealed foams are in excellent agreement with experiments by Matzke. Geometric properties related to surface area, edge length, and stress are evaluated for the foams and their individual cells. Simple models based on regular polygons predict trends for the edge length of individual cells and the area of individual faces. Graphs of surface area vs shape anisotropy for the cells reflect the geometrical frustration in random monodisperse foam, which is epitomized by pentagonal dodecahedra: they have low surface area but do not pack to fill space.

  3. Injectable foams for regenerative medicine.

    PubMed

    Prieto, Edna M; Page, Jonathan M; Harmata, Andrew J; Guelcher, Scott A

    2014-01-01

    The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements (CPCs), have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable CPCs, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and noncytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures.

  4. Aluminium speciation in effluents and receiving waters.

    PubMed

    Gardner, M J; Comber, S D W

    2003-12-01

    The respective speciation of aluminium in sewage effluent and in river water receiving effluent, has been examined. Results showed that concentrations of reactive aluminium changed over a timescale of hours and were controlled predominantly by pH. A minimum concentration of reactive aluminium occurred at a pH of approximately 6.8, coinciding with the prevalence of non-reactive, insoluble Al(OH)3 species. For receiving waters of low pH value, typically < pH 5, a large proportion of the 'naturally present' aluminium can be present in a reactive form at concentrations higher than the proposed Environmental Quality Standard (EQS). Mixing of waters of this type with effluent of a higher pH value leads to the precipitation of aluminium hydroxide. Mixing of effluent of pH value in the range 7.5-8.0 with river water in the same (or slightly higher) pH range appears to result in no appreciable change in the proportion of reactive aluminium; the change in concentration tends to be related simply to dilution. On the basis of a theoretical knowledge of aluminium speciation, results obtained in this work indicate that it is possible to make predictions about the proportion of reactive aluminium present in a receiving water, based on the pH values of the effluent water mixture and the concentration in the effluent. Reasonable comparisons between measured and predicted values were obtained at higher pH values, but the relationship was less certain at pH values less than 6.5 for which levels of reactive metal tended to be higher than the quality standard value.

  5. Size and composition of foam droplets with applications to the marine atmosphere and nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Tyree, Corey A.

    Foams are used in chemical engineering to separate constituents from the bulk liquid. The industrial foam separation method, known as bubble fractionation, ends with an enriched foam being skimmed from the liquid. Foam bubble bursting, which produces aerosol droplets (i.e. foam droplets), can also result in separation. Like bubble fractionation, foam droplet separation relies on interfacial mass transport to separate material from solution. In this process, the separation ends with the formation of aerosol droplets. The objectives of this work were to (1) study foam droplet separation for naturally occurring oceanic whitecap foams and (2) to generate nanoparticles using foam droplet separation. Sea salt aerosol (SSA) particles are routinely observed in the remote marine boundary layer (MBL); these aerosols include cloud condensation nuclei and so affect the earth's radiative balance. Here foams designed to mimic oceanic whitecaps were generated in the laboratory using a range of bubbling flow rates and aqueous media: unfiltered seawater, filtered seawater, artificial seawater, and mixtures of filtered and artificial seawater. The number and sizes of dried foam droplets in the particle diameter range 0.015--0.67 mum were measured; an impactor was also used to collect droplets in the size range 0.056--18 mum. Collectively, the results indicate that foam droplet size distributions are bimodal with mass modes in the aerodynamic diameter ranges at 80% relative humidity of 0.56--1 mum and 1.8--2.5 mum. The submicrometer foam droplet mode, which corresponds to a number size distribution mode at a dry diameter of 100 nm, falls within the range of reported mean diameters (dry diameter = 40--200 nm) for submicrometer SSA particles observed in the remote MBL. A novel approach to nanoscale separation under ambient conditions was developed whereby foam bubble bursting produces aerosol droplets. The ability of the foam aerosol cycle to produce useful nanoparticles was

  6. The Utilization of Bark to Make Rigid Polyurethane Foams

    NASA Astrophysics Data System (ADS)

    D'Souza, Jason

    This work focused on the characterization of polyols derived from the liquefaction or alkoxylation of bark. Regarding liquefaction, it was found that both temperature and solvent structure played a significant role in polyol properties. High temperature liquefaction resulted in the degradation of sugars, while liquefaction at mild temperatures preserved sugar structures as shown by 31P-NMR. It was also shown that liquefaction at 130°C was ideal in terms of producing a polyol with a relatively at, broad, plateau of molecular weight distribution, whereas liquefaction at 90 and 160°C produced polyols with a large amount of low molecular weight compounds. Regarding solvent structure, it was found that polyhydric alcohols with short chain primary hydroxyls resulted in less sugar degradation products and less formation of condensation side-products. It is proposed that the highly polar environment promoted grafting and prevented condensation onto other biopolymers. Using organic solvents it was found that ketonic solvents like acetyl acetone and cyclohexanone, through their highly polar carbonyl group could engage in hydrogen bonding through electron donation/proton accepting interactions. These enabled the solvent to reduce the amount of condensation reactions and improve liquefaction yield. The liquefied bark-based polyols were then used to make polyurethane foams. It was found that when a diversity of hydroxyl groups were present the foaming rate was reduced and this may react a slower rate of curing and explain why the bark foams had a greater amount of cells that underwent coalescence. It was also observed that the bark foams had a low amount of closed-cell content. Since closed-cell content plays a role in dictating elastic compression, this may explain why the bark foams exhibited a lower elastic modulus. Finally, as a contrast to liquefaction, bark was alkoxylated. It was observed that the conversion yield was higher than liquefaction. The polyols had a high

  7. Microgravity foam structure and rheology

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.; Gopal, Anthony D.

    1994-01-01

    Our long-range objective is to establish the fundamental interrelationship between the microscopic structure and dynamics of foams and their macroscopic stability and rheology. Foam structure and dynamics are to be measured directly and noninvasively through the use and development of novel multiple light scattering techniques such as diffusing-wave spectroscopy (DWS). Foam rheology is to be measured in a custom rheometer which allows simultaneous optical access for multiple light drainage of liquid from in between gas bubbles as the liquid:gas volume fraction in increased towards the rigidity-loss transition.

  8. High strain rate superplasticity of AlN particulate reinforced aluminium alloy composites

    SciTech Connect

    Imai, T. ); L'Esperance, G.; Hong, B.D. )

    1994-08-01

    Ceramic whisker or particulate reinforced aluminium alloy composites have a great potential for automobile engineering components, aerospace structures, semi-conductor packaging and so on, because of the composites ability to exhibit a high specific elastic modulus and specific tensile strength, excellent wear resistance and heat resistance, low thermal expansion and good dimensional stability. A serious problem involving practical application of ceramic whisker or particulate reinforced aluminium alloy composites is due to the low tensile ductility, fracture toughness at room temperature and, also, their hardness qualities that make it difficult to deform by conventional forming processing and machining by ordinary tools. It has been found, however, that aluminium alloy composites reinforced by SiC or Si[sub 3]N[sub 4] whiskers or particulates produce superplasticity at a high strain rate of about 0.1s[sup [minus]1]. Superplastic deformation mechanisms of the ceramic whisker or particulate reinforced aluminium alloy composites are fine grain boundary sliding, interfacial sliding at a liquid phase and dynamic recrystallization. An AlN particulate reinforced aluminium alloy composite exhibits a high elastic modulus and a high thermal conductivity, and their thermal expansion is similar to silicon in that the AlN particulate reinforced aluminum alloy composite is expected to apply to semi-conductor packaging in the aerospace structure. In addition, if the composite could produce superplasticity at high strain rates, the market of aerospace application for superplastic composites could be expanded. The purpose of this study is to make clear if an AlN particulate reinforced aluminium alloy composite can produce superplasticity at high strain rate and the superplastic characteristics.

  9. Oviduct modifications in foam-nesting frogs, with emphasis on the genus Leptodactylus (Amphibia, Leptodactylidae)

    USGS Publications Warehouse

    Furness, Andrew I.; McDiarmid, Roy W.; Heyer, W. Ronald; Zug, George R.

    2010-01-01

    Various species of frogs produce foam nests that hold their eggs during development. We examined the external morphology and histology of structures associated with foam nest production in frogs of the genus Leptodactylus and a few other taxa. We found that the posterior convolutions of the oviducts in all mature female foam-nesting frogs that we examined were enlarged and compressed into globular structures. This organ-like portion of the oviduct has been called a "foam gland" and these structures almost certainly produce the secretion that is beaten by rhythmic limb movements into foam that forms the nest. However, the label "foam gland" is a misnomer because the structures are simply enlarged and tightly folded regions of the pars convoluta of the oviduct, rather than a separate structure; we suggest the name pars convoluta dilata (PCD) for this feature. Although all the foam-nesters we examined had a pars convoluta dilata, its size and shape showed considerable interspecific variation. Some of this variation likely reflects differences in the breeding behaviors among species and in the size, type, and placement of their foam nests. Other variation, particularly in size, may be associated with the physiological periodicity and reproductive state of the female, her age, and/or the number of times she has laid eggs.

  10. Composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  11. Composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  12. Characterization of Polyimide Foams for Ultra-Lightweight Space Structures

    NASA Technical Reports Server (NTRS)

    Meador, Michael (Technical Monitor); Hillman, Keithan; Veazie, David R.

    2003-01-01

    Ultra-lightweight materials have played a significant role in nearly every area of human activity ranging from magnetic tapes and artificial organs to atmospheric balloons and space inflatables. The application range of ultra-lightweight materials in past decades has expanded dramatically due to their unsurpassed efficiency in terms of low weight and high compliance properties. A new generation of ultra-lightweight materials involving advanced polymeric materials, such as TEEK (TM) polyimide foams, is beginning to emerge to produce novel performance from ultra-lightweight systems for space applications. As a result, they require that special conditions be fulfilled to ensure adequate structural performance, shape retention, and thermal stability. It is therefore important and essential to develop methodologies for predicting the complex properties of ultra-lightweight foams. To support NASA programs such as the Reusable Launch Vehicle (RLV), Clark Atlanta University, along with SORDAL, Inc., has initiated projects for commercial process development of polyimide foams for the proposed cryogenic tank integrated structure (see figure 1). Fabrication and characterization of high temperature, advanced aerospace-grade polyimide foams and filled foam sandwich composites for specified lifetimes in NASA space applications, as well as quantifying the lifetime of components, are immensely attractive goals. In order to improve the development, durability, safety, and life cycle performance of ultra-lightweight polymeric foams, test methods for the properties are constant concerns in terms of timeliness, reliability, and cost. A major challenge is to identify the mechanisms of failures (i.e., core failure, interfacial debonding, and crack development) that are reflected in the measured properties. The long-term goal of the this research is to develop the tools and capabilities necessary to successfully engineer ultra-lightweight polymeric foams. The desire is to reduce density

  13. Field verification of CO{sub 2} foam. Final report

    SciTech Connect

    Martin, F.D.; Heller, J.P.; Weiss, W.W.

    1995-06-01

    The East Vacuum Grayburg/San Andres Unit (EVGSAU), operated by Phillips Petroleum Company, was the site selected for a comprehensive evaluation of the use of foam for improving the effectiveness of a CO{sub 2} flood. This project, entitled ``Field Verification of CO{sub 2}-Foam,`` was jointly funded by the EVGSAU working interest owners, the US Department of Energy (DOE), and the State of New Mexico. The DOE provided $2 million or approximately 34% of the total project costs, the EVGSAU provided $2.46 million, the State of New Mexico contributed approximately $1.2 million, and about $103,000 of other industrial funds were used. The Petroleum Recovery Research Center (PRRC), a division of the New Mexico Institute of Mining and Technology, provided laboratory and research support for the project. A joint project advisory team composed of technical representatives from several major oil companies provided input, review, and guidance for the project. The project, which began in 1989, had a scheduled duration of four years, but the DOE granted a no-cost extension to the end of March 1995 for the purpose of continued project evaluation. A field test of the CO{sub 2}-foam has been successfully conducted, and preliminary results are promising. Response in the foam injection well has been as anticipated, and an offset producing well experienced a positive oil response as a result of the foam test. Based on the favorable results observed in the foam injection test, a second foam test was conducted. The monitoring program included analysis of injectivity data, pressure falloff tests, observation well logs, interwell tracer response, production logs, history of production rates, and changes in gas-oil ratio. This report presents an overview of the project and provides results of the laboratory work, simulation studies, and field tests.

  14. Field verification of CO{sub 2} Foam. Final report

    SciTech Connect

    Martin, F.D.; Heller, J.P.; Weiss, W.W.

    1996-02-01

    The East Vacuum Grayburg/San Andres Unit (EVGSAU), operated by Phillips Petroleum Company, was the site selected for a comprehensive evaluation of the use of foam for improving the effectiveness of a CO{sub 2} flood. This project, entitled {open_quotes}Field Verification of CO{sub 2-}Foam,{close_quotes} was jointly funded by the EVGSAU working interest owners, the U.S. Department of Energy (DOE), and the State of New Mexico. The DOE provided $2 million or approximately 34% of the total project costs, the EVGSAU provided $2.46 million, the State of New Mexico contributed approximately $1.2 million, and about $103,000 of other industrial funds were used. The Petroleum Recovery Research Center (PRRC), a division of the New Mexico Institute of Mining and Technology, provided laboratory and research support for the project. A joint project advisory team composed of technical representatives from several major oil companies provided input, review, and guidance for the project. The project, which began in 1989, had a scheduled duration of four years, but the DOE granted a no-cost extension to the end of March 1995 for the purpose of continued project evaluation. A field test of the CO{sub 2}-foam has been successfully conducted, and preliminary results are promising. Response in the foam injection well has been as anticipated, and an offset producing well experienced a positive oil response as a result of the foam test. Based on the favorable results observed in the foam injection test, a second foam test was conducted. The monitoring program included analysis of injectivity data, pressure falloff tests, observation well logs, interwell tracer response, production logs, history of production rates, and changes in gas-oil ratio. This report presents an overview of the project and provides results of the laboratory work, simulation studies, and field tests.

  15. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    NASA Astrophysics Data System (ADS)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  16. Characterization of Polyimide Foams for Ultra-Lightweight Space Structures

    NASA Technical Reports Server (NTRS)

    Meador, Michael (Technical Monitor); Hillman, Keithan; Veazie, David R.

    2003-01-01

    Ultra-lightweight materials have played a significant role in nearly every area of human activity ranging from magnetic tapes and artificial organs to atmospheric balloons and space inflatables. The application range of ultra-lightweight materials in past decades has expanded dramatically due to their unsurpassed efficiency in terms of low weight and high compliance properties. A new generation of ultra-lightweight materials involving advanced polymeric materials, such as TEEK (TM) polyimide foams, is beginning to emerge to produce novel performance from ultra-lightweight systems for space applications. As a result, they require that special conditions be fulfilled to ensure adequate structural performance, shape retention, and thermal stability. It is therefore important and essential to develop methodologies for predicting the complex properties of ultra-lightweight foams. To support NASA programs such as the Reusable Launch Vehicle (RLV), Clark Atlanta University, along with SORDAL, Inc., has initiated projects for commercial process development of polyimide foams for the proposed cryogenic tank integrated structure (see figure 1). Fabrication and characterization of high temperature, advanced aerospace-grade polyimide foams and filled foam sandwich composites for specified lifetimes in NASA space applications, as well as quantifying the lifetime of components, are immensely attractive goals. In order to improve the development, durability, safety, and life cycle performance of ultra-lightweight polymeric foams, test methods for the properties are constant concerns in terms of timeliness, reliability, and cost. A major challenge is to identify the mechanisms of failures (i.e., core failure, interfacial debonding, and crack development) that are reflected in the measured properties. The long-term goal of the this research is to develop the tools and capabilities necessary to successfully engineer ultra-lightweight polymeric foams. The desire is to reduce density

  17. Cells on foam and fiber

    SciTech Connect

    Clyde, R.

    1996-12-31

    Some bacteria secrete an insoluble organic polymer in which colonies of bacteria become embedded and adhere to surfaces. Some fungi also form colonies. Their metabolic functions and interactions become enhanced, offering opportunities for increased efficiency in many biological waste remediation and bioreaction processes if a large surface area is available. Plastic foam and sponge encased in wire mesh, perforated cardboard, fibers, fiber discs, and titanium dioxide on fiberglass are a few examples of large surface areas, which, if oxygen is required, can be rotated in a rotating biological contactor (RBC) to increases oxygen contact and provide greatly increased bacterial activity. Ethanol fermentation is accomplished quickly. Lead and other toxic metals are quickly immobilized in bacteria. If light is required the thin liquid film enhances reactivity to quickly degrade chlorine compounds or remove sulfur from oil. Production of calcium magnesium acetate, a non-corrosive road deicer, can also be efficiently produced in this manner. Some primitive fungi also form colonies, notably the slime molds and filament-forming fungi, that enhance their biological effects. White rot fungus readily degrades chlorine compounds, azo dyes, TNT, and polycyclic aromatic hydrocarbons (PHA), for example.

  18. Searching for new aluminium chelating agents: a family of hydroxypyrone ligands.

    PubMed

    Toso, Leonardo; Crisponi, Guido; Nurchi, Valeria M; Crespo-Alonso, Miriam; Lachowicz, Joanna I; Mansoori, Delara; Arca, Massimiliano; Santos, M Amélia; Marques, Sérgio M; Gano, Lurdes; Niclós-Gutíerrez, Juan; González-Pérez, Josefa M; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Szewczuk, Zbigniew

    2014-01-01

    Attention is devoted to the role of chelating agents in the treatment of aluminium related diseases. In fact, in spite of the efforts that have drastically reduced the occurrence of aluminium dialysis diseases, they so far constitute a cause of great medical concern. The use of chelating agents for iron and aluminium in different clinical applications has found increasing attention in the last thirty years. With the aim of designing new chelators, we synthesized a series of kojic acid derivatives containing two kojic units joined by different linkers. A huge advantage of these molecules is that they are cheap and easy to produce. Previous works on complex formation equilibria of a first group of these ligands with iron and aluminium highlighted extremely good pMe values and gave evidence of the ability to scavenge iron from inside cells. On these bases a second set of bis-kojic ligands, whose linkers between the kojic chelating moieties are differentiated both in terms of type and size, has been designed, synthesized and characterized. The aluminium(III) complex formation equilibria studied by potentiometry, electrospray ionization mass spectroscopy (ESI-MS), quantum-mechanical calculations and (1)H NMR spectroscopy are here described and discussed, and the structural characterization of one of these new ligands is presented. The in vivo studies show that these new bis-kojic derivatives induce faster clearance from main organs as compared with the monomeric analog. © 2013.

  19. Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis

    SciTech Connect

    Shirtcliffe, Neil J. . E-mail: neil.shirtcliffe@ntu.ac.uk; Thompson, Simon; O'Keefe, Eoin S.; Appleton, Steve; Perry, Carole C. . E-mail: carole.perry@ntu.ac.uk

    2007-02-15

    Aluminium doped barium and strontium hexaferrite nanoparticles BaAl {sub x}Fe{sub (12-x)}O{sub 19} and SrAl {sub x}Fe{sub (12-x)}O{sub 19} were synthesised via a sol-gel route using citric acid to complex the ions followed by an auto-combustion reaction. This method shows promise for the synthesis of complex ferrite powders with small particle size. It was found that around half of the iron could be substituted for aluminium in the barium ferrite with structure retention, whereas strontium aluminium ferrites could be produced with any aluminium content including total substitution of the iron. All synthesised materials consisted of particles smaller than 1 {mu}m, which is the size of a single magnetic domain, and various doping levels were achieved with the final elemental composition being within the bounds of experimental error. The materials show structural and morphological changes as they move from iron to aluminium ferrites. Such materials may be promising for imaging applications.

  20. [Aluminium content in foods with aluminium-containing food additives].

    PubMed

    Ogimoto, Mami; Suzuki, Kumi; Kabashima, Junichiro; Nakazato, Mitsuo; Uematsu, Yoko

    2012-01-01

    The aluminium (Al) content of 105 samples, including bakery products made with baking powder, agricultural products and seafoods treated with alum, was investigated. The amounts of Al detected were as follows (limit of quantification: 0.01 mg/g): 0.01-0.37 mg/g in 26 of 57 bakery products, 0.22-0.57 mg/g in 3 of 6 powder mixes, 0.01-0.05 mg/g in all three agricultural products examined, 0.03-0.90 mg/g in 4 of 6 seafood samples, 0.01-0.03 mg/g in 3 of 11 samples of instant noodles, 0.04-0.14 mg/g in 3 of 4 samples of vermicelli, 0.01 mg/g in 1 of 16 soybean products, but none in soybeans. Amounts equivalent to the PTWI of a 16 kg infant were detected in two samples of bakery products, two samples of powder mixes and one sample of salted jellyfish, if each sample was taken once a week. These results suggest that certain foods, depending on the product and the intake, might exceed the PTWI of children, especially infants.

  1. PIXE analysis for the study of toxic effects of aluminium in vines

    NASA Astrophysics Data System (ADS)

    Meyer, B. R.; Le Roux, E.; Renan, M. J.; Peisach, M.

    1984-04-01

    Elemental concentrations of Mg, A1, Si, P, S, Cl, K and Ca were determined by PIXE in various parts of grape vines grown in a Hoagland water culture with and without added aluminium. The presence of Al enhanced the uptake of P, S and K in leaves and stems, but depressed Mg and Ca. In the roots the Al concentration was very high, while that of Mg was reduced compared to the control samples. The toxic effects of aluminium produced symptoms reminiscent of calcium deficiency.

  2. Advantages of aluminium hydroxide adsorbed combined diphtheria, tetanus, and pertussis vaccines for the immunization of infants.

    PubMed

    Butler, N R; Voyce, M A; Burland, W L; Hilton, M L

    1969-03-15

    Three combined triple antigen vaccines were used to inoculate infants receiving primary immunization at 3 to 6 months of age. Laboratory potency and toxicity tests and clinical evaluation again showed that the mouse weight gain test is able to predict which vaccines will give reactions in children. The addition of aluminium hydroxide to the vaccine both increased potency and reduced the tendency to cause reactions. Assays on sera showed that almost all children produced agglutinins to Bordetella pertussis types 1, 2, and 3 when the vaccine contained aluminium hydroxide.

  3. High temperature adhesive silicone foam composition, foam generating system and method of generating foam

    DOEpatents

    Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.

    1984-01-01

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  4. Structural characterization of solid foams

    NASA Astrophysics Data System (ADS)

    Maire, Éric; Adrien, Jérôme; Petit, Clémence

    2014-10-01

    For being a useful contribution to the understanding of the properties of solid foams, the characterization of the structure of solid foams has to be performed at different scales. The microstructure of the solid part of the foams has to be analyzed. For this, standard SEM observations are often used. The most important aspect (and the most problematic) remains the characterization of the porous architecture of these materials. The methods introduced in this paper concern both scales and the article discusses the specificity of the experiments in the case of porous materials. X-ray tomography is described in more details because it becomes widely used for this purpose. The paper also shows how the obtained 3D images (sometimes obtained during deformation) can be processed to yield important morphological parameters describing the foams. xml:lang="fr"

  5. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  6. Microcellular foams via phase separation

    SciTech Connect

    Young, A.T.

    1985-01-01

    A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm/sup 3/ and cell sizes of 30..mu..m or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure.

  7. Amorphous microcellular polytetrafluoroethylene foam film

    NASA Astrophysics Data System (ADS)

    Tang, Chongzheng

    1991-11-01

    We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.

  8. Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy

    SciTech Connect

    Benoit, A.; Paillard, P.; Baudin, T.; Jobez, S.; Castagne, J.-F.

    2011-01-17

    At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the produced weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.

  9. Void growth in high strength aluminium alloy single crystals: a CPFEM based study

    NASA Astrophysics Data System (ADS)

    Asim, Umair; Siddiq, M. Amir; Demiral, Murat

    2017-04-01

    High strength aluminium alloys that are produced through forming and joining processes are widely used in aerospace components. The ductile failure in these metals occurs due to the evolution and accumulation of microscopic defects, such as microvoids and shear bands. The present work investigates the underlying physical mechanisms during ductile failure by performing a rigorous, fully-validated, three-dimensional crystal plasticity, finite element study with aluminium alloy single crystals. Representative volume element (RVE) based simulations of single crystalline aluminium alloys (AA-5xxx) with different void geometries and orientations have been performed. Both local and nonlocal crystal plasticity constitutive models have been implemented in a finite element framework and are used to seek new insights into the interrelationships among void growth, initial porosity, initial void size, plastic anisotropy, and local/nonlocal size effects.

  10. Stimulation of amphibian gastroduodenal bicarbonate secretion by sucralfate and aluminium: role of local prostaglandin metabolism.

    PubMed Central

    Crampton, J R; Gibbons, L C; Rees, W D

    1988-01-01

    The present studies were designed to explore the possible mode of protective and ulcer healing actions of sucralfate by examining its effect on gastroduodenal bicarbonate secretion by isolated amphibian mucosa. Luminal sucralfate (0.5 g/l) significantly increased bicarbonate secretion by fundic and antral mucosa without influencing transmucosal potential difference. Significant stimulation of duodenal bicarbonate secretion occurred only at 1.0 g/l without change in potential difference. Aluminium, a component of sucralfate, produced similar increases in bicarbonate secretion, while the sucrose and sulphate components were without effect. Pretreatment of mucosae with the cyclooxygenase inhibitor, indomethacin (10 5M) did not abolish the secretory response to sucralfate or aluminium. The results suggest that stimulation of gastroduodenal bicarbonate secretion, possibly by the aluminium moiety of sucralfate, may play a role in its protective and ulcer healing actions. PMID:3260886

  11. Advanced Foam Target Component Fabrication as Applied the Sandia Z Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Schroen-Carey, Diana; Bailey, James; Bennett, Guy; Collins, Patrick; Dropinski, Stephen; Hebron, David; Hsieh, Edward; Motta, Brian; Sanford, Thomas; Youngblood, Kelly

    2000-10-01

    The Sandia pulsed power machine, Z, has developed into a unique test bed with unique targets, many of which incorporate foam components. These foam components must be very low density (5 - 14 mg/cm3), uniform and must meet tight dimensional tolerance. The experiments can also require an embedded diagnostic or capsule. To produce TPX (poly 4-methyl-1-pentene) foam of the required density and uniformity required a new process. We have developed a single solvent system that when cooled produces a uniform gel. This gel can be molded and can support embedded objects. The gel is then freeze dried to produce a dry, uniform foam. We will present an overview of this process and examples of some of the foam components produced. The most recent target was a 5 mg/cm3 foam, 10 mm in diameter, 15 mm tall with a 2 mm capsule (D2 filled) embedded in the center, and a 1000A gold coat on the outer diameter of the foam. Organizations: Schafer Corporation, Livermore, CA 94550. This work was done under the auspices of the Department of Energy contract DE-AC03-95SF20732. Sandia National Laboratories, Albuquerque, NM 87185. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  12. Process for making carbon foam

    DOEpatents

    Klett, James W.

    2000-01-01

    The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  13. The Melting of Aqueous Foams

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.; Gopal, Anthony D.; Vera, Moin U.; Langer, Stephen A.

    1996-01-01

    Diffusing-wave spectroscopy measurements show that ordinarily solid aqueous foams flow by a series of stick-slip avalanche-like rearrangements of neighboring bubbles from one tight packing configuration to another. Contrary to a recent prediction, the distribution of avalanche sizes do not obey a power-law distribution characteristic of self-organized criticality. This can be understood from a simple model of foam mechanics based on bubble-bubble interactions.

  14. Supercapacitors based on carbon foams

    DOEpatents

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1993-11-09

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m[sup 2]/g-1000 m[sup 2]/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figures.

  15. Supercapacitors based on carbon foams

    DOEpatents

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1993-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  16. Advances in cryogenic foam insulations.

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.; Watts, C. R.

    1971-01-01

    Description of a discretely oriented thread-reinforced polyurethane foam thermal insulation system for liquid hydrogen fuel tanks. The 3-D foam and glass liner composite is designed to be adhesively bonded to the inside surface of the tank wall and to be in direct contact with liquid hydrogen. All elements of this insulation composite are capable of sustaining the loads and environmental conditions imposed by testing under simulated Space Shuttle vehicle requirements at temperatures between -423 and +350 F.

  17. Process for making carbon foam

    SciTech Connect

    Klett, J.W.

    2000-03-07

    The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.

  18. Microgravity Foam Structure and Rheology

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.

    1996-01-01

    The objective of this research was to exploit rheological and multiple-light scattering techniques, and ultimately microgravity conditions, in order to quantify and elucidate the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Special interest was in determining how this elastic character vanishes, i.e. how the foam melts into a simple viscous liquid, as a function of both increasing liquid content and shear strain rate.

  19. Composite and Nanocomposite Metal Foams

    PubMed Central

    Duarte, Isabel; Ferreira, José M. F.

    2016-01-01

    Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams. PMID:28787880

  20. Composite and Nanocomposite Metal Foams.

    PubMed

    Duarte, Isabel; Ferreira, José M F

    2016-01-28

    Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams.

  1. Geopolymerisation of fly ashes with waste aluminium anodising etching solutions.

    PubMed

    Ogundiran, M B; Nugteren, H W; Witkamp, G J

    2016-10-01

    Combined management of coal combustion fly ash and waste aluminium anodising etching solutions using geopolymerisation presents economic and environmental benefits. The possibility of using waste aluminium anodising etching solution (AES) as activator to produce fly ash geopolymers in place of the commonly used silicate solutions was explored in this study. Geopolymerisation capacities of five European fly ashes with AES and the leaching of elements from their corresponding geopolymers were studied. Conventional commercial potassium silicate activator-based geopolymers were used as a reference. The geopolymers produced were subjected to physical, mechanical and leaching tests. The leaching of elements was tested on 28 days cured and crushed geopolymers using NEN 12457-4, NEN 7375, SPLP and TCLP leaching tests. After 28 days ambient curing, the geopolymers based on the etching solution activator showed compressive strength values between 51 and 84 MPa, whereas the commercial potassium silicate based geopolymers gave compressive strength values between 89 and 115 MPa. Based on the regulatory limits currently associated with the used leaching tests, all except one of the produced geopolymers (with above threshold leaching of As and Se) passed the recommended limits. The AES-geopolymer geopolymers demonstrated excellent compressive strength, although less than geopolymers made from commercial activator. Additionally, they demonstrated low element leaching potentials and therefore can be suitable for use in construction works.

  2. Investigation of foaming during nuclear defense-waste solidification by electric melting

    SciTech Connect

    Blair, H.T.; Lukacs, J.M.

    1980-12-01

    To determine the cause of foaming, the physical and chemical composition of the glass formers that are added to the waste to produce a borosilicate melt were investigated. It was determined that the glass-forming frit was not the source of the foam-causing gases. Incomplete calcination of the waste, which results in residual hydrates, carbonates and nitrates, and the relatively high carbon and sulfate contents of the waste glass composition were also eliminated as possible sources of the foam. It was finally shown that the oxides of the multivalent ions of manganese and iron that are in the defense waste in high concentrations are the source of the foaming. Nickel oxide is also present in the waste and is suspected of contributing to the foaming. In investigating methods to reduce the foam, the focus was on the chemistry of the materials being processed rather than on the mechanical aspects of the processing equipment to avoid increasing the mechanical complexity of the melter operation. Reducing the waste loading in the host glass from 28 to 14 wt. % produced the most significant reduction in the foam. Of course this did not increase the rate at which waste can be processed. Adding carbonaceous additives or barium metaphosphate to the waste/frit mixture (batch) reduced the foaming somewhat. However, if too much reducing agent was added to the batch, iron-nickel alloys separated from the melt. Likewise, melting the batch in an inert or a reducing atmosphere reduced the foaming but produced a heterogeneous product. Finally, initial attempts to control foaming by adding reducing agents to the liquid waste and then spray-calcining it using an inert atomizing gas were not successful. The possibilities for liquid-waste treatment need to be investigated further.

  3. Microgravity studies of aqueous wet foams.

    PubMed

    Langevin, D; Vignes-Adler, M

    2014-03-01

    Foams and foaming pose important questions and problems for both fundamental research and practical applications. Despite the fact that foams have been extensively studied, many aspects of foam physics and chemistry still remain unclear. Experiments on foams performed under microgravity can be extended far beyond their counterpart where gravity is fully present (i.e. most experiments on Earth). They allow, in particular, observation of the wet foams obtained during the foaming process; on Earth, foams at this stage evolve too quickly due to gravity drainage and cannot be studied. This paper reviews the existing studies of foams under microgravity, which include studies in parabolic flights, in sounding rockets and in the International Space Station.

  4. Preparation, testing, and delivery of low density polyimide foam panels

    NASA Technical Reports Server (NTRS)

    Ball, G. L., III; Post, L. K.; Salyer, I. O.

    1975-01-01

    Plastic foams based on polyimide resins were shown to be stable at relatively high temperatures, and to possess very low flame spread and smoke generation characteristics. A system and process were developed to prepare low-density polyimide foam from a liquid formulation. The system is based on the reaction of micropulverized grade pyromellitic dianhydride with a polymeric diisocyanate. The panels produced were postcured at elevated temperatures to achieve maximum thermal and fire resistance, and incorporation of a fire retardant into the formulation was considered. The effects of a flame retardant (Flameout 5600B1) were investigated, but eliminated in preference to the postcuring approach.

  5. Water Impact of Syntactic Foams

    PubMed Central

    Shams, Adel; Zhao, Sam; Porfiri, Maurizio

    2017-01-01

    Syntactic foams are particulate composite materials that are extensively integrated in naval and aerospace structures as core materials for sandwich panels. While several studies have demonstrated the potential of syntactic foams as energy absorbing materials in impact tests, our understanding of their response to water impact remains elusive. In this work, we attempt a first characterization of the behavior of a vinyl ester/glass syntactic subject to slamming. High-speed imaging is leveraged to elucidate the physics of water impact of syntactic foam wedges in a free-fall drop tower. From the images, we simultaneously measure the deformation of the wedge and the hydrodynamic loading, thereby clarifying the central role of fluid–structure interaction during water impact. We study two different impact heights and microballoon density to assess the role of impact energy and syntactic foam composition on the slamming response. Our results demonstrate that both these factors have a critical role on the slamming response of syntactic foams. Reducing the density of microballoons might help to reduce the severity of the hydrodynamic loading experienced by the wedge, but this comes at the expense of a larger deformation. Such a larger deformation could ultimately lead to failure for large drop heights. These experimental results offer compelling evidence for the role of hydroelastic coupling in the slamming response of syntactic foams. PMID:28772581

  6. Mission STS-134: Results of Shape Memory Foam Experiment

    NASA Astrophysics Data System (ADS)

    Santo, Loredana; Quadrini, Fabrizio; Mascetti, Gabriele; Dolce, Ferdinando; Zolesi, Valfredo

    2013-10-01

    Shape memory epoxy foams were used for an experiment aboard the International Space Station (ISS) to evaluate the feasibility of their use for building light actuators and expandable/deployable structures. The experiment named I-FOAM was performed by an autonomous device contained in the BIOKON container (by Kayser Italia) which was in turn composed of control and heating system, battery pack and data acquisition system. To simulate the actuation of simple devices in micro-gravity conditions, three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Micro-gravity does not affect the ability of the foams to recover their shape but it poses limits for the heating system design because of the difference in heat transfer on Earth and in orbit. A recovery about 70% was measured at a temperature of 110 °C for the bending and torsion configuration whereas poor recovery was observed for the compression case. Thanks to these results, a new experiment has been developed for a future mission by the same device: for the first time a shape memory composite will be recovered, and the actuation load during time will be measured during the recovery of an epoxy foam sample.

  7. Foam-injected sandwich panels with continuous-reinforced facings

    NASA Astrophysics Data System (ADS)

    Menrath, A.; Henning, F.; Huber, T.; Roch, A.; Riess, C.

    2014-05-01

    Thermoplastic foam injection molding (FIM) in combination with insert molding (IM) offers a possibility to generate sandwich panels in a one-step process. The prepared face sheets are first positioned inside the mold. A preheating process is carried out using quartz infrared emitters, which are mounted on a linear robot, before the mold is closed. The injection of the gas/melt mixture is combined with an embossing of the mold to further improve the face-core-adhesion. Finally, to initiate the foaming process, adjust the extent of foaming of the core and achieve the desired component dimensions, a mold opening stroke is carried out. The process described was performed with different facing materials, layer dimensions and overall wall thicknesses. Drawn PP fabrics (Curv®) as well as PP/GF70 tapes and consolidated sheets (unidirectional) were used to generate sandwich panels in a range of 5 to 6.4 mm thickness. PP was also chosen to form the foamed core which, in combination with the Curv® face sheets, produces a fully recyclable self-reinforced polymer (SRP) composite. Detailed process descriptions and the results of bending tests demonstrate the high potential. Other focuses are the preheating process and the foam structure.

  8. Heat pipe cooling of an aerospace foam mold manufacturing process

    SciTech Connect

    Hahn, D.R.; Feldman, K.T.; Marjon, P.L.

    1980-01-01

    A passive heat pipe cooling system was developed to cool a Bendix foam mold used to manufacture aerospace foam parts. The cooling system consists of ten copper-water heat pipes with cooling fins implanted into the aluminum mold and cooled by a domestic size fan blowing ambient air. The number and location of the heat pipes was determined to provide the most effective cooling and mold isothermalization based on experimental measurements of mold temperatures during the exothermic foaming process and from practical considerations of the mold geometry and use. Performance tests were cnducted on an individual heat pipe and on the ten heat pipes implanted in the mold. Both exothermic foam heating and internal electrical heat input were used in the experiments. The experimental test results indicate that the heat pipe cooling system with a fan is four to six times faster than free convection cooling of the mold with no heat pipes or fan and nearly twice as fast as cooling by the fan only. Similarly fast increases in mold heating time in the cure furnace could be realized if the heat pipes are used during this part of the production process. The heat pipes also cool hot spots in the mold and help isothermalize the mold so that better quality foam parts should be produced.

  9. Development of foamed Inorganic Polymeric Materials based on Perlite

    NASA Astrophysics Data System (ADS)

    Tsaousi, G.-M.; Douni, I.; Taxiarchou, M.; Panias, D.; Paspaliaris, I.

    2016-04-01

    This work deals with the development of lightweight geopolymeric boards for use in construction sector utilizing a solid perlitic waste as the main raw material. Hydrogen peroxide (H2O2) was used for the foaming of geopolymeric pastes and the production of porous and lightweight inorganic polymeric materials. The effect of geopolymeric synthesis parameters, such as the composition of activator and the curing conditions, on paste's properties that affect the foaming process, such as setting time and viscosity, were studied in detailed. Finally, the effects of H2O2 concentration on the properties (apparent density and % cell volume) and the microstructure of foamed boards were also studied. The produced porous boards have effective densities in-between 540 - 900 Kg/m3 and the thermal conductivity of the optimum product is 0.08 W/mK. Based on their properties, the developed lightweight geopolymeric boards have high potential to be used as building elements in construction industry.

  10. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    SciTech Connect

    Rao, Rekha R.; Roberts, Christine Cardinal; Mondy, Lisa Ann; Soehnel, Melissa Marie; Johnson, Kyle; Lorenzo, Henry T.

    2016-10-01

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

  11. Electrical conductivity of rigid polyurethane foam at high temperature

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  12. Physiochemical properties and reproducibility of air-based sodium tetradecyl sulphate foam using the Tessari method.

    PubMed

    Watkins, Mike R; Oliver, Richard J

    2017-07-01

    Objectives The objectives were to examine the density, bubble size distribution and durability of sodium tetradecyl sulphate foam and the consistency of production of foam by a number of different operators using the Tessari method. Methods 1% and 3% sodium tetradecyl sulphate sclerosant foam was produced by an experienced operator and a group of inexperienced operators using either a 1:3 or 1:4 liquid:air ratio and the Tessari method. The foam density, bubble size distribution and foam durability were measured on freshly prepared foam from each operator. Results The foam density measurements were similar for each of the 1:3 preparations and for each of the 1:4 preparations but not affected by the sclerosant concentration. The bubble size for all preparations were very small immediately after preparation but progressively coalesced to become a micro-foam (<250 µm) after the first 30 s up until 2 min. Both the 1% and 3% solution foams developed liquid more rapidly when made in a 1:3 ratio (37 s) than in a 1:4 ratio (45 s) but all combinations took similar times to reach 0.4 ml liquid formation. For all the experiments, there was no statistical significant difference between operators. Conclusions The Tessari method of foam production for sodium tetradecyl sulphate sclerosant is consistent and reproducible even when made by inexperienced operators. The best quality foam with micro bubbles should be used within the first minute after production.

  13. Encapsulation of aluminium in geopolymers produced from metakaolin

    NASA Astrophysics Data System (ADS)

    Kuenzel, C.; Neville, T. P.; Omakowski, T.; Vandeperre, L.; Boccaccini, A. R.; Bensted, J.; Simons, S. J. R.; Cheeseman, C. R.

    2014-04-01

    Magnox swarf contaminated with trace levels of Al metal is an important UK legacy waste originated from the fuel rod cladding system used in Magnox nuclear power stations. Composite cements made from Portland cement and blast furnace slag form a potential encapsulation matrix. However the high pH of this system causes the Al metal to corrode causing durability issues. Geopolymers derived from metakaolin are being investigated as an alternative encapsulation matrix for Magnox swarf waste and the corrosion kinetics and surface interactions of Al with metakaolin geopolymer are reported in this paper. It is shown that the pH of the geopolymer paste can be controlled by the selection of metakaolin and the sodium silicate solution used to form the geopolymer. A decrease in pH of the activation solution reduces corrosion of the Al metal and increases the stability of bayerite and gibbsite layers formed on the Al surface. The bayerite and gibbsite act as a passivation layer which inhibits further corrosion and mitigates H2 generation. The research shows that optimised metakaolin geopolymers have potential to be used to encapsulate legacy Magnox swarf wastes.

  14. Three-phase foam analysis and development of a lab-scale foaming capacity and stability test for swine manure

    USDA-ARS?s Scientific Manuscript database

    Foam accumulation on the manure slurry at deep pit swine facilities has been linked to flash fire incidents, making it a serious safety concern for pork producers. In order to investigate this phenomenon, samples of swine manure were collected from over 50 swine production facilities in Iowa with va...

  15. Development of Defoamers for Confinenment Foam

    SciTech Connect

    Hoffman, D M; Mitchell, A R

    2005-08-10

    Aqueous foam concentrate (AFC) 380 foam was developed by Sandia National Laboratory as a blast mitigation foam for unexploded ordnance (UXO) and its ''engineered foam structure'' is reported to be able to ''envelop chemical or biological aerosols'' [1]. It is similar to commercial fire-fighting foams, consisting mostly of water with small amounts of two alcohols, an ether and surfactant. It also contains xanthan gum, probably, to strengthen the foam film and delay drainage. The concentrate is normally diluted in a 6:94 ratio with water for foaming applications. The diluted solution is normally foamed with air to an expansion factor of about 100 (density 0.01 g/cc), which is called ''dry'' foam. Higher density foam (0.18 > {rho} > 0.03 g/cc) was discovered which had quite different characteristics from ''dry'' foam and was called ''wet'' foam. Some characterization of these foams has also been carried out, but the major effort described in this document is the evaluation, at the small and medium scale, of chemical, mechanical and thermal approaches to defoaming AFC 380 foam. Several chemical approaches to defoaming were evaluated including oxidation and precipitation of the xanthan, use of commercial oil-emulsion or suspension defoamers, pH modification, and cation exchange with the surfactant. Of these the commercial defoamers were most effective. Two mechanical approaches to defoaming were evaluated: pressure and foam rupture with very fine particles. Pressure and vacuum techniques were considered too difficult for field applications but high surface area silica particles worked very well on dry foam. Finally simple thermal techniques were evaluated. An order-disorder transition occurs in xanthan solutions at about 60 C, which may be responsible for the effectiveness of hot air as a defoamer. During defoaming of 55 gallons of foam with hot air, after about 70% of the AFC 380 foam had been defoamed, the effectiveness of hot air was dramatically reduced

  16. Development of drilling foams for geothermal applications

    SciTech Connect

    McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

    1980-01-01

    The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

  17. Metal foam evolution studied by synchrotron radioscopy

    NASA Astrophysics Data System (ADS)

    Banhart, John; Stanzick, Heiko; Helfen, Lukas; Baumbach, Tilo

    2001-02-01

    High-intensity synchrotron x-ray radioscopy was used to obtain real-time images of foaming metals, thus allowing the formation, growth, and decay of such systems to be studied. Bubble generation, foam coalescence and drainage of an aluminum-based alloy foam were investigated. Although the foaming process appears to be very similar to the formation of aqueous foams, the observed rupture behavior of thin metal films suggests that the processes responsible for metal foam stabilization and destabilization must be quite different.

  18. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect

    William R. Rossen

    2005-03-16

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research is to lay the groundwork for more-applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media.

  19. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    SciTech Connect

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  20. Foam-improved oil recovery: Modelling the effect of an increase in injection pressure.

    PubMed

    Hernández, Elizabeth Mas; Grassia, Paul; Shokri, Nima

    2015-06-01

    A model, called pressure-driven growth, is analysed for propagation of a foam front through an oil reservoir during improved oil recovery using foam. Numerical simulations of the model predict, not only the distance over which the foam front propagates, but also the instantaneous front shape. A particular case is studied here in which the pressure used to drive the foam along is suddenly increased at a certain point in time. This transiently produces a concave front shape (seen from the domain ahead of the front): such concavities are known to be delicate to handle numerically. As time proceeds however, the front evolves back towards a convex shape, and this can be predicted by a long-time asymptotic analysis of the model. The increase in driving pressure is shown to be beneficial to the improved oil recovery process, because it gives a more uniform sweep of the oil reservoir by the foam.

  1. Investigation of the formability of aluminium alloys at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Tisza, M.; Budai, D.; Kovács, P. Z.; Lukács, Zs

    2016-11-01

    Aluminium alloys are more and more widely applied in car body manufacturing. Increasing the formability of aluminium alloys are one of the most relevant tasks in todays’ research topics. In this paper, the focus will be on the investigation of the formability of aluminium alloys concerning those material grades that are more widely applied in the automotive industry including the 5xxx and 6xxx aluminium alloy series. Recently, besides the cold forming of aluminium sheets the forming of aluminium alloys at elevated temperatures became a hot research topic, too. In our experimental investigations, we mostly examined the EN AW 5754 and EN AW 6082 aluminium alloys at elevated temperatures. We analysed the effect of various material and process parameters (e.g. temperature, sheet thickness) on the formability of aluminium alloys with particular emphasis on the Forming Limit Diagrams at elevated temperatures in order to find the optimum forming conditions for these alloys.

  2. Final Report: Use of Graphite Foam as a Thermal Performance Enhancement of Heavy Hybrid Propulsion Systems

    SciTech Connect

    Klett, James William; Conklin, Jim

    2011-06-01

    solid foams to compete directly with standard heat exchangers. Although corrugated L1 foam samples have not been produced (attempts are under way), it is possible that their j/f ratio can be even higher than those of the finned structures.

  3. Polyurethane foams based on crude glycerol-derived biopolyols: One-pot preparation of biopolyols with branched fatty acid ester chains and its effects on foam formation and properties

    SciTech Connect

    Li, Cong; Luo, Xiaolan; Li, Tao; Tong, Xinjie; Li, Yebo

    2014-01-01

    Environmentally friendly biopolyols have been produced with crude glycerol as the sole feedstock using a one-pot thermochemical conversion process without the addition of extra catalysts and reagents. Structural features of these biopolyols were characterized by rheology analysis. Rigid polyurethane (PU) foams were obtained from these crude glycerol-based biopolyols and the foaming mechanism was explored. Investigations revealed that partial carbonyl groups hydrogen-bonded with NeH were replaced by aromatic rings after the introduction of branched fatty acid ester chains in the “urea rich” phase, and that distinct microphases had formed in the foams. Studies showed that branched fatty acid ester chains in the biopolyols played an important role in reducing the degree of microphase separation and stabilizing bubbles during foaming processes. PU foams with thermal conductivity comparable to commercial products made from petroleum-based polyols were obtained. These studies show the potential for development of PU foams based on crude glycerol, a renewable resource.

  4. Preparation and characterization of shape memory composite foams with interpenetrating polymer networks

    NASA Astrophysics Data System (ADS)

    Yao, Yongtao; Zhou, Tianyang; Yang, Cheng; Liu, Yanju; Leng, Jinsong

    2016-03-01

    The present study reports a feasible approach of fabricating shape memory composite foams with an interpenetrating polymer network (IPN) based on polyurethane (PU) and shape memory epoxy resin (SMER) via a simultaneous polymerization technique. The PU component is capable of constructing a foam structure and the SMER is grafted on the PU network to offer its shape memory property in the final IPN foams. A series of IPN foams without phase separation were produced due to good compatibility and a tight chemical interaction between PU and SMER components. The relationships of the geometry of the foam cell were investigated via varying compositions of PU and SMER. The physical property and shape memory property were also evaluated. The stimulus temperature of IPN shape memory composite foams, glass temperature (Tg), could be tunable by varying the constituents and Tg of PU and SMER. The mechanism of the shape memory effect of IPN foams has been proposed. The shape memory composite foam with IPN developed in this study has the potential to extend its application field.

  5. Time scales for drainage and imbibition in gellified foams: application to decontamination processes.

    PubMed

    Deleurence, Rémi; Saison, Tamar; Lequeux, François; Monteux, Cécile

    2015-09-21

    We probe the drainage and imbibition dynamics of foams in which the continuous aqueous phase is a transient gel-like network. To produce these foams, we provide a new method - a PVA (polyvinyl alcohol) solution is first foamed and then a cross-linker, Borax, is added, which binds reversibly to the PVA chains. The resulting foams are ultra-stable-over a month. We find that the typical time for gravitational drainage of the continuous phase can be slowed down from hours to several weeks by tuning the Borax concentration. We show that the Borax concentration controls both the bulk viscosity of the continuous phase and the surface viscosity of the air-water interfaces. From these results we suggest that the PVA molecules adsorbed at the bubble interfaces are highly cross-linked by the Borax molecules. We find that the capillary rise of a dyed liquid into these foams is orders of magnitude faster than the drainage flow, meaning that these foams can quickly absorb liquids. These results show that these foams could be used to clean or decontaminate surfaces covered with liquid wastes. Indeed we show that the PVA-Borax foam can easily be spread on a surface, absorb a liquid without destabilizing and be dried afterward to recover the waste.

  6. Effect of proctodeal gland foam on sperm kinetics in Japanese quail (Coturnix japonica).

    PubMed

    Farooq, U; Cho, S; Rybnik-Trzaskowska, P K; Singh, R P; Malecki, I A

    2015-01-15

    The proctodeal gland of the male Japanese quail produces thick foam that accompanies semen when it is transferred to the female. It is thought that this foam enhances fertilization by improving the motility of the sperm, but reports are conflicting because the effect of foam on sperm motility has only been assessed subjectively The velocity of individual sperm was not able to be measured accurately, variations were large, and small changes in motility could not be accurately evaluated. So, we tested the hypothesis that foam affects the motility of spermatozoa of Japanese quail by analyzing motility objectively using computer-assisted semen analysis and determining changes in sperm kinetics in the presence of different concentrations of proctodeal gland foam. The addition of 5% or 10% foam to the sperm suspension increased (P < 0.05) all sperm kinetic parameters (the curvilinear velocity, straight line velocity, the velocity of the average path, linearity, straightness, and beat cross frequency). As a result, the percentage of motile and progressive motile sperm also increased. All these parameters declined (P < 0.05) with a further increase in the concentration of foam to 15% and 20%. Furthermore, this effect was similar in males that were 8, 16, or 26 weeks of age. We conclude that sperm motility is enhanced by proctodeal gland foam, and this enhancement depends on its concentration.

  7. FPG1, a gene involved in foam formation in Saccharomyces cerevisiae.

    PubMed

    Blasco, Lucía; Veiga-Crespo, Patricia; Villa, Tomás G

    2011-06-01

    Foam formation in fermentations conducted by Saccharomyces cerevisiae, either at the beginning of the fermentation process or at the end in the case of sparkling wines, is due, to a large extent, to cell wall mannoproteins, which provide hydrophobicity to the yeast cells and favour their floating index as well as stabilization of the foam. The foam may be an undesirable by-product if it accumulates on top of the fermentation tanks, but its formation is a good property in either beer or sparkling wines. It is therefore important to know the yeast genes involved in foam formation, in order to suppress or potentiate their expression according to the end product to be obtained. The present study identified and characterized, for the first time in an oenological S. cerevisiae strain, a gene involved in foam formation, named FPG1 (foam-promoting gene). The protein encoded by FPG1 is a mannoprotein precursor present in the cell wall and somewhat homologous to Awa1p, a foaming protein described in a sake S. cerevisiae strain. A foamless strain was prepared by FPG1 deletion, and a foam hyper-producing strain was also constructed, thus allowing the conclusion that Fpg1p is a mannoprotein involved in yeast frothing.

  8. Foam-mat Drying Technology: A Review.

    PubMed

    Hardy, Z; Jideani, V A

    2015-07-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method which allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40 -90°C) at atmospheric pressure. Methyl cellulose (0.25 - 2%), egg white (3 - 20%), maltodextrin (0.5 - 05%) and gum Arabic (2 - 9%) are the commonly utilised additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous and sticky products which cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying and improved product quality it provides.

  9. Foaming of mixtures of pure hydrocarbons

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.; Woods, W. W.

    1950-01-01

    Mixtures of pure liquid hydrocarbons are capable of foaming. Nine hydrocarbons were mixed in pairs, in all possible combinations, and four proportions of each combination. These mixtures were sealed in glass tubes, and the foaming was tested by shaking. Mixtures of aliphatic with other aliphatic hydrocarbons, or of alkyl benzenes with other alkyl benzenes, did not foam. Mixtures of aliphatic hydrocarbons with alkyl benzenes did foam. The proportions of the mixtures greatly affected the foaming, the maximum foaming of 12 of 20 pairs being at the composition 20 percent aliphatic hydrocarbon, 80 percent alkyl benzene. Six seconds was the maximum foam lifetime of any of these mixtures. Aeroshell 120 lubricating oil was fractionated into 52 fractions and a residue by extraction with acetone in a fractionating extractor. The index of refraction, foam lifetime, color, and viscosity of these fractions were measured. Low viscosity and high index fractions were extracted first. The viscosity of the fractions extracted rose and the index decreased as fractionation proceeded. Foam lifetimes and color were lowest in the middle fractions. Significance is attached to the observation that none of the foam lifetimes of the fractions or residue is as high as the foam lifetime of the original Aeroshell, indicating that the foaming is not due to a particular foaming constituent, but rather to the entire mixture.

  10. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect

    William R. Rossen

    2004-06-14

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research will lay the groundwork for more applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media. Significant progress was made during this period on all three Tasks. Regarding Task 1, we continued comparisons of foam behavior in sandpacks with and without polymer and oil. As in our previous results, decane was moderately destabilizing to foam. Xanthan polymer did not stabilize foam in the presence of decane in this case. Rather, it appears to have destabilized foam, so that pressure gradient decreased in spite of the increase in aqueous-phase viscosity. Research on Task 2 included the first shake-down experiments with our new apparatus for gas-phase tracer tests for direct measurement of trapped-gas saturation with foam. In addition, we began to analyze CT images of gas-phase tracer in foam displacements, which offers an independent measure of trapped-gas fraction and insights into the roles of convection of tracer in flowing gas and diffusion into trapped gas. Research on Task 3 included foam generation experiments in heterogeneous sandpacks and beadpacks and modeling of discontinuous changes in state such as foam generation. The experiments found the same three regimes (coarse foam, strong foam, and intermediate regime) in heterogeneous sandpacks previously identified in homogeneous porous media. One implication is that there may be a minimum flow rate required for foam generation in even heterogeneous porous media. The dynamics in SAG foam processes in heterogeneous media are complex

  11. Analysis of aluminium in rat following administration of allergen immunotherapy using either aluminium or microcrystalline-tyrosine-based adjuvants.

    PubMed

    McDougall, Stuart A; Heath, Matthew D; Kramer, Matthias F; Skinner, Murray A

    2016-03-01

    Investigation into the absorption, distribution and elimination of aluminium in rat after subcutaneous aluminium adjuvant formulation administration using ICP-MS is described. Assays were verified under the principles of a tiered approach. There was no evidence of systemic exposure of aluminium, in brain or in kidney. Extensive and persistent retention of aluminium at the dose site was observed for at least 180 days after administration. This is the first published work that has quantified aluminium adjuvant retention based on the quantity of aluminium delivered in a typical allergy immunotherapy course. The results indicate that the repeated administration of aluminium-containing adjuvants will likely contribute directly and significantly to an individual's body burden of aluminium.

  12. [Aluminium allergy and granulomas induced by vaccinations for children].

    PubMed

    Andersen, Rosa Marie Ø; Zachariae, Claus; Johansen, Jeanne Duus

    2015-04-27

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site – vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark.

  13. Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction.

    PubMed

    Xue, Yuhua; Yu, Dingshan; Dai, Liming; Wang, Ruigang; Li, Dingqiang; Roy, Ajit; Lu, Fan; Chen, Hao; Liu, Yong; Qu, Jia

    2013-08-07

    Using a modified chemical vapor deposition (CVD) method, we have prepared a class of new graphene foams (GFs) doped with nitrogen, boron or both. Nitrogen-doped graphene foams (N-GFs) with a nitrogen doping level of 3.1 atom% were prepared by CVD of CH4 in the presence of NH3 while boron-doped graphene foams (B-GFs) with a boron doping level of 2.1 atom% were produced by using toluene and triethyl borate as a carbon and a boron source. On the other hand, graphene foams co-doped with nitrogen (4.5 atom%) and boron (3 atom%) (BN-GFs) were prepared by CVD using melamine diborate as the precursor. In all cases, scanning electron microscope (SEM) images revealed well-defined foam-like microstructures, while electrochemical measurements showed much higher electrocatalytic activities toward oxygen reduction reaction for the doped graphene foams than their undoped counterparts.

  14. Aluminium levels in spices and aromatic herbs.

    PubMed

    López, F F; Cabrera, C; Lorenzo, M L; López, M C

    2000-08-10

    We evaluated the levels of aluminium in a total of 72 samples of 17 different spices and aromatic herbs that are widely consumed in Spain, and in the Mediterranean diet, in general. Aluminium was determined in the samples mineralized with HNO3 and V2O5, using electrothermal atomization atomic absorption spectroscopy as the analytical technique. The accuracy and precision of the proposed method was verified against an NBS-certified reference material. Precision, expressed as relative standard deviation, ranged from 1.10 to 4.07%. The results obtained from recovery studies were of 97.90 +/- 1.20. Aluminium concentrations ranged from 3.74 to 56.50 microg/g (dry wt.). The presence of this metal was detected in all the samples we analysed.

  15. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.

    PubMed

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de Los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.

  16. Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of-Concept Use in Mammalian Cell Culture Applications

    PubMed Central

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Background Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. Methodology/Principal Findings We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. Conclusions/Significance We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein

  17. The effect of electron beam irradiation on preparation of sago starch/polyvinyl alcohol foams

    NASA Astrophysics Data System (ADS)

    Wongsuban, Benchamaporn; Muhammad, Kharidah; Ghazali, Zulkafli; Hashim, Kamaruddin; Ali Hassan, Muhammad

    2003-10-01

    Blends of sago starch (SS)/polyvinyl alcohol (PVA) were irradiated with doses ranging from 10 to 30 kGy. Foams were then produced from these irradiated blends using a microwave. Changes in the degree of crosslinking, gel strength, thermal stability morphology of blends and linear expansion of foam with increasing irradiation doses were subsequently investigated. It was observed that the degree of crosslinking was important in maximizing the positive effect on foams produced. The gel strength of SS/PVA blends was affected by the irradiation. The crosslinking by the irradiation enhanced the thermal stability of SS/PVA blends. The results also revealed that the highest linear expansion of foams could be produced by irradiation blends at 15 kGy. Changes in blend morphology were observed upon irradiation.

  18. Aluminium and zinc phosphide poisoning.

    PubMed

    Proudfoot, Alex T

    2009-02-01

    Aluminium and zinc phosphides are highly effective insecticides and rodenticides and are used widely to protect grain in stores and during its transportation. Acute poisoning with these compounds may be direct due to ingestion of the salts or indirect from accidental inhalation of phosphine generated during their approved use. Both forms of poisoning are mediated by phosphine which has been thought to be toxic because it inhibits cytochrome c oxidase. While phosphine does inhibit cytochrome C oxidase in vitro, the inhibition is much less in vivo. It has been shown recently in nematodes that phosphine rapidly perturbs mitochondrial morphology, inhibits oxidative respiration by 70%, and causes a severe drop in mitochondrial membrane potential. This failure of cellular respiration is likely to be due to a mechanism other than inhibition of cytochrome C oxidase. In addition, phosphine and hydrogen peroxide can interact to form the highly reactive hydroxyl radical and phosphine also inhibits catalase and peroxidase; both mechanisms result in hydroxyl radical associated damage such as lipid peroxidation. The major lethal consequence of phosphide ingestion, profound circulatory collapse, is secondary to factors including direct effects on cardiac myocytes, fluid loss, and adrenal gland damage. In addition, phosphine and phosphides have corrosive actions. There is usually only a short interval between ingestion of phosphides and the appearance of systemic toxicity. Phosphine-induced impairment of myocardial contractility and fluid loss leads to circulatory failure, and critically, pulmonary edema supervenes, though whether this is a cardiogenic or non-cardiogenic is not always clear. Metabolic acidosis, or mixed metabolic acidosis and respiratory alkalosis, and acute renal failure are frequent. Other features include disseminated intravascular coagulation, hepatic necrosis and renal failure. There is conflicting evidence on the occurrence of magnesium disturbances. There

  19. Aluminium and the human breast.

    PubMed

    Darbre, P D

    2016-06-01

    The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current usage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Photodynamic activity of aluminium (III) and zinc (II) phthalocyanines in Leishmania promastigotes.

    PubMed

    Escobar, Patricia; Hernández, Indira P; Rueda, Cesar M; Martínez, Fernando; Páez, Edgar

    2006-10-01

    Photodynamic therapy is a two-step procedure, involving the use of photosensitizing agents followed by selective illumination of the target lesion with visible light. It produces highly reactive oxygen species and subsequent cellular damage. This study was designed to determine whether Leishmania chagasi and L. panamensis promastigotes were sensitive to photodynamic therapy in vitro. Leishmania promastigotes were treated with aluminium phthalocyanine chloride and zinc phthalocyanine photosensitizers before illumination with visible light at 670 nm. The parasite photoactivity was calculated by sigmoidal regression analysis. Leishmania chagasi promastigotes were highly photosensitive to aluminium phthalocyanine chloride treatment with effective inhibitory dose50 (ED50) concentration values of 0.0033, 0.0083 and 0.0093 microM upon exposure to 10.0, 5.0, and 2.5 J/cm2 light intensities respectively. By contrast, the activity of aluminium phthalocyanine chloride on L. panamensis was significantly lower (P < 0.01) with ED50 values of 0.17, 0.25, 0.34 microM at the same light intensities. Zinc phthalocyanine activity was significantly (P < 0.01) less active than aluminium phthalocyanine chloride on both strains of these two species and no differences in zinc phthalocyanine activity were found between them. A dose-response phototoxic effect with both phthalocyanines was observed. Parasite inhibition was not observed after aluminium phthalocyanine chloride or zinc phthalocyanine treatment in the dark. The reference drugs hexadecylphosphocholine and amphotericin B were not photoactive. Treatment of Leishmania promastigotes with aluminium phthalocyanine chloride and zinc phthalocyanine followed by illumination with visible light at 670 nm inhibited in vitro growth of promastigotes of L. chagasi and L. panamensis. Photodynamic therapy against Leishmania could be a promising strategy for leishmaniasis treatment.

  1. Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses

    PubMed Central

    Stoddard, Frederick L.

    2017-01-01

    Background Faba bean is an important starch-based protein crop produced worldwide. Soil acidity and aluminium toxicity are major abiotic stresses affecting its production, so in regions where soil acidity is a problem, there is a gap between the potential and actual productivity of the crop. Hence, we set out to evaluate acidity and aluminium tolerance in a range of faba bean germplasm using solution culture and pot experiments. Methods A set of 30 accessions was collected from regions where acidity and aluminium are or are not problems. The accessions were grown in solution culture and a subset of 10 was grown first in peat and later in perlite potting media. In solution culture, morphological parameters including taproot length, root regrowth and root tolerance index were measured, and in the pot experiments the key measurements were taproot length, plant biomass, chlorophyll concentration and stomatal conductance. Result Responses to acidity and aluminium were apparently independent. Accessions Dosha and NC 58 were tolerant to both stress. Kassa and GLA 1103 were tolerant to acidity showing less than 3% reduction in taproot length. Aurora and Messay were tolerant to aluminium. Babylon was sensitive to both, with up to 40% reduction in taproot length from acidity and no detectable recovery from Al3+ challenge. Discussion The apparent independence of the responses to acidity and aluminium is in agreement with the previous research findings, suggesting that crop accessions separately adapt to H+ and Al3+ toxicity as a result of the difference in the nature of soil parent materials where the accession originated. Differences in rankings between experiments were minor and attributable to heterogeneity of seed materials and the specific responses of accessions to the rooting media. Use of perlite as a potting medium offers an ideal combination of throughput, inertness of support medium, access to leaves for detection of their stress responses, and harvest of clean

  2. Aluminium ring pulls: an invisible foreign body.

    PubMed Central

    Stewart, G D; Lakshmi, M V; Jackson, A

    1994-01-01

    The aluminium ring pulls associated with the latest designs of drinks cans can be relatively easily detached from their mounting on the top of the can and subsequently aspirated. Their small size predisposes them to lodge as foreign bodies (FBs) in the throat. The similarity of atomic number between soft tissue (7.5) and aluminium (13) makes detection of these FBs difficult on soft tissue radiography. If aspiration is suspected direct visualization and removal may be indicated even if radiography is negative. Images Fig. 1 Fig. 2 Fig. 3 PMID:7804592

  3. Panelized wall system with foam core insulation

    DOEpatents

    Kosny, Jan [Oak Ridge, TN; Gaskin, Sally [Houston, TX

    2009-10-20

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  4. Basics of compounding foam dosage forms.

    PubMed

    Allen, Loyd V

    2013-01-01

    The purpose of this article is to provide information on the use of foam dosage forms and pharmacists' ability to extemporaneously compound them. The article provides: (1) a discussion on the rationale and advantages of using foams, (2) a differentiation between the various types and structures of foams, (3) a list of the various types of ingredients and examples of each, and (4) a description of the preparation of pharmaceutical foams.

  5. Structure design of and experimental research on a two-stage laval foam breaker for foam fluid recycling.

    PubMed

    Wang, Jin-song; Cao, Pin-lu; Yin, Kun

    2015-07-01

    Environmental, economical and efficient antifoaming technology is the basis for achievement of foam drilling fluid recycling. The present study designed a novel two-stage laval mechanical foam breaker that primarily uses vacuum generated by Coanda effect and Laval principle to break foam. Numerical simulation results showed that the value and distribution of negative pressure of two-stage laval foam breaker were larger than that of the normal foam breaker. Experimental results showed that foam-breaking efficiency of two-stage laval foam breaker was higher than that of normal foam breaker, when gas-to-liquid ratio and liquid flow rate changed. The foam-breaking efficiency of normal foam breaker decreased rapidly with increasing foam stability, whereas the two-stage laval foam breaker remained unchanged. Foam base fluid would be recycled using two-stage laval foam breaker, which would reduce the foam drilling cost sharply and waste disposals that adverse by affect the environment.

  6. Impact of fiber source and feed particle size on swine manure properties related to spontaneous foam formation during anaerobic decomposition

    USDA-ARS?s Scientific Manuscript database

    Foam accumulation in deep-pit manure storage facilities is of concern for swine producers because of the logistical and safety-related problems it creates. A feeding trial was performed to evaluate the impact of feed grind size, fiber source, and manure age on foaming characteristics. Animals were f...

  7. Reproducibility of Aluminum Foam by Combining Sintering and Dissolution Process with Precursor Foaming Process

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Matsushita, Hayato; Koyama, Shinji; Suzuki, Ryosuke; Matsubara, Masaaki

    2017-07-01

    A preliminary study of the reproducibility of aluminum foam was performed. Aluminum foam was fabricated by a sintering and dissolution process. It was found that aluminum foam containing a blowing agent can be fabricated without the decomposition of the blowing agent, namely, the densified aluminum foam can be used as a foamable precursor for refoaming. By heat treatment of the densified aluminum foam containing the blowing agent, pores were reproduced in the aluminum.

  8. Highly concentrated foam formulation for blast mitigation

    DOEpatents

    Tucker, Mark D.; Gao, Huizhen

    2010-12-14

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  9. Foams for barriers and nonlethal weapons

    NASA Astrophysics Data System (ADS)

    Rand, Peter B.

    1997-01-01

    Our times demand better solutions to conflict resolution than simply shooting someone. Because of this, police and military interest in non-lethal concepts is high. Already in use are pepper sprays, bean-bag guns, flash-bang grenades, and rubber bullets. At Sandia we got a head start on non- lethal weapon concepts. Protection of nuclear materials required systems that went way beyond the traditional back vault. Dispensable deterrents were used to allow a graduated response to a threat. Sticky foams and stabilized aqueous foams were developed to provide access delay. Foams won out for security systems simply because you could get a large volume from a small container. For polymeric foams the expansion ratio is thirty to fifty to one. In aqueous foams expansion ratios of one thousand to ne are easily obtained. Recent development work on sticky foams has included a changeover to environmentally friendly solvents, foams with very low toxicity, and the development of non-flammable silicone resin based foams. High expansion aqueous foams are useful visual and aural obscurants. Our recent aqueous foam development has concentrated on using very low toxicity foaming agents combined with oleoresin capsicum irritant to provide a safe but highly irritating foam.

  10. Foamed well cementing compositions and methods

    SciTech Connect

    Bour, D.L.; Childs, J.D.

    1992-07-28

    This patent describes a method of cementing a well penetrating a salt containing subterranean formation. It comprises: forming a foamed cement composition; placing the foamed cement composition in contact with the salt containing formation; and permitting the foamed cement composition to set in contact with the salt containing formation to form a hardened mass of cement.

  11. Foam: The "Right Stuff" for Extreme Environments

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Imi-Tech Corporation, in cooperation with Johnson Space Center, introduced the Solimide AC-500 series of polyimide foam products designed to meet the needs of the aircraft/aerospace industry. These foams accomodate the requirements of state-of-the-art insulation systems. Solimide polyimide foams are currently used in defense, industrial and commercial applications.

  12. Foam vessel for cryogenic fluid storage

    SciTech Connect

    Spear, Jonathan D

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  13. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become

  14. Reflectivity and Emissivity of Sea Foam at L-band

    NASA Astrophysics Data System (ADS)

    Anguelova, M. D.; Burrage, D. M.; Bettenhausen, M. H.

    2015-12-01

    The ubiquitous use of the Global Positioning System (GPS) for navigation is well known. GPS operates at L-band frequencies of 1-2 GHz. Because these low microwave frequencies penetrate clouds and rain, GPS signals can detect the specular reflection and diffuse scattering from flat and rough surfaces. This makes the GPS signals useful for geophysical measurements in all weather conditions. Aircraft and satellite-borne GPS reflectometers have been shown to successfully sense ocean surface wind. L-band reflectometry measures changes in ocean surface reflectivity due to changes of ocean surface roughness as wind increases. The use of GPS, together with other Global Navigation Satellite Systems, will soon provide hundreds of L-band transmitters in space and thus high temporal resolution for geophysical measurements. With its all weather capability and high temporal resolution, GPS reflectometry can provide wind speed data in hurricane conditions. Such capabilities enable the new Cyclone Global Navigation Satellite System (CYGNSS) project which aims to improve the skill of hurricane intensity forecasts. However, wave breaking under high winds produces sea foam (whitecaps) and sea spray, which complicate processes acting at the air-sea interface. Whitecaps and sea spray have high emissivity at L-band and will thus reduce the ocean reflectivity needed for wind speed retrieval. A combination of L-band reflectometry and L-band radiometry can thus help to better understand and model the physical mechanisms governing the L-band sensor responses. We use a radiative transfer model formulated in terms of foam layer thickness and void fraction to evaluate both the reflectivity and emissivity of a foam-covered sea surface. We report on the attenuation of L-band radiation in foam layers, and the corresponding foam reflectivity, for layers with varying thicknesses and void fractions. The reflected GPS signal sensitivity to wind speed variations in the presence of foam is assessed.

  15. Footwear and Foam Surface Alter Gait Initiation of Typical Subjects.

    PubMed

    Vieira, Marcus Fraga; Sacco, Isabel de Camargo Neves; Nora, Fernanda Grazielle da Silva Azevedo; Rosenbaum, Dieter; Lobo da Costa, Paula Hentschel

    2015-01-01

    Gait initiation is the task commonly used to investigate the anticipatory postural adjustments necessary to begin a new gait cycle from the standing position. In this study, we analyzed whether and how foot-floor interface characteristics influence the gait initiation process. For this purpose, 25 undergraduate students were evaluated while performing a gait initiation task in three experimental conditions: barefoot on a hard surface (barefoot condition), barefoot on a soft surface (foam condition), and shod on a hard surface (shod condition). Two force plates were used to acquire ground reaction forces and moments for each foot separately. A statistical parametric mapping (SPM) analysis was performed in COP time series. We compared the anterior-posterior (AP) and medial-lateral (ML) resultant center of pressure (COP) paths and average velocities, the force peaks under the right and left foot, and the COP integral x force impulse for three different phases: the anticipatory postural adjustment (APA) phase (Phase 1), the swing-foot unloading phase (Phase 2), and the support-foot unloading phase (Phase 3). In Phase 1, significantly smaller ML COP paths and velocities were found for the shod condition compared to the barefoot and foam conditions. Significantly smaller ML COP paths were also found in Phase 2 for the shod condition compared to the barefoot and foam conditions. In Phase 3, increased AP COP velocities were found for the shod condition compared to the barefoot and foam conditions. SPM analysis revealed significant differences for vector COP time series in the shod condition compared to the barefoot and foam conditions. The foam condition limited the impulse-generating capacity of COP shift and produced smaller ML force peaks, resulting in limitations to body-weight transfer from the swing to the support foot. The results suggest that footwear and a soft surface affect COP and impose certain features of gait initiation, especially in the ML direction of

  16. Footwear and Foam Surface Alter Gait Initiation of Typical Subjects

    PubMed Central

    Vieira, Marcus Fraga; Sacco, Isabel de Camargo Neves; Nora, Fernanda Grazielle da Silva Azevedo; Rosenbaum, Dieter; Lobo da Costa, Paula Hentschel

    2015-01-01

    Gait initiation is the task commonly used to investigate the anticipatory postural adjustments necessary to begin a new gait cycle from the standing position. In this study, we analyzed whether and how foot-floor interface characteristics influence the gait initiation process. For this purpose, 25 undergraduate students were evaluated while performing a gait initiation task in three experimental conditions: barefoot on a hard surface (barefoot condition), barefoot on a soft surface (foam condition), and shod on a hard surface (shod condition). Two force plates were used to acquire ground reaction forces and moments for each foot separately. A statistical parametric mapping (SPM) analysis was performed in COP time series. We compared the anterior-posterior (AP) and medial-lateral (ML) resultant center of pressure (COP) paths and average velocities, the force peaks under the right and left foot, and the COP integral x force impulse for three different phases: the anticipatory postural adjustment (APA) phase (Phase 1), the swing-foot unloading phase (Phase 2), and the support-foot unloading phase (Phase 3). In Phase 1, significantly smaller ML COP paths and velocities were found for the shod condition compared to the barefoot and foam conditions. Significantly smaller ML COP paths were also found in Phase 2 for the shod condition compared to the barefoot and foam conditions. In Phase 3, increased AP COP velocities were found for the shod condition compared to the barefoot and foam conditions. SPM analysis revealed significant differences for vector COP time series in the shod condition compared to the barefoot and foam conditions. The foam condition limited the impulse-generating capacity of COP shift and produced smaller ML force peaks, resulting in limitations to body-weight transfer from the swing to the support foot. The results suggest that footwear and a soft surface affect COP and impose certain features of gait initiation, especially in the ML direction of

  17. Microcellular carbon foam and method

    DOEpatents

    Simandl, R.F.; Brown, J.D.

    1993-05-04

    A microcellular carbon foam is characterized by a density in the range of about 30 to 1,000 mg/cm[sup 3], substantially uniform distribution of cell sizes of diameters less than 100 [mu]m with a majority of the cells being of a diameter of less than about 10 [mu]m. The foam has a well interconnected strut morphology providing open porosity, and an expanded d(002) X-ray turbostatic spacing greater than 3.50 angstroms. The precursor for the carbon foam is prepared by the phase inversion of polyacrylonitrile in a solution consisting essentially of at least one alkali metal halide and a phase inversion solvent for the polyacrylonitrile.

  18. Dynamics of Aqueous Foam Drops

    NASA Technical Reports Server (NTRS)

    Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn

    2001-01-01

    We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.

  19. Improved construction materials for polar regions using microcellular thermoplastic foams

    NASA Technical Reports Server (NTRS)

    Cunningham, Daniel J.

    1994-01-01

    Microcellular polymer foams (MCF) are thermoplastic foams with very small cell diameters, less than 10 microns, and very large cell densities, 10(exp 9) to 10(exp 15) cells per cubic centimeter of unfoamed material. The concept of foaming polymers with microcellular voids was conceived to reduce the amount of material used for mass-produced items without compromising the mechanical properties. The reasoning behind this concept was that if voids smaller than the critical flaw size pre-existing in polymers were introduced into the matrix, they would not affect the overall strength of the product. MCF polycarbonate (PC), polystyrene (PS), and polyvinyl chloride (PVC) were examined to determine the effects of the microstructure towards the mechanical properties of the materials at room and arctic temperatures. Batch process parameters were discovered for these materials and foamed samples of three densities were produced for each material. To quantify the toughness and strength of these polymers, the tensile yield strength, tensile toughness, and impact resistance were measured at room and arctic temperatures. The feasibility of MCF polymers has been demonstrated by the consistent and repeatable MCF microstructures formed, but the improvements in the mechanical properties were not conclusive. Therefore the usefulness of the MCF polymers to replace other materials in arctic environments is questionable.

  20. Synthesis and characterization of Ti-Ta-Nb-Mn foams.

    PubMed

    Aguilar, C; Guerra, C; Lascano, S; Guzman, D; Rojas, P A; Thirumurugan, M; Bejar, L; Medina, A

    2016-01-01

    The unprecedented increase in human life expectancy have produced profound changes in the prevailing patterns of disease, like the observed increased in degenerative disc diseases, which cause degradation of the bones. Ti-Nb-Ta alloys are promising materials to replace the damaged bone due to their excellent mechanical and corrosion resistance properties. In general metallic foams are widely used for medical application due to their lower elastic moduli compare to bulk materials. In this work we studied the synthesis of 34Nb-29Ta-xMn (x: 2, 4 and 6 wt.% Mn) alloy foams (50% v/v) using ammonium hydrogen carbonate as a space holder. Alloys were produced through mechanical alloying in a planetary mill for 50h. Green compacts were obtained by applying 430 MPa pressure. To remove the space holder from the matrix the green compacts were heated to 180 °C for 1.5h and after sintered at 1300 °C for 3h. Foams were characterized by x-ray diffraction, scanning, transmission electron microscopy and optical microscopy. The elastic modulus of the foam was measured as ~30 GPa, and the values are almost equal to the values predicted using various theoretical models. Copyright © 2015 Elsevier B.V. All rights reserved.