Science.gov

Sample records for aluminium powder alloys

  1. Microstructure and properties of hot compacted powders of aluminium alloys.

    PubMed

    Lityńska-Dobrzyńska, L; Dutkiewicz, J; Maziarz, W; Kanciruk, A

    2009-11-01

    Atomized 6061 aluminium alloy powders with and without the addition of 2 wt% Zr were milled for 80 h in a planetary ball mill and hot pressed in vacuum. The milled powders showed microhardness of about 170 HV, which increased after hot pressing up to 260 HV and up to 280 HV for powders without and with the Zr additions, respectively. Compression tests showed the high yield stress of 300 MPa obtained for the hot-pressed sample produced from the initial powders compared with ultimate compression strength of above 800 MPa for that of the milled sample and slightly higher for that with Zr additions. The effect of hot pressing on the structure of powders was investigated using a conventional analytical and high-resolution electron microscopy and high angle annular dark-field scanning transmission electron microscopy combined with energy dispersive X-ray microanalysis. The samples of initial powders hot pressed in vacuum showed a cell structure with particles of the Mg(2)Si and AlFeSi phases in intercell areas. In the milled and hot-pressed sample, the homogeneous structure of small grains of size below 200 nm was observed. The AlFeSi and Mg(2)Si particles with size 20-100 nm were uniformly distributed as well as the Zr rich particles in the Zr containing alloy. The Zr-rich particles containing up to 80 at% Zr were identified as a metastable fcc cubic phase with lattice parameter a= 0.48 nm.

  2. Aluminium alloys with transition metals prepared by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Kucera, V.; Prusa, F.; Vojtech, D.

    2017-02-01

    Powder metallurgy represented by mechanical alloying and spark plasma sintering was used for preparation of the AlFe16 and the AlSi20Fe16 alloys. Microstructure of the both alloys consisted of very fine intermetallic phases homogenously dispersed in the matrix of α-Al solid solution. Fine nature of microstructure led to promising results of compressive stress-strain tests performed at laboratory and elevated temperature of 400 °C. The compressive strengths of the AlSi20Fe16 and the AlFe16 alloys at laboratory temperature were 780 MPa and 508 MPa, respectively. Elevated temperature resulted in drop of the compressive strengths to 480 MPa and 211 MPa, respectively. However, the results of investigated alloys outperformed the thermally stable AlSi12Cu1Mg1Ni1 (wt. %) used as reference material.

  3. TEM and HRTEM studies of ball milled 6061 aluminium alloy powder with Zr addition.

    PubMed

    Lityńska-Dobrzyńska, L; Dutkiewicz, J; Maziarz, W; Rogal, Ł

    2010-03-01

    The effect of mechanical alloying on the microstructure of atomized 6061 aluminium alloy powder and 6061 powder with a zirconium addition was studied in the work. The atomized 6061 aluminium alloy powder and 6061 powder with addition of 2 wt.% Zr were milled in a planetary ball mill and investigated using X-ray diffraction measurements, conventional and high-resolution electron microscopy (TEM/HRTEM) and high-angle annular dark field scanning transmission electron microscopy combined with energy dispersive X-ray microanalysis. An increase of stresses was observed in milled powders after the refinement of crystallites beyond 100 nm. In the powder with zirconium addition, some part of the Zr atoms diffused in aluminium forming a solid solution containing up to 0.5 wt.% Zr. The remaining was found to form Zr-rich particles containing up to 88 wt.% Zr and were identified as face centred cubic (fcc) phase with lattice constant a= 0.48 nm. That fcc phase partially transformed into the L1(2) ordered phase. Eighty-hour milling brought an increase of microhardness (measured with Vickers method) from about 50 HV (168 MPa) for the initial 6061 powder to about 170 HV (552 MPa). The addition of zirconium had no influence on the microhardness.

  4. Extrusion of aluminium alloys

    SciTech Connect

    Sheppard, T.

    1999-01-01

    In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process. The contents include: continuum principles; metallurgical features affecting the extrusion of Al-alloys; extrusion processing; homogenization and extrusion conditions for specific alloys; processing of 6XXX alloys; plant utilization; Appendix A: specification of AA alloys and DIN equivalents; Appendix B: chemical compositions; and Appendix C: typical properties.

  5. Aluminium Pneumoconiosis I. In Vitro Comparison of Stamped Aluminium Powders Containing Different Lubricating Agents and a Granular Aluminium Powder

    PubMed Central

    Corrin, B.

    1963-01-01

    The discrepancy in previous reports of the action of aluminium on the lung may be explained by differences between stamped and granular aluminium powders. A stamped powder of the variety causing pulmonary fibrosis showed a brisk reaction with water, but a granular powder was unreactive. This difference is primarily due to the granular particles being covered by inert aluminium oxide, the formation of which is partially prevented in the stamping process by stearine and mineral oil. The reactivity of the flake-like stamped particles is also dependent on their large surface area per unit volume. The appearance of aluminium pneumoconiosis in Britain is explained by the introduction of mineral oil into the stamping industry for, in contrast to stearine, mineral oil permits the powder to react with water. The lung damage is believed to be caused by a soluble form of aluminium. PMID:14072616

  6. Consolidation of copper and aluminium powders by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Saiprasad, M.; Atchayakumar, R.; Thiruppathi, K.; Raghuraman, S.

    2016-09-01

    Processing in the powder metallurgy route has emerged as an economical process for the production of near net shaped components with a wide range of desired mechanical properties suitable for various applications of industrial needs. This research work was conducted with an objective of studying the improvisation of density and hardness of Copper-Aluminium alloy prepared by spark plasma sintering. Cu-Al alloy with a composition of 95% copper and 5% aluminium was prepared by SPS process. SPS is a low voltage, DC pulse current activated, pressure-assisted sintering, which enables sintering at lower temperatures and shorter durations. The combination offered by Cu-Al alloy of high strength and high corrosion resistance results their applications under a wide variety of conditions. The density and hardness of the prepared sample were measured by conducting appropriate tests. Apparently, the values of hardness and density of the specimen prepared by SPS seemed to be better than that of conventional sintering. The experimental procedure, testing methodologies and analysis are presented.

  7. Investigation of the formability of aluminium alloys at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Tisza, M.; Budai, D.; Kovács, P. Z.; Lukács, Zs

    2016-11-01

    Aluminium alloys are more and more widely applied in car body manufacturing. Increasing the formability of aluminium alloys are one of the most relevant tasks in todays’ research topics. In this paper, the focus will be on the investigation of the formability of aluminium alloys concerning those material grades that are more widely applied in the automotive industry including the 5xxx and 6xxx aluminium alloy series. Recently, besides the cold forming of aluminium sheets the forming of aluminium alloys at elevated temperatures became a hot research topic, too. In our experimental investigations, we mostly examined the EN AW 5754 and EN AW 6082 aluminium alloys at elevated temperatures. We analysed the effect of various material and process parameters (e.g. temperature, sheet thickness) on the formability of aluminium alloys with particular emphasis on the Forming Limit Diagrams at elevated temperatures in order to find the optimum forming conditions for these alloys.

  8. Foaming of aluminium-silicon alloy using concentrated solar energy

    SciTech Connect

    Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.; Martinez, D.

    2010-06-15

    Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mould design. (author)

  9. Aluminium Pneumoconiosis II. Effect on the Rat Lung of Intratracheal Injections of Stamped Aluminium Powders Containing Different Lubricating Agents and of a Granular Aluminium Powder

    PubMed Central

    Corrin, B.

    1963-01-01

    Three stamped aluminium powders were injected into the lungs of rats. One powder contained stearine and another mineral oil, whilst the third had had its lubricant removed. The powders produced a rapid and marked fibrosis of equal severity. It is concluded that aluminium rather than any additive in the powders is the fibrogenic agent. The protective action of stearine demonstrated in vitro was not confirmed in vivo, suggesting that pulmonary fibrosis may also occur in men handling stearine-containing powders. Such a case has recently been reported by McLaughlin et al. (1962), but this is exceptional to the general industrial experience. A granular aluminium powder was also injected into the lungs of rats. In accordance with the results of in vitro experiments, this produced only minimal fibrosis, contrasting strongly with the action of the stamped powders. Images PMID:14072617

  10. Precipitate strengthening of nanostructured aluminium alloy.

    PubMed

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals.

  11. 3D printing of high-strength aluminium alloys.

    PubMed

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  12. Acoustic Emission from the Aluminium Alloy 7050.

    DTIC Science & Technology

    1979-10-01

    thick-section applications, has good stress - corrosion resistance, and is now being used in airframe construction. In this report, we present our AE...160.00 1S0.00 200.90 2SO.I9 TIMlE (sec) Fig. 8 Count-rate/time and nominal- stress /time curves for 7050 C-specimen (a) and 0-speimen lb). CO 0 CC 0T LLQ...A094 38" AERONAUTICAL RESEARCH LABS MELBOURNE (AUSTRALIA) F/6 11/6 ACOUSTIC EMISSION FROM THE ALUMINIUM ALLOY 7050 .(U) OCT 79 S M COUSLAND, C M SCALA

  13. Forming of aluminium alloy friction stir welds

    NASA Astrophysics Data System (ADS)

    Bruni, Carlo

    2016-10-01

    The present paper aims at investigating, through analytical models, numerical models and experiments, the effect of the warm deformation phase, realised with an in temperature upsetting, on the weld previously performed by friction stir lap welding on aluminium alloy blanks. The investigation allows to show the deformation zones after upsetting that determine the homogenisation of the weld section. The analytical model allows to relate the friction factor with the upsetting load. The presence on the weld of not elevated friction factor values determines the deformation and localisation levels very useful for the weld. Such methodology allows to improve the weld itself with the forming phase.

  14. Deviatoric response of the aluminium alloy, 5083

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, Gareth; Hazell, Paul; Millett, Jeremy; Bourne, Neil

    2009-06-01

    Aluminium alloys such as 5083 are established light weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  15. Supersaturated Aluminum Alloy Powders.

    DTIC Science & Technology

    1981-07-15

    shown in Fig. 18 . It .an be clearly seen that most of the iron is concentrated in the precipitates (Fig. 18 ), X-ray mapping immage for the chromium...At 232°C our alloys are comparable to 2� and 2618 in their tensile properties, and except for alloy #1 which at t i temperature has elongation of...demonstrate better yield strength and UTS than the 2219, 2618 and are comparable to the ALCOA alloy. They show however higher ductility than the ALCOA alloy

  16. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    SciTech Connect

    Robinson, J.S.; Redington, W.

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  17. Aluminium alloys in municipal solid waste incineration bottom ash.

    PubMed

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  18. Examples of liquiq metal embrittlement in industrial aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bréchet, Y.; Rodine, A.; Véron, M.; Péron, S.; Deschamps, A.

    2002-09-01

    Liquid metal embrittlement (LME) phenomena were investigated in two industrial aluminium alloys. Gallium penetration in 7010 alloys was systematically investigated to shed light on the effect of microstructure and plasticity ahead of the crack tip. Hot temperature shortness in 5083 alloy is given as an example of cleavage induced by LME.

  19. Computer modelling of age hardening for cast aluminium alloys

    NASA Astrophysics Data System (ADS)

    Wu, Linda; Ferguson, W. George

    2009-08-01

    Age hardening, or precipitation hardening, is one of the most widely adopted techniques for strengthening of aluminium alloys. Although various age hardening models have been developed for aluminium alloys, from the large volume of literature reviewed, it appears that the bulk of the research has been concentrated on wrought aluminium alloys, only a few of the established precipitation models have been applied to the casting aluminium alloys. In the present work, there are two modelling methods that have been developed and applied to the casting aluminium alloys A356 and A357. One is based on the Shercliff-Ashby methodology to produce a process model, by which we mean a mathematical relationship between process variables (alloy composition, ageing temperature and time) and material properties (yield strength or hardness) through microstructure evolution (precipitate radius, volume fraction). The other method is based on the Kampmann and Wagner Numerical (KWN) model which deals with concomitant nucleation, growth and coarsening and is thus capable of predicting the full evolution of the particle size distribution and then a strength model is used to evaluate the resulting change in hardness or yield strength at room temperature by taking into account contributions from lattice resistance, solid solution hardening and precipitation hardening.

  20. Ageing characteristics of aluminium alloy aluminosilicate discontinuous fiber reinforced composites

    SciTech Connect

    Nath, D.; Singh, V.

    1999-03-05

    Development of continuous fiber reinforced metal matrix composites is aimed at providing high specific strength and stiffness needed for aerospace and some critical high temperature structural applications. Considerable efforts have been made, during the last decade, to improve the strength of age-hardening aluminium alloy matrix composites by suitable heat treatment. It has also been well established that age-hardenable aluminium alloy composites show accelerated ageing behavior because of enhanced dislocation density at the fiber/matrix interface resulting from thermal expansion mismatch between ceramic fiber and the metal matrix. The accelerated ageing of aluminium alloy composites either from dislocation density or the residual stress, as a result of thermal expansion mismatch is dependent on the size of whisker and particulate. Investigations have also been made on the effect of volume fraction of particulate on the ageing behavior of aluminium alloys. The present investigation is concerned with characterization of age-hardening behavior of an Al-Si-Cu-Mg(AA 336) alloy alumino-silicate discontinuous fiber-reinforced composites (referred to as aluminium MMCs in the present text) being developed for automotive pistons. An effort is made to study the effect of volume fraction of the reinforcement on age-hardening behavior of this composite.

  1. Incremental forming of aluminium alloys in cryogenic environment

    NASA Astrophysics Data System (ADS)

    Vanhove, Hans; Mohammadi, Amirahmad; Duflou, Joost R.

    2016-10-01

    Incremental Sheet Forming processes suffer from stringent forming limits, restricting the range of producible geometries. Through in-process cooling of the sheet to cryogenic level, this paper explores the potential of altering material properties benefiting the formability and residual hardness of different aluminium alloys. Global cooling of aluminium sheets with liquid nitrogen and dry ice allows to reach temperatures of 78K and 193K respectively. Extended with experiments at room temperature (293K), these tests form a base for comparison of surface quality, formability and residual hardness. As an aluminium alloy commonly used for its high strength to weight ratio, but suffering from limited formability compared to draw-quality steels, AA5083-H111 is of interest for cryogenic treatment. AA1050-H24 is included in the test campaign as a base for commercially pure aluminium.

  2. The Potential of the Cold Spray Process for the Repair and Manufacture of Aluminium Alloy Parts

    NASA Astrophysics Data System (ADS)

    Harvey, David; Marrocco, Tiziana

    Being capable of producing deposits up to several centimetres thick, the cold spray process is emerging as an attractive technology for the manufacture and repair of high value aluminium and magnesium components. During the cold spray process fine aluminium or aluminium alloy powders are propelled at high velocities in the solid state at the target substrate. Due to the high velocity particle impacts, strong bonds are formed between the coating and the substrate and between particles within the deposited layer. Metallographic sections of cold sprayed coatings reveal microstructures characterised by very low porosity. With the objective of improving the abrasive wear and erosion resistance of cold sprayed coatings, ceramic reinforcements such as SiC, B4C and Al2O3 have been introduced in the feedstock to produce composite coatings, and these composite materials have been deposited with thicknesses in excess of 25mm. Several applications employing commercially available equipment have achieved industrialisation.

  3. Constitutive modelling of aluminium alloy sheet at warm forming temperatures

    NASA Astrophysics Data System (ADS)

    Kurukuri, S.; Worswick, M. J.; Winkler, S.

    2016-08-01

    The formability of aluminium alloy sheet can be greatly improved by warm forming. However predicting constitutive behaviour under warm forming conditions is a challenge for aluminium alloys due to strong, coupled temperature- and rate-sensitivity. In this work, uniaxial tensile characterization of 0.5 mm thick fully annealed aluminium alloy brazing sheet, widely used in the fabrication of automotive heat exchanger components, is performed at various temperatures (25 to 250 °C) and strain rates (0.002 and 0.02 s-1). In order to capture the observed rate- and temperature-dependent work hardening behaviour, a phenomenological extended-Nadai model and the physically based (i) Bergstrom and (ii) Nes models are considered and compared. It is demonstrated that the Nes model is able to accurately describe the flow stress of AA3003 sheet at different temperatures, strain rates and instantaneous strain rate jumps.

  4. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  5. Influence of Process Parameters on the Quality of Aluminium Alloy EN AW 7075 Using Selective Laser Melting (SLM)

    NASA Astrophysics Data System (ADS)

    Kaufmann, N.; Imran, M.; Wischeropp, T. M.; Emmelmann, C.; Siddique, S.; Walther, F.

    Selective laser melting (SLM) is an additive manufacturing process, forming the desired geometry by selective layer fusion of powder material. Unlike conventional manufacturing processes, highly complex parts can be manufactured with high accuracy and little post processing. Currently, different steel, aluminium, titanium and nickel-based alloys have been successfully processed; however, high strength aluminium alloy EN AW 7075 has not been processed with satisfying quality. The main focus of the investigation is to develop the SLM process for the wide used aluminium alloy EN AW 7075. Before process development, the gas-atomized powder material was characterized in terms of statistical distribution: size and shape. A wide range of process parameters were selected to optimize the process in terms of optimum volume density. The investigations resulted in a relative density of over 99%. However, all laser-melted parts exhibit hot cracks which typically appear in aluminium alloy EN AW 7075 during the welding process. Furthermore the influence of processing parameters on the chemical composition of the selected alloy was determined.

  6. Microstructural and Mechanical Characterization of Zr Modified 2014 Aluminium Alloy

    DTIC Science & Technology

    2007-11-02

    heated using an induction furnace; the temperature stabilisation time was 6 min. -The gauge section of samples was a solid cylinder with a length (L) of...torsion tests - Fatigue tests -Fracture observations Introduction -Aluminium sheets require a good attitude to the cold metal forming. -Al-Cu-Mg alloys...precipitation occurring during hot deformation or heat treatment Introduction -The precipitation sequence for 2014 Al alloys has been extensively

  7. Fatigue in a heat treatable high silicon containing aluminium alloy

    NASA Astrophysics Data System (ADS)

    González, J. A.; Talamantes-Silva, J.; Valtierra, S.; Colás, Rafael

    2017-05-01

    The use of cast aluminium alloys in automobiles contributes to reductions in weight and fuel consumption without impairing the safety for the occupants or the performance of the car. Most of the alloys used are heat treatable hypoeutectic Al-Si alloys, which have the drawback of exhibiting low wear resistance. So industry relies in wear resistant alloys, such as grey iron, for the liners of the combustion chambers in engine blocks, which increase the weight of the engine. Therefore, it is of interest to cast high silicon containing alloys into engine components that are able to resist wear while maintaining the mechanical properties required by the components. This work presents the result of the work carried out in a high silicon containing heat treatable aluminium alloy as it is subjected to high cycle fatigue. The alloy was prepared and cast in ingots designed to promote one dimensional solidification gradient to obtain samples to study the high cycle fatigue. The material was machined into hour-glass specimens that were tested at room temperature in a servohydraulic machine under load control following the stair case method. The results show that the resistance to fatigue depends on the microstructure of the sample, as the fatigue cracks originate in pores close to the surface of the sample and propagate through the eutectic aggregate. The results from this work are compared with those from previously obtained with hypoeutectic alloys.

  8. Reduction Expansion Synthesis for Magnetic Alloy Powders

    DTIC Science & Technology

    2015-12-01

    21 1. Preparation of Precursors ...19 Magnetic Agglomeration of AlNiCo Alloys..............................................20 Figure 9. Metal Powder Precursors in Mortar...Prior to Mixing .................................22 Figure 10. Precursor Slurry in Alumina Boat for Heating ..........................................23

  9. The Corrosion Resistance and Paint Adhesion Properties of Chromate Conversion Coatings on Aluminium and Its Alloys

    DTIC Science & Technology

    1976-05-01

    aluminium and its alloys has been evaluated with respect to both corrosion resistance of, and paint adhesion to, the chromate films. The process involves...The findings in this Report will be used as the basis for a Defence Standard for chromate conversion coatings for aluminium and aluminium alloys...3 PROPRIETARY CHROMATE CONVERSION COATINGS FOR ALUMINIUM 17 4 PAINT ADHESION 19 5 DISCUSSION 21 6 CONCLUSIONS 24 Acknowledgments 25 Appendix A

  10. Recycling of aluminium scrap for secondary Al-Si alloys.

    PubMed

    Velasco, Eulogio; Nino, Jose

    2011-07-01

    An increasing amount of recycled aluminium is going into the production of aluminium alloy used for automotive applications. In these applications, it is necessary to control and remove alloy impurities and inclusions. Cleaning and fluxing processes are widely used during processing of the alloys for removal of inclusions, hydrogen and excess of magnesium. These processes use salt fluxes based in the system NaCl-KCl, injection of chlorine or mixture of chlorine with an inert gas. The new systems include a graphite wand and a circulation device to force convection in the melt and permit the bubbling and dispersion of reactive and cleaning agents. This paper discusses the recycling of aluminium alloys in rotary and reverberatory industrial furnaces. It focuses on the removal of magnesium during the melting process. In rotary furnaces, the magnesium lost is mainly due to the oxidation process at high temperatures. The magnesium removal is carried out by the reaction between chlorine and magnesium, with its efficiency associated to kinetic factors such as concentration of magnesium, mixing, and temperature. These factors are also related to emissions generated during the demagging process. Improvements in the metallic yield can be reached in rotary furnaces if the process starts with a proper salt, with limits of addition, and avoiding long holding times. To improve throughput in reverberatories, start the charging with high magnesium content material and inject chlorine gas if the molten metal is at the right temperature. Removal of magnesium through modern technologies can be efficiently performed to prevent environmental problems.

  11. Monitoring Precipitation during Rapid Quenching of Aluminium Alloys by Calorimetric Reheating Experiments

    NASA Astrophysics Data System (ADS)

    Kessler, Olaf; Zohrabyan, Davit; Milkereit, Benjamin; Schick, Christoph

    Several age hardening aluminium alloys, like high alloyed 2XXX, 6XXX and 7XXX alloys require high critical quenching rates of some 100 K/s from solution annealing to suppress premature precipitation and achieve maximum strength after aging. Knowledge of the precipitation behaviour during quenching is crucial for the design of quenching processes of aluminium alloys. For monitoring the precipitation behaviour during moderate quenching, a calorimetric method (0.01 to 5 K/s) has already been successfully developed. New Differential Fast Scanning Calorimeters (DFSC, up to some 106 K/s) allow rapid quenching of aluminium alloys, but due to weak precipitation reactions the quenching results can hardly be evaluated. Hence, a new method has been developed, to monitor precipitation during rapid quenching of aluminium alloys by calorimetric reheating experiments. Quenching and reheating experiments of high alloyed, quench sensitive aluminium alloys, like 7049A will be presented.

  12. Results of the Experiment: Welding of Aluminium Alloy in Microgravity

    NASA Astrophysics Data System (ADS)

    Ferretti, S.; Amadori, K.; Boccalatte, A.; Alessandrini, M.; Freddi, A.; Persiani, F.; Poli, G.

    2002-01-01

    An experiment on "dendritic growth in aluminium alloy welding" was performed by the UNIBO team during the 3rd Student Parabolic Flight Campaign and the 30th Professional Parabolic Flight Campaign organised by ESA. Its purpose was to achieve a better understanding of crystal growth during tungsten inert gas (TIG) welding of an aluminium alloy to define the main parameters affecting the process under microgravity condition. The experiment had 4 phases : The paper discusses different aspects of the research, paying particularly attention not only to the influence of gravity, but also to other factors influencing welding microstructure, such as the Marangoni effect and the thermal transfer from the electrode to the material. The paper conclude the dissertation of the results offering new perspectives for welding studies and proposing a new approach to the scientific community to investigate this materials processes for manufacturing.

  13. Research progress of aluminium alloy endplates for PEMFCs

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Hou, Ming; Yan, Xiqiang; Hou, Junbo; Luo, Xiaokuan; Shao, Zhigang; Yi, Baolian

    The endplate is a crucial component in a proton exchange membrane fuel cell (PEMFC) stack. It can provide the necessary rigidity and strength for the stack. An aluminium alloy is one of the ideal materials for PEMFC endplates because of its low density and high rigidity. But it does not meet the requirements of corrosion resistance and electrical insulation in PEMFC environments. In this work, methods of sealing treatments and the conditions of aluminium alloy anodization were investigated. Corrosion resistances of the samples prepared by different technologies were evaluated in simulated PEMFC environments. The results showed that the corrosion resistance of the samples sealed by epoxy resin was greatly improved compared with those sealed in boiling water, and the samples anodized at a constant current density performed better than those anodized at a constant voltage. By insulation measurements, all of the samples showed good electrical insulation. The aluminium alloy endplate anodized at a constant current density and sealed with thermosetting bisphenol-A epoxy resin exhibited promising potential for practical applications by assembling it in a PEMFC stack and applying a life test.

  14. Influence of Nano Aluminium Powder Produced by Wire Explosion Process at Different Ambience on Hydrogen Generation

    NASA Astrophysics Data System (ADS)

    Sarathi, Ramanujam; Sankar, Binu; Chakravarthy, Satyanarayanan R.

    2010-07-01

    Nano-aluminium particles are produced through the wire explosion process in different gas medium. The particles produced by wire explosion process, in helium medium are of smaller size compared to argon/nitrogen medium. The nano aluminium powder on reaction with water forms oxides having bayerite and boehmite structure. It is observed that nano aluminium on reaction with KOH solution at room temperature it forms bayerite. The results of the study were confirmed through Wide Angle X-ray diffraction (WAXD) and by Transmission Electron Microscope (TEM) studies. The reaction of nano aluminium powder with KOH solution/water indicates that the rate of hydrogen generation is high when nano aluminium powder reacts with KOH solution than with water. The rate of hydrogen generation gets reduced drastically when the nano aluminium powder which is exposed to air medium for some period is used for reaction with KOH/water. It is also observed that the rate of hydrogen generation is high with nano size aluminium particles compared with ultrafine particles.

  15. Fuel powder production from ductile uranium alloys.

    SciTech Connect

    Clark, C. R.

    1998-10-23

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. Grinding was found to be inefficient and introduced impurities into the fuel. Cryogenic milling of machine chips in a steel vial was found to have similar shortcomings. The hydride-dehydride process has historically been used to produce very fine powder that may not be suitable for fuel fabrication. Uranium is made to form its hydride by heating in a hydrogen atmosphere. Subsequent heating under vacuum drives off hydrogen gas and returns the hydride to a metallic state. The volume change on hydride formation results in a fine powder upon dehydriding. The effects of alloying elements, partial hydriding, and subsequent milling treatments on particle size distribution are being explored. Inert gas atomization is used on an industrial scale to produce metal powder. Current designs are not suitable for use with uranium. A system was specifically designed for uranium atomization. A prototype was built and tested using gold as a surrogate for uranium. The system operates efficiently and can produce powder in a variety of size ranges by changing the atomization nozzle.

  16. High temperature behavior of nanostructured Al powders obtained by mechanical alloying under NH3 flow

    NASA Astrophysics Data System (ADS)

    Caballero, E. S.; Cintas, J.; Cuevas, F. G.; Montes, J. M.; Herrera-García, M.

    2015-03-01

    Aluminium powder was mechanically alloyed under ammonia gas flow for different times (1-5 h) in order to produce a second-phase reinforcement, mainly by aluminium nitride (AlN). After milling, powders were consolidated by cold uniaxial pressing and vacuum sintering. A small amount of copper powder was added to the Al milled powder to improve its sintering behavior. Hardness and indirect tensile test were carried out at room and high temperature to evaluate the mechanical properties evolution. Results showed an remarkable hardness increase with the second phases content, even at high temperature (up to 229 HB at 400 °C). However, the high content of second phases of ceramic nature decreases the ductility, resulting in low values of tensile strength (lower than 160 MPa).

  17. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte

    NASA Astrophysics Data System (ADS)

    Pino, M.; Herranz, D.; Chacón, J.; Fatás, E.; Ocón, P.

    2016-09-01

    An easy treatment based in carbon layer deposition into aluminium alloys is presented to enhance the performance of Al-air primary batteries with neutral pH electrolyte. The jellification of aluminate in the anode surface is described and avoided by the carbon covering. Treated commercial Al alloys namely Al1085 and Al7475 are tested as anodes achieving specific capacities above 1.2 Ah g-1vs 0.5 Ah g-1 without carbon covering. The influence of the binder proportion in the treatment as well as different carbonaceous materials, Carbon Black, Graphene and Pyrolytic Graphite are evaluated as candidates for the covering. Current densities of 1-10 mA cm-2 are measured and the influence of the alloy explored. A final battery design of 4 cells in series is presented for discharges with a voltage plateau of 2 V and 1 Wh g-1 energy density.

  18. Diffusion bonding of aluminium alloy, 8090

    SciTech Connect

    Sunwoo, A. )

    1994-08-15

    Ability to diffusion bond aluminum (Al) alloys, in particular superplastic aluminum alloys, will complete the technology-base that is strongly needed to enhance the use of superplastic forming (SPF) technology. Diffusion bonding (DB) is an attractive manufacturing option for applications where the preservation of the base metal microstructure and, in turn, mechanical properties is important in the bond area. As the technology moves from the laboratory to production, the DB process has to be production-feasible and cost-effective. At the Lawrence Livermore National Laboratory, the DB study of SPF Al alloys has been initiated. This paper describes the effect of surface chemistry on the DB properties of the Al alloy, 8090 (2.4Li-1.18Cu-0.57Mg-0.14Zr-Al). The integrity of the diffusion bonds was evaluated for both interlayered and bare surfaces. Two interlayer elements, copper (Cu) and zinc (Zn), were compared. Although the eutectic temperature of Al-Cu is 548 C, a thin Cu layer in contact with 8090 has been shown to lower its eutectic temperature to [approximately]521 C. In 8090, Cu is one of the primary alloying elements but has a limited solubility in Al at the bonding temperature. Zinc, on the other hand, forms a considerably lower eutectic (380 C) with Al and is highly soluble in Al. The diffusivity of Zn in Al is much faster than that of Cu, but Zn forms a more thermodynamically stable oxide. These subtle metallurgical differences will affect the transient liquid phase (TLP) formation at the interface, which will subsequently influence the bond quality.

  19. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  20. Nanostructural hierarchy increases the strength of aluminium alloys.

    PubMed

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-09-07

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

  1. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    NASA Astrophysics Data System (ADS)

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-01

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  2. Numerical Modelling of Drawbeads for Forming of Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Joshi, Y.; Christiansen, P.; Masters, I.; Bay, N.; Dashwood, R.

    2016-08-01

    The drawbeads in stamping tools are usually designed based on experience from the forming of steel. However, aluminium alloys display different forming behaviour to steels, which is not reflected in the drawbead design for tools used for stamping aluminium. This paper presents experimental results from different semi-circular drawbead geometries commonly encountered in automotive dies and compares them to those obtained from Stoughton's analytical drawbead model and the 2D plane strain drawbead model set up using LS-DYNA. The study was conducted on lubricated NG5754 strips. The results presented are in terms of drawbead restraining force versus strip displacement, as a function of drawbead depth. The FE drawbead model agrees well with the experiments whereas the analytical model overpredicted the drawbead forces.

  3. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    NASA Technical Reports Server (NTRS)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  4. The fracture of boron fibre-reinforced 6061 aluminium alloy

    NASA Technical Reports Server (NTRS)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  5. Deviatoric Response of AN Armour-Grade Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, G. J.; Hazell, P. J.; Millett, J.; Bourne, N. K.

    2009-12-01

    Aluminium alloys such as 5083 H32 are established light-weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate-impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  6. Assessment of refining effectiveness of self-prepared nano-(TiNb)C/(NbTi)/Al complex powder inoculation on A356 alloy

    NASA Astrophysics Data System (ADS)

    Qiao, Gui-ying; Wu, Da-yong; Wei, Teng-fei; Liao, Bo; Xiao, Fu-ren

    2017-07-01

    Inoculation plays an effective role to refine the microstructure of as-cast aluminium alloys, which strongly depend on the effectiveness of the inoculants. In this work, a new concept of nano-(TiNb)C/(NbTi)/Al complex powder as an inoculant for refining the as-cast aluminium alloys was proposed, and the nano-(TiNb)C/(NbTi)/Al complex powder was prepared by mechanical alloying (MA) method, furthermore, the refining effectiveness of inoculation on A356 alloy was investigated. Results show that the nano-(TiNb)C/(NbTi)/Al complex powder consists of three phases of α-Al, nano-(TiNb)C and (NbTi) solid solution. The nano-(TiNb)C/(NbTi)/Al complex powder as an inoculant have higher refining effectiveness as well as good recyclability on the microstructure of cast A356 alloy, and improve the mechanical properties, especially the ductility.

  7. High rate constitutive modeling of aluminium alloy tube

    NASA Astrophysics Data System (ADS)

    Salisbury, C. P.; Worswick, M. J.; Mayer, R.

    2006-08-01

    As the need for fuel efficient automobiles increases, car designers are investigating light-weight materials for automotive bodies that will reduce the overall automobile weight. Aluminium alloy tube is a desirable material to use in automotive bodies due to its light weight. However, aluminium suffers from lower formability than steel and its energy absorption ability in a crash event after a forming operation is largely unknown. As part of a larger study on the relationship between crashworthiness and forming processes, constitutive models for 3mm AA5754 aluminium tube were developed. A nominal strain rate of 100/s is often used to characterize overall automobile crash events, whereas strain rates on the order of 1000/s can occur locally. Therefore, tests were performed at quasi-static rates using an Instron test fixture and at strain rates of 500/s to 1500/s using a tensile split Hopkinson bar. High rate testing was then conducted at rates of 500/s, 1000/s and 1500/s at 21circC, 150circC and 300circC. The generated data was then used to determine the constitutive parameters for the Johnson-Cook and Zerilli-Armstrong material models.

  8. Electromagnetic forming of aluminium alloy sheet

    NASA Astrophysics Data System (ADS)

    Oliveira, D. A.; Worswick, M.

    2003-09-01

    A numerical method for modeling the high rate deformation and impact that occurs during the electromagnetic forming process is presented with supporting experimental data, used to validate the predictions. The numerical model employs “loose" two-way coupling of the electromagnetic analysis with the elastic-plastic structural analysis. An electromagnetic finite element code is used to model the time varying currents that are discharged through the coil in order to obtain the transient magnetic forces that are imparted to the workpiece. The body forces generated by electromagnetic induction are then used as the loading condition to model the high rate deformation of the workpiece using an explicit dynamic finite element code. A series of high rate electromagnetic forming experiments are performed on 1 and 1.6 mm AA5754 and 1 mm AA5182 aluminum alloy sheet. The experiments consider free forming, while also serving as a basis to validate the predictive capability of the numerical models. The experiments exhibited high rate formability limits that were similar to conventional quasistatic forming limits. The numerical model accurately predicted the final geometry of the samples as well as the measured strain distributions.

  9. Frictional conditions between alloy AA6060 aluminium and tool steel

    SciTech Connect

    Wideroee, Fredrik; Welo, Torgeir

    2011-05-04

    The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples to measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.

  10. Frictional conditions between alloy AA6060 aluminium and tool steel

    NASA Astrophysics Data System (ADS)

    Widerøe, Fredrik; Welo, Torgeir

    2011-05-01

    The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples to measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.

  11. Thermoelectric power in low-density interstitial-free iron-aluminium alloys

    NASA Astrophysics Data System (ADS)

    Rana, Radhakanta; Liu, Cheng

    2013-09-01

    Thermoelectric power (TEP) studies on low-density interstitial-free iron-aluminium alloys reveal that the TEP decreases with increase in the aluminium content on account of the introduction of lattice dispersion centres. The TEP coefficients, determined from the Nordheim-Gorter law, for 6.8 and 8.1 wt.% aluminium additions to α-iron are found to be higher than values reported in previous literature for small aluminium additions. The grain size has a very weak effect on the TEP of these alloys.

  12. The Effect of Alloy Content on the Grain Refinement of Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Easton, M. A.; StJohn, D. H.

    A recent model that predicts the effect of solute content on grain size was shown to predict the effect of titanium additions on the grain size of pure aluminium and an AlSi7Mg0.3 alloy. The model assumes that nucleation on substrates is facilitated by constitutional undercooling in front of a growing grain. To determine how generally applicable the model is to a broad range of aluminium alloys, titanium additions were made to five wrought alloys containing the same level of TiB2. It was found that the grain size obtained is a function of the reciprocal of mc0(k-1), the growth restriction factor, and that there is a lower limit to the grain size that can be achieved for the casting conditions used in the experiments. It was also found that at least stoichiometric levels of titanium are required for TiB2 particles to be effective nucleants.

  13. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  14. Quantitative prediction of solute strengthening in aluminium alloys

    NASA Astrophysics Data System (ADS)

    Leyson, Gerard Paul M.; Curtin, William A.; Hector, Louis G.; Woodward, Christopher F.

    2010-09-01

    Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute-dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method. An analytic model for the strength, or stress to move a dislocation, owing to the random field of solutes, is then presented. The theory, which has no adjustable parameters and is extendable to other metallic alloys, predicts both the energy barriers to dislocation motion and the zero-temperature flow stress, allowing for predictions of finite-temperature flow stresses. Quantitative comparisons with experimental flow stresses at temperature T=78K are made for Al-X alloys (X=Mg, Si, Cu, Cr) and good agreement is obtained.

  15. Effects of progressive solution treatment on microstructure and property of the aluminium alloy electrical round rod

    NASA Astrophysics Data System (ADS)

    Hu, Xiejun; Zhang, Renguo; Zhang, Xiaoyan; Lin, Tingyi; Zhang, Junjie; Yan, Jun

    2017-06-01

    This paper aims to research the effects of progressive solution treatment on property of aluminium alloy electrical round rod, we mainly research the influences of different temperature on tensile strength and electrical conductivity of the aluminium alloy electrician round rod. The component and phase constitution of the aluminium alloy was analysed by means of OLYMPUSPMG-3 horizontal metallurgical microscope, SUPRA40 scanning electron microscope, APOLLO-10Xenergy spectrometer, tensile strength and conductivity of aluminium alloy electrical round rod under various progressive solution treatment. The results show that: comprehensive performance of specimen is optimal by means of scheme(350 °C×1h+510°C×6h), the conductivity is 56.6%IACS and the tensile strength is 103MPa.

  16. Mechanical Properties Studies of Components Formulation for Mixing Process Contain of Polypropylene, Polyethylene, and Aluminium Powder

    NASA Astrophysics Data System (ADS)

    Hamsi, A.; Dinzi, R.

    2017-03-01

    Certain powder and others components can induce toxic reactions if not properly handled in the mixing stage. During handling, the small particles can become airborne and be trapped in the lungs, another concern is inhomogeneities in the mixing process. Uniform quantities of the particles of the components are needed in all portions of the mixture. This paper reports the results of mechanical properties studies of mixing three components formulation for mixing process. Contain of Polyethylene (PE), Polyprophylene (PP) and Aluminium Powder. Powder mixer, Autodesk mold flow and computer based on excell method was carried out to study the influence of each formulation component on the flow %, PE 20% and Aluminium powder 2%. Macroscopic optic and macro photo was carried out to identify the homogenity of mixing, tensile test for identify the strength of component after mixing. Finally the optimal tensile test with composition PP 785,PE 20% and Aluminium powder 2% at speed 52 rpm, temperature 1500C, the tensile strength 20,92 N/mm2. At temperature 1600C, speed 100 rpm the optimum tensile strength 17,91 N/mm2. The result of simulation autodesk mold flow adviser the filling time 6 seconds. Otherwise on manual hot hidraulic press the time of filling 10 seconds.

  17. Influence of ECAP on Densification Behaviour in the PM Aluminium Al-Mg-Si-Cu-Fe Alloy

    NASA Astrophysics Data System (ADS)

    Bidulská, Jana; Kvačkaj, Tibor; Kočiško, Róbert; Bidulský, Róbert; Grande, Marco Actis

    2010-09-01

    The main aim of this paper is to show how ECAP influences the densification behaviour of PM aluminium alloys. An aluminium based powder (Al-Mg-Si-Cu-Fe) was used as material to be investigated. After applying different compacting pressures, specimens were dewaxed in a ventilated furnace at 400 °C for 60 min. Sintering was carried out in a vacuum furnace at 610 °C for 30 min. The specimens were ECAPed for 1 pass. Optical characterization was carried out on the minimum of 10 different image fields. The results were measured for each pore individually in order to describe the dimensional and morphological porosity characteristics. ECAP influences the porosity distribution in terms of the severe shear deformation involved.

  18. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  19. Amorphous powders of Al-Hf prepared by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Hannigan, J.W.; Sheinberg, H.; Tiainen, T.

    1988-01-01

    We synthesized amorphous Al/sub 50/Hf/sub 50/ alloy powder by mechanically alloying an equimolar mixture of crystalline powders of Al and Hf using hexane as a dispersant. We characterized the powder as a function of mechanical-alloying time by scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. Amorphous Al/sub 50/Hf/sub 50/ powder heated at 10 K s/sup /minus/1/ crystallizes polymorphously at 1003 K into orthorhombic AlHf (CrB-type structure). During mechanical alloying, some hexane decomposes and hydrogen and carbon are incorporated into the amorphous alloy powder. The hydrogen can be removed by annealing the powder by hot pressing at a temperature approximately 30 K below the crystallization temperature. The amorphous compacts have a diamond pyramidal hardness of 1025 DPH. 24 refs., 7 figs., 1 tab.

  20. Dual wavelength laser beam alloying of aluminium alloy for enhanced corrosion resistance

    SciTech Connect

    Liu, Z.; Watkins, K.G.; Steen, W.M.; Vilar, R.; Ferreira, M.G.

    1997-08-01

    Aluminum alloys are known for their poor resistance to localized attack and, in particular, for pitting in chloride-containing electrolytes. In this paper, improvement of the pitting corrosion resistance of 2014-T6 aluminum alloy has been investigated by means of laser surface alloying of Cr into the substrate. Since aluminum is highly reflective and thermally conductive material, it is often difficult to process with laser beams. Oxide films on the surface can prevent surface alloying as with the case of Cr alloying into aluminum by in-situ powder feeding. This work describes a new technique using mixed excimer laser and CO{sub 2} laser beam processing to generate a Cr alloyed layer on a 2014 aluminum alloy substrate. It is shown that improvement of alloying homogeneity following in-situ powder feeding can be achieved with mixed beam processing. Conditions under which this can be achieved have been studied and the effect of laser processing parameters on the surface roughness, oxidation and absorption is discussed. Microstructural and surface morphological analysis using optical microscopy, scanning electron microscopy and energy dispersive spectroscopy are also discussed. The electrochemical behavior of the treated samples in de-aerated 1 M NaCl solution has also been studied and has indicated that an improvement of pitting resistance by laser surface treatment can be achieved.

  1. Modelling of Local Necking and Fracture in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Achani, D.; Eriksson, M.; Hopperstad, O. S.; Lademo, O.-G.

    2007-05-01

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As an accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests.

  2. Powder metallurgy of vanadium and its alloys (review)

    SciTech Connect

    Radomysel'skii, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-10-01

    This article reviews the current powder metallurgy technology of vanadium and its alloys. Data are given on sintering, compacting, electrowinning and other current production techniques, as well as on the corrosion behavior and mechanical and physical properties of alloys produced by these different methods. The use of vanadium alloys as reactor and jet engine materials is also briefly discussed.

  3. The Potential of Aluminium Metal Powder as a Fuel for Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Ismail, A. M.; Osborne, B.; Welch, C. S.

    Metal powder propulsion systems have been addressed intermittently since the Second World War, initially in the field of underwater propulsion where research in the application of propelling torpedoes continues until this day. During the post war era, researchers attempted to utilise metal powders as a fuel for ram jet applications in missiles. The 1960's and 1970's saw additional interest in the use of `pure powder' propellants, i.e. fluidised metal fuel and oxidiser, both in solid particulate form. Again the application was for employment in space-constrained missiles where the idea was to maximise the performance of high energy density powder propellants in order to enhance the missile's flight duration. Metal powder as possible fuel was investigated for in-situ resource utilisation propulsion systems post-1980's where the emphasis was on the use of gaseous oxygen or liquid oxygen combined with aluminium metal powder for use as a ``lunar soil propellant'' or carbon dioxide and magnesium metal powder as a ``Martian propellant''.Albeit aluminium metal powder propellants are lower in performance than cryogenic and Earth storable propellants, the former does have an advantage inasmuch that the propulsion system is generic, i.e. it can be powered with chemicals mined and processed on Earth, the Moon and Mars. Thus, due to the potential refuelling capability, the lower performing aluminium metal powder propellant would effectively possess a much higher change in velocity (V) for multiple missions than the cryogenic or Earth storable propellant which is only suitable for one planet or one mission scenario, respectively.One of the principal limitations of long duration human spaceflight beyond cis-lunar orbit is the lack of refuelling capabilities on distant planets resulting in the reliance on con- ventional non-cryogenic, propellants produced on Earth. If one could develop a reliable propulsion system operating on pro- pellants derived entirely of ingredients found on

  4. New developments on optimizing properties of high-Zn aluminium cast alloys

    NASA Astrophysics Data System (ADS)

    Krajewski, W. K.; Buras, J.; Krajewski, P. K.; Greer, A. L.; Schumacher, P.; Haberl, K.

    2016-07-01

    Foundry alloys with Al-based matrices have a wide range of uses in today's global economy and there is a high demand for castings of Al alloys, including Al-Zn alloys. In this paper, investigations on the grain refinement of high-Zn aluminium cast alloys are presented. Aluminium alloys with relatively high zinc content have a tendency to be coarse-grained, especially in the case of castings with low cooling rates such as are found in sand moulds. The coarse-grained structure degrades the plasticity, specifically the elongation. Therefore, for aluminium alloys of high (10-30 wt.%) zinc content, inoculation is attractive, aiming to break up the primary dendrites of the a-phase solid solution of zinc in aluminium. Such dendrites are the principal microstructural component in these alloys. On the other hand, a finer grain structure usually reduces the damping (e.g. as measured by attenuation of ultrasound) in these alloys. In the present investigations, a binary sand-cast Al-20 wt.% Zn alloy was inoculated with different additions of AlTi3C0.15 (TiCAl) and ZnTi-based master alloys. The sand-cast samples were subjected to mechanical-property measurements (tensile strength and elongation), image analysis to determine grain size, and measurements of the attenuation of 1 MHz ultrasound. It is found that both of the master alloys used cause significant refinement of the a-AlZn primary dendrites and change their morphology from linear-branched to semi-globular, increase the elongation by about 40%, and decrease the attenuation coefficient by about 25% in comparison with the initial alloy without inoculation.

  5. High strain rate superplasticity of AlN particulate reinforced aluminium alloy composites

    SciTech Connect

    Imai, T. ); L'Esperance, G.; Hong, B.D. )

    1994-08-01

    Ceramic whisker or particulate reinforced aluminium alloy composites have a great potential for automobile engineering components, aerospace structures, semi-conductor packaging and so on, because of the composites ability to exhibit a high specific elastic modulus and specific tensile strength, excellent wear resistance and heat resistance, low thermal expansion and good dimensional stability. A serious problem involving practical application of ceramic whisker or particulate reinforced aluminium alloy composites is due to the low tensile ductility, fracture toughness at room temperature and, also, their hardness qualities that make it difficult to deform by conventional forming processing and machining by ordinary tools. It has been found, however, that aluminium alloy composites reinforced by SiC or Si[sub 3]N[sub 4] whiskers or particulates produce superplasticity at a high strain rate of about 0.1s[sup [minus]1]. Superplastic deformation mechanisms of the ceramic whisker or particulate reinforced aluminium alloy composites are fine grain boundary sliding, interfacial sliding at a liquid phase and dynamic recrystallization. An AlN particulate reinforced aluminium alloy composite exhibits a high elastic modulus and a high thermal conductivity, and their thermal expansion is similar to silicon in that the AlN particulate reinforced aluminum alloy composite is expected to apply to semi-conductor packaging in the aerospace structure. In addition, if the composite could produce superplasticity at high strain rates, the market of aerospace application for superplastic composites could be expanded. The purpose of this study is to make clear if an AlN particulate reinforced aluminium alloy composite can produce superplasticity at high strain rate and the superplastic characteristics.

  6. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  7. Microstructure and Aging of Powder-Metallurgy Al Alloys

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  8. Emerging Applications Using Magnesium Alloy Powders: A Feasibility Study

    NASA Astrophysics Data System (ADS)

    Tandon, Rajiv; Madan, Deepak

    The use of powder metallurgy offers a potential processing route based on tailored compositions and unique microstructures to achieve high performance in magnesium alloys. This paper highlights recent advances in the production, qualification, and characterization of gas atomized AZ91E, WE43 and Elektron21 alloy powders. Transmission electron microscopy (TEM) was used to understand the bulk and surface structure of the atomized powder. The potential for using these magnesium alloy powders for emerging applications involves establishing compatibility with viable consolidation processes such as cold spray, laser assisted deposition, forging and extrusion. This study summarizes the preliminary results for various ongoing investigations using WE43 powder as an example. Results show that powder metallurgy processed WE43 results in comparable properties to those obtained from cast and wrought and offers potential for improvement.

  9. Void growth in high strength aluminium alloy single crystals: a CPFEM based study

    NASA Astrophysics Data System (ADS)

    Asim, Umair; Siddiq, M. Amir; Demiral, Murat

    2017-04-01

    High strength aluminium alloys that are produced through forming and joining processes are widely used in aerospace components. The ductile failure in these metals occurs due to the evolution and accumulation of microscopic defects, such as microvoids and shear bands. The present work investigates the underlying physical mechanisms during ductile failure by performing a rigorous, fully-validated, three-dimensional crystal plasticity, finite element study with aluminium alloy single crystals. Representative volume element (RVE) based simulations of single crystalline aluminium alloys (AA-5xxx) with different void geometries and orientations have been performed. Both local and nonlocal crystal plasticity constitutive models have been implemented in a finite element framework and are used to seek new insights into the interrelationships among void growth, initial porosity, initial void size, plastic anisotropy, and local/nonlocal size effects.

  10. Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Sakai, S.; Kato, T.

    2010-06-15

    Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for a large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.

  11. Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mori, K.; Abe, Y.; Kato, T.; Sakai, S.

    2010-06-01

    Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for a large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.

  12. Effect of Graphite Powder Amount on Surface Films Formed on Molten AZ91D Alloy

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Zhou, Jixue; Ma, Baichang; Wang, Jinwei; Wu, Jianhua; Yang, Yuansheng

    2017-10-01

    Graphite powder was adopted to prevent AZ91D magnesium alloy from oxidizing during the melting and casting process. The microstructure of the resultant surface films formed on the molten alloy protected by 0, 2.7, 5.4, 8.1, and 10.8 g dm-2 graphite powder at 973 K (700 °C) for holding time of 30 minutes was investigated by scanning electron microscopy, energy dispersive spectrometer, X-ray diffraction, and the thermodynamic method. The results indicated that the surface films were composed of a protective layer and the underneath MgF2 particles with different morphology. The protective layer was continuous with a thickness range from 200 to 550 nm consisting of magnesium, oxygen, fluorine, carbon, and a small amount of aluminium, possibly existing in the form of MgO, MgF2, C, and MgAl2O4. The surface films were the result of the interaction between the graphite powder, the melt, and the ambient atmosphere. The unevenness of the micro surface morphology and the number and size of the underneath MgF2 particles increased with graphite powder amount. The mechanism of the effect of graphite powder amount on the resultant surface films was also discussed.

  13. Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Recloux, Isaline; Mouanga, Maixent; Druart, Marie-Eve; Paint, Yoann; Olivier, Marie-Georges

    2015-08-01

    This work contributes to the development of a new environmentally friendly alternative pretreatment for 2024 aluminium alloys to replace hexavalent chromium based conversion layers in the aeronautical field. A silica mesoporous thin film, synthesized through the evaporation induced self-assembly process, was doped with benzotriazole to obtain active corrosion protection. Inhibitor loading contents were correlated with pore characteristics. The release kinetics was studied as function of pH. The application of the doped mesoporous film on 2024 aluminium alloy revealed a slowing down of corrosion processes, demonstrating its potential as an active inhibitor storage layer.

  14. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    Surface treatment of aluminium alloys using steam with oxidative chemistries, namely KMnO4 and HNO3 resulted in accelerated growth of oxide on aluminium alloys. Detailed investigation of the corrosion performance of the treated surfaces was carried out using potentiodynamic polarisation and standard industrial test methods such as acetic acid salt spray (AASS) and filiform corrosion on commercial AA6060 alloy. Barrier properties of the film including adhesion were evaluated using tape test under wet and dry conditions. Electrochemical results showed reduced cathodic and anodic activity, while the protection provided by steam treatment with HNO3 was a function of the concentration of NO3- ions. The coating generated by inclusion of KMnO4 showed highest resistance to filiform corrosion. Overall, the performance of the steam treated surfaces under filiform corrosion and AASS test was a result of the local coverage of the alloy microstructure resulting from steam containing with KMnO4 and HNO3.

  15. Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy

    SciTech Connect

    Benoit, A.; Paillard, P.; Baudin, T.; Jobez, S.; Castagne, J.-F.

    2011-01-17

    At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the produced weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.

  16. Powder Processing of Amorphous Tungsten-bearing Alloys and Composites

    DTIC Science & Technology

    2015-03-01

    adjusted the processing parameters and feedstock powder chemistry to yield powders with the desired properties and microstructures. After fine-tuning...the milling schedule and alloy chemistries , a consolidation schedule was developed that enabled the nanocrystalline powder to be consolidated into...to experimental research and helped him secure an internship at MIT’s 19 Lincoln Laboratories this summer. Dr. Kisub Cho was a postdoctoral

  17. Radiation resistance and parameters of activation of aluminium-magnesium-scandium and aluminium-magnesium-vanadium alloys under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Ivanov, L. I.; Ivanov, V. V.; Lazorenko, V. M.; Platov, Yu. M.; Tovtin, V. I.; Toropova, L. S.

    1992-09-01

    Alloys Al2.24Mg0.23Sc0.04Zr, Al2.24Mg0.12Sc0.04Zr, and Al2.24Mg0.05V (at.)) annealed at 150°C and 400°C were irradiated ≈70 and ≈150°C in the SM-2 reactor. The maximum neutron fluence was 4.7×1024 m-2 (E > 0.1 MeV). The tensile tests were carried out in the temperature range 20 to 350°C. Alloy Al2.24Mg0.23Sc0.04Zr annealed at 400°C and alloy Al2.24Mg0.12Sc0.04Zr annealed at 150°C at all test temperature, retained good mechanical properties after irradiation. The mechanisms for the radiation resistance of aluminiumscandium and aluminiummagnesiumscandium alloys are discussed. Calculations of induced radioactivity and its decay behaviour after shutdown in aluminium and Al2.24Mg(0.12-0.23)Sc alloys were carried out. Composition of the radionuclides in these materials after irradiation in the SM-2 reactor were also determined using a gamma-spectroscopy technique.

  18. Property enhancement by grain refinement of zinc-aluminium foundry alloys

    NASA Astrophysics Data System (ADS)

    Krajewski, W. K.; Greer, A. L.; Piwowarski, G.; Krajewski, P. K.

    2016-03-01

    Development of cast alloys with good mechanical properties and involving less energy consumption during their melting is one of the key demands of today's industry. Zinc foundry alloys of high and medium Al content, i.e. Zn-(15-30) wt.% Al and Zn-(8-12) wt.% Al, can satisfy these requirements. The present paper summarizes the work [1-9] on improving properties of sand-cast ZnAl10 (Zn-10 wt.% Al) and ZnAl25 (Zn-25 wt. % Al) alloys by melt inoculation. Special attention was devoted to improving ductility, whilst preserving high damping properties at the same time. The composition and structural modification of medium- and high-aluminium zinc alloys influence their strength, tribological properties and structural stability. In a series of studies, Zn - (10-12) wt. % Al and Zn - (25-26) wt.% Al - (1-2.5) wt.% Cu alloys have been doped with different levels of added Ti. The melted alloys were inoculated with ZnTi-based refiners and it was observed that the dendritic structure is significantly finer already after addition of 50 - 100 ppm Ti to the melted alloys. The alloy's structure and mechanical properties have been studied using: SEM (scanning electron microscopy), LM (light microscopy), dilatometry, pin-on-disc wear, and tensile strength measurements. Grain refinement leads to significant improvement of ductility in the binary high-aluminium Zn-(25-27) Al alloys while in the medium-aluminium alloys the effect is rather weak. In the ternary alloys Zn-26Al-Cu, replacing a part of Cu with Ti allows dimensional changes to be reduced while preserving good tribological properties. Furthermore, the high initial damping properties were nearly entirely preserved after inoculation. The results obtained allow us to characterize grain refinement of the examined high-aluminium zinc alloys as a promising process leading to the improvement of their properties. At the same time, using low melting ZnTi-based master alloys makes it possible to avoid the excessive melt overheating

  19. Aging effects of diamond reinforced aluminium alloys submitted to deep space real conditions. Structural, chemical and electrical degradation

    NASA Astrophysics Data System (ADS)

    Korneli, Grigorov; Bouzekova-Penkova, Anna; Datcheva, Maria; Avdeev, George; Grushin, Valerii; Klimov, Stanislav

    2016-07-01

    An aluminium alloy (Al-Cu-Zn-Mg) reinforced with ultra-dispersed diamond powder and tungsten (W), has been prepared in form of 7 cm bars and 4 mm diameter. One part of them stayed 2 years on satellite exposed to outer space, where the Sun activity and the background radiation were monitored. After satellite return both batches has been studied. Structural test, mainly micro-hardness together with detailed X-rays analyses was performed. The satellite makes a tour around the Earth each two hours, the temperature difference being circa 300oC. The micro-hardness being measured with Agilent G200 nano-indentor shows a significant drop of 25%. The XRD patterns are consistent with the previous results, states defects incorporation, and crystalline cells deterioration.

  20. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    SciTech Connect

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  1. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.

    PubMed

    Rabah, Mahmoud A

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  2. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    SciTech Connect

    Rabah, Mahmoud A

    2004-07-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  3. Identification of monoclinic θ-phase dispersoids in a 6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Buchanan, Karl; Ribis, Joël; Garnier, Jérôme; Colas, Kimberly

    2016-04-01

    Intermetallic dispersoids play an important role in controlling the 6xxx alloy series' grain distribution and increasing the alloy's toughness. The dispersoid distribution in a 6061 aluminium alloy (Al-Mg-Si) was analysed by transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The dispersoids had three unique crystal structures: simple cubic ?, body-centred cubic ? and monoclinic (C2/m). While the SC and BCC dispersoids have been well characterized in the literature, a detailed analysis of monoclinic dispersoids has not been presented. Therefore, the current work discusses the chemical composition, crystal structure and morphology of the monoclinic dispersoids.

  4. The Fatigue of Powder Metallurgy Alloys.

    DTIC Science & Technology

    1982-01-08

    characteristics of an ingot metallurgy product, 7075 -T76. In all alloys high closure levels are observed atR=0.05 in the near threshold region, an...of two aluminum P/M alloys, X7090 and X7091. For comparison purposes, the ingot metallurgy (I/M) alloy 7075 -76 has also been tested. The results of...described in this report were obtained in extruded form from L Alcoa via Lockheed-California Company. These alloys are: P/M X7090-T6 P/M X7091-T7E69 I/M 7075

  5. Development of protective coatings using fly ash premixed with metal powder on aluminium substrates.

    PubMed

    Satapathy, Alok; Sahu, Suvendu Prasad; Mishra, Debadutta

    2010-07-01

    Fly ash is a solid waste generated in huge quantities from coal-fired thermal power stations during the combustion of coal. Rich in metal oxides, it has tremendous potential as a coating material on structural and engineering components. This work aims at developing and characterizing a new class of such coatings made of fly ash by a novel technique - plasma spraying. Plasma spray technology has the advantage of being able to process various low-grade ore minerals to obtain value-added products and also to deposit ceramics, metals and a combination of these, generating near-homogeneous coatings with the desired microstructure on a range of substrates. In the present investigation, coatings are developed on aluminium substrates using fly ash premixed with aluminium powder in different weight proportions at various plasma torch input power levels ranging from 9- 18 kW DC. The coatings are characterized in terms of interface adhesion strength and deposition efficiency. Maximum adhesion strength of about 35 MPa is recorded with coatings deposited at 12 kW power level. It was noticed that the quality and properties are significantly affected by the operating power level of the plasma sprayer. This work identifies fly ash as a potential coating material, suitable for possible tribological applications.

  6. Electrodeposition of iron and iron-aluminium alloys in an ionic liquid and their magnetic properties.

    PubMed

    Giridhar, P; Weidenfeller, B; El Abedin, S Zein; Endres, F

    2014-05-28

    In this work we show that nanocrystalline iron and iron-aluminium alloys can be electrodeposited from the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate, [Py1,4]TfO, at 100 °C. The study comprises CV, SEM, XRD, and magnetic measurements. Two different sources of iron(ii) species, Fe(TfO)2 and FeCl2, were used for the electrodeposition of iron in [Py1,4]TfO. Cyclic voltammetry was employed to evaluate the electrochemical behavior of FeCl2, Fe(TfO)2, and (FeCl2 + AlCl3) in the employed ionic liquid. Thick iron deposits were obtained from FeCl2/[Py1,4]TfO at 100 °C. Electrodeposition of iron-aluminium alloys was successful in the same ionic liquid at 100 °C. The morphology and crystallinity of the obtained deposits were investigated using SEM and XRD, respectively. XRD measurements reveal the formation of iron-aluminium alloys. First magnetic measurements of some deposits gave relatively high coercive forces and power losses in comparison to commercial iron-silicon samples due to the small grain size in the nanometer regime. The present study shows the feasibility of preparing magnetic alloys from ionic liquids.

  7. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3 resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4- and NO3- ions present in the aqueous solution. The NO3- ions exhibit higher affinity towards the intermetallic particles resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4- ions. Further, increase in the concentration of NO3- ions in the solution retards precipitation of the steam generated aluminium hydroxide layer.

  8. Revealing obliterated engraved marks on high strength aluminium alloy (AA7010) surfaces by etching technique.

    PubMed

    Bong, Yeu Uei; Kuppuswamy, R

    2010-02-25

    Restoration of obliterated engraved marks on high strength Al-Zn-Mg-Cu alloy (AA7010) surfaces by etching technique was studied. The alloy surfaces were mechanically engraved with some identification marks using "Gravograph". The marks were then erased by removing the metal to different levels up to and below the depth of engraving. Five metallographic reagents were tested on the obliterated surfaces by etching. The following two methods (i) immersion in 10% aq. phosphoric acid and (ii) alternate swabbing of 60% HCl and 40% NaOH were found to be quite effective to reveal the obliterated marks. These two procedures were also able to show effectively the marks obliterated by over-engraving and centre punching. Of the two techniques immersion in phosphoric acid provided more contrast. Interestingly, alternate swabbing of 60% HCl and 40% NaOH presented itself to be the common reagent for restoration on pure aluminium as well as its alloy surfaces. This is evident from our own current experiments and those of earlier researchers [G. Peeler, S. Gutowski, H. Wrobel, G. Dower, The restoration of impressed characters on aluminium alloy motor cycle frames, J. Forensic Ident. 58 (1) (2008) 27-32; M. Izhar M. Baharum, R. Kuppuswamy, A.A. Rahman, Restoration of engraved marks on aluminium surfaces by etching technique, Forensic Sci. Int. 177 (2008) 221-227]. The findings have assumed importance as engines and chassis of cars and frames of firearms are currently made of high strength aluminium alloys and recovery on these surfaces by current methods is not satisfactory.

  9. Magnetic properties of mechanically alloyed Mn-Al-C powders

    NASA Astrophysics Data System (ADS)

    Kohmoto, O.; Kageyama, N.; Kageyama, Y.; Haji, H.; Uchida, M.; Matsushima, Y.

    2011-01-01

    We have prepared supersaturated-solution Mn-Al-C alloy powders by mechanical alloying using a planetary high-energy mill. The starting materials were pure Mn, Al and C powers. The mechanically-alloyed powders were subjected to a two-step heating. Although starting particles are Al and Mn with additive C, the Al peak disappears with MA time. With increasing MA time, transition from α-Mn to β-Mn does not occur; the α-Mn structure maintains. At 100 h, a single phase of supersaturated-solution α-Mn is obtained. The lattice constant of α-Mn decreases with increasing MA time. From the Scherrer formula, the crystallite size at 500 h is obtained as 200Å, which does not mean amorphous state. By two-step heating, high magnetization (66 emu/g) was obtained from short-time-milled powders (t=10 h). The precursor of the as-milled powder is not a single phase α-Mn but contains small amount of fcc Al. After two-step heating, the powder changes to τ-phase. Although the saturation magnetization increases, the value is less than that by conventional bulk MnAl (88 emu/g). Meanwhile, long-time-milled powder of single α-Mn phase results in low magnetization (5.2 emu/g) after two-step heating.

  10. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  11. Study of solid-solution hardening in binary aluminium-based alloys

    NASA Astrophysics Data System (ADS)

    Draissia, Mohamed; Debili, Mohamed-Yacine

    2005-09-01

    Solid-solution formation in binary aluminium-based alloys is due essentially to the combined effects of the size and valence of solvent and solute atoms, as expected by the four Hume-Rothery rules. The lattice parameter of aluminium in the solid solution of the sputtered Al-Fe films is [Al-a (Å)=4.052-6.6×10-3Y]. The increasing and decreasing evolution of the lattice parameter of copper [Cu-a (Å)=3.612+1.8×10-3Z] and aluminium [Al-a (Å)=4.048-1.6×10-3X] in the sputtered Al-1.8 to 92.5 at. % Cu films is a result of the difference in size between the aluminium and copper atoms. The low solubility of copper in aluminium (<1.8 at % Cu) is due to the valences of solvent and solute atoms in contrast with other sputtered films prepared under similar conditions, such as Al-Mg (20 at. % Mg), Al-Ti (27 at. % Ti), Al-Cr (5at. % Cr) and Al-Fe (5.5 at. % Fe) where the solubility is due to the difference in size.

  12. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    SciTech Connect

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  13. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  14. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  15. POWDER METALLURGY TiAl ALLOYS: MICROSTRUCTURES AND PROPERTIES

    SciTech Connect

    Hsiung, L

    2006-12-11

    The microstructures and properties of powder metallurgy TiAl alloys fabricated by hot extrusion of gas-atomized powder at different elevated temperatures were investigated. Microstructure of the alloy fabricated at 1150 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains and coarse ordered B2 grains. Particles of ordered hexagonal {omega} phase were also observed in some B2 grains. The alloy containing B2 grains displayed a low-temperature superplastic behavior: a tensile elongation of 310% was measured when the alloy was tested at 800 C under a strain rate of 2 x 10{sup -5} s{sup -1}. Microstructure of the alloy fabricated at 1250 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains, coarse {alpha}{sub 2} grains, and lamellar ({gamma} + {alpha}{sub 2}) colonies. An observation of stacking faults associated with fine {gamma} lamellae in {alpha}{sub 2} grains reveals that the stacking fault of {alpha}{sub 2} phase plays an important role in the formation of lamellar ({gamma} + {alpha}{sub 2}) colonies. Unlike the alloy fabricated at 1150{sup o}, the alloy fabricated at 1250{sup o} displayed no low-temperature superplasticity, but a tensile elongation of 260% at 1000 C was measured. Microstructure of the alloy fabricated at 1400 C consisted of fully lamellar ({gamma} + {alpha}{sub 2}) colonies with the colony size ranging between 50 {micro}m and 100 {micro}m, in which the width of {gamma} lamella is in a range between 100 nm and 350 nm, and the width of {alpha}{sub 2} lamella is in a range between 10 nm and 50 nm. Creep behavior of the ultrafine lamellar alloy and the effects of alloying addition on the creep resistance of the fully lamellar alloy are also investigated.

  16. HRTEM and HAADF-STEM of precipitates at peak ageing of cast A319 aluminium alloy.

    PubMed

    Wiengmoon, Amporn; Pearce, John T H; Chairuangsri, Torranin; Isoda, Seiji; Saito, Hikaru; Kurata, Hiroki

    2013-02-01

    High-resolution transmission electron microscopy (HRTEM) and high-angle annular-dark-field scanning transmission electron microscopy (HAADF-STEM) were applied to investigate the precipitates formed during age hardening at 170±5°C for up to 48h of cast A319 aluminium alloy (Al-4.93wt%Si-3.47wt%Cu). The precipitates at the peak-aged condition have been identified as mainly θ" together with a smaller amount of θ'. It is proposed that the θ" is responsible for hardening at peak ageing at 170°C of the cast A319 aluminium alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Two-Scale Modelling of Effects of Microstructure and Thermomechanical Properties on Dynamic Performance of an Aluminium Alloy

    DTIC Science & Technology

    2010-09-01

    monolithic metallic plate fabricated from a precipitate-strengthened aluminium alloy . The alloy of study is Al 2139, consisting primarily of elemental Al...polycrystalline Al-Cu-Mg alloy . A limited number of experiments have been conducted to assess ductility, fracture strength and high -rate behaviour of...effects of crystallographic texture on the high -rate shear response of a Ti-6Al-4V alloy . Schoenfeld and Kad (2002) found that lattice orientations affect

  18. Synthesis and Explosive Consolidation of Titanium, Aluminium, Boron and Carbon Containing Powders

    NASA Astrophysics Data System (ADS)

    Chikhradze, Mikheil; Oniashvili, George; Chikhradze, Nikoloz; D. S Marquis, Fernand

    2016-10-01

    The development of modern technologies in the field of materials science has increased the interest towards the bulk materials with improved physical, chemical and mechanical properties. Composites, fabricated in Ti-Al-B-C systems are characterized by unique physical and mechanical properties. They are attractive for aerospace, power engineering, machine and chemical applications. The technologies to fabricate ultrafine grained powder and bulk materials in Ti-Al-B-C system are described in the paper. It includes results of theoretical and experimental investigation for selection of powders composition and determination of thermodynamic conditions for bland preparation, as well as optimal technological parameters for mechanical alloying and adiabatic compaction. The crystalline coarse Ti, Al, C powders and amorphous B were used as precursors and blends with different compositions of Ti-Al, Ti-Al-C, Ti-B-C and Ti-Al-B were prepared. Preliminary determination/selection of blend compositions was made on the basis of phase diagrams. The powders were mixed according to the selected ratios of components to produce the blend. Blends were processed in “Fritsch” Planetary premium line ball mill for mechanical alloying, syntheses of new phases, amorphization and ultrafine powder production. The blends processing time was variable: 1 to 20 hours. The optimal technological regimes of nano blend preparation were determined experimentally. Ball milled nano blends were placed in metallic tube and loaded by shock waves for realization of consolidation in adiabatic regime. The structure and properties of the obtained ultrafine grained materials depending on the processing parameters are investigated and discussed. For consolidation of the mixture, explosive compaction technology is applied at room temperatures. The prepared mixtures were located in low carbon steel tube and blast energies were used for explosive consolidation compositions. The relationship of ball milling

  19. Measurement research for pitting potential of aluminium alloy with chromate passivation layers

    NASA Astrophysics Data System (ADS)

    Su, Z. H.; Dai, Y.; Ma, Q. Y.; Wang, J. N.; Zheng, C. Q.

    2017-01-01

    This paper describes common technology for measuring corrosion resistant properties of aluminium alloy with chromate passivation layers. It gives a resolution to characterize corrosion resistant properties of pitting potential. The method, including sample preparation, measuring polarization and the determining of pitting corrosion potential, was proposed. Tests of repeatability and reproducibility can meet the demand of measurement precision. In addition, comparison of the positional relationships between polarization curves and nominal pitting corrosion potential was provided to judge products.

  20. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  1. Experimental investigations on thermo mechanical behaviour of aluminium alloys subjected to tensile loading and laser irradiation

    NASA Astrophysics Data System (ADS)

    Jelani, Mohsan; Li, Zewen; Shen, Zhonghua; Sardar, Maryam; Tabassum, Aasma

    2017-05-01

    The present work reports the investigation of the thermal and mechanical behaviour of aluminium alloys under the combined action of tensile loading and laser irradiations. The two types of aluminium alloys (Al-1060 and Al-6061) are used for the experiments. The continuous wave Ytterbium fibre laser (wavelength 1080 nm) was employed as irradiation source, while tensile loading was provided by tensile testing machine. The effects of various pre-loading and laser power densities on the failure time, temperature distribution and on deformation behaviour of aluminium alloys are analysed. The experimental results represents the significant reduction in failure time and temperature for higher laser powers and for high load values, which implies that preloading may contribute a significant role in the failure of the material at elevated temperature. The reason and characterization of material failure by tensile and laser loading are explored in detail. A comparative behaviour of under tested materials is also investigated. This work suggests that, studies considering only combined loading are not enough to fully understand the mechanical behaviour of under tested materials. For complete characterization, one must consider the effect of heating as well as loading rate.

  2. Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating

    NASA Astrophysics Data System (ADS)

    Shi, Hongwei; Han, En-Hou; Liu, Fuchun; Kallip, Silvar

    2013-09-01

    The corrosion protection properties of environmentally friendly phytic acid conversion coatings were studied on 2024-T3 aluminium alloy. The films were prepared under acidic conditions with various pH values and characterised by SEM, EDS, ATR-FTIR and electrochemical techniques. The results indicate that the conversion coatings obtained by immersing the alloy in phytic acid solutions at pH from 3 to 5.5 provide excellent corrosion resistance. ATR-FTIR confirms that the film is formed by deposition of reaction products between Al3+ and phosphate groups in phytic acid molecules. The conformation models of the deposition film are proposed.

  3. Pulsed Nd-YAG laser welding of A SiC particulate reinforced aluminium alloy composite

    NASA Astrophysics Data System (ADS)

    Yue, T. M.; Xu, J. H.; Man, H. C.

    1997-01-01

    This paper examines the laser welding behaviour of a SiC particulate reinforced Al-alloy 2124 composite using a pulsed Nd-YAG laser. The influences of laser welding parameters of laser intensity, pulse duration and the beam's focus position on the depth of weld penetration as well as the size of fusion zone were investigated. These investigations have led to an optimum welding condition proposed for pulsed laser welding of SiC particulate reinforced aluminium alloy composites with minimum defects.

  4. Effect of metal coatings on mechanical properties of aluminium alloy

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, V.; Dileep, B. P.; Mohan Kumar, S.; Phanibhushana, M. V.

    2017-07-01

    This investigation mainly targeted on study of hardness and tensile properties of Al 7075 with different metal coatings like Nickel, Zinc and cadmium. Coating of these metals on Al 7075 is successfully achieved by time dependent electroplating method for different thicknesses of 10, 15 and 20 Microns. These metal coated Al-7075 specimens were tested for hardness and tensile properties according to the ASTM standards. It's found that Nickel coated alloy shows excellent hardness and tensile properties compared to Zinc and Cadmium coated alloys. 20 µm Nickel coated alloy exhibits highest hardness number of 102 HRB and Maximum Tensile Strength of 603 MPa than Zinc and Cadmium coated alloy. The microstructural studies authenticated that the coating of Nickel, zinc and cadmium on Al 7075 is homogeneous.

  5. High-Rate Compaction of Aluminium Alloy Foams

    SciTech Connect

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-07-28

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  6. High-Rate Compaction of Aluminium Alloy Foams

    NASA Astrophysics Data System (ADS)

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-07-01

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  7. High-Rate Compaction of Aluminium Alloy Foams

    NASA Astrophysics Data System (ADS)

    Harrigan, J. J.; Millett, J. C. F.; Milne, A. M.

    2005-07-01

    The response of aluminium foams to impact can be categorised by the impact velocity. Tests are reported ranging from quasi-static to impact velocities greater than the speed of sound in the foam. The techniques used ranging from drop-hammer and pneumatic launcher tests, to plate impact at velocities greater than 1000 m s-1. The quasi-static compression behaviour was elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities, post-impact examination of partially crushed specimens showed that deformation was through the cumulative multiplication of crush bands. If the impact velocity is less than the velocity of sound, but above a certain critical impact velocity, the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. At higher impact velocities the compaction front is not preceded by an elastic wave. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was input as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  8. The transition from discontinuous to continuous recrystallization in some aluminium alloys I - the deformed state

    SciTech Connect

    Jazaeri, H.; Humphreys, F.J

    2004-06-21

    The microstructures developed during deformation to large rolling strains in single and two-phase aluminium alloys with a wide range of grain sizes has been investigated, and the major parameters of the microstructure determined by high resolution electron backscatter diffraction (EBSD). It is found that the behaviour of initially fine-grained (<5 {mu}m) alloys is significantly different from that of the large-grained (>50 {mu}m) alloys. In the finer-grained alloys no significant grain fragmentation occurs, and at larger strains, when the spacing of high angle boundaries approaches the crystallite size, a considerable amount of the high angle boundary is removed by a process of dynamic recovery.

  9. Numerical simulation of early stages of oxide formation in molten aluminium magnesium alloys in a reverberatory furnace

    NASA Astrophysics Data System (ADS)

    Kanti De, Anindya; Mukhopadhyay, Achintya; Sen, Swarnendu; Puri, Ishwar K.

    2004-05-01

    A significant amount of aluminium is processed by melting aluminium scrap that contains small amounts of magnesium. A major drawback of aluminium production in secondary melt furnaces is the formation of dross or aluminium oxide by the oxidation of the molten metal. Since aluminium scrap forms a major source of the metal in secondary aluminium processing, the presence of alloying elements plays a key role in the oxidation process. Here, we consider the early stage of oxidation of an Al-Mg alloy during which primarily the oxidation of magnesium to its oxide occurs. Our model simulates the process in an aluminium melting furnace and considers metal oxidation to be diffusion limited. The phenomenon is assumed to be one-dimensional and the reaction of Al/Mg with O2 to be infinitely fast. We are able to obtain a closed form analytical solution of the evaporation rate and the amount of oxide that is formed. We find that the evaporation of the metal vapour and its oxidation depend on the furnace size, melt composition, melt temperature, gas temperature and oxygen concentration in the gas. Oxide formation decreases with increasing furnace height and with decreasing oxygen concentration and melt temperature. Dross formation is weakly dependent on the ambient temperature and alloy composition. The results indicate that there are essentially two parameters, namely, the equivalence ratio of the fuel-air mixture (which controls the ambient oxygen concentration) and the melt temperature that can be manipulated to influence oxide formation in practical furnaces.

  10. Precipitation, strength and work hardening of age hardened aluminium alloys

    NASA Astrophysics Data System (ADS)

    Ryen, Ø.; Holmedal, B.; Marthinsen, K.; Furu, T.

    2015-08-01

    The strength and work hardening of age hardened AA6063 and AA6082 alloys have been investigated in terms of a detailed characterization of precipitate and dislocation structures obtained by TEM and SEM. Tensile and compression tests were performed at as quenched, peak aged and severely aged conditions. A strong work hardening in the as quenched condition was found, similar to AlMg alloys with twice as much alloying elements in solid solution. It was found that the initial work hardening rate and the critical failure strain are both smallest at the peak aged condition. During large deformations the needle-shaped precipitates are sheared uniformly by dislocations altering their <001> orientations, which indicates extensive cross slip. In the overaged condition the early initial work hardening is larger than at the peak aged condition, but followed by a weak linear work hardening, apparently directly entering stage IV at a low strain. Cracked, needle-shaped precipitates were seen at larger strains.

  11. On the micromechanisms responsible for bilinearity in fatigue power-law relationships in aluminium-lithium alloys

    SciTech Connect

    Prasad, N.E.; Malakondaiah, G.; Kutumbarao, V.V.

    1997-09-01

    Aluminium-lithium alloys, like many other aerospace structural alloys, exhibit bilinearity in power-law relationships between high strain, low cycle fatigue life (in terms of number of reversals to failure, 2N{sub f}) and plastic strain amplitude ({Delta}{epsilon}{sub p}/2) or average stress amplitude ({Delta}{sigma}/2) or average plastic strain energy per cycle ({Delta}W{sub p}). In the present paper the micromechanisms leading to bilinear fatigue power-law relationships, especially the Coffin-Manson (C-M) relationship, in aluminium-lithium alloys are compiled and discussed.

  12. Cavitation erosion resistance of microarc oxidation coating on aluminium alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Jiang, Shuyun; Liang, Jun

    2013-09-01

    Two ceramic coatings are prepared on 2124 aluminum alloy by microarc oxidation (MAO) technology. To explore the cavitation erosion resistance of the MAO coating, cavitation tests were performed by using a rotating-disk test rig. The mass losses, surface morphologies, chemical compositions and the phase constituents of the samples after cavitation tests were examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the MAO coatings can extend the incubation period of aluminum alloy, and thus enhance the cavitation erosion resistance as compared to the untreated aluminum alloy samples. After duration of 63 h cavitation test, a lot of erosion pits and the particles in various shapes can be observed on the surfaces of the aluminum alloy samples, while only a few erosion pits are observed on the MAO coatings. Moreover, the mean depths of erosion on the MAO coatings are lower in the first 30 h and are independent on erosion time. The results show that the cavitation erosion of MAO coating is governed by water mechanical impaction, resulting from the effects of brittle fracture of the MAO coating.

  13. Environmentally stable reactive alloy powders and method of making same

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1998-09-22

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  14. Apparatus for making environmentally stable reactive alloy powders

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1996-12-31

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  15. A hybrid aluminium alloy and its zoo of interacting nano-precipitates

    SciTech Connect

    Wenner, Sigurd; Marioara, Calin Daniel; Andersen, Sigmund Jarle; Ervik, Martin; Holmestad, Randi

    2015-08-15

    An alloy with aluminium as its base element is heat treated to form a multitude of precipitate phases known from different classes of industrial alloys: Al–Cu(–Mg), Al–Mg–Si–Cu, and Al–Zn–Mg. Nanometer-sized needle-shaped particles define the starting point of the phase nucleation, after which there is a split in the precipitation sequence into six phases of highly diverse compositions and morphologies. There are several unique effects of phases from different alloy systems being present in the same host lattice, of which we concentrate on two: the replacement of Ag by Zn on the Ω interface and the formation of combined plates of the θ′ and C phases. Using atomically resolved scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy, we investigate the formation mechanisms, crystal structures and compositions of the precipitates. - Graphical abstract: Display Omitted - Highlights: • An aluminium alloy composition in-between the 2/6/7xxx systems was investigated. • Six different phases from the three systems coexist in an over-aged state. • All phases with 〈001〉{sub Al} coherencies can nucleate on 6xxx needle precipitates. • Modified theta′ and omega interfaces are observed.

  16. Analysis of wear properties of aluminium based journal bearing alloys with and without lubrication.

    NASA Astrophysics Data System (ADS)

    Mathavan, J. Joy; Patnaik, Amar

    2016-09-01

    Apart from classical bearing materials, Aluminium alloys are used as bearing materials these days because of their superior quality. In this analysis, new Aluminium based bearing materials, with filler metals Si, Ni, and Cr are prepared by metal mould casting in burnout furnace machine, and tribological properties of these alloys with and without lubrication were tested. The experiments for wear with lubrication are conducted on multiple specimen tester and experiments without lubrication is conducted on Pin on disk tribometer. The disc material used was SAE 1050 steel. Wear tests were conducted at a sliding speed of 0.785 m/s and at a normal load of 20 N. Coefficient of friction values, temperature changes and wear of the specimens were plotted on graph according to the above mentioned working conditions. Hardness and weight losses of the specimens were calculated. The obtained results demonstrate how the friction and wear properties of these samples have changed with the % addition of Silicon, Chromium and Nickel to the base metal aluminium.

  17. Study on optimal surface property of WC-Co cutting tool for aluminium alloy cutting

    NASA Astrophysics Data System (ADS)

    Nizar, Mohd; Arimatsu, Naoya; Kawamitsu, Hiroshi; Takai, Kazuteru; Fukumoto, Masahiro

    2016-02-01

    The light weight property as well as high corrosion resistance of aluminium alloy has increased their demand especially in automobile industries. Aluminium alloy as a matter of fact has a low melting point and high ductility that severely adhere to the cutting tool surface and cause deterioration of chip evacuation. This problem often resulting in tools breakage. In this paper, in order to impart functions of anti-adhesion, we propose a technique by controlling the grinding marks micro texture on the tool surface by using the blast polishing treatment without any coating technologies. The results show that the tool which underwent polishing treatment reduces the cutting force as well as the aluminium adherence during the initial cutting process, and become worst as the process cutting continues. These results indicate that grinding mark texture improves the anti-adhesion by reducing the contact area during cutting and provide storage for the lubricant. In addition, too much polishing on the tool surface may remove these textures and resultantly worsen the tool performance.

  18. Study of surface interactions of ionic liquids with aluminium alloys in corrosion and erosion corrosion processes

    NASA Astrophysics Data System (ADS)

    Bermúdez, María-Dolores; Jiménez, Ana-Eva; Martínez-Nicolás, Ginés

    2007-06-01

    Surface interactions of alkylimidazolium ionic liquids (ILs) with aluminium alloy Al 2011 have been studied by immersion tests in seven neat ILs [1- n-alkyl-3-methylimidazolium X - (X = BF 4; n = 2 (IL1), 6 (IL2), 8 (IL3). X = CF 3SO 3; n = 2 (IL4). X = (4-CH 3C 6H 4SO 3); n = 2 (IL5). X = PF 6; n = 6 (IL6)] and 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide (IL7)]. Immersion tests for Al 2011 have also been carried out in 1 wt.% and 5 wt.% solutions of 1-ethyl,3-methylimidazolium tetrafluoroborate (IL1) in water. No corrosion of Al 2011 by neat ILs is observed. The highest corrosion rate for Al 2011 in water is observed in the presence of a 5 wt.% IL1 due to hydrolysis of the anion with hydrogen evolution and formation of aluminium fluoride. Erosion-corrosion processes have been studied for three aluminium alloys (Al 2011, Al 6061 and Al 7075) in a 90 wt.% IL1 solution in water in the presence of α-alumina particles. The erosion-corrosion rates are around 0.2 mm/year or lower, and increase with increasing copper content to give a corrosion resistance order of Al 6061 > Al 7075 > Al 2011. Results are discussed on the basis of scanning electron microscopy (SEM) observations, energy dispersive spectroscopy (EDS) analysis, X-ray diffraction (XRD) patterns and X-ray photoelectron spectroscopy (XPS) determinations.

  19. Surface formation in direct chill (DC) casting of 6082 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bayat, N.; Carlberg, T.

    2016-03-01

    Surface defects in aluminium billet production are a real problem for the subsequent extrusion procedure. Extrusion productivity can be influenced by the surface properties, which is defined as surface appearance, surface segregation zone depth and large Mg2Si and β-particles (Al5FeSi). In this research the surface formation during DC casting of 6082 aluminium billets produced by the air slip technology is studied. The surface microstructures of 6082 aluminium alloys with smooth and wavy surface appearances were investigated, including segregation zone depths and phase formation. The results were discussed based on the exudation of liquid metal through the mushy zone. The specific appearance of the wavy surface of 6082 alloys was correlated to how the oxide skin adheres to the underlying mushy zone and coupled to the dendritic coherency and surface tension of the skin. The occurrence of different phases at the very surface and in the layer just below was explained by variations in solidification directions and subsequent segregation patterns.

  20. The fatigue response of the aluminium-lithium alloy, 8090

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Beevers, C. J.

    1989-01-01

    The fatigue response of an Al-Li-Cu-Mg-Zr (8090) alloy has been studied at room temperature. The initiation and growth of small and long cracks has been examined at R = 0.1 and at a frequency of 100 Hz. Initiation was observed to occur dominantly at sub-grain boundaries. The growth of the small cracks was crystallographic in character and exhibited little evidence of retardation or arrest at the grain boundaries. The long crack data showed the alloy to have a high resistance to fatigue crack growth with underaging providing the optimum heat treatment for fatigue crack growth resistance. In general, this can be attributed to high levels of crack closure which resulted from the presence of extensive microstructurally related asperities.

  1. The fatigue response of the aluminium-lithium alloy, 8090

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Beevers, C. J.

    1989-01-01

    The fatigue response of an Al-Li-Cu-Mg-Zr (8090) alloy has been studied at room temperature. The initiation and growth of small and long cracks has been examined at R = 0.1 and at a frequency of 100 Hz. Initiation was observed to occur dominantly at sub-grain boundaries. The growth of the small cracks was crystallographic in character and exhibited little evidence of retardation or arrest at the grain boundaries. The long crack data showed the alloy to have a high resistance to fatigue crack growth with underaging providing the optimum heat treatment for fatigue crack growth resistance. In general, this can be attributed to high levels of crack closure which resulted from the presence of extensive microstructurally related asperities.

  2. 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy

    SciTech Connect

    Mingo, B.; Arrabal, R.; Pardo, A.; Matykina, E.; Skeldon, P.

    2016-02-15

    In the present study, the effect of heat treatment T6.1 on the microstructure and corrosion behaviour of rheocast aluminium alloy A356 is investigated on the basis of 2D/3D characterization techniques and electrochemical and SKPFM measurements. Heat treatment strengthens the α-Al matrix, modifies the intermetallic particles and spheroidizes eutectic Si. These changes do not modify significantly the corrosion behaviour of the alloy. 3D SEM-Tomography clearly shows that the corrosion advances in the shape of narrow paths between closely spaced intermetallics without a major influence of eutectic Si. - Highlights: • T6.1 spheroidizes Si, strengthens the matrix and modifies the intermetallics. • Electrochemical behaviour of untreated and heat-treated alloys is similar. • 3D SEM-Tomography provides additional information on the corrosion morphology. • Corrosion advances as paths between intermetallics with little influence of Si.

  3. Mechanical alloying of powder materials by ultrasonic milling.

    PubMed

    Mordyuk, B N; Prokopenko, G I

    2004-04-01

    An ultrasonic grinding mill was designed. It permits to carry out simultaneously intensive ultrasonic, mechanical and cavitation treatments of powder materials that in turn leads to sharp acceleration of diffusion, mass-transfer processes and solid phase reactions due to crystallite size and structure changing. It was shown that meta-stable non-equilibrium solid solution (Cu+Ni+Fe, Fe+C), and crystalline structure transformed (Fe(4)N: fcc-hcp transformation) powders could be obtained for the much shorter time in compare with traditional mechanical alloying in planetary ball mill.

  4. Formation of Immiscible Alloy Powders with Egg-Type Microstructure

    NASA Astrophysics Data System (ADS)

    Wang, C. P.; Liu, X. J.; Ohnuma, I.; Kainuma, R.; Ishida, K.

    2002-08-01

    The egg-type core microstructure where one alloy encases another has previously been obtained during experiments in space. Working with copper-iron base alloys prepared by conventional gas atomization, we were able to obtain this microstructure under gravity conditions. The minor liquid phase always formed the core of the egg, and it sometimes also formed a shell layer. The origin of the formation of this core microstructure can be explained by Marangoni motion on the basis of the temperature dependence of the interfacial energy, which shows that this type of powder can be formed even if the cooling rate is very high.

  5. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    SciTech Connect

    Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng Zhou, Zhi Ping

    2015-04-15

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H{sub 2}O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  6. Finite Element Analysis of Warpage in Laminated Aluminium Alloy Plates for Machining of Primary Aeronautic Parts

    SciTech Connect

    Reis, A. C.; Moreira Filho, L. A.; Menezes, M. A.

    2007-04-07

    The aim of this paper consists in presenting a method of simulating the warpage in 7xxx series aluminium alloy plates. To perform this simulation finite element software MSC.Patran and MSC.Marc were used. Another result of this analysis will be the influence on material residual stresses induced on the raw material during the rolling process upon the warpage of primary aeronautic parts, fabricated through machining (milling) at Embraer. The method used to determinate the aluminium plate residual stress was Layer Removal Test. The numerical algorithm Modified Flavenot Method was used to convert layer removal and beam deflection in stress level. With such information about the level and profile of residual stresses become possible, during the step that anticipate the manufacturing to incorporate these values in the finite-element approach for modelling warpage parts. Based on that warpage parameter surely the products are manufactured with low relative vulnerability propitiating competitiveness and price.

  7. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications

    PubMed Central

    Rittapai, Apiwat; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-01-01

    PURPOSE This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. MATERIALS AND METHODS Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. RESULTS The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. CONCLUSION The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications. PMID:25006386

  8. Electron irradiation of aluminium-zinc alloys. 3. Radiation-enhanced precipitation in an aluminium-4.5 at% zinc alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Y. G.

    1989-06-01

    An aluminium-4.5 at% zinc alloy was irradiated at temperatures between 25 and 170°C to doses of 7 dpa to 14 dpa at a dose rate of ~3.88 × 10 -3dpa/s. Irradiation produced a very high density of coherent G.P. zones in the temperature range ~80-~130°C, coherent plate shaped precipitates in the temperature range ~130-~160°C and, under some irradiation conditions, large Zn precipitates on the foil surfaces. No precipitates occurred along the grain boundaries in the irradiated area. The matrix precipitation was interpreted in terms of the theory of Cauvin and Martin. The surface precipitation is ascribed to surface segregation of Zn and the non-appearance of precipitates along the grain boundaries in the irradiated area is thought to be due to the high metastability of the precipitates on the boundaries under irradiation.

  9. The flash-butt welding of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Kuchuk-Iatsenko, S. I.; Cherednichok, V. T.; Semenov, L. A.

    Flash-butt welding (FBW) of high-strength aerospace Al alloys is conducted without gaseous-medium shielding and has undergone substantial development in the direction of automated operations. FBW yields virtually no pores, discontinuities, or cracks, and is therefore ideal for gas-impermeable joints. The dimensional accuracies achievable by FBW are a function of weld are inner stresses that are a full order of magnitude smaller than those of arc-welding methods. NDI methods can be incorporated into an automated FBW apparatus for direct inspection of welds.

  10. Studies on aluminium leaching from cookware in tea and coffee and estimation of aluminium content in toothpaste, baking powder and paan masala.

    PubMed

    Rajwanshi, P; Singh, V; Gupta, M K; Kumari, V; Shrivastav, R; Ramanamurthy, M; Dass, S

    1997-01-30

    Studies were conducted in order to assess the level of aluminium (Al) in samples of Indian tea, coffee, toothpaste, paan masala (mouth freshener) and baking powder. Leaching of Al from cookware while preparing tea and coffee was also studied. Experiments were also conducted to study the sequential leaching of Al from cookware by preparing tea and coffee in the presence of standard size Al sheets (coupons). A small amount of Al was found to have leached from coupons during preparation of tea. Tea leaves, were found to be a rich source of Al and a maximum of 2.2% Al is extracted in tea infusions. Coffee powder on the other hand was not found to be a rich source of Al. Baking powder was found to be a rich source of Al and 1 kg of cake prepared with 1-3 teaspoon of baking powder may contain 2-12.7 mg of Al in each serving (25 g). Toothpaste also contains a significant quantity of Al, more so, when packed in Al tubes. Ingestion pattern of Al from these items by humans is also discussed.

  11. Further studies of the anodic dissolution in sodium chloride electrolyte of aluminium alloys containing tin and gallium

    NASA Astrophysics Data System (ADS)

    Nestoridi, Maria; Pletcher, Derek; Wharton, Julian A.; Wood, Robert J. K.

    As part of a programme to develop a high power density, Al/air battery with a NaCl brine electrolyte, the high rate dissolution of an aluminium alloy containing tin and gallium was investigated in a small volume cell. The objective was to define the factors that limit aluminium dissolution in condition that mimic a high power density battery. In a cell with a large ratio of aluminium alloy to electrolyte, over a range of current densities the extent of dissolution was limited to ∼1000 C cm -2 of anode surface by a thick layer of loosely bound, crystalline deposit on the Al alloy anode formed by precipitation from solution. This leads to a large increase in impedance and acts as a barrier to transport of ions.

  12. Strength of the aluminium alloy 6082-T6 under high strain-rate conditions

    SciTech Connect

    Harrigan, J. J.; Millett, J. C. F.; Bourne, N. K.

    2007-12-12

    The measurement of shear strength via the use of lateral stress gauges has been shown to be a viable technique in a number of materials. An experimental investigation on the intermediate-rate behaviour and shock response of the aluminium alloy, 6082-T6, is reported here. Results obtained using the lateral stress gauge technique show that the shear strength increases with impact stress. The lateral stress behind the shock front is seen to be relatively flat, unlike many other face-centred cubic metals and alloys, where a decrease in lateral stress indicates an increase in shear strength. This unusal response may be a reflection of the high stacking fault energy of aluminium and its alloys resulting in a reduction of the work hardening (i.e. increases in dislocation and/or twin density). Further plate impact results show that the Hugoniot of 6082-T6 is in effect identical to that of the more widely known 6061-T6. Split Hopkinson pressure bar results are used to provide a fuller picture of the rate-dependant behaviour of 6082-T6 over a range of loading rates and conditions.

  13. Effect of the nature of grain boundary regions on cavitation of a superplastically deformed aluminium alloy

    SciTech Connect

    Blandin, J.J.; Varloteaux, A.; Suery, M.; Hong, B.; L`Esperance, G.

    1996-06-01

    Superplastic deformation of aluminium alloys induces cavity formation throughout the material, so that superplastic forming usually requires to be carried out under superimposed gas pressure to minimize strain-induced damage. This paper deals with the beneficial effects of heat treatment at high temperature for several hours before deformation on cavitation behavior of a superplastically deformed 7475 alloy. Transmission electron microscopy observations show that several microstructural transformations are induced by superplastic deformation and affected by the heat treatment. At first, the generation of dispersoid free zones at the periphery of the grains is observed, the composition of which depends on the prior history of the specimen. Secondly, the formation of long thin fibers extending in the cavities in the as received specimens, these fibers being no longer present in the heat-treated conditions. A TEM characterization of the fibers is presented and a mechanism of their formation is discussed. Such a reduction of the cavitation level for a given strain is interesting in view of superplastic forming of aluminium alloys under atmospheric pressure.

  14. Microstructure refinement of commercial 7xxx aluminium alloys solidified by the electromagnetic vibration technique

    NASA Astrophysics Data System (ADS)

    Li, M.; Tamura, T.; Omura, N.; Murakami, Y.; Tada, S.

    2016-03-01

    This paper examines the microstructure refinement of commercial 7xxx aluminium alloys solidified by the electromagnetic vibration technique (EMV) as a function of vibration frequency, f. The microstructure evolution reveals that at the low frequency of f = 62.5 Hz, the solidified microstructure is coarse and with the increase of vibration frequency to f = 500 Hz, the grain size becomes the finest and further increase of frequency to f = 2000 Hz results in coarsening of microstructures. The refinement mechanism is clarified when considering the significant difference in electrical resistivities of the solid and the liquid in mushy zone, in which both phases coexist and subject to vibration. The frequency-dependent refinement behaviour is revealed when the displacement of the mobile solid and sluggish liquid is taken into account during solidification. In contrast to 3xxx aluminium alloys, no giant compounds have been discerned in the present 7xxx alloy regardless of the solidification condition. The formation of crystalline twin is briefly discussed when considering the vibration condition.

  15. Effect of Melt Temperature on Surface Films Formed on Molten AZ91D Alloy Protected by Graphite Powder

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Zhou, Jixue; Ma, Baichang; Wang, Jinwei; Wu, Jianhua; Yang, Yuansheng

    2017-08-01

    Graphite powder was adopted to prevent AZ91D alloy from oxidizing during melting and casting. The microstructure of the resultant surface films, formed at 933 K, 973 K, 1013 K, and 1053 K (660 °C, 700 °C, 740 °C, and 780 °C) for 30 minutes, was investigated by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction, and the phase composition of the surface films was analyzed by the standard Gibbs free energy change of the reactions between the graphite powder, the alloy melt, and the ambient atmosphere. The effect and mechanism of melt temperature on the resultant surface films were also discussed. The results indicated that the surface films, of which the surface morphology comprised folds and wrinkles, were composed of a protective layer and MgF2 particles. The protective layer was contributive to the prevention of the molten alloy from oxidizing, and consisted of magnesium, oxygen, fluorine, carbon, and a small amount of aluminium existing in the form of MgO, MgF2, C, and MgAl2O4. The layer thickness was 200 to 900 nm. The melt temperature may affect the surface films through the increased interaction between the graphite powder, the melt, and the ambient atmosphere. The oxygen content and thickness of the protective layer decreased and then increased, while the height of the folds increased with melt temperature.

  16. Powder-Derived High-Conductivity Coatings for Copper Alloys

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.

    2003-01-01

    Makers of high-thermal-flux engines prefer copper alloys as combustion chamber liners, owing to a need to maximize heat dissipation. Since engine environments are strongly oxidizing in nature and copper alloys generally have inadequate resistance to oxidation, the liners need coatings for thermal and environmental protection; however, coatings must be chosen with great care in order to avoid significant impairment of thermal conductivity. Powder-derived chromia- and alumina- forming alloys are being studied under NASA's programs for advanced reusable launch vehicles to succeed the space shuttle fleet. NiCrAlY and Cu-Cr compositions optimized for high thermal conductivity have been tested for static and cyclic oxidation, and for susceptibility to blanching - a mode of degradation arising from oxidation-reduction cycling. The results indicate that the decision to coat the liners or not, and which coating/composition to use, depends strongly on the specific oxidative degradation mode that prevails under service conditions.

  17. Rapid and selective chelatometric titration of aluminium in non-ferrous alloys.

    PubMed

    Nan, Z; Yuan-Xiang, G; Zhi-Ren, L; Eei-Yong, C

    1985-12-01

    A rapid chelatometric method for the determination of Al (4-20%) in magnesium, copper and chromium-aluminium-iron alloys is proposed. HEDTA is used as titrant and Zn solution as back-titrant, with hydrazidazol as indicator. Mn(II), Cu(II), Cd, Zn, Pb, Co(II), Ni, Hg(II), Fe(III), Bi, Cr(III), Sb(III), Ce(III), La, Sn(IV), Ti(IV), Zr and Mo(VI) do not interfere. High selectivity is achieved by a combination of group separation, masking and interference correction. The coefficient of variation varies from 0.2 to 1%.

  18. Grain boundary segregation and hydrogen-induced fracture in 7050 aluminium alloy

    SciTech Connect

    Song, R.G.; Tseng, M.K.; Zhang, B.J.; Liu, J.; Jin, Z.H.; Shin, K.S.

    1996-08-01

    The relationships between grain boundary segregation and crack growth of stress corrosion and corrosion fatigue in 7050 aluminium alloy have been investigated under various aging conditions; the effects of grain boundary segregation on intergranular fracture work have been calculated using a quasichemical approach. The results show that the hydrogen content at the crack tip and the crack growth rate increase with the concentration of solid solution Mg on increasing grain boundary; both Mg and H segregation induce the intergranular fracture work to decrease. Mg segregation accelerates H enriching and crack propagation. It is indicated that a Mg-H interaction occurs in the processes of corrosion fatigue as well as stress corrosion.

  19. Experimental evaluation of machining parameters in machining of 7075 aluminium alloy with cryogenic liquid nitrogen coolant

    NASA Astrophysics Data System (ADS)

    Muthuraman, V.; Arunkumar, S.

    2017-03-01

    The experimental results on investigation on the turning of 7075 aluminium alloy, using Cryogenic Liquid Nitrogen (LN2) as a coolant was analyzed in this paper. The influence of the cryogenic LN2 coolant compared with that of the conventional coolant on the cuting performance parameters, such as the cutting force, cutting temperature, andbsurface finish was analysed and investigated. The use of the cryogenic liquid nitrogen coolant influenced the cutting temperature and the cutting force by about 17 to 29% and 11 to 20% reduction respectively. The surface finish value of the machined workpiece is about 15 to 23% better than that of the conventional coolant.

  20. A comparative assessment of crystallite size and lattice strain in differently cast A356 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Roy, H.; Lohar, A. K.; Samanta, S. K.; Tiwari, S.; Dutta, K.

    2015-02-01

    In this investigation, A356 aluminium alloy has been prepared by different routes viz. gravity casting, rheo pressure die casting (RPDC) and RPDC with T6 heat treatment. X-ray diffraction studies of these samples have been done in the scanning range of 20 - 90°. X-ray peak broadening analysis has been used to estimate the crystallite size and lattice stain, in all the samples. The sample prepared by RPDC with T6 treatment has comparatively smaller crystallite size and lesser lattice strain than gravity cast and RPDC samples.

  1. Microstructure evolution in age-hardenable aluminium alloy during processing by hydrostatic extrusion.

    PubMed

    Lewandowska, M

    2006-10-01

    In the present work, scanning and transmission electron microscopy were used to investigate the microstructural evolution occurring during the hydrostatic extrusion of an age-hardenable aluminium alloy. It was shown that processing by hydrostatic extrusion leads to grain refinement to 95 nm in equivalent diameter. Hydrostatic extrusion also influences the geometrical parameters of two different types of particle: intermetallic inclusions and precipitates. The intermetallic inclusions slightly decrease in mean equivalent diameter, but their size remains at the micrometre level. The precipitates are fragmented to nanoscale spherical particles, and their evolution delays the process of grain refinement.

  2. Preparation of aluminium-magnesium alloys and some valuable salts from used beverage cans.

    PubMed

    Rabah, Mahmoud A

    2003-01-01

    The purpose of this work is to recover standard aluminium-magnesium alloy(s) and some valuable salts from used beverage cans (UBCs). The suggested method updated the current recycling technology by augmenting removal of the coating paint, decreasing magnesium loss during melting process and improving hydrochloric acid leaching of the formed slag. Iron impurity present in the leaching solution, was removed by oxidation using oxygen gas or hydrogen peroxide and filtered as goethite. Results obtained revealed that a mixture of methyl ethyl ketone/dimethyl formamide entirely removes the paint coating at room temperature. The process compares favorably to the current methods involving firing or swell peeling. The coating decomposes to titanium dioxide by heating at 750 degrees C for 30 min. Standard compositions of Al-Mg alloys are formulated using secondary magnesium. The extent of recovery (R) of these alloy(s) is a function of the melting time and temperature and type of the flux. The maximum (R) value amounts to 94.4%. Sodium borate/chloride mix decreases magnesium loss to a minimum. The extent of leaching valuable salts from the slag increases with increasing the molarity, stoichiometric ratio and leaching temperature of the acid used. Removal of iron is a function of the potential of the oxidation process. Stannous chloride has been recovered from the recovered and dried salts by distillation at 700-750 degrees C.

  3. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.

    PubMed

    Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E

    2012-11-01

    The fabrication of the workhorse Ti-6Al-4V alloy and of the Ti-3Al-2.5V alloy was studied considering the master alloy addition variant of the blending elemental approach conventionally used for titanium powder metallurgy. The powders were characterised by means thermal analysis and X-ray diffraction and shaped by means of uniaxial pressing. The microstructural evolution with the sintering temperature (900-1400 °C) was evaluated by SEM and EDS was used to study the composition. XRD patterns as well as the density by Archimedes method were also obtained. The results indicate that master alloy addition is a suitable way to fabricate well developed titanium alloy but also to produce alloy with the desired composition, not available commercially. Density of 4.3 g/cm³ can be obtained where a temperature higher than 1200 °C is needed for the complete diffusion of the alloying elements. Flexural properties comparable to those specified for wrought Ti-6Al-4V medical devices are, generally, obtained.

  4. PALS determination of defect density within friction stir welded joints of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Kansy, J.; Mroczka, K.; Dutkiewicz, J.

    2011-01-01

    Positron annihilation spectroscopy is employed to investigate the density of defects in samples of aluminium alloys (2017 A and 6013) welded using the Friction Stir Welding method. The vacancy and dislocation densities were determined at the weld junction as a function of various parameters and conditions: Travel and rotational speed of welding tool, cooling of the surface of the welded material and the compositions of the welded alloys. The 3-state trapping model used in the computer analysis allowed to separate a vacancy component from a component related to dislocations. The determined lifetime of positron trapped by dislocation was much shorter than its experimental values referred to in literature, however, it is closer to the theoretical predictions.

  5. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    DTIC Science & Technology

    2015-02-01

    Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg, Clara Hofmeister...Ground, MD 21005-5069 ARL-TR-7208 February 2015 Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free...4. TITLE AND SUBTITLE Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent 5a. CONTRACT

  6. Physically-based constitutive modelling of residual stress development in welding of aluminium alloy 2024

    SciTech Connect

    Preston, R.V.; Shercliff, H.R. . E-mail: hrs@eng.cam.ac.uk; Withers, P.J.; Smith, S.

    2004-10-04

    A finite element model has been developed to predict the evolution of residual stress and distortion which takes into account the history-dependence of the yield stress-temperature response of heat-treatable aluminium alloys during welding. The model was applied to TIG welding of 2024-T3 aluminium alloy, and the residual strain predictions validated using high resolution X-ray synchrotron diffraction. The goal was to capture the influence of the permanent evolution of the microstructure during the thermal cycle with a straightforward numerical procedure, while retaining a sound physical basis. Hardness and resistivity measurements after isothermal hold-and-quench experiments were used to identify salient temperatures for zero, partial and full dissolution of the initial hardening precipitates, and the extent of softening - both immediately after welding, and after natural ageing. Based on these data, a numerical procedure for weld modelling was proposed for tracking the different yield responses during heating and cooling based on the peak temperature reached locally. This history-dependent model was superior to a conventional model in predicting the peak tensile strains, but otherwise the effect of temperature history was weak for 2024-T3. Predictions of the hardness profile immediately after welding compared with the post-weld naturally aged hardness provided insight into the competition between dissolution and coarsening of the precipitates in the heat-affected zone.

  7. On the optimisation of machining parameters for dry drilling of aeronautic aluminium alloy

    NASA Astrophysics Data System (ADS)

    List, G.; Girot, F.

    2003-09-01

    Machining aluminium alloys without lubrication seriously increases the tool wear because of the severe tribological conditions at the tool/chip interface. Indeed, metal cutting generates high temperatures and pressures due to the high strain rate (ge104 s^{-1}) and the friction between the tool and the chip. Thus, it is very important to be able to clearly identify the parameters influencing the machining quality. In order to study dry drilling with W-Co carbide tools, experiments were conducted using different drill geometries and varying cutting conditions. The workpiece material used in this work is the aluminium alloy 2024 T-351. Optimise drill geometries can be deducted from experimental results to obtain holes with an aerospace quality. The following parameters were used to evaluate the holes quality : the minimum and maximum diameter deviations, the burr height and the surface roughness. The microscope observation of the tool rake face shows that the main damage is adhesion and diffusion wear revealing the presence of high temperature. Cutting conditions were tested and chosen to limit the tool damage and by consequence to increase the tool life.

  8. Determination of aluminium in molybdenum and tungsten metals, iron, steel and ferrous and non-ferrous alloys with pyrocatechol violet.

    PubMed

    Donaldson, E M

    1971-09-01

    A method for determining 0.001-0.10% of aluminium in molybdenum and tungsten metals is described. After sample dissolution, aluminium is separated from the matrix materials by chloroform extraction of its acetylacetone complex, at pH 6.5, from an ammonium acetate-hydrogen peroxide medium, then back-extracted into 12M hydrochloric add. Following separation of most co-extracted elements, except for beryllium and small amounts of chroinium(III) and copper(II), by a combined ammonium pyrrolidincdithiocarbamate-cupfen-on-chlorofonn extraction, aluminium is determined spectrophotometrically with Pyrocatechol Violet at 578 nm. Chromium interferes during colour development but beryllium, in amounts equivalent to the aluminium concentration, does not cause significant error in the results. Interference from copper(II) is eliminated by reduction with ascorbic acid. The proposed method is also applicable to iron, steel, ferrovanadium, and copper-base alloys after preliminary removal of the matrix elements by a mercury cathode separation.

  9. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Zhigang Zak; Zhang, Ying; Xia, Yang

    2017-10-01

    Spherical titanium alloy powder is an important raw material for near-net-shape fabrication via a powder metallurgy (PM) manufacturing route, as well as feedstock for powder injection molding, and additive manufacturing (AM). Nevertheless, the cost of Ti powder including spherical Ti alloy has been a major hurdle that prevented PM Ti from being adopted for a wide range of applications. Especially with the increasing importance of powder-bed based AM technologies, the demand for spherical Ti powder has brought renewed attention on properties and cost, as well as on powder-producing processes. The performance of Ti components manufactured from powder has a strong dependence on the quality of powder, and it is therefore crucial to understand the properties and production methods of powder. This article aims to provide a cursory review of the basic techniques of commercial and emerging methods for making spherical Ti powder. The advantages as well as limitations of different methods are discussed.

  10. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Zhigang Zak; Zhang, Ying; Xia, Yang

    2017-08-01

    Spherical titanium alloy powder is an important raw material for near-net-shape fabrication via a powder metallurgy (PM) manufacturing route, as well as feedstock for powder injection molding, and additive manufacturing (AM). Nevertheless, the cost of Ti powder including spherical Ti alloy has been a major hurdle that prevented PM Ti from being adopted for a wide range of applications. Especially with the increasing importance of powder-bed based AM technologies, the demand for spherical Ti powder has brought renewed attention on properties and cost, as well as on powder-producing processes. The performance of Ti components manufactured from powder has a strong dependence on the quality of powder, and it is therefore crucial to understand the properties and production methods of powder. This article aims to provide a cursory review of the basic techniques of commercial and emerging methods for making spherical Ti powder. The advantages as well as limitations of different methods are discussed.

  11. Effect of pulsed current GTA welding parameters on the fusion zone microstructure of AA 6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kumar, T. Senthil; Balasubramanian, V.; Babu, S.; Sanavullah, M. Y.

    2007-08-01

    AA6061 aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of food processing equipment, chemical containers, passenger cars, road tankers, and railway transport systems. The preferred process for welding these aluminium alloys is frequently Gas Tungsten Arc (GTA) welding due to its comparatively easy applicability and lower cost. In the case of single pass GTA welding of thinner sections of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current processes. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. In this investigation, an attempt has been made to develop a mathematical model to predict the fusion zone grain diameter incorporating pulsed current welding parameters. Statistical tools such as design of experiments, analysis of variance, and regression analysis are used to develop the mathematical model. The developed model can be effectively used to predict the fusion grain diameter at a 95% confidence level for the given pulsed current parameters. The effect of pulsed current GTA welding parameters on the fusion zone grain diameter of AA 6061 aluminium alloy welds is reported in this paper.

  12. Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling

    NASA Technical Reports Server (NTRS)

    Bonacuse, Pete; Kantzos, Pete; Telesman, Jack

    2002-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro

  13. Design and operation of an aluminium alloy tank using doped Na3AlH6 in kg scale for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Urbanczyk, R.; Peinecke, K.; Meggouh, M.; Minne, P.; Peil, S.; Bathen, D.; Felderhoff, M.

    2016-08-01

    In this publication the authors present an aluminium alloy tank for hydrogen storage using 1921 g of Na3AlH6 doped with 4 mol% of TiCl3 and 8 mol% of activated carbon. The tank and the heat exchangers are manufactured by extrusion moulding of Al-Mg-Si based alloys. EN AW 6082 T6 alloy is used for the tank and a specifically developed alloy with a composition similar to EN AW 6060 T6 is used for the heat exchangers. The three heat exchangers have a corrugated profile to enhance the surface area for heat transfer. The doped complex hydride Na3AlH6 is densified to a powder density of 0.62 g cm-3. The hydrogenation experiments are carried out at 2.5 MPa. During one of the dehydrogenation experiments approximately 38 g of hydrogen is released, accounting for gravimetric hydrogen density of 2.0 mass-%. With this tank 15 hydrogenation and 16 dehydrogenation tests are carried out.

  14. The effect of strain rate on the evolution of microstructure in aluminium alloys.

    PubMed

    Leszczyńska-Madej, B; Richert, M

    2010-03-01

    Intensive deformations influence strongly microstructure. The very well-known phenomenon is the diminishing dimension of grain size by the severe plastic deformation (SPD) methods. The nanometric features of microstructure were discovered after the SPD deformation of various materials, such as aluminium alloys, iron and others. The observed changes depended on the kind of the deformed material, amount of deformation, strain rate, existence of different phases and stacking fault energy. The influence of the strain and strain rate on the microstructure is commonly investigated nowadays. It was found that the high strain rates activate deformation in shear bands, microbands and adiabatic shear bands. It was observed that bands were places of the nucleation of nanograins in the material deformed by SPD methods. In the work, the refinement of microstructure of the aluminium alloys influenced by the high strain rate was investigated. The samples were compressed by a specially designed hammer to the deformation of phi= 0/0.62 with the strain rate in the range of [Formula in text]. The highest reduction of microbands width with the increase of the strain was found in the AlCu4Zr alloy. The influence of the strain rate on the microstructure refinement indicated that the increase of the strain rate caused the reduction of the microbands width in the all investigated materials (Al99.5, AlCu4Zr, AlMg5, AlZn6Mg2.5CuZr). A characteristic feature of the microstructure of the compressed material was large density of the shear bands and microbands. It was found that the microbands show a large misorientation to the surrounds and, except Al99.5, the large density of dislocation.

  15. Electrochemical characteristics of a carbon fibre composite and the associated galvanic effects with aluminium alloys

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Curioni, M.; Jamshidi, P.; Walker, A.; Prengnell, P.; Thompson, G. E.; Skeldon, P.

    2014-09-01

    The electrochemical behaviour of a carbon fibre reinforced epoxy matrix composite in 3.5% NaCl and 3.5% NaCl + 0.5 M CuSO4 electrolytes was examined by potentiodynamic polarisation, potentiostatic polarisation and scanning electron microscopy. Exposed carbon fibres on two defined regions (“front” and “side”) are a focus of the investigation. The large size of the exposed carbon fibres on the side region is responsible for a higher cathodic current density than the front region in the NaCl electrolyte. The deposition of copper on the front surface of composite confirmed that the significantly higher cathodic current resulted from the exposure of the fibres to the NaCl electrolyte. Galvanic coupling between the composite and individual aluminium alloys (AA7075-T6 and AA1050) was used to measure galvanic potentials and galvanic current densities. The highly alloyed AA7075-T6 alloy and its high population density of cathodic sites compared to the AA1050 acted to reduce the galvanic effect when coupled to the composite front or side regions.

  16. Characterisation of the anodic layers formed on 2024 aluminium alloy, in tetraborate electrolyte containing molybdate ions

    NASA Astrophysics Data System (ADS)

    Moutarlier, V.; Pelletier, S.; Lallemand, F.; Gigandet, M. P.; Mekhalif, Z.

    2005-12-01

    Anodic layer growth on 2024 aluminium alloy at 70 °C, under 40 V, during 60 min, in 50 g L -1 di-sodium tetraborate solution containing di-sodium molybdate from 0.1 to 0.5 M (pH 10) is examined. Anodising behaviours strongly depend on additive concentration. Development of anodic films is favoured with weak molybdate additions (<0.3-0.4 M). The film thicknesses increase and the porosity of anodic layers decreases. Molybdenum (+VI), detected by X-ray photoelectron spectroscopy (XPS) analysis, is present in the anodic films and the Mo incorporation, studied by energy dispersive spectroscopy (EDS) analysis, increases with molybdate concentration. However, for high molybdate concentrations (>0.4 M), anodising behaviour becomes complex with the formation of a blue molybdenum oxide at the cathode. The growth of aluminium oxide is hindered. As the anodic layers are thinner, the Mo(+VI) incorporation significantly decreases. These two configurations implicate different corrosion performances in 5% sodium chloride solution at 35 °C. As the alkaline anodic layer formed with 0.3 M molybdate species is the thickest and the Mo incorporation is the more pronounced, its corrosion resistance is the highest. The effect of morphology and composition of anodic films on pitting corrosion is also discussed.

  17. Fabrication and Characterization of High Strength Al-Cu Alloys Processed Using Laser Beam Melting in Metal Powder Bed

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Nagulin, Konstantin Yu.; Schmidt, Michael

    The proposed paper illustrates fabrication and characterization of high strength Aluminium Copper alloys processed using Laser Beam Melting process. Al-Cu alloys EN AW-2219 and EN AW-2618 are classified as wrought alloys and 2618 is typically considered difficult to weld. Laser Beam Melting (LBM) process from the family of Additive Manufacturing processes, has the unique ability to form fully dense complex 3D geometries using micro sized metallic powder in a layer by layer fabrication methodology. LBM process can most closely be associated to the conventional laser welding process, but has significant differences in terms of the typical laser intensities and scan speeds used. Due to the use of high intensities and fast scan speeds, the process induces extremely high heating and cooling rates. This property gives it a unique physical attribute and therefore its ability to process high strength Al-Cu alloys needs to be investigated. Experiments conducted during the investigations associate the induced energy density controlled by varying process parameters to the achieved relative densities of the fabricated 3D structures.

  18. Ceramic Inclusions in Powder Metallurgy Disk Alloys: Characterization and Modeling

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.

    2001-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially in turbine disk applications. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that are inherent to the powder atomization process. These inclusions can have a potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they typically do not reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where known populations of ceramic particles, whose composition and morphology are designed to mimic the "natural" inclusions, are added to the precursor powder. Surface-connected inclusions have been found to have a particularly large detrimental effect on fatigue life; therefore, the quantity of ceramic "seeds" added is calculated to ensure that a minimum number will intersect the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface area was needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macroscopic slices from extrusions

  19. Rapidly solidified powder aluminum alloys; Proceedings of the Symposium, Philadelphia, PA, April 4, 5, 1984

    SciTech Connect

    Fine, M.E.; Starke, E.A. Jr.

    1986-01-01

    Topics discussed include the need for rapidly solidified PM Al alloy development for aerospace and land vehicle applications, the solidification theory, and stereological characterization of porous microstructures. Papers treating the characterization of rapidly solidified materials, rapid solidification of highly undercooled Al powders, Al3Li precipitate modification in an Al-Li-Zr alloy, hardening mechanism in rapidly solidified Al-8Fe alloy, the fabrication of high-strength PM extrusions, hypereutectic Al-based alloys, the properties of Al alloys with 8-12 wt pct Fe and Al-Li-Be alloys, the microstructure of supercooled submicrometer Al-Cu alloy powder, and the influence of hydrogen on the ductility of 7091 and 7090 PM alloys. Attention is given to PM processing of Al alloy 7091, dynamic compaction of rapidly solidified Al alloy powders, the effects of alloy chemistry on superplastic forming of rapid solidification-processed Al-Li alloys, thermomechanical treatment of 2124 PM Al alloys, and a method for degassing evaluation of Al PM alloys. Studies concerned with high strength PM alloys, a technique for assessing the corrosion properties of Al PM alloys, the development of dispersion-strengthened Al alloys, the microstructure/mechanical property relationships for thermal treatments of Al-Cu-Mg-X PM Al alloys, PM and IM Al alloy forgings, the annealing behavior and tensile properties of elevated-temperature PM Al alloys, the effect of compositional changes on the microstructure and properties of rapidly solidified Al3-Li alloys and the use of rapid solidification for the development of 2XXX alloys.

  20. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  1. Influence of rotary swaging and subsequent age hardening on properties of EN AW 6082 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Maleček, L.; Palán, J.; Nacházel, J.; Dlouhý, J.

    2017-02-01

    Mechanical properties and microstructure of EN AW 6082 were investigated. The aluminium alloy was processed by combining the solution annealing, plastic deformation and artificial age hardening, respectively. The initial state of the investigated material was provided in the form of extruded rods with the diameter of 12 mm. For the solution annealing the temperature 530 °C was chosen. The plastic deformation was realized by rotary swaging at ambient temperature and the investigated material was rotary swaged from 12 to 10 mm in diameter. The effect of the age hardening temperature and time was studied at temperatures of 120 and 160 °C and times 1 - 12 hours. The impact of processing parameters on mechanical properties was assessed by tensile testing and hardness measurement. Metallographic examination was carried out by light optical microscopy (LOM) and scanning electron microscopy using electron backscatter diffraction (SEM-EBSD).

  2. Experimental study of thermal oxidation of nanoscale alloys of aluminium and zinc (nAlZn)

    NASA Astrophysics Data System (ADS)

    Noor, Fahad; Wen, Dongsheng

    2015-10-01

    Aluminium-based alloys have wide applications but little is known about the thermal-chemical kinetics of nanoalloys. This work investigated the thermal oxidation of Zn and Al nanoalloys (nAlZn) with a BET equivalent diameter of 141 nm through the simultaneous TGA/DSC method. The thermal analysis was combined with elemental, morphology and crystalline structure analysis to elucidate the reaction mechanisms. It was found that the complete oxidation of nAlZn in air can be characterised by a three-stage process, including two endothermic and three exothermic reactions. With the help of ex-situ XRD, different reaction pathways were proposed for different stages, forming the end products of ZnO and ZnAl2O4. The reactivity comparison between Al and nAlZn suggested that different criteria should be used for different applications.

  3. Effect of stress relieving treatment on low cycle fatigue behavior of USSP treated 7075 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Pandey, Vaibhav; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2017-05-01

    The effect of ultrasonic shot peening (USSP) on low cycle fatigue (LCF) behavior of the 7075 aluminium alloy was studied at room temperature. There was grain refinement approximately to 20 nm size, appreciable increase in micro hardness, and inducement of residual compressive stress in the surface region, due to the USSP treatment. The modified microstructure in surface region of the specimens subjected to USSP was characterized by X-ray diffraction and transmission electron microscopy. There was marked increase in LCF life of the specimens due to USSP, however, LCF life of the USSP specimens was reduced due to subsequent treatment of stress relieving. The results are discussed in terms of the process of crack initiation and propagation in the different conditions.

  4. Investigation of dynamic dry friction between stainless steel and aluminium alloy

    NASA Astrophysics Data System (ADS)

    Keightley, Peter; Winter, Ron; Stirk, Stewart

    2009-06-01

    Previous workers studied dynamic friction by using an impacting copper plate to drive a tapered aluminium alloy plug into a matching hole in a stainless steel outer sheath. The velocity of the back surface of the plug was measured using velocity interferometry. We have performed experiments on a version of this basic configuration that has been enlarged so that the sliding surfaces remain in contact for a longer time than with the original configuration. By comparing our results with computer simulations we conclude that the frictional forces between the inner cone and the steel outer are initially high but decrease significantly as the sliding proceeds. This effect is assumed to result from thermal softening of the material at the sliding interface. The study is supported by metallography of the recovered components.

  5. Experimental characterisation and modelling of deformation- induced microstructure in an A6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kreyca, J. F.; Falahati, A.; Kozeschnik, E.

    2016-03-01

    For industry, the mechanical properties of a material in form of flow curves are essential input data for finite element simulations. Current practice is to obtain flow curves experimentally and to apply fitting procedures to obtain constitutive equations that describe the material response to external loading as a function of temperature and strain rate. Unfortunately, the experimental procedure for characterizing flow curves is complex and expensive, which is why the prediction of flow-curves by computer modelling becomes increasingly important. In the present work, we introduce a state parameter based model that is capable of predicting the flow curves of an A6061 aluminium alloy in different heat-treatment conditions. The model is implemented in the thermo-kinetic software package MatCalc and takes into account precipitation kinetics, subgrain formation, dynamic recovery by spontaneous annihilation and dislocation climb. To validate the simulation results, a series of compression tests is performed on the thermo-mechanical simulator Gleeble 1500.

  6. Microstructure of friction stir welded joints of 2017A aluminium alloy sheets.

    PubMed

    Mroczka, K; Dutkiewicz, J; Pietras, A

    2010-03-01

    The present study examines a friction stir welded 2017A aluminium alloy. Transmission electron microscope investigations of the weld nugget revealed the average grain size of 5 microm, moderate density of dislocations as well as the presence of nanometric precipitates located mostly in grains interiors. Scanning electron microscope observations of fractures showed the presence of ductile fracture in the region of the weld nugget with brittle precipitates in the lower part. The microhardness analysis performed on the cross-section of the joints showed fairly small changes; however, after the artificial ageing process an increase in hardness was observed. The change of the joint hardness subject to the ageing process indicates partial supersaturation in the material during friction stir welding and higher precipitation hardening of the joint.

  7. Material Characterization of Dissimilar Friction Stir Spot Welded Aluminium and Copper Alloy

    NASA Astrophysics Data System (ADS)

    Sanusi, K. O.; Akinlabi, E. T.

    2017-08-01

    In this research study, material characterization of dissimilar friction stir spot welded Aluminium and Copper was evaluated. Rotational speeds of 800 rpm and transverse speeds of 50 mm/min, 150 mm/min and 250 mm/min were used. The total numbers of samples evaluated were nine altogether. The spot welds were characterised by microstructure characterization using optical microscope (OEM) and scanning electron microscopy technique (SEM) by observing the evolution of the microstructure across the weld’s cross-section. lap-shear test of the of the spot weld specimens were also done. From the results, it shows that welding of metals and alloys using Friction stir spot welding is appropriate and can be use in industrial applications.

  8. The influence of uniaxial prestrain on biaxial r-values in 7075-O aluminium alloy

    SciTech Connect

    Anderson, N.; Brown, D.; McMurray, R. J.; Leacock, A. G.

    2011-05-04

    Biaxial test methods have been used to determine, not only yield behaviour under biaxial conditions, but also the strain response. This paper examines the influence of uniaxial prestrain upon the biaxial r-value by extending the disc compression test procedure proposed by Barlat et al. The extension involved the use of digital image measurements of in-plane strains. The material examined was a 7075-O condition aluminium alloy. The results of the experimental programme indicated that the biaxial r-value is unaffected by uniaxial prestrain. When using the disc compression test, the mode of deformation and therefore the biaxial r-value were found to be very sensitive to the prevailing friction conditions.

  9. The influence of uniaxial prestrain on biaxial r-values in 7075-O aluminium alloy

    NASA Astrophysics Data System (ADS)

    Anderson, N.; Brown, D.; McMurray, R. J.; Leacock, A. G.

    2011-05-01

    Biaxial test methods have been used to determine, not only yield behaviour under biaxial conditions, but also the strain response. This paper examines the influence of uniaxial prestrain upon the biaxial r-value by extending the disc compression test procedure proposed by Barlat et al. [1]. The extension involved the use of digital image measurements of in-plane strains. The material examined was a 7075-O condition aluminium alloy. The results of the experimental programme indicated that the biaxial r-value is unaffected by uniaxial prestrain. When using the disc compression test, the mode of deformation and therefore the biaxial r-value were found to be very sensitive to the prevailing friction conditions.

  10. Strain rate effects on mechanical properties in tension of aluminium alloys used in armour applications

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Dotta, M.; Forni, D.; Bianchi, S.; Kaufmann, H.

    2012-08-01

    The mechanical properties in tension of two aluminium alloys (AA5059-H131 and AA7039-T651) used in armour applications were determined from tests carried out over a wide range of strain-rates on round specimens. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The target strain rates were set at the following four levels: 10-3, 30, 300 and 1000s-1. The quasi-static tests were performed with a universal electromechanical machine, whereas a hydro-pneumatic machine and a Split Hopkinson Tensile Bar apparatus were used for medium and high strain-rates respectively. The required parameters by the Johnson-Cook constitutive law were also determined.

  11. Optimization of process parameters in CNC turning of aluminium alloy using hybrid RSM cum TLBO approach

    NASA Astrophysics Data System (ADS)

    Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.

    2016-09-01

    The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.

  12. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Sancho, Rafael; Cendón, David; Gálvez, Francisco

    2015-09-01

    The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from - 50 ∘C to 100 ∘C and the strain rates from 10-4 s-1 to 600 s-1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  13. Microstructures in the 6060 aluminium alloy after various severe plastic deformation treatments

    SciTech Connect

    Adamczyk-Cieslak, Boguslawa Mizera, Jaroslaw; Kurzydlowski, Krzysztof Jan

    2011-03-15

    This paper presents the results concerning the microstructural refinement of the industrial 6060 aluminium alloy processed by severe plastic deformation (SPD). The high level of plastic deformation was achieved using the three methods: hydrostatic extrusion (HE), equal channel angular extrusion (ECAE) and extrusion torsion (ET), which differed in the dynamics of the loading, intensity and homogeneity of the plastic strain field. Microstructure analyses were performed before and after SPD deformation using a transmission (TEM) and a scanning electron microscope (SEM). The refined microstructures were examined qualitatively and quantitatively by the stereological methods and computer image analyses. The microstructure of the industrial 6060 aluminium alloy after deformation was characterized by an average grain size of about 0.4 {mu}m. The results show that the precipitates strongly affect the degree of refinement and the mechanism of microstructural transformations. During the SPD, the second phase particles break apart and homogenize. The HE method generates the largest increase of the volume fraction of the small primary particles. Moreover, the HE process is most effective in reducing the primary particle size. During HE and ECAE processes the second phase precipitates dissolve partially and change their shape. - Research Highlights: {yields} SPD results in a significant increase in the density of the small primary particles. {yields} SPD homogenizes the particle size distribution. {yields} HE and ECAE processes bring nano-grains in the vicinity of the primary particles. {yields} HE and ECAE processing results in the {beta}' precipitates partial dissolutions. {yields} During HE and ECAE processes the {beta}' particles change their shape.

  14. Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints

    NASA Astrophysics Data System (ADS)

    Sabari, S. Sree; Balasubramanian, V.; Malarvizhi, S.; Reddy, G. Madusudhan

    2015-12-01

    AA 2519-T87 is an aluminium alloy that principally contains Cu as an alloying element and is a new grade of Al-Cu alloy system. This material is a potential candidate for light combat military vehicles. Fusion welding of this alloy leads to hot cracking, porosity and alloy segregation in the weld metal region. Friction stir welding (FSW) is a solid state joining process which can overcome the above mentioned problems. However, the FSW of age hardenable aluminium alloys results in poor tensile properties in the as-welded condition (AW). Hence, post weld heat treatment (PWHT) is used to enhance deteriorated tensile properties of FSW joints. In this work, the effect of PWHT, namely artificial ageing (AA) and solution treatment (ST) followed by ageing (STA) on the microstructure, tensile properties and microhardness were systematically investigated. The microstructural features of the weld joints were characterised using an optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength and microhardness of the joints were correlated with the grain size, precipitate size, shape and its distribution. From the investigation, it was found that STA treatment is beneficial in enhancing the tensile strength of the FSW joints of AA2519-T87 alloy and this is mainly due to the presence of fine and densely distributed precipitates in the stir zone.

  15. A survey of some metallographic etching reagents for restoration of obliterated engraved marks on aluminium-silicon alloy surfaces.

    PubMed

    Uli, Norjaidi; Kuppuswamy, R; Amran, Mohd Firdaus Che

    2011-05-20

    A brief survey to assess the sensitivity and efficacy of some common etching reagents for revealing obliterated engraved marks on Al-Si alloy surfaces is presented. Experimental observations have recommended use of alternate swabbing of 10% NaOH and 10% HNO(3) on the obliterated surfaces for obtaining the desired results. The NaOH etchant responsible for bringing back the original marks resulted in the deposition of some dark coating that has masked the recovered marks. The coating had been well removed by dissolving it in HNO(3) containing 10-20% acid. However, the above etching procedure was not effective on aluminium (99% purity) and Al-Zn-Mg-Cu alloy surfaces. Also the two reagents (i) immersion in 10% aq. phosphoric acid and (ii) alternate swabbing of 60% HCl and 40% NaOH suggested earlier for high strength Al-Zn-Mg-Cu alloys [23] were quite ineffective on Al-Si alloys. Thus different aluminium alloys needed different etching treatments for successfully restoring the obliterated marks. Al-Si alloys used in casting find wide applications especially in the manufacture of engine blocks of motor vehicles. Hence, the results presented in this paper are of much relevance in serial number restoration problems involving this alloy.

  16. The Effect of Some Water-Displacing Corrosion Preventives on Corrosion of Aluminium Alloys 7075-T651 and 2024-T6,

    DTIC Science & Technology

    1983-08-01

    AIR 82/138 4. Title 5. Security 6. No. Pages THE EFFECT OF SOME WATER- DISPLACING a. document 8 CORROSION PREVENTIVES ON CORROSION Unclassifiedb. title...LABORATORIES MELBOURNE, VICTORIA MATERIALS REPORT 115 THE EFFECT OF SOME WATER- DISPLACING CORROSION PREVENTIVES ON CORROSION OF ALUMINIUM ALLOYS 7075-T651 AND... DISPLACING CORROSION PREVENTIVES ON CORROSION OF ALUMINIUM ALLOYS 7075-T651 AND 2024-T6 by L. WILSON and R. S. G. DEVEREUX SUMMARY The effectiveness

  17. Dynamic powder compaction of rapidly solidified Path A alloy with increased carbon and titanium content

    SciTech Connect

    Megusar, J.; Imeson, D.; Vander Sande, J.B.; Grant, N.J.

    1982-01-01

    The objective of this study is to show the potential of the dynamic powder compaction technique to consolidate rapidly solidified Path A alloys and to develop microstructures with improved irradiation performance in the fusion environment. Samples of rapidly solidified and dynamically compacted Path A alloy with increased carbon and titanium content have been included in alloy development irradiation experiments.

  18. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075

    SciTech Connect

    Robinson, J.S.; Tanner, D.A.; Truman, C.E.; Paradowska, A.M.; Wimpory, R.C.

    2012-03-15

    The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: Black-Right-Pointing-Pointer Through thickness residual stress measurements made on large Al alloy forgings. Black-Right-Pointing-Pointer Residual stress characterised using neutron diffraction and deep hole drilling. Black-Right-Pointing-Pointer Biaxial compressive surface and triaxial subsurface residual stresses. Black-Right-Pointing-Pointer Quench sensitivity

  19. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  20. Determination of organically bound iodine by reductive mineralization with aluminium powder. Analytical methods of pharmacopoeias with DBH in respect to environmental and economical concern. Part 16.

    PubMed

    Hilp, M

    2002-07-01

    PH. EUR. 2002, JAP 1996 and USP 2000 mineralize organically bound iodine in x-ray contrast media by boiling under reflux with zinc powder in alkaline solution. The reductive mineralization can be performed at room temperature without filtration, when aluminium powder is used. Resulting iodide is titrated by argentometry and potentiometric indication according to the pharmacopoeia or after oxidation with 1,3-dibromo-5,5-dimethylhydantoin by iodometry.

  1. Powder metallurgy processing of high strength turbine disk alloys

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  2. A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys

    NASA Astrophysics Data System (ADS)

    Khadyko, M.; Myhr, O. R.; Dumoulin, S.; Hopperstad, O. S.

    2016-04-01

    The plastic properties of an aluminium alloy are defined by its microstructure. The most important factors are the presence of alloying elements in the form of solid solution and precipitates of various sizes, and the crystallographic texture. A nanoscale model that predicts the work-hardening curves of 6xxx aluminium alloys was proposed by Myhr et al. The model predicts the solid solution concentration and the particle size distributions of different types of metastable precipitates from the chemical composition and thermal history of the alloy. The yield stress and the work hardening of the alloy are then determined from dislocation mechanics. The model was largely used for non-textured materials in previous studies. In this work, a crystal plasticity-based approach is proposed for the work hardening part of the nanoscale model, which allows including the influence of the crystallographic texture. The model is evaluated by comparison with experimental data from uniaxial tensile tests on two textured 6xxx alloys in five temper conditions.

  3. Large area laser surface treatment of aluminium alloys for pitting corrosion protection

    NASA Astrophysics Data System (ADS)

    Chong, P. H.; Liu, Z.; Skeldon, P.; Thompson, G. E.

    2003-03-01

    Laser surface treatment has been recognised as a useful method for corrosion protection of surfaces as a result of improved microstructure/phase formation and compositions. In large area applications, overlapping of individual tracks corresponding to the width of the laser beam is often necessary. This involves re-melting and re-heating of a portion of the previous track and results in microstructural changes, such as precipitate coarsening and microsegregation, which may influence localised corrosion at the overlapped regions. The purpose of this work is to investigate the influence of overlapped regions on corrosion behaviour of laser-melted aluminium 2014-T6 alloy. Laser melting was carried out using a 3 kW CW Nd:YAG laser with a line beam profile. The microstructures of the central part and the overlapped region of the melt pool were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Pitting corrosion resistance was evaluated using potentiodynamic anodic polarisation in 1 M NaCl solution. The work revealed enhancement of the pitting potential by 170 mV compared with that of the untreated alloy, similar to that achieved by laser surface melting with a CO 2 laser in a Gaussian mode. The line beam profile results in elimination of the planar front zones at the treated surface, but this benefit was offset by a coarser microstructure.

  4. Effect of heat treatments on mechanical properties and damage evolution of thixoformed aluminium alloys

    SciTech Connect

    Cavaliere, P. . E-mail: pasquale.cavaliere@unile.it; Cerri, E.; Leo, P.

    2005-07-15

    In the present work, the effects of heat treatments on mechanical properties, microstructure evolution and damage resulting from plastic deformation of thixoformed A319 and A356 aluminium alloys, are studied. The thixoforming process can lead to the production of components that are characterized by very good mechanical properties and low porosity with a globular microstructure which is fine and uniform. The mechanical properties can be further improved through heat treatments such as T5 and T6. The prime factor influencing the damage in the alloys belonging to the Al-Si system is represented by decohesion of silicon particles resulting from the stress concentration at the particle-matrix interfaces. A statistical analysis of fractured particles after tensile tests in the as-cast and as-treated condition has been carried out in the present work; optical and scanning electron microscopy techniques have been used to characterize the microstructure and fracture surfaces of the specimens and the results are fully presented.

  5. Distribution of trace elements in a modified and grain refined aluminium-silicon hypoeutectic alloy.

    PubMed

    Faraji, M; Katgerman, L

    2010-08-01

    The influence of modifier and grain refiner on the nucleation process of a commercial hypoeutectic Al-Si foundry alloy (A356) was investigated using optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis technique (EPMA). Filtering was used to improve the casting quality; however, it compromised the modification of silicon. Effect of filtering on strontium loss was also studied using the afore-mentioned techniques. EPMA was used to trace the modifying and grain refining agents inside matrix and eutectic Si. This was to help understanding mechanisms of nucleation and modification in this alloy. Using EPMA, the negative interaction of Sr and Al3TiB was closely examined. In modified structure, it was found that the maximum point of Sr concentration was in line with peak of silicon; however, in case of just 0.1wt% added Ti, the peak of Ti concentration was not in line with aluminium, (but it was close to Si peak). Furthermore, EPMA results showed that using filter during casting process lowered the strontium content, although produced a cleaner melt. (c) 2010 Elsevier Ltd. All rights reserved.

  6. Pulsed laser cleaning of aluminium-magnesium alloys: effect of surface modifications on adhesion

    NASA Astrophysics Data System (ADS)

    Autric, Michel; Oltra, Roland

    2008-05-01

    Surface cleaning is a key step in many industrial processes and especially in laser surface treatments. During laser cleaning of metallic alloys using pulsed lasers, surface modification can be induced due to transient thermal effect. In ambient atmospheric conditions, an oxidation of the cleaned surface can be detected. The aim of this work was to characterize this transient oxidation that can occur below the laser energy domain leading to any phase change (melting, ablation) of the cleaned substrate. A Q-switched Nd:YAG laser (1.06 μm) with 10 ns pulse duration was used for this study. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy were used for surface analysis of irradiated samples. Thermal oxidation took place on the aluminium-magnesium alloy (5000 series) during the irradiation in air (fluence range 0.6-1.4 Jcm-2). It has been demonstrated that this 10 ns laser thermal oxidation and the steady state thermal oxidation have the same mechanism. When the laser fluence reached 1 J cm -2 , the oxide formed by the thermal oxidation became in a large extent crystalline and its outer part was entirely covered by a continuous magnesium oxide layer.

  7. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  8. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  9. New understanding of the role of coincidence site lattice boundaries in abnormal grain growth of aluminium alloy

    NASA Astrophysics Data System (ADS)

    Park, Chang-Soo; Park, Hyung-Ki; Shim, Hyung-Seok; Na, Tae-Wook; Han, Chan-Hee; Hwang, Nong-Moon

    2015-04-01

    The sequential microstructure evolution of abnormal grain growth (AGG) in the aluminium alloy (AA5052) was investigated to analyse the migration behaviour of coincidence site lattice (CSL) boundaries, which are known to play an important role in inducing AGG. The sequential evolution showed that CSL boundaries tend to disappear more slowly than general boundaries at the growth front of abnormally growing grains. Especially, the migration rate of Σ9 boundaries was noticeably low, which is contrary to the previous suggestions.

  10. Temperature and thermal stress fields during the pulse train of long-pulse laser irradiating aluminium alloy plate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jin, Guangyong; Gu, Xiu-ying

    2014-12-01

    Based on Von Mises yield criterion and elasto-plastic constitutive equations, an axisymmetric finite element model of a Gaussian laser beam irradiating a metal substrate was established. In the model of finite element, the finite difference hybrid algorithm is used to solve the problem of transient temperature field and stress field. Taking nonlinear thermal and mechanical properties into account, transient distributions of temperature field and stress fields generated by the pulse train of long-pulse laser in a piece of aluminium alloy plate were computed by the model. Moreover,distributions as well as histories of temperature and stress fields were obtained. Finite element analysis software COMSOL is used to simulate the Temperature and thermal stress fields during the pulse train of long-pulse laser irradiating 7A04 aluminium alloy plate. By the analysis of the results, it is found that Mises equivalent stress on the target surface distribute within the scope of the center of a certain radius. However, the stress is becoming smaller where far away from the center. Futhermore, the Mises equivalent stress almost does not effect on stress damage while the Mises equivalent stress is far less than the yield strength of aluminum alloy targets. Because of the good thermal conductivity of 7A04 aluminum alloy, thermal diffusion is extremely quick after laser irradiate. As a result, for the multi-pulsed laser, 7A04 aluminum alloy will not produce obvious temperature accumulation when the laser frequency is less than or equal to 10 Hz. The result of this paper provides theoretical foundation not only for research of theories of 7A04 aluminium alloy and its numerical simulation under laser radiation but also for long-pulse laser technology and widening its application scope.

  11. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  12. Synthesis of biodegradable Mg-Zn alloy using mechanical alloying: Effect of ball to powder weight ratio

    NASA Astrophysics Data System (ADS)

    Zuhailawati, Hussain; Salleh, Emee Marina; Ramakrishnan, Sivakumar

    2016-07-01

    The aim of this work was to study the effect of ball to powder weight ratio (BPR) on biodegradable binary magnesium-zinc (Mg-Zn) alloy synthesized using mechanical alloying. A powder mixture of Mg-5wt%Zn was milled in a planetary mill under argon atmosphere using a stainless steel container and balls. Milling process was carried out at 200 rpm for 5 hours using various BPR (i.e. 5:1, 10:1, 15:1, 20:1). Then, as milled powder was compacted under 400 MPa and sintered in a tube furnace at 300 °C in argon flow for an hour. The sintered density and microhardness of the alloy increased as BPR increased up to 15:1. However a further increasing showed a reduction in both density and microhardness which due to enlargement of crystallite and particle which resulted from the excessive internal energy during mechanical alloying.

  13. Simultaneous determination of lead, nickel, tin and copper in aluminium-base alloys using slurry sampling by electrical discharge and multielement ETAAS.

    PubMed

    Carrión, Nereida; Itriago, Ana M; Alvarez, Maria A; Eljuri, Elias

    2003-12-04

    The simultaneous multielement determination of Pb, Sn, Ni and Cu in aluminium alloys by electrothermal atomic absorption spectrometry (ETAAS) was performed by a quick method using slurry sampling. The metallic colloidal slurries were obtained by an electrical discharge operated in liquid medium. In this work, the effects of aluminium were evaluated and the results show that it causes a strong retention of Pb, Ni and Cu at low pyrolysis temperatures which is overcome by employing high pyrolysis temperatures. Aluminium also significantly improves the thermal stabilisation of Pb and Sn, it being possible to reach pyrolysis temperatures of 1100 and 1300 degrees C, respectively. Such stabilisation indicates that the performance of aluminium as a matrix modifier for Pb is better than that obtained using phosphate and magnesium nitrate without substantial changes of the figures of merit. The effects of aluminium on the atomisation characteristics of the elements and those coming from the simultaneous multielement determination on the figures of merit of the elements are also discussed. In this work, a calibration procedure involving a matrix matching method with aqueous aluminium standards is proposed as a simple and efficient way to solve the inconveniences originated by the aluminium matrix. The proposed method was applied to the simultaneous multielement determination of several aluminium-base alloy standards giving results well within the recommended values.

  14. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Guo, Yueling; Jia, Lina; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr2Nb. The Cr2Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  15. Spectroscopic study of plasma during electrolytic oxidation of magnesium-aluminium alloys

    NASA Astrophysics Data System (ADS)

    Jovović, J.

    2014-12-01

    Plasma during Electrolytic Oxidation (PEO) of magnesium-aluminium alloys is studied in this work by means of Optical Emission Spectroscopy (OES). Spectral line shapes of the Hβ, Al II 704.21 nm and Mg II 448.11 nm line are analyzed to measure plasma electron number density Ne. From the Hβ line profile, two PEO processes characterized by relatively low electron number densities Ne ≈ 1015 cm-3 and Ne ≈ 2 × 1016 cm-3 were discovered while the shape and shift of Al II and Mg II lines revealed the third process characterized by large electron density Ne = (1-2) × 1017 cm-3. Low Ne processes, related with breakdown in gas bubbles and on oxide surface, are not influenced by anode material or electrolyte composition. The ejection of evaporated anode material through oxide layer is designated here as third PEO process. Using the Boltzmann plot technique, electron temperature of 4000 K and 33000 K is determined from relative intensities of Mg I and O II lines, respectively. Several difficulties in the analysis of spectral line shapes are met during this study and the ways to overcome some of the obstacles are demonstrated.

  16. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    NASA Astrophysics Data System (ADS)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P. K.; Paradowska, A.

    2014-11-01

    Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  17. Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios.

    PubMed

    Mayer, H; Fitzka, M; Schuller, R

    2013-12-01

    Ultrasonic fatigue testing equipment is presented that is capable of performing constant amplitude (CA) and variable amplitude (VA) experiments at different constant load ratios. This equipment is used to study cyclic properties of aluminium alloy 2024-T351 in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime at load ratios R=-1 and R=0.5. CA loading does not reveal a fatigue limit below 10¹⁰ cycles. Cracks leading to VHCF failure start at broken constituent particles. Specimens that survived more than 10¹⁰ cycles at R=-1 contain non-propagating cracks of lengths below grain size. Resonance frequency and nonlinearity parameter β(rel) show changes of vibration properties of specimens at low fractions of their VHCF lifetime. VA lifetimes are measured in the HCF and VHCF regime and compared with Miner calculations. Damage sums decrease with decreasing load (and increasing mean lifetimes) and are lower for R=0.5 than R=-1.

  18. Strain Measurement in Aluminium Alloy during the Solidification Process Using Embedded Fibre Bragg Gratings

    PubMed Central

    Weraneck, Klaus; Heilmeier, Florian; Lindner, Markus; Graf, Moritz; Jakobi, Martin; Volk, Wolfram; Roths, Johannes; Koch, Alexander W.

    2016-01-01

    In recent years, the observation of the behaviour of components during the production process and over their life cycle is of increasing importance. Structural health monitoring, for example of carbon composites, is state-of-the-art research. The usage of Fibre Bragg Gratings (FBGs) in this field is of major advantage. Another possible area of application is in foundries. The internal state of melts during the solidification process is of particular interest. By using embedded FBGs, temperature and stress can be monitored during the process. In this work, FBGs were embedded in aluminium alloys in order to observe the occurring strain. Two different FBG positions were chosen in the mould in order to compare its dependence. It was shown that FBGs can withstand the solidification process, although a compression in the range of one percent was measured, which is in agreement with the literature value. Furthermore, different lengths of the gratings were applied, and it was shown that shorter gratings result in more accurate measurements. The obtained results prove that FBGs are applicable as sensors for temperatures up to 740 °C. PMID:27827900

  19. Design and Analysis of Wind Turbine Blade Hub using Aluminium Alloy AA 6061-T6

    NASA Astrophysics Data System (ADS)

    Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y. J. N. V.; Sohaib, S. Md.

    2017-05-01

    This work presents the design and analysis of horizontal axis wind turbine blade hub using different material. The hub is very crucial part of the wind turbine, which experience the loads from the blades and the loads were transmitted to the main shaft. At present wind turbine is more expensive and weights more than a million pounds, with the nacelle, rotor hub and blades accounting for most of the weight. In this work Spheroidal graphite cast iron GGG 40.3 is replaced by aluminium alloy 6061-T6 to enhance the casting properties and also to improve the strength-weight ratio. This transition of material leads to reduction in weight of the wind turbine. All the loads caused by wind and extreme loads on the blades are transferred to the hub. Considering the IEC 61400-1 standard for defining extreme loads on the hub the stress and deflection were calculated on the hub by using Finite element Analysis. Result obtained from ANSYS is compared and discussed with the existing design.

  20. Strain Measurement in Aluminium Alloy during the Solidification Process Using Embedded Fibre Bragg Gratings.

    PubMed

    Weraneck, Klaus; Heilmeier, Florian; Lindner, Markus; Graf, Moritz; Jakobi, Martin; Volk, Wolfram; Roths, Johannes; Koch, Alexander W

    2016-11-04

    In recent years, the observation of the behaviour of components during the production process and over their life cycle is of increasing importance. Structural health monitoring, for example of carbon composites, is state-of-the-art research. The usage of Fibre Bragg Gratings (FBGs) in this field is of major advantage. Another possible area of application is in foundries. The internal state of melts during the solidification process is of particular interest. By using embedded FBGs, temperature and stress can be monitored during the process. In this work, FBGs were embedded in aluminium alloys in order to observe the occurring strain. Two different FBG positions were chosen in the mould in order to compare its dependence. It was shown that FBGs can withstand the solidification process, although a compression in the range of one percent was measured, which is in agreement with the literature value. Furthermore, different lengths of the gratings were applied, and it was shown that shorter gratings result in more accurate measurements. The obtained results prove that FBGs are applicable as sensors for temperatures up to 740 °C.

  1. Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts

    NASA Astrophysics Data System (ADS)

    Francesconi, A.; Giacomuzzo, C.; Grande, A. M.; Mudric, T.; Zaccariotto, M.; Etemadi, E.; Di Landro, L.; Galvanetto, U.

    2013-03-01

    This paper discusses the impact behavior of a self-healing ionomeric polymer and compares its protection capability against space debris impacts to that of simple aluminium-alloy bumpers. To this end, 14 impact experiments on both ionomer and Al-7075-T6 thin plates with similar surface density were made with 1.5 mm aluminium spheres at velocity between 1 and 4 km/s.First, the perforation extent in both materials was evaluated vis-à-vis the prediction of well known hole-size equations; then, attention was given to the damage potential of the cloud of fragments ejected from the rear side of the target by analysing the craters pattern and the momentum transferred to witness plates mounted on a ballistic pendulum behind the bumpers.Self-healing was completely successful in all but one ionomer samples and the primary damage on ionomeric polymers was found to be significantly lower than that on aluminium. On the other hand, aluminium plates exhibited slightly better debris fragmentation abilities, even though the protecting performance of ionomers seemed to improve at increasing impact speed.

  2. Sintering and Cold Swaging of Tungsten Heavy Alloys Prepared from Various Grades of W Powder

    NASA Astrophysics Data System (ADS)

    Eroglu, S.

    2017-10-01

    In the present work, sintering and cold swaging of 92.5W-5.25Ni-2.25Fe heavy alloys prepared from various grades of W powder were investigated. The mean particle sizes of the W powder grades were 3.4 µm, 10.5 µm, and 28.0 µm. It was observed that linear shrinkage decreased with increasing W particle size. The sintering behavior of the alloys was discussed in terms of liquid capillarity and W particle size. The alloy prepared from the 28.0-µm grade W powder exhibited incomplete densification. This alloy could not be swaged because of the poor mechanical properties. The alloys of the other grades were fully densified. They exhibited better ductility and swageability. The alloy of the 10.5-µm grade W powder had good mechanical properties (e.g., tensile strength 1300 MPa, hardness 38 HRC after 10% cold swaging) that were equivalent to those of the alloy of the fine-grade W powder (3.4 µm).

  3. Sintering and Cold Swaging of Tungsten Heavy Alloys Prepared from Various Grades of W Powder

    NASA Astrophysics Data System (ADS)

    Eroglu, S.

    2017-08-01

    In the present work, sintering and cold swaging of 92.5W-5.25Ni-2.25Fe heavy alloys prepared from various grades of W powder were investigated. The mean particle sizes of the W powder grades were 3.4 µm, 10.5 µm, and 28.0 µm. It was observed that linear shrinkage decreased with increasing W particle size. The sintering behavior of the alloys was discussed in terms of liquid capillarity and W particle size. The alloy prepared from the 28.0-µm grade W powder exhibited incomplete densification. This alloy could not be swaged because of the poor mechanical properties. The alloys of the other grades were fully densified. They exhibited better ductility and swageability. The alloy of the 10.5-µm grade W powder had good mechanical properties (e.g., tensile strength 1300 MPa, hardness 38 HRC after 10% cold swaging) that were equivalent to those of the alloy of the fine-grade W powder (3.4 µm).

  4. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  5. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    PubMed

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi

    2017-01-01

    Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

  7. Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene-The Influence of Spark Plasma Texturing Process.

    PubMed

    Kostecki, Marek; Woźniak, Jarosław; Cygan, Tomasz; Petrus, Mateusz; Olszyna, Andrzej

    2017-08-10

    Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2-15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime.

  8. Tuning of magnetic properties of aluminium-doped strontium hexaferrite powders

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-Mei; Liu, Jie; Zhu, Sheng-Zhi; Shi, Hui-Gang

    2016-12-01

    M-type Al-doped strontium ferrite powders (SrAlxFe2n-xO19, n = 5.9) with nominal Al content of x = 0-2.0 are prepared by traditional ceramic technology. The phase identification of the powders, performed using x-ray diffraction, shows the presence of purity hexaferrite structure and absence of any secondary phase. The lattice parameters decrease with increasing x. The average grain size of the powders is about 300 nm-400 nm at Al3+ ion content x = 0-2.0. The room-temperature hysteresis loops of the powders, measured by using vibrating sample magnetometer, show that the specific saturation magnetization (σs) value continuously decreases while the coercivity (Hc) value increases with increasing x, and Hc reaches to 9759 Oe (1 Oe = 79.5775 A/m) at x = 2.0. According to the law of approach saturation, Hc value increases with increasing Al3+ ion content, which is attributed to the saturation magnetization (Ms) decreasing more rapidly than the magnetic anisotropy constant (K1) obtained by numerical fitting of the hysteresis loops. The distribution of Al3+ ions in the hexaferrite structure of SrAlxFe2n-xO19 is investigated by using 57Co Mössbauer spectroscopy. The effect of Al3+ doping on static magnetic properties contributes to the improvement of magnetic anisotropy field.

  9. Laser surface melting of aluminium alloy 6013 for improving stress corrosion and corrosion fatigue resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Long

    Laser surface treatment of aluminium alloy 6013, a relatively new high strength aluminium alloy, was conducted with the aim of improving the alloy's resistance to stress corrosion cracking and corrosion fatigue. In the first phase of this research, laser surface melting (LSM) of the alloy was conducted using an excimer laser. The microstructural changes induced by the laser treatment were studied in detail and characterised. The results showed that excimer LSM produced a relatively thin, non-dentritic planar re-melted layer which is largely free of coarse constituent particles and precipitates. The planar growth phenomenon was explained using the high velocity and high temperature gradient absolute stability criteria. The structure of the oxide and/or the nitride bearing film at the outmost surface of the re-melted layer was also characterised. The results of the electrochemical tests showed that the pitting corrosion resistance of the alloy could be greatly increased by excimer laser melting, especially when the alloy was treated in nitrogen gas: the corrosion current density of the N2-treated specimen was some two orders of magnitude lower than that of the air-treated specimen which was one order of magnitude lower than that of the untreated specimen. The effect of the outer surface oxide and/or nitride bearing film per se on pitting corrosion resistance was determined. The results of a Mott - Schottky analysis strongly suggest that the outer surface film, which exhibited the nature of an n-type semiconductor was responsible for the significant improvement of the corrosion resistance of the laser-treated material. Furthermore, the corrosion response of the surface film was modelled using equivalent circuits. Based on the results of the slow strain rate tensile (SSRT) and corrosion fatigue tests, the stress corrosion cracking and pitting corrosion fatigue behaviour of the excimer laser treated material was evaluated. The results of the SSRT test showed that, in

  10. Shape-diversified silver nanostructures uniformly covered on aluminium micro-powders as effective SERS substrates

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Wong, Ching-Ping

    2013-12-01

    Highly-sensitive, reliable and reproducible Raman-active substrates via a facile and organic-free method are reported. These intriguing hierarchical structures are formed through the uniform incorporation of silver (Ag) nanoflowers with aluminium (Al) micro-supporters. The underlying mechanism is systematically investigated, visualizing that the solvents used in galvanic displacement have a major effect on diversifying the reaction kinetics of Ag deposition. Moreover, the exploration of AgNO3 concentrations reveals a drastic transition of Ag morphologies, driven by the elimination of high-energy surfaces of Ag. In addition, the surface-modified Al@Ag structures with octadecyltrichlorosilane demonstrate both the non-wetting (contact angle = 157.2°), as well as easy droplet roll-off (contact angle hysteresis = 5.4°) characteristics, which further enables the tested targets to avoid being pinned at a static position upon detection. Finally, we find that the Ag nanoflower surfaces are corrugated with numerous nanogaps at interparticle sites, in such a way that allows the abundant active sites (referred to as ``hot spots'') to amplify the Raman signal, and simultaneously maintain the sound reliability and reproducibility of Raman detection. These designs along with the fabrication strategy are anticipated to benefit versatile optical, optoelectronic and energy devices.Highly-sensitive, reliable and reproducible Raman-active substrates via a facile and organic-free method are reported. These intriguing hierarchical structures are formed through the uniform incorporation of silver (Ag) nanoflowers with aluminium (Al) micro-supporters. The underlying mechanism is systematically investigated, visualizing that the solvents used in galvanic displacement have a major effect on diversifying the reaction kinetics of Ag deposition. Moreover, the exploration of AgNO3 concentrations reveals a drastic transition of Ag morphologies, driven by the elimination of high-energy surfaces

  11. Effects of processing parameters on laser cutting of aluminium-copper alloys using off-axial supersonic nozzles

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Quintero, F.; Lusquiños, F.; Comesaña, R.; Pou, J.

    2011-04-01

    Conventional laser cutting involves the utilization of converging coaxial nozzles to inject the assist gas used to remove the molten material. This processing system prevents the utilization of this technique to cut aluminium alloys for aerospace applications. The inefficient removal of molten material by the assist gas produces cuts with poor quality; very rough cuts, with a large amount of dross, and a large heat affected zone (HAZ) are obtained. An alternative to increase the assist gas performance is the utilization of off-axial supersonic nozzles. Removal of molten material is substantially increased and cuts with high quality are obtained. On the other hand, pulsed laser cutting offers superior results during the processing of high reflectivity materials as aluminium alloys. However, there are no experimental studies which explore the pulsed laser cutting of aluminium alloys by means of a cutting head assisted by an off-axis supersonic nozzle. The present work constitutes a quantitative experimental study to determine the influence of processing parameters on the cutting speed and quality criteria during processing by means of off-axial supersonic nozzles. Cutting experiments were performed in pulsed mode and the results explained under the basis of the molten material removal mechanisms. Performed experiments indicate a reduction in cutting speed as compared to continuous wave (CW) mode processing and the existence of two processing regimes as a function of the pulse frequency. Best results are obtained under the high pulse frequency one ( f > 100 Hz) because the superior capabilities of molten material removal of the supersonic jets are completely exploited in this processing regime.

  12. Method of making quasicrystal alloy powder, protective coatings and articles

    DOEpatents

    Shield, J.E.; Goldman, A.I.; Anderson, I.E.; Ellis, T.W.; McCallum, R.W.; Sordelet, D.J.

    1995-07-18

    A method of making quasicrystalline alloy particulates is disclosed wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture. 3 figs.

  13. Method of making quasicrystal alloy powder, protective coatings and articles

    DOEpatents

    Shield, Jeffrey E.; Goldman, Alan I.; Anderson, Iver E.; Ellis, Timothy W.; McCallum, R. William; Sordelet, Daniel J.

    1995-07-18

    A method of making quasicrystalline alloy particulates wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture.

  14. Effect of Current Pathways During Spark Plasma Sintering of an Aluminum Alloy Powder

    NASA Astrophysics Data System (ADS)

    Kellogg, Frank; McWilliams, Brandon; Cho, Kyu

    2016-12-01

    Spark plasma sintering has been a well-studied processing technique primarily for its very high cooling and heating rates. However, the underlying phenomenon driving the sintering behavior of powders under an electric field is still poorly understood. In this study, we look at the effect of changing current pathways through the powder bed by changing die materials, from conductive graphite to insulating boron nitride for sintering aluminum alloy 5083 powder. We found that the aluminum powder itself was insulating and that by changing the current paths, we had to find alternate processing methods to initiate sintering. Altering the current pathways led to faster temperature raises and faster melting (and potentially densification) of the aluminum powder. A flash sintering effect in metallic powders is observed in which the powder compact undergoes a rapid transition from electrically insulating to conducting at a temperature of 583 K (310 °C).

  15. Comparison of SPS Processing Behavior between As Atomized and Cryomilled Aluminum Alloy 5083 Powder

    NASA Astrophysics Data System (ADS)

    Kellogg, Frank; McWilliams, Brandon; Sietins, Jennifer; Giri, Anit; Cho, Kyu

    2017-08-01

    Aluminum 5083 powder, both as atomized and cryomilled, was consolidated via spark plasma sintering (SPS). This study quantified and compared the effects of heating an aluminum alloy powder directly through Joule heating vs indirectly through thermal conduction from the die during SPS processing. When consolidated under the same processing conditions, the cryomilled powders showed faster heating rates and densification than the as atomized powder. It was also possible to process the cryomilled powder in a non-conductive die but not the as atomized powder. This could be ascribed to an improvement in electrical conductivity of the powder due to the break up and redistribution of surface oxides after cryomilling. The changes in behavior as a result of cryomilling and/or changing die material led to samples with different fracture morphologies and increased hardness values.

  16. Electrodeposition of aluminium and aluminium-copper alloys from a room temperature ionic liquid electrolyte containing aluminium chloride and triethylamine hydrochloride

    NASA Astrophysics Data System (ADS)

    Suneesh, P. V.; Satheesh Babu, T. G.; Ramachandran, T.

    2013-09-01

    The electrodeposition of Al and Al-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing AlCl3-Et3NHCl was studied. The electrochemical behavior of the electrolyte and the mechanism of deposition were investigated through cyclic voltammetry (CV), and the properties of deposits obtained were assessed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). Al of 70 μm in thickness and an Al-Cu alloy of 30 μm in thickness with 8at% copper were deposited from the electrolyte. SEM images of the deposits indicate that the Al deposit was smooth and uniform, whereas the Al-Cu deposit was nodular. The average crystalline size, as determined by XRD patterns, was found to be (30 ± 5) and (29 ± 5) nm, respectively, for Al and Al-Cu alloys. Potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopic (EIS) measurements showed that Al-Cu alloys are more corrosion resistant than Al.

  17. Determination of aluminium in iron, steel and ferrous and non-ferrous alloys by atomic-absorption spectrophotometry after a mercury-cathode separation and extraction of the aluminium-acetylacetone complex.

    PubMed

    Donaldson, E M

    1981-07-01

    A method for determining 0.0005% or more of total aluminium in high- and low-alloy steels, iron and ferrovanadium is described. Iron, chromium and other matrix elements are separated from aluminium by electrolysis with a mercury cathode and aluminium is separated from tungsten, titanium, vanadium and phosphate by chloroform extraction of its acetylacetone complex at pH 6.5 from an ammonium acetate-hydrogen peroxide medium. The extract is evaporated to dryness and organic material is destroyed with nitric and perchloric acids. Aluminium is determined by atomic-absorption spectrophotometry in a nitrous oxide-acetylene flame, at 309.3 nm, in a 5% v/v perchloric acid medium containing 1000 mug of sodium per ml. Acid-soluble and acid-insoluble aluminium can also be determined. The method is also applicable to copper- and nickel-base alloys. Results obtained by this method are compared with those obtained spectrophotometrically with Pyrocatechol Violet, after the separations described above followed by the separation of the residual co-extracted iron and copper by a combined ammonium pyrrolidinedithiocarbamate-cupferron-chloroform extraction from 10% v/v hydrochloric acid medium.

  18. Electromagnetic Gauge Study of Laser-Induced Shock Waves in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Peyre, P.; Fabbro, R.

    1995-12-01

    The laser-shock behaviour of three industrial aluminum alloys has been analyzed with an Electromagnetic Gauge Method (EMV) for measuring the velocity of the back free surface of thin foils submitted to plane laser irradiation. Surface pressure, shock decay in depth and Hugoniot Elastic Limits (HEL) of the materials were investigated with increasing thicknesses of foils to be shocked. First, surface peak pressures values as a function of laser power density gave a good agreement with conventional piezoelectric quartz measurements. Therefore, comparison of experimental results with computer simulations, using a 1D hydrodynamic Lagrangian finite difference code, were also in good accordance. Lastly, HEL values were compared with static and dynamic compressive tests in order to estimate the effects of a very large range of strain rates (10^{-3} s^{-1} to 10^6 s^{-1}) on the mechanical properties of the alloys. Cet article fait la synthèse d'une étude récente sur la caractérisation du comportement sous choc-laser de trois alliages d'aluminium largement utilisés dans l'industrie à travers la méthode dite de la jauge électromagnétique. Cette méthode permet de mesurer les vitesses matérielles induites en face arrière de plaques d'épaisseurs variables par un impact laser. La mise en vitesse de plaques nous a permis, premièrement, de vérifier la validité des pressions d'impact superficielles obtenues en les comparant avec des résultats antérieurs obtenus par des mesures sur capteurs quartz. Sur des plaques d'épaisseurs croissantes, nous avons caractérisé l'atténuation des ondes de choc en profondeur dans les alliages étudiés et mesuré les limites d'élasticité sous choc (pressions d'Hugoniot) des alliages. Les résultats ont été comparés avec succès à des simulations numériques grâce à un code de calcul monodimensionnel Lagrangien. Enfin, les valeurs des pressions d'Hugoniot mesurées ont permis de tracer l'évolution des contraintes d

  19. Influence of powder metallurgy route on precipitation processes in MgTbNd alloy

    SciTech Connect

    Stulikova, Ivana Smola, Bohumil; Vlach, Martin; Kudrnova, Hana; Piesova, Jaroslava

    2016-02-15

    Solution treated MgTb3Nd2 alloy (nominal composition in wt.%) (ST) and the alloy prepared by hot extrusion of isostatically pressed powder (PM) were isochronally heat treated and studied by electrical resistivity and hardness measurements and by differential scanning calorimetry. Microstructure development was investigated in transmission electron microscopy. Successive precipitation of transient phases in the sequence β″ (D0{sub 19} plates) → β′(cbco) → β{sub 1} (Mg{sub 3}Gd type, fcc) → β (Mg{sub 5}Gd type, fcc) known from the ST alloy was identified also in the PM alloy. The early precipitation stage (D0{sub 19} clusters) revealed in the ST alloy as well as precipitation of equilibrium β{sub e} phase Mg{sub 41}(Tb,Nd){sub 5} manifest themselves only slightly in the PM alloy. Powder metallurgy route does not change the values of activation energies but shifts the temperature ranges of these processes. Vickers hardness of the as prepared state is higher in the PM alloy and is very resistant against the heat treatment up to 510 °C. Contrary to the ST alloy precipitation due to isochronal annealing does not lead to pronounced hardness changes in the PM alloy. - Highlights: • Powder metallurgy (PM) does not change precipitation sequence in MgTbNd alloy. • Temperature ranges of transient phase precipitations are shifted in PM alloy. • Hardness is resistant against isochronal heat treatment up to 510 °C in the PM alloy. • PM procedure does not change activation energies of precipitation.

  20. Quasi-Static and Shock Induced Mechanical Response of an Aluminium-Zinc-Magnesium Alloy as a Function of Heat Treatment

    NASA Astrophysics Data System (ADS)

    Edwards, M. R.; Millett, J. C. F.; Bourne, N. K.

    2004-07-01

    Samples of an aluminium-zinc-magnesium alloy, typical of high strength weldable aluminium alloys, have been heat treated to produce two different microstructural conditions, these being peak-aged and under-aged. Mechanical tests have been performed, both at quasi-static strain rates and under shock loading conditions to determine how the mechanical properties change with heat treatment. Results indicate that the material has its highest strength when peak aged. Properties are discussed in relation to observed features within the microstructure, as recorded by optical and scanning electron microscopy.

  1. Experimental and numerical investigation of the residual yield strength of aluminium alloy EN AW-2024-T3 affected by artificially produced pitting corrosion

    NASA Astrophysics Data System (ADS)

    Pippig, R.; Schmidl, E.; Steinert, P.; Schubert, A.; Lampke, T.

    2017-03-01

    In this study, the behaviour of the residual yield strength of aluminium alloy EN AW-2024-T3 affected by the morphology and numbers of corrosion pits (defects) is presented. Since specific defect structures are not reproducible during experimental corrosion tests, metal sheets with different numbers of pits and pit shapes are produced using laser micro structuring. The defect structures are measured using laser scanning microscopy. To compare the stress states of the micro structured and real corroded metal sheets, FE-analysis is used. Afterwards, uniaxial tensile tests are carried out and critical defect parameters in terms of yield strength reduction of the investigated aluminium alloy are detected.

  2. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E.; Terpstra, Robert L.

    2010-04-20

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  3. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E [Ames, IA; Terpstra, Robert L [Ames, IA

    2012-06-12

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  4. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    NASA Technical Reports Server (NTRS)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  5. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    PubMed

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times.

  6. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    PubMed

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications.

  7. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E; Rieken, Joel

    2013-12-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies are made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  8. Response improvement of a mover device using hydrogen storage alloy powder by addition of catalyst

    NASA Astrophysics Data System (ADS)

    Sato, Akira; Akazawa, Kaoru; Ogasawara, Takashi; Uchida, Haru-Hisa; Nishi, Yoshitake

    2007-01-01

    Recently we proposed a mechanical mover device in a unimorph structure with powder hydrogen storage alloy dispersed. A silicone rubber sheet with the alloy was piled up on another pure silicone rubber sheet, then mechanical movement was generated by hydrogen gas absorption and desorption. Because the response of the movement was slow, therefore, in this research we tested the additive effect of catalyst of Pd-Al IIO 3 powder into the hydrogen storage alloy powder before mixing with rubber. The mover device with the catalyst indicated drastically modified responses, such as higher initial moving rate and also larger displacement. The results suggested the possibility of the device for medical purpose such as catheter because of a powerful but tender characteristic of the device.

  9. NON-MELT PROCESSING OF "LOW-COST", ARMSTRONG TITANIUM AND TITANIUM ALLOY POWDERS

    SciTech Connect

    Peter, William H; Blue, Craig A; Clive, Scorey; Ernst, Bill; McKernan, John; Kiggans, Jim; Rivard, John D; Yu, Dr. Charlie

    2007-01-01

    In the last decade, a considerable effort has been made to develop new methods for producing low cost titanium and titanium powders. The Armstrong process is a new method of producing titanium powder via reducing TiCl4 vapor in molten sodium. The process is scalable, and can be used to produce pre-alloyed powders. Non-melt processing and powder metallurgy approaches are economically viable with the commercially pure powders. In this investigation, several non-melt processing technologies, including vacuum hot pressing, extrusion, roll compaction, and forging techniques, will be evaluated using the Armstrong titanium powders. The metallurgical, chemical, and mechanical properties of the processed titanium samples will be discussed.

  10. Direct determination of silicon in powdered aluminium oxide by use of slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry.

    PubMed

    Minami, H; Yoshida, T; Okutsu, K; Zhang, Q; Inoue, S; Atsuya, I

    2001-08-01

    A direct method for determination of silicon in powdered high-purity aluminium oxide samples, by slurry sampling with in situ fusion graphite-furnace atomic-absorption spectrometry (GF-AAS), has been established. A slurry sample was prepared by 10-min ultrasonication of a powdered sample in an aqueous solution containing both sodium carbonate and boric acid as a mixed flux. An appropriate portion of the slurry was introduced into a pyrolytic graphite furnace equipped with a platform. Silicon compounds to be determined and aluminium oxide were fused by the in situ fusion process with the flux in the furnace under optimized heating conditions, and the silicon absorbance was then measured directly. The calibration curve was prepared by use of a silicon standard solution containing the same concentration of the flux as the slurry sample. The accuracy of the proposed method was confirmed by analysis of certified reference materials. The proposed method gave statistically accurate values at the 95% confidence level. The detection limit was 3.3 microg g(-1) in solid samples, when 300 mg/20 mL slurry was prepared and a 10 microL portion of the slurry was measured. The precision of the determination (RSD for more than four separate determinations) was 14% and 2%, respectively, for levels of 10 and 100 microg g(-1) silicon in aluminium oxide.

  11. Analysis Of The Surface Roughness Obtained During The Dry Turning Of UNS A97050-T7 Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    de Agustina, B.; Rubio, E. M.; Villeta, M.; Sebastián, M. A.

    2009-11-01

    Currently, in the aeronautical, aerospace and automotive industries there is high demand of materials such as the aluminium alloys that have high resistance even at high temperatures as well as a low density. For this reason, these alloys are widely used for the production of different elements that compose aircraft and aerospace vehicles. Nevertheless, in spite of the important role these materials have from the competitive point of view, they can commonly show problems of machinability associated with the tool wear. That has made that traditionally cutting fluids had been used in machining processes. However, they can contain environmentally harmful constituents and increase considerably the total cost of the process. Therefore, researches have been focused on the development of cleaner production technologies applications as dry machining. This leads to the search for combinations of cutting parameters and type of tools (types of coatings and different geometries) that could improve the machining under such conditions. The aim of this study is to analyse the relationship between the surface roughness obtained during the dry turning of aluminium UNS A97050-T7 bars and the cutting parameters (cutting speed and feed) using three different tools. As a first conclusion it could be affirmed that the feed was the cutting parameter more influential on the surface roughness and to a lesser extend the cutting speed, the type of tool and the interaction between the type of tool and the feed.

  12. The strain rate sensitivity and constitutive equations including damage for the superplastic behaviour of 7xxx aluminium alloys

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Boude, Serge; Giraud, Eliane; Dal Santo, Philippe

    2013-05-01

    Superplasticity is a characteristic of certain materials, in particular aluminium alloys, whereby very large deformations (up to 1000 %) can be obtained before fracture under certain conditions. Superplastic forming is therefore the process of deforming a flange under these conditions by applying a variable pressure. The final geometry is obtained when the flange takes the form of a die. In order to deform a material superplastically, the temperature of the material should be approximately a half of the absolute melting point of the material and the strain rate (or flow stress) should remain within a certain range. The most important issues concerning the industrial process are the prediction of the final thickness distribution and the computation of the optimal pressure law to maintain superplastic conditions. Finite element simulations make these predictions possible for industrial components. To ensure the precision of the simulations, it is important to have good knowledge of the material behaviour in the superplastic domain: rheological parameters, grain size, damage law, etc. This paper presents an experimental analysis of the superplastic behaviour of a 7xxx aluminium alloy used for aeronautic applications. The parameters of the constitutive equations (including damage) are identified by using tensile tests, spherical bulging tests and numerical simulations [1, 2]. The performance of the proposed laws [1, 3, and 4] is tested using axisymmetrical geometries with complex shapes by the comparison of numerical simulations and bulge tests.

  13. Contribution on Taguchi's Method Application on the Surface Roughness Analysis in End Milling Process on 7136 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    ȚÎȚU, M. A.; POP, A. B.

    2016-11-01

    The resulting surface quality after the cutting process is one of the most important characteristics of product quality and also the most frequent customer requirement. Previous research was focused on the effect investigation of machining parameters: cutting speed [1] and feed per tooth [2] on surface roughness. This paper is in itself a continuation of a previous research [3], in which, with Taguchi's method it was determined the level of influence of the cutting parameters on surface roughness of 7136 aluminium alloy in end milling process. The purpose of this paper is to highlight the importance of Taguchi's method use to analyse the surface roughness of 7136 aluminium alloy in end milling process. To conduct the experiments, three cutting parameters were used: cutting speed, feed per tooth and cutting depth. To analyse the surface quality, the surface roughness Ra (the arithmetic average of the absolute values) was measured. It was determined the recommended configuration regarding the optimum values of each machining parameter and the interactions between them, in order to obtain the better cutting process performance and to reduce the surface roughness sensitivity to uncontrollable factors. Based on a full factorial experiment were confirmed the obtained results by applying the Taguchi's method. Final results are a starting point for further research.

  14. Study of twin-roll cast Aluminium alloys subjected to severe plastic deformation by equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Poková, M.; Cieslar, M.

    2014-08-01

    Aluminium alloys prepared by twin-roll casting method become widely used in industry applications. Their high solid solution supersaturation and finer grains ensure better mechanical properties when compared with the direct-chill cast ones. One of the possibilities how to enhance their thermal stability is the addition of zirconium. After heat treatment Al3Zr precipitates form and these pin moving grain boundaries when the material is exposed to higher temperatures. In the present work twin-roll cast aluminium alloys based on AA3003 with and without Zr addition were annealed for 8 hours at 450 °C to enable precipitation of Al3Zr phase. Afterwards they were subjected to severe plastic deformation by equal channel angular pressing, which led to the reduction of average grain size under 1 μm. During subsequent isochronal annealing recovery and recrystallization took place. These processes were monitored by microhardness measurements, light optical microscopy and in-situ transmission electron microscopy. The addition of Zr stabilizes the grain size and increases the recrystallization temperature by 100 °C.

  15. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders.

    PubMed

    Liu, Yong; Li, Kaiyang; Wu, Hong; Song, Min; Wang, Wen; Li, Nianfeng; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Ta alloys were sintered using blended elemental powders. A dual structure, consisting of Ti-rich and Ta-rich zones, was formed due to the insufficient diffusion between Ti and Ta powders. The microstructure, mechanical properties and in vitro biological properties of the alloys were studied. Results indicated that the alloys have inhomogenous microstructures and compositions, but the grain structures were continuous from the Ti-rich zone to the Ta-rich zone. The Ta-rich zone exhibited a much finer grain size than the Ti-rich zone. The alloys had a high relative density in the range of 95-98%, with the porosity increasing with the content of Ta due to the increased difficulty in sintering and the formation of Kirkendall pores. The alloys had a good combination of low elastic modulus and high tensile strength. The strength of alloys was almost doubled compared to that of the ingot metallurgy alloys with the same compositions. The low elastic modulus was due to the residual pores and the alloying effect of Ta, while the high tensile strength resulted from the strengthening effects of solid solution, fine grain size and α phase. The alloys had a high biocompatibility due to the addition of Ta, and were suitable for the attachment of cells due to the surface porosity. It was also indicated that PM Ti-(20-30)Ta alloys are promising for biomedical applications after the evaluations of both the mechanical and the biological properties.

  16. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E; Terpstra, Robert L

    2014-10-21

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. Bodies made from the dispersion strengthened solidified particles exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures.

  17. Microstructures and mechanical properties of hot isostatically pressed powder metallurgy Alloy APK-1

    NASA Astrophysics Data System (ADS)

    Prakash, T. L.; Chari, Y. N.; Rao, E. S. Bhagiradha; Thamburaj, R.

    1983-03-01

    The influence of Hot Isostatic Pressing (HIP) and heat treatment parameters on the microstructure and mechanical properties of powder metallurgy alloy APK-1 (a low carbon modification of Astroloy) has been investigated. Poor mechanical properties result if carbide networks are present along the prior particle boundaries (PPBs). These networks which form during powder consolidation can be avoided by manipulating HIP parameters. Heat treatments which produce a large volume fraction of fine γ’ make this alloy susceptible to environment-assisted tensile embrittlement around 760 °C.

  18. Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys

    DTIC Science & Technology

    2015-06-01

    Characteristics Cold spray is one many types of thermal spray processes, such as plasma spray, flame spray, and high velocity oxygen fuel spraying...MICROSTRUCTURE-PROPERTY RELATIONSHIPS FOR COLD SPRAY POWDER DEPOSITION OF Al-Cu ALLOYS by Jeremy D. Leazer June 2015 Thesis Advisor: Sarath K...3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE PROCESSING-MICROSTRUCTURE-PROPERTY RELATIONSHIPS FOR COLD SPRAY POWDER

  19. Effect of extrusion temperature on the microstructure of a powder metallurgy TiAl-based alloy

    SciTech Connect

    Hsiung, L.M.; Nieh, T.G.; Clemens, D.R.

    1997-01-15

    In order to balance low temperature ductility, fracture toughness and high temperature properties of {gamma}-TiAl aluminide alloys, recent developments of the alloys have focused on refining the {gamma}/{alpha}{sub 2} full lamellar (FL) microstructure through advanced processing such as powder metallurgy (P/M). Resulted from a refined FL microstructure (both smaller lamellar grain size and thinner lamellar interface spacing) in the P/M fabricated titanium aluminide alloys, the mechanical properties of the alloys have been demonstrated to be superior to those of the aluminide alloys fabricated by conventional ingot metallurgy (I/M). However, since the microstructure of rapidly-solidified aluminide powder used in P/M process is not in an equilibrium state, the microstructures of P/M aluminide alloys are expected to be sensitive to the processing history. Accordingly, the optimization of microstructure-property of a P/M alloy through an appropriate P/M process control becomes an important issue. The purpose of this investigation is therefore aiming at understanding the effect of extrusion temperature on the microstructure of a P/M titanium aluminide alloy.

  20. Investigation of the Structure and Hardness of Quenched Sintered Materials Produced from Iron-Base Alloyed Powders (Astaloy E)

    NASA Astrophysics Data System (ADS)

    Ostovan, Farhad; Matori, Khamirul Amin; Yusoff, Hamdan Mohamed; Yunus, Robiah; Ariff, Azmah Hanim Mohamed; Toozandehjani, Meysam; Meschian, Mohammad Reza

    2016-11-01

    The effect of heat treatment on the microstructure, hardness and density of sintered (1129°C, 45 min) specimens of iron-base powder alloys containing 0.8 - 2.5% C, 2% Cu and additives of chromium- and molybdenum-alloyed Astaloy E iron powder is studied.

  1. Microstructure and corrosion characteristics of laser-alloyed magnesium alloy AZ91D with Al–Si powder

    PubMed Central

    Qian, Ming; Li, Da; Jin, Chang

    2008-01-01

    Blown-powder laser surface alloying was performed on the magnesium alloy AZ91D with Al–Si alloy powder to improve corrosion resistance. Characterization by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) analysis revealed that intermetallic compounds (IMCs) of Mg2Si, Al12Mg17 and Al3Mg2 were formed in the matrix of α-Mg and Al solid solutions in Al–Si alloyed layers. The anodic polarization test in 3.5% NaCl aqueous solution showed that preferential corrosion occurred in the α-Mg matrix of the AZ91D base metal. The Al–Si alloyed layers exhibited a lower corrosion rate and a higher polarization resistance than AZ91D. The compactly dispersed dendritic Mg2Si phase, and the dendritic and angular phases of Al12Mg17 and Al3Mg2 in the alloyed microstructure were observed to be corrosion-resistant, constituting a barrier that retards corrosion. Corrosion initiated at the interface between IMCs and the solid solution matrix, and at substructures of the matrix, subsequently pervaded into the surrounding microstructure. PMID:27877977

  2. LACBED characterization of dislocations in Cu-Al-Ni shape memory alloys processed by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Rodriguez, P. P.; Ibarra, A.; San Jean, J.; Morniro, J. P.; No, M. L.

    2003-10-01

    Powder metallurgy Cu-AI-Ni shape memory alloys show excellent thermomechanical properties, being the fracture behavior close to the one observed in single crystals. However, the microstructural mechanisms responsible of such behavior are still under study. In this paper we present the characterization of the dislocations present in these alloys by Large Angle Convergent Beam Electron Diffraction (LACBED) in two different stages of the elaboration process: after HIP compaction and after hot rolling.

  3. The effect of aluminium on the metallography of a nickel base removable partial denture casting alloy.

    PubMed

    Lewis, A J

    1978-12-01

    Three special nickel-chromium alloys were prepared in which the aluminum levels were adjusted both above and below that of a commercial nickel base dental casting alloy. Tensile and metallographic evaluation of representative samples of the alloys were made and the changes in the properties of the alloys are reported.

  4. Nanostructure Characterization of Bismuth Telluride-Based Powders and Extruded Alloys by Various Experimental Methods

    NASA Astrophysics Data System (ADS)

    Vasilevskiy, D.; Bourbia, O.; Gosselin, S.; Turenne, S.; Masut, R. A.

    2011-05-01

    High-resolution transmission electron microscopy (HRTEM) observations of mechanically alloyed powders and bulk extruded alloys give experimental evidence of nanosized grains in bismuth telluride-based materials. In this study we combine HRTEM observations and x-ray diffraction (XRD) measurements, of both mechanically alloyed powders and extruded samples, with mechanical spectroscopy (MS) of extruded rods. Both HRTEM and XRD show that nanostructures with an average grain size near 25 nm can be achieved within 2 h of mechanical alloying from pure elements in an attritor-type milling machine. Residual strain orthogonal to the c-axis of powder nanoparticles has been evaluated at about 1.2% by XRD peak broadening. In contrast, XRD has been found unreliable for evaluation of grain size in highly textured extruded materials for which diffraction conditions are similar to those of single crystals, while MS appears promising for study of bulk extruded samples. Nanostructured extruded alloys at room temperature exhibit an internal friction (IF) background that is one order of magnitude higher than that of conventional zone-melted material with a grain size of several millimeters. IF as a function of sample temperature gives activation energies that are also different between bulk materials having nano- and millimeter-size grains, a result that is attributed to different creep mechanisms. Nanograin size, as well as orientation and volumetric proportion, provide valuable information for optimization of technological parameters of thermoelectric alloys and should be carefully cross-examined by various independent methods.

  5. Electron irradiation of aluminium-zinc alloys. 2. Radiation-enhanced diffusion in an aluminium-4.5 at% zinc alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Y. G.; Jones, I. P.

    1989-06-01

    A detailed experimental study of electron radiation-enhanced diffusion in aluminium-4.5 at% zinc is presented. The enhancement factor ( D rad/D thermal) was found to be dependent on dose rate, temperature and electron energy, and varied from ~1 at 170°C to ~10 4 at 25°C. At low temperatures recombination dominates whereas at high temperatures linear annealing is the dominant mechanism for annihilation of point defects. The migration energy of vacancies is thus estimated to be 0.58 ±0.06 eV. The results are compared with a theoretical model. The model requires preferential transport of Zn atoms via the interstitial flux to reproduce the experimental results. The simple model D rad = f vD vC v + f iD iC i + … seems to underestimate D rad.

  6. Crack Growth Modeling in an Advanced Powder Metallurgy Alloy

    DTIC Science & Technology

    1980-07-01

    Conditions Showing Changes in Curvature After Initiation of Testing. 11. Photograph of Overall Test Set-up with MTS 5 KIP Closed- 20 Loop Equipment and...Test Matrix Used in This Program. 97 X " -A LIST OF TABLES Table Page 1. Composition of AFI15 Powder (A1339). 2 2. Particle Size Distribution of AF115...of the gamma matrix. The initial development of AF115 involved powder metallurgy HIP + forge processing. Subsequent studies included evaluation of As

  7. Dual-Alloy Disks are Formed by Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.; Miner, R. V.; Kortovich, C. S.; Marder, J. M.

    1982-01-01

    High-performance disks have widely varying properties from hub to rim. Dual property disk is fabricated using two nickel-base alloys, AF-115 for rim and Rene 95 for hub. Dual-alloy fabrication may find applications in automobiles, earth-moving equipment, and energy conversion systems as well as aircraft powerplants. There is potential for such applications as shafts, gears, and blades.

  8. The structure-property relationships of powder processed Fe-Al-Si alloys

    SciTech Connect

    Prichard, Paul D.

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  9. Prediction of heating rate controlled viscous flow activation energy during spark plasma sintering of amorphous alloy powders

    NASA Astrophysics Data System (ADS)

    Paul, Tanaji; Harimkar, Sandip P.

    2017-07-01

    The viscous flow behavior of Fe-based amorphous alloy powder during isochronal spark plasma sintering was analyzed under the integrated theoretical background of the Arrhenius and directional structural relaxation models. A relationship between viscous flow activation energy and heating rate was derived. An extension of the pertinent analysis to Ti-based amorphous alloys confirmed the broad applicability of such a relationship for predicting the activation energy for sintering below the glass transition temperature (T g) of the amorphous alloy powders.

  10. An investigation of wear behaviors of different Monel alloys produced by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Esgin, U.; Özyürek, D.; Kaya, H.

    2016-04-01

    In the present study, wear behaviors of Monel 400, Monel 404, Monel R-405 and Monel K-500 alloys produced by Powder Metallurgy (P/M) method were investigated. These compounds prepared from elemental powders were cold-pressed (600 MPa) and then, sintered at 1150°C for 2 hours and cooled down to the room temperature in furnace environment. Monel alloys produced by the P/M method were characterized through scanning electron microscope (SEM+EDS), X-ray diffraction (XRD), hardness and density measurements. In wear tests, standard pin-on-disk type device was used. Specimens produced within four different Monel Alloys were tested under 1ms-1 sliding speed, under three different loads (20N, 30N and 40N) and five different sliding distances (400-2000 m). The results show that Monel Alloys have γ matrix and that Al0,9Ni4,22 intermetallic phase was formed in the structure. Also, the highest hardness value was measured with the Monel K-500 alloy. In wear tests, the maximum weight loss according to the sliding distance, was observed in Monel 400 and Monel 404 alloys while the minimum weight loss was achieved by the Monel K-500 alloy.

  11. An investigation of wear behaviors of different Monel alloys produced by powder metallurgy

    SciTech Connect

    Esgin, U.; Özyürek, D.

    2016-04-21

    In the present study, wear behaviors of Monel 400, Monel 404, Monel R-405 and Monel K-500 alloys produced by Powder Metallurgy (P/M) method were investigated. These compounds prepared from elemental powders were cold-pressed (600 MPa) and then, sintered at 1150°C for 2 hours and cooled down to the room temperature in furnace environment. Monel alloys produced by the P/M method were characterized through scanning electron microscope (SEM+EDS), X-ray diffraction (XRD), hardness and density measurements. In wear tests, standard pin-on-disk type device was used. Specimens produced within four different Monel Alloys were tested under 1ms{sup −1} sliding speed, under three different loads (20N, 30N and 40N) and five different sliding distances (400-2000 m). The results show that Monel Alloys have γ matrix and that Al{sub 0,9}Ni{sub 4,22} intermetallic phase was formed in the structure. Also, the highest hardness value was measured with the Monel K-500 alloy. In wear tests, the maximum weight loss according to the sliding distance, was observed in Monel 400 and Monel 404 alloys while the minimum weight loss was achieved by the Monel K-500 alloy.

  12. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material.

    PubMed

    Liu, Jue; Chang, Lin; Liu, Hairong; Li, Yongsheng; Yang, Hailin; Ruan, Jianming

    2017-02-01

    Microstructures, mechanical properties, apatite-forming ability and in vitro experiments were studied for Nb-25Ti-xTa (x=10, 15, 20, 25, 35at.%) alloys fabricated by powder metallurgy. It is confirmed that the alloys could achieve a relative density over 80%. Meanwhile, the increase in Ta content enhances the tensile strength, elastic modulus and hardness of the as-sintered alloys. When increasing the sintering temperatures, the microstructure became more homogeneous for β phase, resulting in a decrease in the modulus and strength. Moreover, the alloys showed a good biocompatibility due to the absence of cytotoxic elements, and were suitable for apatite formation and cell adhesion. In conclusion, Nb-25Ti-xTa alloys are potentially useful in biomedical applications with their mechanical and biological properties being evaluated in this work.

  13. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    NASA Technical Reports Server (NTRS)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  14. The Densification of Molybdenum and Molybdenum Alloy Powders Using Hot Isostatic Pressing.

    DTIC Science & Technology

    1985-08-01

    TECHNICAL REPORT ARLCB-TR-85025 00 THE DENSIFICATION OF MOLYBDENUM (n AND MOLYBDENUM ALLOY POWDERS USING HOT ISOSTATIC PRESSING J. BARRANCO I. AHMAD S...ISOSTATIC PRESSING Final 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(o) . CONTRACT OR GRANT NUMBER(e) J. Barranco , I. Ahmad, S. Isserow, and R. Warenchak

  15. Mechanical properties of modified low cobalt powder metallurgy Udimet 700 type alloys

    NASA Technical Reports Server (NTRS)

    Harf, Fredric H.

    1989-01-01

    Eight superalloys derived from Udimet 700 were prepared by powder metallurgy, hot isostatically pressed, heat treated and their tensile and creep rupture properties determined. Several of these alloys displayed properties superior to those of Udimet 700 similarly prepared, in one case exceeding the creep rupture life tenfold. Filter clogging by extracted gamma prime, its measurement and significance are discussed in an appendix.

  16. Powder formation of {gamma} uranium-molybdenum alloys via hydration-dehydration

    SciTech Connect

    Vaz de Oliveira, Fabio Branco; Durazzo, Michelangelo; Fontenele Urano de Carvalho, Elita; Saliba-Silva, Adonis Marcelo; Gracher Riella, Humberto

    2008-07-15

    Gamma uranium-molybdenum alloys has been considered as fuel phase in plate type fuel elements for MTR reactors, mainly due to their acceptable performance under irradiation and metallurgical processing. To its use as a dispersion phase in aluminum matrix, a necessary step is the conversion of the as cast structure into powder, and one of the techniques considered at IPEN / CNEN - Brazil is HDH (hydration-dehydration). The alloys were produced by the induction melting technique, and samples were obtained from the alloys for the thermal treatments, under constant flow of hydrogen, for temperatures varying from 400 deg C to 600 deg C and times from 1 to 4 hours, followed by dehydration. A preliminary characterization of the powders was made and the curves of mass variation versus time were obtained and related to the powder characteristics. This paper describes the first results on the development of the technology to the powder formation of the (5 to 10) % weight molybdenum {gamma}-UMo alloys, and discusses some of its aspects, mainly those related to the {gamma} {yields} {alpha} equilibrium data. (author)

  17. IMPROVED PRODUCTION OF POWDER METALLURGY ITEMS.

    DTIC Science & Technology

    POWDER METALLURGY, *POWDER ALLOYS , MATERIAL FORMING, PRODUCTION, NICKEL ALLOYS , CHROMIUM ALLOYS , COBALT ALLOYS , SINTERING, FORGING, PARTICLE SIZE...HIGH TEMPERATURE, SCIENTIFIC RESEARCH, HOT WORKING, HEAT TREATMENT, MICROSTRUCTURE, HARDNESS, MOLYBDENUM ALLOYS , TITANIUM ALLOYS , ZIRCONIUM ALLOYS , CARBON ALLOYS .

  18. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  19. Powder metallurgy preparation of Mg-Ca alloy for biodegradable implant application

    NASA Astrophysics Data System (ADS)

    Annur, D.; Suhardi, A.; Amal, M. I.; Anwar, M. S.; Kartika, I.

    2017-04-01

    Magnesium and its alloys is a promising candidate for implant application especially due to its biodegradability. In this study, Mg-7Ca alloys (in weight %) were processed by powder metallurgy from pure magnesium powder and calcium granule. Milling process was done in a shaker mill using stainless steel balls in various milling time (3, 5, and 8 hours) followed by compaction and sintering process. Different sintering temperatures were used (450°C and 550°C) to examine the effect of sintering temperature on mechanical properties and corrosion resistance. Microstructure evaluation was characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. Mechanical properties and corrosion behavior were examined through hardness testing and electrochemical testing in Hank’s solution (simulation body fluid). In this report, a prolonged milling time reduced particle size and later affected mechanical properties of Mg alloy. Meanwhile, the phase analysis showed that α Mg, Mg2Ca, MgO phases were formed after the sintering process. Further, this study showed that Mg-Ca alloy with different powder metallurgy process would have different corrosion rate although there were no difference of Ca content in the alloy.

  20. Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders.

    PubMed

    Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E

    2012-10-01

    The applicability of irregular prealloyed Ti-6Al-4V powder for the fabrication of titanium products by pressing and sintering and its employment as a master alloy to obtain the Ti-3Al-2.5V alloy was studied. To this end, the starting powders were characterised by dilatometry, differential thermal analysis and XRD. Green samples were obtained by cold uniaxial pressing, and the evolution of the microstructure over the sintering temperature range 900-1400°C was studied. The variation of the final density and mechanical properties with the sintering temperature was considered. Based on the study carried out, it can be stated that more reliable powders are needed to open the titanium market to new applications. A relative density of 95% and diverse microstructural features and mechanical properties equivalent to those of biomedical devices can be obtained by the pressing and sintering route. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Study of the matrix effect in the secondary ion emission of aluminium-zinc alloys

    NASA Astrophysics Data System (ADS)

    van Craen, M.; Van Espen, P.; Adams, F.

    1981-12-01

    The secondary ion emission of AlZn alloys was studied under Ar + primary ion bombardment at saturation conditions for oxygen adsorption. Relative ionisation coefficients of Al and Zn sputtered from the alloys, were measured as a function of the solute element concentration, which allowed the quantitative evaluation of the matrix effect in SIMS analysis for AlZn alloys.

  2. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    NASA Technical Reports Server (NTRS)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  3. Formulation of anisotropic Hill criteria for the description of an aluminium alloy behaviour during the channel die compression test

    SciTech Connect

    Gavrus, A.; Francillette, H.

    2007-04-07

    During the last years the study of the plastic deformation modes and the anisotropic mechanical behaviour of aluminium alloys have been the subject of many investigations. This paper deals with a phenomenological identification of an anisotropic Hill constitutive equation of aluminium AU4G samples using a channel die compression device at room temperature. By considering the different possible orientations of the samples in the channel die device, three initial textures, named ND (normal direction Z), LD (longitudinal direction X) and TD (transverse direction Y), were defined with the corresponding stresses {sigma}ND, {sigma}LD and {sigma}TD. To describe the anisotropy of the material, a quadratic Hill criteria is used. An Avrami type equation based on the mixture of the hardening and softening phenomena is used to describe variation of each stress component with the equivalent plastic strain. The identification of the parameters of the law is made using an identification software (OPTPAR) and a good correlation between the experimental stresses and computed ones is obtained. The variation of the Hill parameters with a proposed equivalent strain, describing the deformation history of the material, is analysed. Finally, using the expressions of F, G, H and N, the constitutive equation of the normal anisotropy in the plane XY is obtained.

  4. Formulation of anisotropic Hill criteria for the description of an aluminium alloy behaviour during the channel die compression test

    NASA Astrophysics Data System (ADS)

    Gavrus, A.; Francillette, H.

    2007-04-01

    During the last years the study of the plastic deformation modes and the anisotropic mechanical behaviour of aluminium alloys have been the subject of many investigations. This paper deals with a phenomenological identification of an anisotropic Hill constitutive equation of aluminium AU4G samples using a channel die compression device at room temperature. By considering the different possible orientations of the samples in the channel die device, three initial textures, named ND (normal direction Z), LD (longitudinal direction X) and TD (transverse direction Y), were defined with the corresponding stresses σND, σLD and σTD. To describe the anisotropy of the material, a quadratic Hill criteria is used. An Avrami type equation based on the mixture of the hardening and softening phenomena is used to describe variation of each stress component with the equivalent plastic strain. The identification of the parameters of the law is made using an identification software (OPTPAR) and a good correlation between the experimental stresses and computed ones is obtained. The variation of the Hill parameters with a proposed equivalent strain, describing the deformation history of the material, is analysed. Finally, using the expressions of F, G, H and N, the constitutive equation of the normal anisotropy in the plane XY is obtained.

  5. Application of Minkowski layer for intergranular fractal surfaces of multiphase active microalloyed and alloyed aluminium-silicate ceramics

    NASA Astrophysics Data System (ADS)

    Purenović, J. M.; Randjelović, M. S.; Matović, B. Z.; Purenović, M. M.

    2015-03-01

    Microalloyed and alloyed aluminium-silicate ceramics represents multiphase and multifunctional solid-solid system. The microstructure of aluminium-silicate ceramics matrix is arranged with favorable relationship between crystallinity and amorphousness. Numbered physical processes and interactions take place in very complex intergranular and interphase areas, making new boundaries and regions with fractal nature. Fractal nature of grains contours, macro, mezzo and micro pores and nanostructure phases at grain boundaries make this ceramics an active dielectric material. The synergistic effect of additives, dislocations and impurities leads to dislocations movement at grain boundaries and fragmentation of existing grains in a large number of micrograins with distinct fractal nature. Hence, permanent change of micromorphology occurs in intergranular area. Fractal analysis of intergranular microstructure has included application of Minkowski layer, correlated with fractal dimension. It represents convex layer of grains contour roughness and irregularity, determined in accordance with grain contours fractality. The introduction of fractal microstructure analysis allows better interpretation of many physical and physico-chemical processes, bearing in mind that Minkowski layer defines grains contact probability.

  6. Microstructural characterization of a new mechanically alloyed Ni-base ODS superalloy powder

    SciTech Connect

    Seyyed Aghamiri, S.M.; Shahverdi, H.R.; Ukai, S.; Oono, N.; Taya, K.; Miura, S.; Hayashi, S.; Okuda, T.

    2015-02-15

    The microstructure of a new Ni-base oxide dispersion strengthened superalloy powder was studied for high temperature gas turbine applications after the mechanical alloying process. In this study, an atomized powder with a composition similar to the CMSX-10 superalloy was mechanically alloyed with yttria and Hf powders. The mechanically alloyed powder included only the supersaturated solid solution γ phase without γ′ and yttria provided by severe plastic deformation, while after the 3-step aging, the γ′ phase was precipitated due to the partitioning of Al and Ta to the γ′ and Co, Cr, Re, W, and Mo to the γ phase. Mechanical alloying modified the morphology of γ′ to the new coherent γ–γ′ nanoscale lamellar structure to minimize the elastic strain energy of the precipitation, which yielded a low lattice misfit of 0.16% at high temperature. The γ′ lamellae aligned preferentially along the elastically soft [100] direction. Also, the precipitated oxide particles were refined in the γ phase by adding Hf from large incoherent YAlO{sub 3} to fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles with the average size of 7 nm and low interparticle spacing of 76 nm. - Highlights: • A new Ni-base ODS superalloy powder was produced by mechanical alloying. • The nanoscale γ–γ′ lamellar structure was precipitated after the aging treatment. • Fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles were precipitated by addition of Hf.

  7. Effects of Welding Processes and Post-Weld Aging Treatment on Fatigue Behavior of AA2219 Aluminium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Malarvizhi, S.; Balasubramanian, V.

    2011-04-01

    AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW), and friction stir welding (FSW) processes. The fabricated joints were post-weld aged at 175 °C for 12 h. The effect of three welding processes and post-weld aging (PWA) treatment on the fatigue properties is reported. Transverse tensile properties of the welded joints were evaluated. Microstructure analysis was also carried out using optical and electron microscopes. It was found that the post-weld aged FSW joints showed superior fatigue performance compared to EBW and GTAW joints. This was mainly due to the formation of very fine, dynamically recrystallized grains and uniform distribution of fine precipitates in the weld region.

  8. Effect of friction stir processing on the fatigue properties of a Zr-modified 2014 aluminium alloy

    SciTech Connect

    Cavaliere, P. . E-mail: pasquale.cavaliere@unile.it

    2006-08-15

    The fatigue properties of a Zr-modified 2014 aluminium alloy resulting from friction stir processing (FSP) were analysed in the present study. The sheets were processed parallel to the extrusion direction; the tensile mechanical properties were evaluated at room temperature in the longitudinal direction with respect to the processing one in order to observe the differences from the parent material as a function of the strong grain refinement due to the friction stir process. The fatigue endurance (S-N) curve of the FSP material was obtained by using a resonant electro-mechanical testing machine under constant loading control up to 250 Hz with sine wave loading. The cyclic fatigue tests were conducted in the axial total stress-amplitude control mode with R = {sigma} {sub min}/{sigma} {sub max} = 0.1. The microstructure resulting from the FSW process was studied by employing optical and scanning electron microscopy.

  9. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    SciTech Connect

    Annur, Dhyah; Franciska, P.L.; Erryani, Aprilia; Amal, M. Ikhlasul; Kartika, Ika; Sitorus, Lyandra S.

    2016-04-19

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.

  10. Heterogeneous nucleation in the polyol process for the synthesis of FeCo alloy powders

    NASA Astrophysics Data System (ADS)

    Cho, Uk Rae; Lee, Dong Gun; Ahn, Byung Hyun; Lee, Je Hyun; Koo, Bon Heun

    2014-05-01

    Here, we report a polyol method to prepare monodispersed FeCo alloy particles with Pt seeds added in the production of nanoparticles. The prepared samples were characterized by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and magnetic measurements. Structural studies revealed that the FeCo nanoparticles had a body-centered cubic (BCC) structure. FE-SEM analysis demonstrated a sphere morphology for the FeCo alloy particles. The size of the FeCo nanoparticles could be well tuned by changing the number of Pt-seed partices in the FeCo alloy. The magnetic properties of the FeCo alloys were investigated as a function of the Pt-seed concentration and temperature. The saturation magnetization and coercivity of the FeCo nanoparticles were found to depend on the molar ratio of Fe/Co, as well as the number of Pt-seeds, and increased with increasing FeCo concentration. A higher value of the saturation magnetization, 218 emu/g, was obtained for the 0.07-M concentration of FeCo alloy. In the process of producing an FeCo alloy powder by heterogeneous nucleation, a powder having minute sizes could be produced under the experimental conditions of a Pt-seed-added temperature of 90 °C and a Pt/FeCo mole ratio of 8 × 10-5, and showed far superior properties.

  11. Relationship of Powder Feedstock Variability to Microstructure and Defects in Selective Laser Melted Alloy 718

    NASA Technical Reports Server (NTRS)

    Smith, T. M.; Kloesel, M. F.; Sudbrack, C. K.

    2017-01-01

    Powder-bed additive manufacturing processes use fine powders to build parts layer by layer. For selective laser melted (SLM) Alloy 718, the powders that are available off-the-shelf are in the 10-45 or 15-45 micron size range. A comprehensive investigation of sixteen powders from these typical ranges and two off-nominal-sized powders is underway to gain insight into the impact of feedstock on processing, durability and performance of 718 SLM space-flight hardware. This talk emphasizes an aspect of this work: the impact of powder variability on the microstructure and defects observed in the as-fabricated and full heated material, where lab-scale components were built using vendor recommended parameters. These typical powders exhibit variation in composition, percentage of fines, roughness, morphology and particle size distribution. How these differences relate to the melt-pool size, porosity, grain structure, precipitate distributions, and inclusion content will be presented and discussed in context of build quality and powder acceptance.

  12. Synthesis and characterization of nanocrystalline Al 2024-B4C composite powders by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Varol, T.; Canakci, A.

    2013-06-01

    In the present work, the effect of milling parameters on the morphology and microstructure of nanostructure Al2024-B4C composite powders obtained by mechanical alloying (MA) was studied. The effects of milling time and B4C content on the morphology, microstructure and particle size of nanostructure Al2024-B4C composite powders have been investigated. Different amounts of B4C particles (0, 5, 10 and 20 wt.%) were mixed with Al2024 powders and milled in a planetary ball mill for 30, 60, 120, 300, 420 and 600 min. Al 2024-B4C composite powders were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, X-ray diffraction analysis (XRD) and the Vickers microhardness test. The results showed that the nanostructure Al2024-B4C composite powders were produced when they were milled for 600 min. The size of composite powder in the milled powder mixture was affected by the milling time and content of B4C particles. Moreover, it was observed that when MA reached a steady state, the properties of composite powders were stabilized.

  13. Measurement of surface resistivity/conductivity of anodized aluminium alloy by optical interferometry techniques

    NASA Astrophysics Data System (ADS)

    Habib, K.

    2010-04-01

    Optical interferometry techniques was used for the first time to measure the surface resistivity/conductivity of anodized aluminium samples in aqueous solution without any physical contact. The anodization process (oxidation) of the aluminium samples was carried out in different sulphuric acid solutions (1.0-2.5 % H2SO4), by the technique of electrochemical impedance spectroscopy (EIS), at room temperature. In the mean time, the real-time holographic interferometric was carried out to measure the thickness of anodized (oxide) film of the aluminium samples during the anodization processes. Then, the alternating current (AC) impedance (resistance) of the anodized aluminium samples was determined by the technique of electrochemical impedance spectroscopy (EIS) in different sulphuric acid solutions (1.0-2.5 % H2SO4) at room temperature. In addition, a mathematical model was derived in order to correlate between the AC impedance (resistance) and to the surface (orthogonal) displacement of the samples in solutions. In other words, a proportionality constant (surface resistivity or conductivity=1/ surface resistivity) between the determined AC impedance (by EIS technique) and the orthogonal displacement (by the optical interferometry techniques) was obtained. Consequently the surface resistivity (ρ) and conductivity (σ) of the aluminum samples in solutions were obtained. Also, electrical resistivity values (ρ) from other source were used for comparison sake with the calculated values of this investigation. This study revealed that the measured value of the resistivity for the anodized aluminium samples were 2.8×109, 7×1012, 2.5×1013, and 1.4 ×1012 Ohms-cm in 1.0%,1.5%, 2.0%, and 2.5 % H2SO4 solutions, respectively. In fact, the determined value range of the resistivity is in a good agreement with the one found in literature for the aluminium oxide ,85% Al2O3 (5×1010 Ohms-cm in air at temperature 30C°), 96% Al2O3 (1×1014 Ohms-cm in air at temperature 30C°), and

  14. Microstructure and Mechanical Properties of Ti-Mo-Zr-Cr Biomedical Alloys by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Elshalakany, Abou Bakr; Ali, Shady; Amigó Mata, A.; Eessaa, Ashraf K.; Mohan, P.; Osman, T. A.; Amigó Borrás, V.

    2017-03-01

    Titanium and its alloys have been widely used as biometals due to their excellent biocompatibility, corrosion resistance and moderate mechanical properties. Ti-15Mo-6Zr-based alloys and a series of Ti-15Mo-6Zr-xCr ( x = 1, 2, 3, 4 wt.%) alloys were designed and fabricated by powder metallurgy for the first time to develop novel biomedical materials. The microstructure, internal porosity and mechanical properties of the sintered Ti-15Mo-6Zr and Ti-15Mo-6Zr-xCr alloys were investigated using scanning electronic microscopy (SEM) and bending and compression tests. The experimental results indicated that the microstructure and mechanical properties of these alloys changed as different Cr levels were added. The addition of small Cr levels further increased the β-phase stability, improving the properties of the Ti-15Mo-6Zr-xCr alloy. However, all of the alloys had good ductility, and the Ti-15Mo-6Zr-2Cr alloy had lower bending and compression moduli (31 and 23 GPa, respectively) than the Ti-15Mo-6Zr-based alloys (40 and 36 GPa, respectively). Moreover, the Ti-15Mo-6Zr-2Cr alloys exhibited higher bending and compression strength/modulus ratios, which were as large as 48.4 and 52.2, respectively; these were higher than those of the Ti-15Mo-6Zr-based alloy (41.3 and 33.6, respectively). In the search for a better implant material, β phase Ti-15Mo-6Zr-2Cr, with its low modulus, ductile properties and reasonably high strength, is a promising candidate.

  15. The effect of powder sintering method on the densification and microstructure of pewter alloys

    NASA Astrophysics Data System (ADS)

    Firdaus Ariff, Tasnim; Gabbitas, Brian; Zhang, Deliang

    2009-08-01

    Pewter alloys made from tin, copper and antimony powders were sintered using microwave and conventional vacuum sintering. Three different compositions of the pewter alloy were used; 91Sn6Cu3Sb, 94Sn4Cu2Sb and 97Sn2Cu1Sb. The effect of densification and microstructure of the pewter alloys from varying sintering time and sintering mode were examined and compared. Samples were compacted at 40kN and sintered at 220°C. Samples in the conventional furnace were sintered 60 minutes and 120 minutes, while samples in the microwave furnace were sintered for 15 and 30 minutes. Samples sintered at longer sintering times resulted in higher density for both sintering methods. Microwave sintering produced samples with slightly smaller grain size than the conventionally sintered samples resulting in a better densification. There were no new phases formed from the sintering of pewter alloy.

  16. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    DOE PAGES

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; ...

    2015-04-13

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivitymore » was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.« less

  17. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    SciTech Connect

    Anderson, I. E. Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-05-07

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  18. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    SciTech Connect

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-04-13

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  19. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-05-01

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  20. Regarding to the Variance Analysis of Regression Equation of the Surface Roughness obtained by End Milling process of 7136 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    POP, A. B.; ȚÎȚU, M. A.

    2016-11-01

    In the metal cutting process, surface quality is intrinsically related to the cutting parameters and to the cutting tool geometry. At the same time, metal cutting processes are closely related to the machining costs. The purpose of this paper is to reduce manufacturing costs and processing time. A study was made, based on the mathematical modelling of the average of the absolute value deviation (Ra) resulting from the end milling process on 7136 aluminium alloy, depending on cutting process parameters. The novel element brought by this paper is the 7136 aluminium alloy type, chosen to conduct the experiments, which is a material developed and patented by Universal Alloy Corporation. This aluminium alloy is used in the aircraft industry to make parts from extruded profiles, and it has not been studied for the proposed research direction. Based on this research, a mathematical model of surface roughness Ra was established according to the cutting parameters studied in a set experimental field. A regression analysis was performed, which identified the quantitative relationships between cutting parameters and the surface roughness. Using the variance analysis ANOVA, the degree of confidence for the achieved results by the regression equation was determined, and the suitability of this equation at every point of the experimental field.

  1. A Fundamental Study of Fatigue in Powder Metallurgy Aluminum Alloys.

    DTIC Science & Technology

    1981-08-01

    Rearick (20) have confirmed the beneficial effect of material flow during densification; endurance limits in rotating bend on P/M processed compositions...INTRODUCTION Recent studies on aluminum alloys have shown that lateral flow during consolidation, aimed at eliminating porosity and the fragmentation of surface...removed from each forging. Slices cut from the forgings were solution treated at a temperature of 488C (910*F) for two hours and water quenched. The

  2. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    NASA Astrophysics Data System (ADS)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  3. The aluminium-scandium-lithium-magnesium system as a potential source of superplastically formable alloys

    SciTech Connect

    Emigh, R.A.

    1990-07-01

    Alloys from the aluminum-lithium-scandium-magnesium system have been cast and rolled for study. The goal is to evaluate this system for the development of superplastically formable, high strength alloys. Aluminum-scandium-magnesium alloys have shown potential as superplastic alloys. These alloys rely on small Al{sub 3}Sc (ordered L1{sub 2}) precipitates for grain structure stabilization and strengthening. Additional precipitation strengthening is required to raise their strength to levels sufficient for aircraft applications. The addition of lithium provides this additional strengthening through the formation of Al{sub 3}Li({delta}{prime}). To produce the alloys studied in this research, a unique induction melting furnace was constructed that incorporates special features to produce aluminum-lithium alloys with low hydrogen content. The furnace also features a water cooled, copper casting mold to achieve a moderately rapid solidification rate. This is because the amount of scandium used (0.5 wt %) is in excess of the solubility limit and Al{sub 3}Sc cannot be re-solutionized to any extent. It is therefore desired to super-saturate the matrix with as much scandium as possible for later precipitation. Two high lithium alloys were produced, ALS2 (nominal composition Al-2.2Li-O.5 Sc) and AlS4 (nominal composition Al-2.0Li-2.2Mg-0.5Sc) that were strengthened with {delta}{prime} (Al{sub 3}Li). These alloys exhibited strength and ductility superior to those of aluminum-lithium-(magnesium)-zirconium alloys. This is because the scandium containing alloys have developed a finer grain structure and the Al{sub 3}Sc precipitates contribute to the alloys strength. 41 refs., 29 figs.

  4. Studies on induction hardening of powder-metallurgy-processed Fe-Cr/Mo alloys

    NASA Astrophysics Data System (ADS)

    Chauhan, Sandeep; Verma, Vikas; Prakash, Ujjwal; Tewari, P. C.; Khanduja, Dinesh

    2017-08-01

    Induction hardening of dense Fe-Cr/Mo alloys processed via the powder-metallurgy route was studied. The Fe-3Cr-0.5Mo, Fe-1.5Cr-0.2Mo, and Fe-0.85Mo pre-alloyed powders were mixed with 0.4wt%, 0.6wt%, and 0.8wt% C and compacted at 500, 600, and 700 MPa, respectively. The compacts were sintered at 1473 K for 1 h and then cooled at 6 K/min. Ferrite with pearlite was mostly observed in the sintered alloys with 0.4wt% C, whereas a carbide network was also present in the alloys with 0.8wt% C. Graphite at prior particle boundaries led to deterioration of the mechanical properties of alloys with 0.8wt% C, whereas no significant induction hardening was achieved in alloys with 0.4wt% C. Among the investigated samples, alloys with 0.6wt% C exhibited the highest strength and ductility and were found to be suitable for induction hardening. The hardening was carried out at a frequency of 2.0 kHz for 2-3 s. A case depth of 2.5 mm was achieved while maintaining the bulk (interior) hardness of approximately HV 230. A martensitic structure was observed on the outer periphery of the samples. The hardness varied from HV 600 to HV 375 from the sample surface to the interior of the case hardened region. The best combination of properties and hardening depth was achieved in case of the Fe-1.5Cr-0.2Mo alloy with 0.6wt% C.

  5. Effects of carbon and hafnium concentrations in wrought powder-metallurgy superalloys based on NASA 2B-11 alloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1976-01-01

    A candidate alloy for advanced-temperature turbine engine disks, and four modifications of that alloy with various C and Hf concentrations were produced as cross-rolled disks from prealloyed powder that was hot isostatically compacted. The mechanical properties, microstructures, and phase relations of the alloys are discussed in terms of their C and Hf concentrations. A low-C and high-Hf modification of IIB-11 had the best balance of mechanical properties for service below about 750 C. Because of their finer grain sizes, none of the powder-metallurgy alloys produced had the high-temperature rupture strength of conventionally cast and wrought IIB-11.

  6. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders

    NASA Astrophysics Data System (ADS)

    He, Jinghua; Wang, Wei; Wang, Aimin; Guan, Jianguo

    2012-09-01

    Fe74Ni3Si13Cr6W4 amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 °C or more are composed of lots of ultra-fine α-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 °C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 °C. Thus the powder samples annealed at 650 °C show optimal reflection loss under -10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T.

  7. The combination of precipitation and dispersion hardening in powder metallurgy produced Cu-Ti-Si alloy

    SciTech Connect

    Bozic, D.; Dimcic, O.; Dimcic, B. Cvijovic, I.; Rajkovic, V.

    2008-08-15

    Microstructure and microhardness properties of precipitation hardened Cu-Ti and precipitation/dispersion hardened Cu-Ti-Si alloys have been analyzed. Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} (wt.%) atomized powders were characterized before and after consolidation by HIP (Hot Isostatic Pressing). Rapidly solidified powders and HIP-ed compacts were subsequently subjected to thermal treatment in hydrogen at temperatures between 300 and 600 deg. C. Compared to Cu-Ti powder particles and compacts, obtained by the same procedure, the strengthening effect in Cu-1.2Ti-3TiSi{sub 2} powder particles and compacts was much greater. The binary and ternary powders both reveal properties superior to those of Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} compacts. Microhardness analysis as a function of the aging temperature of Cu-1.2Ti-3TiSi{sub 2} alloy shows an interaction between precipitation and dispersion hardening which offers possibilities for an application at elevated temperatures.

  8. Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12 Al3Zr precipitates and nucleating θ″ precipitates on them.

    PubMed

    Kumar Makineni, Surendra; Sugathan, Sandeep; Meher, Subhashish; Banerjee, Rajarshi; Bhattacharya, Saswata; Kumar, Subodh; Chattopadhyay, Kamanio

    2017-09-11

    Strengthening by precipitation of second phase is the guiding principle for the development of a host of high strength structural alloys, in particular, aluminium alloys for transportation sector. Higher efficiency and lower emission demands use of alloys at higher operating temperatures (200 °C-250 °C) and stresses, especially in applications for engine parts. Unfortunately, most of the precipitation hardened aluminium alloys that are currently available can withstand maximum temperatures ranging from 150-200 °C. This limit is set by the onset of the rapid coarsening of the precipitates and consequent loss of mechanical properties. In this communication, we present a new approach in designing an Al-based alloy through solid state precipitation route that provides a synergistic coupling of two different types of precipitates that has enabled us to develop coarsening resistant high-temperature alloys that are stable in the temperature range of 250-300 °C with strength in excess of 260 MPa at 250 °C.

  9. Oxidation behavior in reaction-bonded aluminum-silicon alloy/alumina powder compacts

    SciTech Connect

    Yokota, Shari Hanayo

    1992-12-01

    Goal of this research is to determine the feasibility of producing low-shrinkage mullite/alumina composites by applying the reaction-bonded alumina (RBAO) process to an aluminum-silicon alloy/alumina system. Mirostructural and compositional changes during heat treatment were studied by removing samples from the furnace at different steps in the heating schedule and then using optical and scanning electron microscopy, EDS and XRD to characterize the powder compacts. Results suggest that the oxidation behavior of the alloy compact is different from the model proposed for the pure Al/alumina system.

  10. Oxidation behavior in reaction-bonded aluminum-silicon alloy/alumina powder compacts

    SciTech Connect

    Yokota, S.H.

    1992-12-01

    Goal of this research is to determine the feasibility of producing low-shrinkage mullite/alumina composites by applying the reaction-bonded alumina (RBAO) process to an aluminum-silicon alloy/alumina system. Mirostructural and compositional changes during heat treatment were studied by removing samples from the furnace at different steps in the heating schedule and then using optical and scanning electron microscopy, EDS and XRD to characterize the powder compacts. Results suggest that the oxidation behavior of the alloy compact is different from the model proposed for the pure Al/alumina system.

  11. Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition

    NASA Astrophysics Data System (ADS)

    Hryha, Eduard; Shvab, Ruslan; Bram, Martin; Bitzer, Martin; Nyborg, Lars

    2016-12-01

    High affinity of titanium to oxygen in combination with the high surface area of the powder results in tremendous powder reactivity and almost inevitable presence of passivation oxide film on the powder surface. Oxide film is formed during the short exposure of the powder to the environment at even a trace amount of oxygen. Hence, surface state of the powder determines its usefulness for powder metallurgy processing. Present study is focused on the evaluation of the surface oxide state of the Ti, NiTi and Ti6Al4V powders in as-atomized state and after storage under air or Ar for up to eight years. Powder surface oxide state was studied by X-ray photoelectron spectroscopy (XPS) and high resolution scanning electron microscopy (HR SEM). Results indicate that powder in as-atomized state is covered by homogeneous Ti-oxide layer with the thickness of ∼2.9 nm for Ti, ∼3.2 nm and ∼4.2 nm in case of Ti6Al4V and NiTi powders, respectively. Exposure to the air results in oxide growth of about 30% in case of Ti and only about 10% in case of NiTi and Ti6Al4V. After the storage under the dry air for two years oxide growth of only about 3-4% was detected in case of both, Ti and NiTi powders. NiTi powder, stored under the dry air for eight years, indicates oxide thickness of about 5.3 nm, which is about 30% thicker in comparison with the as-atomized powder. Oxide thickness increase of only ∼15% during the storage for eight years in comparison with the powder, shortly exposed to the air after manufacturing, was detected. Results indicate a high passivation of the Ti, Ti6Al4V and NiTi powder surface by homogeneous layer of Ti-oxide formed even during short exposure of the powder to the air.

  12. Three-dimensional characterization of fatigue-relevant intermetallic particles in high-strength aluminium alloys using synchrotron X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Nizery, E.; Proudhon, H.; Buffiere, J.-Y.; Cloetens, P.; Morgeneyer, T. F.; Forest, S.

    2015-09-01

    Second-phase particles and small porosities are known to favour fatigue crack initiation in high-strength aluminium alloys 2050-T8 and 7050-T7451. Using high-resolution X-ray tomography (320 nm voxel size), with Paganin reconstruction algorithms, the probability that large clusters of particles contain porosities could be measured for the first time in 3D, as well as precise 3D size distributions. Additional holotomography imaging provided improved spatial resolution (50 nm voxel size), allowing to estimate the probability of finding cracked particles in the as-received material state. The extremely precise 3D shape (including cracks) as well as local chemistry of the particles has been determined. This experiment enabled unprecedented 3D identification of detrimental stress risers relevant for fatigue in as-received aluminium alloys.

  13. Effect of mechanical milling on Ni-TiH{sub 2} powder alloy filler metal for brazing TiAl intermetallic alloy: The microstructure and joint's properties

    SciTech Connect

    He Peng Liu Duo; Shang Erjing; Wang Ming

    2009-01-15

    A TiH{sub 2}-50 wt.% Ni powder alloy was mechanically milled in an argon gas atmosphere using milling times up to 480 min. A TiAl intermetallic alloy was joined by vacuum furnace brazing using the TiH{sub 2}-50 wt.% Ni powder alloy as the filler metal. The effect of mechanical milling on the microstructure and shear strength of the brazed joints was investigated. The results showed that the grains of TiH{sub 2}-50 wt.% Ni powder alloy were refined and the fusion temperature decreased after milling. A sound brazing seam was obtained when the sample was brazed at 1140 deg. C for 15 min using filler metal powder milled for 120 min. The interfacial zones of the specimens brazed with the milled filler powder were thinner and the shear strength of the joint was increased compared to specimens brazed with non-milled filler powder. A sample brazed at 1180 deg. C for 15 min using TiH{sub 2}-50 wt.% Ni powder alloy milled for 120 min exhibited the highest shear strength at both room and elevated temperatures.

  14. Effect of Cu addition on the martensitic transformation of powder metallurgy processed Ti–Ni alloys

    SciTech Connect

    Kim, Yeon-wook; Choi, Eunsoo

    2014-10-15

    Highlights: • M{sub s} of Ti{sub 50}Ni{sub 50} powders is 22 °C, while M{sub s} of SPS-sintered porous bulk increases up to 50 °C. • M{sub s} of Ti{sub 50}Ni{sub 40}Cu{sub 20} porous bulk is only 2 °C higher than that of the powders. • Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2–B19’ transformation occurred in Ti{sub 50}Ni{sub 50} powders, while Ti{sub 50}Ni{sub 30}Cu{sub 20} powders showed B2–B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 °C) of Ti{sub 50}Ni{sub 50} porous bulk is much higher than that (22 °C) of the as-solidified powders. However, the martensitic transformation start temperature (35 °C) of Ti{sub 50}Ni{sub 30}Cu{sub 20} porous bulk is almost the same as that (33 °C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon.

  15. Microstructures of the silicon carbide nanowires obtained by annealing the mechanically-alloyed amorphous powders

    SciTech Connect

    Zhang, Pengfei Li, Xinli

    2015-07-15

    Silicon, graphite and boron nitride powders were mechanically alloyed for 40 h in argon. The as-milled powders were annealed at 1700 °C in nitrogen for 30 min. The annealed powders are covered by a thick layer of gray–green SiC nanowires, which are 300 nm to 1000 nm in diameter and several hundred microns in length. Trace iron in the raw powders acts as a catalyst, promoting the V–L–S process. It follows that the actual substances contributing to the growth of the SiC nanowires may be silicon, graphite and the metal impurities in the raw powders. The results from HRTEM and XRD reveal that the products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. It is interestingly found that 6H–SiC coexists with 3C–SiC in one nodular nanowire. This novel structure may introduce periodic potential field along the longitudinal direction of the nanowires, and may find applications in the highly integrated optoelectronic devices. - Graphical abstract: Display Omitted - Highlights: • SiC nanowires were prepared by annealing the mechanically alloyed amorphous powders. • SiC nanowires are 300 nm to 1000 nm in diameter and several hundred microns in length. • The products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. • Trace Fe in the raw powders acts as a catalyst, promoting the V–L–S process. • 6H–SiC coexists with 3C–SiC in one nodular SiC nanowire.

  16. Fabrication of ultrafine tungsten-based alloy powders by novel soda reduction process

    SciTech Connect

    Lee, Dong-Won; Turaev, Farkhod; Kim, Ju-Hyeong; Yang, Mingchuan

    2010-03-15

    A novel reduction method has been developed to fabricate ultrafine tungsten heavy alloy powders, with ammonium metatungstate (AMT), iron(II) chloride tetrahydrate (FeCl{sub 2}.4H{sub 2}O), nickel(II) chloride hexahydrate (NiCl{sub 2}.6H{sub 2}O) as source materials and sodium tungstate dihydrate (Na{sub 2}WO{sub 4}.2H{sub 2}O) as a reductant. In the preparation of mixtures the amounts of the source components were chosen so as to obtain alloy of 93W-5Ni-2Fe composition (wt.%). The obtained powders were characterized by X-ray diffraction, XPS, field-emission scanning microscope (FESEM), and chemical composition was analyzed by EDX.

  17. Preparation of Permanent Mold Coating Using Magnesia Powder for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Guo, Guangsi; Wang, Guangtai; Yu, Haifeng; Ye, Sheng

    A kind of permanent mold coating for magnesium alloy was developed using magnesia powder and diatomite as refractory aggregate. The properties of the coating were tested and analyzed by various ingredients. The final ingredient was determined through the tests which are to find out the optimal proportion of two kinds of aggregate and the influences to coating properties by changing the proportion of binder and suspending agents. The experimental results shown that the permanent mold coating performed good properties on magnesium alloys when the optimized ratio of magnesia powder and diatomite was 6: 4, and the integrated property is very excellent when the coating was prepared with 2 percent of sodium bentonite, 0.4 percent of CMC, 7 percent of sodium hexametaphosphate, and 7 percent of sodium silicate. The excellent performance has also been proved by actual casting test.

  18. Comparative Investigation on Modal analysis of LM25 Aluminium alloy with other Aluminim alloys using Finite element analysis software

    NASA Astrophysics Data System (ADS)

    Arunkumar, S.; Baskaralal, V. P. M.; Muthuraman, V.

    2017-03-01

    The rudimentary steps of the modal analysis and simulation are carried out. The modal analysis is carried out on the different Aluminum Alloys cantilever beam. The cantilever beam is designed in the graphical environment of the ANSYS. The cantilever beam was fine-tuned on one end with all degree of liberation on this end were taken, beam cannot move and rotate. Mode shapes and natural frequencies are premeditated in platforms ANSYS with arithmetical formulation of the direct solver including the block Lanczos method. Aluminum alloys are widely utilized in much application due to their estimable weight to vigor property. Many examination works have been distributed out to make developments the mechanical properties of aluminum alloys. The composition of alloying elements plays a consequential role in deciding the properties of an alloy. In this study a numerical analysis implement i.e., finite element analysis (FEA) is utilized. The work obtainable in this paper is aimed at the study of effect of modal analysis of different aluminum alloys. The modeling and analysis is carried out utilizing ANSYS FEA software. A modal analysis is carried out to understand the modes of frequency demeanor of the material considered. The modal analysis play a vital role in the design of components subjected to high vibration.

  19. Fabrication of Ni-Nb-Sn metallic glassy alloy powder and its microwave-induced sintering behavior.

    PubMed

    Xie, Guoqiang; Li, Song; Louzguine-Luzgin, D V; Cao, Ziping; Yoshikawa, Noboru; Sato, Motoyasu; Inoue, Akihisa

    2009-01-01

    In the present study, we prepared Ni59.35Nb34.45Sn6.2 metallic glassy alloy powder by an argon gas atomization process. Microwave (MW)-induced heating and sintering was carried out by a single-mode 2.45 GHz MW applicator in the separated magnetic field or electric field using the obtained glassy powders. The structure and thermal stability of the sintered glassy alloy specimens were investigated.

  20. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    PubMed

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P < 0.05). There was no significant difference among the linear shrinkage ratios of three different titanium powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P < 0.05). 2. The opening porosity of specimens decreased with the increased compacted pressure(P < 0.05). Three different sized particle of titanium powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  1. Metallurgical features of the manufacture of hard-alloy powders by electroerosive dispersion of a T15K6 alloy in butanol

    NASA Astrophysics Data System (ADS)

    Ageev, E. V.; Latypov, R. A.; Ugrimov, A. S.

    2016-12-01

    The properties of the powders fabricated by the electroerosive dispersion of the wastes of a T15K6 hard alloy in working fluid (butanol-1) are studied. The powder particles thus fabricated are found to have a predominantly spherical shape and contain W, Ti, Co, C, and O.

  2. Effect of annealing on structural and magnetic properties of Al substituted nanocrystalline Fe-Si-Co alloy powders

    NASA Astrophysics Data System (ADS)

    Shyni, P. C.; Alagarsamy, Perumal

    2016-11-01

    We report effects of annealing and substitution of Al on structural and magnetic properties of nanocrystalline Fe80-xAlxCo5Si15 (x=0-10) alloy powders prepared by mechanical alloying process using a planetary ball mill technique. All the as-milled powders exhibit non-equilibrium solid solution of α-Fe (Si,Co,Al). While the average size of crystals decreases, the lattice constant and dislocation density increase with increasing Al content. On the other hand, the annealing at elevated temperatures increases the size of the crystals and decreases the dislocation density. In addition, the substitution of Al in FeAlCoSi alloy powders controls growth of the crystals during annealing. As a result, coercivity (HC) of the annealed powders decreases considerably. However, the variation in HC is dominated by the dislocation density. Fe70Al10Co5Si15 powder annealed at 900 °C exhibits improved magnetic properties (HC~14 Oe and moderate magnetization of 160 emu/g) due to optimum nanocrystalline microstructure with fine nanocrystals (~18 nm) and reduced dislocation density. Systematic correlations observed between structural and magnetic properties for Fe80-xAlxCo5Si15 powders reveal a promising approach to control the growth of the crystals in the annealed nanocrystalline alloys and to improve the magnetic properties of mechanically alloyed Fe-Si based nanocrystalline alloys by adding suitable substituting elements.

  3. Effect of post annealing temperatures on microstructures and mechanical properties of cryorolled 5052 aluminium sheet alloy

    NASA Astrophysics Data System (ADS)

    Anas, N. M.; Umar, Z. A. A.; Zuhailawati, H.; Anasyida, A. S.

    2017-07-01

    The effect of post annealing temperature of cryorolled 5052 Al alloy after cryorolling process at 30% thickness reduction was investigated, focusing on the evolution of microstructures and mechanical properties. The evolution of microstructure was investigated using optical microscopy (OM). The mechanical behaviour of the samples have been evaluated through Vickers hardness and tensile test performed at room temperature. The results showed that the post annealing on cryorolled 5052 Al alloy have enhanced the ductility with sacrificing the hardness and strength. The lattice strain of post annealed 5052 Al alloy decreased with increasing of annealing temperatures. The evolution of microstructure of the post annealed 5052 Al alloy showed equiaxed grains at 200°C and grain coarsening as post annealing temperature increases to 350°C. The result of crystallite size confirmed the grain size increased as the post annealing temperature rises.

  4. The Effect of Chemical Composition and Structure on the Corrosion Resistance of Plated Aluminium Alloy Strips

    NASA Astrophysics Data System (ADS)

    Klyszewski, Andrzej; Zelechowski, Janusz; Opyrchal, Mieczyslaw; Nowak, Marek; Frontczak, Andrzej; Rutecki, Pawel

    Thin 3003 alloy strips plated with 4343 alloy were subjected to microstructure examinations, X-ray phase analysis, corrosion testing, and measurement of basic mechanical properties. In a similar manner, the properties of heat exchangers made from the plated strip were characterised, watching the long-term consequences of their use in vehicles. The results of investigations were applied in the manufacturing technology of thin plated strips for heat exchangers used by the automotive industry.

  5. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  6. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  7. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Astrophysics Data System (ADS)

    Harf, Fredric H.

    1985-06-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of γ' particles in a γ matrix. The higher cobalt-content alloys contained larger amounts of the finest γ' particles, and had the lowest γ-γ' lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650°C, the rupture lives at 650 and 760°C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the γ' particle size distribution and the γ-γ' mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  8. The New Heat Treatment Technology of A356 Aluminium Alloy Prepared by Ptc

    NASA Astrophysics Data System (ADS)

    Zhang, Lianyong; Jiang, Yanhua; Ma, Zhuang; Wang, Wenkui

    Phase Transition Cooling (PTC), using the absorbed latent heat during the melting of phase transition cooling medium to cool and solidify alloys in the process of casting, is a new casting technology. Specimens of A356 casting aluminum alloy were prepared by this method in the paper. The new heat treatment process (cast and then aging directly without solid solution) of A356 alloy was performed. For comparison, the conventional T6 heat treatment (solution and then aging treatment) was performed too. The mechanical properties of A356 alloy with different heat treatments were measured by tensile strength testing methods and microstructures of the alloy with different heat treatment process were investigated by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-rays diffraction (XRD) and transmission electron microscopy (TEM) too. The results show that ultimate tensile strength (UTS) of A356 alloy with the new heat treatment process is much higher than that with conventional heat treatment while the elongations with the two heat treatment processes are very close. This is due to the grain refinement obtained after PTC processing.

  9. Grain Boundary Sliding in Ultra-fine Grained 5083 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Sung, Ming-Je

    Quantitative measurement and analysis of grain boundary sliding in Ultra-fine grained 5083 Aluminium by AFM was conducted at 623K. The grain size of as received cryomilled Ultra-fine Grained Aluminium was characterized by AFM and TEM, and the average was founded to be about 300nm. Ion beam polishing / etching technology was used to reveal grain boundaries for AFM characterization. The vertical offset of grain boundary sliding was measured by comparing pre-defoemation and post-deformation AFM images. By analyzing these measurements, the contribution of grain boundary sliding to the total strain was estimated as 22% - 52% at a strain rate of 10 -4 /sec -5x10-2/sec. It was demonstrated that the relatively low value of the contribution of grain boundary sliding to the total strain is most likely the result of testing under experimental condition that favor the dominance of region I ( low stress) of the sigmoidal behavior characterizing high strain rate superplasticity, which was previously reported.

  10. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Wang, Dapeng; Gao, Lixin; Zhang, Daquan

    2016-12-01

    The synergistic inhibition effect of rare earth cerium nitrate and sodium dodecylbenzenesulfonate (DBS) on corrosion of AA5052 aluminium alloy in 3 wt.% NaCl solution was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results show that the single cerium nitrate or DBS has a limited inhibition effect against corrosion of AA5052 alloy. The combination cerium ions with DBS produced strong synergistic effect on corrosion inhibition for AA5052 alloy and rendered a negaitve shift of the corrosion potential. The formation of the complex of Al(DBS)3 and Ce(DBS)3 stabilized the passive film of Al2O3 and CeO2, retarding both the cathodic and anodic processes of AA5052 alloy corrosion reaction significantly.

  11. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy.

    PubMed

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2015-04-01

    Titanium and its alloys are characterized by an exceptional combination of properties like high strength, good corrosion resistance and biocompatibility which makes them suitable materials for biomedical prosthesis and devices. The wrought Ti-6Al-4V alloy is generally favored in comparison to other metallic biomaterials due to its relatively low elastic modulus and it has been long used to obtain products for biomedical applications. In this work an alternative route to fabricate biomedical implants made out of the Ti-6Al-4V alloy is investigated. Specifically, the feasibility of the conventional powder metallurgy route of cold uniaxial pressing and sintering is addressed by considering two types of powders (i.e. blended elemental and prealloyed). The characterization of physical properties, chemical analysis, mechanical behavior and microstructural analysis is carried out in-depth and the properties are correlated among them. On the base of the results found, the produced alloys are promising materials for biomedical applications as well as cheaper surgical devices and tools.

  12. Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy

    NASA Astrophysics Data System (ADS)

    López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.

    2011-12-01

    Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.

  13. Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content

    NASA Astrophysics Data System (ADS)

    Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.

    2017-03-01

    Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.

  14. Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content

    NASA Astrophysics Data System (ADS)

    Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.

    2017-06-01

    Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.

  15. Rapid Synthesis of a Near-β Titanium Alloy by Blended Elemental Powder Metallurgy (BEPM) with Induction Sintering

    NASA Astrophysics Data System (ADS)

    Jia, Mingtu; Gabbitas, Brian

    2015-10-01

    A near-β Ti-13V-11Cr-3Al alloy was produced by blended elemental powder metallurgy combining warm compaction and induction sintering. Two Ti-13V-11Cr-3Al powder compacts with different oxygen content were manufactured by mixing PREP and HDH Ti powders with Cr and AlV master alloy powders, respectively. The effect of isothermal holding time, at a sintering temperature of 1573 K (1300 °C), on pore characteristics and compositional homogeneity was investigated in this study. Pore coarsening by Ostwald ripening occurred with an increase in the isothermal holding time and Kirkendall voids were produced by a reaction between Ti and Cr. After an isothermal holding time of 10 minutes, the two sintered powder compacts had a homogeneous composition. Ti/AlV and Ti/Cr diffusion couples were used to predict the distribution of alloying elements, and the binary Ti-V, Ti-Al, and Ti-Cr interdiffusion coefficients were consistent with the distribution of alloying elements after isothermal holding. The mechanical properties of sintered powder compacts, prepared using PREP Ti powder as the raw powder, were optimized by sintered density and pore size.

  16. Effect of thermal exposure on mechanical properties hypo eutectic aerospace grade aluminium-silicon alloy

    NASA Astrophysics Data System (ADS)

    Nagesh Kumar, R.; Ram Prabhu, T.; Siddaraju, C.

    2016-09-01

    The effect of thermal exposure on the mechanical properties of a C355.0 aerospace grade aluminum-silicon alloy (5% Si - 1.2% Cu - 0.5% Mg) was investigated in the present study. The alloy specimens were subjected to T6 (solution treatment and artificial ageing treatment) temper treatment to enhance the strength properties through precipitation hardening. The T6 temper treatment involved solution heat treatment at 520oC for 6h, followed by water quenching and ageing at 150oC. After the heat treatment, the specimens were exposed to various temperatures (50oC, 100oC, 150oC, 200oC and 250oC) for 5 and 10 h to study the structural applications of this alloy to the various Mach number military aircrafts. After the thermal exposure, specimens were tested for tensile, hardness and impact properties (Charpy). The microstructure of the thermal exposed specimens was examined in the optical microscopes and correlated with the mechanical properties results. In summary, an increase of exposure time has a different effect on the tensile and hardness properties of the alloy. For the exposure time 5h, the tensile and hardness properties increase upto 100oC and later decrease with an increase of temperature. In contrast, the tensile and hardness properties linearly decrease with an increase of temperature. Several factors such as matrix grain growth, diffusion rate, Si particles size and distribution, precipitate stability play a key role on deciding the tensile properties of the alloy. Comparing the relative effects of temperature and time, the temperature effects dominate more in deteriorating tensile properties of the alloy. There are no effects of exposure temperature and/or time on the impact properties of the alloy.

  17. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    PubMed

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2017-07-06

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  18. Computation material science of structural-phase transformation in casting aluminium alloys

    NASA Astrophysics Data System (ADS)

    Golod, V. M.; Dobosh, L. Yu

    2017-04-01

    Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.

  19. Effects of laser shock processing on the fatigue life of 2024-T62 aluminium alloy

    SciTech Connect

    Zhang Hong; Lu Boliang; Zhang Shuren; Tang Yaxin; Yu Chengye

    1996-12-31

    Laser shock processing (LSP) is a new technology for strengthening the materials. The feasibility of using a high energy, pulsed laser beam to shock-harden the localized stress concentration zone, i.e., small holes in 2024-T62 aluminum alloy was investigated in this paper. Confining plasma technique was used in the study. In order to generate the pressure which is required to exceed the dynamic yield strength of 2024-T62 aluminum alloy, laser parameters were optimized. The fatigue life of specimens was studied before and after laser shocking. The fatigue tests showed that the fatigue life of 2024-T62 aluminum alloy treated by LSP had been improved significantly. With 95% confidence, the median fatigue life of shocked specimens was 1.9 to 2.5 times than that of unshocked ones. It is expected that LSP will be used as a good treatment for improving the fatigue life of aviation structures.

  20. Application of powder metallurgy to an advanced-temperature nickel-base alloy, NASA-TRW 6-A

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.; Waters, W. J.

    1971-01-01

    Bar stock of the NASA-TRW 6-A alloy was made by prealloyed powder techniques and its properties evaluated over a range of temperatures. Room temperature ultimate tensile strength was 1894 MN/sq m (274 500 psi). The as-extruded powder product showed substantial improvements in strength over the cast alloy up to 649 C (1200 F) and superplasticity at 1093 C (2000 F). Both conventional and autoclave heat treatments were applied to the extruded powder product. The conventional heat treatment was effective in increasing rupture life at 649 and 704 C (1200 and 1300 F); the autoclave heat treatment, at 760 and 816 C (1400 and 1500 F).

  1. Laser-induced electrochemical de- and repassivation investigations on plasma-oxidized aluminium alloys

    NASA Astrophysics Data System (ADS)

    Nagy, Tristan O.; Pacher, Ulrich; Giesriegl, Ariane; Soyka, Lukas; Trettenhahn, Günter; Kautek, Wolfgang

    2014-05-01

    In situ laser depassivation of plasma electrolytically oxididized (PEO) coatings on aluminium was investigated with nanosecond pulses. Ultraviolet radiation of 266 nm was chosen in order to achieve a high absorption in the dielectric coating. The additive accumulation of laser-induced material defects (incubation) affected the depassivation processes. Incubation occurred only at the edges of the ablation craters irradiated by the outer region of the Gaussian beam profile, where the local fluence is below the ablation threshold. The ablation rate in the spot center did not exhibit an incubation effect. Repassivation was interpreted by a linear combination of a high-field and a point defect growth model. At low overpotentials, field gradients affect the process driving the oxide growth at the buried interface. At high fields, corrosion reactions dominate at the oxide/solution interface.

  2. Anisotropy of elastic properties in various aluminium-lithium sheet alloys

    SciTech Connect

    Zeng, X.H.; Ericsson, T.

    1996-05-01

    Anisotropic elastic properties of recrystallized and unrecrystallized Al-Li sheets have been experimentally studied and compared with theoretically predicted results. A conventional AA2024 alloy in the annealed condition as a reference material has also been investigated. A concept of lithium equivalent has been proposed in order to calculate single crystal elastic constants C{sub 11}, C{sub 12} and C{sub 44} for commercial Al sheet alloys. Subsequently, these calculated single crystal elastic constants were applied to predict the Young`s modulus, using Bunge`s method with quantitative texture data which were determined by X-ray and neutron diffraction techniques. To calculate the shear modulus the Bunge`s method was extended. It is shown that elastic properties of the alloys can be essentially predicted on the basis of Bunge`s method with calculated single crystals C{sub ij}. The measurement results of the Young`s modulus and shear modulus of polycrystalline Al-Li alloys were carried out using a dynamic resonance method. They were found to be in fair agreement with calculated curves using the neutron texture data with the calculated single crystal elastic constants C{sub ij}. The results showed that elastic properties depend strongly on testing direction due to the crystallographic texture and grain shape. The texture gradients also strongly affected the elastic properties of Al-Li alloys, but only slightly affected those of the conventional 2024 Al alloy. A slight stretch reduces the modulus of Al-Li by a small amount.

  3. Synthesis of Nanostructured GAMMA-TiAl Based Powders and Bulk Alloys Using High Energy Mechanical Milling and Hip

    NASA Astrophysics Data System (ADS)

    Yu, Hongbao; Zhang, Deliang; Chen, Yuyong; Liu, Zhiguang

    The microstructural evolution and powder particle morphology change in the process used to synthesize bulk nanostructured γ-TiAl intermetallic based binary Ti-47Al (in at%) alloy (TA-1) and complex Ti-45Al-2Cr-2Nb-1B-0.5Ta (in at%) alloy (TA-2) have been studied. This process combines high energy mechanical milling of elemental powder mixtures, thermal treatment and HIP. The bulk alloys consist of predominantly TiAl phase and a small fraction of Ti3Al phase, with the average grain sizes of the TiAl and Ti3Al phases being approximately 45nm and 40nm respectively in the bulk TA-1 alloy and being 37nm and 35nm respectively in the bulk TA-2 alloy. The study also shows that addition of a small fraction of hard powder particles such as Nb, Cr, B and Ta powder particles to the starting powder mixture has a significant effect in maintaining a small average particle size during high energy mechanical milling without using PCA and thus significantly enhances the mechanical alloying effect of the milling process.

  4. Influence of Powder Metallurgical Processing Routes on Phase Formations in a Multicomponent NbSi-Alloy

    NASA Astrophysics Data System (ADS)

    Seemüller, C.; Hartwig, T.; Mulser, M.; Adkins, N.; Wickins, M.; Heilmaier, M.

    2014-09-01

    Refractory metal silicide composites on the basis of Nbss-Nb5Si3 have been investigated as potential alternatives for nickel-base superalloys for years because of their low densities and good high-temperature strengths. NbSi-based composites are typically produced by arc-melting or casting. Samples in this study, however, were produced by powder metallurgy because of the potential for near net-shape component fabrication with very homogeneous microstructures. Either gas atomized powder or high-energy mechanically alloyed elemental powders were compacted by powder injection molding or hot isostatic pressing. Heat treatments were applied for phase stability evaluation. Slight compositional changes (oxygen, nitrogen, or iron) introduced by the processing route, i.e., powder production and consolidation, can affect phase formations and phase transitions during the process. Special focus is put on the distinction between different silicides (Nb5Si3 and Nb3Si) and silicide modifications (α-, β-, and γ-Nb5Si3), respectively. These were evaluated by x-ray diffraction and energy-dispersive spectroscopy measurements with the additional inclusion of thermodynamic calculations using the calculated phase diagram method.

  5. Behaviour and modelling of aluminium alloy AA6060 subjected to a wide range of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Vilamosa, Vincent; Børvik, Tore; Sture Hopperstad, Odd; Holm Clausen, Arild

    2015-09-01

    The thermo-mechanical behaviour in tension of an as-cast and homogenized AA6060 alloy was investigated at a wide range of strains (the entire deformation process up to fracture), strain rates (0.01-750 s-1) and temperatures (20-350 ∘C). The tests at strain rates up to 1 s-1 were performed in a universal testing machine, while a split-Hopkinson tension bar (SHTB) system was used for strain rates from 350 to 750 s-1. The samples were heated with an induction-based heating system. A typical feature of aluminium alloys at high temperatures is that necking occurs at a rather early stage of the deformation process. In order to determine the true stress-strain curve also after the onset of necking, all tests were instrumented with a digital camera. The experimental tests reveal that the AA6060 material has negligible strain-rate sensitivity (SRS) for temperatures lower than 200 ∘C, while both yielding and work hardening exhibit a strong positive SRS at higher temperatures. The coupled strain-rate and temperature sensitivity is challenging to capture with most existing constitutive models. The paper presents an outline of a new semi-physical model that expresses the flow stress in terms of plastic strain, plastic strain rate and temperature. The parameters of the model were determined from the tests, and the stress-strain curves from the tests were compared with the predictions of the model. Good agreement was obtained over the entire strain rate and temperature range.

  6. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.

    PubMed

    Bolzoni, L; Ruiz-Navas, E M; Gordo, E

    2017-03-01

    Titanium and its alloys are common biomedical materials owing to their combination of mechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because changing the processing parameters, such as the sintering temperature, products with different level of porosity and mechanical performances can be obtained. This study addresses the production of the biomedical Ti-6Al-7Nb alloy by means of the master alloy addition variant of the PM blending elemental approach. The sintering parameters investigated guarantee that the complete diffusion of the alloying elements and the homogenization of the microstructure is achieved. The sintering of the Ti-6Al-7Nb alloy induces a total shrinkage between 7.4% and 10.7% and the level of porosity decreases from 6.2% to 4.7% with the increment of the sintering temperature. Vickers hardness (280-300 HV30) and tensile properties (different combination of strength and elongation around 900MPa and 3%) are achieved.

  7. Modifying structure and properties of nickel alloys by nanostructured composite powders

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Ovcharenko, V. E.; Liu, G.; Cao, L.

    2015-01-01

    The article presents the results of an experimental study of the influence of powder nanomodifiers of refractory compounds on the mechanical properties, macro- and microstructure of heat-resistant alloys ZhS-6K and Inconel 718. It is shown that the introduction of nanomodifiers into the melt leads to the refinement of the alloy structure: the average grain size decreases 1.5-2 times, and their morphology becomes similar to equiaxial at significant reduction of the particle size in the carbide phase. The service life of ZhS-6K alloy under cyclic loading at 600°C increases 2.7 times, and at 975 °C by 40 %, and relative elongation increases more than twice. The mechanical properties of Inconel 718 significantly increase: long-term strength at 650 °C increases 1.5-2 times, and the number of cycles before the collapse at 482 °C grows more than three times. It has been found out that addition of nanomodifiers to the melt, in alloys, forms clusters of particles of refractory compounds at borders and joints of the formed grain structure that may help slowing down the processes of recrystallization (prevents the increase in the size of the contacting grains by their associations) and stabilizes the strength properties of the alloys at higher temperatures.

  8. Aluminium/lithium alloy-CFRP hybrid laminate: Fabrication and properties

    SciTech Connect

    Freischmidt, G.; Coutts, R.S.P.; Janardhana, M.N.

    1993-12-31

    Hybrid composite laminates of aluminum and aluminum/lithium alloy sheeting with unidirectional carbon fiber/epoxy plies have been fabricated to produce sheet materials of high strength, low density and reduced fatigue crack growth rate. In an arrangement of one layer of unidirectional carbon fiber reinforced plastic (CFRP) and 2 sheets of 2090-T3 aluminum alloy was used to give a material with a density of 2.20g/cm{sup 3}. Tensile test results gave an ultimate strength of 803MPa, a modulus of 75.7GPa and a 2% offset yield strength of 497MPa. Preliminary fatigue crack growth rate determinations on single edge notch (SEN) specimens show a marked reduction compared to monolithic 2090-T3. Other hybrid laminates using 2024-T3 alloy have also been made and tested. These laminates show reduced tensile properties, however, they appear to have lower fatigue crack growth rates than when using 2090T3 in hybrid form. The fabrication of hybrid laminates included the use of unsupported adhesive film to bond the precured unidirectional carbon fiber composite plies to the aluminum sheeting. This has left a distinct interphase region between the alloy and CFRP which is thought to improve properties through an effective load transfer.

  9. Influence of post-superplastic forming practices on the tensile properties of aluminium-lithium alloys

    SciTech Connect

    Hales, S.J. ); Lippard, H.E. . Dept. of Materials Science)

    1994-06-01

    The effect of thermal processing following superplastic forming on the tensile properties of aluminum-lithium alloys is addressed. The starting materials consisted of alloys 8090, 2090, and X2095 (a Weldalite[trademark] 049 variant) in the form of commercial-grade superplastic sheet. Experience dictates that post-forming practices aimed at a slightly underaged T6 temper produce balanced engineering properties in these alloys. The objective of this study was to assess the potential to use a T5-type temper by eliminating the solution heat treatment and/or cold water quenching steps characteristic of T6 processing. The experimental procedures adopted ensured that the tensile properties compiled were representative of the bulk material Initially, the strengthening behavior of each alloy as a function of temper selection was established. Subsequently, aging practices that resulted in peak strength and balanced properties were identified for the baseline T6 temper and two T5 tempers. The implications for replacing a T6 temper with a T5-type temper, including rapid and slow cooling following forming, are discussed on the basis of the results.

  10. Estimating multivariate response surface model with data outliers, case study in enhancing surface layer properties of an aircraft aluminium alloy

    NASA Astrophysics Data System (ADS)

    Widodo, Edy; Kariyam

    2017-03-01

    To determine the input variable settings that create the optimal compromise in response variable used Response Surface Methodology (RSM). There are three primary steps in the RSM problem, namely data collection, modelling, and optimization. In this study focused on the establishment of response surface models, using the assumption that the data produced is correct. Usually the response surface model parameters are estimated by OLS. However, this method is highly sensitive to outliers. Outliers can generate substantial residual and often affect the estimator models. Estimator models produced can be biased and could lead to errors in the determination of the optimal point of fact, that the main purpose of RSM is not reached. Meanwhile, in real life, the collected data often contain some response variable and a set of independent variables. Treat each response separately and apply a single response procedures can result in the wrong interpretation. So we need a development model for the multi-response case. Therefore, it takes a multivariate model of the response surface that is resistant to outliers. As an alternative, in this study discussed on M-estimation as a parameter estimator in multivariate response surface models containing outliers. As an illustration presented a case study on the experimental results to the enhancement of the surface layer of aluminium alloy air by shot peening.

  11. Experimental investigation on the effects of cooling system on surface quality in high speed milling of an aluminium alloy

    NASA Astrophysics Data System (ADS)

    Chirita, B.; Tampu, N. C.; Brabie, G.; Radu, M. C.

    2016-08-01

    Surface quality is often an important feature of industrial products, not only from the impact it has on the aesthetic aspect but also for the functional role of the parts. High quality surface increases corrosion resistance, assures a longer life cycle for the product and lowers the wear. For a machined part, surface quality is influenced by a series of factors such as the material of the part, the process type, tool geometry, cutting parameters or the cooling system. The choice of the cooling system is especially important, taking into account that the proper conditions will not only assure a superior surface quality, but will also lower the costs and reduce the environmental impact and health risks. The present study aims to investigate the performance of the cooling system and the effect of the cutting parameters on the characteristics of the surfaces resulted from high speed face milling of some parts made of Al 7050-T7451 aluminium alloy. Dry cutting conditions and minimum quantity lubrication (MQL) where used. The results were analysed using analysis of variance (ANOVA).

  12. Impact resistance and hardness modelling of Aluminium alloy welds using square-headed friction-stir welding tool

    NASA Astrophysics Data System (ADS)

    Sudhakar, U.; Srinivas, J., Dr.

    2016-02-01

    This paper proposes modelling and optimization issues relating to friction-stir welding process of aluminium alloys. A specially prepared SS tool of square headed pin profile with cylindrical shoulder is used with a vertical milling machine. Effects of process variables including tool rotation and tool velocity on the weld performance are studied in terms of impact strength and hardness. Three different rotational motions and three welding speeds (feeds) of tool are considered at constant axial load (depth of cut) condition and altogether nine experiments are conducted on a vertical milling machine with specially prepared fixture. Each weld sample is then tested for its impact strength (IS) and hardness independently. A model is developed to correlate the relations between the hardness/impact strength with tool rotation and weld speed using neural networks. The optimized process conditions are predicted to improvise the impact strength and hardness of the weld. Further, the morphology of the weld is studied using SEM to know the material flow characteristics.

  13. Fractal analysis of surface micro-topography for a rolled anisotropic thick sheet of aluminium alloy AA2024-T351

    NASA Astrophysics Data System (ADS)

    Pirva, E.; Tudor, A.; Gavrus, A.

    2016-08-01

    Fractal geometry has gained attention in recent years and represents a problem of high interest for the characterization of surface topography. In this study it was analyzed the surface micro-topography for a rolled thick sheet anisotropic metallic material of type 2000 series aluminium alloy (AA2024-T351). In order to analyze and to characterize the corresponding anisotropic surfaces, profile of particular samples were recorded with a specialized apparatus Mitutoyo SJ-301 (Japan). The random nature of the roughness height is described through statistical analysis. The irregularity of the surface profile has been measured using a lot of conventional surface roughness parameters such as: arithmetic average, mean square root, maximum height of the profile, etc. Fractal analysis provides a useful way to characterize the observed spatial complexity of surface micro-topography. For this study it was used the structural function method to calculate two specific fractal parameters: D (fractal dimension) and L (topothesy). The fractal dimension of all samples it's been be calculated by plotting curves on log-log axes.

  14. Collected studies on interfaces and interphases as related to the behaviour of fibre-reinforced aluminium alloy composites

    PubMed

    Scott; Chen

    1999-11-01

    This paper is an essentially practical treatment of interphases and interfaces and of their influence on the properties of a number of metal matrix composites (MMCs). The illustrations are drawn from the authors' experiences and have been chosen to underline the importance of detailed microstructural analysis for elucidating the fabrication behaviour and the mechanical performance of this group of materials. The work involves a series of MMCs based upon different combinations of aluminium alloy and ceramic/carbon fibre (both continuous and short) and made using the method of low-pressure liquid metal infiltration (LMI). Detailed analyses of the composite microstructures are given, with particular attention being paid to the interface regions. The data are used to categorize an interface according to the type of bond, that is a mechanical bond resulting from thermal mismatch between the fibre and metal matrix, or a chemical bond, with or without second phase, caused by chemical reaction. The information is then employed to account for aspects of composite fabrication, such as the cast microstructure produced by the LMI method and the effect of heat treatment, and to elucidate composite properties such as stiffness, yield stress and failure strength.

  15. Structure-property relationships in Al{sub 2}O{sub 3} short fiber and SiC particle reinforced aluminium alloys

    SciTech Connect

    Harris, S.J.; Cai, H.W.; Weatherburn, P.C.

    1993-12-31

    A study has been made of how Saffil {delta}-Al{sub 2}O{sub 3} fibres and {alpha}-SiC particles influence the microstructure and properties of two types of heat-treatable aluminium alloys, i.e. aluminum-copper and aluminium-copper-magnesium (2124, 2618A) alloys. Natural aging (T4) of the binary Al-Cu alloys was virtually prevented by the reinforcements, while in the case of the AlCu-Mg alloys, hardening did take place at a similar rate. Magnesium additions, it is believed, maintained the concentration of quenched in vacancies thus permitting GPB zone formation and in consequence increases in proof stress and tensile strength values. Artificial aging of these reinforcement composites helped to promote {theta}{prime}(CuAl{sub 2}) precipitation at lower temperatures. These precipitates nucleated on the increased dislocation density which arose from differential thermal effects between reinforcement and matrix. The limit of proportionality, tensile strength and ductility of short fiber reinforced composites are not as well developed as with the particulate systems because of enhanced tensile residual stresses in the matrix, fiber cracking and strong fiber-matrix bonding.

  16. The effect of aluminium on the creep behavior of titanium aluminide alloys

    SciTech Connect

    Nandy, T.K.; Mishra, R.S.; Gogia, A.K.; Banerjee, D.

    1995-03-15

    Small increases in the Al content of Ti{sub 3}Al-Nb alloys are known to improve creep resistance at the expense of the room temperature ductility. Though considerable work has been done on the creep behavior of titanium aluminide alloys, a systematic investigation involving the role of Al on the creep of aluminides is lacking. In the present study the authors have therefore carried out a complete investigation on stress and temperature effects on two alloys with differing Al contents, Ti-24Al-15Nb and Ti-26Al-15Nb (nominal composition in at%) in order to understand the effect of Al in terms of power law creep behavior. The following conclusions are made: (1) A strong Al effect on the creep resistance of O phase alloys in the Ti-Al-Nb systems has been confirmed, through a study of stress and temperature effects on the creep behavior of the Ti-24Al-15Nb and the Ti-26Al-15Nb compositions. (2) It has been shown, however, that the small differences in Al do not affect either the activation energies for creep ({approximately}370 kJ/mole) or the creep mechanism (climb controlled creep with a stress exponent of 4). The activation energies and stress exponents are similar to that observed in single phase O alloys. (3) It is suggested that Al influences creep strength through an intrinsic effect on the pre-exponential term AD{sub o} in the power law creep equation. It is possible that this effect is related to a higher ordering energy of the O phase with increasing Al content.

  17. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    SciTech Connect

    Aghion, E. Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  18. The effect of transverse magnetic field treatment on wave-absorbing properties of FeNi alloy powders

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhu, Zhenghou; Xiong, Chao; Xu, Xing; Lin, Qianying

    2017-01-01

    The Fe50Ni50 alloy powders were successfully synthesized with the liquid phase reduction method and then treated with the transverse magnetic field of 200 kA/m. The influences of transverse magnetic field treatment on microstructures and radar absorbing properties of the powders were mainly investigated. Whether the powders were treated with the transverse magnetic field or not, the main phases of Fe50Ni50 alloy powders were FeNi3 and a small amount of Fe2O3. Results showed that the real part of complex permeability μʹ; of the Fe50Ni50 alloy powders in 1-5 GHz increased significantly, especially at the frequency of 1 GHz, the μʹ; increased from 2.2 to 2.8 after transverse magnetic field treatment. The magnetic loss tanδm of the Fe50Ni50 alloy powders after transverse magnetic field treatment was ≥0.3 in the frequency range of 1-13 GHz and 0.7-1.05 in the frequency range of 3.5-9.0 GHz. Compared with those of the untreated powders, the wave-absorbing properties of the powders after transverse magnetic field treatment were significantly improved. The Fe50Ni50 alloy powders coatings with thickness of 1.5 mm exhibited excellent wave-absorbing properties after transverse magnetic field treatment, and the qualified absorption band width reached nearly 3 GHz when the reflectivity |R| was ≥10 dB.

  19. Processing of a porous titanium alloy from elemental powders using a solid state isothermal foaming technique.

    PubMed

    Nugroho, Aris W; Leadbeater, Garry; Davies, Ian J

    2010-12-01

    The authors have conducted a preliminary investigation with regard to the potential to manufacture porous titanium alloys for biomedical applications using toxic-free elemental powders, i.e., Ti, Nb, Ta, Zr, in combination with the pressurised gas bubble entrapment method and in contrast to standard processing routes that generally utilise prealloyed powder containing potentially toxic elements. Elemental powder compacts were either hot isostatic pressed (HIP-ed) at 1000°C and then foamed at 1150°C or else HIP-ed at 1100°C and foamed at 1350°C. Porous α + β alloys containing up to 45 vol% of porosity in the size range 20-200 μm were successfully produced, thus highlighting the potential of this manufacturing route. It was expected that further optimisation of the processing route would allow full development of the preferred β-Ti phase (from the point of view of elastic modulus compatibility between implant and bone) with this being the subject of future work by the authors.

  20. High strength bulk Fe-Co alloys produced by powder metallurgy

    SciTech Connect

    Turgut, Zafer; Huang Meiqing; Horwath, John C.; Fingers, Richard T.

    2008-04-01

    Fe-Co alloys are extensively used in lamination form, but there are certain power generation applications that require Fe-Co rotors in bulk form. Experiencing only a dc magnetic field, these rotors can be as large as 0.5 m in diameter, depending on the size of the generator. The forging of such large pieces of Fe-Co has proven to be difficult. The present study investigates powder metallurgy processing of a gas atomized FeCoNbV alloy through hot isostatic pressing (HIP) for manufacturing large size rotors with improved mechanical strength. Gas atomized FeCoNbV alloy powders with and without ball milling were hot isostatic pressed at temperatures between 675 and 850 deg. C at a fixed pressure of 193 MPa for up to 6 h. Ball milling prior to HIP improved the yield strength. A further improvement in yield strength and in ductility was obtained after a disordering heat treatment at 730 deg. C followed by a rapid quench to room temperature. The optimum HIP and annealing conditions resulted in samples with yield strengths of 870 MPa. The compacts exhibited average coercivity values of 6.4 Oe and maximum permeability values of 1100.

  1. Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2016-03-01

    Ultra-high strength and ductile powder metallurgy (PM) binary Ti-20at.%Ta alloy has been fabricated via sintering from elemental Ti and Ta powders and subsequent hot swaging and annealing. The microstructural evolution and mechanical properties in each stage were evaluated. Results show that inhomogeneous microstructures with Ti-rich and Ta-rich areas formed in the as-sintered Ti-Ta alloys due to limited diffusion of Ta. In addition, Kirkendall porosity was observed as a result of the insufficient diffusion of Ta. Annealing at 1000°C for up to 24 h failed to eliminate the pores. Hot swaging eliminated the residual sintering porosity and created a lamellar microstructure, consisting of aligned Ta-enriched and Ti-enriched phases. The hot-swaged and annealed PM Ti-20Ta alloy achieved an ultimate tensile strength of 1600 MPa and tensile elongation of more than 25%, due to its unique lamellar microstructure including the high toughness of Ta-enriched phases, the formation of α phase in the β matrix and the refined lamellae.

  2. Enhanced Magnetic Properties of Nd15Fe77B8 Alloy Powders Produced by Melt-Spinning Technique

    NASA Astrophysics Data System (ADS)

    Öztürk, Sultan; İcin, Kürşat; Öztürk, Bülent; Topal, Uğur; Odabaşı, Hülya Kaftelen; Göbülük, Metin; Cora, Ömer Necati

    2017-10-01

    Rapidly solidified Nd15Fe77B8 alloy powders were produced by means of melt-spinning method in high-vacuum atmosphere to achieve improved magnetic and thermal properties. To this goal, a vacuum milling apparatus was designed and constructed to ball-mill the melt-spun powders in a surfactant active atmosphere. Various milling times were experimented to reveal the effect of the milling time on the mean particle size and other size-dependent properties such as magnetism and Curie temperature. Grain structure, cooling rate, and phase structure of the produced powders were also investigated. The Curie points shifted to higher temperatures from the ingot condition to surfactant active ball-milling and the values for Nd15Fe77B8 ingot alloy, melt-spun powders, and surfactant active ball-milled powders were 552 K, 595 K, and 604 K (279 °C, 322 °C, and 331 °C), respectively. It was noted that the surfactant active ball-milling process improved the magnetic and thermal properties of melt-spun Nd15Fe77B8 alloy powders. Compared to relevant literature, the coercivity of powders increased significantly with increasing milling time and decreasing in powder size. The coercivity value as high as 3427 kA m-1 was obtained.

  3. Effect of nanostructured composite powders on the structure and strength properties of the high-temperature inconel 718 alloy

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Ovcharenko, V. E.

    2015-12-01

    The experimental results of the effect of powder nanomodifiers of refractory compounds on the strength properties, the macro- and microstructure of the high-temperature Inconel 718 alloy have been presented. It has been shown that the introduction of powder modifiers into the melt leads to a decrease in the average grain size by a factor of 1.5-2 in the alloy. The long-term tensile strength of the alloy at 650°C increases 1.5-2 times, and the number of cycles at 482°C before fracture grows by more than three times. The effect of nanoparticles on the grain structure and strength properties of the alloy is due to an increase in the number of generated crystallization centers and the formation of nanoparticle clusters of refractory compounds at boundaries and junctions in the formed grain structure, which hinder the development of recrystallization processes in the alloy.

  4. Electron Transport Properties of Aluminium Substituted CuTi Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Bhatnagar, A. K.; Fritsch, G.; Naugle, D. G.; Haberkern, R.; Kandlbinder, M.; Lindqvist, P.

    Room temperature electrical resistivity (ρ), temperature coefficient of resistivity (α) and Hall coefficient (RH) of (Cu1-yTiy)1-xAlx amorphous alloys, where y=0.36, 0.50 and 0.64 and x=0, 0.05 and 0.10 are presented. The low temperature dependence of resistivity and magnetoresistivity of a-(Cu0.36Ti0.64)1-xAlx are also presented and discussed qualitatively in terms of quantum corrections. It is found that the addition of Al in a-Cu0.36Ti0.64 alloy decreases the spin-orbit scattering time τso.

  5. Electron transport properties of aluminium substituted CuTi amorphous alloys

    SciTech Connect

    Bhatnagar, A.K.; Fritsch, G.; Haberkern, R.; Kandlbinder, M.; Lindqvist, P.; Naugle, D.G.

    1997-01-30

    Room temperature electrical resistivity ({rho}) temperature coefficient of resistivity ({alpha}) and Hall coefficient (R{sub H}) of (Cu{sub 1{minus}y}Ti{sub y}){sub 1{minus}x}Al{sub x} amorphous alloys, where y = 0.36, 0.50 and 0.64 and x = 0, 0.05 and 0.10 are presented. The low temperature dependence of resistivity and magnetoresistivity of a-(Cu{sub 0.36}Ti{sub 0.64}){sub 1{minus}x}Al{sub x} are also presented and discussed qualitatively in terms of quantum corrections. It is found that the addition of Al in a Cu{sub 0.36}Ti{sub 0.64} alloy decreases the spin-orbit scattering time {tau}{sub so}.

  6. Emission of nanoparticles during friction stir welding (FSW) of aluminium alloys.

    PubMed

    Gomes, J F; Miranda, R M; Santos, T J; Carvalho, P A

    2014-01-01

    Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.

  7. A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys.

    PubMed

    Curtin, William A; Olmsted, David L; Hector, Louis G

    2006-11-01

    Dynamic strain ageing (DSA) is the phenomenon in which solute atoms diffuse around dislocations and retard dislocation motion, leading to negative strain-rate sensitivity (nSRS) and thus to material instabilities during processing, an important issue in commercial metal alloys. Here, we show the mechanism of DSA and nSRS on experimental strain-rate, temperature and stress scales for Al-Mg to be single-atomic-hop motion of solutes from the compression to the tension side of a dislocation core. We derive an analytic expression for the strengthening versus strain rate and temperature that justifies widely used phenomenological forms, provides specific dependences of the parameters on material properties and is supported by atomistic kinetic Monte Carlo simulations. Using literature material properties, the predicted strengthening quantitatively agrees with the experimentally derived behaviour of Al-2.5% Mg at 300 K, and qualitatively agrees with the strain rate and temperature ranges of DSA and nSRS in Al-Mg alloys. The analyses herein show a clear path for multiscale design, from quantum to continuum mechanics, of solute strengthening in face-centred-cubic metal alloys.

  8. Finite Element Modelling of the Sawing of DC Cast AA2024 Aluminium Alloy Slabs

    SciTech Connect

    Drezet, J.-M.; Ludwig, O.; Heinrich, B.

    2007-04-07

    In the semi-continuous casting of large cross-section rolling sheet ingots of high-strength aluminum alloys (2xxx and 7xxx series), the control of the residual (internal) stresses generated by the non-uniform cooling becomes a necessity. These stresses must be relieved by a thermal treatment before the head and foot of the ingot can be cut. Otherwise, the saw can be caught owing to compressive stresses or cut parts may be ejected thus injuring people or damaging equipment. These high added-value ingots need to be produced in secure conditions. Moreover, a better control of the sawing procedure could allow the suppression of the thermal treatment and therefore save time and energy. By studying the stress build-up during casting and the stress relief during sawing, key parameters for the control and optimization of the processing steps, can be derived. To do so, the direct chill (DC) casting of the AA2024 alloy is modeled with ABAQUS 6.5 with special attention to the thermo-mechanical properties of the alloy. The sawing operation is then simulated by removing mesh elements so as to reproduce the progression of the saw in the ingot. Preliminary results showing the stress relief during sawing accompanied by the risk of saw blocking due to compression or initiating a crack ahead of the saw, are analyzed with an approach based on the rate of strain energy release.

  9. The fatigue life prediction of aluminium alloy using genetic algorithm and neural network

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike

    2013-09-01

    The behavior of the fatigue life of the industrial materials is very important. In many cases, the material with experiencing fatigue life cannot be avoided, however, there are many ways to control their behavior. Many investigations of the fatigue life phenomena of alloys have been done, but it is high cost and times consuming computation. This paper report the modeling and simulation approaches to predict the fatigue life behavior of Aluminum Alloys and resolves some problems of computation. First, the simulation using genetic algorithm was utilized to optimize the load to obtain the stress values. These results can be used to provide N-cycle fatigue life of the material. Furthermore, the experimental data was applied as input data in the neural network learning, while the samples data were applied for testing of the training data. Finally, the multilayer perceptron algorithm is applied to predict whether the given data sets in accordance with the fatigue life of the alloy. To achieve rapid convergence, the Levenberg-Marquardt algorithm was also employed. The simulations results shows that the fatigue behaviors of aluminum under pressure can be predicted. In addition, implementation of neural networks successfully identified a model for material fatigue life.

  10. A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys

    NASA Astrophysics Data System (ADS)

    Curtin, William A.; Olmsted, David L.; Hector, Louis G.

    2006-11-01

    Dynamic strain ageing (DSA) is the phenomenon in which solute atoms diffuse around dislocations and retard dislocation motion, leading to negative strain-rate sensitivity (nSRS) and thus to material instabilities during processing, an important issue in commercial metal alloys. Here, we show the mechanism of DSA and nSRS on experimental strain-rate, temperature and stress scales for Al-Mg to be single-atomic-hop motion of solutes from the compression to the tension side of a dislocation core. We derive an analytic expression for the strengthening versus strain rate and temperature that justifies widely used phenomenological forms, provides specific dependences of the parameters on material properties and is supported by atomistic kinetic Monte Carlo simulations. Using literature material properties, the predicted strengthening quantitatively agrees with the experimentally derived behaviour of Al-2.5% Mg at 300K, and qualitatively agrees with the strain rate and temperature ranges of DSA and nSRS in Al-Mg alloys. The analyses herein show a clear path for multiscale design, from quantum to continuum mechanics, of solute strengthening in face-centred-cubic metal alloys.

  11. Microstructural and mechanical investigation of aluminium alloy (Al 1050) melted by microwave hybrid heating

    NASA Astrophysics Data System (ADS)

    Shashank Lingappa, M.; Srinath, M. S.; Amarendra, H. J.

    2017-07-01

    Microwave processing of metals is an emerging area. Melting of bulk metallic materials through microwave irradiation is still immature. In view of this, the present paper discusses the melting of bulk Al 1050 metallic material through microwave irradiation. The melting process is carried out successfully in a domestic microwave oven with 900 W power at 2450 MHz frequency. Metallurgical and mechanical characterization of the processed and as-received material is carried out. Aluminium phase is found to be dominant in processed material when tested through x-ray diffraction (XRD). Microstructure study of as-cast metal through scanning electron microscopy (SEM) reveals the formation of uniform hexagonal grain structure free from pores and cavities. The average tensile strength of the cast material is found to be around 21% higher, when compared to as-received material. Vickers’ microhardness of the as-cast metal is measured and is 10% higher than that of the as-received metal. Radiography on as-cast metal shows no significant defects. Al 1050 material melted through microwave irradiation has exhibited superior properties than the as-received Al 1050.

  12. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Rieken, Joel Rodney

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from different

  13. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    SciTech Connect

    Anderson, Iver

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a

  14. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    SciTech Connect

    Rieken, Joel

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  15. The effect of pre-straining and pre-ageing on a novel thermomechanical treatment for improving the mechanical properties of AA2139 aerospace aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bakare, F.; Alsubhi, Y.; Ragkousis, A.; Ebomwonyi, O.; Damisa, J.; Okunzuwa, S.

    2017-07-01

    The novel thermomechanical treatment employed by Wang Z et al (2014 Mater. Sci. Eng. A 607 313-7) in enhancing the mechanical and microstructure properties of 6000 series aluminium alloys has been replicated for AA2139 aerospace aluminium alloys. The novel route which involves under-ageing, cold-rolling reductions and re-ageing at a fixed temperature has been carried out focusing on the effect of pre-straining and pre-ageing on the alloy properties. The influence of varying cold-rolling reductions and pre-ageing has been examined by tensile testing, hardness testing, differential scanning calorimetry, thermoelectric power measurements and scanning electron microscope (SEM). Further analyses were conducted with DSC and TEP measurements to check for precipitation sequence and solute retention respectively. On comparing the hardness and strength of the non pre-aged to the pre-aged samples, there is a remarkable increase in the hardness and strength of the aerospace alloy showing the huge influence of both pre-ageing and pre-straining stage of the novel thermomechanical treatment as observed in the 6000 series alloy, albeit at a higher rate. The treatments that exhibited the most promising mechanical properties (hardness, yield and ultimate tensile strength, elongation to failure) were found to be at a pre-ageing temperature of 175 °C for 1.5 h, 40% cold-rolling and re-ageing at 150 °C. The material was found to have yield strength of 590 MPa and 8.1% uniform elongation, which is well above the 5% acceptable value for structural applications and with strength levels adaptable for aerospace industries. The presence of higher volume fraction of well dispersed precipitates observed in the SEM further shows that intermediate cold-rolling reductions combines well with pre-ageing to give the best mechanical properties in this alloy.

  16. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    SciTech Connect

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top size

  17. Near-net shape processing of spherical high Nb-TiAl alloy powder by gelcasting

    NASA Astrophysics Data System (ADS)

    Shao, Hui-ping; Liu, Xiao-ting; Ji, Ye; Guo, Zhi-meng

    2013-11-01

    Spherical Ti-45Al-8.5Nb-(W,B,Y) alloy powder prepared by an argon plasma process was near-net shape by gelcasting. In the non-aqueous system, methaerylate-2-hydroxy ethyl, toluene, benzoyl peroxide, and N, N-dimethylaniline were used as the monomer, solvent, initiator, and catalyst, respectively. To improve sintering and forming behaviors, many additives were included in the suspension. The concentrated suspension with a solid loading of 70vol% was prepared. The high Nb-TiAl powder was analyzed by electron microscopy and X-ray diffraction. It was found that the green bodies had a smooth surface and homogeneous microstructure, exhibiting a bending strength as high as 50 MPa. After sintering at 1480°C for 2 h in vacuum, uniform complex-shaped high Nb-TiAl parts were successfully produced.

  18. Microstructure and mechanical properties of P/M (powder metallurgy) Fe sub 3 Al alloys

    SciTech Connect

    Knibloe, J.R.; Wright, R.N. ); Sikka, V.K. )

    1990-01-01

    Alloys based on Fe{sub 3}Al have an equilibrium DO{sub 3} structure at low temperatures and transform to a B2 structure above about 550{degree}C. The influence of different rates of quenching from the B2 region to room temperature on the microstructure and mechanical properties of powder metallurgy (P/M) alloys with two different Cr contents has been examined. By optimizing the processing to maximize the amount of B2 order, room temperature ductility approaching 20% has been achieved although the fracture mode is primarily brittle cleavage. The refined microstructure resulting from P/M processing contributes to enhanced yield strength compared to ingot processed materials with similar ductility. Increasing the Cr content from 2 to 5% has little effect on mechanical properties. 8 refs., 12 figs., 2 tabs.

  19. [Study on mechanical properties of titanius alloy samples fabricated with vacuum-sintered powder metallurgy].

    PubMed

    Chao, Y L; Ding, X Y; Liang, X; Han, X L

    2001-06-01

    To investigate mechanical properties of titanium alloy samples with vacuum-sintered powder metallurgy. Titanium based metal powder mixtures were compacted into green bodies in the double action press and sintered at 1000 degrees centigrade for 15 minutes in a vacuum furnace at 0.025Pa. Then the mechanical properities of the sintered compacts were evaluated. Compressive strength of sintered bodies were 111-921MPa when compacted pressure increased from 100MPa to 300MPa. Compressive strength of sintered bodies increased with compacted pressure. Three particle sizes of titanium powder, -160 mesh, -200/+300 mesh, -300 mesh, did not affect the mechanical properties of sintered bodies. The compressive strength of sintered bodies with the plating of copper and tin were higher than those without the plating. Three-point bending strength and elastic modulus of sintered bodies were respectively 102-182MPa and 12193-26630 when compacted pressure affect the mechanical properties pf sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, the mechanical properties of sintered compacts are greatly improved.

  20. Enhanced Homogenization of Vanadium in Spark Plasma Sintering of Ti-10V-2Fe-3Al Alloy from Titanium and V-Fe-Al Master Alloy Powder Blends

    NASA Astrophysics Data System (ADS)

    Yang, Y. F.; Imai, H.; Kondoh, K.; Qian, M.

    2017-02-01

    Strong and ductile powder metallurgy (PM) Ti-10V-2Fe-3Al alloy has been fabricated by spark plasma sintering (SPS) of titanium and V-Fe-Al master alloy powder blends at 1100°C for 30 min under 30 MPa. The homogenization of vanadium, which dictates the realization of a uniform microstructure of the Ti-10V-2Fe-3Al alloy, was markedly accelerated by SPS. The mechanism is attributed to the intensive Joule heating effect produced by the direct current passing through the electric conducting powder blends, rather than through spark plasma discharge, because homogenization occurred mainly after near full identification had been achieved. The chemical and microstructural homogeneity ensured the achievement of excellent tensile properties of PM Ti-10V-2Fe-3Al in the as-sintered state, with tensile strength >1250 MPa and elongation >10%.

  1. Microstructural Evolution of Alloy Powder for Electronic Materials with Liquid Miscibility Gap

    NASA Astrophysics Data System (ADS)

    Ohnuma, I.; Saegusa, T.; Takaku, Y.; Wang, C. P.; Liu, X. J.; Kainuma, R.; Ishida, K.

    2009-01-01

    The microstructure of powders that are applicable for electronic materials were studied for some systems in which there is a liquid miscibility gap. The characteristic morphologies of an egg-like core type and a uniform second-phase dispersion are shown in relation to the phase diagram, where thermodynamic calculations are a powerful tool for alloy design and the prediction of microstructure. Typical examples of microstructural evolution and properties of Pb-free solders and Ag-based micropowders with high electrical conductivity produced by a gas-atomizing method are presented.

  2. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  3. Improvement of Laser Deposited High Alloyed Powder Metallurgical Tool Steel by a Post-tempering Treatment

    NASA Astrophysics Data System (ADS)

    Leunda, J.; Navas, V. García; Soriano, C.; Sanz, C.

    Laser cladding process of a high alloyed powder metallurgical tool steel was studied for die repairing purposes. The low hardness obtained after the deposition process was improved by later tempering cycles, achieving crack free coatings with hardness well above 700 HV. The effect of different post tempering cycles was investigated in order to determine the optimal temperature range. The microstructure of the samples was studied using optical and scanning electron microscope and the volumetric ratio of retained austenite was determined by X-ray diffraction. The tempering effect was mainly evaluated through cross-section microhardness profiles.

  4. Production of Dense Compact Billet From Ti-Alloy Powder Using Equal Channel Angular Extrusion

    DTIC Science & Technology

    2007-04-06

    dry lubricant 2 175 RT 95.3 dry lubricant 3 262 RT 95.6 dry lubricant 4 21 100 95.4 dry lubricant 5 43 100 96 dry lubricant 6 175 100 96.2 dry...175 98.1 371 3 262 98.2 426 4 350 98.3 412 ECAE compaction with Al tubes 5 350 97.4 415 6 393 97.8 419 7 436 97.6 438 8* 480 98.6 431 ECAE...PRODUCTION OF DENSE COMPACT BILLET FROM Ti-ALLOY POWDER USING EQUAL CHANNEL ANGULAR EXTRUSION Final Report 4 /06/2007

  5. Studies and research on the crack testing for brazed aluminium alloys specimens

    NASA Astrophysics Data System (ADS)

    Dimitescu, A.; Babiş, C.; Niţoi, D. F.; Radu, C.

    2017-08-01

    The scope of this paper is the identification of an optimum technological solution for brazing aluminum alloys using crack tested specimens. To obtain conclusive results, these tests are conducted on two sets of different specimens. Thus, we get two sets of data which we will compare. These tests are part of the standardized series of tests required by the ASME standards. These are called exfoliation tests. They are used to determine where the crack occurs: in the base material or in the filler material. Thus, we can determine whether the cracking is cohesive or adhesive.

  6. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  7. [Comporison Sduty of Microstructure by Metallographicalk on the Polarized Light and Texture by XRD of CC 5083 and CC 5182 Aluminium Alloy after Cold Rolling and Recrystallization].

    PubMed

    Chen, Ming-biao; Li, Yong-wei; Tan, Yuan-biao; Ma, Min; Wang, Xue-min; Liu, Wen-chang

    2015-03-01

    At present the study of relation between microstructure, texture and performance of CC 5083 aluminium alloy after cold tolling and recrystallization processes is still finitude. So that the use of the CC 5083 aluminium alloy be influenced. Be cased into electrical furnace, hot up with unlimited speed followed the furnace hot up to different temperature and annealed 2h respectively, and be cased into salt-beth furnace, hot up quickly to different temperature and annealed 30 min respectively for CC 5083 and CC 5182 aluminum alloy after cold roling with 91.5% reduction. The microstructure be watched use metallographic microscope, the texture be inspected by XRD. The start temperature of recrystallization and grain grow up temperature within annealing in the electric furnace of CC 5083 aluminum alloy board is 343 degrees C, and the shap of grain after grow up with long strip (the innovation point ); The start temperature of recrystallization within annealling in the salt bath furnace of CC 5083 is 343 degrees C. The start temperature and end temperature of recrystallization within annealling of CC 5083 and CC 5182 aluminum alloy is 371 degrees C. The grain grow up outstanding of cold rooled CC 5152 aluminum alloy after annealed with 454 degrees C in the electric furnace and salt bath furnace. The start temperature of grain grow up of CC 5083 alluminurn alloy annealed in the electric furnace and salt bath furnace respectively is higher than the start temperature of grain grow up of CC 5182 alluminum alloy annealed in the electric furnace and salt bath furnace respectively. The strat temperature of recrystallization grain grow up is higher than which annealled with other three manner annealing process. The recrystallization temperature of CC 5182 annealed in the salt bath furnace is higher than which annealed in the electric furnace. The recrystallization temperature of the surface layer of CC 5083 and CC 5182 aluminum alloy is higher than the inner layer (the innovation

  8. Fatigue properties of as-welded AA6005 and AA6082 aluminium alloys in T1 and T5 temper condition

    SciTech Connect

    Ranes, M.; Kluken, A.O.; Midling, O.T.

    1996-12-31

    The present investigation was undertaken to determine the as-welded fatigue properties of AA6005 and AA6082 aluminium alloys in the T1 and T5 temper conditions. Extruded flat bars of the base materials were welded by means of the Metal Inert Gas (MIG), Friction Stir and Plasma-keyhole techniques. The latter technique was only employed for alloy AA6005. The weldments were subsequently fatigue tested at a load ratio of 0.5. The results revealed that the friction stir welds had fatigue properties superior to both the MIG and Plasma-keyhole welds. For alloy AA6005 the fatigue properties of the friction stir weld was close to the base material properties. The shortest fatigue life was exhibited by the MIG welds. The fatigue strength of these weldments appear to be affected by the base metal temper condition. For this reason, MIG welds on alloy AA6082 should be performed in the T5 temper condition, while alloy AA6005 should be welded in the T1 temper condition. Plasma-keyhole welds should be performed on T1 tempered material rather than on T5 tempered material. Repair welding of MIG welds on the T1 tempered base material resulted in improved fatigue properties of AA6082 weldments, while the fatigue strength of AA6005 weldments remained unaffected. The fatigue properties of MIG welds in alloy AA6082 correspond well with the static strength properties.

  9. ``Long-life`` aluminium brazing alloys for automotive radiators -- a ten-year retrospective

    SciTech Connect

    Scott, A.C.; Woods, R.A.

    1998-12-31

    A class of corrosion-resistant brazing sheet materials, generally referred to as ``long-life alloys,`` has been in widespread use in brazed aluminum automobile radiators for over ten years. K319 tube material was initially introduced in 1986 to address the problem of road-salt-induced, outside-in corrosion of tubes in vacuum-brazed aluminum radiators, The development history, metallurgy, and field performance of long-life radiator brazing sheet are reviewed. This material utilizes the familiar sacrificial layer concept to improve corrosion resistance; however, it is unusual in that the layer is not introduced by conventional cladding means during sheet manufacture, but rather develops in situ by metallurgical transformations which occur during the brazing cycle. The sacrificial layer, about 25 mV anodic to the core alloy, increases by an order of magnitude the time-to-perforation of radiator tube sheet tested in cyclic acidified salt spray (SWAAT), which mimics the corrosion morphology observed in the field. Radiators examined after ten years of field service show excellent corrosion resistance, as predicted by SWAAT.

  10. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    SciTech Connect

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  11. Synthesis of TiN and (Ti, Al)N powders by mechanical alloying in nitrogen gas

    SciTech Connect

    Ogino, Y.; Yamasaki, T.; Miki, M.; Atsumi, N.; Yoshioka, K. )

    1993-04-15

    Mechanical alloying (MA) is a nonequilibrium alloying process with which various unstable or metastable materials, such as highly supersaturated solid solutions, amorphous alloys and intermetallic compounds, can be prepared. Although MA has been applied most extensively to alloying between solid elements, it is also an effective means for allying gaseous elements by solid-gas reactions. In particular, nitrogen can be alloyed up to very high concentrations with nitride-forming transition metals and their alloys by ball milling their powders in nitrogen gas. In the present study, the authors applied this new nitriding technique to the preparation of TiN and a solid solution nitride (Ti, Al)N, and examined the nitriding kinetics and thermal stabilities of the nitrides.

  12. Microwave Heating, Isothermal Sintering, and Mechanical Properties of Powder Metallurgy Titanium and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Luo, S. D.; Guan, C. L.; Yang, Y. F.; Schaffer, G. B.; Qian, M.

    2013-04-01

    This article presents a detailed assessment of microwave (MW) heating, isothermal sintering, and the resulting tensile properties of commercially pure Ti (CP-Ti), Ti-6Al-4V, and Ti-10V-2Fe-3Al (wt pct), by comparison with those fabricated by conventional vacuum sintering. The potential of MW sintering for titanium fabrication is evaluated accordingly. Pure MW radiation is capable of heating titanium powder to ≥1573 K (1300 °C), but the heating response is erratic and difficult to reproduce. In contrast, the use of SiC MW susceptors ensures rapid, consistent, and controllable MW heating of titanium powder. MW sintering can consolidate CP-Ti and Ti alloys compacted from -100 mesh hydride-dehydride (HDH) Ti powder to ~95.0 pct theoretical density (TD) at 1573 K (1300 °C), but no accelerated isothermal sintering has been observed over conventional practice. Significant interstitial contamination occurred from the Al2O3-SiC insulation-susceptor package, despite the high vacuum used (≤4.0 × 10-3 Pa). This leads to erratic mechanical properties including poor tensile ductility. The use of Ti sponge as impurity (O, N, C, and Si) absorbers can effectively eliminate this problem and ensure good-to-excellent tensile properties for MW-sintered CP-Ti, Ti-10V-2Fe-3Al, and Ti-6Al-4V. The mechanisms behind various observations are discussed. The prime benefit of MW sintering of Ti powder is rapid heating. MW sintering of Ti powder is suitable for the fabrication of small titanium parts or titanium preforms for subsequent thermomechanical processing.

  13. Porosity evolution in additively manufactured aluminium alloy during high temperature exposure

    NASA Astrophysics Data System (ADS)

    Bai, J.; Ding, H. L.; Gu, J. L.; Wang, X. S.; Qiu, H.

    2017-01-01

    A 2319 aluminum alloy is deposited by the Wire+Arc Additive Manufacturing technology with Cold Metal Transfer process. Porosity that are both existing in the as-deposited and as-heat treated state metal are revealed by optical microscopy and quantitatively analyzed. It explains the reason why the newly initiated pores are easily tend to gather between each layer around the fusion line zone for the WAAM metal after heat treatment. The inner morphology of the pores are demonstrated by Scanning Electron Microscopy. Porosity evolution and distribution during high temperature exposure are demonstrated. Thus two porosity growth and number increase mechanisms are proposed eventually, providing theoretical basis for related material design and process optimization.

  14. On the melt infiltration of copper coated silicon carbide with an aluminium alloy

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.

  15. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  16. Effect of reduced cobalt contents on hot isostatically pressed powder metallurgy U-700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1982-01-01

    The effect of reducing the cobalt content of prealloyed powders of UDIMET 700 (U-700) alloys to 12.7, 8.6, 4.3, and 0% was examined. The powders were hot isostatically pressed into billets, which were given heat treatments appropriate for turbine disks, namely partial solutioning at temperatures below the gamma prime solvus and four step aging treatments. Chemical analyses, metallographic examinations, and X-ray diffraction measurements were performed on the materials. Minor effects on gamma prime content and on room temperature and 650 C tensile properties were observed. Creep rupture lives at 650 C reached a maximum at the 8.4% concentration, while at 760 C a maximum in life was reached at the 4.3% cobalt level. Minimum creep rates increased with decreasing cobalt content at both test temperatures. Extended exposures at 760 and 815 C resulted in decreased tensile strengths and rupture lives for all alloys. Evidence of sigma phase formation was also found.

  17. Microstructures and Mechanical Properties of Ultrafine Grained Ti-47Al-2Cr (at %) Alloy Produced Using Powder Compact Forging

    NASA Astrophysics Data System (ADS)

    Nadakuduru, Vijay N.; Zhang, Deliang; Cao, Peng; Gabbittas, Brian

    Development of innovative techniques to produce gamma TiAl based alloys, with good mechanical properties, while still maintaining ultra fine grain size can be rewarding, but also is a great challenge. In the present study study a Ti-47Al-2Cr (at %) alloy has been synthesized by directly forging green powder compacts of a Ti/Al/Cr composite powder produced by high energy mechanical milling of a mixture of elemental Ti, Al, Cr powders. It has been found that the density of the bulk consolidated alloy sample after forging decreases from 95% of the theoretical density in the central region to 84% in the periphery region. The microstructure of the bulk alloy consisted of several Ti rich regions, which was expected to be mainly due to initial powder condition. The room temperature tensile strength of the samples produced from this process was found to be in the range of 115 - 130 MPa. The roles of canning and green powder compact density in determining the forged sample porosity level and distribution are discussed.

  18. Aluminium surface treatment with ceramic phases using diode laser

    NASA Astrophysics Data System (ADS)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  19. Aluminium plasmonics

    NASA Astrophysics Data System (ADS)

    Gérard, Davy; Gray, Stephen K.

    2015-05-01

    We present an overview of ‘aluminium plasmonics’, i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  20. Aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  1. Aluminium plasmonics

    DOE PAGES

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  2. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    NASA Technical Reports Server (NTRS)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  3. Fabrication of Ta2O5 Dispersion-Strengthened Mo-Si-B Alloy by Powder Metallurgical Method

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Choi, Won June; Bang, Su-Ryong; Park, Chun Woong; Do Kim, Young

    2017-01-01

    In this study, we investigate the effect of oxide dispersion strengthening on mechanical properties by dispersion of nano-sized Ta2O5 particles in Mo-Si-B alloy. A Mo-Si-B core-shell powder consisting of two intermetallic compounds of Mo5SiB2 and Mo3Si as the core and nano-sized Mo solid solution surrounding intermetallic compounds was fabricated by chemical vapor transport. And Mo-Si-B core-shell powder with uniformly dispersed nano-sized Ta2O5 particles on the surface of a Mo solid solution shell was produced by a wet blending process with TaCl5 solution and heat treatment. Then, pressureless sintering was performed at 1400°C for 3 h under a H2 atmosphere. The hardness and fracture toughness of the Ta2O5-dispersed Mo-Si-B alloy were measured using Vickers hardness and 3-point bending tests, respectively. The Vickers hardness and fracture toughness of the fabricated Mo-Si-B-Ta2O5 alloy were more improved than that of the Mo-Si-B alloy fabricated using core-shell powder with no addition of Ta2O5 particles (Mo-Si-B alloy: 353 Hv, 13.5 MPa·√m, Mo-Si-B-Ta2O5 alloy: 509 Hv, 15.1 MPa·√m).

  4. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications.

    PubMed

    Waseem, Owais Ahmed; Ryu, Ho Jin

    2017-05-16

    The WxTaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.

  5. Manufacturing of self-passivating tungsten based alloys by different powder metallurgical routes

    NASA Astrophysics Data System (ADS)

    Calvo, A.; Ordás, N.; Iturriza, I.; Pastor, J. Y.; Tejado, E.; Palacios, T.; García-Rosales, C.

    2016-02-01

    Self-passivating tungsten based alloys will provide a major safety advantage compared to pure tungsten when used as first wall armor of future fusion reactors, due to the formation of a protective oxide layer which prevents the formation of volatile and radioactive WO3 in case of a loss of coolant accident with simultaneous air ingress. Bulk WCr10Ti2 alloys were manufactured by two different powder metallurgical routes: (1) mechanical alloying (MA) followed by hot isostatic pressing (HIP) of metallic capsules, and (2) MA, compaction, pressureless sintering in H2 and subsequent HIPing without encapsulation. Both routes resulted in fully dense materials with homogeneous microstructure and grain sizes of 300 nm and 1 μm, respectively. The content of impurities remained unchanged after HIP, but it increased after sintering due to binder residue. It was not possible to produce large samples by route (2) due to difficulties in the uniaxial compaction stage. Flexural strength and fracture toughness measured on samples produced by route (1) revealed a ductile-to-brittle-transition temperature (DBTT) of about 950 °C. The strength increased from room temperature to 800 °C, decreasing significantly in the plastic region. An increase of fracture toughness is observed around the DBTT.

  6. Processing Map of Powder Metallurgy Al-W Alloys at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Du, Yue; Zhang, Zhimin; Huang, Youwang; Guo, Lafeng

    2017-07-01

    An Al-0.71 wt.% W alloy was prepared via powder metallurgy (PM) using a room-temperature pressing process and a subsequent hot-pressing process. Studies of the deformation behavior of the PM Al-W alloy were conducted using hot-compression tests in the temperature range from 420 to 570 °C and a strain rate range from 0.001 to 5 s-1. After the stress-strain data were acquired as a function of temperature and strain rate, processing maps that depict the variation in the power dissipation efficiency were constructed and interpreted via the dynamic materials model. The optimum temperature and strain rate combination for PM billet conditioning were demonstrated to be 560-570 °C and 0.001 s-1, respectively. Additionally, a secondary metal working process with a higher production efficiency on the PM billet was conducted at a higher strain rate from 0.01 to 0.1 s-1 and at a low temperature from 500 to 540 °C. The PM Al-W alloy was successfully extruded at 540 °C with a ram speed of 2 mm min-1 and an extrusion ratio of 5:1. The ultimate tensile strength and elongation of the test sample taken from the 15-mm-diameter as-extruded rods were 478 MPa and 15.4%, respectively.

  7. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.

    2015-12-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.

  8. Investigation of surface finishing of carbon based coated tools for dry deep drawing of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Steiner, J.; Andreas, K.; Merklein, M.

    2016-11-01

    Global trends like growing environmental awareness and demand for resource efficiency motivate an abandonment of lubricants in metal forming. However, dry forming evokes increased friction and wear. Especially, dry deep drawing of aluminum alloys leads to intensive interaction between tool and workpiece due to its high adhesion tendency. One approach to improve the tribological behavior is the application of carbon based coatings. These coatings are characterized by high wear resistance. In order to investigate the potential of carbon based coatings for dry deep drawing, friction and wear behavior of different coating compositions are evaluated in strip drawing tests. This setup is used to model the tribological conditions in the flange area of deep drawing operations. The tribological behavior of tetrahedral amorphous (ta-C) and hydrogenated amorphous carbon coatings with and without tungsten modification (a-C:H:W, a-C:H) is investigated. The influence of tool topography is analyzed by applying different surface finishing. The results show reduced friction with decreased roughness for coated tools. Besides tool topography the coating type determines the tribological conditions. Smooth tools with ta-C and a-C:H coatings reveal low friction and prevent adhesive wear. In contrast, smooth a-C:H:W coated tools only lead to slight improvement compared to rough, uncoated specimen.

  9. Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy.

    PubMed

    Mørtsell, Eva A; Wenner, Sigurd; Longo, Paolo; Andersen, Sigmund J; Marioara, Calin D; Holmestad, Randi

    2016-07-01

    The elemental distribution of a precipitate cross section, situated in a lean Al-Mg-Si-Cu-Ag-Ge alloy, has been investigated in detail by electron energy loss spectroscopy (EELS) and aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). A correlative analysis of the EELS data is connected to the results and discussed in detail. The energy loss maps for all relevant elements were recorded simultaneously. The good spatial resolution allows elemental distribution to be evaluated, such as by correlation functions, in addition to being compared with the HAADF image. The fcc-Al lattice and the hexagonal Si-network within the precipitates were resolved by EELS. The combination of EELS and HAADF-STEM demonstrated that some atomic columns consist of mixed elements, a result that would be very uncertain based on one of the techniques alone. EELS elemental mapping combined with a correlative analysis have great potential for identification and quantification of small amounts of elements at the atomic scale.

  10. Fenugreek Seed Powder Nullified Aluminium Chloride Induced Memory Loss, Biochemical Changes, Aβ Burden and Apoptosis via Regulating Akt/GSK3β Signaling Pathway

    PubMed Central

    Prema, Asokan; Thenmozhi, Arokiasamy Justin; Manivasagam, Thamilarasan; Akbar, Mohammed D.; Akbar, Mohammed

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia that mainly affects the cognitive functions of the aged populations. Trigonella foenum-graecum (L.) (fenugreek), a traditionally well utilized medicinal plant ubiquitously used as one of the main food additive worldwide, is known to have numerous beneficial health effects. Fenugreek seed extract could be able to inhibit the activity of acetylcholinesterase (AChE), a key enzyme involved in the pathogenesis of AD, and further shown to have anti-parkinsonic effect. The present study was aimed to explore the neuroprotective effect of fenugreek seed powder (FSP) against aluminium chloride (AlCl3) induced experimental AD model. Administration of germinated FSP (2.5, 5 and 10% mixed with ground standard rat feed) protected AlCl3 induced memory and learning impairments, Al overload, AChE hyperactivity, amyloid β (Aβ) burden and apoptosis via activating Akt/GSK3β pathway. Our present data could confirm the neuroprotective effect of fenugreek seeds. Further these results could lead a possible therapeutics for the management of neurodegenerative diseases including AD in future. PMID:27893738

  11. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.

    PubMed

    Bolzoni, L; Weissgaerber, T; Kieback, B; Ruiz-Navas, E M; Gordo, E

    2013-04-01

    The Ti-6Al-7Nb alloy was obtained using the blending elemental approach with a master alloy and elemental titanium powders. Both the elemental titanium and the Ti-6Al-7Nb powders were characterised using X-ray diffraction, differential thermal analysis and dilatometry. The powders were processed using the conventional powder metallurgy route that includes uniaxial pressing and sintering. The trend of the relative density with the sintering temperature and the microstructural evolution of the materials sintered at different temperatures were analysed using scanning electron microscopy and X-ray diffraction. A minimum sintering temperature of 1200°C has to be used to ensure the homogenisation of the alloying elements and to obtain a pore structure composed of spherical pores. The sintered samples achieve relative density values that are typical for powder metallurgy titanium and no intermetallic phases were detected. Mechanical properties comparable to those specified for wrought Ti-6Al-7Nb medical devices are normally obtained. Therefore, the produced materials are promising candidates for load bearing applications as implant materials.

  12. Experimental and Numerical Study of Needle Peening Effects in Aluminium Alloy 2024-T3 Sheets

    NASA Astrophysics Data System (ADS)

    Mendez Romero, Julio Alberto

    Montreal as part of previous shot peening research. Saturation tests were done to determine the deflection at saturation for different peening parameters. The specimen deflection was measured using the standard Almen gauge used as part of routinary process control. Due to the aluminium magnetic incompatibility with the Almen gauge, the deformed specimen profile was measured using a Coordinate Measuring Machine (CMM). Repeatability of the process was demonstrated and the deflection at saturation, as well as the saturation time, was obtained. The indentation diameters created by impacts for different operating pressures were measured using microscopic photography. It was determined that the specimen deformation, as well as the indentation diameter, is larger when the operating pressure increases. Treatment of the test samples using the same peening parameters resulted in a variable indentation diameter. This is explained by the velocity variations detected during the equipment characterization. The added value that needle peening could provide to existing peening techniques is that, in principle, uniformity in the indentation diameters is easier to achieve as all impacts are normal and there is no loss of energy due to media interaction. The last experimental test was to determine the induced residual stress by means of X-ray Diffraction (XRD) for one specimen at saturation. An FE model heavily inspired by previous shot peening modeling was developed to simulate needle peening. The parameters obtained during the characterization of the equipment were taken as boundary conditions. Initially, the case of a single impacts was studied. Good accordance between the simulated and the average experimental indentation diameters was obtained, except for the lowest pressure studied. The overestimation of the indentation diameter could stem from the method used to measure the simulated diameter. Coverage estimation, and therefore indentation diameters remain an open line of research in

  13. Effects of processing parameters on the extrusion by continuous variable cross-section direct extrusion with 7A09 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wu, Hongbin; Qin, Minghan

    2016-02-01

    In order to study the effects of processing parameters on the continuous variable cross-section direct extrusion (CVCDE), taking 7A09 aluminium alloy for example, the extrusion speed and forming temperature and the friction factor as key processing parameters are applied to research by finite element (FE) simulation. The research result showed that the extrusion speed had a significant influence on the maximum temperature of the billet, at the same time, both decreasing the friction factor and increasing forming temperature within a certain range were beneficial to reduce extrusion load. Both forming temperature and the extrusion speed were inversely linked to extrusion load, but the friction factor was directly proportional to extrusion load. Forming temperature had a far more important influence on extrusion load by comparison: when forming temperature increased from 380∘ to 430∘C, the peak value of extrusion load decreased by 25.6% and the flow uniformity of extruded product got improved. The process window based on both the press limit and surface defects limit was established and the most reasonable forming temperature was 405∘C under this process condition, which provided theoretical basis for formulation process of 7A09 aluminium alloy on the CVCDE extrusion.

  14. The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture

    NASA Astrophysics Data System (ADS)

    AlShaer, A. W.; Li, L.; Mistry, A.

    2014-12-01

    Laser welding of aluminium alloys typically results in porosity in the fusion zones, leading to poor mechanical and corrosion performances. Mechanical and chemical cleaning of surfaces has been used previously to remove contaminants for weld joint preparations. However, these methods are slow, ineffective (e.g. due to hydrogen trapping) or lead to environmental hazards. This paper reports the effects of short pulsed laser surface cleaning on porosity formation and reduction in laser welding of AC-170PX (AA6014) aluminium sheets (coated with Ti/Zr and lubricated using a dry lubricant AlO70) with two types of joints: fillet edge and flange couch, using an AA4043 filler wire for automotive component assembly. The effect of laser cleaning on porosity reduction during laser welding using a filler wire has not been reported before. In this work, porosity and weld fusion zone geometry were examined prior to and after laser cleaning. The nanosecond pulsed Nd:YAG laser cleaning was found to reduce porosity significantly in the weld fusion zones. For the fillet edge welds, porosity was reduced to less than 0.5% compared with 10-80% without laser cleaning. For flange couch welds, porosity was reduced to 0.23-0.8% with laser cleaning from 0.7% to 4.3% without laser cleaning. This has been found to be due to the elimination of contaminations and oxide layers that contribute to the porosity formation. The laser cleaning is based on thermal ablation. This research focuses on porosity reduction in laser welding of aluminium alloy. Weld quality was investigated for two joints, fillet edge and flange couch joints. The effect of laser cleaning on porosity reduction after welding was investigated. It was found that laser cleaning reduced porosity less than 1% in both joints. Weld dimensions and strength were evaluated and discussed for both types of joints.

  15. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    SciTech Connect

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical

  16. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  17. Effect of chromium and manganese nitride alloying on the evolution of the fine structure in powder hot-forged steels

    NASA Astrophysics Data System (ADS)

    Mamonova, A. A.; Baglyuk, G. A.; Kurovskii, V. Ya.

    2015-06-01

    The effect of alloying with chromium and manganese nitrides is studied on a fine crystal structure of powder iron produced by hot forging. The features of the fine structure and the phase composition are found to strongly depend on the kind of alloying nitrides. It has been shown that the introduction of both nitrides in the initial composition of powder mixture causes an increase in the lattice parameter of a matrix, its defectiveness, and the dislocation density, which results in an increase in the hardness of steel alloyed with nitrides. The defectiveness of the matrix crystal lattice, the dislocation density, and the hardness of hot-forged steels are slightly higher when manganese nitride is used as a nitrogen-bearing additive.

  18. Tribological properties of aluminium-based materials

    NASA Astrophysics Data System (ADS)

    Iglesias Victoria, Patricia

    In order to improve the tribological performance of the aluminium-steel contact, two research lines have been followed: (1) Use of the ordered fluids liquid crystals and ionic liquids as lubricant additives. (2) Tribological behaviour of new powder metallurgy aluminium materials processed by mechanical milling. A parafinic-naftenic base oil modified by a 1wt% of four additives has been used: Three liquid crystals with increasing polarity: 4,4' -dibutylazobenzene (LC1) < colesteryl linoleate (LC2) < n-dodecyl ammonium chloride (LC3), and the ionic liquid 1-ethyl, 3-methyl-imidazolonium tetrafluoroborate. This is the first time that a ionic liquid is studied as lubricant additive. Viscosity measurements at 25 and 100°C, maximum number of molecules by unit aluminium surface and comparative costs of the additives showed the advantage of the ionic additives over the neutral ones. Pin-on-disk tests were performed according to ASTM G99. Influence of load, speed and temperature on friction and wear was studied for each additive. While the ionic liquid gives low friction (<0.1) and wear (≤10-5 mm3m-1), the performance of the liquid crystalline additives depends on the conditions. LC3 shows a higher lubricating ability than the neutral LC1 and LC2 under high load, speed or temperature. Only the ionic liquid shows tribochemical interaction (by SEM and EDS) with the steel and aluminium surfaces, with an increment in the fluorine content inside the wear track. The second line was to study the influence of the process conditions on the dry and lubricated wear of new powder-metallurgy aluminium materials. MA Al-NH3 milled under NH3 atmosphere was compared with (MA Al-Air) processed in air and with Al-1 which has not been mechanically alloyed. Conditions for mild to severe wear transition have been established. Al-1 is always under a severe wear regime. MA Al-NH3 shows transition to severe wear at 150°C, showing a 60% reduction in wear rate with respect to MA Al-Air and a two

  19. Synthesis of metastable phases in Al-Nb powders by mechanical alloying

    SciTech Connect

    Peng, Z.; Suryanarayana, C.; Froes, F.H. )

    1992-08-15

    Recently there have been many investigations on the synthesis and properties of transition metal trialuminides based on titanium, zirconium, vanadium, niobium and tantalum for use as structural materials in an elevated temperature environment. This interest is due to their high strength-to-density ratios, high melting points and excellent oxidation resistance. Amongst these, niobium trialuminide (NbAl{sub 3}) has a high melting point (1605{degrees} C), possesses adequate oxidation resistance (a result of the formation of a protective alumina over-layer and a density (4.54 g/cc) which is lower than that of advanced Ni{sub 3}Al-based compounds (7.6 g/cc). However, NbAl{sub 3} melts congruently and since it has an extremely limited homogeneity range, it is difficult to ensure that the chemistry falls in this desired narrow range. Further, due to the intrinsic brittleness, niobium aluminide ingots crack during solidification. Some of these problems can be overcome by producing the NbAl{sub 3} compound through the powder metallurgy route. This paper reports on the successful synthesis of homogeneous NbAl{sub 3} and amorphous phases by mechanical alloying starting from elemental powders.

  20. Enhanced Sintering Kinetics in Aluminum Alloy Powder Consolidated Using DC Electric Fields

    NASA Astrophysics Data System (ADS)

    McWilliams, Brandon; Yu, Jian; Kellogg, Frank; Kilczewski, Steven

    2017-02-01

    Direct current (DC) electric currents were applied during sintering of aluminum alloy (AA5083) green powder compacts and it was found that the kinetics of sintering were greatly enhanced compared to samples processed without a field. In situ sintering kinetics during pressure-less sintering employing electric field strengths and amperages ranging from 0 to 56 V/cm and 0 to 3 A were quantified using digital image correlation. It was found that the application of a DC field during sintering results in a discontinuous change in volume at a critical temperature along with a transition in electrical properties of the compact from insulating to conductive. This effect is similar to the phenomena observed in the flash sintering process currently being actively researched for ceramic powder processing. The temperature at which the flash event occurs was found to be field strength dependent and doubling the field strength was found to decrease the flash temperature by 25 pct. Joule heating of the specimen was measured using thermal imaging and it was found to not contribute enough additional thermal energy to account for the substantially increased sintering rates observed in specimens processed using electric fields.

  1. Preparing TiNiNb shape memory alloy powders by hydriding-dehydriding process

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Cui, Lishan; Jiang, Xiaohua; Guo, Fangmin; Liu, Yinong; Hao, Shijie

    2016-07-01

    High-quality TiNiNb shape memory alloy (SMA) powders were prepared by hydrogenation of cold-worked TiNiNb SMA wire composed of amorphous and nancrystalline microstructure, by mechanical pulverization and vacuum dehydrogenation. It is revealed that abundant structural defects introduced by cold-work greatly promoted hydrogen diffusion, which significantly decreased hydriding temperature and shortened hydriding time. After hydrogenation, the hydrogenated sample composed of TiNiH and NbH with high brittleness can be easily ground into ultra-fine powers. The TiNiNb powers obtained by following vacuum dehydrogenation exhibit almost the same reversible phase transformation behavior as that of the original TiNiNb SMA before cold-work. Moreover, a TiNiNb part was obtained by hot-pressure sintering the hydrogenated powders, where sintering and dehydrogenation are carried out in one single step. The sintered TiNiNb part shows most the same reversible phase transformation behaviors as that of the original TiNiNb SMA and there is no visible additional brittle phase appearance.

  2. The Influence of Strain Rate Variations on the Appearance of Serrated Yielding in 2024-T3 Al-Clad Aluminium Alloy

    SciTech Connect

    Leacock, Alan G.; McMurray, Robert J.; Brown, D.; Poston, Ken

    2007-04-07

    To avoid failure during the stretch forming process using manual control, machine operators tend to achieve the final form using a stop-start approach. It was observed that when approaching full form, stretcher-strain marks appeared on the surface of the part if the operator stopped and restarted the forming operation. In order to investigate this phenomenon, a series of tensile tests was conducted using two batches of 2024-T3 aluminium alloy. The specimens were tested using several different strain rates, representative of those used on the shop floor. Additional tests were conducted involving a series of pauses under displacement control at differing levels of strain and strain rate. In the uninterrupted tests for the two batches of 2024-T3 material tested, serrated yielding was observed just prior to failure. However for the tests in which there was a pause in displacement, the material consistently exhibited serrated yielding when the crosshead began to move again. These results indicate that the pause provides an opportunity for strain ageing and pinning of the dislocations resulting in serrated yielding of this alloy. In order to avoid serrated yielding, stretch forming operations using 2024-T3 aluminium should be conducted at a constant strain rate without interruption. This also has far reaching implications for those involved in the production and testing of these alloys. The test programme described represents an initial attempt to investigate a phenomenon noted during an industrial forming process and should be extended to analyse the affect of strain path changes on the occurrence of serrated yielding.

  3. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  4. Superplastic behavior in a powder-metallurgy TiAl alloy with a metastable microstructure

    SciTech Connect

    Nieh, T.G.; Hsiung, L.M.; Wadsworth, J.

    1997-12-01

    Superplasticity in a powder-metallurgy TiAl alloy (Ti-47Al-2Cr-2Nb) with a metastable microstructure has been studied. Samples were tested at temperatures ranging from 650 to 1100{degrees}C, and at strain rate ranging from 10{sup -6} to 10{sup -4} s{sup -1}. An elongation value of over 300 obtained at a strain rate of 2 x 10{sup -5} s{sup -1} and at a temperature as lo as 800{degrees}C, which is close to the ductile-to-brittle-transition temperature. This is in contrast to the prior major observations of superplastic behaviors in TiAl in which typical temperatures of 1000{degrees}C have usually been required for superplasticity. It is proposed that the occurrence of superplasticity at 8000{degrees}C in the present alloy is caused by the presence of a B2 phase. During superplastic deformation (grain boundary sliding), the soft P grains accommodate sliding strains to reduce the propensity for cavitation at grain triple junctions and, thus, delays the fracture process. The final microstructure consists of stable, equiaxed y+a{sub 2} grains.

  5. A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage

    PubMed Central

    Wang, Enyu; Kong, Xiangfei; Rong, Xian; Yao, Chengqiang; Yang, Hua; Qi, Chengying

    2016-01-01

    Phase change material (PCM) used in buildings can reduce the building energy consumption and indoor temperature fluctuation. A composite PCM has been fabricated by the binary eutectic mixture of tetradecanol (TD) and lauric acid (LA) absorbed into the expanded perlite (EP) using vacuum impregnation method, and its thermal conductivity was promoted by aluminium powder (AP) additive. Besides, the styrene-acrylic emulsion has been mixed with the composite PCM particles to form the protective film, so as to solve the problem of leakage. Thus, a novel PCM panel (PCMP) has been prepared using compression moulding forming method. The thermal property, microstructure characteristic, mechanical property, thermal conductivity, thermal reliability and leakage of the composite PCM have been investigated and analysed. Meanwhile, the thermal performance of the prepared PCMP was tested through PCMPs installed on the inside wall of a cell under outdoor climatic conditions. The composite PCM has a melting temperature of 24.9 °C, a freezing temperature of 25.2 °C, a melting latent heat of 78.2 J/g and a freezing latent heat of 81.3 J/g. The thermal conductivity test exposed that the thermal conductivity has been enhanced with the addition of AP and the latent heat has been decreased, but it still remains in a high level. The leakage test result has proven that liquid PCM leaking has been avoided by the surface film method. The thermal performance experiment has shown the significant function of PCMP about adjusting the indoor temperature and reducing the heats transferring between the wall inside and outside. In view of the thermal performance, mechanical property and thermal reliability results, it can be concluded that the prepared PCMP has a promising building application potential. PMID:28774020

  6. Structural and Phase State of Ti-Nb Alloy at Selective Laser Melting of the Composite Powder

    NASA Astrophysics Data System (ADS)

    Sharkeev, Yu. P.; Eroshenko, A. Yu.; Kovalevskaya, Zh. G.; Saprykin, A. A.; Ibragimov, E. A.; Glukhov, I. A.; Khimich, M. A.; Uvarkin, P. V.; Babakova, E. V.

    2016-07-01

    Phase composition and microstructure of Ti-Nb alloy produced from the composite titanium and niobium powder by selective laser melting (SLM) method were studied in the present research. Ti-Nb alloy produced by SLM is a monolayer and has zones of fine-grained and medium-grained structure with homogenous elemental composition within the range of 36-38 wt.% Nb. Phase state of the alloy corresponds to the main phase of β- solid solution (grain size of 5-7 μm) and non-equilibrium martensite α″-phase (grain size of 0.1-0.7 μm). Grains of the α″-phase are localized along the boundaries of β-phase grains and have a reduced content of niobium. Microhardness of the alloy varies within the range of 4200-5500 MPa.

  7. Shock compaction of rapidly solidified nickel based Mo--Al--W alloy powders with pressure up to 1. 2 mbar

    SciTech Connect

    Staudhammer, K.P.

    1988-01-01

    The alloy described in this paper is a high strength nickel alloy containing 10 wt% Mo, 6.8 wt% Al, and 6 wt% W. It cannot be easily prepared by conventional casting methods without gross segregation occurring in the form of massive dendrites. Gas atomization to form fine powders reduces the dendrite size and therefore, the segregation. The spacing of the secondary dendrite arm has been used to estimate the cooling rate of this powder. The experimental investigation of shock compaction is based in part on mach stem lens formation work. One of the fortuitous aspects of the cylindrical explosion design is its suitability as a screening tool with its very high success rate of recovery. Use of the radial implosion design has allowed for the determination of optimum pressures required for consolidation of RSR Ni--10Mo--6.8Al--6W alloy powders as a function of initial packing density. These sets of experiments are in line with previous work on other shock consolidated powders showed that an increase of initial density decreased the melt zone, and only required a slight increase in the pressure to consolidate. 4 refs., 8 figs.

  8. Microstructure and Properties of W-Cu Composite/Fe-Based Powder Alloy Vacuum Brazed Joint with Different Filler Metals

    NASA Astrophysics Data System (ADS)

    Xia, C. Z.; Yang, J.; Xu, X. P.; Zou, J. S.

    2017-05-01

    W-Cu composite and Fe-based powder alloy were brazed with filler metals of Ag-Cu and Cu-Mn-Co alloys in a vacuum furnace. Both of filler metals can join W-Cu composite with Fe-based powder alloy directly in the experiment process. Microstructure, distribution of elements and fracture morphology were observed and analyzed using scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, and phase composition of bonding area was analyzed by X-ray diffraction (XRD). The obtained results indicated that the smooth faying surface and dense microstructure of brazed joint were formed and the primary microstructure of brazing seam were, respectively, Ag(Cu) solid solution and Cu(Mn) solid solution, which ensured forming the stable connection of brazed joint. The bending strength of Ag-based and Cu-based brazed joint can, respectively, reach to 317 and 704 MPa, where fracture showed a typical ductile fracture characteristic. The fracture of Cu-based brazed joint located at brazing seam area, and the fracture of Ag-based brazed joint occurred in Fe-based powder alloy side.

  9. Brief data overview of differently heat treated binder jet printed samples made from argon atomized alloy 625 powder.

    PubMed

    Mostafaei, Amir; Behnamian, Yashar; Krimer, Yuval L; Stevens, Erica L; Luo, Jing Li; Chmielus, Markus

    2016-12-01

    Powder bed binder jet printing (BJP) is an additive manufacturing method in which powder is deposited layer-by-layer and selectively joined in each layer with binder. The data presented here relates to the characterization of the as-received feedstock powder, BJP processing parameters, sample preparation and sintering profile ("Effect of solutionizing and aging on the microstructure and mechanical properties of powder bed binder jet printed nickel-based superalloy 625" (A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, M. Chmielus, 2016) [1], "Powder bed binder jet printed alloy 625: densification, microstructure and mechanical properties" (A. Mostafaei, E. Stevens, E. Hughes, S. Biery, C. Hilla, M. Chmielus, 2016) [2]). The data presented here relates to the characterization of the as-received feedstock powder, BJP processing parameters, sample preparation and sintering profile. Effect of post heat treatments including solutionizing and aging on the microstructure and mechanical properties of powder bed binder jet printed nickel-based superalloy 625 were compared to that of sintered samples.

  10. Experiment-based modelling of grain boundary β-phase (Mg2Al3) evolution during sensitisation of aluminium alloy AA5083.

    PubMed

    Zhang, R; Steiner, M A; Agnew, S R; Kairy, S K; Davies, C H J; Birbilis, N

    2017-06-07

    An empirical model for the evolution of β-phase (Mg2Al3) along grain boundaries in aluminium alloy AA5083 (Al-Mg-Mn) during isothermal exposures is proposed herein. Developing a quantitative understanding of grain boundary precipitation is important to interpreting intergranular corrosion and stress corrosion cracking in this alloy system. To date, complete ab initio models for grain boundary precipitation based upon fundamental principles of thermodynamics and kinetics are not available, despite the critical role that such precipitates play in dictating intergranular corrosion phenomena. Empirical models can therefore serve an important role in advancing the understanding of grain boundary precipitation kinetics, which is an approach applicable beyond the present context. High resolution scanning electron microscopy was to quantify the size and distribution of β-phase precipitates on Ga-embrittled intergranular fracture surfaces of AA5083. The results are compared with the degree of sensitisation (DoS) as judged by nitric acid mass loss testing (ASTM-G67-04), and discussed with models for sensitisation in 5xxx series Al-alloys. The work herein allows sensitisation to be quantified from an unambiguous microstructural perspective.

  11. Some preliminary evaluations of black coating on aluminium AA2219 alloy produced by plasma electrolytic oxidation (PEO) process for space applications

    NASA Astrophysics Data System (ADS)

    Shrestha, S.; Merstallinger, A.; Sickert, D.; Dunn, B. D.

    2003-09-01

    This paper describes the results of a study of a black coating produced on aluminium AA2219 alloy using a process that involves creation of a hard ceramic oxide layer on the surface of the alloy by plasma electrolytic oxidation (PEO) known as the 'KERONITE®' process. Coating microstructure has been examined and the coating characteristics such as porosity, hardness, adhesion and phase composition were measured. The thermo-optical properties such as solar absorptance 'as' and normal infrared emittance 'en-IR' of the coating were measured in the 'as-prepared' condition and after environmental exposures to humidity, thermal cycling and UV-radiation in vacuum and to thermal shock. Comparison was made with alternative coatings produced using standard black anodising processes. The study also looked at the cold welding and friction behaviours of the coated alloy in vacuum and in an ambient laboratory environment. Standard spacecraft materials tests were conducted on the coated disc against an AISI 52100 steel ball and also against a coated pin using a pin-on-disc apparatus. Parameters such as friction coefficient and wear depth were measured and the cold welding behaviours were investigated. Test results were compared with the data generated for NiCr plated and anodised coatings. Corrosion performance was assessed using a salt spray exposure test and using an accelerated electrochemical test method. In addition, the study looked at the effect of post coating sealing with a sol-gel solution.

  12. Processing condition for the development of cube texture in Ni and Ni alloy tapes fabricated by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Ji, Bong Ki; Lee, Dong-Wook; Kim, Min-Woo; Jun, Byung-Hyuk; Park, Pyeong Yeal; Jung, Kyu-Dong; Kim, Chan-Joong

    2004-10-01

    Bi-axially textured Ni, Ni-W (1, 3 and 5 at.%) and Ni-Cu alloy tapes for YBCO coated conductors were fabricated by powder metallurgy process including powder compaction, cold isostatic pressing, cold rolling and recrystallization heat treatment. The rod-like Ni and Ni alloy compacts were sintered at 1100 °C for 6 h in 96% Ar-4% H 2 atmosphere. The sintered Ni and Ni-W rods were successfully cold-rolled into thin tapes of 80-100 μm thickness with 5% reduction at each path, but the Ni-Cu alloy rods with Cu content less than 20 at.% were made into tapes. The Ni and Ni alloy tapes were heat-treated at 800-1200 °C for the development of cube texture. The good (2 0 0) texture was obtained for both Ni and Ni-W alloy tapes, while it was obtained only for the Ni-Cu tapes with low Cu contents. The W and Cu addition to Ni improved the mechanical properties by solid solution hardening. Critical current density ( Jc) of YBCO film deposited on the CeO 2/YSZ/CeO 2(CYC)/Ni template was 0.25 MA/cm 2 at 77 K and self-field.

  13. Microstructure and high-temperature tensile deformation of TiAl(Si) alloys made from elemental powders

    SciTech Connect

    Wang, G.X.; Dogan, B.; Dahms, M.; Hsu, F.Y.; Klaar, H.J.

    1995-03-01

    Two ternary TiAl-based alloys with chemical compositions of Ti-46.4 at. pct Al-1.4 at. pct Si (Si poor) and Ti-45 at. pct Al-2.7 at. pct Si (Si rich), which were prepared by reaction powder processing, have been investigated. Both alloys consist of the intermetallic compounds {gamma}-TiAl, {alpha}{sub 2}-Ti{sub 3}Al, and {zeta}-Ti{sub 5}(Si, Al){sub 3}. The microstructure can be described as a duplex structure (i.e., lamellar {gamma}/{alpha}{sub 2} regions distributed in {gamma} matrix) containing {zeta} precipitates. The higher Si content leads to a larger amount of {zeta} precipitates and a finer {gamma} grain size in the Si-rich alloy. The tensile properties of both alloys depend on test temperature. At room temperature and 700 C, the tensile properties of the Si-poor alloy are better than those of the Si-rich alloy. At 900 C, the opposite is true. Examinations of tensile deformed specimens reveal {zeta}-Ti{sub 5}(Si, Al){sub 3} particle debonding and particle cracking at lower test temperatures. At 900 C, nucleation of voids and microcracks along lamellar grain boundaries and evidence for recovery and dynamic recrystallization were observed. Due to these processes, the alloys can tolerate {zeta}-Ti{sub 5}(Si, Al){sub 3} particles at high temperature, where the positive effect of grain refinement on both strength and ductility can be utilized.

  14. Finite element modelling of shot peening and peen forming processes and characterisation of peened AA2024-T351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Gariepy, Alexandre

    The main purpose of this thesis was to develop and validate finite element (FE) simulation tools for shot peening and peen forming. The specific aim was to achieve quantitatively accurate predictions for both processes and demonstrate the potential of reliable FE modelling for scientific investigation and industrial applications. First, an improved dynamic impact model that takes into account the stochastic nature of shot peening was proposed by carefully studying its dimensions, introducing a dispersion of shot sizes and significantly reducing its computational cost. In addition, cyclic mechanical testing was conducted to define a suitable material constitutive theory for aluminium alloy (AA) 2024-T3/T351 subjected to shot peening. By combining a realistic shot peening model with an appropriate material law, fairly good residual stress predictions were achieved for three different sets of shot peening parameters. Second, an experimental and numerical characterization of AA2024-T351 shot peened with parameters representative of fatigue life improvement applications was conducted. Multiple techniques, such as micro-indentation, residual stress determination and electron backscatter diffraction, were combined to gain a better understanding of the influence of shot peening on the material. The potential uses of finite element simulation to complement experimental data were also studied. The material heterogeneity arising from the random impact sequence was investigated and it was found that the impact modelling methodology could provide useful information on such heterogeneities. Third, a novel peen forming simulation methodology was introduced. The impact model provided the necessary input data as part of a multiscale approach. Numerically calculated unbalanced induced stress profiles were input into shell elements and the deformed shape after peen forming was computed as a springback analysis. In addition, a simple interpolation method was proposed to model the

  15. Laser Powder Welding with a Co-based alloy for repairing steam circuit components in thermal power stations

    NASA Astrophysics Data System (ADS)

    Díaz, E.; Tobar, M. J.; Yáñez, A.; García, J.; Taibo, J.

    Due to the costs of replacing certain damage parts in thermal power stations by new ones, it is frequent to carry out several tasks of repair and maintenance by means of conventional welding. With the objective of improving and optimizing these maintenance duties, a laser powder welding process of a Co-based alloy, Stellite®6, on a Cr-Mo low alloy steel, ASTM A182 F11, has been developed. Moreover, a comparative study of morphology and microstructure of the deposited layers has been carried out between the laser process and a conventional one.

  16. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.; Pao, P. S.

    1985-01-01

    The effects of alloy chemistry and particulate morphology on consolidation behavior and consolidated product properties in rapid solidification processed, powder-metallurgical Al-3Li-1.5Cu-1Mg-0.5Co-0.2Zr and Al-4.4Cu-1.5Mg-Fe-Ni-0.2Zr extrusions and forgings were studied. Microstructures and mechanical properties of both alloys are largely unaffected by particulate production method (vacuum atomization, ultrasonic atomization, or twin-roller quenching) and by particulate solidification rates between 1000 and 100,000 K/s. Consolidation processing by canning, cold compaction, degassing, and hot extrusion is sufficient to yield mechanical properties in the non-Li-containing alloy extrusions which are similar to those of 7075-Al, but ductilities and fracture toughnesses are inferior owing to poor interparticle bonding caused by lack of a vacuum-hot-pressing step during consolidation. Mechanical properties of extrusions are superior to those of forgings owing to the stronger textures produced by the more severe hot working during extrusion. The effects on mechanical properties of dispersoid size and volume fraction, substructural refinement, solid solution strengthening by Mg, and precipitate size and distribution are elucidated for both alloy types.

  17. Extraction spectrophotometric determination of vanadium in natural waters and aluminium alloys using pyridyl azo resorcinol (PAR) and iodo-nitro-tetrazolium chloride (INT).

    PubMed

    Gavazov, K; Simeonova, Z; Alexandrov, A

    2000-06-30

    Extraction-spectrophotometric methods are developed for the determination of vanadium content in natural waters and aluminium alloys. They are based on the formation and subsequent extraction into chloroform of the ternary ion association complex of V(V) with PAR and INT in the presence of CDTA and NH(4)F as masking agents. Optimum pH range of the reaction is 5.5-7.5. Maximum absorbance of the extracted complex is at 560 nm. The method for determination of V(V) in drinking waters can be successfully applied at a concentration level of 3 ppb and higher without additional pre-concentration. Among studied more than 30 foreign ions potentially present in natural waters only Ca(II) can interfere. It is removed by precipitation as CaF(2) and filtration. A 40-fold excess of V(IV) does not interfere with determination of V(V) and can also be determined indirectly (after oxidation to V(V)). The proposed method is applied to analysis of model mixtures as well as to the analysis of tap and mineral waters. Beer's law is obeyed for up to 15 mug of V(V) in 40 ml aqueous phase. The accuracy and precision are reasonable. The RSD is in the range 6.5-23.2% for determination of 6.3 ppb V(V). The procedure for analysis of aluminium alloys differs from the procedure for analysis of waters by the order of introduction of the reagents. The macrocomponent does not interfere and is not separated. Mg, Mn, Cu, Zn, Fe, Cr, Ti and Zr do not interfere. A 25-fold excess of Ni interferes. The method is tested in the analysis of reference standards containing 0.005 and 0.007% V, respectively. The RSD is 1.4%.

  18. Effect of Fe base alloy content in Ti-C-Fe base alloy powder mixtures on the SHS products structure

    NASA Astrophysics Data System (ADS)

    Pribytkov, Gennadii A.; Krinitcyn, Maxim G.; Korzhova, Victoria V.; Baranovskii, Anton V.; Korosteleva, Elena N.

    2016-11-01

    The paper investigates the morphology, phase composition, and internal structure of "TiC-high chromium cast iron binder" and "TiC-high speed steel binder" composite powders. The powders were produced by self-propagating high temperature synthesis of Ti-C-Me powder mixtures in the layer by layer burning mode. X-ray diffractometry, optical and scanning electron microscopy methods were used for the powders characterization.

  19. Phase Transformation Behavior of Porous TiNi Alloys Produced by Powder Metallurgy Using Magnesium as a Space Holder

    NASA Astrophysics Data System (ADS)

    Aydoğmuş, Tarik; Bor, Elif Tarhan; Bor, Şakir

    2011-09-01

    Porous TiNi alloys with porosities in the range of 51 to 73 pct were prepared successfully applying a new powder metallurgy fabrication route in which magnesium was used as a space holder, resulting in either single austenite phase or a mixture of austenite and martensite phases dictated by the composition of the starting powders, but entirely free from secondary brittle intermetallics, oxides, nitrides, and carbonitrides. Since transformation temperatures are very sensitive to composition, deformation, and oxidation, for the first time, transformation temperatures of porous TiNi alloys were investigated using chemically homogeneous specimens in as-sintered and aged conditions eliminating secondary phase, contamination, and deformation effects. It was found that the porosity content of the foams has no influence on the phase transformation temperatures both in as-sintered and aged conditions, while deformation, oxidation, and aging treatment are severely influential.

  20. A 3D printed superconducting aluminium microwave cavity

    SciTech Connect

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Tobar, Michael E.; Sercombe, Timothy B.

    2016-07-18

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  1. A 3D printed superconducting aluminium microwave cavity

    NASA Astrophysics Data System (ADS)

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Sercombe, Timothy B.; Tobar, Michael E.

    2016-07-01

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  2. Metal release from stainless steel powders and massive sheets--comparison and implication for risk assessment of alloys.

    PubMed

    Hedberg, Yolanda; Mazinanian, Neda; Odnevall Wallinder, Inger

    2013-02-01

    Industries that place metal and alloy products on the market are required to demonstrate that they are safe for all intended uses, and that any risks to humans, animals or the environment are adequately controlled. This requires reliable and robust in vitro test procedures. The aim of this study is to compare the release of alloy constituents from stainless steel powders of different grades (focus on AISI 316L) and production routes into synthetic body fluids with the release of the same metals from massive sheets in relation to material and surface characteristics. The comparison is justified by the fact that the difference between massive surfaces and powders from a metal release/dissolution and surface perspective is not clearly elucidated within current legislations. Powders and abraded and aged (24 h) massive sheets were exposed to synthetic solutions of relevance for biological settings and human exposure routes, for periods of up to one week. Concentrations of released iron, chromium, nickel, and manganese in solution were measured, and the effect of solution pH, acidity, complexation capacity, and proteins elucidated in relation to surface oxide composition and its properties. Implications for risk assessments based on in vitro metal release data from alloys are elucidated.

  3. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  4. A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Cu-Al-Ni Shape-Memory Alloy Strips from Elemental Powders

    NASA Astrophysics Data System (ADS)

    Vajpai, S. K.; Dube, R. K.; Chatterjee, P.; Sangal, S.

    2012-07-01

    The current work describes the experimental results related to the successful preparation of fine-grained, Cu-Al-Ni, high-temperature shape-memory alloy (SMA) strips from elemental Cu, Al, and Ni powders via a novel powder metallurgy (P/M) processing approach. This route consists of short time period ball milling of elemental powder mixture, preform preparation from milled powder, sintering of preforms, hot-densification rolling of unsheathed sintered powder preforms under protective atmosphere, and postconsolidation homogenization treatment of the hot-rolled strips. It has been shown that it is possible to prepare chemically homogeneous Cu-Al-Ni SMA strips consisting of equiaxed grains of average size approximately 6 μm via the current processing approach. It also has been shown that fine-grained microstructure in the finished Cu-Al-Ni SMA strips resulted from the pinning effect of nanosized alumina particles present on the grain boundaries. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β1^' } - and γ1^' } -type martensites. The Cu-Al-Ni SMA strips had 677 MPa average fracture strength, coupled with 13 pct average fracture strain. The fractured surfaces of the specimens exhibited primarily dimpled ductile type of fracture, together with some transgranular mode of fracture. The Cu-Al-Ni strips exhibited an almost 100 pct one-way shape recovery after bending followed by unconstrained heating at 1, 2, and 4 pct applied deformation prestrain. The two-way shape-memory strain was found approximately 0.35 pct after 15 training cycles at 4 pct applied training prestrain.

  5. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    PubMed

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%.

  6. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing.

    PubMed

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-10-03

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

  7. The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys

    NASA Astrophysics Data System (ADS)

    Cerezo, J.; Vandendael, I.; Posner, R.; de Wit, J. H. W.; Mol, J. M. C.; Terryn, H.

    2016-03-01

    This study investigates the effect of different alkaline, acidic and thermal pre-conditioning treatments applied to different Al alloy surfaces. The obtained results are compared to the characteristics of Zr-based conversion coatings that were subsequently generated on top of these substrates. Focus is laid on typical elemental distributions on the sample surfaces, in particular on the amount of precipitated functional additives such as Cu species that are present in the substrate matrix as well as in the conversion bath solutions. To this aim, Field Emission Auger Electron spectra, depth profiles and surface maps with superior local resolution were acquired and compared to scanning electron microscopy images of the sample. The results show how de-alloying processes, which occur at and around intermetallic particles in the Al matrix during typical industrial alkaline or acidic cleaning procedures, provide a significant source of crystallization cores for any following coating processes. This is in particular due for Cu-species, as the resulting local Cu structures on the surface strongly affect the film formation and compositions of state-of-the-art Zr-based films. The findings are highly relevant for industrial treatments of aluminium surfaces, especially for those that undergo corrosion protection and painting process steps prior to usage.

  8. Increasing strength, ductility and impact toughness of ultrafine-grained 6063 aluminium alloy by combining ECAP and a high-temperature short-time aging

    NASA Astrophysics Data System (ADS)

    Meyer, L. W.; Schönherr, R.; Hockauf, M.

    2010-07-01

    Since fully-dense ultrafine or nanocrystalline bulk materials can be processed, there has been an increasing scientific interest in several plastic deformation (SPD) procedures, particularly in the last decade. Especially the equal-channel angular pressing (ECAP) has widely been investigated due to its ability of producing billets sufficiently large for industrial applications in functional or structural components. The significant strength increase based on grain refinement is typically accompanied by a significant decrease in ductility and toughness. Within this work, a new methodology was applied for combining ECAP with a subsequent high-temperature short-time aging for the 6063 aluminium alloy. An increase in strength, ductility as well as impact toughness regarding its coarse grained counterparts was reached. More precisely, ultimate tensile strength, elongation to failure and impact toughness were increased by 46%, 21% and 40% respectively. This was observed after only one run of ECAP at room temperature in a solid-solution treated condition and an aging at 170° C for 18 minutes. The regular aging time for maximum strength at 170° C is around 6 hours. Longer exposure times lead to recrystallisation and, as for regular aging, it leads to overaging, both causing a decrease of properties. The work demonstrates a strategy for an efficient processing of commercial Al-Mg-Si alloys with outstanding mechanical properties.

  9. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  10. Aluminium content of Spanish infant formula.

    PubMed

    Navarro-Blasco, I; Alvarez-Galindo, J I

    2003-05-01

    Levels of aluminium in 82 different infant formulae from nine different manufacturers in Spain were determined by acid-microwave digestion and graphite furnace atomic absorption spectrophotometry. The influence of aluminium content in tap water in reconstituted powder formulae was examined and an estimate was made of the theoretical toxic aluminium intake in comparison with the provisional tolerable weekly intake (PTWI). Possible interactions between aluminium and certain essential trace elements added to infant formulations have been studied according to the type or main protein-based infant formula. In general, the infant formulae contained a higher aluminium content than that found in human milk, especially in the case of soya, preterm or hydrolysed casein-based formulae. Standard formulae gave lower aluminium intakes amounting to about 4% PTWI. Specialized and preterm formulae resulted in a moderate intake (11-12 and 8-10% PTWI, respectively) and soya formulae contributed the highest intake (15% PTWI). Aluminium exposure from drinking water used for powder formula reconstitution was not considered a potential risk. In accordance with the present state of knowledge about aluminium toxicity, it seems prudent to call for continued efforts to standardize routine quality control and reduce aluminium levels in infant formula as well as to keep the aluminium concentration under 300 microg l(-1) for all infant formulae, most specifically those formulae for premature and low birth neonates.

  11. Electron Conditioning of Technical Aluminium Surfaces

    SciTech Connect

    Le Pimpec, F

    2004-09-02

    The effect of electron conditioning on commercially aluminium alloys 1100 and 6063 were investigated. Contrary to the assumption that electron conditioning, if performed long enough, can reduce and stabilize the SEY to low values (= 1.3, value of many pure elements [1]), the SEY of aluminium did not go lower than 1.8. In fact, it reincreases with continued electron exposure dose.

  12. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2017-07-01

    80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.

  13. Characterization of Nanostructured NbSi2 Intermetallic Coatings Obtained by Plasma Spraying of Mechanically Alloyed Powders

    NASA Astrophysics Data System (ADS)

    Yazdani, Zohreh; Karimzadeh, Fathallah; Abbasi, Mohammad-Hasan

    2015-08-01

    Nanostructured NbSi2 powders plasma sprayed on to Ti-6Al-4V substrates were characterized in this research. After preparation of the nanostructured NbSi2 powders by mechanical alloying of an Nb-Si powder mixture, agglomeration was performed to obtain a particle size suitable for spraying. The agglomerated powders were then sprayed by atmospheric plasma spraying. Structural transformation of the powders and morphological and mechanical changes of the coatings were examined by use of x-ray diffraction analysis, scanning electron microscopy, energy dispersive spectroscopy, and microhardness testing. During milling, NbSi2 intermetallic with a grain size of approximately 15 nm was gradually formed. After plasma spraying, a coating of hardness 550 ± 8 HV with a uniform nanocrystalline structure, low oxide content, low porosity, and a good adhesion to the substrate was obtained. No phase change occurred after spraying and the NbSi2 compound remained nanostructured with a grain size of approximately 82 nm.

  14. Effect of Microstructure on the Hot Deformation Behavior of TiAl-Based Alloys Prepared by Powder Metallurgy Method

    NASA Astrophysics Data System (ADS)

    Wang, DongJun; Zhang, Rui; Yuan, Hao; Qiang, JianMing

    2017-10-01

    To investigate microstructural influence on deformation behavior, TiAl-based alloys were prepared by spark plasma sintering and heat treatment was conducted to optimize the microstructures of as-sintered samples. The near-γ microstructure of the sintered alloy transformed into a duplex microstructure after heat treatment. Furthermore, isothermal compression tests were carried out at different temperatures in the range 1100-1200°C with a strain rate of 0.01 s-1. The resistances to deformation of the heat-treated samples were smaller than those of the as-sintered samples under the same deformation conditions. In particular, the heat-treated sample had fewer and smaller α2 phases than did the sintered alloy, and it exhibited a well-deformed appearance and homogeneous microstructure after deformation at a temperature 100°C lower than the sintered alloy. The results revealed that TiAl-based alloys with an optimal microstructure fabricated by powder metallurgy had good formability and a homogeneous deformed microstructure, which was preferable for hot-working and further secondary processing.

  15. Effect of Microstructure on the Hot Deformation Behavior of TiAl-Based Alloys Prepared by Powder Metallurgy Method

    NASA Astrophysics Data System (ADS)

    Wang, DongJun; Zhang, Rui; Yuan, Hao; Qiang, JianMing

    2017-06-01

    To investigate microstructural influence on deformation behavior, TiAl-based alloys were prepared by spark plasma sintering and heat treatment was conducted to optimize the microstructures of as-sintered samples. The near-γ microstructure of the sintered alloy transformed into a duplex microstructure after heat treatment. Furthermore, isothermal compression tests were carried out at different temperatures in the range 1100-1200°C with a strain rate of 0.01 s-1. The resistances to deformation of the heat-treated samples were smaller than those of the as-sintered samples under the same deformation conditions. In particular, the heat-treated sample had fewer and smaller α2 phases than did the sintered alloy, and it exhibited a well-deformed appearance and homogeneous microstructure after deformation at a temperature 100°C lower than the sintered alloy. The results revealed that TiAl-based alloys with an optimal microstructure fabricated by powder metallurgy had good formability and a homogeneous deformed microstructure, which was preferable for hot-working and further secondary processing.

  16. Powder materials from special steels and alloys for machine building enterprises

    NASA Astrophysics Data System (ADS)

    Ternovoi, Yu. F.; Kononenko, A. A.; Kameneva, S. A.; Kuratchenko, A. B.; Pitomets, O. A.

    2008-07-01

    Powder materials produced at UkrNIIspetsstal' by the methods of spraying liquid metal by gas and water are studied. The quality of soldered joints formed with the use of powder solders is controlled and the quality of articles faced by the plasma-powder method is determined.

  17. The prophylactic reduction of aluminium intake.

    PubMed

    Lione, A

    1983-02-01

    The use of modern analytical methods has demonstrated that aluminium salts can be absorbed from the gut and concentrated in various human tissues, including bone, the parathyroids and brain. The neurotoxicity of aluminium has been extensively characterized in rabbits and cats, and high concentrations of aluminium have been detected in the brain tissue of patients with Alzheimer's disease. Various reports have suggested that high aluminium intakes may be harmful to some patients with bone disease or renal impairment. Fatal aluminium-induced neuropathies have been reported in patients on renal dialysis. Since there are no demonstrable consequences of aluminium deprivation, the prophylactic reduction of aluminium intake by many patients would appear prudent. In this report, the major sources of aluminium in foods and non-prescription drugs are summarized and alternative products are described. The most common foods that contain substantial amounts of aluminium-containing additives include some processed cheeses, baking powders, cake mixes, frozen doughs, pancake mixes, self-raising flours and pickled vegetables. The aluminium-containing non-prescription drugs include some antacids, buffered aspirins, antidiarrhoeal products, douches and haemorrhoidal medications. The advisability of recommending a low aluminium diet for geriatric patients is discussed in detail.

  18. Microstructures and characteristics of solid state recycling aluminium chips AA6061/Al-SiC composites fabricated by cold compaction method

    NASA Astrophysics Data System (ADS)

    Kadir, Muhammad Irfan Ab; Mustapa, Mohammad Sukri; Ibrahim, Mohd Rasidi; Samsi, Mohd Arif; Mahdi, Ahmed Sahib

    2017-05-01

    Solid state recycling methods allow the production of high density aluminium alloy parts directly from aluminium scrap. Direct conversion approach of recycling of aluminium is relatively easy, less energy usage and environmental friendly. In this paper, AA6061 chips were recycled to fabricate SiC particle (2.5, 5 and 7.5 wt.%) and Al powder (10, 30 and 50 wt.%) reinforced AA6061 alloy matrix composites by the combination cold pressing techniques and sintering process. The effects of various composition of Al and SiC powder on the microstructure of the recycled AA6061/Al-SiC composites showed that the Al and SiC powders in samples were distributed non-homogeneously and randomly between the AA6061 chip regions. The density of sample AA6061/10Al powder gave the closest value to theoretical at 2.43 g/cm3 and decreases when more Al powder were added. The AA6061/10Al-7.5SiC sample showed the highest hardness at 61.0 Hv.

  19. Real-time synchrotron x-ray observations of equiaxed solidification of aluminium alloys and implications for modelling

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Liotti, E.; McDonald, S. D.; Nogita, K.; Yasuda, H.; Grant, P. S.; StJohn, D. H.

    2015-06-01

    Recently, in-situ observations were carried out by synchrotron X-ray radiography to observe the nucleation and growth in Al alloys during solidification. The nucleation and grain formation of a range of Al-Si and Al-Cu binary alloys were studied. When grain refiner was added to the alloys, the location of the nucleation events was readily observed. Once nucleation began it continued to occur in a wave of events with the movement of the temperature gradient across the field of view due to cooling. Other features observed were the settling of the primary phase grains in the Al-Si alloys and floating in the Al-Cu alloys, the effects of convection with marked fluctuation of the growth rate of the solid-liquid interface in the Al-Si alloys, and an absence of fragmentation. The microstructures are typical of those produced in the equiaxed zone of actual castings. These observations are compared with predictions arising from the Interdependence model. The results from this comparison have implications for further refinement of the model and simulation and modelling approaches in general. These implications will be discussed.

  20. Laser alloying and cladding of glass-ceramic surfaces using nano-scaled metal-oxide powders

    NASA Astrophysics Data System (ADS)

    Rohde, Magnus; Schreck, Sabine; Sachse, Sophia

    2008-02-01

    Laser supported processes can be used to modify the properties of ceramic substrates locally. These processes are characterised by a strong thermal interaction between the laser beam and the ceramic surface which leads to localised melting. During the dynamic melting process second phase particles are introduced into the melt pool in order to modify the physical properties. LTCC (Low Temperature Co-fired Ceramics)-substrates were laser alloyed and coated by laser cladding using nanoscaled powders of WO 3 and CuO. Depending on the process parameters and the powders used modified areas with different geometries could be fabricated with a complex multiphase microstructure. Particle agglomerates, small crystals as well as grains covered with reaction phase could be found inside the microstructure, in parts with typical length scales in the submicron range. The properties of the laser modified tracks differ significantly from that of the substrate. In particular the thermal and electrical properties were changed. An enhanced thermal conductivity could be detected in laser tracks alloyed with the nano-scaled CuO- and WO 3-powders. The electrical resistivity showed a semiconducting behaviour with a negative temperature coefficient, i.e. it decreases with increasing temperature.

  1. Hydrogen generation from ammonia borane and water through the combustion reactions with mechanically alloyed Al/Mg powder

    NASA Astrophysics Data System (ADS)

    Rodriguez, Daniel

    Finding and developing a safe and effective method for hydrogen storage is integral to its use as an alternative source of energy. The goal of the studies described in this thesis was to investigate the feasibility of developing combustible hydrogen-generating compositions based on ammonia borane and novel energetic materials such as nanocomposite and mechanically alloyed reactive materials, recently obtained by Prof. Edward Dreizin's team at the New Jersey Institute of Technology (NJIT). Such compositions could be stored for long time and release hydrogen on demand, upon ignition. The first phase of the research included thermodynamic calculations for combustion of ammonia borane with various reactive materials obtained at NJIT. The second phase involved experiments with compositions that appeared to be promising based on thermodynamic calculations. An experimental setup with laser ignition of mixtures was developed for these experiments. As a result of these tests, further work was focused on mixtures of ammonia borane, gelled water, and mechanically alloyed Al/Mg powder. The last part of the research revealed the reaction mechanisms during combustion of these mixtures. For this purpose, isotopic tests, involving use of heavy water and mass-spectroscopy of gaseous combustion products, were conducted. The results of the present work indicate that combustible mixtures of ammonia borane, water, and mechanically alloyed Al/Mg powder are promising for the development of hydrogen generators that release large amounts of hydrogen upon ignition.

  2. Development of Ti-6Al-4V and Ti-1Al-8V-5Fe Alloys Using Low-Cost TiH2 Powder Feedstock

    SciTech Connect

    Joshi, Vineet V.; Lavender, Curt; Moxon, Vladimir; Duz, Vlad; Nyberg, Eric; Weil, K. Scott

    2012-09-25

    Thermo-mechanical processing was performed on two titanium alloy billets, a beta-titanium alloy (Ti1Al8V5Fe) and an alpha-beta titanium alloy (Ti6Al4V), which had been produced using a novel low-cost powder metallurgy process that relies on the use of TiH2 powder as a feedstock material. The thermomechanical processing was performed in the beta region of the respective alloys to form 16-mm diameter bars. The hot working followed by the heat treatment processes not only eliminated the porosity within the materials but also developed the preferred microstructures. Tensile testing and rotating beam fatigue tests were conducted on the as-rolled and heat-treated materials to evaluate their mechanical properties. The mechanical properties of these alloys matched well with those produced by the conventional ingot processing route.

  3. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  4. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060

    SciTech Connect

    Strobel, Katharina; Lay, Matthew D.H.; Easton, Mark A.; Sweet, Lisa; Zhu, Suming; Parson, Nick C.; Hill, Anita J.

    2016-01-15

    Quench sensitivity in Al–Mg–Si alloys has been largely attributed to the solute loss at the heterogeneous nucleation sites, primarily dispersoids, during slow cooling after extrusion. As such, the number density of dispersoids, the solute type and concentration are considered to be the key variables for the quench sensitivity. In this study, quench sensitivity and the influence of natural ageing in a lean Al–Mg–Si alloy, AA6060, which contains few dispersoids, have been investigated by hardness measurement, thermal analysis, transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). It is shown that the quench sensitivity in this alloy is associated with the degree of supersaturation of vacancies after cooling. Due to vacancy annihilation and clustering during natural ageing, the quench sensitivity is more pronounced after a short natural ageing time (30 min) compared to a longer natural ageing time (24 h). Therefore, prolonged natural ageing not only leads to an increase in hardness, but can also have a positive effect on the quench sensitivity of lean Al–Mg–Si alloys. - Highlights: • Significant quench sensitivity observed in AA6060 alloy after 30 min natural ageing • Prolonged natural ageing increased hardness and reduced QS. • Low dispersoid density leads to insignificant QS from non-hardening precipitates. • Vacancy supersaturation identified as a contributor to QS.

  5. Properties of nanocrystalline Fe75Si15M10 (M-Cr and Al) powders prepared by mechanical alloying.

    PubMed

    Kalita, M P C; Perumal, A; Srinivasan, A; Pandey, Brajesh; Verma, H C

    2008-08-01

    We report the structural and magnetic properties of the nanocrystalline Fe75Si15M10 (M-Al and Cr) powders prepared by mechanical alloying. The milling process produced a non-equilibrium solid solutions of bcc alpha-Fe(Si,Cr) and alpha-Fe(Si,Al). The average dislocation density increases and the average crystallite size decreases with increasing milling time. Magnetic property studies show that the coercivity of the sample increases and magnetization of the sample decreases with increasing milling time. The evolution of a non-equilibrium solid solution and the resulting magnetic properties of nanocrystalline powders are explained on the basis of Neel theory and modified random anisotropy model proposed by Shen et al.

  6. Effect of atomization pressure on the flow field distribution of TC4 alloy powder prepared by EIGA

    NASA Astrophysics Data System (ADS)

    Guo, Kuaikuai; Liu, Changsheng; Chen, Suiyuan; Li, Jinbao; Fu, Qian

    2017-06-01

    By means of the electrode induction melt inert gas atomization (EIGA) equipment designed and developed by ourselves, TC4 alloy powder were prepared. In the process of atomization, the pressure plays a decisive role in the morphology and particle size of the powder. In this paper, the effect of atomization pressure on the distribution of fluid structure was studied by computational fluid dynamics (CFD). The results show that with the increase of atomization pressure, the shape of the recirculation zone is expanded and then compressed. When the gas pressure is 2MPa, the suction pressure ΔP is 0.498MPa, thus forming a positive pressure zone. So it is easy to liquid droplets dripping up, resulting in clogging the nozzle, which has been confirmed in the experiment.

  7. Ultra-High Strength TiC/Refractory High-Entropy-Alloy Composite Prepared by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Jingshi; Chen, Jian; Fang, Qihong; Liu, Yong

    2017-02-01

    A TiC-based ceramic composite with refractory high-entropy-alloy (HEA) binders was developed through a novel reactive sintering method. In the process, refractory carbide powders were reacted with Ti powder at high temperature, and in situ formation of Ti carbides and refractory HEA phases occurred. The results indicate that only body-centered-cubic HEA phases and TiC phases are formed after the reactive sintering. The microstructure of the composite is homogeneous, consisting of ultra-fine TiC particles with an average size of 0.85 μm and HEA grains with an average grain size of 1.8 μm. The TiC/HEA composite shows an ultra-high room-temperature compressive strength (>3000 MPa), compared to 1790-2210 MPa for the conventional TiC cermets.

  8. Ultra-High Strength TiC/Refractory High-Entropy-Alloy Composite Prepared by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Jingshi; Chen, Jian; Fang, Qihong; Liu, Yong

    2017-04-01

    A TiC-based ceramic composite with refractory high-entropy-alloy (HEA) binders was developed through a novel reactive sintering method. In the process, refractory carbide powders were reacted with Ti powder at high temperature, and in situ formation of Ti carbides and refractory HEA phases occurred. The results indicate that only body-centered-cubic HEA phases and TiC phases are formed after the reactive sintering. The microstructure of the composite is homogeneous, consisting of ultra-fine TiC particles with an average size of 0.85 μm and HEA grains with an average grain size of 1.8 μm. The TiC/HEA composite shows an ultra-high room-temperature compressive strength (>3000 MPa), compared to 1790-2210 MPa for the conventional TiC cermets.

  9. Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.

    2016-03-01

    A comprehensive assessment of fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy, manufactured using various powder-based processing approaches to-date, is performed in this work. The focus is on PM processes that use either blended element (BE) or pre-alloyed (PA) powder as feedstock. Porosity and the microstructure condition have been found to be the two most dominant material variables that control the fatigue strength. The evaluation reveals that the fatigue performance of PM Ti-6Al-4V, in the as-sintered state, is far lower than that in the wrought condition. This is largely caused by residual porosity, even if it is present in small amounts, or, by the coarse lamellar colony microstructure. The fatigue strength is significantly improved by the closure of pores, and it approaches the levels of wrought Ti-6Al-4V alloys, after hot-isostatic-pressing (HIPing). Further thermo-mechanical and heat treatments lead to additional increases in fatigue strength-in one case, a high fatigue strength level, exceeding that of the mill-annealed condition, was achieved. The work identifies the powder, process and microstructure improvements that are necessary for achieving high fatigue strength in powder metallurgical Ti-6Al-4V alloys in order for them to effectively compete with wrought forms. The present findings, gathered from the traditional titanium powder metallurgy, are also directly applicable to additively manufactured titanium, because of the similarities in pores, defects, and microstructures between the two manufacturing processes.

  10. Cell damage in vitro following direct contact with fine particles of titanium, titanium alloy and cobalt-chrome-molybdenum alloy.

    PubMed

    Evans, E J

    1994-07-01

    Fibroblastic cells in vitro were exposed to powders of titanium, titanium-aluminium-vanadium alloy and cobalt-chrome-molybdenum (Co-Cr-Mo) alloy, either in direct contact with the cells or separated from the cells by a microporous membrane. Fine particles of all the materials reduced cell growth when in direct contact with cells, but only the finest particles of Co-Cr-Mo alloy caused cell damage through the microporous membrane. This provides further evidence that there is a mechanism of cell damage in vitro which depends on a direct interaction between cells and particles and is largely independent of the chemical nature of the particle.

  11. Influences of process parameters on tensile strength of friction stir welded cast A319 aluminium alloy joints

    NASA Astrophysics Data System (ADS)

    Jayaraman, M.; Sivasubramanian, R.; Balasubramanian, V.; Babu, S.

    2009-04-01

    Fusion welding of cast A319 (Al-Si-Cu) alloy will lead to many problems including porosity, micro-fissuring, and hot cracking. Friction Stir Welding (FSW) can be used to weld A319 alloy without these defects. In this investigation, an attempt has been made to study the effect of FSW process parameters on the tensile strength of A319 alloy welded joints. Joints were made using different combinations of tool rotation speed, welding speed, and axial force, each at four levels. The quality of weld zone was analyzed using macrostructure and microstructure analysis. Tensile strength of the joints were evaluated and correlated with the weld zone microstructure. The joint fabricated with a 1200 rpm tool rotation speed, 40 mm/min welding speed, and 4 kN axial force showed superior tensile strength compared with the other joints.

  12. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.

    2017-09-01

    The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.

  13. Effect of autoclave heat treatments on the mechanical properties of the prealloyed powder cobalt-base alloy HS-31

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.

    1973-01-01

    The cobalt-base alloy HS-31 was atomized into powder and then consolidated by extrusion or by hot isostatic pressing (HIP) in an autoclave over a range of temperatures spanning the solidus, approximately 2340 F. Extrusions were subsequently autoclaved at the same conditions. Extrusions autoclaved at 2420 F had a life of 300 hours at 1200 F and 30 hours at 1800 F at stresses that result in a 10-hour life with cast HS-31. Superior stress rupture lives of autoclaved material are probably related to the solidification structure at the grain boundaries as well as to the increased grain size.

  14. Using optical diagnostics to determine the melt temperature field in layer-by-layer laser alloying of metal powder

    NASA Astrophysics Data System (ADS)

    Zavalov, Yu. N.; Dubrov, A. V.; Mirzade, F. Kh.; Dubrovin, N. G.; Makarova, E. S.; Dubrov, V. D.

    2017-07-01

    The results of application of optical diagnostics in the estimation of the temperature field at the melt surface in layer-by-layer laser alloying of metal powder are presented. It is demonstrated that surface concavity induced by the thermocapillary effect upon nonuniform heating may distort pyrometry data considerably. The use of external illumination provides an opportunity to determine the shape of the melt surface. The obtained minimum estimate of the temperature gradient in the metal region affected by laser radiation is 2.8 × 104 K/cm.

  15. Magnetic properties of Mn-Al-C alloy powders produced by mechanical grinding

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuji

    2005-05-01

    The saturation magnetization of the milled powders gradually decreased as the milling time increased due to the transformation of the magnetic τ phase into the amorphous phase. On the other hand, the coercivity of the milled powders increased to a peak value of 4.35kOe, then decreased with increasing milling time. When the amorphous powders were annealed at relatively high temperatures, the annealed powders consisted mostly of the magnetic τ phase. The optimally annealed Mn-Al-C-Ni powders exhibited a high remanence of 60emu/g with a coercivity of 1.95kOe, which is comparable to those of the gas-atomized Mn-Al-C-Ni powders.

  16. Precipitation in cold-rolled Al–Sc–Zr and Al–Mn–Sc–Zr alloys prepared by powder metallurgy

    SciTech Connect

    Vlach, M.; Stulikova, I.; Smola, B.; Kekule, T.; Kudrnova, H.; Danis, S.; Gemma, R.; Ocenasek, V.; Malek, J.; Tanprayoon, D.; Neubert, V.

    2013-12-15

    The effects of cold-rolling on thermal, mechanical and electrical properties, microstructure and recrystallization behaviour of the AlScZr and AlMnScZr alloys prepared by powder metallurgy were studied. The powder was produced by atomising in argon with 1% oxygen and then consolidated by hot extrusion at 350 °C. The electrical resistometry and microhardness together with differential scanning calorimetry measurements were compared with microstructure development observed by transmission and scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. Fine (sub)grain structure developed and fine coherent Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles precipitated during extrusion at 350 °C in the alloys studied. Additional precipitation of the Al{sub 3}Sc and/or Al{sub 3}(Sc,Zr) particles and/or their coarsening was slightly facilitated by the previous cold rolling. The presence of Sc,Zr-containing particles has a significant antirecrystallization effect that prevents recrystallization at temperatures minimally up to 420 °C. The precipitation of the Al{sub 6}Mn- and/or Al{sub 6}(Mn,Fe) particles of a size ∼ 1.0 μm at subgrain boundaries has also an essential antirecrystallization effect and totally suppresses recrystallization during 32 h long annealing at 550 °C. The texture development of the alloys seems to be affected by high solid solution strengthening by Mn. The precipitation of the Mn-containing alloy is highly enhanced by a cold rolling. The apparent activation energy of the Al{sub 3}Sc particles formation and/or coarsening and that of the Al{sub 6}Mn and/or Al{sub 6}(Mn,Fe) particle precipitation in the powder and in the compacted alloys were determined. The cold deformation has no effect on the apparent activation energy values of the Al{sub 3}Sc-phase and the Al{sub 6}Mn-phase precipitation. - Highlights: • The Mn, Sc and Zr additions to Al totally suppresses recrystallization at 550 °C. • The Sc,Zr-containing particle

  17. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    PubMed

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution.

  18. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  19. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    DTIC Science & Technology

    2017-03-28

    amorphous (glassy) atomic structure as opposed to an ordered crystalline structure found in regular alloys.[1] These exciting new materials have received...crystallization kinetics when cooling from the molten state may be achieved topologically by having dense atomic packing configurations within the liquid...structure which jams or severely hinders atomic movement/diffusion.[4] DISTRIBUTION A. Approved for public release: distribution unlimited

  20. Microstructures and hardness of stir zone for friction stir processed and post-processed heat treatment 7B04-O aluminium alloy

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ding, H.; Li, J. Z.

    2017-05-01

    Friction stir processing (FSP) with different rotation speeds was conducted on 7B04-O aluminium alloy thin-sheet, then the post-processed heat treatment (PPHT) was carried out. The microstructures and hardness of the stir zone (SZ) under as-processed (AP) and PPHT states were investigated. The result showed that the hardness of the SZ was enhanced under the AP state, attributing to the grain refinement. The effect of PPHT on the hardness of the material was different, compared with the AP state, the hardness of the SZ with a low rotation speed under PPHT state was deteriorated while it was enhanced when high rotation speed was adopted. When FSP was conducted on the O-temper base metal (BM), the initial precipitates in the matrix were coarse and stable, reducing the dissolution rate of the precipitates. High heat input was required in order to induce sufficient dissolution of the precipitates, which was beneficial to elevating the impact of PPHT on hardness. The amount and morphology of the precipitates played important roles in the SZ of improvement in hardness.

  1. Comparison of fatigue crack growth of riveted and bonded aircraft lap joints made of Aluminium alloy 2024-T3 substrates - A numerical study

    NASA Astrophysics Data System (ADS)

    Pitta, S.; Rojas, J. I.; Crespo, D.

    2017-05-01

    Aircraft lap joints play an important role in minimizing the operational cost of airlines. Hence, airlines pay more attention to these technologies to improve efficiency. Namely, a major time consuming and costly process is maintenance of aircraft between the flights, for instance, to detect early formation of cracks, monitoring crack growth, and fixing the corresponding parts with joints, if necessary. This work is focused on the study of repairs of cracked aluminium alloy (AA) 2024-T3 plates to regain their original strength; particularly, cracked AA 2024-T3 substrate plates repaired with doublers of AA 2024-T3 with two configurations (riveted and with adhesive bonding) are analysed. The fatigue life of the substrate plates with cracks of 1, 2, 5, 10 and 12.7mm is computed using Fracture Analysis 3D (FRANC3D) tool. The stress intensity factors for the repaired AA 2024-T3 plates are computed for different crack lengths and compared using commercial FEA tool ABAQUS. The results for the bonded repairs showed significantly lower stress intensity factors compared with the riveted repairs. This improves the overall fatigue life of the bonded joint.

  2. Micro-scratching tests of a rolled aluminium alloy AA2024-T351 thick plate using a diamond micro-blade

    NASA Astrophysics Data System (ADS)

    Pirva, E.; Tudor, A.; Gavrus, A.; Chisiu, G.; Stoica, N.; Predescu, A.

    2017-02-01

    The present research work is focused on investigating the apparent coefficient of abrasive friction of a rolled thick plate of an AA2024-T351 aluminium alloy, using micro-scratch tests. For this study, specific materials specimens and a particular UMT Micro-Scratch Equipment were used. The test involved the generation of a scratch process at a local scale using a diamond stylus (micro-blade defined by a radius of 0.8 μm) moving along a specified path under a constant normal force (10 N) and with a constant speed (0.2 mm/s). For the characterization of the surface quality, two orthogonal directions were considered: the longitudinal one, along the rolling direction, and the corresponding transversal one. Given the fractal nature of the surface, an investigation was done in order to assess its influence on the coefficient of abrasive friction. The fractal dimension Df, one of the most important parameters in a fractal surface analysis, was used to determine this influence in the global friction and abrasion phenomena. The abrasion factor was calculated using the Zum Gahr method for the data obtained with a specialized Mitutoyo SJ-301 surface tester. Measurements were made at the beginning, middle and at the end of the scratch channel. The obtained value for the abrasion factor was slightly less than zero. Other influences of anisotropic material features on global abrasion effects were also analyzed via comparisons of the coefficients of abrasive friction for both static and kinematic conditions.

  3. The influence of laser alloying on the structure and mechanical properties of AlMg5Si2Mn surface layers

    NASA Astrophysics Data System (ADS)

    Pakieła, W.; Tański, T.; Brytan, Z.; Labisz, K.

    2016-04-01

    The goal of this paper was focused on investigation of microstructure and properties of surface layer produced during laser surface treatment of aluminium alloy by high-power fibre laser. The performed laser treatment involves remelting and feeding of Inconel 625 powder into the aluminium surface. As a base metal was used aluminium alloy AlMg5Si2Mn. The Inconel powder was injected into the melt pool and delivered by a vacuum feeder at a constant rate of 4.5 g/min. The size of Inconel alloying powder was in the range 60-130 µm. In order to remelt the aluminium alloy surface, the fibre laser of 3 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 m/min. Based on performed investigations, it was possible to obtain the layer consisting of heat-affected zone, transition zone and remelted zone, without cracks and defects having much higher hardness value compared to the non-alloyed material.

  4. Effect of the Crystallization Conditions of Alloy Mn54Al43C3 on the Magnetic Properties of Mechanically Milled Powder

    NASA Astrophysics Data System (ADS)

    Volkov, K. D.; Tarasov, E. N.; Zinin, A. V.

    2017-01-01

    Results of formation of a ferromagnetic τ-phase and an antiferromagnetic ɛ-phase in alloys of type Mn54Al43C3 obtained by induction and arc melting and by rapid hardening of the melt are presented. The magnetic hysteresis properties of powders produced by high-power mechanical milling of the synthesized alloys are studied. The optimum temperature conditions for transformation of the ɛ-phase into a ferromagnetic τ-phase are determined for the alloys and for their ultrafine powders. The resulting powders of Mn54Al43C3 have an ultimate specific magnetization σ m = 81 (G · cm3)/g and a coercive force H c = 3 kOe in a magnetic field of 12 kOe.

  5. The use of amorphous boron powder enhances mechanical alloying in soft magnetic FeNbB alloy: A magnetic study

    SciTech Connect

    Ipus, J. J.; Blazquez, J. S.; Franco, V.; Conde, A.

    2013-05-07

    Saturation magnetization and magnetic anisotropy have been studied during mechanical alloying of Fe{sub 75}Nb{sub 10}B{sub 15} alloys prepared using crystalline and commercial amorphous boron. The evolution of saturation magnetization indicates a more efficient dissolution of boron into the matrix using amorphous boron, particularly for short milling times. The magnetization of the crystalline phase increases as boron is incorporated into this phase. Two milling time regimes can be used to describe the evolution of magnetic anisotropy: a first regime governed by microstrains and a second one mainly governed by crystal size and amorphous fraction.

  6. Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys

    SciTech Connect

    Muth, Thomas R; Yamamoto, Yukinori; Frederick, David Alan; Contescu, Cristian I; Chen, Wei; Lim, Yong Chae; Peter, William H; Feng, Zhili

    2013-01-01

    ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

  7. The attack of titanium-6 wt% aluminium-4 wt% vanadium alloy by a molten uranium-5.7 wt% manganese alloy at 1015 °C

    NASA Astrophysics Data System (ADS)

    Moran, F. J.; Jarman, R. A.

    1991-06-01

    The liquid metal corrosion (LMC) resistance of the alloy Ti-6 wt% Al-4 wt% V (IMI 318) in contact with molten U-5.7 wt% Mn has been assessed. The uranium alloy was melted at 1015 °C under vacuum in hemispherical IMI 318 alloy crucibles. The attack rate of the molten alloy on the IMI 318, for times up to 3 h, was estimated from metallography and by chemical analysis of the resolidified uranium melt. The mechanism of the LMC process was examined with optical and electron microscopy allied with EDAX and microhardness tests. Melt saturation occurred after one hour and titanium-rich (approximately 80 wt% Ti) dendrites began to nucleate and grow in the uranium melt. This result was predicted by the relevant equilibrium phase diagrams. During the LMC reaction, an interface (diffusion) layer grew in IMI 318 alloy where it contacted the uranium alloy melt. The levels of Ti and U changed with test time and distance across this interface, with the Ti level falling at the melt/IMI 318 surface and the U increasing at the same point. The mean LMC rate was initially rapid, 1.45 mm/h after 15 min but fell to 0.3 mm/h at 3 h. The conclusions were that the LMC reaction was diffusion-controlled, with the slow self-diffusion of β-titanium most likely to be the rate determining step. The reaction probably follows parabolic rate-kinetics as do other diffusion-controlled processes. The attack front was generally uniform with no clear evidence of preferential attack.

  8. Initial stage densification during spark plasma sintering of Fe-based amorphous alloy powder: Analysis of viscous flow

    NASA Astrophysics Data System (ADS)

    Paul, Tanaji; Harimkar, Sandip P.

    2016-10-01

    Understanding the mechanism of densification of amorphous alloy powders is important for determining the parameters during sintering of these materials. In this paper, we report on the analysis of densification of Fe48Cr15Mo14Y2C15B6 amorphous alloy powder during spark plasma sintering. Sintering up to 1000 °C resulted in two clearly distinguishable stages of densification: stage I from 320 °C to 740 °C and stage II from 830 °C to 1000 °C. The maximum densification rate during stage I was attained at 585 °C up to which the sample remained fully amorphous. During the entire stage II, the sample was fully crystalline, and the maximum densification rate attained at 935 °C was much lower than that observed during stage I. Viscous flow during stage I was analyzed, yielding an estimate of the activation energy to be 94.0 ± 0.2 kJ mol-1 in the temperature range from 525 °C to 580 °C.

  9. Impact properties of the aircraft cast aluminium alloy Al-7Si0.6Mg (A357)

    NASA Astrophysics Data System (ADS)

    Alexopoulos, N. D.

    2010-06-01

    The impact mechanical properties of the widely used in the aeronautics A357 cast aluminum alloy were investigated by exploiting experiments on an instrumented Charpy impact testing machine. The evaluated impact properties for 25 different artificial aging heat treatment conditions were analyzed and discussed in conjunction with the respective tensile properties. Correlations are proposed to establish useful relationships between impact resistance and tensile strain energy density properties. The established correlations, which are well supported by the performed experiments, can be used to estimate the tensile ductility and toughness of the A357 cast aluminum alloy from the Charpy impact test. Performed fractographic analyses were supporting the physically arbitrary correlation between tensile strain energy density and impact resistance.

  10. Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies

    SciTech Connect

    Ringer, S.P.; Hono, K.

    2000-02-01

    This paper examines the microstructural evolution in selected aluminum alloys based on commercial age hardenable 2000, 6000, and 7000 series alloys. Atom probe field-ion microscopy and transmission electron microscopy have been used to examine the effects of microalloying and the origins of hardening. The combined application of these techniques is particularly important in the study of nanoscale precipitation processes. It is shown that the nature and kinetics of the precipitation process depend on the solute-solute interactions that produce solute clusters. The solute clusters precede the formation of GP zones or precipitation, and have a defining role on the nature and kinetics of the subsequent precipitation processes. Moreover, interactions between solute clustering and dislocations can have a significant hardening effect, the origins of which seem to be distinctly different from the conventional notion of precipitation hardening.

  11. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering.

    PubMed

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-03-06

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  12. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    PubMed Central

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-01-01

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed. PMID:28809344

  13. Investigation impact of stressed state conditions and thermomechanical parameters on the texture and structure evolution in 1565ph aluminium alloy

    NASA Astrophysics Data System (ADS)

    Yashin, V. V.; Aryshensky, E. V.; Kawalla, R. F.; Serebryany, V. N.; Rushchits, S. V.

    2016-11-01

    The paper is devoted to study of the impact stress condition and thermomechanical treatment parameters on the structure and texture evolution of new 1565 ph aluminum alloy. For that purposes, we use test on Gleeble equipment, FM calculation, optical microscopy and x ray diffraction texture analysis. The dependency between the deformation texture components development and strain rate value was established. Differences in the texture evolution at uniaxial compression stress and plain strain mode were revealed.

  14. Fatigue FEM analysis in the case of brazed aluminium alloy 3L59 used in aeronautical industry

    NASA Astrophysics Data System (ADS)

    Dimitrescu, A.; Amza, Gh; Niţoi, D. F.; Amza, C. Gh; Apostolescu, Z.

    2016-08-01

    The use, on a larger scale, of brazed aluminum alloys in the aerospace industry led to the need for a detailed study of the assemblies behavior. These are built from 6061 aluminum aloy (3L59) brazed with aluminum aloy A103. Therefore, a finit element simulation (FEM) of durability is necessary, that consists in the observation of gradual deterioration until failure. These studies are required and are previous to the stage of the producing the assembly and test it by traditional methods.

  15. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.

    PubMed

    Nouri, A; Hodgson, P D; Wen, C E

    2010-04-01

    The influence of different amounts and types of process control agent (PCA), i.e., stearic acid and ethylene bis-stearamide, on the porous structure and mechanical properties of a biomedical Ti-16Sn-4Nb (wt.%) alloy was investigated. Alloy synthesis was performed on elemental metal powders using high-energy ball milling for 5h. Results indicated that varying the PCA content during ball milling led to a drastic change in morphology and particle-size distribution of the ball-milled powders. Porous titanium alloy samples sintered from the powders ball milled with the addition of various amounts of PCA also revealed different pore morphology and porosity. The Vickers hardness of the sintered titanium alloy samples exhibited a considerable increase with increasing PCA content. Moreover, the addition of larger amounts of PCA in the powder mixture resulted in a significant increase in the elastic modulus and peak stress for the sintered porous titanium alloy samples under compression. It should also be mentioned that the addition of PCA introduced contamination (mainly carbon and oxygen) into the sintered porous product.

  16. Cube texture formation during the early stages of recrystallization of Al-1%wt.Mn and AA1050 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Miszczyk, M. M.; Paul, H.

    2015-08-01

    The cube texture formation during primary recrystallization was analysed in plane strain deformed samples of a commercial AA1050 alloy and an Al-1%wt.Mn model alloy single crystal of the Goss{110}<001> orientation. The textures were measured with the use of X-ray diffraction and scanning electron microscopy equipped with an electron backscattered diffraction facility. After recrystallization of the Al-1%wt.Mn single crystal, the texture of the recrystallized grains was dominated by four variants of the S{123}<634> orientation. The cube grains were only sporadically detected by the SEM/EBSD system. Nevertheless, an increased density of <111> poles corresponding to the cube orientation was observed. The latter was connected with the superposition of four variants of the S{123}<634> orientation. This indicates that the cube texture after the recrystallization was a ‘compromise texture’. In the case of the recrystallized AA1050 alloy, the strong cube texture results from both the increased density of the particular <111> poles of the four variants of the S orientation and the ∼40°(∼< 111>)-type rotation. The first mechanism transforms the Sdef-oriented areas into Srex ones, whereas the second the near S-oriented, as-deformed areas into near cube-oriented grains.

  17. Effect of spark plasma sintering on plasma electrolytic oxidation coatings on gas-atomized Mg-Zn-Y alloy containing nano-sized powders.

    PubMed

    Lee, Du Hyung; Kim, Bo Sik; Song, Yo-seung; Kim, Sung Ho; Lee, Chan Bok; Chang, Si Young

    2010-01-01

    Mg-1.0wt%Zn-2.0wt%Y alloy powders were produced by gas atomization, and subsequently sintered by spark plasma sintering (SPS). The SPSed Mg-1.0wt%Zn-2.0wt%Y alloy, which showed a microstructure of well-bonded grains containing nano-sized powders of approximately 100 nm in diameter, was coated by a plasma electrolytic oxidation (PEO) method. Microstructure, mechanical properties and corrosion properties of PEO coatings were investigated and compared to those of normally sintered Mg-1.0wt%Zn-2.0wt%Y and cast Mg-1.0wt%Zn alloys. All coatings consisted of MgO and Mg2SiO4. The micro-hardness and friction coefficient of coatings on the SPSed Mg-1.0wt%Zn-2.0wt%Y alloy were higher than those on normally sintered Mg-1.0wt%Zn-2.0wt%Y and cast Mg-l.0wt%Zn alloys. However, the corrosion resistance in 3.5% NaCl solution for the SPSed Mg-1.0wt%Zn-2.0wt%Y alloy was between that for normally sintered Mg-1.0wt%Zn-2.0wt%Y alloy and cast Mg-1.0wt%Zn alloy.

  18. Lead-free Sn-Ag and Sn-Ag-Bi solder powders prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Lai, H. L.; Duh, J. G.

    2003-04-01

    A mechanical alloying (MA) process was used to produce lead-free solder pastes of Sn-3.5Ag and the Sn-3.5Ag-4Bi system. Because of the high energy induced by repeated fracturing and welding, the grinding media played an important role during the MA process. A ceramic container was used to provide stronger impact force, which could induce phase transformation better than a Teflon container. In addition, it was found that 1-cm balls could fracture Bi particles and promote their dissolution into the Sn matrix. On the contrary, the milling process tended to achieve homogeneous mixing when using 3-mm balls. The MA powders, after milling with 3-mm balls, showed a small endothermic peak from the differential scanning calorimetry (DSC) profile at around 138°C, which was the eutectic temperature of Sn-Bi. The melting points of the MA powders in the ceramic container were measured to be 221°C and 203°C, respectively, for Sn-3.5Ag and Sn-3.5Ag-4Bi from the DSC curves. The reduced melting point ensured the complete melting during reflow with a peak temperature of 240°C. The formation of Ag3Sn was also observed from the x-ray diffraction peaks, indicating successful alloying by MA. The solder pastes could, thus, be produced by adding flux into the MA powders. The wetting property of the solder joint was also evaluated. The as-prepared solder pastes on electroless Ni-P/Cu/Si showed good metallurgical bonding with a contact angle less than 20°.

  19. Porosity, Microstructure, and Mechanical Properties of Ti-6Al-4V Alloy Parts Fabricated by Powder Compact Forging

    NASA Astrophysics Data System (ADS)

    Jia, Mingtu; Zhang, Deliang; Liang, Jiamiao; Gabbitas, Brian

    2017-01-01

    Ti-6Al-4V alloy powders produced using a hydrogenation-dehydrogenation process and a gas atomization process, respectively, were rapidly consolidated into near-net-shaped parts by powder compact forging. The porosity, microstructure, and tensile mechanical properties of specimens cut from regions at different distances from the side surfaces of the forged parts were examined. The regions near the side surfaces contained a fraction of pores due to the circumferential tensile strain arising during the powder compact forging process, and the porosity level decreased rapidly to zero with increasing the distance from the side surface. The forged parts had a fully lamellar structure with the α + β colony sizes and α lamella thickness changing little with the distance from the side surface. The specimens cut from the regions near the side surfaces had a lower yield strength and tensile strength. The correlation of porosity with the yield strength of the specimens suggested that the reduction of load bearing areas due to the porosity and unbonded or weakly bonded interparticle boundaries was not the only reason for the lower strength, and the stress concentration at the pores and associated with their geometry also played an important role in this. It is likely that the effect of stress concentration on yield strength reduction of the forged part increases with oxygen content. The Hall-Petch relationship of the yield strength and the average α lamella thickness suggested that the strength of the fully dense and fully consolidated forged parts was increased by oxygen solution strengthening.

  20. Porosity, Microstructure, and Mechanical Properties of Ti-6Al-4V Alloy Parts Fabricated by Powder Compact Forging

    NASA Astrophysics Data System (ADS)

    Jia, Mingtu; Zhang, Deliang; Liang, Jiamiao; Gabbitas, Brian

    2017-04-01

    Ti-6Al-4V alloy powders produced using a hydrogenation-dehydrogenation process and a gas atomization process, respectively, were rapidly consolidated into near-net-shaped parts by powder compact forging. The porosity, microstructure, and tensile mechanical properties of specimens cut from regions at different distances from the side surfaces of the forged parts were examined. The regions near the side surfaces contained a fraction of pores due to the circumferential tensile strain arising during the powder compact forging process, and the porosity level decreased rapidly to zero with increasing the distance from the side surface. The forged parts had a fully lamellar structure with the α + β colony sizes and α lamella thickness changing little with the distance from the side surface. The specimens cut from the regions near the side surfaces had a lower yield strength and tensile strength. The correlation of porosity with the yield strength of the specimens suggested that the reduction of load bearing areas due to the porosity and unbonded or weakly bonded interparticle boundaries was not the only reason for the lower strength, and the stress concentration at the pores and associated with their geometry also played an important role in this. It is likely that the effect of stress concentration on yield strength reduction of the forged part increases with oxygen content. The Hall-Petch relationship of the yield strength and the average α lamella thickness suggested that the strength of the fully dense and fully consolidated forged parts was increased by oxygen solution strengthening.

  1. Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.

    PubMed

    Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi

    2017-06-28

    The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.

  2. Deformation and Fracture of P/M (Powder/Metallurgy) Titanium Alloys.

    DTIC Science & Technology

    1984-11-05

    the graduate students involved. The following students have been supported by this program during part or all of the past fiscal year: Barbara Loqrasso...holes/voids. Hot Isostatic Pressing (with Barbara Lograsso) The use of hot isostatic pressing (HIP) to compact both powders and castings to full density...17 19. N. A. Fleck and R. A. Smith, Powder Metall. 24, 126 (1981). 20. F. A. McClintock , J. Appl

  3. Strength-Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Chandran, K. S. Ravi

    2017-02-01

    A comprehensive assessment of tensile properties of powder metallurgical (PM) processed Ti-6Al-4V alloy, through the mapping of strength-ductility property domains, is performed in this review. Tensile property data of PM Ti-6Al-4V alloys made from blended element (BE) and pre-alloyed powders including that additive manufactured (AM) from powders, as well as that made using titanium hydride powders, have been mapped in the form of strength-ductility domains. Based on this, porosity and microstructure have been identified as the dominant variables controlling both the strength and the tensile ductility of the final consolidated materials. The major finding is that tensile ductility of the PM titanium is most sensitive to the presence of pores. The significance of extreme-sized pores or defects in inducing large variations in ductility is emphasized. The tensile strength, however, has been found to depend only weakly on the porosity. The effect of microstructure on properties is masked by the variations in porosity and to some extent by the oxygen level. It is shown that any meaningful comparison of the microstructure can only be made under a constant porosity or density level. The beneficial effect of a refined microstructure is also brought out by logically organizing the data in terms of microstructure groups. The advantages of new processes, using titanium hydride powder to produce PM titanium alloys, in simultaneously increasing strength and ductility, are also highlighted. The tensile properties of AM Ti-6Al-4V alloys are also brought to light, in comparison with the other PM and wrought alloys, through the strength-ductility maps.

  4. Strength-Ductility Property Maps of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Review of Processing-Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Chandran, K. S. Ravi

    2017-05-01

    A comprehensive assessment of tensile properties of powder metallurgical (PM) processed Ti-6Al-4V alloy, through the mapping of strength-ductility property domains, is performed in this review. Tensile property data of PM Ti-6Al-4V alloys made from blended element (BE) and pre-alloyed powders including that additive manufactured (AM) from powders, as well as that made using titanium hydride powders, have been mapped in the form of strength-ductility domains. Based on this, porosity and microstructure have been identified as the dominant variables controlling both the strength and the tensile ductility of the final consolidated materials. The major finding is that tensile ductility of the PM titanium is most sensitive to the presence of pores. The significance of extreme-sized pores or defects in inducing large variations in ductility is emphasized. The tensile strength, however, has been found to depend only weakly on the porosity. The effect of microstructure on properties is masked by the variations in porosity and to some extent by the oxygen level. It is shown that any meaningful comparison of the microstructure can only be made under a constant porosity or density level. The beneficial effect of a refined microstructure is also brought out by logically organizing the data in terms of microstructure groups. The advantages of new processes, using titanium hydride powder to produce PM titanium alloys, in simultaneously increasing strength and ductility, are also highlighted. The tensile properties of AM Ti-6Al-4V alloys are also brought to light, in comparison with the other PM and wrought alloys, through the strength-ductility maps.

  5. Powder processing and properties of zircon-reinforced Al-13.5Si-2.5Mg alloy composites

    SciTech Connect

    Ejiofor, J.U.; Reddy, R.G.; Okorie, B.A.

    1997-06-01

    Zircon, ZrSiO{sub 4}, is a thermally stable mineral requiring expensive and energy-intensive process to reduce. Owing to its abundance, high hardness, excellent abrasion/wear resistance, and low coefficient of thermal expansion, a low-cost alternative use of the mineral for medium-strength tribology was investigated. The present study has developed a conventional low-cost, double-compaction powder metallurgy route in the synthesis of Al-13.5Si-2.5Mg alloy reinforced with zircon. The mechanical and physical properties were determined following the development of optimum conditions of cold pressing and reaction sintering. Reinforcing the hypereutectic Al-Si alloy with 15 vol% zircon particles (size <200 {micro}m) and cold pressing at 350 MPa to near-net shape, followed by liquid-phase reaction sintering at 615 C in vacuum for 20 min, improved the ultimate tensile strength, 0.2% yield strength, and hardness of the alloy by 4, 12.8, and 88%, respectively. At values of more than 9 vol% zircon, percent elongation and the dimensional changes of the sintered composites remained virtually unchanged. At a critical volume fraction of zircon, between 0.03 and 0.05, a sharp rise in hardness was observed. Microstructural and mechanical property analysis showed that the improvement in the mechanical properties is attributable largely to the load-bearing ability and intrinsic hardness of zircon, rather than to particulate dispersion effects. A good distribution of the dispersed zircon particulates in the matrix alloy was achieved.

  6. Fabrication of Nano-Composite Surface Layers on Aluminium Employing Friction Stir Processing Technique

    SciTech Connect

    Bozorg, S. F. K.; Zarghani, A. S.; Zarei-Hanzaki, A.

    2010-03-11

    Al/Al{sub 2}O{sub 3} nano-composite surface layer was fabricated via friction stir processing technique. Commercial AA6082 aluminium alloy extruded bar and nanometric Al{sub 2}O{sub 3} powder were subjected to friction stir processing at a substrate travel speed of 80 mm/min and a tool rotation speed of 1000 rpm using a hardened H-13 tool steel. The grain structure and reinforcement particles were investigated by using optical and scanning electron microscopy. Results show that Al{sub 2}O{sub 3} particles can be more uniformly dispread in aluminium substrate by increasing the number of processing passes. Also, hardness enhancement of the nano-composite surface layer was found. This is attributed to uniform dispersion of Al{sub 2}O{sub 3} particles.

  7. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    NASA Technical Reports Server (NTRS)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  8. A thermomechanical analysis of sticking-sliding zones at the tool-chip interface in dry high-speed machining of aluminium alloy A2024-T351: A hybrid Analytical-Fe model

    NASA Astrophysics Data System (ADS)

    Avevor, Y.; Moufki, A.; Nouari, M.

    2016-10-01

    In high speed dry machining of aluminium alloy (A2024-T351), the tribological conditions at the tool-chip interface strongly affect the thermomechanical process of chip formation, the tool wear and the surface integrity. In order to contribute to the understanding of the effect of friction conditions, a hybrid Analytical-FE model is presented. The transient nonlinear thermal problem in the tool-chip-workpiece system is solved by using a Petrov-Galerkin finite element model. To illustrate the model results, the relationship between the local friction coefficient, in the sliding zone, and the apparent friction coefficient, which takes into account the whole tool-chip contact, is presented.

  9. The roles of rare earth dispersoids and process route on the low cycle fatigue behavior of a rapidly solidified powder metallurgy titanium alloy

    SciTech Connect

    Gigliotti, M.F.X. ); Woodfield, A.P. )

    1993-08-01

    Low cycle fatigue tests were conducted at 482C (900F) on forgings and extrusions of a rapidly solidified powder metallurgy titanium base alloy with and without rare earth additions. The variables studied were process temperature and heat treatment. Rare earth dispersions reduced fatigue life, and fracture surfaces indicated internal fatigue crack initiation at rare earth particles.

  10. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  11. Parameter Design in Fusion Welding of AA 6061 Aluminium Alloy using Desirability Grey Relational Analysis (DGRA) Method

    NASA Astrophysics Data System (ADS)

    Adalarasan, R.; Santhanakumar, M.

    2015-01-01

    In the present work, yield strength, ultimate strength and micro-hardness of the lap joints formed with Al 6061 alloy sheets by using the processes of Tungsten Inert Gas (TIG) welding and Metal Inert Gas (MIG) welding were studied for various combinations of the welding parameters. The parameters taken for study include welding current, voltage, welding speed and inert gas flow rate. Taguchi's L9 orthogonal array was used to conduct the experiments and an integrated technique of desirability grey relational analysis was disclosed for optimizing the welding parameters. The ignored robustness in desirability approach is compensated by the grey relational approach to predict the optimal setting of input parameters for the TIG and MIG welding processes which were validated through the confirmation experiments.

  12. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy.

    PubMed

    Renversade, Loïc; Quey, Romain; Ludwig, Wolfgang; Menasche, David; Maddali, Siddharth; Suter, Robert M; Borbély, András

    2016-01-01

    The grain structure of an Al-0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT) and high-energy diffraction microscopy (HEDM). 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques.

  13. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy

    PubMed Central

    Renversade, Loïc; Quey, Romain; Ludwig, Wolfgang; Menasche, David; Maddali, Siddharth; Suter, Robert M.; Borbély, András

    2016-01-01

    The grain structure of an Al–0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT) and high-energy diffraction microscopy (HEDM). 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques. PMID:26870379

  14. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    PubMed

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  15. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    PubMed Central

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  16. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    DOE PAGES

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; ...

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees withmore » an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.« less

  17. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    NASA Astrophysics Data System (ADS)

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2017-01-01

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  18. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    SciTech Connect

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  19. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    SciTech Connect

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  20. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    DOE PAGES

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; ...

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees withmore » an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.« less