Sample records for aluminium structures espoo

  1. Nordic Research on Text and Discourse. NORDTEXT Symposium (Espoo, Finland, May 10-13, 1990).

    ERIC Educational Resources Information Center

    Lindeberg, Ann-Charlotte, Ed.; And Others

    Papers presented at the 1990 Symposium of the Nordic Research Group for Theoretical and Applied Text Linguistics include the following: "Success Concepts" (Enkvist); "Reconciling the Psychological with the Linguistic in Accounts of Text Comprehension" (Garrod); "Particles as Fundaments of Discourse Structuring"…

  2. Prevision des besoins en main-d'oeuvre du secteur de l'information. Communications presentees lors du Seminaire FID/ET (Espoo, Finlande, 24-27 aout 1988) (Prediction of the Labor Needs of the Information Sector. Papers presented a FID/ET Seminar (Espoo, Finland, August 24-27, 1988)).

    ERIC Educational Resources Information Center

    Dosa, Marta L., Ed.; Froehlich, Thomas J., Ed.

    Fifty-five information science educators, administrators, and specialists from 22 countries assembled to discuss and debate the following themes: identification of characteristics of work done in the information sector; analysis of the educational needs of the information professional; the role of information professionals in national development;…

  3. Urbanity as a determinant of exposure to grass pollen in Helsinki Metropolitan area, Finland.

    PubMed

    Hugg, Timo T; Hjort, Jan; Antikainen, Harri; Rusanen, Jarmo; Tuokila, Mirkka; Korkonen, Sanna; Weckström, Jan; Jaakkola, Maritta S; Jaakkola, Jouni J K

    2017-01-01

    Little is known about the levels of exposure to grass pollen in urban environments. We assessed the spatio-temporal variation of grass pollen concentrations and the role of urbanity as a determinant of grass pollen exposure in the Helsinki Metropolitan area. We monitored grass pollen concentrations in 2013 at 16 sites during the peak pollen season by using rotorod-type samplers at the breathing height. The sites were in the cities of Helsinki and Espoo, Finland, and formed city-specific lines that represented urban-rural gradient. The monitoring sites were both visually and based on land use data ranked as high to low (graded 1 to 8) pollen area. The lowest grass pollen concentrations were observed in the most urban sites compared to the least urban sites (mean 3.6 vs. 6.8 grains/m3 in Helsinki; P<0.0001, and 5.2 vs. 87.5 grains/m3 in Espoo; P<0.0001). Significant differences were observed between concentrations measured in morning periods compared to afternoon periods (4.9 vs. 5.4 in Helsinki, P = 0.0186, and 21.8 vs. 67.1 in Espoo, P = 0.0004). The mean pollen concentration increased with decreasing urbanity both in Helsinki (0.59 grains/m3 per urbanity rank, 95% CI 0.25-0.93) and Espoo (8.42, 6.23-10.61). Pollen concentrations were highest in the afternoons and they were related to the ambient temperature. Urbanity was a strong and significant determinant of pollen exposure in two Finnish cities. Pollen exposure can periodically reach such high levels even in the most urban environments that can cause allergic reactions among individuals with allergies.

  4. Urbanity as a determinant of exposure to grass pollen in Helsinki Metropolitan area, Finland

    PubMed Central

    Hugg, Timo T.; Hjort, Jan; Antikainen, Harri; Rusanen, Jarmo; Tuokila, Mirkka; Korkonen, Sanna; Weckström, Jan; Jaakkola, Maritta S.

    2017-01-01

    Little is known about the levels of exposure to grass pollen in urban environments. We assessed the spatio-temporal variation of grass pollen concentrations and the role of urbanity as a determinant of grass pollen exposure in the Helsinki Metropolitan area. We monitored grass pollen concentrations in 2013 at 16 sites during the peak pollen season by using rotorod-type samplers at the breathing height. The sites were in the cities of Helsinki and Espoo, Finland, and formed city-specific lines that represented urban-rural gradient. The monitoring sites were both visually and based on land use data ranked as high to low (graded 1 to 8) pollen area. The lowest grass pollen concentrations were observed in the most urban sites compared to the least urban sites (mean 3.6 vs. 6.8 grains/m3 in Helsinki; P<0.0001, and 5.2 vs. 87.5 grains/m3 in Espoo; P<0.0001). Significant differences were observed between concentrations measured in morning periods compared to afternoon periods (4.9 vs. 5.4 in Helsinki, P = 0.0186, and 21.8 vs. 67.1 in Espoo, P = 0.0004). The mean pollen concentration increased with decreasing urbanity both in Helsinki (0.59 grains/m3 per urbanity rank, 95% CI 0.25–0.93) and Espoo (8.42, 6.23–10.61). Pollen concentrations were highest in the afternoons and they were related to the ambient temperature. Urbanity was a strong and significant determinant of pollen exposure in two Finnish cities. Pollen exposure can periodically reach such high levels even in the most urban environments that can cause allergic reactions among individuals with allergies. PMID:29023565

  5. Structural study of VO {sub x} doped aluminium fluoride and aluminium oxide catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard

    The structural properties of vanadium doped aluminium oxyfluorides and aluminium oxides, prepared by a modified sol-gel synthesis route, were thoroughly investigated. The influence of the preparation technique and the calcination temperature on the coordination of vanadium, aluminium and fluorine was analysed by different spectroscopic methods such as Raman, MAS NMR and ESR spectroscopy. In all samples calcined at low temperatures (350 deg. C), vanadium coexists in two oxidation states V{sup IV} and V{sup V}, with V{sup IV} as dominating species in the vanadium doped aluminium oxyfluorides. In the fluoride containing solids aluminium as well as vanadium are coordinated by fluorinemore » and oxygen. Thermal annealing of 800 deg. C leads to an extensive reorganisation of the original matrices and to the oxidation of V{sup IV} to V{sup V} in both systems. - Graphical abstract: Structure model for VO {sub x} doped aluminium oxide.« less

  6. The transboundary EIA convention in the context of private sector operations co-financed by an International Financial Institution: two case studies from Azerbaijan and Turkmenistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, Mehrdad M

    This paper presents two case studies involving private sector, offshore, oil field developments in the Caspian Sea. Environmental Impact Assessments (EIAs) of these operations indicated that major and unmitigated oil spills could potentially result in transboundary impacts. Both projects were co-financed by the European Bank for Reconstruction and Development (EBRD), an International Financial Institution (IFI). Project review and financing decision by the EBRD occurred when neither country hosting the projects was a Party to the 1991 Convention on EIA in a Transboundary Context (Espoo Convention). Discussions with government agencies during project review highlighted their limited institutional capacity to pursue transboundarymore » notification and consultation activities. However, without being formal Parties or having clearly defined roles under the Convention, the combined presence of the EBRD, the private sector developer and its project needing financing became important drivers to promote the Espoo Convention. Surveying for similar IFI-project combinations in developing and transition economies could provide a 'bottom up' input to further optimise the Convention Secretariat's awareness raising, intervention design, and alliance-building strategies. The knowledge management model and user-friendly Web site of the 1992 Convention on Biological Diversity highlight approaches that may also prove effective for the Espoo Convention.« less

  7. Interlocking multi-material components made of structured steel sheets and high-pressure die cast aluminium

    NASA Astrophysics Data System (ADS)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2017-10-01

    Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.

  8. Preliminary Analysis of the Aluminiumtimber Composite Beams

    NASA Astrophysics Data System (ADS)

    Szumigała, Maciej; Chybiński, Marcin; Polus, Łukasz

    2017-12-01

    This paper presents a new type of composite structures - aluminium-timber beams. These structures have an advantage over other existing composite structures, because they are lighter. However, their application may be limited due to the high price of aluminium alloys. The authors of this article made an attempt to calculate the load-bearing capacity of an aluminium-timber beam.

  9. Implementing the Espoo Convention in transboundary EIA between Germany and Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albrecht, Eike

    Poland and Germany have a long common border which leads to the necessity to cooperate and consult each other in the case of large-scale projects or infrastructure measures likely to cause negative transboundary effects on the environment. There are already binding provisions for transboundary EIA. In the area of the UN Economic Commission for Europe (UNECE), transboundary EIA is intended to be legally binding for the Member States by the Espoo Convention which was ratified by Germany 8.8.2002 and by Poland 12.6.1997. Due to corresponding directives, the same is applicable in the context of the European Union. In German legislation,more » this issue is regulated by Art. 8 of the Federal EIA Act in regard to transboundary participation of administration and by Art. 9a in respect of transboundary public participation. However, these EIA regulations on transboundary participation do not surpass a certain detail level, as they have to be applied between Germany and all neighbouring states. Therefore both countries decided to agree on more detailed provisions in particular regarding procedural questions. During the 12th German-Polish Environmental Council, Germany and Poland reached an agreement on 11.4.2006 in Neuhardenberg/Brandenburg an agreement upon the implementation of the Espoo Convention, the so called Neuhardenberg Agreement. This article assesses the agreement under consideration of already existing law and discusses major improvements and problems.« less

  10. Aluminium plasmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerard, Davy; Gray, Stephen K.

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  11. Aluminium plasmonics

    DOE PAGES

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  12. Structural analysis of aluminium substituted nickel ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, H. S.; Sangwa, Neha

    2018-05-01

    Aluminium substituted nickel ferrite nanoparticles were synthesized by High Energy Ball milling (HEBM) of the mixture of α-NiO, α-Al2O3 and α-Fe2O3 followed by annealing at 1000˚C. X-ray diffraction (XRD) and Energy dispersive spectroscopy analysis (EDS) characterization was done for Aluminium substituted nickel ferrite. The structural analysis reveals the formation of the single phase compound. The average grain size was estimated by X-ray diffraction technique ranges from 30 to 10 nm with the increasing concentration of Aluminium. EDS spectra conforms the homogeneous mixing and purity of ferrite.

  13. 77 FR 40084 - Certain Portable Communication Devices; Determination Not To Review Initial Determinations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ...''); Amazon.com , Inc. of Seattle, Washington (``Amazon''); Nokia Corporation of Espoo, Finland, Nokia Inc. of..., Motorola, Samsung, Sony, Amazon, and Pantech filed a joint motion under Commission Rule 210.21(a)(2) to...

  14. A density functional theory study of the structure of pure-silica and aluminium-substituted MFI nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Tamargo, Carlos E.; Roldan, Alberto; School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT

    The layered MFI zeolite allows a straightforward hierarchization of the pore system which accelerates mass transfer and increases its lifetime as a catalyst. Here, we present a theoretical study of the structural features of the pure-silica and aluminium-substituted MFI nanosheets. We have analysed the effects of aluminium substitution on the vibrational properties of silanols as well as the features of protons as counter-ions. The formation of the two-dimensional system did not lead to appreciable distortions within the framework. Moreover, the effects on the structure due to the aluminium dopants were the same in both the bulk and the slab. Themore » principal differences were related to the silanol groups that form hydrogen-bonds with neighbouring aluminium-substituted silanols, whereas intra-framework hydrogen-bonds increase the stability of aluminium-substituted silanols toward dehydration. Thus, we have complemented previous experimental and theoretical studies, showing the lamellar MFI zeolite to be a very stable material of high crystallinity regardless of its very thin structure. - Graphical abstract: The structure of MFI zeolite nanosheet was investigated using Density Functional Theory. The results showed no differences against the bulk-type material upon aluminium doping. The aluminium-substituted silanol dehydrates toward a more stable configuration composed by a water molecule adsorbed on a Lewis centre. - Highlights: • MFI nanosheets with variable thicknesses were characterised using DFT calculations. • The distortions in the nanosheets after Al substitution reproduced those of the bulk. • H-bonds were only observed between silanol groups when the Al substitution took place. • The kinetic of the Al-silanol dehydration is dependent on intra-framework H-bonds. • Lewis acids with adsorbed water are more stable than Al-silanols. • The proton accessibility was related to the framework O atom binding the proton.« less

  15. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    DTIC Science & Technology

    2017-03-28

    AFRL-AFOSR-JP-TR-2017-0027 A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal Structures and...to 16 Dec 2016 4.  TITLE AND SUBTITLE A Fundamental Approach to Developing Aluminium-based Bulk Amorphous Alloys based on Stable Liquid -Metal...including Al, Cu, Ni, Zr, Mg, Pd, Ga , Ca. Many new Al-based amorphous alloys were found within the numerous alloy systems studied in this project, and

  16. Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content.

    PubMed

    Smith, J M; King, S P; Barney, E R; Hanna, J V; Newport, R J; Pickup, D M

    2013-01-21

    Calcium phosphate based biomaterials are extensively used in the context of tissue engineering: small changes in composition can lead to significant changes in properties allowing their use in a wide range of applications. Samples of composition (Al(2)O(3))(x)(Na(2)O)(0.11-x)(CaO)(0.445)(P(2)O(5))(0.445), where x = 0, 0.03, 0.05, and 0.08, were prepared by melt quenching. The atomic-scale structure has been studied using neutron diffraction and solid state (27)Al MAS NMR, and these data have been rationalised with the determined density of the final glass product. With increasing aluminium concentration the density increases initially, but beyond about 3 mol. % Al(2)O(3) the density starts to decrease. Neutron diffraction data show a concomitant change in the aluminium speciation, which is confirmed by (27)Al MAS NMR studies. The NMR data reveal that aluminium is present in 4, 5, and 6-fold coordination and that the relative concentrations of these environments change with increasing aluminium concentration. Materials containing aluminium in 6-fold coordination tend to have higher densities than analogous materials with the aluminium found in 4-fold coordination. Thus, the density changes may readily be explained in terms of an increase in the relative concentration of 4-coordinated aluminium at the expense of 6-fold aluminium as the Al(2)O(3) content is increased beyond 3 mol. %.

  17. Numerical modelling of closed-cell aluminium foam under dynamic loading

    NASA Astrophysics Data System (ADS)

    Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.

    2015-06-01

    Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.

  18. Crystal structures of hydrates of simple inorganic salts. III. Water-rich aluminium halide hydrates: AlCl3 · 15H2O, AlBr3 · 15H2O, AlI3 · 15H2O, AlI3 · 17H2O and AlBr3 · 9H2O.

    PubMed

    Schmidt, Horst; Hennings, Erik; Voigt, Wolfgang

    2014-09-01

    Water-rich aluminium halide hydrate structures are not known in the literature. The highest known water content per Al atom is nine for the perchlorate and fluoride. The nonahydrate of aluminium bromide, stable pentadecahydrates of aluminium chloride, bromide and iodide, and a metastable heptadecahydrate of the iodide have now been crystallized from low-temperature solutions. The structures of these hydrates were determined and are discussed in terms of the development of cation hydration spheres. The pentadecahydrate of the chloride and bromide are isostructural. In AlI(3) · 15H2O, half of the Al(3+) cations are surrounded by two complete hydration spheres, with six H2O in the primary and 12 in the secondary. For the heptadecahydrate of aluminium iodide, this hydration was found for every Al(3+).

  19. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    PubMed

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets. © 2013 John Wiley & Sons A/S.

  20. Learning for the Workplace: Nordic and Canadian Perspectives.

    ERIC Educational Resources Information Center

    Taylor, Gail, Ed.

    This book contains 21 papers from the Nordic-Canadian Learning for the Workplace Conference, which was held in Hanasaari, Espoo, Finland in June 1995. The following papers are included: "Introduction to the Nordic-Canadian Learning for the Workplace Conference" (Olli-Pekka Heinonen); "Conference Design and Process" (Diane…

  1. Calcium silicate hydrates: Solid and liquid phase composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lothenbach, Barbara, E-mail: Barbara.lothenbach@empa.ch; Nonat, André

    This paper presents a review on the relationship between the composition, the structure and the solution in which calcium silicate hydrate (C–S–H) is equilibrated. The silica chain length in C–S–H increases with the silicon concentration and the calcium content in the interlayer space with the calcium concentrations. Sodium and potassium are taken up in the interlayer space, preferentially at low calcium concentrations and thus by low Ca/Si C–S–H. Aluminium uptake in C–S–H increases strongly at higher aluminium concentrations in the solution. At low Ca/Si, aluminium substitutes silica in the bridging position, at Ca/Si > 1 aluminium is bound in TAH.more » Recently developed thermodynamic models are closely related to the structure of C–S–H and tobermorite, and able to model not only the solubility and the chemical composition of the C–S–H, but also to predict the mean silica chain length and the uptake of aluminium.« less

  2. Information Manpower Forecasting. Papers Presented at the FID/ET Seminar (Espoo, Finland, August 24-27, 1988).

    ERIC Educational Resources Information Center

    Dosa, Marta L., Ed.; Froehlich, Thomas J., Ed.

    This collection contains 20 papers written by educators, administrators and information scientists who had conducted manpower surveys in the library and information fields: (1) "Background and Evolution of Educational Planning and Forecasting for Information Manpower" (Yves Courrier); (2) "Indicators for the Emerging Information…

  3. Information as a Strategic Tool to Improve Industrial Competitiveness.

    ERIC Educational Resources Information Center

    Kalseth, Karl; And Others

    1989-01-01

    Eight papers from the FID/II Pre-Conference Seminar (Espoo, Finland, August 24-25, 1988) discuss issues related to the use of information as a tool in the context of business information services, strategic information management, business intelligence systems, information resources management, and the role of information and documentation in…

  4. Critical Review of the Generalised Frost-Dugdale Approach to Crack Growth in F/A-18 Hornet Structural Materials

    DTIC Science & Technology

    2010-03-01

    cracking in both 7050 series aluminium alloys and Mil Annealed Ti-6Al-4V conforms to the Generalised Frost-Dugdale model. The report recommends... ALUMINIUM ALLOYS ............................................. 14 5.1 Application of the equivalent block variant to represent crack growth in 7050 series... aluminium alloys ................................................................................ 20 6. DETERMINING THE CONSTANTS IN THE GENERALISED

  5. Full multiple-scattering calculations on silicates and oxides at the Al K edge

    NASA Astrophysics Data System (ADS)

    Cabaret, Delphine; Sainctavit, Philippe; Ildefonse, Philippe; Flank, Anne-Marie

    1996-05-01

    We present full multiple-scattering calculations at the aluminium K edge that we compare with experiments for four crystalline silicates and oxide minerals. In the different minerals aluminium atoms are either fourfold or sixfold coordinated to oxygen atoms in Al sites that are poorly symmetric. The calculations are based on different choices of one-electron potentials according to aluminium coordinations and crystallographic structures of the compounds. Hence it is possible to determine how the near-edge spectral features are a sensitive probe of the effective potential seen by the photoelectron in the molecular environment. The purpose of this work is to determine on the one hand the relation between Al K-edge spectral features and the geometrical arrangements around the aluminium sites, and on the other hand the electronic structure of the compounds.

  6. Surface mechanical behaviour of composite Ni-P-fly ash/zincate coated aluminium alloy

    NASA Astrophysics Data System (ADS)

    Panagopoulos, C. N.; Georgiou, E. P.

    2009-04-01

    Ni-P-fly ash coatings were produced on zincate coated 5083 wrought aluminium alloy substrates with the aid of an electroless deposition technique. Structural and chemical characterization of the produced coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-P-fly ash coating was found to consist of an amorphous Ni-P matrix with dispersed fly ash particles. The wear resistance of the Ni-P-fly ash coating on zincate treated aluminium alloy was observed to be higher than that of the bare aluminium alloy, when sliding against a stainless steel counterface. In addition, the adhesion between the Ni-P-fly ash/zincate coating and the aluminium alloy substrate was also studied with a scratch testing apparatus. The adhesion strength of Ni-P-fly ash/zincate coating on the aluminium alloy substrate was observed to be higher in comparison to the Ni-P/zincate coating on the same aluminium alloy.

  7. A simple pre-treatment of aluminium cookware to minimize aluminium transfer to food.

    PubMed

    Karbouj, Rim; Desloges, I; Nortier, P

    2009-03-01

    In this work, we studied aluminium leaching from cookware to food under the effect of citric acid that is commonly found in foods and beverages. The authors showed that boiling the cookware in water prior to cooking is suitable for the decrease of aluminium leaching into food by a factor up to sixty (with a corresponding decrease of the aluminium intake by consumers). The effect of the pre-treatment has been studied by scanning electron microscopy and X-Ray diffraction and the effect has been attributed to changes in the structure and morphology of the passivation layer, from an initial heterogeneous layer to a surface uniformly covered with fine needles of Boehmite (alpha-AlOOH).

  8. Shock response of 7068 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Proud, William

    2013-06-01

    Aluminium alloys are widely employed throughout the aerospace and defence industries due to their high specific strength. Aluminium alloy 7068, often described as the ultimate aluminium alloy was developed by Kasier Aluminium in the mid-1990s and is the strongest aluminium commercially produced. There remains little published data on the response of this micro-structurally anisotropic alloy to dynamic loading. As part of an investigation of the high-rate mechanical properties of Al 7068, a series of plate-impact experiments using a novel meso-scale planar impact facility and a more conventional large bore gas gun were undertaken. The evolution of the elastic-plastic shock wave and spall strength as a function of sample thickness and specimen orientation were investigated using optical velocimetry (line-VISAR, PDV) techniques. Planar shock wave experiments were conducted on specimens several 100 microns to several millimetres thick cut from either parallel or perpendicular to the extrusion direction.

  9. Mechanochemical route to the synthesis of nanostructured Aluminium nitride

    PubMed Central

    Rounaghi, S. A.; Eshghi, H.; Scudino, S.; Vyalikh, A.; Vanpoucke, D. E. P.; Gruner, W.; Oswald, S.; Kiani Rashid, A. R.; Samadi Khoshkhoo, M.; Scheler, U.; Eckert, J.

    2016-01-01

    Hexagonal Aluminium nitride (h-AlN) is an important wide-bandgap semiconductor material which is conventionally fabricated by high temperature carbothermal reduction of alumina under toxic ammonia atmosphere. Here we report a simple, low cost and potentially scalable mechanochemical procedure for the green synthesis of nanostructured h-AlN from a powder mixture of Aluminium and melamine precursors. A combination of experimental and theoretical techniques has been employed to provide comprehensive mechanistic insights on the reactivity of melamine, solid state metal-organic interactions and the structural transformation of Al to h-AlN under non-equilibrium ball milling conditions. The results reveal that melamine is adsorbed through the amine groups on the Aluminium surface due to the long-range van der Waals forces. The high energy provided by milling leads to the deammoniation of melamine at the initial stages followed by the polymerization and formation of a carbon nitride network, by the decomposition of the amine groups and, finally, by the subsequent diffusion of nitrogen into the Aluminium structure to form h-AlN. PMID:27650956

  10. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    NASA Astrophysics Data System (ADS)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  11. Assessment of CPR-D skills of nurses in Göteborg, Sweden and Espoo, Finland: teaching leadership makes a difference.

    PubMed

    Mäkinen, M; Aune, S; Niemi-Murola, L; Herlitz, J; Varpula, T; Nurmi, J; Axelsson, A B; Thorén, A-B; Castrén, M

    2007-02-01

    Construction of an effective in-hospital resuscitation programme is challenging. To document and analyse resuscitation skills assessment must provide reliable data. Benchmarking with a hospital having documented excellent results of in-hospital resuscitation is beneficial. The purpose of this study was to assess the resuscitation skills to facilitate construction of an educational programme. Nurses working in a university hospital Jorvi, Espoo (n=110), Finland and Sahlgrenska University Hospital, Göteborg (n=40), Sweden were compared. The nurses were trained in the same way in both hospitals except for the defining and teaching of leadership applied in Sahlgrenska. Jorvi nurses are not trained to be, nor do they act as, leaders in a resuscitation situation. Their cardiopulmonary resuscitation (CPR) skills using an automated external defibrillator (AED) were assessed using Objective Structured Clinical Examination (OSCE) which was build up as a case of cardiac arrest with ventricular fibrillation (VF) as the initial rhythm. The subjects were tested in pairs, each pair alone. Group-working skills were registered. All Sahlgrenska nurses, but only 49% of Jorvi nurses, were able to defibrillate. Seventy percent of the nurses working in the Sahlgrenska hospital (mean score 35/49) and 27% of the nurses in Jorvi (mean score 26/49) would have passed the OSCE test. Statistically significant differences were found in activating the alarm (P<0.001), activating the AED without delay (P<0.01), setting the lower defibrillation electrode correctly (P<0.001) and using the correct resuscitation technique (P<0.05). The group-working skills of Sahlgrenska nurses were also significantly better than those of Jorvi nurses. Assessment of CPR-D skills gave valuable information for further education in both hospitals. Defining and teaching leadership seems to improve resuscitation performance.

  12. Aluminium and breast cancer: Sources of exposure, tissue measurements and mechanisms of toxicological actions on breast biology.

    PubMed

    Darbre, Philippa D; Mannello, Ferdinando; Exley, Christopher

    2013-11-01

    This review examines recent evidence linking exposure to aluminium with the aetiology of breast cancer. The human population is exposed to aluminium throughout daily life including through diet, application of antiperspirants, use of antacids and vaccination. Aluminium has now been measured in a range of human breast structures at higher levels than in blood serum and experimental evidence suggests that the tissue concentrations measured have the potential to adversely influence breast epithelial cells including generation of genomic instability, induction of anchorage-independent proliferation and interference in oestrogen action. The presence of aluminium in the human breast may also alter the breast microenvironment causing disruption to iron metabolism, oxidative damage to cellular components, inflammatory responses and alterations to the motility of cells. The main research need is now to investigate whether the concentrations of aluminium measured in the human breast can lead in vivo to any of the effects observed in cells in vitro and this would be aided by the identification of biomarkers specific for aluminium action. © 2013.

  13. A comparative ecotoxicity analysis of α- and γ-phase aluminium oxide nanoparticles towards a freshwater bacterial isolate Bacillus licheniformis.

    PubMed

    Pakrashi, Sunandan; Kumar, Deepak; Iswarya, V; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2014-12-01

    Crystalline structure of nanoparticles may influence their physicochemical behaviour as well as their toxicological impact on biota. The differences in orientation of the atoms result in the variations in chemical stability. Thus, toxicological impacts of different crystalline phases of aluminium oxide nanoparticles are expected to vary. The present study brings out a comparative toxicity analysis of γ-phase and α-phase aluminium oxide nanoparticles of comparable hydrodynamic size range towards a freshwater bacterial isolate Bacillus licheniformis at low exposure concentrations (5, 1, 0.5 and 0.05 µg/mL). Upon 2-h exposure, the α-aluminium oxide particles showed lower toxicity than the γ-phase aluminium oxide. The lower level of oxidative stress generation and cell membrane damage in case of the α-phase aluminium oxide nanoparticles substantiated the toxicity results. The involvement of protein, lipopolysaccharides in nanoparticle-cell surface interaction, was noted in both the cases. To conclude, the crystallinity of aluminium oxide nanoparticles played an important role in the interaction and the toxicity response.

  14. Spacecraft Shielding: An Experimental Comparison Between Open Cell Aluminium Foam Core Sandwich Panel Structures and Whipple Shielding.

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.

  15. Study of Surface Roughness and Cutting force in machining for 6068 Aluminium alloy

    NASA Astrophysics Data System (ADS)

    Purushothaman, D.; Kaushik Yanamundra, Krishna; Krishnan, Gokul; Perisamy, C.

    2018-04-01

    Metal matrix composites, in particular, Aluminium Hybrid Composites are gaining increasing attention for applications in air and land because of their superior strength to weight ratio, density and high temperature resistance. Aluminium alloys are being used for a wide range of applications in Aerospace and Automobile industries, to name a few. The Aluminium Alloy 6068 has been used as the specimen. It is mainly composed of Aluminium (93.22 - 97.6 %), Magnesium (0.60 - 1.2 %), Silicon (0.60 - 1.4 %) and Bismuth (0.60 - 1.1 %). Aluminium 6068 is widely used for manufacturing aircraft structures, fuselages and wings. It is also extensively used in fabricating automobile parts such as wheel spacers. In this study, tests for the measurement of surface roughness and cutting force has been carried out on the specimen, the results evaluated and conclusions are drawn. Also the simulation of the same is carried out in a commercial FE software – ABAQUS.

  16. The influences of calcia silica contents to the compressive strength of the Al-7000 aluminium foam

    NASA Astrophysics Data System (ADS)

    Sutarno; Soepriyanto, S.; Korda, A. A.; Dirgantara, T.

    2016-08-01

    This experiment evaluated the effect of calcia alumina and alumina silica that formed as side products involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) is desired to improve the viscosity and to strengthen of cell wall of aluminium foam. However, Al-7000 aluminium foam showed a decrease tendency of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture. In this case, the silica that thermally combines with alumina compound may degrade the metal mixture of aluminium foam structure.

  17. Remote sensing of atmosphere and oceans; Proceedings of Symposium 1 and of the Topical Meeting of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)

    1989-01-01

    Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.

  18. Pore Size Control in Aluminium Foam by Standardizing Bubble Rise Velocity and Melt Viscosity

    NASA Astrophysics Data System (ADS)

    Avinash, G.; Harika, V.; Sandeepika, Ch; Gupta, N.

    2018-03-01

    In recent years, aluminium foams have found use in a wide range of applications. The properties of these foams, as good structural strength with light weight have made them as a promising structural material for aerospace industry. Foaming techniques (direct and indirect) are used to produce these foams. Direct foaming involves blowing of gas to create gas bubbles in the melt whereas indirect foaming technique uses blowing agents as metallic hydrides, which create hydrogen bubbles. Porosity and its distribution in foams directly affect its properties. This demands for more theoretical studies, to control such cellular structure and hence properties. In present work, we have studied the effect of gas bubble rise velocity and melt viscosity, on pore size and its distribution in aluminium foam. A 15 PPI aluminium foam, prepared using indirect foaming technique having porosity ~86 % was used for study. In order to obtain metal foam, the bubble must not escape from the melt and should get entrapped during solidification. Our calculations suggest that bubble rise velocity and melt viscosity are responsible for vertical displacement of bubble in the melt. It is observed that melt viscosity opposes bubble rise velocity and help the bubbles to stay in the melt, resulting in porous structure.

  19. Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

    DTIC Science & Technology

    2015-07-01

    circular hole in an aluminium plate fitted with a titanium fastener that were computed using two-dimensional finite element contact analysis. By...used to validate the contact stress distributions associated with a circular hole in an aluminium plate fitted with a titanium fastener that were...fatigue life and aircraft structural integrity management of RAAF airframes. An aluminium coupon has been previously designed in support of the

  20. Crashworthiness of Aluminium Tubes; Part 2: Improvement of Hydroforming Operation to Increase Absorption Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amours, Guillaume; Rahem, Ahmed; Mayer, Robert

    2007-05-17

    The motivation to reduce overall vehicle weight within the automotive sector drives the substitution of lightweight materials such as aluminium alloys for structural components. Such a substitution requires a significant amount of development to manufacture structurally parts such that the energy absorption characteristics are not sacrificed in the event of crash. The effects of the manufacturing processes on the crash performance of automotive structural components must be better understood to ensure improved crashworthiness. This paper presents results of an experimental and numerical investigation of the crash response and energy absorption properties of impacted hydroformed aluminium alloy tubes. Crash experiments onmore » hydroformed tubes were performed using a deceleration sled test at the General Motors Technical Center. Results from axial crush testing showed that an important parameter that influences the energy absorption characteristics during crash was the thickness reduction caused by circumferential expansion of the tube during hydroforming. It was found that that the energy absorption decreased as the corner radius decreased, which results because of increased thinning. Sensitivity studies of end feeding parameters, such as end feed level and profile, were carried out to evaluate their impact on the energy absorption of the aluminium tubes.« less

  1. Crashworthiness of Aluminium Tubes; Part 2: Improvement of Hydroforming Operation to Increase Absorption Energy

    NASA Astrophysics Data System (ADS)

    D'Amours, Guillaume; Rahem, Ahmed; Mayer, Robert; Williams, Bruce; Worswick, Michael

    2007-05-01

    The motivation to reduce overall vehicle weight within the automotive sector drives the substitution of lightweight materials such as aluminium alloys for structural components. Such a substitution requires a significant amount of development to manufacture structurally parts such that the energy absorption characteristics are not sacrificed in the event of crash. The effects of the manufacturing processes on the crash performance of automotive structural components must be better understood to ensure improved crashworthiness. This paper presents results of an experimental and numerical investigation of the crash response and energy absorption properties of impacted hydroformed aluminium alloy tubes. Crash experiments on hydroformed tubes were performed using a deceleration sled test at the General Motors Technical Center. Results from axial crush testing showed that an important parameter that influences the energy absorption characteristics during crash was the thickness reduction caused by circumferential expansion of the tube during hydroforming. It was found that that the energy absorption decreased as the corner radius decreased, which results because of increased thinning. Sensitivity studies of end feeding parameters, such as end feed level and profile, were carried out to evaluate their impact on the energy absorption of the aluminium tubes.

  2. Electroplating of aluminium microparticles with nickel to synthesise reactive core-shell structures for thermal joining applications

    NASA Astrophysics Data System (ADS)

    Schreiber, S.; Zaeh, M. F.

    2018-06-01

    Reactive particles represent a promising alternative for effectively joining components with freeform surfaces and different material properties. While the primary application of reactive systems is combustion synthesis for the production of high-performance alloys, the highly exothermic reaction can also be used to firmly bond thermosensitive joining partners. Core-shell structures are of special interest, since they function as separate microreactors. In this paper, a method to synthesise reactive nickel-aluminium core-shell structures via a two-step plating process is described. Based on an electroless process, the natural oxide layer of the aluminium particles is removed and substituted with a thin layer of nickel. Subsequently, the pre-treated particles are electroplated with nickel. The high reactivity of aluminium and the oxide layer play a significant role in adjusting the process parameters of the Watts bath. Additionally, the developed experimental set-up is introduced and the importance of process control is shown. In order to achieve reproducible results, the electroplating process was automated. Ignition tests with electromagnetic waves demonstrated that the particles undergo an exothermic reaction. Therefore, they can be used as a heat source in thermal joining applications.

  3. Microstructure and properties of aluminium-aluminium oxide graded composite materials

    NASA Astrophysics Data System (ADS)

    Kamaruzaman, F. F.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Iqbal, A. K. M. A.; Azhari, A.

    2018-03-01

    In this research works, four-layered aluminium-aluminium oxide (Al-Al2O3) graded composite materials were fabricated using powder metallurgy (PM) method. In processing, metal-ceramic graded composite materials of 0%, 10%, 20% and 30% weight percentage of ceramic concentration were prepared under 30 ton compaction load using a cylindrical die-punch set made of steel. After that, two-step pressureless sintering was carried out at sintering temperature and time 600°C and 3 hours respectively. It was observed that the sintered cylindrical specimens of 30 mm diameter were prepared successfully. The graded composite specimens were analysed and the properties such as density, microstructure and hardness were measured. It was found that after sintering process, the diameter of the graded cylindrical structure was decreased. Using both Archimedes method and rule of mixture (ROM), he density of structure was measured. The obtained results revealed that the microvickers hardness was increased as the ceramic component increases in the graded layer. Moreover, it was observed that the interface of the graded structure is clearly distinguished within the multilayer stack and the ceramic particles are almost uniformly distributed in the Al matrix.

  4. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion.

    PubMed

    Hicks, Jamie; Vasko, Petra; Goicoechea, Jose M; Aldridge, Simon

    2018-05-01

    The reactivity of aluminium compounds is dominated by their electron deficiency and consequent electrophilicity; these compounds are archetypal Lewis acids (electron-pair acceptors). The main industrial roles of aluminium, and classical methods of synthesizing aluminium-element bonds (for example, hydroalumination and metathesis), draw on the electron deficiency of species of the type AlR 3 and AlCl 3 1,2 . Whereas aluminates, [AlR 4 ] - , are well known, the idea of reversing polarity and using an aluminium reagent as the nucleophilic partner in bond-forming substitution reactions is unprecedented, owing to the fact that low-valent aluminium anions analogous to nitrogen-, carbon- and boron-centred reagents of the types [NX 2 ] - , [CX 3 ] - and [BX 2 ] - are unknown 3-5 . Aluminium compounds in the +1 oxidation state are known, but are thermodynamically unstable with respect to disproportionation. Compounds of this type are typically oligomeric 6-8 , although monomeric systems that possess a metal-centred lone pair, such as Al(Nacnac) Dipp (where (Nacnac) Dipp  = (NDippCR) 2 CH and R =  t Bu, Me; Dipp = 2,6- i Pr 2 C 6 H 3 ), have also been reported 9,10 . Coordination of these species, and also of (η 5 -C 5 Me 5 )Al, to a range of Lewis acids has been observed 11-13 , but their primary mode of reactivity involves facile oxidative addition to generate Al(III) species 6-8,14-16 . Here we report the synthesis, structure and reaction chemistry of an anionic aluminium(I) nucleophile, the dimethylxanthene-stabilized potassium aluminyl [K{Al(NON)}] 2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene). This species displays unprecedented reactivity in the formation of aluminium-element covalent bonds and in the C-H oxidative addition of benzene, suggesting that it could find further use in both metal-carbon and metal-metal bond-forming reactions.

  5. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    NASA Technical Reports Server (NTRS)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  6. Development of the Noise-Resistant and Sound Focusing Accessory of Ultrasonic Leak Detector for Spacecraft on Orbit

    NASA Astrophysics Data System (ADS)

    Sun, W.; Yan, R. X.; Sun, L. C.; Shao, R. P.

    2017-12-01

    Ultrasonic signal produced by the gas leak is so week that it is difficult to detect, and easily interfered. So developing the noise-resistant and sound focusing accessory for the ultrasonic leak detector is very important for improving ultrasonic leak detector sensitivity and noise-resistant capability. Based on the theory analysis of the leak ultrasonic signal reverberation and anacampsis, the 5A06 aluminium alloy and nylon were selected as the material of noise-resistant and sound focusing accessory by calculation and compare. Then the circular cone trumpet structure was design as the accessory main structure, and the nylon expansion port, nylon shrinking port and aluminium alloy expansion port structures were manufactured. The different structure characters were shown by the contrasting experiment. The results indicate that the nylon expansion circular cone trumpet structure has better sound focusing performance and it can improve the testing sound pressure amplitude 10 bigger than the detector without the accessory. And the aluminium alloy expansion circular cone trumpet structure has better noise-resistant ability than others. These conclusions are very important for the spacecraft leak detection and it can provide some references for the design of the noise-resistant and sound focusing structure.

  7. Investigation of the ElectroPuls E3000 Test Machine for Fatigue Testing of Structural Materials

    DTIC Science & Technology

    2016-12-01

    sharpening of the crack tip and deformation of a portion of the newly formed surface (the surface created during loading portion of the cycle) during...cracking process is that the size of the final plastic zone formed by pre-cracking can affect the crack growth rate in subsequent testing. To...similar. In other structural materials, such as aluminium , striations are often well-defined. Typically, fatigue striations on an aluminium fracture

  8. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  9. EUNIS '99: Information Technology Shaping European Universities. Proceedings of the International European University Information Systems (5th, Espoo, Finland, June 7-9, 1999).

    ERIC Educational Resources Information Center

    1999

    This document presents the proceedings from the 5th International European University Information Systems (EUNIS) Conference on Information Technology that took place in Helsinki, Finland on June 7-9, 1999. Topics of the conference proceedings were divided into five tracks (A through E): Use of Information Technology in Learning and Teaching;…

  10. Aluminium(III) amidinates formed from reactions of `AlCl' with lithium amidinates.

    PubMed

    Mayo, Dennis H; Peng, Yang; Zavalij, Peter; Bowen, Kit H; Eichhorn, Bryan W

    2013-10-01

    The disproportionation of AlCl(THF)n (THF is tetrahydrofuran) in the presence of lithium amidinate species gives aluminium(III) amidinate complexes with partial or full chloride substitution. Three aluminium amidinate complexes formed during the reaction between aluminium monochloride and lithium amidinates are presented. The homoleptic complex tris(N,N'-diisopropylbenzimidamido)aluminium(III), [Al(C13H19N2)3] or Al{PhC[N(i-Pr)]2}3, (I), crystallizes from the same solution as the heteroleptic complex chloridobis(N,N'-diisopropylbenzimidamido)aluminium(III), [Al(C13H19N2)2Cl] or Al{PhC[N(i-Pr)]2}2Cl, (II). Both have two crystallographically independent molecules per asymmetric unit (Z' = 2) and (I) shows disorder in four of its N(i-Pr) groups. Changing the ligand substituent to the bulkier cyclohexyl allows the isolation of the partial THF solvate chloridobis(N,N'-dicyclohexylbenzimidamido)aluminium(III) tetrahydrofuran 0.675-solvate, [Al(C19H27N2)2Cl]·0.675C4H8O or Al[PhC(NCy)2]2Cl·0.675THF, (III). Despite having a twofold rotation axis running through its Al and Cl atoms, (III) has a similar molecular structure to that of (II).

  11. The behavior of Aluminium Carbon/Epoxy fibre metal laminate under quasi-static loading

    NASA Astrophysics Data System (ADS)

    Romli, N. K.; Rejab, M. R. M.; Bachtiar, D.; Siregar, J.; Rani, M. F.; Harun, W. S. W.; Salleh, Salwani Mohd; Merzuki, M. N. M.

    2017-10-01

    One of major concerns that related to the flight safety is impact of birds. To minimize the risks, there is need to increase the impact resistance of aircraft by developing a new material and has the good structural design of aircraft structures. The hybrid laminates are potential candidate material to be applied for the aircraft structures susceptible to bird strikes. The fibre metal laminate was fabricated by a compression moulding technique. The carbon fibre and aluminium alloy 2024-0 was laminated by using thermoset epoxy. A compression moulding technique was used for the FML fabrication. The aluminium sheet metal has been roughening by a metal sanding method which to improve the bonding between the fibre and metal layer. The main objective of this paper is to determine the failure response of the laminate under five variations of the crosshead displacement in the quasi-static loading. The FML was modelled and analysed by using Explicit solver. Based on the experimental data of the quasi-static test, the result of 1 mm/min was 11.85 kN and higher than 5, 10, 50 and 100 mm/min which because of the aluminium ductility during the impact loading response. The numerical simulations were generally in good agreement with the experimental measurements.

  12. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernier, Nicolas, E-mail: n.bernier@yahoo.fr; Xhoffer, Chris; Van De Putte, Tom, E-mail: tom.vandeputte@arcelormittal.com

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters ofmore » aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn{sup 2+} and Mn{sup 3+} are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN){sub x}(SiMn{sub 0.25}N{sub y}O{sub z}){sub 1−x} with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn{sup 2+} and Mn{sup 3+}. • Oxygen incorporation is invoked to account for the thermal stability of (Al,Si,Mn)N.« less

  13. F-111 Adhesive Bonded Repairs Assessment Program - Progress Report 2: Analysis of FM300-2K Repairs

    DTIC Science & Technology

    2015-01-01

    primarily the effect of panel skin thickness The previous report found that while repair location on the aircraft structure may have had some effect...typically are manufactured by adhesively bonding an upper and lower aluminium skin to aluminium honeycomb-core. The structure provides added stiffness to...component, one of the typical repair techniques requires removal of the damaged skin and honeycomb core. New core is adhesively bonded back in place and an

  14. Synthesis of Aluminium Nanoparticles in A Water/Polyethylene Glycol Mixed Solvent using μ-EDM

    NASA Astrophysics Data System (ADS)

    Sahu, R. K.; Hiremath, Somashekhar S.

    2017-08-01

    Nanoparticles present a practical way of retaining the results of the property at the atomic or molecular level. Due to the recent use of nanoparticles in scientific, industrial and medical applications, synthesis of nanoparticles and their characterization have become considerably important. Currently, aluminium nanoparticles have attracted significant research attention because of their reasonable cost, unique properties and interdisciplinary emerging applications. The present paper reports the synthesis of aluminium nanoparticles in the mixture of Deionized water (DI water) and Polyethylene Glycol (PEG) using a developed micro-Electrical Discharge Machining (μ-EDM) method. PEG was used as a stabilizer to prevent nanoparticles from agglomeration produced during the μ -EDM process. The synthesized aluminium nanoparticles were examined by Transmission Electron Microscopy (TEM), Energy Dispersive Analysis by X-rays (EDAX) and Selected Area Electron Diffraction (SAED) pattern to determine their size, shape, chemical nature and crystal structure. The average size of the polyhedral aluminium nanoparticles is found to be 196 nm.

  15. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metalmore » at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.« less

  16. Design of a finger ring extremity dosemeter based on OSL readout of alpha-Al2O3:C.

    PubMed

    Durham, J S; Zhang, X; Payne, F; Akselrod, M S

    2002-01-01

    A finger-ring dosemeter and reader has been designed that uses OSL readout of alpha-Al2O3:C (aluminium oxide). The use of aluminium oxide is important because it allows the sensitive element of the dosemeter to be a very thin layer that reduces the beta and gamma energy dependence to acceptable levels without compromising the required sensitivity for dose measurement. OSL readout allows the ring dosemeter to be interrogated with minimal disassembly. The ring dosemeter consists of three components: aluminium oxide powder for measurement of dose, an aluminium substrate that gives structure to the ring, and an aluminised Mylar cover to prevent the aluminium oxide from exposure to light. The thicknesses of the three components have been optimised for beta response using the Monte Carlo computer code FLUKA. A reader was also designed and developed that allows the dosemeter to be read after removing the Mylar. Future efforts are discussed.

  17. Controlling interferometric properties of nanoporous anodic aluminium oxide

    PubMed Central

    2012-01-01

    A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated. PMID:22280884

  18. Influence of Implementation of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Beck, A. J.; Hodzic, A.; Soutis, C.; Wilson, C. W.

    2011-12-01

    Computer-based Life Cycle Analysis (LCA) models were carried out to compare lightweight composites with the traditional aluminium over their useful lifetime. The analysis included raw materials, production, useful life in operation and disposal at the end of the material's useful life. The carbon fibre epoxy resin composite could in some cases reduce the weight of a component by up to 40 % compared to aluminium. As the fuel consumption of an aircraft is strongly influenced by its total weight, the emissions can be significantly reduced by increasing the proportion of composites used in the aircraft structure. Higher emissions, compared to aluminium, produced during composites production meet their 'break even' point after certain number of time units when used in aircraft structures, and continue to save emissions over their long-term operation. The study highlighted the environmental benefits of using lightweight structures in aircraft design, and also showed that utilisation of composites in products without energy saving may lead to increased emissions in the environment.

  19. Expert Meeting on the Training of Information Users in Higher Education (Espoo, Finland, August 13-17, 1990). Final Report.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Paris (France). General Information Programme.

    The purpose of this meeting was to solicit input for action on the topic of training information users in higher education with special reference to the needs of developing countries. Two documents which had been prepared to form the basis for discussion were introduced: a report of a survey that had investigated what was being done in selected…

  20. Evaluation of interlocking bond strength between structured 1.0338 steel sheets and high pressure die cast AlMg5Si2

    NASA Astrophysics Data System (ADS)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2018-05-01

    Multi-material components open up new possibilities for functional design. Such components combine beneficial physical properties of different materials in a single component as for instance chemical resistance, high strength or low density. The challenge is a reliable bond between both materials to enable a long term usage. This paper deals with a form closure connection to ensure a solid connection between steel strips and high pressure die cast aluminium. Two different sizes of channel structures with width ratios of 1.0 and 1.35 are produced on a steel sheet. An ensuing flat rolling pass is performed to create undercuts with a width of up to 50 µm, enabling an interlocking of the molten aluminium in the concluding casting process. For both rolling processes the resulting geometry is analysed depending on the thickness reduction. In a subsequent high pressure die casting process, aluminium is applied resulting in a complete form filling for the coarser structure. Comparing structures with and without undercuts, only structures suited with undercuts remain gap-free after solidification contraction. The finer structure could not be filled completely; nevertheless these structures result in shear strength of up to 45 MPa transversal to the channel-direction.

  1. The varied functions of aluminium-activated malate transporters–much more than aluminium resistance

    PubMed Central

    Palmer, Antony J.; Baker, Alison; Muench, Stephen P.

    2016-01-01

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. PMID:27284052

  2. Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger's exometabolites.

    PubMed

    Boriová, Katarína; Urík, Martin; Bujdoš, Marek; Pifková, Ivana; Matúš, Peter

    2016-11-01

    Presence of microorganisms in soils strongly affects mobility of metals. This fact is often excluded when mobile metal fraction in soil is studied using extraction procedures. Thus, the first objective of this paper was to evaluate strain Aspergillus niger's exometabolites contribution on aluminium mobilization. Fungal exudates collected in various time intervals during cultivation were analyzed and used for two-step bio-assisted extraction of alumina and gibbsite. Oxalic, citric and gluconic acids were identified in collected culture media with concentrations up to 68.4, 2.0 and 16.5 mmol L -1 , respectively. These exometabolites proved to be the most efficient agents in mobile aluminium fraction extraction with aluminium extraction efficiency reaching almost 2.2%. However, fungal cultivation is time demanding process. Therefore, the second objective was to simplify acquisition of equally efficient extracting agent by chemically mimicking composition of main organic acid components of fungal exudates. This was successfully achieved with organic acids mixture prepared according to medium composition collected on the 12th day of Aspergillus niger cultivation. This mixture extracted similar amounts of aluminium from alumina compared to culture medium. The aluminium extraction efficiency from gibbsite by organic acids mixture was lesser than 0.09% which is most likely because of more rigid mineral structure of gibbsite compared to alumina. The prepared organic acid mixture was then successfully applied for aluminium extraction from soil samples and compared to standard single step extraction techniques. This showed there is at least 2.9 times higher content of mobile aluminium fraction in soils than it was previously considered, if contribution of microbial metabolites is considered in extraction procedures. Thus, our contribution highlights the significance of fungal metabolites in aluminium extraction from environmental samples, but it also simplifies the extraction procedure inspired by bio-assisted extraction of aluminium by common soil fungus A. niger. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Structural differences between single crystal and polycrystalline UBe 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia

    Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less

  4. Structural differences between single crystal and polycrystalline UBe 13

    DOE PAGES

    Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia; ...

    2018-05-16

    Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less

  5. Composite Reinforcement using Boron Nitride Nanotubes

    DTIC Science & Technology

    2014-05-09

    while retaining the nanotube structure. This project involves the use of computational quantum chemistry to study interactions of aluminium (Al...small clusters of 1–4 metal atoms. The effect of varying the radius of the nanotubes and the size of aluminium and titanium clusters was considered...15. SUBJECT TERMS Boron Nitride Nanotubes, composite materials, Aluminum Alloys , Titanium Alloy , Theoretical Chemistry 16. SECURITY

  6. Fabrication of anodic aluminium oxide templates on curved surfaces.

    PubMed

    Yin, Aijun; Guico, Rodney S; Xu, Jimmy

    2007-01-24

    Aluminium anodization provides a simple and inexpensive way to obtain nanoporous templates with uniform and controllable pore diameters and periods over a wide range. Moreover, one of the interesting possibilities afforded by the anodization process is that the anodization can take place on arbitrary surfaces, such as curved surfaces, which has not yet been well studied or applied in nanofabrication. In this paper, we characterize the anodization of Al films on silicon substrates with a curved top surface. The structures of the resultant anodic aluminium oxide (AAO) films are examined by scanning electron microscopy. Unique features including cessation, bending, and branching of pore channels are observed in the curved area. Possible growth mechanisms are proposed, which can also contribute to the understanding of the self-organization mechanism in the formation of porous AAO membranes. The new structures may open new opportunities in optical, electronic and electrochemical applications.

  7. Silver coated aluminium microrods as highly colloidal stable SERS platforms.

    PubMed

    Pazos-Perez, Nicolas; Borke, Tina; Andreeva, Daria V; Alvarez-Puebla, Ramon A

    2011-08-01

    We report on the fabrication of a novel material with the ability to remain in solution even under the very demanding conditions required for structural and dynamic characterization of biomacromolecule assays. This stability is provided by the increase in surface area of a low density material (aluminium) natively coated with a very hydrophilic surface composed of aluminium oxide (Al(2)O(3)) and metallic silver nanoparticles. Additionally, due to the dense collection of active hot spots on their surface, this material offers higher levels of SERS intensity as compared with the same free and aggregated silver nanoparticles. This journal is © The Royal Society of Chemistry 2011

  8. Tribological characterization of TiN coatings prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Makwana, Nishant S.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Chauhan, Dharmesh B.; Dave, Divyeshkumar P.; Rawal, Sushant K.

    2018-05-01

    Titanium nitride (TiN) coating deposited on aluminium and brass pin substrates using RF reactive magnetron sputtering. The structural properties and surface morphology were characterized by X-ray diffraction (XRD), atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM). There was formation of (101) Ti2N, (110) TiN2 and (102) TiN0.30 peaks at 3.5Pa, 2Pa and 1.25Pa sputtering pressure respectively. The tribological properties of coating were inspected using pin on disc tribometer equipment. It was observed that TiN coated aluminium and brass pins demonstrated improved wear resistance than uncoated aluminium and brass pins.

  9. Report on Visit to the U.S. and Europe in May 1983, Covering the 1983 ICAF (International Committee on Aeronautical Fatigue) Meetings and Related Visits.

    DTIC Science & Technology

    1983-07-01

    thickness 2/20 2.4 FATIGUE PROPERTIES OF ALUMINIUM ALLOYS 2/20 2.4.1 Fractography and microstructural relationships in aluminium alloys 2/20 2.4.2 Effect... alloy 7010 2/24 2.4.5 Crack propagation and toughness In 7475-T73 sheet 2/25 2.4.6 Evaluation of aluminium-lithium alloys 2/25 2.5 FATIGUE PROPERTIES OF...of composites 2/41 2.8.5 Development of carbon fibre reinforced plastics with suitable properties for use in high performance structures 2/42 2.8.6

  10. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.

    PubMed

    Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli

    2015-12-01

    In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Experimental Realisation of Elusive Multiple-bonded Aluminium Compounds: A New Horizon in the Aluminium Chemistry.

    PubMed

    Inoue, Shigeyoshi; Bag, Prasenjit; Weetman, Catherine

    2018-05-23

    Synthesis and isolation of stable main group compounds featuring multiple bonds has been of keen interest for the last several decades. Multiply bonded complexes were obtained using sterically demanding substituents that provide kinetic and thermodynamic stability. Many of these compounds have unusual structural and electronic properties that challenges the classical concept of covalent multiple bonding. In contrast, analogous aluminium compounds are scarce in spite of its high natural abundance. The parent dialumene (Al2H2) has been calculated to be extremely weak, thus making Al multiple bonds a challenging synthetic target. This review provides an overview of these recent advances in the cutting edge synthetic approaches used to obtain aluminium homo- and heterodiatomic multiply bonded complexes. Additionally, the reactivity of these novel compounds towards various small molecules and reagents will be discussed herein. This review provides an overview on the current progress in aluminium multiple bond chemistry and the careful ligand design required to stabilise these reactive species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The varied functions of aluminium-activated malate transporters-much more than aluminium resistance.

    PubMed

    Palmer, Antony J; Baker, Alison; Muench, Stephen P

    2016-06-15

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. Benzaldehyde, 2-hydroxybenzoyl hydrazone derivatives as inhibitors of the corrosion of aluminium in hydrochloric acid.

    PubMed

    Fouda, A S; Gouda, M M; El-Rahman, S I

    2000-05-01

    The effect of benzaldehyde, 2-hydroxybenzoyl hydrazone derivatives on the corrosion of aluminium in hydrochloric acid has been investigated using thermometric and polarization techniques. The inhibitive efficiency ranking of these compounds from both techniques was found to be: 2>3>1>4. The inhibitors acted as mixed-type inhibitors but the cathode is more polarized. The relative inhibitive efficiency of these compounds has been explained on the basis of structure of the inhibitors and their mode of interaction at the surface. Results show that these additives are adsorbed on an aluminium surface according to the Langmuir isotherm. Polarization measurements indicated that the rate of corrosion of aluminium rapidly increases with temperature over the range 30-55 degrees C both in the absence and in the presence of inhibitors. Some thermodynamic data of the adsorption process are calculated and discussed.

  14. Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Markoulidis, F.; Lei, C.; Lekakou, C.

    2013-04-01

    High-performance supercapacitors with organic electrolyte 1 M TEABF4 (tetraethyl ammonium tetrafluoroborate) in PC (propylene carbonate) were fabricated and tested, based on multiwall carbon nanotubes (MWNTs) deposited by electrophoresis on three types of alternative substrates: aluminium foil, ITO (indium tin oxide) coated PET (polyethylene terephthalate) film and PET film. In all cases, SEM (scanning electron microscopy) and STEM (scanning transmission electron microscopy) micrographs demonstrated that protruding, transversely oriented MWNT structures were formed, which should increase the transverse conductivity of these MWNT electrodes. The best supercapacitor cell of MWNT electrodes deposited on aluminium foil displayed good transverse orientation of the MWNT structures as well as an in-plane MWNT network at the feet of the protruding structures, which ensured good in-plane conductivity. Capacitor cells with MWNT electrodes deposited either on ITO-coated PET film or on PET film demonstrated lower but still very good performance due to the high density of transversely oriented MWNT structures (good transverse conductivity) but some in-plane inhomogeneities. Capacitor cells with drop-printed MWNTs on aluminium foil, without any transverse orientation, had 16-30 times lower specific capacitance and 5-40 times lower power density than the capacitor cells with the electrophoretically deposited MWNT electrodes.

  15. Determination of aluminium induced metabolic changes in mice liver: a Fourier transform infrared spectroscopy study.

    PubMed

    Sivakumar, S; Sivasubramanian, J; Khatiwada, Chandra Prasad; Manivannan, J; Raja, B

    2013-06-01

    In this study, we made a new approach to evaluate aluminium induced metabolic changes in liver tissue of mice using Fourier transform infrared spectroscopy analysis taking one step further in correlation with strong biochemical evidence. This finding reveals the alterations on the major biochemical constituents, such as lipids, proteins, nucleic acids and glycogen of the liver tissues of mice. The peak area value of amide A significantly decrease from 288.278±3.121 to 189.872±2.012 between control and aluminium treated liver tissue respectively. Amide I and amide II peak area value also decrease from 40.749±2.052 to 21.170±1.311 and 13.167±1.441 to 8.953±0.548 in aluminium treated liver tissue respectively. This result suggests an alteration in the protein profile. The absence of olefinicCH stretching band and CO stretching of triglycerides in aluminium treated liver suggests an altered lipid levels due to aluminium exposure. Significant shift in the peak position of glycogen may be the interruption of aluminium in the calcium metabolism and the reduced level of calcium. The overall findings exhibit that the liver metabolic program is altered through increasing the structural modification in proteins, triglycerides and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected in desferrioxamine treated mice. Histopathological results also revealed impairment of aluminium induced alterations in liver tissue. The results of the FTIR study were found to be in agreement with biochemical studies and which demonstrate FTIR can be used successfully to indicate the molecular level changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Determination of aluminium induced metabolic changes in mice liver: A Fourier transform infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Sivasubramanian, J.; Khatiwada, Chandra Prasad; Manivannan, J.; Raja, B.

    2013-06-01

    In this study, we made a new approach to evaluate aluminium induced metabolic changes in liver tissue of mice using Fourier transform infrared spectroscopy analysis taking one step further in correlation with strong biochemical evidence. This finding reveals the alterations on the major biochemical constituents, such as lipids, proteins, nucleic acids and glycogen of the liver tissues of mice. The peak area value of amide A significantly decrease from 288.278 ± 3.121 to 189.872 ± 2.012 between control and aluminium treated liver tissue respectively. Amide I and amide II peak area value also decrease from 40.749 ± 2.052 to 21.170 ± 1.311 and 13.167 ± 1.441 to 8.953 ± 0.548 in aluminium treated liver tissue respectively. This result suggests an alteration in the protein profile. The absence of olefinicdbnd CH stretching band and Cdbnd O stretching of triglycerides in aluminium treated liver suggests an altered lipid levels due to aluminium exposure. Significant shift in the peak position of glycogen may be the interruption of aluminium in the calcium metabolism and the reduced level of calcium. The overall findings exhibit that the liver metabolic program is altered through increasing the structural modification in proteins, triglycerides and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected in desferrioxamine treated mice. Histopathological results also revealed impairment of aluminium induced alterations in liver tissue. The results of the FTIR study were found to be in agreement with biochemical studies and which demonstrate FTIR can be used successfully to indicate the molecular level changes.

  17. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    NASA Astrophysics Data System (ADS)

    Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin

    2014-03-01

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  18. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The resultsmore » show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.« less

  19. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property

    NASA Astrophysics Data System (ADS)

    Song, Tingting; Liu, Qi; Liu, Jingyuan; Yang, Wanlu; Chen, Rongrong; Jing, Xiaoyan; Takahashi, Kazunobu; Wang, Jun

    2015-11-01

    Inspired by natural plants such as Nepenthes pitcher plants, super slippery surfaces have been developed to improve the attributes of repellent surfaces. In this report, super slippery porous anodic aluminium oxide (AAO) surfaces have fabricated by a simple and reproducible method. Firstly, the aluminium substrates were treated by an anodic process producing micro-nano structured sheet-layered pores, and then immersed in Methyl Silicone Oil, Fluororalkylsilane (FAS) and DuPont Krytox, respectively, generating super slippery surfaces. Such a good material with excellent anti-corrosion property through a simple and repeatable method may be potential candidates for metallic application in anti-corrosion and extreme environment.

  20. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng, E-mail: wy3121685@163.com

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H{sub 2}O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  1. A Review of Australian and New Zealand Investigations on Aeronautical Fatigue During the Period April 2009 to March 2011

    DTIC Science & Technology

    2011-05-01

    specimen thickness on fatigue crack growth rate and threshold behaviour in aluminium alloy 7075-T7351 (W. Zhuang, Q. Liu and W. Hu, [DSTO...repair of aluminium alloy 7050-T7451 (S. Barter [DSTO]) .............................................................................................. 34...In Situ Structural Health Monitoring using Acousto-Ultrasonics and Optical Fibre Sensors (S. Galea, N. Rajic, C. Davis, K. Tsoi, C. Rosalie and I

  2. Fires in storages of LFO: Analysis of hazard of structural collapse of steel-aluminium containers.

    PubMed

    Rebec, A; Kolšek, J; Plešec, P

    2016-04-05

    Pool fires of light fuel oil (LFO) in above-ground storages with steel-aluminium containers are discussed. A model is developed for assessments of risks of between-tank fire spread. Radiative effects of the flame body are accounted for by a solid flame radiation model. Thermal profiles evolved due to fire in the adjacent tanks and their consequential structural response is pursued in an exact (materially and geometrically non-linear) manner. The model's derivation is demonstrated on the LFO tank storage located near the Port of Koper (Slovenia). In support of the model, data from literature are adopted where appropriate. Analytical expressions are derived correspondingly for calculations of emissive characteristics of LFO pool fires. Additional data are collected from experiments. Fire experiments conducted on 300cm diameter LFO pans and at different wind speeds and high-temperature uniaxial tension tests of the analysed aluminium alloys types 3xxx and 6xxx are presented. The model is of an immediate fire engineering practical value (risk analyses) or can be used for further research purposes (e.g. sensitivity and parametric studies). The latter use is demonstrated in the final part of the paper discussing possible effects of high-temperature creep of 3xxx aluminium. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Searching for new aluminium chelating agents: a family of hydroxypyrone ligands.

    PubMed

    Toso, Leonardo; Crisponi, Guido; Nurchi, Valeria M; Crespo-Alonso, Miriam; Lachowicz, Joanna I; Mansoori, Delara; Arca, Massimiliano; Santos, M Amélia; Marques, Sérgio M; Gano, Lurdes; Niclós-Gutíerrez, Juan; González-Pérez, Josefa M; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Szewczuk, Zbigniew

    2014-01-01

    Attention is devoted to the role of chelating agents in the treatment of aluminium related diseases. In fact, in spite of the efforts that have drastically reduced the occurrence of aluminium dialysis diseases, they so far constitute a cause of great medical concern. The use of chelating agents for iron and aluminium in different clinical applications has found increasing attention in the last thirty years. With the aim of designing new chelators, we synthesized a series of kojic acid derivatives containing two kojic units joined by different linkers. A huge advantage of these molecules is that they are cheap and easy to produce. Previous works on complex formation equilibria of a first group of these ligands with iron and aluminium highlighted extremely good pMe values and gave evidence of the ability to scavenge iron from inside cells. On these bases a second set of bis-kojic ligands, whose linkers between the kojic chelating moieties are differentiated both in terms of type and size, has been designed, synthesized and characterized. The aluminium(III) complex formation equilibria studied by potentiometry, electrospray ionization mass spectroscopy (ESI-MS), quantum-mechanical calculations and (1)H NMR spectroscopy are here described and discussed, and the structural characterization of one of these new ligands is presented. The in vivo studies show that these new bis-kojic derivatives induce faster clearance from main organs as compared with the monomeric analog. © 2013.

  4. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    NASA Astrophysics Data System (ADS)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  5. Finite Element Structural Analysis of a Low Energy Micro Sheet Forming Machine Concept Design

    NASA Astrophysics Data System (ADS)

    Razali, A. R.; Ann, C. T.; Ahmad, A. F.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.

    2017-05-01

    It is forecasted that with the miniaturization of materials being processed, energy consumption will also be ‘miniaturized’ proportionally. The aim of this researchis to design a low energy micro-sheet-forming machine for the application of thin sheet metal. A fewconcept designsof machine structure were produced. With the help of FE software, the structure is then subjected to a forming force to observe deflection in the structure for the selection of the best and simplest design. Comparison studies between mild steel and aluminium alloys 6061 were made with a view to examine the most suitable material to be used. Based on the analysis, allowable maximum tolerance was set at 2.5µm and it was found that aluminium alloy 6061 suffice to be used.

  6. Aluminium substitution in iron(II-III)-layered double hydroxides: Formation and cationic order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruby, Christian; Abdelmoula, Mustapha; Aissa, Rabha

    The formation and the modifications of the structural properties of an aluminium-substituted iron(II-III)-layered double hydroxide (LDH) of formula Fe{sub 4}{sup II}Fe{sub (2-6y)}{sup III}Al{sub 6y}{sup III} (OH){sub 12} SO{sub 4}, 8H{sub 2}O are followed by pH titration curves, Moessbauer spectroscopy and high-resolution X-ray powder diffraction using synchrotron radiation. Rietveld refinements allow to build a structural model for hydroxysulphate green rust, GR(SO{sub 4}{sup 2-}), i.e. y=0, in which a bilayer of sulphate anions points to the Fe{sup 3+} species. A cationic order is proposed to occur in both GR(SO{sub 4}{sup 2-}) and aluminium-substituted hydroxysulphate green rust when y<0.08. Variation of the cellmore » parameters and a sharp decrease in average crystal size and anisotropy are detected for an aluminium content as low as y=0.01. The formation of Al-GR(SO{sub 4}{sup 2-}) is preceded by the successive precipitation of Fe{sup III} and Al{sup III} (oxy)hydroxides. Adsorption of more soluble Al{sup III} species onto the initially formed ferric oxyhydroxide may be responsible for this slowdown of crystal growth. Therefore, the insertion of low aluminium amount (y{approx}0.01) could be an interesting way for increasing the surface reactivity of iron(II-III) LDH that maintains constant the quantity of the reactive Fe{sup II} species of the material. - Graphical abstract: (a) Crystallographical structure of sulphated green rust: SO{sub 4}{sup 2-} point to the Fe{sup 3+} cations (red) that form an ordered array with the Fe{sup 2+} cations (green). (b) Width and asymmetry of the synchrotron XRD peaks increase rapidly when some Al{sup 3+} species substitute the Fe{sup 3+} cations; z is molar ratio Al{sup 3+}/Fe{sup 3+}.« less

  7. Ab initio calculation of the deprotonation constants of an atomistically defined nanometer-sized, aluminium hydroxide oligomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wander, Matthew C. F.; Shuford, Kevin L.; Rustad, James R.

    Aluminium possesses significant and diverse chemistry. Numerous compounds have been defined, and the elucidation of their chemistry is of significant geochemical interest. In this paper, a brucite-like, eight-aluminium aqueous cluster is modelled with density functional theory to identify its primary site of deprotonation and the associated pK(a) constant using both explicit (a full first solvent shell) and implicit solvent. Two methods for calculating the pK(a) are compared. We found that a bond density approach is better than a direct energy calculation for ions with large charge and high symmetry. The terminal aluminium atoms have equatorial ligated waters that in solventmore » have one long O-H bond. This site is more reactive than any of the other protons on the particle. Insights into the experimental crystal structure and Bader's Atoms in Molecules density analysis are presented as routes to reduce the computational time required for the identification of protonation sites.« less

  8. Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process - A comparative study

    NASA Astrophysics Data System (ADS)

    Shanavas, S.; Raja Dhas, J. Edwin

    2017-10-01

    Aluminium 5xxx series alloys are the strongest non-heat treatable aluminium alloy. Its application found in automotive components and body structures due to its good formability, good strength, high corrosion resistance, and weight savings. In the present work, the influence of Tungsten Inert Gas (TIG) welding parameters on the quality of weld on AA 5052 H32 aluminium alloy plates were analyzed and the mechanical characterization of the joint so produced was compared with Friction stir (FS) welded joint. The selected input variable parameters are welding current and inert gas flow rate. Other parameters such as welding speed and arc voltage were kept constant throughout the study, based on the response from several trial runs conducted. The quality of the weld is measured in terms of ultimate tensile strength. A double side V-butt joints were fabricated by double pass on one side to ensure maximum strength of TIG welded joints. Macro and microstructural examination were conducted for both welding process.

  9. Separation properties of aluminium-plastic laminates in post-consumer Tetra Pak with mixed organic solvent.

    PubMed

    Zhang, S F; Zhang, L L; Luo, K; Sun, Z X; Mei, X X

    2014-04-01

    The separation properties of the aluminium-plastic laminates in postconsumer Tetra Pak structure were studied in this present work. The organic solvent blend of benzene-ethyl alcohol-water was used as the separation reagent. Then triangle coordinate figure analysis was taken to optimize the volume proportion of various components in the separating agent and separation process. And the separation temperature of aluminium-plastic laminates was determined by the separation time, efficiency, and total mass loss of products. The results show that cost-efficient separations perform best with low usage of solvents at certain temperatures, for certain times, and within a certain range of volume proportions of the three components in the solvent agent. It is also found that similar solubility parameters of solvents and polyethylene adhesives (range 26.06-34.85) are a key factor for the separation of the aluminium-plastic laminates. Such multisolvent processes based on the combined-system concept will be vital to applications in the recycling industry.

  10. Hybrid pigments resulting from several guest dyes onto γ-alumina host: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Erik; Ibarra, Ilich A.; Guzmán, Ariel; Lima, Enrique

    2017-02-01

    The synthesis of hybrid pigments was made from combination of γ-Al2O3 and some organic chromophores such as carminic acid, alizarin, purpurin, curcumin, fluorescein and betacyanins. The γ-Al2O3 was obtained through sol-gel synthesis with 2-propanol and aluminium tri-sec-butoxide (ATB). This article presents some spectroscopic evidences related to the formation of aluminium complexes between coordinative unsaturated sites (CUS) of aluminium and some organic groups (carboxylic acid, quaternary ammonium and β-keto enol) present in the chromophores structure. The physicochemical properties upcoming from a spectroscopic analysis point out that these materials can be applied in the design of new materials with potential uses in artworks and in the field of cultural heritage.

  11. Direct chill casting of aluminium alloys under electromagnetic interaction by permanent magnet assembly

    NASA Astrophysics Data System (ADS)

    Bojarevičs, Andris; Kaldre, Imants; Milgrāvis, Mikus; Beinerts, Toms

    2018-05-01

    Direct chill casting is one of the methods used in industry to obtain good microstructure and properties of aluminium alloys. Nevertheless, for some alloys grain structure is not optimal. In this study, we offer the use of electromagnetic interaction to modify melt convection near the solidification interface. Solidification under various electromagnetic interactions has been widely studied, but usually at low solidification velocity and high thermal gradient. This type of interaction may succeed fragmentation of dendrite arms and transport of solidification nuclei thus leading to improved material structure and properties. Realization of experimental small-scale crystallizer and electromagnetic system has been described in this article.

  12. Formation of epitaxial Al 2O 3/NiAl(1 1 0) films: aluminium deposition

    NASA Astrophysics Data System (ADS)

    Lykhach, Y.; Moroz, V.; Yoshitake, M.

    2005-02-01

    Structure of epitaxial Al 2O 3 layers formed on NiAl(1 1 0) substrates has been studied by means of reflection high-energy electron diffraction (RHEED). The elucidated structure was compared to the model suggested for 0.5 nm-thick Al 2O 3 layers [K. Müller, H. Lindner, D.M. Zehner, G. Ownby, Verh. Dtsch. Phys. Ges. 25 (1990) 1130; R.M. Jaeger, H. Kuhlenbeck, H.J. Freund, Surf. Sci. 259 (1991) 235]. The stepwise growth of Al 2O 3 film, involving deposition and subsequent oxidation of aluminium onto epitaxial 0.5 nm-thick Al 2O 3 layers, has been investigated. Aluminium was deposited at room temperature, whereas its oxidation took place during annealing at 1070 K. The Al 2O 3 thickness was monitored by means of Auger electron spectroscopy (AES). It was found that Al 2O 3 layer follows the structure of 0.5 nm thick Al 2O 3 film, although a tilting of Al 2O 3(1 1 1) surface plane with respect to NiAl(1 1 0) surface appeared after Al deposition.

  13. Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Lebedev, S. V.; Niasse, N.

    A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by amore » dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M = 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by Harvey-Thompson et al.[Physics of Plasmas 19, 056303 (2012)] allowed us to place limits on the range of the ZT{sub e} of the plasma. The detailed and quantitative nature of the dataset lends itself well as a source for model validation and code verification exercises, as the exact shock geometry is sensitive to many of the plasma parameters. Comparison of electron density data produced through numerical modelling with the Gorgon 3D MHD code demonstrates that the code is able to reproduce the collisional dynamics observed in aluminium arrays reasonably well.« less

  14. Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminium matrix composites reinforced with SiC particles during casting and welding: interface reactions

    PubMed

    Urena; Gomez De Salazar JM; Gil; Escalera; Baldonedo

    1999-11-01

    Processing of aluminium matrix composites (AMCs), especially those constituted by a reactive system such as Al-SiC, presents great difficulties which limit their potential applications. The interface reactivity between SiC and molten Al generates an aluminium carbide which degrades the composite properties. Scanning and transmission electron microscopes equipped with energy-dispersive X-ray spectroscopes are essential tools for determining the structure and chemistry of the Al-SiC interfaces in AMCs and changes occurring during casting and arc welding. In the present work, an aluminium-copper alloy (AA2014) reinforced with three different percentages of SiC particles was subjected to controlled remelting tests, at temperatures in the range 750-900 degrees C for 10 and 30 min. Arc welding tests using a tungsten intert gas with power inputs in the range 850-2000 W were also carried out. The results of these studies showed that during remelting there is preferential SiC particle consumption with formation of Al4C3 by interface reaction between the solid SiC particle and the molten aluminium matrix. The formation of Al4C3 by the same mechanism has also been detected in molten pools of arc welded composites. However, in this case there was formation of an almost continuous layer of Al4C3, which protects the particle against further consumption, and formation of aciculate aluminium carbide on the top weld. Both are formed by fusion and dissolution of the SiC in molten aluminium followed by reaction and precipitation of the Al4C3 during cooling.

  15. The role of Sr2+ on the structure and reactivity of SrO-CaO-ZnO-SiO2 ionomer glasses.

    PubMed

    Boyd, Daniel; Towler, Mark R; Watts, Sally; Hill, Robert G; Wren, Anthony W; Clarkin, Owen M

    2008-02-01

    The suitability of Glass Polyalkenoate Cements (GPCs) for use in orthopaedics is retarded by the presence in the glass phase of aluminium, a neurotoxin. Unfortunately, the aluminium ion plays an integral role in the setting process of GPCs and its absence is likely to hinder cement formation. However, the authors have previously shown that aluminium free GPCs may be formulated based on calcium zinc silicate glasses and these novel materials exhibit significant potential as hard tissue biomaterials. To further improve their potential, and given that Strontium (Sr) based drugs have had success in the treatment of osteoporosis, the authors have substituted Calcium (Ca) with Sr in the glass phase of a series of aluminium free GPCs. However to date little data exists on the effect SrO has on the structure and reactivity of SrO-CaO-ZnO-SiO(2) glasses. The objective of this work was to characterise the effect of the Ca/Sr substitution on the structure of such glasses, and evaluate the subsequent reactivity of these glasses with an aqueous solution of Polyacrylic acid (PAA). To this end (29)Si MAS-NMR, differential scanning calorimetry (DSC), X-ray diffraction, and network connectivity calculations, were used to characterize the structure of four strontium calcium zinc silicate glasses. Following glass characterization, GPCs were produced from each glass using a 40 wt% solution of PAA (powder:liquid = 2:1.5). The working times and setting times of the GPCs were recorded as per International standard ISO9917. The results acquired as part of this research indicate that the substitution of Ca for Sr in the glasses examined did not appear to significantly affect the structure of the glasses investigated. However it was noted that increasing the amount of Ca substituted for Sr did result in a concomitant increase in setting times, a feature that may be attributable to the higher basicity of SrO over CaO.

  16. Nuclear microscopy in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Makjanic, Jagoda; Watt, Frank

    1999-04-01

    The elemental composition of the two types of brain lesions which characterise Alzheimer's disease (AD) has been the subject of intense scrutiny over the last decade, ever since it was proposed that inorganic trace elements, particularly aluminium, might be implicated in the pathogenesis of the disease. The major evidence for this involvement was the detection of aluminium in the characteristic lesions of the AD brain; neuritic plaques and neurofibrillary tangles (NFTs). Using the powerful combination of Particle-Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM), it is possible to image and analyse structures in brain sections without recourse to chemical staining. Previous results on elemental composition of senile plaques indicated the absence of aluminium at the 15 parts per million level. We have more recently focused on the analysis of neurofibrillary tangles (NFTs), destructive structural defects within neurons. Imaging and analysis of neurons in brain tissue presented a greater challenge due to the small dimensional size compared with the plaques. We describe the methodology and the results of imaging and analysing neurons in brain tissue sections using Nuclear Microscopy. Our results show that aluminium is not present in either neurons or surrounding tissue in unstained sections at the 20 ppm level, but can be observed in stained sections. We also report elemental concentrations showing significant elevations of phosphorus, sulphur, chlorine, iron and zinc.

  17. Li0.5Al0.5Mg2(MoO4)3

    PubMed Central

    Ennajeh, Ines; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-01-01

    The title compound, lithium/aluminium dimagnesium tetra­kis­[orthomolybdate(VI)], was prepared by a solid-state reaction route. The crystal structure is built up from MgO6 octa­hedra and MoO4 tetra­hedra sharing corners and edges, forming two types of chains running along [100]. These chains are linked into layers parallel to (010) and finally linked by MoO4 tetra­hedra into a three-dimensional framework structure with channels parallel to [001] in which lithium and aluminium cations equally occupy the same position within a distorted trigonal–bipyramidal coordination environment. The title structure is isotypic with LiMgIn(MoO4)3, with the In site becoming an Mg site and the fully occupied Li site a statistically occupied Li/Al site in the title structure. PMID:24426975

  18. Localised anodic oxidation of aluminium material using a continuous electrolyte jet

    NASA Astrophysics Data System (ADS)

    Kuhn, D.; Martin, A.; Eckart, C.; Sieber, M.; Morgenstern, R.; Hackert-Oschätzchen, M.; Lampke, T.; Schubert, A.

    2017-03-01

    Anodic oxidation of aluminium and its alloys is often used as protection against material wearout and corrosion. Therefore, anodic oxidation of aluminium is applied to produce functional oxide layers. The structure and properties of the oxide layers can be influenced by various factors. These factors include for example the properties of the substrate material, like alloy elements and heat treatment or process parameters, like operating temperature, electric parameters or the type of the used electrolyte. In order to avoid damage to the work-piece surface caused by covering materials in masking applications, to minimize the use of resources and to modify the surface in a targeted manner, the anodic oxidation has to be localised to partial areas. Within this study a proper alternative without preparing the substrate by a mask is investigated for generating locally limited anodic oxidation by using a continuous electrolyte jet. Therefore aluminium material EN AW 7075 is machined by applying a continuous electrolyte jet of oxalic acid. Experiments were carried out by varying process parameters like voltage or processing time. The realised oxide spots on the aluminium surface were investigated by optical microscopy, SEM and EDX line scanning. Furthermore, the dependencies of the oxide layer properties from the process parameters are shown.

  19. Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes

    PubMed Central

    Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás

    2010-01-01

    In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.

  20. Structural and mechanical properties of CVD deposited titanium aluminium nitride (TiAlN) thin films

    NASA Astrophysics Data System (ADS)

    Das, Soham; Guha, Spandan; Ghadai, Ranjan; Kumar, Dhruva; Swain, Bibhu P.

    2017-06-01

    Titanium aluminium nitride (TiAlN) thin films were deposited by chemical vapour deposition using TiO2 powder, Al powder and N2 gas. The morphology and mechanical properties of the films were characterized by scanning electron microscopy and nanoindentation technique, respectively. The structural properties were characterized by Raman spectroscopy and X-ray diffraction. The XRD result shows TiAlN films are of NaCl-type metal nitride structure. Micro-Raman peaks of the TiAlN thin film were observed within 450 and 642 cm-1 for acoustic and optic range, respectively. A maximum hardness and Young modulus up to 22 and 272.15 GPa, respectively, were observed in the TiAlN film deposited at 1200 °C.

  1. Variation in aluminium patch test reactivity over time.

    PubMed

    Siemund, Ingrid; Mowitz, Martin; Zimerson, Erik; Bruze, Magnus; Hindsén, Monica

    2017-11-01

    Contact allergy to aluminium has been reported more frequently in recent years. It has been pointed out that positive patch test reactions to aluminium may not be reproducible on retesting. To investigate possible variations in patch test reactivity to aluminium over time. Twenty-one adults, who had previously reacted positively to aluminium, were patch tested with equimolar dilution series in pet. of aluminium chloride hexahydrate and aluminium lactate, four times over a period of 8 months. Thirty-six of 84 (43%) serial dilution tests with aluminium chloride hexahydrate and 49 of 84 (58%) serial dilution tests with aluminium lactate gave negative results. The range of reactivity varied between a negative reaction to aluminium chloride hexahydrate at 10% and/or to aluminium lactate at 12%, and a positive reaction to aluminium chloride hexahydrate at 0.1% and/or to aluminium lactate at 0.12%. The highest individual difference in test reactivity noticed was 320-fold when the two most divergent minimal eliciting concentrations were compared. The patch test reactivity to aluminium varies over time. Aluminium-allergic individuals may have false-negative reactions. Therefore, retesting with aluminium should be considered when there is a strong suspicion of aluminium contact allergy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Proceedings of the Spacecraft Charging Technology Conference Held in Monterey, California on 31 October - 3 November 1989. Volume 1

    DTIC Science & Technology

    1989-11-01

    Technical Note I (Chapter 4), ESA Contract 8011 /88. IASB, 1989. Williams, D..., E. Keppler, T.A. Fritz, B. Wilken and G. Wibberenz, The ISEE 1 and 2...particles’ range in aluminium as calculated by the SHIELDOSE program: this shows that higher energy particles can penetrate appreciable distances before...described here is limited to the study of a shadowed or partially illuminated kapton patch on a sunlit, conducting aluminium spacecraft structure. The

  3. An Evaluation of the Effective Block Approach Using P-3C and F-111 Crack Growth Data

    DTIC Science & Technology

    2008-09-01

    the end of 2006 where his research interests included, modelling of fatigue crack growth, infrared NDT technologies and fibre optic corrosion...2006). It was claimed that the growth of these cracks in structures made of 7050 aluminium alloy could not be adequately predicted using classical...the crack growth behaviour of 7050 aluminium alloy subjected to the service load of the F/A-18 fighter planes. To make the matter worse, the

  4. A Review of Australian and New Zealand Investigations on Aeronautical Fatigue During the Period April 2007 to March 2009

    DTIC Science & Technology

    2009-04-01

    stress ratios of the order of R=-2, 7075T6 aluminium alloys possessed better fatigue properties than the 2024T3 series alloys . It was also possible...flight-by-flight damage tracking algorithms (S J Houghton, S K Campbell [RNZAF])...........................................8-67 8.5.2 CT-4E Usage ...exponential crack growth behaviour of cracks in F/A-18 7050-T7451 aluminium alloy structure, the Safe Life limits of many discrete locations could be

  5. Aluminium surface treatment with ceramic phases using diode laser

    NASA Astrophysics Data System (ADS)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  6. Hybrid FSWeld-bonded joint fatigue behaviour

    NASA Astrophysics Data System (ADS)

    Lertora, Enrico; Mandolfino, Chiara; Gambaro, Carla; Pizzorni, Marco

    2018-05-01

    Aluminium alloys, widely used in aeronautics, are increasingly involved in the automotive industry due to the good relationship between mechanical strength and specific weight. The lightening of the structures is the first objective, which allows the decreasing in the weight in motion. The use of aluminium alloys has also seen the introduction of the Friction Stir Welding (FSW) technique for the production of structural overlapping joints. FSW allows us to weld overlap joints free from defects, but with the presence of a structural notch further aggravated by the presence of a "hook" defect near the edge of the weld. Furthermore, FSW presents a weld penetration area connected to the tool geometry and penetration. The experimental activity will be focused on the combination of two different joining techniques, which can synergistically improve the final joint resistance. In particular, the welding and bonding process most commonly known as weld-bonding is defined as a hybrid process, as it combines two different junction processes. In this paper we analyse FSWelded AA6082 aluminium alloy overlapped joint with the aim of quantitatively evaluating the improvement provided by the presence of an epoxy adhesive between the plates. After optimising the weld-bonding process, the mechanical behaviour of welded joints will be analysed by static and dynamic tests. The presence of the adhesive should limit the negative effect of the structural notch inevitable in a FSW overlapped joint.

  7. Characteristic evaluation of process parameters of friction stir welding of aluminium 2024 hybrid composites

    NASA Astrophysics Data System (ADS)

    Sadashiva, M.; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    The Current work is aimed to investigate the effect of process parameters in friction stir welding of Aluminium 2024 base alloy and Aluminium 2024 matrix alloy reinforced with E Glass and Silicon Carbide reinforcements. The process involved a set of synthesis techniques incorporating stir casting methodology resulting in fabrication of the composite material. This composite material that is synthesized is then machined to obtain a plate of dimensions 100 mm * 50 mm * 6 mm. The plate is then friction stir welded at different set of parameters viz. the spindle speed of 600 rpm, 900 rpm and 1200 rpm and feed rate of 40 mm/min, 80 mm/min and 120 mm/min for analyzing the process capability. The study of the given set of parameters is predominantly important to understand the physics of the process that may lead to better properties of the joint, which is very much important in perspective to its use in advanced engineering applications, especially in aerospace domain that uses Aluminium 2024 alloy for wing and fuselage structures under tension.

  8. The influence of laser alloying on the structure and mechanical properties of AlMg5Si2Mn surface layers

    NASA Astrophysics Data System (ADS)

    Pakieła, W.; Tański, T.; Brytan, Z.; Labisz, K.

    2016-04-01

    The goal of this paper was focused on investigation of microstructure and properties of surface layer produced during laser surface treatment of aluminium alloy by high-power fibre laser. The performed laser treatment involves remelting and feeding of Inconel 625 powder into the aluminium surface. As a base metal was used aluminium alloy AlMg5Si2Mn. The Inconel powder was injected into the melt pool and delivered by a vacuum feeder at a constant rate of 4.5 g/min. The size of Inconel alloying powder was in the range 60-130 µm. In order to remelt the aluminium alloy surface, the fibre laser of 3 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 m/min. Based on performed investigations, it was possible to obtain the layer consisting of heat-affected zone, transition zone and remelted zone, without cracks and defects having much higher hardness value compared to the non-alloyed material.

  9. The toxicity of aluminium in humans.

    PubMed

    Exley, C

    2016-06-01

    We are living in the 'aluminium age'. Human exposure to aluminium is inevitable and, perhaps, inestimable. Aluminium's free metal cation, Alaq(3+), is highly biologically reactive and biologically available aluminium is non-essential and essentially toxic. Biologically reactive aluminium is present throughout the human body and while, rarely, it can be acutely toxic, much less is understood about chronic aluminium intoxication. Herein the question is asked as to how to diagnose aluminium toxicity in an individual. While there are as yet, no unequivocal answers to this problem, there are procedures to follow to ascertain the nature of human exposure to aluminium. It is also important to recognise critical factors in exposure regimes and specifically that not all forms of aluminium are toxicologically equivalent and not all routes of exposure are equivalent in their delivery of aluminium to target sites. To ascertain if Alzheimer's disease is a symptom of chronic aluminium intoxication over decades or breast cancer is aggravated by the topical application of an aluminium salt or if autism could result from an immune cascade initiated by an aluminium adjuvant requires that each of these is considered independently and in the light of the most up to date scientific evidence. The aluminium age has taught us that there are no inevitabilities where chronic aluminium toxicity is concerned though there are clear possibilities and these require proving or discounting but not simply ignored. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Analysis of aluminum base-reaction effect in density, porosity, and thermal insulation of porous fire bricks

    NASA Astrophysics Data System (ADS)

    Wismogroho, Agus Sukarto; Firmansyah, Trisna Bagus; Meidianto, Alwi; Widayatno, Wahyu Bambang; Amal, Muhamad Ikhlasul

    2018-05-01

    This paper reports the effect of aluminium corrosion reaction on the density, porosity, and thermal insulation capability of porous fire bricks. The reaction between aluminium and alkaline solution produces hydrogen and other sediment products. The test specimens of fire bricks were made from the mixture of castable cement, aluminium powder of 325 mesh in size (0, 0.1, 1, and 2 wt% with respect to castable cement), and 0.185 M KOH solution. The structural examination of the specimens shows the increase of porosity to 22.7 - 30.6% and the decrease of density in the range of 1.135-1.503 g/mL. In addition, the samples possess average pore size of 0.001-0.003 cm3 with the thermal insulation in the range of 47-78%.

  11. Structural and spectroscopic analysis of ex-situ annealed RF sputtered aluminium doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Otieno, Francis; Airo, Mildred; Erasmus, Rudolph M.; Billing, David G.; Quandt, Alexander; Wamwangi, Daniel

    2017-08-01

    Aluminium doped zinc oxide thin films are prepared by Radio Frequency magnetron sputtering in pure argon atmosphere at 100 W. The structural results reveal good film adhesion on a silicon substrate (001). The thin films were then subjected to heat treatment in a furnace under ambient air. The structural, morphological, and optical properties of the thin films as a function of deposition time and annealing temperatures have been investigated using Grazing incidence X-Ray Diffraction (GIXRD), Atomic Force Microscopy, and Scanning Electronic Microscopy. The photoluminescence properties of the annealed films showed significant changes in the optical properties attributed to mid gap defects. Annealing increases the crystallite size and the roughness of the film. The crystallinity of the films also improved as evident from the Raman and XRD studies.

  12. Thermoluminescence property of nano scale Al{sub 2}O{sub 3}: C by combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharthasaradhi, R.; Nehru, L. C.

    In this study, thermoluminescence dosimetry material of carbon doped aluminium oxide by combustion method using Aluminium nitrate and Glycine. The Structure of the prepared Sample was carried out by XRD. The sample was nano crystalline in nature. Having hexagonal structure with unit cell parameters a=4.75Å, C=12.99Å. The surface morphology of the prepared nanopowder was carried out through (SEM). The morphology of the prepared sample is platelet structure and functional group analysis carried out through FT-IR Spectrum. The prepared sample was irradiated through γ-ray CO{sup 60} (100 Gy) was used as γ-ray source. The thermoluminescence glow curve of the irradiated samplemore » showed an isolated peak at around 200°C. The result suggest the prepared nanopowder is suitable for medical radiation dosimetry.« less

  13. Analysis of aluminium in rat following administration of allergen immunotherapy using either aluminium or microcrystalline-tyrosine-based adjuvants.

    PubMed

    McDougall, Stuart A; Heath, Matthew D; Kramer, Matthias F; Skinner, Murray A

    2016-03-01

    Investigation into the absorption, distribution and elimination of aluminium in rat after subcutaneous aluminium adjuvant formulation administration using ICP-MS is described. Assays were verified under the principles of a tiered approach. There was no evidence of systemic exposure of aluminium, in brain or in kidney. Extensive and persistent retention of aluminium at the dose site was observed for at least 180 days after administration. This is the first published work that has quantified aluminium adjuvant retention based on the quantity of aluminium delivered in a typical allergy immunotherapy course. The results indicate that the repeated administration of aluminium-containing adjuvants will likely contribute directly and significantly to an individual's body burden of aluminium.

  14. Setting of commercial glass ionomer cement Fuji IX by (27)Al and (19)F MAS-NMR.

    PubMed

    Munhoz, Tais; Karpukhina, Natalia; Hill, Robert G; Law, Robert V; De Almeida, L H

    2010-04-01

    To investigate the long term setting reaction in the glass ionomer restorative, Fuji IX, by monitoring the structural evolution of aluminium and fluorine species using (27)Al and (19)F MAS-NMR spectroscopy. Fuji IX cements aged from 5min up to 3 months were prepared according to the manufacturer instructions from the commercial material. The (27)Al and (19)F MAS-NMR studies were carried out on powders made after terminating the setting reaction. (27)Al MAS-NMR results show conversion of aluminium from the glass phase, where it has coordination number four, Al(IV), into the cement matrix where it has a coordination number of six, Al(VI). At least two different Al(VI) species were detected at short ageing time cements. Assignment of these species is discussed and compared with the data from other sources. The possibility for a condensed aluminium species [Al(13)(OH)(24)(H(2)O)(12)](7+) to form is considered. The ratio of aluminium in the cement, Al(VI), to the remaining unreacted in glass has been evaluated by deconvolution of the spectra. Various theoretical ratios of aluminium species in the cement matrix to the unreacted ones remaining in glass have been estimated. The (19)F MAS-NMR spectra are identical for the glass and cements at the early times and contain a dominant signal assigned to Al-F-Sr(n). The data confirms that the conversion of aluminium is a diffusion-controlled process at early stage less than 1h and it is largely complete between 1 and 6h. The comparison with the experimental data shows that the majority of aluminium cations do not form tricarboxylates but are coordinated with one or two carboxylic groups and other ligands. Insufficient amount of water and excess of glass in this cement formulation affect glass degradation mechanism. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  15. Three-Dimensional Structure Analysis and Percolation Properties of a Barrier Marine Coating

    PubMed Central

    Chen, Bo; Guizar-Sicairos, Manuel; Xiong, Gang; Shemilt, Laura; Diaz, Ana; Nutter, John; Burdet, Nicolas; Huo, Suguo; Mancuso, Joel; Monteith, Alexander; Vergeer, Frank; Burgess, Andrew; Robinson, Ian

    2013-01-01

    Artificially structured coatings are widely employed to minimize materials deterioration and corrosion, the annual direct cost of which is over 3% of the gross domestic product (GDP) for industrial countries. Manufacturing higher performance anticorrosive coatings is one of the most efficient approaches to reduce this loss. However, three-dimensional (3D) structure of coatings, which determines their performance, has not been investigated in detail. Here we present a quantitative nano-scale analysis of the 3D spatial structure of an anticorrosive aluminium epoxy barrier marine coating obtained by serial block-face scanning electron microscopy (SBFSEM) and ptychographic X-ray computed tomography (PXCT). We then use finite element simulations to demonstrate how percolation through this actual 3D structure impedes ion diffusion in the composite materials. We found the aluminium flakes align within 15° of the coating surface in the material, causing the perpendicular diffusion resistance of the coating to be substantially higher than the pure epoxy. PMID:23378910

  16. Effect of Bio char on Plant Growth and Aluminium Form of Soil under Aluminium Stress

    NASA Astrophysics Data System (ADS)

    Qian, Lianwen; Li, Qingbiao; Sun, Jingwei; Feng, Ying

    2018-01-01

    Aluminium-enriched acid red soils in South China easily cause aluminium toxicity to plants, but biochip can improve soils and eliminate soil contaminations. In this project, biochip was used in potted plant control test to study the effect of biochip on plant growth in soil under acid aluminium stress and the migration and conversion of aluminium in plant-soil system. The fin dings show that the application of biochip increases the pH value of soil under aluminium stress significantly, changes the existing form of aluminium ion in soil, reduces the plants’ absorption of aluminium, and alleviates the aluminium toxicity to plants, but too much biochip may inhibit the growth of plants. In this case, further study should be carried out as regards the volume and way of biochip input in practical applications as well as the timeliness of aluminium toxicity removal.

  17. Comparison of reactivity to a metallic disc and 2% aluminium salt in 366 children, and reproducibility over time for 241 young adults with childhood vaccine-related aluminium contact allergy.

    PubMed

    Gente Lidholm, Anette; Inerot, Annica; Gillstedt, Martin; Bergfors, Elisabet; Trollfors, Birger

    2018-07-01

    An aluminium hydroxide-adsorbed pertussis toxoid vaccine was studied in 76 000 children in the 1990s in Gothenburg, Sweden. Long-lasting itchy subcutaneous nodules at the vaccination site were seen in 745 participants. Of 495 children with itchy nodules who were patch tested for aluminium allergy, 377 were positive. In 2007-2008, 241 of the positive children were retested. Only in one third were earlier positive results reproduced. To further describe patch test reactions to different aluminium compounds in children with vaccine-induced aluminium allergy. Positive patch test results for metallic aluminium (empty Finn Chamber) and aluminium chloride hexahydrate 2% petrolatum (pet.) were analysed in 366 children with vaccine-induced persistent itching nodules tested in 1998-2002. Of those, 241 were tested a second time (2007-2008), and the patch test results of the two aluminium preparations were analysed. Patch testing with aluminium chloride hexahydrate 2% pet. is a more sensitive way to diagnose aluminium contact allergy than patch testing with metallic aluminium. A general decrease in the strength of reactions to both aluminium preparations in 241 children tested twice was observed. Aluminium contact allergy can be diagnosed by patch testing without using metallic aluminium. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Delamination properity of 2060 aluminium lithium alloy laminate

    NASA Astrophysics Data System (ADS)

    Guo, Xiang; Huang, Yi; Tong, Dihua; Ma, Shaojun

    2018-03-01

    Delamination is an significant property of aluminium lithium alloy laminate for damage tolerance design. Double Crack Lap Shear specimens of "2/1" structure are used for testing delamination properity. Experiments of 2 stress ratio conditions R=0.06, 0.5 are conducted, and 5 stress levels for each stress ratio. Delamination growth data b-N are obtained from 4 crack tips’ locations. The energy release rate, Gd, of the "2/1" structure laminate are calculated. Alderliesten modelis used for describing delamination growth db/dN and energy release rate Gd. Parameters Cd and nd in Alderliesten model are determined for R=0.06 and R=0.5 by linear fitting. An analysis is made by comparing the results of different stress ratio conditons.

  19. [Risk and features of occupational diseases in nonferrous metallurgy workers of Kolsky Transpolar area].

    PubMed

    Siurin, S A; Chashchin, V P; Frolova, N M

    2015-01-01

    The study covered data on 977 cases of occupational diseases in 615 workers of nonferrous metallurgy in Kolsky Transpolar area. Findings are high risk of occupational diseases in workers engaged into electrolysis production of aluminium, all nickel reprocessing and pyrometallic copper reprocessing (GR 7.02-10.0). Electrolysis operators and anode operators of aluminium production are more prone to occupational diseases, with bone and muscular disorders (46.8%) prevalent in the morbidity structure. Respiratory diseases are more prevalent (68.2-100%) in the occupational morbidity structure of copper-nickelindustry workers. Conclusion is made on mandatory improvement of the work conditions and more effective individual protective means against occupational hazards in workers of nonferrous metallurgy in Kolsky Transpolar area.

  20. XAFS studies on a modified Al-Si hypoeutectic alloy

    NASA Astrophysics Data System (ADS)

    Srirangam, V. S. Prakash; Chattopadhyay, S.; Shibata, T.; Kaduk, J. A.; Miller, J. T.; Segre, C. U.; Shankar, S.

    2009-11-01

    To understand the role of Sr in doped aluminium-silicon alloys, we have conducted for the first time, Sr- K edge XAFS measurements on Al-3%Si-0.04%Sr. Aluminium-Silicon alloys are widely used in automobile and aerospace applications. Modification of these alloys with addition of trace levels of Sr (200-400 ppm) results in changing the morphology of Si eutectic from "plate" like structure to "fibrous" structure. Several theories have been proposed to understand the mechanism of modification of eutectic phases with Sr addition in these alloys, but there is no conclusive evidence in support of these theories. From our XAFS analysis, we suggest Sr-Si bonds and Sr-Sr correlations may be responsible for the morphological transformation observed in the alloy.

  1. Interfacial morphology of low-voltage anodic aluminium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Naiping; Dongcinn, Xuecheng; He, Xueying

    X-ray reflectivity (XRR) and neutron reflectivity (NR), as well as ultra-smallangle X-ray scattering (USAXS), are used to examine the in-plane and surfacenormal structure of anodic films formed on aluminium alloy AA2024 and pure aluminium. Aluminium and alloy films up to 3500 A thick were deposited on Si wafers by electron beam evaporation of ingots. Porous anodic aluminium oxide (AAO) films are formed by polarizing at constant voltage up to 20 V noble to the open circuit potential. The voltage sweet spot (5 V) appropriate for constant-voltage anodization of such thin films was determined for both alloy and pure Al. Inmore » addition, a new concurrent voltage- and current-control protocol was developed to prepare films with larger pores (voltages higher than 5 V), but formed at a controlled current so that pore growth is slow enough to avoid stripping the aluminium substrate layer. USAXS shows that the pore size and interpore spacing are fixed in the first 10 s after initiation of anodization. Pores then grow linearly in time, at constant radius and interpore spacing. Using a combination of XRR and NR, the film density and degree of hydration of the films were determined from the ratio of scattering length densities. Assuming a chemical formula Al2O3xH2O, it was found that x varies from 0.29 for the native oxide to 1.29 for AAO grown at 20 V under concurrent voltage and current control. The average AAO film density of the porous film at the air surface is 2.45 (20) g cm3. The density of the barrier layer at the metal interface is 2.9 (4) g cm3, which indicates that this layer is also quite porous« less

  2. On the Possibility of using Alluminium-Magnesium Alloys with Improved Mechanical Characteristics for Body Elements of Zenit-2S Launch Vehicle Propellant Tanks

    NASA Astrophysics Data System (ADS)

    Sitalo, V.; Lytvyshko, T.

    2002-01-01

    Yuzhnoye SDO developed several generations of launch vehicles and spacecraft that are characterized by weight perfection, optimal cost, accuracy of output geometrical characteristics, stable strength characteristics, high tightness. The main structural material of launch vehicles are thermally welded non-strengthened aluminium- magnesium alloys. The aluminium-magnesium alloys in the annealed state have insufficiently high strength characteristics. Considerable increase of yield strength of sheets and plates can be reached by cold working but in this case, plasticity reduces. An effective way to improve strength of aluminium-magnesium alloys is their alloying with scandium. The alloying with scandium leads to modification of the structure of ingots (size reduction of cast grain) and formation of supersaturated solid solutions of scandium and aluminium during crystallization. During subsequent heatings (annealing of the ingots, heating for deformation) the solid solution disintegrates with the formation of disperse particles of Al3Sc type, that cause great strengthening of the alloy. High degree of dispersion and density of distribution in the matrix of secondary Al3Sc particles contribute to the considerable increase of the temperature of recrystallization of deformed intermediate products and to the formation of stable non-recrystallized structure. The alloying of alluminium-magnesium alloys with scandium increases their strength and operational characteristics, preserves their technological and corrosion properties, improves weldability. The alloys can be used within the temperature limits ­196-/+150 0C. The experimental structures of propellant tanks made of alluminium-magnesium alloys with scandium have been manufactured and tested. It was ascertained that the propellant tanks have higher margin of safety during loading with internal pressure and higher stability factor of the shrouds during loading with axial compression force which is caused by higher value of yield strength. The analysis of the performed work showed good prospects of using the alluminium-magnesium alloys with increased mechanical characteristics for making body elements of propellant tanks of the Zenit -2S launch vehicles. The use of these alloys can give the increase of structural strength by 20-30% and considerable increase of payload weight.

  3. Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin.

    PubMed

    White, Claire E; Provis, John L; Proffen, Thomas; Riley, Daniel P; van Deventer, Jannie S J

    2010-04-07

    Understanding the atomic structure of complex metastable (including glassy) materials is of great importance in research and industry, however, such materials resist solution by most standard techniques. Here, a novel technique combining thermodynamics and local structure is presented to solve the structure of the metastable aluminosilicate material metakaolin (calcined kaolinite) without the use of chemical constraints. The structure is elucidated by iterating between least-squares real-space refinement using neutron pair distribution function data, and geometry optimisation using density functional modelling. The resulting structural representation is both energetically feasible and in excellent agreement with experimental data. This accurate structural representation of metakaolin provides new insight into the local environment of the aluminium atoms, with evidence of the existence of tri-coordinated aluminium. By the availability of this detailed chemically feasible atomic description, without the need to artificially impose constraints during the refinement process, there exists the opportunity to tailor chemical and mechanical processes involving metakaolin and other complex metastable materials at the atomic level to obtain optimal performance at the macro-scale.

  4. In situ analysis of phase transformation in sol-gel cogelified nanopowder mixture of Al 2O 3 and TiO 2 using synchrotron X-ray radiation diffraction experiments

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Stanciu, L.; Groza, J. R.; Lathe, Ch.; Burkel, E.

    2003-01-01

    Aluminium titanate (Al 2TiO 5) has been selected for study due to its high melting point and thermal shock resistance. In situ analysis of phase transformation and of transformation kinetics of sol-gel powder mixture of alumina and titania cogelified samples was performed using high-temperature synchrotron radiation X-ray diffraction experiments. The high reactivity and molecular mixing of sol-gel cogelified precursor powders contributed to the evolution of the reaction. The stability of the TiO 2-tetragonal structure (anatase) increases due to Al 2O 3 presence. The temperature of the aluminium titanate endothermic reaction decreases when heating rate increases. The results obtained by in situ analysis have been used to establish the sintering parameters in order to obtain fully transformed, dense aluminium titanate bulk ceramics.

  5. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Panagopoulos, C. N.; Georgiou, E. P.; Tsopani, A.; Piperi, L.

    2011-03-01

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  6. Effect of the layer of anodized 7075-T6 aluminium corrosion properties

    NASA Astrophysics Data System (ADS)

    Montoya Z, R. D.; L, E. Vera; Pineda T, Y.; Cedeño, M. L.

    2017-01-01

    Aluminium alloys are widely used in various sectors of industry. The 7075-T6 alloy corresponding to an Al-Zn T6, is mostly used as structural component in the aviation industry, due to the good relationship between weight and mechanical properties. However, the negative point of this alloys is the resistance to corrosion, which is why they need to be coated with an anodic film. Different surface treatments, such as anodizing, are used to improve corrosion resistance. Anodizing is an electrolytic process by which a protective layer on aluminium known as “alumina” is formed, this is formed by the passage of an electric current in an acidic electrolyte. This investigation presents a study of the effect of the thickness of layers of alumina deposited by anodized method, in the corrosion resistance of 7075-T6 aluminium. This study was performed by using in a solution of tartaric acid - sulfuric acid and an inorganic salt. To evaluate the influence alumina layer thickness on the corrosion properties some tests were carried out by using the electrochemical spectroscopy impedances (EIS) technique and Tafel polarization curves. It was found that the grown of the thickness of film favourably influences in the corrosion resistance.

  7. Investigation of structural, morphological, luminescent and thermal properties of combusted aluminium-based iron oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinde, S.S.; Rajpure, K.Y., E-mail: rajpure@yahoo.co

    Nanocomposites of aluminium integrated hematite {alpha}-Fe{sub 2}O{sub 3} are synthesized by combustion route using aqueous solutions of AR grade ferric trichloride and aluminium nitrate as precursors. The influence of aluminium incorporation on to the morphology, XPS, photoluminescence and thermal properties has been investigated. The FESEM and AFM micrographs depict that the samples are compact and have homogeneously distributed grains of varying sizes ({approx}20-60 nm). Chemical composition and valence states of constituent elements in hematite are analyzed by XPS. In room temperature photoluminescence (PL) study, we observed strong violet emission around 436 nm without any deep-level emission and a small PLmore » FWHM indicating that the concentrations of defects are responsible for deep-level emissions. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant. We studied interparticle interactions using complex impedance spectroscopy. We report a new potential candidate for its possible applications in optoelectronics and magnetic devices. -- Graphical abstract: Frequency and temperature dependent interparticle interactions like grains, grain boundary effects using complex impedance spectroscopy of pure and 10 at% Al:Fe{sub 2}O{sub 3} have been studied. Display Omitted« less

  8. Formation of organoclays by a one step synthesis

    NASA Astrophysics Data System (ADS)

    Jaber, Maguy; Miéhé-Brendlé, Jocelyne; Delmotte, Luc; Le Dred, Ronan

    2005-05-01

    Different lamellar hybrid inorganic-organic materials having as inorganic parent 2:1 (T.O.T.) phyllosilicates such as talc, saponite, pyrophyllite, beidellite and montmorillonite were prepared by a one step synthesis. The solids were characterized by X-ray diffraction, solid state 29Si, 27Al, and 19F nuclear magnetic resonance and transmission electron microscopy. XRD patterns show that solids with inorganic parents having octahedral sheet based on aluminium exhibit a lamellar structure similar to MCM-50, whereas those with magnesium have an organophyllosilicate structure. In the first case, the absence of hexacoordinated aluminium was confirmed by 27Al NMR and an ordered stacking of the layers is observed on TEM micrographs. In opposite, a disorder is observed on the TEM images of organophyllosilicates. The formation of the 2:1 structure was found to be controlled mainly by the insertion of silicic species in the interlamellar space of brucite like layers.

  9. Quantitative SIMS depth profiling of diffusion barrier gate-oxynitride structures in TFT-LCDs.

    PubMed

    Dreer, Sabine; Wilhartitz, Peter; Piplits, Kurt; Mayerhofer, Karl; Foisner, Johann; Hutter, Herbert

    2004-06-01

    Gate oxynitride structures of TFT-LCDs were investigated by SIMS, and successful solutions are demonstrated to overcome difficulties arising due to the charging effects of the multilayer systems, the matrix effect of the method, and the small pattern sizes of the samples. Because of the excellent reproducibility achieved by applying exponential relative sensitivity functions for quantitative analysis, minor differences in the barrier gate-oxynitride composition deposited on molybdenum capped aluminium-neodymium metallisation electrodes were determined between the centre and the edge of the TFT-LCD substrates. No differences were found for molybdenum-tungsten metallisations. Furthermore, at the edge of the glass substrates, aluminium, neodymium, and molybdenum SIMS depth profiles show an exponential trend. With TEM micrographs an inhomogeneous thickness of the molybdenum capping is revealed as the source of this effect, which influences the electrical behaviour of the device. The production process was improved after these results and the aging behaviour of TFT-LCDs was investigated in order to explain the change in control voltage occurring during the lifetime of the displays. SIMS and TEM show an enrichment of neodymium at the interface to the molybdenum layer, confirming good diffusion protection of the molybdenum barrier during accelerated aging. The reason for the shift of the control voltage was finally located by semi-quantitative depth profiling of the sodium diffusion originating from the glass substrate. Molybdenum-tungsten was a much better buffer for the highly-mobile charge carriers than aluminium-neodymium. Best results were achieved with PVD silicon oxynitride as diffusion barrier and gate insulator deposited on aluminium-neodymium metallisation layers.

  10. Aluminium in human sweat.

    PubMed

    Minshall, Clare; Nadal, Jodie; Exley, Christopher

    2014-01-01

    It is of burgeoning importance that the human body burden of aluminium is understood and is measured. There are surprisingly few data to describe human excretion of systemic aluminium and almost no reliable data which relate to aluminium in sweat. We have measured the aluminium content of sweat in 20 healthy volunteers following mild exercise. The concentration of aluminium ranged from 329 to 5329μg/L. These data equate to a daily excretion of between 234 and 7192μg aluminium and they strongly suggest that perspiration is the major route of excretion of systemic aluminium in humans. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. The prophylactic reduction of aluminium intake.

    PubMed

    Lione, A

    1983-02-01

    The use of modern analytical methods has demonstrated that aluminium salts can be absorbed from the gut and concentrated in various human tissues, including bone, the parathyroids and brain. The neurotoxicity of aluminium has been extensively characterized in rabbits and cats, and high concentrations of aluminium have been detected in the brain tissue of patients with Alzheimer's disease. Various reports have suggested that high aluminium intakes may be harmful to some patients with bone disease or renal impairment. Fatal aluminium-induced neuropathies have been reported in patients on renal dialysis. Since there are no demonstrable consequences of aluminium deprivation, the prophylactic reduction of aluminium intake by many patients would appear prudent. In this report, the major sources of aluminium in foods and non-prescription drugs are summarized and alternative products are described. The most common foods that contain substantial amounts of aluminium-containing additives include some processed cheeses, baking powders, cake mixes, frozen doughs, pancake mixes, self-raising flours and pickled vegetables. The aluminium-containing non-prescription drugs include some antacids, buffered aspirins, antidiarrhoeal products, douches and haemorrhoidal medications. The advisability of recommending a low aluminium diet for geriatric patients is discussed in detail.

  12. Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components

    NASA Astrophysics Data System (ADS)

    Meco, S.; Pardal, G.; Ganguly, S.; Williams, S.; McPherson, N.

    2015-04-01

    Laser welding-brazing technique, using a continuous wave (CW) fibre laser with 8000 W of maximum power, was applied in conduction mode to join 2 mm thick steel (XF350) to 6 mm thick aluminium (AA5083-H22), in a lap joint configuration with steel on the top. The steel surface was irradiated by the laser and the heat was conducted through the steel plate to the steel-aluminium interface, where the aluminium melts and wets the steel surface. The welded samples were defect free and the weld micrographs revealed presence of a brittle intermetallic compounds (IMC) layer resulting from reaction of Fe and Al atoms. Energy Dispersive Spectroscopy (EDS) analysis indicated the stoichiometry of the IMC as Fe2Al5 and FeAl3, the former with maximum microhardness measured of 1145 HV 0.025/10. The IMC layer thickness varied between 4 to 21 μm depending upon the laser processing parameters. The IMC layer showed an exponential growth pattern with the applied specific point energy (Esp) at a constant power density (PD). Higher PD values accelerate the IMC layer growth. The mechanical shear strength showed a narrow band of variation in all the samples (with the maximum value registered at 31.3 kN), with a marginal increase in the applied Esp. This could be explained by the fact that increasing the Esp results into an increase in the wetting and thereby the bonded area in the steel-aluminium interface.

  13. The effects of stacking sequence and thermal cycling on the flexural properties of laminate composites of aluminium-epoxy/basalt-glass fibres

    NASA Astrophysics Data System (ADS)

    Abdollahi Azghan, Mehdi; Eslami-Farsani, Reza

    2018-02-01

    The current study aimed at investigating the effects of different stacking sequences and thermal cycling on the flexural properties of fibre metal laminates (FMLs). FMLs were composed of two aluminium alloy 2024-T3 sheets and epoxy polymer-matrix composites that have four layers of basalt and/or glass fibres with five different stacking sequences. For FML samples the thermal cycle time was about 6 min for temperature cycles from 25 °C to 115 °C. Flexural properties of samples evaluated after 55 thermal cycles and compared to non-exposed samples. Surface modification of aluminium performed by electrochemical treatment (anodizing) method and aluminium surfaces have been examined by scanning electron microscopy (SEM). Also, the flexural failure mechanisms investigated by the optical microscope study of fractured surfaces. SEM images indicated that the porosity of the aluminium surface increased after anodizing process. The findings of the present study showed that flexural modulus were maximum for basalt fibres based FML, minimum for glass fibres based FML while basalt/glass fibres based FML lies between them. Due to change in the failure mechanism of basalt/glass fibres based FMLs that have glass fibres at outer layer of the polymer composite, the flexural strength of this FML is lower than glass and basalt fibres based FML. After thermal cycling, due to the good thermal properties of basalt fibres, flexural properties of basalt fibres based FML structures decreased less than other composites.

  14. The effect of zinc (Zn) content to cell potential value and efficiency aluminium sacrificial anode in 0.2 M sulphuric acid environment

    NASA Astrophysics Data System (ADS)

    Akranata, Ahmad Ridho; Sulistijono, Awali, Jatmoko

    2018-04-01

    Sacrificial anode is sacirifial component that used to protect steel from corrosion. Generally, the component are made of aluminium and zinc in water environment. Sacrificial anode change the protected metal structure become cathodic with giving current. The advantages of aluminium is corrosion resistance, non toxicity and easy forming. Zinc generally used for coating in steel to prevent steel from corrosion. This research was conducted to analyze the effect of zinc content to the value of cell potential and efficiency aluminium sacrificial anode with sand casting method in 0.2 M sulphuric acid environment. The sacrificial anode fabrication made with alloying aluminium and zinc metals with variation composition of alloy with pure Al, Al-3Zn, Al-6Zn, and Al-9Zn with open die sand casting process. The component installed with ASTM A36 steel. After the research has been done the result showed that addition of zinc content increase the cell potential, protection efficiency, and anode efficiency from steel plate. Cell potential value measurement and weight loss measurement showed that addition of zinc content increase the cell potential value into more positive that can protected the ASTM A36 steel more efficiently that showed in weight loss measurement where the protection efficiency and anodic efficiency of Al-9Zn sacrificial anode is better than protection efficiency and anodic efficiency of pure Al. The highest protection efficiency gotten by Al-9Zn alloy

  15. Aluminium in foodstuffs and diets in Sweden.

    PubMed

    Jorhem, L; Haegglund, G

    1992-01-01

    The levels of aluminium have been determined in a number of individual foodstuffs on the Swedish market and in 24 h duplicate diets collected by women living in the Stockholm area. The results show that the levels in most foods are very low and that the level in vegetables can vary by a factor 10. Beverages from aluminium cans were found to have aluminium levels not markedly different from those in glass bottles. Based on the results of the analysis of individual foods, the average Swedish daily diet was calculated to contain about 0.6 mg aluminium, whereas the mean content of the collected duplicate diets was 13 mg. A cake made from a mix containing aluminium phosphate in the baking soda was identified as the most important contributor of aluminium to the duplicate diets. Tea and aluminium utensils were estimated to increase the aluminium content of the diets by approximately 4 and 2 mg/day, respectively. The results also indicate that a considerable amount of aluminium must be introduced from other sources.

  16. Pseudoplasticity of Propellant Slurry with Varied Aluminium Content for Castability Development

    NASA Astrophysics Data System (ADS)

    Restasari, A.; Budi, R. S.; Hartaya, K.

    2018-04-01

    The modification of the percentage of aluminium is necessary to obtain certain specific impulse. But, it affects the pseudoplasticity of propellant in elapsed time that is important in casting. Therefore, this research attempts to investigate the pseudoplasticity of propellant slurry with varied aluminium contents and as time elapsed, the range of percentage of aluminium and time that allows propellant slurry to be well processed. The methods include measuring the viscosity of propellant slurries that contain 6, 8, 10, 12, 14, 16 and 18% of aluminium at varied shear rates until 40 minutes after mixing by using Brookfield viscometer. The graphs of viscosity versus shear rate were made to determine pseudoplasticity index. After that, the graph volume fraction versus pseudoplasticity index were made to be investigated. It is concluded that the more aluminium contents, the slurries with 6 to 12% aluminium contents exhibit more pseudoplastic behaviour, but the slurries with 12 to 16% aluminium exhibit less pseudoplastic. While, slurry of 18% aluminium exhibit high pseudoplasticity. In the correlation with the time, the slurry compositions of 6, 8, 14, 16% aluminium become more pseudoplastic as time elapsed. While, for compositions of 10, 12 and 18% aluminium, the trend becomes contrary. Based on the pseudoplasticity index, propellant slurries that contain 10 and 14% of aluminium are suitable for pressure casting. While for slurries with 6, 8 and 16% of aluminium are also suitable for vacuum casting. All of those suitability are possesed until 40 minutes after mixing. While, the composition of slurries that contain 12 and 18% of aluminium need to be modified to enhanced its castability.

  17. Research of hail impact on aircraft wheel door with lattice hybrid structure

    NASA Astrophysics Data System (ADS)

    Li, Shengze; Jin, Feng; Zhang, Weihua; Meng, Xuanzhu

    2016-09-01

    Aimed at a long lasting issue of hail impact on aircraft structures and aviation safety due to its high speed, the resistance performance of hail impact on the wheel door of aircraft with lattice hybrid structure is investigated. The proper anti-hail structure can be designed both efficiency and precision based on this work. The dynamic responses of 8 different sandwich plates in diverse impact speed are measured. Smoothed Particle Hydrodynamic (SPH) method is introduced to mimic the speciality of solid-liquid mixture trait of hailstone during the impact process. The deformation and damage degree of upper and lower panel of sandwich plate are analysed. The application range and failure mode for the relevant structure, as well as the energy absorbing ratio between lattice structure and aluminium foam are summarized. Results show that the tetrahedral sandwich plate with aluminium foam core is confirmed the best for absorbing energy. Furthermore, the high absorption characteristics of foam material enhance the capability of the impact resistance for the composition with lattice structure without increasing the structure surface density. The results of study are of worth to provide a reliable basis for reduced weight aircraft wheel door.

  18. Surface and interface analysis of poly-hydroxyethylmethacrylate-coated anodic aluminium oxide membranes

    NASA Astrophysics Data System (ADS)

    Ali, Nurshahidah; Duan, Xiaofei; Jiang, Zhong-Tao; Goh, Bee Min; Lamb, Robert; Tadich, Anton; Poinern, Gérrard Eddy Jai; Fawcett, Derek; Chapman, Peter; Singh, Pritam

    2014-01-01

    The surface and interface of poly (2-hydroxyethylmethacrylate) (PHEMA) and anodic aluminium oxide (AAO) membranes were comprehensively investigated using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. It was found that 1s→π* (Cdbnd O) and 1s→σ* (Csbnd O) transitions were dominant on the surface of both bulk PHEMA polymer and PHEMA-surface coated AAO (AAO-PHEMA) composite. Findings from NEXAFS, Fourier-Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS) analyses suggest the possibility of chemical interaction between carbon from the ester group of polymer and AAO membrane.

  19. Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.

    PubMed

    Yang, X; Wang, J Y; Pan, H Y

    2009-02-01

    Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.

  20. Micro-mechanics modelling of smart materials

    NASA Astrophysics Data System (ADS)

    Shah, Syed Asim Ali

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperature and engineering applications. Metal matrix composites (MMC) combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing super alloys.The purpose of the study is to investigate, develop and implement second phase reinforcement alloy strengthening empirical model with SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material.To predict the interfacial fracture strength of aluminium, in the presence of silicon segregation, an empirical model has been modified. This model considers the interfacial energy caused by segregation of impurities at the interface and uses Griffith crack type arguments to predict the formation energies of impurities at the interface. Based on this, model simulations were conducted at nano scale specifically at the interface and the interfacial strengthening behaviour of reinforced aluminium alloy system was expressed in terms of elastic modulus.The numerical model shows success in making prediction possible of trends in relation to segregation and interfacial fracture strength behaviour in SiC particle-reinforced aluminium matrix composites. The simulation models using various micro scale modelling techniques to the aluminum alloy matrix composite, strengthenedwith varying amounts of silicon carbide particulate were done to predict the material state at critical points with properties of Al-SiC which had been heat treated.In this study an algorithm is developed to model a hard ceramic particle in a soft matrix with a clear distinct interface and a strain based relationship has been proposed for the strengthening behaviour of the MMC at the interface rather than stress based, by successfully completing the numerical modelling of particulate reinforced metal matrix composites.

  1. Investigation of the formability of aluminium alloys at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Tisza, M.; Budai, D.; Kovács, P. Z.; Lukács, Zs

    2016-11-01

    Aluminium alloys are more and more widely applied in car body manufacturing. Increasing the formability of aluminium alloys are one of the most relevant tasks in todays’ research topics. In this paper, the focus will be on the investigation of the formability of aluminium alloys concerning those material grades that are more widely applied in the automotive industry including the 5xxx and 6xxx aluminium alloy series. Recently, besides the cold forming of aluminium sheets the forming of aluminium alloys at elevated temperatures became a hot research topic, too. In our experimental investigations, we mostly examined the EN AW 5754 and EN AW 6082 aluminium alloys at elevated temperatures. We analysed the effect of various material and process parameters (e.g. temperature, sheet thickness) on the formability of aluminium alloys with particular emphasis on the Forming Limit Diagrams at elevated temperatures in order to find the optimum forming conditions for these alloys.

  2. Aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference.

    PubMed

    Zhao, Xue Qiang; Guo, Shi Wei; Shinmachi, Fumie; Sunairi, Michio; Noguchi, Akira; Hasegawa, Isao; Shen, Ren Fang

    2013-01-01

    Acidic soils are dominated chemically by more ammonium and more available, so more potentially toxic, aluminium compared with neutral to calcareous soils, which are characterized by more nitrate and less available, so less toxic, aluminium. However, it is not known whether aluminium tolerance and nitrogen source preference are linked in plants. This question was investigated by comparing the responses of 30 rice (Oryza sativa) varieties (15 subsp. japonica cultivars and 15 subsp. indica cultivars) to aluminium, various ammonium/nitrate ratios and their combinations under acidic solution conditions. indica rice plants were generally found to be aluminium-sensitive and nitrate-preferring, while japonica cultivars were aluminium-tolerant and relatively ammonium-preferring. Aluminium tolerance of different rice varieties was significantly negatively correlated with their nitrate preference. Furthermore, aluminium enhanced ammonium-fed rice growth but inhibited nitrate-fed rice growth. The results suggest that aluminium tolerance in rice is antagonistic with nitrate preference and synergistic with ammonium preference under acidic solution conditions. A schematic diagram summarizing the interactions of aluminium and nitrogen in soil-plant ecosystems is presented and provides a new basis for the integrated management of acidic soils.

  3. Bone aluminium in haemodialysed patients and in rats injected with aluminium chloride: relationship to impaired bone mineralisation.

    PubMed Central

    Ellis, H A; McCarthy, J H; Herrington, J

    1979-01-01

    Iliac bone aluminium was determined by neutron activation analysis in 34 patients with chronic renal failure and in eight control subjects. In 17 patients treated by haemodialysis there was a significant increase in the amount of aluminium (mean +/- SE = 152 +/- 30 ppm bone ash). In eight patients treated by haemodialysis and subsequent renal transplantation, bone aluminium was still significantly increased (92 +/- 4.5 ppm bone ash) but was less than in the haemodialysed patients. In some patients aluminium persisted in bone for many years after successful renal transplantation. There was no relationship between hyperparathyroidism and bone aluminium. Although no statistically significant relationship was found between the mineralisation status of bone and bone aluminium, patients dialysed for the longest periods tended to be those with the highest levels of aluminium, osteomalacia, and dialysis encephalopathy. In 20 rats given daily intraperitoneal injections of aluminium chloride for periods of up to three months, there was accumulation of aluminium in bone (163 +/- 9 ppm ash) to levels comparable to those obtained in the dialysis patients, and after about eight weeks osteomalacia developed. The increased bone aluminium and osteomalacia persisted after injections had been stopped for up to 49 days, although endochondral ossification was restored to normal. As a working hypothesis it is suggested that aluminium retained in the bone of the dialysis patients and the experimental animals interferes with normal mineralisation. Images Fig. 5 Fig. 6 PMID:389958

  4. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    PubMed

    Mudge, David W; Johnson, David W; Hawley, Carmel M; Campbell, Scott B; Isbel, Nicole M; van Eps, Carolyn L; Petrie, James J B

    2011-05-13

    Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing concerns about the risks of calcium binders, which continue to be widely used. The paper seeks to answer whether the continued use of aluminium is justifiable in the absence of prospective data establishing its safety, and we call for prospective trials to be conducted comparing the available binders both in terms of efficacy and safety. © 2011 Mudge et al; licensee BioMed Central Ltd.

  5. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    PubMed Central

    2011-01-01

    Background Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. Discussion The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. Summary This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing concerns about the risks of calcium binders, which continue to be widely used. The paper seeks to answer whether the continued use of aluminium is justifiable in the absence of prospective data establishing its safety, and we call for prospective trials to be conducted comparing the available binders both in terms of efficacy and safety. PMID:21569446

  6. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    PubMed

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 μg L(-1). The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  7. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    NASA Technical Reports Server (NTRS)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  8. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    PubMed

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as <0.025μm filtered, <0.45μm filtered (dissolved) and unfiltered (total) present in solution over the 72-h bioassay. The chronic population growth rate inhibition after aluminium exposure varied between diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (p<0.05) increasing with initial cell density from 10(3) to 10(5)cells/mL. No effects on plasma membrane permeability were observed for any of the three diatoms suggesting that mechanisms of aluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated aluminium. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Aluminium in allergen-specific subcutaneous immunotherapy--a German perspective.

    PubMed

    Kramer, Matthias F; Heath, Matthew D

    2014-07-16

    We are living in an "aluminium age" with increasing bioavailability of the metal for approximately 125 years, contributing significantly to the aluminium body burden of humans. Over the course of life, aluminium accumulates and is stored predominantly in the lungs, bones, liver, kidneys and brain. The toxicity of aluminium in humans is briefly summarised, highlighting links and possible causal relationships between a high aluminium body burden and a number of neurological disorders and disease states. Aluminium salts have been used as depot-adjuvants successfully in essential prophylactic vaccinations for almost 100 years, with a convincing positive benefit-risk assessment which remains unchanged. However, allergen-specific immunotherapy commonly consists of administering a long-course programme of subcutaneous injections using preparations of relevant allergens. Regulatory authorities currently set aluminium limits for vaccines per dose, rather than per treatment course. Unlike prophylactic vaccinations, numerous injections with higher proportions of aluminium-adjuvant per injection are applied in subcutaneous immunotherapy (SCIT) and will significantly contribute to a higher cumulative life dose of aluminium. While the human body may cope robustly with a daily aluminium overload from the environment, regulatory cumulative threshold values in immunotherapy need further addressing. Based on the current literature, predisposing an individual to an unusually high level of aluminium, such as through subcutaneous immunotherapy, has the potential to form focal accumulations in the body with the propensity to exert forms of toxicity. Particularly in relation to longer-term health effects, the safety of aluminium adjuvants in immunotherapy remains unchallenged by health authorities - evoking the need for more consideration, guidance, and transparency on what is known and not known about its safety in long-course therapy and what measures can be taken to prevent or minimise its risks. The possibility of providing an effective means of measuring aluminium accumulation in patients undergoing long-term SCIT treatment as well as reducing their aluminium body burden is discussed. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Biological indicators of exposure to total and respirable aluminium dust fractions in a primary aluminium smelter.

    PubMed Central

    Röllin, H B; Theodorou, P; Cantrell, A C

    1996-01-01

    OBJECTIVES: The study attempts to define biological indicators of aluminium uptake and excretion in workers exposed to airborne aluminium compounds in a primary aluminium smelter. Also, this study defines the total and respirable aluminium dust fractions in two different potrooms, and correlates their concentrations with biological indicators in this group of workers. METHODS: Air was sampled at defined work sites. Non-destructive and conventional techniques were used to find total and respirable aluminium content of the dust. Blood and urine was collected from 84 volunteers employed at various work stations throughout the smelter and from two different cohorts of controls matched for sex, age, and socioeconomic status. Aluminium in serum samples and urine specimens was measured by flameless atomic absorption with a PE 4100 ZL spectrometer. RESULTS: The correlation of aluminium concentrations in serum and urine samples with the degree of exposure was assessed for three arbitrary exposure categories; low (0.036 mg Al/m3), medium (0.35 mg Al/m3) and high (1.47 mg Al/m3) as found in different areas of the smelter. At medium and high exposure, the ratio of respirable to total aluminium in the dust samples varied significantly. At high exposure, serum aluminium, although significantly raised, was still within the normal range of an unexposed population. The workers with low exposure excreted aluminium in urine at levels significantly higher than the controls, but still within the normal range of the population. However, potroom workers with medium and high exposure had significantly higher urinary aluminium than the normal range. CONCLUSIONS: It is concluded that only urinary aluminium constitutes a practical index of occupational exposure at or above 0.35 mg Al/m3, and that the respirable fraction of the dust may play a major role in the biological response to exposure to aluminium in a smelter environment. PMID:8758038

  11. Human exposure to aluminium.

    PubMed

    Exley, Christopher

    2013-10-01

    Human activities have circumvented the efficient geochemical cycling of aluminium within the lithosphere and therewith opened a door, which was previously only ajar, onto the biotic cycle to instigate and promote the accumulation of aluminium in biota and especially humans. Neither these relatively recent activities nor the entry of aluminium into the living cycle are showing any signs of abating and it is thus now imperative that we understand as fully as possible how humans are exposed to aluminium and the future consequences of a burgeoning exposure and body burden. The aluminium age is upon us and there is now an urgent need to understand how to live safely and effectively with aluminium.

  12. Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongdong, E-mail: lidongdong@jlu.edu.cn; Yu, Xiang

    Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N{sub 2} adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×10{sup 6} M{sup −1} and 0.3 ppm in water solution. More importantly, the materials can be recycled for manymore » times by simply washed with ethanol, showing potential applications in explosives detection. - Graphical abstract: Electron-rich of anthracene functionalized mesoporous aluminium organophosphonates can serve as sensitive and recycled chemosensors for nitroderivatives with the quenching constant up to 1.5×10{sup 6} M{sup −1} in water solution. Display Omitted - Highlights: • Anthracene functionalized mesoporous aluminium organophosphonates were synthesized. • The materials serve as sensitive chemosensors for nitroderivatives. • The materials can be recycled for many times by simply washed with ethanol. • The materials show potential applications in explosives detection.« less

  13. Effect of strong acids on red mud structural and fluoride adsorption properties.

    PubMed

    Liang, Wentao; Couperthwaite, Sara J; Kaur, Gurkiran; Yan, Cheng; Johnstone, Dean W; Millar, Graeme J

    2014-06-01

    The removal of fluoride using red mud has been improved by acidifying red mud with hydrochloric, nitric and sulphuric acid. The acidification of red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the amount of available iron and aluminium oxide/hydroxide sites that are accessible for the adsorption of fluoride. However, concentrated acids have a negative effect on adsorption due to the dissolution of these iron and aluminium oxide/hydroxide sites. The removal of fluoride is dependent on the charge of iron and aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡SOH2(+) and ≡SOH. Optimum removal is obtained when the majority of surface sites are in the form ≡SOH2(+) as the substitution of a fluoride ion does not cause a significant increase in pH. This investigation shows the importance of having a low and consistent pH for the removal of fluoride from aqueous solutions using red mud. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Bumblebee pupae contain high levels of aluminium.

    PubMed

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer's disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline.

  15. Aluminium in brain tissue in familial Alzheimer's disease.

    PubMed

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Bumblebee Pupae Contain High Levels of Aluminium

    PubMed Central

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer’s disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline. PMID:26042788

  17. Microhardness variation and related microstructure in Al-Cu alloys prepared by HF induction melting and RF sputtering

    NASA Astrophysics Data System (ADS)

    Boukhris, N.; Lallouche, S.; Debili, M. Y.; Draissia, M.

    2009-03-01

    The materials under consideration are binary aluminium-copper alloys (10 at% to 90.3 at%Cu) produced by HF melting and RF magnetron sputtering. The resulting micro structures have been observed by standard metallographic techniques, X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. Vickers microhardness of bulk Al-Cu alloys reaches a maximum of 1800 MPa at 70.16 at%Cu. An unexpected metastable θ ' phase has been observed within aluminium grain in Al-37 at%Cu. The mechanical properties of a family of homogeneous Al{1-x}Cu{x} (0 < x < 0.92) thin films made by radiofrequency (13.56 MHz) cathodic magnetron sputtering from composite Al-Cu targets have been investigated. The as-deposited microstructures for all film compositions consisted of a mixture of the two expected face-centred-cubic (fcc) Al solid solution and tetragonal θ (Al{2}Cu) phases. The microhardness regularly increases and the grain size decreases both with copper concentration. This phenomenon of significant mechanical strengthening of aluminium by means of copper is essentially due to a combination between solid solution effects and grain size refinement. This paper reports some structural features of different Al-Cu alloys prepared by HF melting and RF magnetron on glass substrate sputtering.

  18. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Hajime, E-mail: h.kinoshita@sheffield.ac.uk; Swift, Paul; Utton, Claire

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, andmore » the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.« less

  19. Aluminium removal from water after defluoridation with the electrocoagulation process.

    PubMed

    Sinha, Richa; Mathur, Sanjay; Brighu, Urmila

    2015-01-01

    Fluoride is the most electronegative element and has a strong affinity for aluminium. Owing to this fact, most of the techniques used for fluoride removal utilized aluminium compounds, which results in high concentrations of aluminium in treated water. In the present paper, a new approach is presented to meet the WHO guideline for residual aluminium concentration as 0.2 mg/L. In the present work, the electrocoagulation (EC) process was used for fluoride removal. It was found that aluminium content in water increases with an increase in the energy input. Therefore, experiments were optimized for a minimum energy input to achieve the target value (0.7 mg/L) of fluoride in resultant water. These optimized sets were used for further investigations of aluminium control. The experimental investigations revealed that use of bentonite clay as coagulant in clariflocculation brings down the aluminium concentration of water below the WHO guideline. Bentonite dose of 2 g/L was found to be the best for efficient removal of aluminium.

  20. Nanostructural hierarchy increases the strength of aluminium alloys.

    PubMed

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-09-07

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

  1. The durability of ceramic coated dental instruments.

    PubMed

    Rawlings, R D; Robinson, P B; Rogers, P S

    1995-09-01

    This study investigates the hardness, structure, composition, and thickness of coatings on two dental instruments and the changes which occurred when the instruments were subjected to conditions that closely match their clinical use. One group of instruments had a titanium nitride coating that was approximately 8 micrometers thick and had a hardness of 19.5 GN/m2. The coating on the other instrument was alumina (aluminium oxide) and contained some microcracks even when new; this coating was thicker (approximately 30 micrometers) and had a hardness less than the titanium nitride coating (15.8 GN/m2). The results showed that the titanium nitride coating was structurally superior compared with the aluminium oxide coating. Laboratory wear tests against composite resin showed that the wear resistance of titanium nitride was superior to that of stainless steel whether assessed in terms of weight or volume loss.

  2. Separation of actinides from irradiated An-Zr based fuel by electrorefining on solid aluminium cathodes in molten LiCl-KCl

    NASA Astrophysics Data System (ADS)

    Souček, P.; Murakami, T.; Claux, B.; Meier, R.; Malmbeck, R.; Tsukada, T.; Glatz, J.-P.

    2015-04-01

    An electrorefining process for metallic spent nuclear fuel treatment is being investigated in ITU. Solid aluminium cathodes are used for homogeneous recovery of all actinides within the process carried out in molten LiCl-KCl eutectic salt at a temperature of 500 °C. As the selectivity, efficiency and performance of solid Al has been already shown using un-irradiated An-Zr alloy based test fuels, the present work was focused on laboratory-scale demonstration of the process using irradiated METAPHIX-1 fuel composed of U67-Pu19-Zr10-MA2-RE2 (wt.%, MA = Np, Am, Cm, RE = Nd, Ce, Gd, Y). Different electrorefining techniques, conditions and cathode geometries were used during the experiment yielding evaluation of separation factors, kinetic parameters of actinide-aluminium alloy formation, process efficiency and macro-structure characterisation of the deposits. The results confirmed an excellent separation and very high efficiency of the electrorefining process using solid Al cathodes.

  3. Life cycle assessment of metal alloys for structural applications

    NASA Astrophysics Data System (ADS)

    Malovrh Rebec, K.; Markoli, B.; Leskovar, B.

    2018-03-01

    The study compared environmental footprints of two types of Al-alloys: well-known 5083 aluminium alloy with magnesium and traces of manganese and chromium in its composition. This material is highly resistant to seawater corrosion and the influence of industrial chemicals. Furthermore, it retains exceptional strength after welding. The comparisons were made to an innovative alloy where the aluminium based matrix is reinforced by metastable quasicrystals (QC), thus avoiding magnesium in its composition. Furthermore, we checked other aluminium ingots’ footprints and compared European average and Germany country specific production data. Environmental footprints were assessed via cradle to gate life cycle assessment. Our findings normalized to 1 m2 plate suggest, that newly proposed alloy could save around 50 % in value of parameters abiotic resources depletion of fossil fuels, acidification, eutrophication, global warming potential and photochemical ozone creation potential if we compare Qc5 to 6 mm 5083 alloy plate. Only abiotic resources depletion of elements and ozone depletion parameters increase for Qc5 compared to 6 mm 5083 alloy plate.

  4. Influence of metallic surface states on electron affinity of epitaxial AlN films

    NASA Astrophysics Data System (ADS)

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha; Gupta, Govind

    2017-06-01

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6-1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2-3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  5. Study of the aluminium content in AGB winds using ALMA. Indications for the presence of gas-phase (Al2O3)n clusters

    NASA Astrophysics Data System (ADS)

    Decin, L.; Richards, A. M. S.; Waters, L. B. F. M.; Danilovich, T.; Gobrecht, D.; Khouri, T.; Homan, W.; Bakker, J. M.; Van de Sande, M.; Nuth, J. A.; De Beck, E.

    2017-12-01

    Context. The condensation of inorganic dust grains in the winds of evolved stars is poorly understood. As of today, it is not yet known which molecular clusters form the first dust grains in oxygen-rich (C/O < 1) asymptotic giant branch (AGB) winds. Aluminium oxides and iron-free silicates are often put forward as promising candidates for the first dust seeds. Aims: We aim to constrain the dust formation histories in the winds of oxygen-rich AGB stars. Methods: We obtained Atacama Large Millimeter/sub-millimeter array (ALMA) observations with a spatial resolution of 120 × 150 mas tracing the dust formation region of the low mass-loss rate AGB star, R Dor, and the high mass-loss rate AGB star, IK Tau. We detected emission line profiles of AlO, AlOH, and AlCl in the ALMA data and used these line profiles to derive a lower limit of atomic aluminium incorporated in molecules. This constrains the aluminium budget that can condense into grains. Results: Radiative transfer models constrain the fractional abundances of AlO, AlOH, and AlCl in IK Tau and R Dor. We show that the gas-phase aluminium chemistry is completely different in both stars with a remarkable difference in the AlO and AlOH abundance stratification. The amount of aluminium locked up in these three molecules is small, ≤1.1 × 10-7 w.r.t. H2, for both stars, i.e. only ≤2% of the total aluminium budget. An important result is that AlO and AlOH, which are the direct precursors of alumina (Al2O3) grains, are detected well beyond the onset of the dust condensation, which proves that the aluminium oxide condensation cycle is not fully efficient. The ALMA observations allow us to quantitatively assess the current generation of theoretical dynamical-chemical models for AGB winds. We discuss how the current proposed scenario of aluminium dust condensation for low mass-loss rate AGB stars within a few stellar radii from the star, in particular for R Dor and W Hya, poses a challenge if one wishes to explain both the dust spectral features in the spectral energy distribution (SED) in interferometric data and in the polarized light signal. In particular, the estimated grain temperature of Al2O3 is too high for the grains to retain their amorphous structure. We advocate that large gas-phase (Al2O3)n clusters (n > 34) can be the potential agents of the broad 11 μm feature in the SED and in the interferometric data and we propose potential formation mechanisms for these large clusters.

  6. Aluminium Pneumoconiosis I. In Vitro Comparison of Stamped Aluminium Powders Containing Different Lubricating Agents and a Granular Aluminium Powder

    PubMed Central

    Corrin, B.

    1963-01-01

    The discrepancy in previous reports of the action of aluminium on the lung may be explained by differences between stamped and granular aluminium powders. A stamped powder of the variety causing pulmonary fibrosis showed a brisk reaction with water, but a granular powder was unreactive. This difference is primarily due to the granular particles being covered by inert aluminium oxide, the formation of which is partially prevented in the stamping process by stearine and mineral oil. The reactivity of the flake-like stamped particles is also dependent on their large surface area per unit volume. The appearance of aluminium pneumoconiosis in Britain is explained by the introduction of mineral oil into the stamping industry for, in contrast to stearine, mineral oil permits the powder to react with water. The lung damage is believed to be caused by a soluble form of aluminium. PMID:14072616

  7. Formation of A Non-detachable Welded Titanium-aluminium Compound by Laser Action

    NASA Astrophysics Data System (ADS)

    Murzin, Serguei P.

    2018-01-01

    Progressive in the welding of dissimilar materials is the use of laser technology. With the use of the ROFIN StarWeld Manual Performance laser, an aluminium alloy AK4 and a titanium alloy VT5-1 were welded. Processing regimes have been determined, the realization of which during melting of materials in the zone of thermal influence makes it possible to obtain a homogeneous structure without voids and shells, which indicates a potential sufficiently high serviceability of the welded joint. To create the required power density distribution in the cross section of the laser beam, it is expedient to use diffractive optical elements.

  8. Prevalence of beryllium sensitization among aluminium smelter workers

    PubMed Central

    Slade, M. D.; Cantley, L. F.; Kirsche, S. R.; Wesdock, J. C.; Cullen, M. R.

    2010-01-01

    Background Beryllium exposure occurs in aluminium smelters from natural contamination of bauxite, the principal source of aluminium. Aims To characterize beryllium exposure in aluminium smelters and determine the prevalence rate of beryllium sensitization (BeS) among aluminium smelter workers. Methods A population of 3185 workers from nine aluminium smelters owned by four different aluminium-producing companies were determined to have significant beryllium exposure. Of these, 1932 workers participated in medical surveillance programmes that included the serum beryllium lymphocyte proliferation test (BeLPT), confirmation of sensitization by at least two abnormal BeLPT test results and further evaluation for chronic beryllium disease in workers with BeS. Results Personal beryllium samples obtained from the nine aluminium smelters showed a range of <0.01–13.00 μg/m3 time-weighted average with an arithmetic mean of 0.25 μg/m3 and geometric mean of 0.06 μg/m3. Nine workers were diagnosed with BeS (prevalence rate of 0.47%, 95% confidence interval = 0.21–0.88%). Conclusions BeS can occur in aluminium smelter workers through natural beryllium contamination of the bauxite and further concentration during the refining and smelting processes. Exposure levels to beryllium observed in aluminium smelters are similar to those seen in other industries that utilize beryllium. However, compared with beryllium-exposed workers in other industries, the rate of BeS among aluminium smelter workers appears lower. This lower observed rate may be related to a more soluble form of beryllium found in the aluminium smelting work environment as well as the consistent use of respiratory protection. PMID:20610489

  9. Long-term effects of aluminium dust inhalation.

    PubMed

    Peters, Susan; Reid, Alison; Fritschi, Lin; de Klerk, Nicholas; Musk, A W Bill

    2013-12-01

    During the 1950s and 1960s, aluminium dust inhalation was used as a potential prophylaxis against silicosis in underground miners, including in Australia. We investigated the association between aluminium dust inhalation and cardiovascular, cerebrovascular and Alzheimer's diseases in a cohort of Australian male underground gold miners. We additionally looked at pneumoconiosis mortality to estimate the effect of the aluminium therapy. SMRs and 95% CI were calculated to compare mortality of the cohort members with that of the Western Australian male population (1961-2009). Internal comparisons on duration of aluminium dust inhalation were examined using Cox regression. Aluminium dust inhalation was reported for 647 out of 1894 underground gold miners. During 42 780 person-years of follow-up, 1577 deaths were observed. An indication of increased mortality of Alzheimer's disease among miners ever exposed to aluminium dust was found (SMR=1.38), although it was not statistically significant (95% CI 0.69 to 2.75). Rates for cardiovascular and cerebrovascular death were above population levels, but were similar for subjects with or without a history of aluminium dust inhalation. HRs suggested an increasing risk of cardiovascular disease with duration of aluminium dust inhalation (HR=1.02, 95% CI 1.00 to 1.04, per year of exposure). No difference in the association between duration of work underground and pneumoconiosis was observed between the groups with or without aluminium dust exposure. No protective effect against silicosis was observed from aluminium dust inhalation. Conversely, exposure to aluminium dust may possibly increase the risk of cardiovascular disease and dementia of the Alzheimer's type.

  10. What is the risk of aluminium as a neurotoxin?

    PubMed

    Exley, Christopher

    2014-06-01

    Aluminium is neurotoxic. Its free ion, Al(3+) (aq), is highly biologically reactive and uniquely equipped to do damage to essential cellular (neuronal) biochemistry. This unequivocal fact must be the starting point in examining the risk posed by aluminium as a neurotoxin in humans. Aluminium is present in the human brain and it accumulates with age. The most recent research demonstrates that a significant proportion of individuals older than 70 years of age have a potentially pathological accumulation of aluminium somewhere in their brain. What are the symptoms of chronic aluminium intoxication in humans? What if neurodegenerative diseases such as Alzheimer's disease are the manifestation of the risk of aluminium as a neurotoxin? How might such an (outrageous) hypothesis be tested?

  11. RESPONSE OF PHENOLIC METABOLISM INDUCED BY ALUMINIUM TOXICITY IN FAGOPYRUM ESCULENTUM MOENCH. PLANTS.

    PubMed

    Smirnov, O E; Kosyan, A M; Kosyk, O I; Taran, N Yu

    2015-01-01

    Buckwheat genus (Fagopyrum Mill.) is one of the aluminium tolerant taxonomic units of plants. The aim of the study was an evaluation of the aluminium (50 μM effect on phenolic accumulation in various parts of buckwheat plants (Fagopyrum esculentum Moench). Detection of increasing of total phenolic content, changes in flavonoid and anthocyanin content and phenylalanine ammonia-lyase activity (PAL) were revealed over a period of 10 days of exposure to aluminium. The most significant effects of aluminium treatment on phenolic compounds accumulation were total phenolic content increasing (by 27.2%) and PAL activity rising by 2.5 times observed in leaves tissues. Received data could be helpful to understand the aluminium tolerance principles and relationships of phenolic compounds to aluminium phytotoxicity.

  12. Dietary exposure to aluminium of urban residents from cities in South China.

    PubMed

    Jiang, Qi; Wang, Jing; Li, Min; Liang, Xuxia; Dai, Guangwei; Hu, Zhikun; Wen, Jian; Huang, Qiong; Zhang, Yonghui

    2013-01-01

    A dietary survey was conducted over three consecutive days by using 24-hour dietary recall in the Pearl River Delta of South China to investigate the dietary consumption status. A total of 1702 food samples, 22 food groups, were collected, and aluminium concentrations of foods were determined by using ICP-MS. Weekly dietary exposure to aluminium of the average urban residents of South China was estimated to be 1.5 mg kg⁻¹ body weight, which amounted to 76% of the provisional tolerable weekly intake. Wheat-made products (53.5%) contributed most to the dietary exposure, followed by vegetables (12.2%). The high-level consumers' weekly exposure to aluminium was 11.1 mg kg⁻¹ body weight, which amounted to 407% of the provisional tolerable weekly intake. The results indicated that the general urban residents in South China might be safe from aluminium exposure, but the high-level consumers might be at some risk of aluminium exposure. The foods contributing to aluminium exposure were processed food with aluminium-containing food additives. It is necessary to take effective measures to control the overuse of aluminium-containing food additives.

  13. [Plant physiological and molecular biological mechanism in response to aluminium toxicity].

    PubMed

    Liu, Qiang; Zheng, Shaojian; Lin, Xianyong

    2004-09-01

    Aluminium toxicity is the major factor limiting crop growth on acid soils, which greatly affects the crop productivity on about 40% cultivated soils of the world and 21% of China. In the past decades, a lot of researches on aluminium toxicity and resistant mechanisms have been doing, and great progress was achieved. This paper dealt with the genetic differences in aluminium tolerance among plants, screening and selecting methods and technologies for identifying aluminium resistance in plants, and physiological and molecular mechanism resistance to aluminium toxicity. Some aspects needed to be further studied were also briefly discussed.

  14. Serum aluminium levels of workers in the bauxite mines.

    PubMed

    de Kom, J F; Dissels, H M; van der Voet, G B; de Wolff, F A

    1997-01-01

    Aluminium is produced from the mineral bauxite. Occupational exposure is reported during the industrial processing of aluminium and is associated with pulmonary and neurotoxicity. However, data on exposure and toxicity of workers in the open bauxite mining industry do not exist. Therefore, a study was performed to explore aluminium exposure in employees involved in this bauxite mining process in a Surinam mine. A group of workers occupationally exposed to aluminium in an open bauxite mine were compared with a group of nonexposed wood processors. Serum aluminium was analyzed using atomic absorption spectrometry Data from the clinical chemistry of the blood and a questionnaire were used to explore determinants for aluminium exposure. No significant difference between serum aluminium in the exposed (4.4 +/- 2.0 micrograms/L, n = 27) and control group (5.1 +/- 1.5 micrograms/L, n = 27) was detected. For the serum concentration of the clinical chemical variables (calcium, citrate, and creatinine), a statistically significant difference was computed (p < or = 0.02) between the exposed and control group. All levels were slightly higher in the exposed group; no statistically significant correlations with serum aluminium were found. In this study, serum aluminium values were in the normal range, no significant difference between the groups could be detected despite long-term occupational exposure.

  15. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate.

    PubMed

    Warren, L M; Mackenzie, A; Dance, D R; Young, K C

    2013-04-07

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.

  16. Developing Customer Oriented eHealth Services to High Schools in City of Espoo.

    PubMed

    Rosenqvist, Susanne; Rajalahti, Elina

    2016-01-01

    The purpose of this research was to study the hopes and needs of high school first grade students and student healthcare nurses about development of eServices for student healthcare mainly by improving existing ITC solutions and planning new eHealth services. The secondary purpose was to innovate how to share general knowledge about health to students. Four (n=4) high school nurses were group interviewed and an electronic questionnaire was made for high school first grade students. Nearly 15% (n=247) of the target group answered the questionnaire. Preventive eHealth solutions need improvements in student health care in Finland.

  17. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats.

    PubMed

    Kumar, Anil; Dogra, Samrita; Prakash, Atish

    2009-12-28

    Aluminium is a potent neurotoxin and has been associated with Alzheimer's disease (AD) causality for decades. Prolonged aluminium exposure induces oxidative stress and increases amyloid beta levels in vivo. Current treatment modalities for AD provide only symptomatic relief thus necessitating the development of new drugs with fewer side effects. The aim of the study was to demonstrate the protective effect of chronic curcumin administration against aluminium-induced cognitive dysfunction and oxidative damage in rats. Aluminium chloride (100 mg/kg, p.o.) was administered to rats daily for 6 weeks. Rats were concomitantly treated with curcumin (per se; 30 and 60 mg/kg, p.o.) daily for a period of 6 weeks. On the 21st and 42nd day of the study behavioral studies to evaluate memory (Morris water maze and elevated plus maze task paradigms) and locomotion (photoactometer) were done. The rats were sacrificed on 43rd day following the last behavioral test and various biochemical tests were performed to assess the extent of oxidative damage. Chronic aluminium chloride administration resulted in poor retention of memory in Morris water maze, elevated plus maze task paradigms and caused marked oxidative damage. It also caused a significant increase in the acetylcholinesterase activity and aluminium concentration in aluminium treated rats. Chronic administration of curcumin significantly improved memory retention in both tasks, attenuated oxidative damage, acetylcholinesterase activity and aluminium concentration in aluminium treated rats (P<0.05). Curcumin has neuroprotective effects against aluminium-induced cognitive dysfunction and oxidative damage.

  18. Effect of Microbial inoculation in combating the aluminium toxicity effect on growth of Zea mays.

    PubMed

    Arora, P; Singh, G; Tiwari, A

    2017-07-31

    The present study is aimed at improving the aluminium tolerance in maize crop employing the potential of microbial inoculants in conferring resistance to these toxicities via production of certain chelating compounds like siderophores, exopolysachharides and organic acids. Acid soils have now-a-days become one of the key factors for limiting growth of many agriculturally important crops. Aluminium  is one of the major elements present in acid soils and is mainly responsible for toxicity in the soil. This aluminium is rapidly soluble in soil water and hence absorbed by plant roots under conditions where soil pH is below 5. This toxicity leads to severe root growth inhibition, thereby limiting the production of maize crops. It was observed that use of microbial inoculums can be helpful in elimination of these toxic compounds and prevent the inhibition of root growth . It was found that the soils contaminated with aluminium toxicity decreased the root length of maize plant significantly by 65% but Bacillus and Burkholderia inoculation increased this root length significantly by 1.4- folds and 2- folds respectively thereby combating the effect of aluminium toxicity. Aluminium concentration was found maximum in roots of plants which were grown under aluminium stress condition. But this aluminium accumulation decreased ̴ 2-folds when Burkholderia was used as seed inoculants under aluminium stress conditions. Also, at 60mM aluminium accumulation, phosphorus solubilisation in roots was found to be increased upto 30% on Burkholderia inoculation. However, Bacillus inoculation didn't show any significant difference in either of the case. Thus, the inoculation of seeds with Burkholderia isolates could prove to be a boon in sequestering aluminium toxicity in Zea mays.

  19. Does antiperspirant use increase the risk of aluminium-related disease, including Alzheimer's disease?

    PubMed

    Exley, C

    1998-03-01

    Aluminium salts are the major constituent of many widely used antiperspirant products. The use of such antiperspirants has been linked with the systemic accumulation of aluminium and an increased risk of Alzheimer's disease. But can the frequent use of aluminium-based antiperspirants lead to the accumulation of toxic levels of aluminium? And are there measures that we can take to reduce such accumulation without reducing the effectiveness of antiperspirants?

  20. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    PubMed

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in <0.05-mm aggregates. Organic carbon stability in micro-aggregates was higher than that in macro-aggregates and became more stable. Organic carbon contents in total residues, and within different aggregate sizes, were all negatively correlated with PAD. It indicated that organic materials had a more significant effect on macro-aggregate stability and the effects of iron-aluminium oxides maybe more important for stability of micro-aggregates.

  1. Accurate calibration for the quantification of the Al content in AlGaN epitaxial layers by energy-dispersive X-ray spectroscopy in a Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Amari, H.; Lari, L.; Zhang, H. Y.; Geelhaar, L.; Chèze, C.; Kappers, M. J.; McAleese, C.; Humphreys, C. J.; Walther, T.

    2011-11-01

    Since the band structure of group III- nitrides presents a direct electronic transition with a band-gap energy covering the range from 3.4 eV for (GaN) to 6.2 eV (for AlN) at room temperature as well as a high thermal conductivity, aluminium gallium nitride (AlGaN) is a strong candidate for high-power and high-temperature electronic devices and short-wavelength (visible and ultraviolet) optoelectronic devices. We report here a study by energy-filtered transmission electron microscopy (EFTEM) and energy-dispersive X-ray spectroscopy (EDXS) of the micro structure and elemental distribution in different aluminium gallium nitride epitaxial layers grown by different research groups. A calibration procedure is out-lined that yields the Al content from EDXS to within ~1 at % precision.

  2. The aluminium content of infant formulas remains too high

    PubMed Central

    2013-01-01

    Background Recent research published in this journal highlighted the issue of the high content of aluminium in infant formulas. The expectation was that the findings would serve as a catalyst for manufacturers to address a significant problem of these, often necessary, components of infant nutrition. It is critically important that parents and other users have confidence in the safety of infant formulas and that they have reliable information to use in choosing a product with a lower content of aluminium. Herein, we have significantly extended the scope of the previous research and the aluminium content of 30 of the most widely available and often used infant formulas has been measured. Methods Both ready-to-drink milks and milk powders were subjected to microwave digestion in the presence of 15.8 M HNO3 and 30% w/v H2O2 and the aluminium content of the digests was measured by TH GFAAS. Results Both ready-to-drink milks and milk powders were contaminated with aluminium. The concentration of aluminium across all milk products ranged from ca 100 to 430 μg/L. The concentration of aluminium in two soya-based milk products was 656 and 756 μg/L. The intake of aluminium from non-soya-based infant formulas varied from ca 100 to 300 μg per day. For soya-based milks it could be as high as 700 μg per day. Conclusions All 30 infant formulas were contaminated with aluminium. There was no clear evidence that subsequent to the problem of aluminium being highlighted in a previous publication in this journal that contamination had been addressed and reduced. It is the opinion of the authors that regulatory and other non-voluntary methods are now required to reduce the aluminium content of infant formulas and thereby protect infants from chronic exposure to dietary aluminium. PMID:24103160

  3. The aluminium content of infant formulas remains too high.

    PubMed

    Chuchu, Nancy; Patel, Bhavini; Sebastian, Blaise; Exley, Christopher

    2013-10-08

    Recent research published in this journal highlighted the issue of the high content of aluminium in infant formulas. The expectation was that the findings would serve as a catalyst for manufacturers to address a significant problem of these, often necessary, components of infant nutrition. It is critically important that parents and other users have confidence in the safety of infant formulas and that they have reliable information to use in choosing a product with a lower content of aluminium. Herein, we have significantly extended the scope of the previous research and the aluminium content of 30 of the most widely available and often used infant formulas has been measured. Both ready-to-drink milks and milk powders were subjected to microwave digestion in the presence of 15.8 M HNO3 and 30% w/v H2O2 and the aluminium content of the digests was measured by TH GFAAS. Both ready-to-drink milks and milk powders were contaminated with aluminium. The concentration of aluminium across all milk products ranged from ca 100 to 430 μg/L. The concentration of aluminium in two soya-based milk products was 656 and 756 μg/L. The intake of aluminium from non-soya-based infant formulas varied from ca 100 to 300 μg per day. For soya-based milks it could be as high as 700 μg per day. All 30 infant formulas were contaminated with aluminium. There was no clear evidence that subsequent to the problem of aluminium being highlighted in a previous publication in this journal that contamination had been addressed and reduced. It is the opinion of the authors that regulatory and other non-voluntary methods are now required to reduce the aluminium content of infant formulas and thereby protect infants from chronic exposure to dietary aluminium.

  4. Coupled grain boundary motion in aluminium: the effect of structural multiplicity

    NASA Astrophysics Data System (ADS)

    Cheng, Kuiyu; Zhang, Liang; Lu, Cheng; Tieu, Kiet

    2016-05-01

    The shear-induced coupled grain boundary motion plays an important role in the deformation of nanocrystalline (NC) materials. It has been known that the atomic structure of the grain boundary (GB) is not necessarily unique for a given set of misorientation and inclination of the boundary plane. However, the effect of the structural multiplicity of the GB on its coupled motion has not been reported. In the present study we investigated the structural multiplicity of the symmetric tilt Σ5(310) boundary in aluminium and its influence on the GB behaviour at a temperature range of 300 K-600 K using molecular dynamic simulations. Two starting atomic configurations were adopted in the simulations which resulted in three different GB structures at different temperatures. Under the applied shear deformation each GB structure exhibited its unique GB behaviour. A dual GB behaviour, namely the transformation of one GB behaviour to another during deformation, was observed for the second starting configuration at a temperature of 500 K. The atomistic mechanisms responsible for these behaviour were analysed in detail. The result of this study implicates a strong relationship between GB structures and their behaviour, and provides a further information of the grain boundary mediated plasticity in nanocrystalline materials.

  5. 76 FR 30650 - Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... order, published concurrently with this notice. \\3\\ Guang Ya Aluminium Industries Co., Ltd., Foshan Guangcheng Aluminium Co., Ltd., Kong Ah International Company Limited, and Guang Ya Aluminium Industries...., Zhongya Shaped Aluminium (HK) Holding Limited and Karlton Aluminum Company Ltd. (collectively ``New...

  6. Dietary Exposure to Aluminium and Health Risk Assessment in the Residents of Shenzhen, China

    PubMed Central

    Yang, Mei; Jiang, Lixin; Huang, Huiping; Zeng, Shengbo; Qiu, Fen; Yu, Miao; Li, Xiaorong; Wei, Sheng

    2014-01-01

    Although there are great changes of dietary in the past few decades in China, few are known about the aluminium exposure in Chinese diet. The aim of this study is to systematically evaluate the dietary aluminium intake level in residents of Shenzhen, China. A total of 853 persons from 244 household were investigated their diet by three days food records. Finally, 149 kinds of foods in 17 food groups were selected to be the most consumed foods. From them, 1399 food samples were collected from market to test aluminium concentration. High aluminium levels were found in jellyfish (median, 527.5 mg/kg), fried twisted cruller (median, 466.0 mg/kg), shell (median, 107.1 mg/kg). The Shenzhen residents' average dietary aluminium exposure was estimated at 1.263 mg/kg bw/week which is lower than the PTWI (provisional tolerable weekly intake). But 0–2 and 3–13 age groups have the highest aluminium intake exceeding the PTWI (3.356 mg/kg bw/week and 3.248 mg/kg bw/week) than other age groups. And the main dietary aluminium exposure sources are fried twisted cruller, leaf vegetables and bean products. Our study suggested that even three decades rapid economy development, children in Shenzhen still have high dietary aluminium exposure risk. How to control high dietary aluminium exposure still is a great public health challenge in Shenzhen, China. PMID:24594670

  7. Dietary exposure to aluminium and health risk assessment in the residents of Shenzhen, China.

    PubMed

    Yang, Mei; Jiang, Lixin; Huang, Huiping; Zeng, Shengbo; Qiu, Fen; Yu, Miao; Li, Xiaorong; Wei, Sheng

    2014-01-01

    Although there are great changes of dietary in the past few decades in China, few are known about the aluminium exposure in Chinese diet. The aim of this study is to systematically evaluate the dietary aluminium intake level in residents of Shenzhen, China. A total of 853 persons from 244 household were investigated their diet by three days food records. Finally, 149 kinds of foods in 17 food groups were selected to be the most consumed foods. From them, 1399 food samples were collected from market to test aluminium concentration. High aluminium levels were found in jellyfish (median, 527.5 mg/kg), fried twisted cruller (median, 466.0 mg/kg), shell (median, 107.1 mg/kg). The Shenzhen residents' average dietary aluminium exposure was estimated at 1.263 mg/kg bw/week which is lower than the PTWI (provisional tolerable weekly intake). But 0-2 and 3-13 age groups have the highest aluminium intake exceeding the PTWI (3.356 mg/kg bw/week and 3.248 mg/kg bw/week) than other age groups. And the main dietary aluminium exposure sources are fried twisted cruller, leaf vegetables and bean products. Our study suggested that even three decades rapid economy development, children in Shenzhen still have high dietary aluminium exposure risk. How to control high dietary aluminium exposure still is a great public health challenge in Shenzhen, China.

  8. Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders.

    PubMed

    Bertram, Jens; Brand, Peter; Hartmann, Laura; Schettgen, Thomas; Kossack, Veronika; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-10-01

    Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m(3) for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry. Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean t(1) (0 h) 13.5 µg/L; mean t(2) (6 h) 23.5 µg/L). Plasma results showed the same pattern but pre-post comparison did not reach significance. We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.

  9. Aluminum concentration and substrate temperature in chemical sprayed ZnO:Al thin solid films

    NASA Astrophysics Data System (ADS)

    Lozada, Erick Velázquez; Castañeda, L.; Aguilar, E. Austria

    2018-02-01

    The continuous interest in the synthesis and properties study of materials has permitted the development of semiconductor oxides. Zinc oxide (ZnO) with hexagonal wurzite structure is a wide band gap n-type semiconductor and interesting material over a wide range. Chemically sprayed aluminium-doped zinc oxide thin films (ZnO:Al) were deposited on soda-lime glass substrates starting from zinc pentanedionate and aluminium pentanedionate. The influence of both the dopant concentration in the starting solution and the substrate temperature on the composition, morphology, and transport properties of the ZnO:Al thin films were studied. The structure of all the ZnO:Al thin films was polycrystalline, and variation in the preferential growth with the aluminium content in the solution was observed: from an initial (002) growth in films with low Al content, switching to a predominance of (101) planes for heavily dopant regime. The crystallite size was found to decrease with doping concentration and range from 33 to 20 nm. First-order Raman scattering from ZnO:Al, all having the wurtzite structure. The assignments of the E2 mode in ZnO:Al differ from previous investigations. The film composition and the dopant concentration were determined by Auger Electron Spectroscopy (AES); these results showed that the films are almost stoichiometric ZnO. The optimum deposition conditions leading to conductive and transparent ZnO:Al thin films were also found. In this way a resistivity of 0.03 Ω-cm with a (002) preferential growth, were obtained in optimized ZnO:Al thin films.

  10. 76 FR 323 - Aluminum Extrusions From the People's Republic of China: Notice of Amended Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Aluminium Industries Co., Ltd., Foshan Guangcheng Aluminium Co., Ltd., Kong Ah International Company Limited, and Guang Ya Aluminium Industries (Hong Kong) Limited, (collectively, ``Guang Ya Group'') and Zhaoqing New Zhongya Aluminum Co., Ltd., Zhongya Shaped Aluminium (HK) Holding Limited, and Karlton Aluminum...

  11. Quantum Mechanical Approach to Understanding Structural, Electronic and Mechanical Properties of Intermetallics

    DTIC Science & Technology

    1989-01-26

    Understanding Structural , Electronic and Mechanical Properties of Tntermetallics by A.J. Freeman, Principal Investigator ABSTRACT The primary goal of...like LI or Mg would lower EF into the minimum in the DOS and hence stabilize the L1 2 . A. Structural Phase Stability of Titanium Aluminides Most...34 Structural Stability Calculations in the Titanium -Aluminium System", Conf. on Titanium Aluminides , Wright-Patterson Air Force Base, Nov. 1986

  12. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots.

    PubMed

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-07-20

    The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.

  13. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    PubMed Central

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  14. Preparation of SiC based Aluminium metal matrix nano composites by high intensity ultrasonic cavitation process and evaluation of mechanical and tribological properties

    NASA Astrophysics Data System (ADS)

    Murthy, N. V.; Prasad Reddy, A.; Selvaraj, N.; Rao, C. S. P.

    2016-09-01

    Request augments on a worldwide scale for the new materials. The metal matrix nano composites can be used in numerous applications of helicopter structural parts, gas turbine exit guide vane's, space shuttle, and other structural applications. The key mailman to ameliorate performance of composite matrix in aluminium alloy metal reinforces nano particles in the matrix of alloy uniformly, which ameliorates composite properties without affecting limit of ductility. The ultrasonic assisted stir casting helped agitation was successfully used to fabricate Al 2219 metal matrix of alloy reinforced with (0.5, 1, 1.5 and 2) wt.% of nano silicon carbide (SiC) particles of different sizes 50nm and 150nm. The micrographs of scanning electron microscopy of nano composite were investigated it reveals that the uniform dispersion of nano particles silicon carbide in aluminium alloy 2219 matrix and with the low porosity. How the specific wear rate was vary with increasing weight percentage of nano particles at constant load and speed as shown in results and discussions. And the mechanical properties showed that the ultimate tensile strength and hardness of metal matrix nano composite AA 2219 / nano SiC of 50nm and 150nm lean to augment with increase weight percentage of silicon carbide content in the matrix alloy.

  15. [Determination of aluminium in flour foods with photometric method].

    PubMed

    Ma, Lan; Zhao, Xin; Zhou, Shuang; Yang, Dajin

    2012-05-01

    To establish a determination method for aluminium in flour foods with photometric method. After samples being treated with microwave digestion and wet digestion, aluminium in staple flour foods was determined by photometric method. There was a good linearity of the result in the range of 0.25 - 5.0 microg/ml aluminium, r = 0.9998; limit of detection (LOD) : 2.3 ng/ml; limit of quantitation (LOQ) : 7 ng/ml. This method of determining aluminium in flour foods is simple, rapid and reliable.

  16. Tuning the surface morphology of aluminium doped zinc oxide thin films by arrayed nanorods through chemical growth process

    NASA Astrophysics Data System (ADS)

    Devasia, Sebin; Anila, E. I.

    2018-04-01

    Here we report the growth and characterization of chemically grown aluminium doped zinc oxide nanorods on seed layers. The seed layers were prepared by chemical spray pyrolysis which acted as the growth centers. The growth duration of nanorods were varied from 3h to 12h in steps of 3h. Further, investigations on their structural, morphological, electrical and optical properties. The SEM images confirmed the hexagonal shaped nanorod arrays grown on the seed layers. Later, the x-ray diffraction measurements revealed the pure zinc oxide phase of the samples. Photoluminescence and photoconductivity studies were carried out to analyze the potential of its optoelectronic properties.

  17. Aluminium in food and daily dietary intake assessment from 15 food groups in Zhejiang Province, China.

    PubMed

    Zhang, Hexiang; Tang, Jun; Huang, Lichun; Shen, Xianghong; Zhang, Ronghua; Chen, Jiang

    2016-06-01

    Aluminium was measured in 2580 samples of 15 food groups and dietary exposure was estimated. Samples were purchased and analysed during 2010 to 2014. High aluminium levels were found in jellyfish (mean 4862 mg/kg), laver (mean 455.2 mg/kg) and fried twisted cruller (mean 392.4 mg/kg). Dietary exposure to aluminium was estimated for Zhejiang residents. The average dietary exposure to aluminium via 15 food groups in Zhejiang Province was 1.15 mg/kg bw/week, which is below the provisional tolerable weekly intake of 2 mg/kg bw /week. Jellyfish is the main Al contributor, providing 37.6% of the daily intake via these 15 food groups. This study provided new information on aluminium levels and assessment of aluminium (Al) dietary exposure in Zhejiang Province of China.

  18. 75 FR 73041 - Aluminum Extrusions From the People's Republic of China: Postponement of Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... months. On November 1, 2010, Guang Ya Aluminium Industries Co., Ltd., Foshan Guangcheng Aluminium Co., Ltd., Kong Ah International Company Limited, and Guang Ya Aluminium Industries (Hong Kong) Limited..., finding that Guang Ya Group, Zhaoqing New Zhongya Aluminum Co., Ltd., Zhongya Shaped Aluminium (HK...

  19. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations

    NASA Astrophysics Data System (ADS)

    Mold, Matthew; Shardlow, Emma; Exley, Christopher

    2016-08-01

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al3+ in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain.

  20. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations.

    PubMed

    Mold, Matthew; Shardlow, Emma; Exley, Christopher

    2016-08-12

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al(3+) in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain.

  1. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  2. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations

    PubMed Central

    Mold, Matthew; Shardlow, Emma; Exley, Christopher

    2016-01-01

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al3+ in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain. PMID:27515230

  3. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture.

    PubMed

    Darbre, Philippa D; Bakir, Ayse; Iskakova, Elzira

    2013-11-01

    Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8 μm pores of a membrane using xCELLigence technology. Long-term exposure (37 weeks) to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast. © 2013.

  4. Serum aluminium levels in glue-sniffer adolescent and in glue containers.

    PubMed

    Akay, Cemal; Kalman, Süleyman; Dündaröz, Ruşen; Sayal, Ahmet; Aydin, Ahmet; Ozkan, Yalçin; Gül, Hüsamettin

    2008-05-01

    Glue sniffing is a serious medical problem among teenagers. Various chemical substances such as toluene and benzene containing glues have been reported to be toxic. It has been demonstrated that some toxic metals such as lead are elevated in the blood of solvent-addicted patients. Whereas aluminium is an element that has toxic effects on neurological, hematopoetic system and bone metabolism. We want to determine the serum levels of aluminium in glue-sniffer adolescents in comparison with healthy subjects. In addition, we compared aluminium levels of different commercial glue preparations (i.e. metal and plastic containers), to determine which type of container is better for less aluminium toxicity. We measured serum levels of aluminium in 37 glue-sniffer and 37 healthy subjects using atomic absorption spectrophotometry. The average duration of glue-sniffer was 3.8 +/- 0.8 years. We also measured aluminium levels of 10 commercial glue preparations that seven of them with metal and three with plastic containers. We found that serum levels of aluminium were 63.29 +/- 13.20 ng/ml and 36.7 +/- 8.60 ng/ml in glue-sniffer and in control subjects, respectively (P < 0.001). The average aluminium level in the glues was 8.6 +/- 3.24 ng/g in the preparations with metal containers, whereas 3.03 +/- 0.76 ng/g with plastic containers (P < 0.001). Therefore, to decrease the incidence of aluminium toxicity in glue-sniffers, it may be a good step to market of glue preparations in plastic instead of metal containers.

  5. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it; Gorla, Leopoldo; Nessi, Simone

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determinemore » a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.« less

  6. Concentration of aluminium in breast cyst fluids collected from women affected by gross cystic breast disease.

    PubMed

    Mannello, Ferdinando; Tonti, Gaetana A; Darbre, Philippa D

    2009-01-01

    Gross cystic breast disease (GCBD) is the most common benign breast disorder, but the molecular basis of cyst formation remains to be identified. If the use of aluminium-based antiperspirant salts is involved in the etiology of gross breast cyst formation, it might be expected that aluminium would be at elevated levels in human breast cyst fluid (BCF). Aluminium was measured by ICP-MS in 48 samples of BCF, 30 samples of human blood serum and 45 samples of human breast milk at different stages of lactation (colostrum, intermediate, mature). The median level of aluminium in apocrine type I BCF (n = 27, 150 microg l(-1)) was significantly higher than in transudative type II BCF (n = 21, 32 microg l(-1); P < 0.0001). By comparison, aluminium measurements gave a median concentration of 6 microg l(-1) in human serum and 25 microg l(-1) in human breast milk, with no difference between colostrum, intermediate and mature milk. Levels of aluminium were significantly higher in both types of BCF than in human serum (P < 0.0001). However when compared with human breast milk, aluminium levels were only significantly higher in apocrine type I BCF (P < 0.0001) and not in transudative type II BCF (P = 0.152). It remains to be identified why such high levels of aluminium were found in the apocrine type I BCF and from where the aluminium originated. However, if aluminium-based antiperspirants are found to be the source and to play any causal role in development of breast cysts, then it might become possible to prevent this common breast disorder. Copyright (c) 2008 John Wiley & Sons, Ltd.

  7. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures.

    PubMed

    Masserey, Bernard; Raemy, Christian; Fromme, Paul

    2014-09-01

    Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. The aluminium content of breast tissue taken from women with breast cancer.

    PubMed

    House, Emily; Polwart, Anthony; Darbre, Philippa; Barr, Lester; Metaxas, George; Exley, Christopher

    2013-10-01

    The aetiology of breast cancer is multifactorial. While there are known genetic predispositions to the disease it is probable that environmental factors are also involved. Recent research has demonstrated a regionally specific distribution of aluminium in breast tissue mastectomies while other work has suggested mechanisms whereby breast tissue aluminium might contribute towards the aetiology of breast cancer. We have looked to develop microwave digestion combined with a new form of graphite furnace atomic absorption spectrometry as a precise, accurate and reproducible method for the measurement of aluminium in breast tissue biopsies. We have used this method to test the thesis that there is a regional distribution of aluminium across the breast in women with breast cancer. Microwave digestion of whole breast tissue samples resulted in clear homogenous digests perfectly suitable for the determination of aluminium by graphite furnace atomic absorption spectrometry. The instrument detection limit for the method was 0.48 μg/L. Method blanks were used to estimate background levels of contamination of 14.80 μg/L. The mean concentration of aluminium across all tissues was 0.39 μg Al/g tissue dry wt. There were no statistically significant regionally specific differences in the content of aluminium. We have developed a robust method for the precise and accurate measurement of aluminium in human breast tissue. There are very few such data currently available in the scientific literature and they will add substantially to our understanding of any putative role of aluminium in breast cancer. While we did not observe any statistically significant differences in aluminium content across the breast it has to be emphasised that herein we measured whole breast tissue and not defatted tissue where such a distribution was previously noted. We are very confident that the method developed herein could now be used to provide accurate and reproducible data on the aluminium content in defatted tissue and oil from such tissues and thereby contribute towards our knowledge on aluminium and any role in breast cancer. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. The study of aluminium anodes for high power density Al/air batteries with brine electrolytes

    NASA Astrophysics Data System (ADS)

    Nestoridi, Maria; Pletcher, Derek; Wood, Robert J. K.; Wang, Shuncai; Jones, Richard L.; Stokes, Keith R.; Wilcock, Ian

    Aluminium alloys containing small additions of both tin (∼0.1 wt%) and gallium (∼0.05 wt%) are shown to dissolve anodically at high rates in sodium chloride media at room temperatures; current densities >0.2 A cm -2 can be obtained at potentials close to the open circuit potential, ∼-1500 mV versus SCE. The tin exists in the alloys as a second phase, typically as ∼1 μm inclusions (precipitates) distributed throughout the aluminium structure, and anodic dissolution occurs to form pits around the tin inclusions. Although the distribution of the gallium in the alloy could not be established, it is also shown to be critical in the formation of these pits as well as maintaining their activity. The stability of the alloys to open circuit corrosion and the overpotential for high rate dissolution, both critical to battery performance, are shown to depend on factors in addition to elemental composition; both heat treatment and mechanical working influence the performance of the alloy. The correlation between alloy performance and their microstructure has been investigated.

  10. Study on aluminium-based single films.

    PubMed

    Vinod Kumar, G S; García-Moreno, F; Babcsán, N; Brothers, A H; Murty, B S; Banhart, J

    2007-12-28

    In the present paper the authors studied isolated metallic films made from the same material used for making metallic foams, and then characterised their properties. Metal films were made from a liquid aluminium alloy reinforced with ceramic particles of known concentration. Melts without such particles were also investigated. It is shown that stable films could not be made from Al-Si alloy having no particles, and just extremely thin and fragile films could be made from commercially-pure Al. In contrast, aluminium alloys containing particles such as SiC and TiB(2) allowed pulling thin, stable films, which did not rupture. Significant thinning of films was observed when the particle concentration in the melt decreased. By in situ X-ray monitoring of liquid films during pulling, film thickness and drainage effects within the liquid film could be studied. The morphology and microstructure of films was characterised after solidification. Our work shows that the question of how foams are stabilised can be studied using a simplified system such as a film, instead of having to deal with the multitude of different structural elements present in a foam.

  11. Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12 Al3Zr precipitates and nucleating θ″ precipitates on them.

    PubMed

    Kumar Makineni, Surendra; Sugathan, Sandeep; Meher, Subhashish; Banerjee, Rajarshi; Bhattacharya, Saswata; Kumar, Subodh; Chattopadhyay, Kamanio

    2017-09-11

    Strengthening by precipitation of second phase is the guiding principle for the development of a host of high strength structural alloys, in particular, aluminium alloys for transportation sector. Higher efficiency and lower emission demands use of alloys at higher operating temperatures (200 °C-250 °C) and stresses, especially in applications for engine parts. Unfortunately, most of the precipitation hardened aluminium alloys that are currently available can withstand maximum temperatures ranging from 150-200 °C. This limit is set by the onset of the rapid coarsening of the precipitates and consequent loss of mechanical properties. In this communication, we present a new approach in designing an Al-based alloy through solid state precipitation route that provides a synergistic coupling of two different types of precipitates that has enabled us to develop coarsening resistant high-temperature alloys that are stable in the temperature range of 250-300 °C with strength in excess of 260 MPa at 250 °C.

  12. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components

    NASA Astrophysics Data System (ADS)

    Tsirkas, S. A.

    2018-03-01

    The present investigation is focused to the modelling of the temperature field in aluminium aircraft components welded by a CO2 laser. A three-dimensional finite element model has been developed to simulate the laser welding process and predict the temperature distribution in T-joint laser welded plates with fillet material. The simulation of the laser beam welding process was performed using a nonlinear heat transfer analysis, based on a keyhole formation model analysis. The model employs the technique of element ;birth and death; in order to simulate the weld fillet. Various phenomena associated with welding like temperature dependent material properties and heat losses through convection and radiation were accounted for in the model. The materials considered were 6056-T78 and 6013-T4 aluminium alloys, commonly used for aircraft components. The temperature distribution during laser welding process has been calculated numerically and validated by experimental measurements on different locations of the welded structure. The numerical results are in good agreement with the experimental measurements.

  13. Comparison of Structural and Functional Ocular Outcomes Between 14- and 70 Day Bed Rest

    NASA Technical Reports Server (NTRS)

    Cromwell, R. L.; Taibbi, G.; Zanello, S. B.; Yarbough, P. O.; Ploutz-Snyder, R. J.; Vizzeri, G.

    2016-01-01

    Purpose: To compare structural and functional ocular outcomes in healthy human subjects undergoing 14- and/or 70-day head-down-tilt bed rest (HDTBR). We hypothesized the amount of HDTBR-induced ocular changes be affected by the HDTBR duration. Methods: The studies were conducted at the NASA Flight Analogs Research Unit, The University of Texas Medical Branch at Galveston, Galveston, TX. Participants were selected using NASA standard screening procedures. Standardized NASA screening procedures and bed rest conditions (e.g., strict sleep-wake cycle, standardized diet, continuous video monitoring) were implemented in both studies. Participants maintained a 6deg HDTBR position for 14 and/or 70 consecutive days and did not engage in exercise. Weekly ophthalmological examinations were conducted in the sitting (pre/post-bed rest only) and HDT positions. Ocular outcomes of interest included: near best-corrected visual acuity (BCVA); spherical equivalent, as determined by cycloplegic autorefraction; Goldmann applanation tonometry and iCare (Icare Finland Oy, Espoo, Finland) intraocular pressure (IOP) measurement; color vision; red dot test; modified Amsler grid test; confrontational visual field; stereoscopic color fundus photography; Spectralis OCT (Heidelberg Engineering, GmbH, Heidelberg, Germany) retinal nerve fiber layer thickness (RNFLT), peripapillary and macular retinal thicknesses. Mixed-effects linear models were used to compare pre- and post-HDTBR observations between 14- and 70-day HDTBR for our continuously scaled outcomes.

  14. A strategy to stabilise the local structure of Ti{sup 4+} and Zn{sup 2+} species against aging in TiO{sub 2}/aluminium-doped ZnO bi-layers for applications in hybrid solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrino, Giovanna; La Magna, Antonino; Bongiorno, Corrado

    We explore a strategy to counteract aging issues in TiO{sub 2}/aluminium-doped ZnO bi-layers used in hybrid solar cells photo-anodes, mainly related to Zn diffusion in the TiO{sub 2} matrix. Different Ti{sup 4+} and Zn{sup 2+} local structures within the anatase grains and along the film thickness were found as a function of post-deposition annealing treatments in the range between 200 °C and 500 °C by synchrotron radiation extended x-ray absorption fine structure analyses. In particular, in the 500 °C-treated sample, diffusion of zinc species along the TiO{sub 2} grain-boundaries has been observed with aging (3 years). In contrast, a mild thermal budget at 200 °Cmore » favours a proper atomic arrangement of the zinc-containing anatase lattice which reduces Zn diffusion, thus guaranteeing a good stability with aging.« less

  15. Aluminium X-ray absorption Near Edge Structure in model compounds and Earth's surface minerals

    NASA Astrophysics Data System (ADS)

    Ildefonse, P.; Cabaret, D.; Sainctavit, P.; Calas, G.; Flank, A.-M.; Lagarde, P.

    Aluminium K-edge X-ray absorption near edge spectra (XANES) of a suite of silicate and oxides minerals consist of electronic excitations occurring in the edge region, and multiple scattering resonances at higher energies. The main XANES feature for four-fold Al is at around 2 eV lower energy than the main XANES feature for six-fold Al. This provides a useful probe for coordination numbers in clay minerals, gels, glasses or material with unknown Al-coordination number. Six-fold aluminium yields a large variety of XANES features which can be correlated with octahedral point symmetry, number of aluminium sites and distribution of Al-O distances. These three parameters may act together, and the quantitative interpretation of XANES spectra is difficult. For a low point symmetry (1), variations are mainly related to the number of Al sites and distribution of Al-O distances: pyrophyllite, one Al site, is clearly distinguished from kaolinite and gibbsite presenting two Al sites. For a given number of Al-site (1), variations are controlled by changes in point symmetry, the number of XANES features being increased as point symmetry decreases. For a given point symmetry (1) and a given number of Al site (1), variations are related to second nearest neighbours (gibbsite versus kaolinite). The amplitude of the XANES feature at about 1566 eV is a useful probe for the assessment of AlIV/Altotal ratios in 2/1 phyllosilicates. Al-K XANES has been performed on synthetic Al-bearing goethites which cannot be studied by 27Al NMR. At low Al content, Al-K XANES is very different from that of α-AlOOH but at the highest level, XANES spectrum tends to that of diaspore. Al-K XAS is thus a promising tool for the structural study of poorly ordered materials such as clay minerals and natural alumino-silicate gels together with Al-subsituted Fe-oxyhydroxides.

  16. Étude par RMN à l'état solide de catalyseurs oxydes du type Mo-P-Al

    NASA Astrophysics Data System (ADS)

    Quartararo, J.; Rigole, M.; Guelton, M.; Amoureux, J. P.; Grimblot, J.

    1999-10-01

    Solid state 27Al NMR and especially 27Al MQMAS is used to characterize the oxide Mo-P-Al hydrotreating catalysts. This application shows that NMR is an efficient method to determine the local structure of the elements in the amorphous catalysts. So, this permits to conclude that the association of the Mo and the P leads to the formation of aluminium phosphates and that differences in the structure depend on the method of preparation. La RMN du solide et notamment la méthode “MQMAS" de 27Al est utilisée pour caractériser en détail les catalyseurs d'hydrotraitement du type Mo-P-Al sous forme oxyde. Cette application montre que la RMN est un outil efficace pour déterminer la structure locale des éléments introduits dans les catalyseurs de caractère amorphe. Ainsi, elle permet d'établir que le Mo associé au P induit la formation de phosphates d'aluminium. Des différences de structure en fonction de la méthode de préparation sont également observées.

  17. Dietary exposure to aluminium in the popular Chinese fried bread youtiao.

    PubMed

    Li, Ge; Zhao, Xue; Wu, Shimin; Hua, Hongying; Wang, Qiang; Zhang, Zhiheng

    2017-06-01

    Youtiao is a typical, traditional and widely consumed fried food in China. Fermentation of youtiao involves the use of aluminium potassium sulphate (alum). There are health concerns related to the levels of aluminium in food; therefore, we aimed to determine the aluminium concentrations of youtiao from various locations, and to estimate the dietary exposure by different age groups in southern and northern China. The aluminium content of youtiao samples varied considerably (range = 4.46-852.69 mg kg -1 ). Both the mean and median aluminium contents of youtiao exceeded 100 mg kg -1 , which is the China National Standard (GB) 2760-2014 National Food Safety for Standards for food additives. However, the median and 97.5th percentile of weekly dietary exposure to aluminium from youtiao, estimated using Monte Carlo simulation, did not exceed the provisional tolerable weekly intake (PTWI) set by the joint FAO/WHO Expert Committee on Food Additives (JECFA) for children, adolescents, adults and seniors. The weekly dietary exposure to aluminium would exceed the PTWI if children, adolescents, adults and seniors consumed 134.47, 260.98, 327.10 or 320.41 g of youtiao per week, respectively.

  18. The REAL process--a process for recycling sludge from water works.

    PubMed

    Stendahl, K; Färm, C; Fritzdorf, H

    2006-01-01

    In order to produce drinking water, coagulants--such as aluminium salts--are widely used for precipitation and separation of impurities from raw water. The residual from the process is sludge, which presents a disposal problem. The REAL process is a method for recycling the aluminium from the sludge. In a first step, the aluminium hydroxide is dissolved in sulphuric acid. In a second step, an ultra filtration will separate all suspended matter and large molecules, leaving a concentrate of 15-20% dry solids. The permeate will contain the trivalent aluminium ions together with 30-50% of the organic contaminants. In a third step, by concentrating the permeate in a nano filter, the concentration of aluminium will be high enough to, in a fourth step, be precipitated with potassium sulphate to form a pure crystal: potassium aluminium sulphate. The potassium aluminium sulphate is comparable to standard aluminium sulphate. The process will give a residual in form of a concentrate from the ultra filtration, representing a few per cent of the incoming volume. This paper presents the results from a long time pilot-scale continuous test run at Västerås water works in Sweden, as well as calculations of costs for full-scale operations.

  19. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  20. Feet sunk in molten aluminium: The burn and its prevention.

    PubMed

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  1. Aluminium content of some processed foods, raw materials and food additives in China by inductively coupled plasma-mass spectrometry.

    PubMed

    Deng, Gui-Fang; Li, Ke; Ma, Jing; Liu, Fen; Dai, Jing-Jing; Li, Hua-Bin

    2011-01-01

    The level of aluminium in 178 processed food samples from Shenzhen city in China was evaluated using inductively coupled plasma-mass spectrometry. Some processed foods contained a concentration of up to 1226 mg/kg, which is about 12 times the Chinese food standard. To establish the main source in these foods, Al levels in the raw materials were determined. However, aluminium concentrations in raw materials were low (0.10-451.5 mg/kg). Therefore, aluminium levels in food additives used in these foods was determined and it was found that some food additives contained a high concentration of aluminium (0.005-57.4 g/kg). The results suggested that, in the interest of public health, food additives containing high concentrations of aluminium should be replaced by those containing less. This study has provided new information on aluminium levels in Chinese processed foods, raw materials and a selection of food additives.

  2. Galvanised steel to aluminium joining by laser and GTAW processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, G.; Universite Montpellier 2, Laboratoire de Mecanique et Genie Civil, UMR 5508 CNRS, Montpellier, 34095; Peyre, P.

    A new means of assembling galvanised steel to aluminium involving a reaction between solid steel and liquid aluminium was developed, using laser and gas tungsten arc welding (GTAW) processes. A direct aluminium melting strategy was investigated with the laser process, whereas an aluminium-induced melting by steel heating and heat conduction through the steel was carried out with the GTAW process. The interfaces generated during the interaction were mainly composed of a 2-40 {mu}m thick intermetallic reaction layers. The linear strength of the assemblies can be as high as 250 N/mm and 190 N/mm for the assemblies produced respectively by lasermore » and GTAW processes. The corresponding failures were located in the fusion zone of aluminium (laser assemblies), or in the reaction layer (GTAW assemblies)« less

  3. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility.

    PubMed

    Kim, Sang-Heon; Kim, Hansoo; Kim, Nack J

    2015-02-05

    Although steel has been the workhorse of the automotive industry since the 1920s, the share by weight of steel and iron in an average light vehicle is now gradually decreasing, from 68.1 per cent in 1995 to 60.1 per cent in 2011 (refs 1, 2). This has been driven by the low strength-to-weight ratio (specific strength) of iron and steel, and the desire to improve such mechanical properties with other materials. Recently, high-aluminium low-density steels have been actively studied as a means of increasing the specific strength of an alloy by reducing its density. But with increasing aluminium content a problem is encountered: brittle intermetallic compounds can form in the resulting alloys, leading to poor ductility. Here we show that an FeAl-type brittle but hard intermetallic compound (B2) can be effectively used as a strengthening second phase in high-aluminium low-density steel, while alleviating its harmful effect on ductility by controlling its morphology and dispersion. The specific tensile strength and ductility of the developed steel improve on those of the lightest and strongest metallic materials known, titanium alloys. We found that alloying of nickel catalyses the precipitation of nanometre-sized B2 particles in the face-centred cubic matrix of high-aluminium low-density steel during heat treatment of cold-rolled sheet steel. Our results demonstrate how intermetallic compounds can be harnessed in the alloy design of lightweight steels for structural applications and others.

  4. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations.

    PubMed

    Jacukowicz-Sobala, Irena; Ociński, Daniel; Kociołek-Balawejder, Elżbieta

    2015-07-01

    Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed. © The Author(s) 2015.

  5. The structure of the blue luminescent delta-phase of tris(8-hydroxyquinoline)aluminium(III) (Alq3).

    PubMed

    Cölle, Michael; Dinnebier, Robert E; Brütting, Wolfgang

    2002-12-07

    The existence of the facial isomer in the delta-phase of Alq3 is proven by X-ray structural analysis, revealing that both the different molecular structure and the weaker overlap of the pi-orbitals of hydroxyquinoline ligands belonging to neighboring Alq3 molecules as compared to other phases (alpha, beta) are likely to be the origin of the significantly different optical properties of delta-Alq3.

  6. Evaluation of Mechanical Properties of MWCNT / Nanoclay Reinforced Aluminium alloy Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Ratna Kumar, P. S. Samuel; Robinson Smart, D. S.; Alexis, S. John

    2018-04-01

    Aluminium alloy 5083 (AA5083) is a widely used material in aerospace, marine, defence and structural applications were mechanical and corrosion resistance property plays a vital role. For the present work, MWCNT / Nanoclay (montmorillonite (MMT) K10) mixed with AA5083 for different composition in weight percentage to enhance the mechanical property. Semi-solid state casting method (Compo-casting) was used to fabricate the composite materials. By using Field-emission scanning electron microscope (FESEM) the uniform dispersion of the reinforcement and microstructure were studied. Finally, the addition of Nanoclay shows decrease in tensile strength compared to the AA5083 / MWCNT composites and hardness value of the composites (AA5083 / MWCNT and AA5083 / Nanoclay) was found to increase significantly.

  7. Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Yu, Xiang

    2016-07-01

    Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N2 adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×106 M-1 and 0.3 ppm in water solution. More importantly, the materials can be recycled for many times by simply washed with ethanol, showing potential applications in explosives detection.

  8. Structure Damage Simulations Accounting for Inertial Effects and Impact and Optimization of Grid-Stiffened Non-Circular Shells

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Jaunky, Navin

    1999-01-01

    The goal of this research project is to develop modelling and analysis strategy for the penetration of aluminium plates impacted by titanium impactors. Finite element analysis is used to study the penetration of aluminium plates impacted by titanium impactors in order to study the effect of such uncontained engine debris impacts on aircraft-like skin panels. LS-DYNA3D) is used in the simulations to model the impactor, test fixture frame and target barrier plate. The effects of mesh refinement, contact modeling, and impactor initial velocity and orientation were studied. The research project also includes development of a design tool for optimum design of grid-stiffened non-circular shells or panels subjected to buckling.

  9. Aluminium, antiperspirants and breast cancer.

    PubMed

    Darbre, P D

    2005-09-01

    Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metalloestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer.

  10. Aluminium in Biological Environments: A Computational Approach

    PubMed Central

    Mujika, Jon I; Rezabal, Elixabete; Mercero, Jose M; Ruipérez, Fernando; Costa, Dominique; Ugalde, Jesus M; Lopez, Xabier

    2014-01-01

    The increased availability of aluminium in biological environments, due to human intervention in the last century, raises concerns on the effects that this so far “excluded from biology” metal might have on living organisms. Consequently, the bioinorganic chemistry of aluminium has emerged as a very active field of research. This review will focus on our contributions to this field, based on computational studies that can yield an understanding of the aluminum biochemistry at a molecular level. Aluminium can interact and be stabilized in biological environments by complexing with both low molecular mass chelants and high molecular mass peptides. The speciation of the metal is, nonetheless, dictated by the hydrolytic species dominant in each case and which vary according to the pH condition of the medium. In blood, citrate and serum transferrin are identified as the main low molecular mass and high molecular mass molecules interacting with aluminium. The complexation of aluminium to citrate and the subsequent changes exerted on the deprotonation pathways of its tritable groups will be discussed along with the mechanisms for the intake and release of aluminium in serum transferrin at two pH conditions, physiological neutral and endosomatic acidic. Aluminium can substitute other metals, in particular magnesium, in protein buried sites and trigger conformational disorder and alteration of the protonation states of the protein's sidechains. A detailed account of the interaction of aluminium with proteic sidechains will be given. Finally, it will be described how alumnium can exert oxidative stress by stabilizing superoxide radicals either as mononuclear aluminium or clustered in boehmite. The possibility of promotion of Fenton reaction, and production of hydroxyl radicals will also be discussed. PMID:24757505

  11. Characterizing the cavitation development and acoustic spectrum in various liquids.

    PubMed

    Tzanakis, I; Lebon, G S B; Eskin, D G; Pericleous, K A

    2017-01-01

    A bespoke cavitometer that measures acoustic spectrum and is capable of operating in a range of temperatures (up to 750°C) was used to study the cavitation behaviour in three transparent liquids and in molten aluminium. To relate these acoustic measurements to cavitation development, the dynamics of the cavitation bubble structures was observed in three Newtonian, optically transparent liquids with significantly different physical properties: water, ethanol, and glycerine. Each liquid was treated at 20kHz with a piezoelectric ultrasonic transducer coupled to a titanium sonotrode with a tip diameter of 40mm. Two different transducer power levels were deployed: 50% and 100%, with the maximum power corresponding to a peak-to-peak amplitude of 17μm. The cavitation structures and the flow patterns were filmed with a digital camera. To investigate the effect of distance from the ultrasound source on the cavitation intensity, acoustic emissions were measured with the cavitometer at two points: below the sonotrode and near the edge of the experimental vessel. The behaviour of the three tested liquids was very different, implying that their physical parameters played a decisive role in the establishment of the cavitation regime. Non dimensional analysis revealed that water shares the closest cavitation behaviour with liquid aluminium and can therefore be used as its physical analogue in cavitation studies; this similarity was also confirmed when comparing the measured acoustic spectra of water and liquid aluminium. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  12. High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium.

    PubMed

    Xue, Sichuang; Fan, Zhe; Lawal, Olawale B; Thevamaran, Ramathasan; Li, Qiang; Liu, Yue; Yu, K Y; Wang, Jian; Thomas, Edwin L; Wang, Haiyan; Zhang, Xinghang

    2017-11-21

    Aluminium typically deforms via full dislocations due to its high stacking fault energy. Twinning in aluminium, although difficult, may occur at low temperature and high strain rate. However, the 9R phase rarely occurs in aluminium simply because of its giant stacking fault energy. Here, by using a laser-induced projectile impact testing technique, we discover a deformation-induced 9R phase with tens of nm in width in ultrafine-grained aluminium with an average grain size of 140 nm, as confirmed by extensive post-impact microscopy analyses. The stability of the 9R phase is related to the existence of sessile Frank loops. Molecular dynamics simulations reveal the formation mechanisms of the 9R phase in aluminium. This study sheds lights on a deformation mechanism in metals with high stacking fault energies.

  13. Absorbed aluminium is found with two cytosolic protein fractions, other than ferritin, in the rat duodenum.

    PubMed Central

    Cochran, M; Goddard, G; Ramm, G; Ludwigson, N; Marshall, J; Halliday, J

    1993-01-01

    After in vivo perfusion of the upper intestine of the rat with a range of concentrations of aluminium chloride, entry of the metal into the portal system was only detected when the perfusate exceeded 400 mumol/l, suggesting a mucosal block. Using gel filtration of a mucosal cytosol extract, two consistently appearing aluminium peaks were identified which may represent aluminium binding proteins. Both were heat stable at 60 degrees C and had molecular sizes of about 700 (kilo daltons) (kD) and 17 kD respectively. The larger molecule was distinct from ferritin. Neither molecule associated with 59Fe nor 45Ca. It is suggested that the aluminium peaks are relatively specific aluminium binding proteins that have a scavenging role, reducing entry of the metal from the intestinal contents into the portal blood. PMID:8504964

  14. Aluminium based adjuvants and their effects on mitochondria and lysosomes of phagocytosing cells.

    PubMed

    Ohlsson, Lars; Exley, Christopher; Darabi, Anna; Sandén, Emma; Siesjö, Peter; Eriksson, Håkan

    2013-11-01

    Aluminium oxyhydroxide, Al(OH)3 is one of few compounds approved as an adjuvant in human vaccines. However, the mechanism behind its immune stimulating properties is still poorly understood. In vitro co-culture of an aluminium adjuvant and the human monocytic cell line THP-1 resulted in reduced cell proliferation. Inhibition occurred at concentrations of adjuvant several times lower than would be found at the injection site using a vaccine formulation containing an aluminium adjuvant. Based on evaluation of the mitochondrial membrane potential, THP-1 cells showed no mitochondrial rupture after co-culture with the aluminium adjuvant, instead an increase in mitochondrial activity was seen. The THP-1 cells are phagocytosing cells and after co-culture with the aluminium adjuvant the phagosomal pathway was obstructed. Primary or early phagosomes mature into phagolysosomes with an internal pH of 4.5 - 5 and carry a wide variety of hydrolysing enzymes. Co-culture with the aluminium adjuvant yielded a reduced level of acidic vesicles and cathepsin L activity, a proteolytic enzyme of the phagolysosomes, was almost completely inhibited. THP-1 cells are an appropriate in vitro model in order to investigate the mechanism behind the induction of a phagocytosing antigen presenting cell into an inflammatory cell by aluminium adjuvants. Much information will be gained by investigating the phagosomal pathway and what occurs inside the phagosomes and to elucidate the ultimate fate of phagocytosed aluminium particles. © 2013.

  15. Shear properties evaluation of a truss core of sandwich beams

    NASA Astrophysics Data System (ADS)

    Wesolowski, M.; Ludewicz, J.; Domski, J.; Zakrzewski, M.

    2017-10-01

    The open-cell cores of sandwich structures are locally bonded to the face layers by means of adhesive resin. The sandwich structures composed of different parent materials such as carbon fibre composites (laminated face layers) and metallic core (aluminium truss core) brings the need to closely analyse their adhesive connections which strength is dominated by the shear stress. The presented work considers sandwich beams subjected to the static tests in the 3-point bending with the purpose of estimation of shear properties of the truss core. The main concern is dedicated to the out-of plane shear modulus and ultimate shear stress of the aluminium truss core. The loading of the beam is provided by a static machine. For the all beams the force - deflection history is extracted by means of non-contact optical deflection measurement using PONTOS system. The mode of failure is identified for each beam with the corresponding applied force. A flexural rigidity of the sandwich beams is also discussed based on force - displacement plots.

  16. Damage assessment in a sandwich panel based on full-field vibration measurements

    NASA Astrophysics Data System (ADS)

    Seguel, F.; Meruane, V.

    2018-03-01

    Different studies have demonstrated that vibration characteristics are sensitive to debonding in composite structures. Nevertheless, one of the main restrictions of vibration measurements is the number of degrees of freedom that can be acquired simultaneously, which restricts the size of the damage that can be identified. Recent studies have shown that it is possible to use high-speed three-dimensional (3-D) digital image correlation (DIC) techniques for full-field vibration measurements. With this technique, it is possible to take measurements at thousands of points on the surface of a structure with a single snapshot. The present article investigates the application of full-field vibration measurements in the debonding assessment of an aluminium honeycomb sandwich panel. Experimental data from an aluminium honeycomb panel containing different damage scenarios is acquired by a high-speed 3-D DIC system; four methodologies to compute damage indices are evaluated: mode shape curvatures, uniform load surface, modal strain energy and gapped smoothing.

  17. Theoretical predictions for hot-carrier generation from surface plasmon decay

    PubMed Central

    Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.; Goddard III, William A.; Atwater, Harry A.

    2014-01-01

    Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1–2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant. PMID:25511713

  18. Alveolar proteinosis associated with aluminium dust inhalation.

    PubMed

    Chew, R; Nigam, S; Sivakumaran, P

    2016-08-01

    Secondary alveolar proteinosis is a rare lung disease which may be triggered by a variety of inhaled particles. The diagnosis is made by detection of anti-granulocyte-macrophage colony-stimulating factor antibodies in bronchoalveolar lavage fluid, which appears milky white and contains lamellar bodies. Aluminium has been suggested as a possible cause, but there is little evidence in the literature to support this assertion. We report the case of a 46-year-old former boilermaker and boat builder who developed secondary alveolar proteinosis following sustained heavy aluminium exposure. The presence of aluminium was confirmed both by histological examination and metallurgical analysis of a mediastinal lymph node. Despite cessation of exposure to aluminium and treatment with whole-lung lavage which normally results in improvements in both symptoms and lung function, the outcome was poor and novel therapies are now being used for this patient. It may be that the natural history in aluminium-related alveolar proteinosis is different, with the metal playing a mediating role in the disease process. Our case further supports the link between aluminium and secondary alveolar proteinosis and highlights the need for measures to prevent excessive aluminium inhalation in relevant industries. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Towards toxicokinetic modelling of aluminium exposure from adjuvants in medicinal products.

    PubMed

    Weisser, Karin; Stübler, Sabine; Matheis, Walter; Huisinga, Wilhelm

    2017-08-01

    As a potentially toxic agent on nervous system and bone, the safety of aluminium exposure from adjuvants in vaccines and subcutaneous immune therapy (SCIT) products has to be continuously re-evaluated, especially regarding concomitant administrations. For this purpose, knowledge on absorption and disposition of aluminium in plasma and tissues is essential. Pharmacokinetic data after vaccination in humans, however, are not available, and for methodological and ethical reasons difficult to obtain. To overcome these limitations, we discuss the possibility of an in vitro-in silico approach combining a toxicokinetic model for aluminium disposition with biorelevant kinetic absorption parameters from adjuvants. We critically review available kinetic aluminium-26 data for model building and, on the basis of a reparameterized toxicokinetic model (Nolte et al., 2001), we identify main modelling gaps. The potential of in vitro dissolution experiments for the prediction of intramuscular absorption kinetics of aluminium after vaccination is explored. It becomes apparent that there is need for detailed in vitro dissolution and in vivo absorption data to establish an in vitro-in vivo correlation (IVIVC) for aluminium adjuvants. We conclude that a combination of new experimental data and further refinement of the Nolte model has the potential to fill a gap in aluminium risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Non-aqueous aluminium-air battery based on ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Revel, Renaud; Audichon, Thomas; Gonzalez, Serge

    2014-12-01

    A promising metal-air secondary battery based on aluminium-oxygen couple is described. In this paper, we observed that an aluminium-air battery employing EMImCl, AlCl3 room temperature ionic liquid (RTIL) as electrolyte and aluminium as negative electrode, has an exceptional reduced self-discharged rate. Due to its new and innovative type of electrolyte, this aluminium-air battery can support relatively high current densities (up to 0.6 mA cm-2) and an average voltage of 0.6-0.8 V. Such batteries may find immediate applications, as they can provide an internal, built-in autonomous and self-sustained energy source.

  1. Tribologic analyses of a self-mated aluminium contact used for overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Steier, V. Franco

    2017-05-01

    The lifetime of aluminium components is often limited to their poor wear resistance. One example for such aluminium applications are overhead transmission lines. The sore points of these lines are the segments where the aluminium conductors are fixed to the line supports. The fixation is commonly realized via aluminium suspension clamps. Here, a superposition of different loads like traction and bending stresses, clamping forces and different types of wear occurs. To investigate the wear behaviour in these peculiar points, tribologic model tests were carried out. Within the tests, overhead conductor wires and aluminium plates, extracted from suspension clamps were reciprocally slid against aluminium plates (cylinder-on-plate test). The COF and a wear related parameter were recorded constantly. Subsequently, the loaded surfaces were analysed using confocal laser and electron scanning microscopy as well as energy dispersive X-ray spectroscopy. The investigation detected the formation of an oxidized tribologic layer between both components. The tribolayer, which mayor part adhered on the suspension clamps, was mostly formed from material removed from the conductor wires.

  2. Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich

    NASA Astrophysics Data System (ADS)

    Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.

    2018-01-01

    Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

  3. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    PubMed

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The binding, transport and fate of aluminium in biological cells.

    PubMed

    Exley, Christopher; Mold, Matthew J

    2015-04-01

    Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the 'silent' pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Effect of pH, Dosage and Concentration on the Adsorption of Congo Red onto Untreated and Treated Aluminium Dross

    NASA Astrophysics Data System (ADS)

    Zakaria Mohamad Zulfika, Hazielim B.; Baini, Rubiyah; Zauzi, Nur Syuhada Ahmad

    2017-06-01

    The adsorption of congo red onto aluminium dross was studied in batch process. The objective of this study is to adsorption capacity between untreated and treated aluminium dross in the removal of congo red. Aluminium dross was leached with 250 ml of 1% of NaOH and and precipitated with 30% H2O2. The treated aluminium dross being calcined at 600°C for 3 hours. The surface area for untreated and treated aluminium dross was 10.06 m2/g and 79.80 m2/g respectively. Then the adsorption process was carried out on an orbital shaker at 200 rpm for 4 hours. In the effect of pH, it was found that untreated removes more congo red compared to the treated while in the effect of concentration solution and dosage of adsorbent, treated aluminium dross removes more congo red. In conclusion, this adsorbent was found to be effective and economically viable in the removal of congo red in waste water treatment.

  6. Investigation of different anode materials for aluminium rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Muñoz-Torrero, David; Leung, Puiki; García-Quismondo, Enrique; Ventosa, Edgar; Anderson, Marc; Palma, Jesús; Marcilla, Rebeca

    2018-01-01

    In order to shed some light into the importance of the anodic reaction in reversible aluminium batteries, we investigate here the electrodeposition of aluminium in an ionic liquid electrolyte (BMImCl-AlCl3) using different substrates. We explore the influence of the type of anodic material (aluminium, stainless steel and carbon) and its 3D geometry on the reversibility of the anodic reaction by cyclic voltammetry (CV) and galvanostatic charge-discharge. The shape of the CVs confirms that electrodeposition of aluminium was feasible in the three materials but the highest peak currents and smallest peak separation in the CV of the aluminium anode suggested that this material was the most promising. Interestingly, carbon-based substrates appeared as an interesting alternative due to the high peak currents in CV, moderate overpotentials and dual role as anode and cathode. 3D substrates such as fiber-based carbon paper and aluminium mesh showed significantly smaller overpotentials and higher efficiencies for Al reaction suggesting that the use of 3D substrates in full batteries might result in enhanced power. This is corroborated by polarization testing of full Al-batteries.

  7. [Calcium carbonate for the treatment of hyperphosphatemia in chronic hemodialysis patients].

    PubMed

    Kiss, D; Battegay, M; Meier, C; Lyrer, A

    1990-03-03

    Hyperphosphatemia in chronic hemodialysis patients is usually treated with aluminium containing phosphate binders. In recent years there has been increasing evidence of serious complications due to aluminium accumulation. We have investigated a new calcium carbonate preparation with an HCl-resistant capsule designed to prevent gastrointestinal side effects. Its phosphate binding capacity in comparison to aluminium chloride hydroxide was investigated in 17 chronic hemodialysis patients. The dose of the phosphate binder was adjusted regularly so that the serum phosphorus levels were below 1.8 mmol/l. The mean dose of aluminium chloride hydroxide was 3.36 g/day and of calcium carbonate 4.96 g/day. The mean (+/- SD) serum calcium level was 2.58 +/- 0.11 mmol/l under aluminium chloride hydroxide and 2.50 +/- 0.25 mmol/l under calcium carbonate. The mean phosphorus level was 1.69 +/- 0.31 mmol/l under aluminium chloride hydroxide and 1.71 +/- 0.33 under calcium carbonate. Serum aluminium fell from 64.5 +/- 14.4 micrograms/l to 28.5 +/- 17.5 micrograms/l after 3 months.

  8. Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters

    NASA Astrophysics Data System (ADS)

    Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.

    2016-02-01

    The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of the investigated Al 7075 alloy.

  9. Adult heavy and low users of dental services: treatment provided.

    PubMed

    Nihtilä, Annamari; Widström, Eeva; Elonheimo, Outi

    2016-01-01

    The aim of this study was to compare treatment provided to adult heavy and low users of dental services in the Finnish Public Dental Service (PDS) and to analyse changes in patients' oral health status. We assigned all adults who attended the PDS in Espoo in 2004 to a group of heavy users (n = 3,173) if they had made six or more dental visits and to a comparison group of low users (n = 22,820), if they had made three or fewer dental visits. Data were obtained from the patient register of the PDS. A sample of 320 patients was randomly selected from each group. Baseline information (year 2004) on age, sex, number and types of visits, oral health status and treatment provided was collected from treatment records. Both groups were followed-up for five years. Restorative treatment measures dominated the heavy and low users'treatments; 88.8% of heavy users and 79.6% low users had received restorations during the five-year period. Fixed prosthetic treatments were provided to just 2% of the heavy users and 0.8% of the low users. Emergency visits were more common for heavy users (74.8%) than for low users (21.6%) (p < 0.001). Fewer than half of the heavy (46.1%) or low (46.5%) users were examined twice. Typical for heavy use of oral health services was a cycle of repetitive repair or replacement of restorations, often as emergency treatment, a lack of proper examinations and preventive care; crown therapy was seldom used. Immediately after the major dental care reform in Finland, the PDS in Espoo had problems providing good quality dental care for the new adult patients. Older patients with lower social class background were not accustomed to regular dental care and the PDS did not actively propose proper comprehensive regular care for adults.

  10. Improvement of photodynamic activity of aluminium sulphophthalocyanine due to biotinylation

    NASA Astrophysics Data System (ADS)

    Meerovich, Irina G.; Jerdeva, Victoria V.; Derkacheva, Valentina M.; Meerovich, Gennadii A.; Lukyanets, Eugeny A.; Kogan, Eugenia A.; Savitsky, Alexander P.

    2003-09-01

    The photodynamic activity of dibiotinylated aluminium sulphophthalocyanine in vitro and in vivo were studied. It was obtained that in vitro dibiotinylated aluminium sulphophthalocyanine provides the effective damage of small cell lung carcinoma OAT-75. In vivo dibiotinylated aluminium sulphophthalocyanine causes destruction of tumor (Erlich carcinoma), results in total necrosis of tumor tissue and expresses vascular damage (trombosis and destruction of vascular walls) even in concentration 0.25 mg/kg of a body weight.

  11. Large Solid Rocket Motor Safety Analyses: Thermal Effects Issues

    DTIC Science & Technology

    2010-07-01

    aluminium combustion and condensation of oxide complete - The tertiary cone where flame plume mixes with air and where Al droplet combustion can occur... aluminium droplet combustion and aluminium oxide condensation complete. Flame true temperature drops to 2235 ±7 °K and 2206 ±7 °K respectively at 26...may occur in this zone where condensation of aluminium oxides and Al droplet combustion are being completed. So flame emissivity that is much weaker

  12. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness

    PubMed Central

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A·dm−2 and 3 A·dm−2 for creating aluminium oxide layer. PMID:25922850

  13. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat Tripathy; Laura Wurth; Eric Dufek

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating inmore » preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.« less

  14. Usage of neural network to predict aluminium oxide layer thickness.

    PubMed

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.

  15. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H{sub 2}O{sub 2} as foaming agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducman, V., E-mail: vilma.ducman@zag.si; Korat, L.

    Recent innovations in geopolymer technology have led to the development of various different types of geopolymeric products, including highly porous geopolymer-based foams, which are formed by the addition of foaming agents to a geopolymer fly-ash based matrix. These agents decompose, or react with the liquid matrix or oxygen in the matrix, resulting in the release of gases which form pores prior to the hardening of the gel. The hardened structure has good mechanical and thermal properties, and can therefore be used for applications in acoustic panels and in lightweight pre-fabricated components for thermal insulation purposes. This study presents the resultsmore » of the pore-forming process in the case when two different foaming agents, i.e. aluminium powder amounting to 0.07, 0.13 and 0.20 mass. % and H{sub 2}O{sub 2} amounting to 0.5, 1.0, 1.5 and 2.0 mass. %, were added to a fly-ash geopolymer matrix. The physical, mechanical, and microstructural properties of the thus obtained foams, and the effects of the type and amount of the added foaming agent, are presented and discussed. Highly porous structures were obtained in the case of both of the investigated foaming agents, with overall porosities up to 59% when aluminium powder was added, and of up 48% when H{sub 2}O{sub 2} was added. In the latter case, when 2% of the H{sub 2}O{sub 2} foaming agent was added, finer pores (with diameters up to 500 μm) occurred in the structure, whereas somewhat larger pores (some had diameters greater than 1 mm) occurred when the same amount of aluminium powder was added. The mechanical properties of the investigated foams depended on their porosity. In the case of highly porous structures a compressive strength of 3.3 MPa was nevertheless achieved for the samples containing 0.2% of aluminium powder, and 3.7 MPa for those containing 2.0% of H{sub 2}O{sub 2}. - Highlights: • Preparation of geopolymer foams based on fly ash with the addition of Al powder or H{sub 2}O{sub 2} as foaming agents • Determination of density, porosity and mechanical properties of such foams • Characterization of foaming process by means of X-ray micro-tomography (μcT)« less

  16. Sorption of hydrophilic dyes on anodic aluminium oxide films and application to pH sensing.

    PubMed

    Silina, Yuliya E; Kuchmenko, Tatyana A; Volmer, Dietrich A

    2015-02-07

    The sorption of selected hydrophilic pH-sensitive dyes (bromophenol blue, bromothymol blue, bromocresol purple, alizarin red, methyl orange, congo red, rhodamine 6G) on films of anodized aluminium oxide (AAO) was investigated in this study. Depth and pore structure of the AAO channels were adjusted by changing electrolysis time and current density during treatment of aluminium foil in oxalic acid, sulfosalycilic acid and sulfuric acid at concentration levels between 0.2 and 0.6 M. The dyes were immobilized on the AAO surface by direct saturation of the films in dye solutions. It was shown by scanning electron microscopy and X-ray spectral analysis that the dyes penetrated into the AAO channels by more than 1.5 μm, even at static saturation conditions. The anionic dyes linked to the porous AAO surface exhibited differential shifts of the UV absorption bands in their acidic/basic forms. By combining several dyes, the films have an application range between pH = 0.5-9 in aqueous media. The dye-modified AAO film was a simple, portable, inexpensive and reusable pH sensor with very fast response time and clear colour transitions.

  17. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  18. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.

    PubMed

    Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A

    2010-03-01

    This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.

  19. Innovative Design for Composite Spacecraft Structure Thanks to Automatic Fiber Placement Technology

    NASA Astrophysics Data System (ADS)

    Brindeau, Aymeric; Khalfi, Thomas

    2014-06-01

    The innovative design for composite spacecraft structure thanks to automatic fiber placement technology takes place in the frame of the development of a new launcher. A heavy loaded spacecraft carrying structure is developed in order to allow performance and big payload volumes.This kind of structure already exists on a current launcher, but performances are not compatible with the new requirements. Indeed, in spite of a sandwich design made of carbon and aluminium honeycomb, mass and stiffness requirements are not fulfilled.Consequently, for the new structure, an innovative design has been set-up. The materials are still sandwich made of carbon and aluminium honeycomb in order to obtain the best ratio mass / stiffness, but major evolutions have been implemented of the geometry of the structure in order to increase the performance of the product. These evolutions are allowed thanks to the use of the fiber placement technology, which allows manufacturing geometries that are not reachable with standard lay-up by hands. The main progress deals with the manufacturing of revolution sub-structures, in one shot, with double curvature areas. Moreover, beyond the technical performance of the new product and the gains in terms of manufacturing time and quality, the integration of sub-structures is extremely simplified compared to the existing process. As a result, the technology of fiber placement is the opportunity to imagine new designs which allows increasing the performances, to reduce manufacturing cycles, and to simplify integration operations.

  20. [Association between serum aluminium level and methylation of amyloid precursor protein gene in workers engaged in aluminium electrolysis].

    PubMed

    Yang, X J; Yuan, Y Z; Niu, Q

    2016-04-20

    To investigate the association between serum aluminium level and methylation of the promoter region of amyloid precursor protein (APP)gene in workers engaged in aluminium electrolysis. In 2012, 366 electrolysis workers in an aluminium factory were enrolled as exposure group (working years >10 and age >40 years)and divided into low-exposure group and high-exposure group based on the median serum aluminium level. Meanwhile, 102 workers in a cement plant not exposed to aluminium were enrolled as control group. Graphite furnace atomic absorption spectrometry was used to measure serum aluminium level, methylation specific PCR was used to measure the methylation rate of the promoter region of APP gene, and ELI-SA was used to measure the protein expression of APP in lymphocytes in peripheral blood. The exposure group had a significantly higher serum aluminium level than the control group (45.07 μg/L vs 30.51 μg/L, P< 0.01). The exposure group had a significantly lower methylation rate of the promoter region of APP gene than the control group (18.85% vs 25.49%, P=0.025), and the high-exposure group had a significantly lower methylation rate of the promoter region of APP gene than the low-exposure group (15.84% vs 21.85%, P<0.05). The exposure group had a significantly higher protein expression of APP in lymphocytes in peripheral blood than the control group (66.73 ng/ml vs 54.17 ng/ml, P<0.05); compared with the low-exposure group (65.39 ng/ml), the high-exposure group showed an increase in the protein expression of APP in lymphocytes in peripheral blood (67.22 ng/ml), but there was no significant difference between these two groups (P>0.05). The multivariate logistic regression analysis showed that with reference to the control group, low aluminium exposure (OR=1.86, 95% CI 1.67~3.52)and high aluminium exposure (OR=2.98, 95% CI 1.97~4.15)were risk factors for a reduced methylation rate of the promoter region of APP gene. Reduced methylation of the promoter region of APP gene may be associated with increased serum aluminium level, and downregulated methylation of the promoter region of APP gene may accelerate APP gene transcription.

  1. A review of epidemiologic studies on aluminum and silica in relation to Alzheimer's disease and associated disorders

    PubMed Central

    Rondeau, Virginie

    2002-01-01

    Although the neurotoxicty of aluminium is now established, the association between aluminium and dementia or associated disorders is still debated. In this article a review of the different epidemiological articles published on this subject is presented. Different sources of exposure are considered (occupational exposure, aluminium-containing products …) with an emphasis on drinking water. We have separated the different health effects of aluminium into three categories: neurological disorders (other than cognitive decline or AD), cognitive decline and dementia or Alzheimer’s disease. Furthermore, we present the results obtained on silica in drinking water, another chemical constituent which could interact with aluminium. PMID:12222737

  2. Stimulated emission from aluminium anode oxide films doped with rhodamine 6G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrayev, N Kh; Zeinidenov, A K; Aimukhanov, A K

    The spectral and luminescent properties of the rhodamine 6G dye in a porous matrix of aluminium anode oxide are studied. The films with a highly-ordered porous structure are produced using the method of two-stage anodic oxidation. By means of raster electron microscopy it is found that the diameter of the pores amounts to nearly 50 nm and the separation between the adjacent channels is almost 105 nm. The thickness of the films is equal to 55 μm, and the specific surface area measured using the method of nitrogen capillary condensation is 15.3 m{sup 2} g{sup -1}. Fluorescence and absorption spectramore » of rhodamine 6G molecules injected into the pores of the aluminium anode oxide are measured. It is found that under the excitation of samples with the surface dye concentration 0.3 × 10{sup 14} molecules m{sup -2} by the second harmonic of the Nd : YAG laser in the longitudinal scheme with the pumping intensity 0.4 MW cm{sup -2}, a narrow band of stimulated emission with the intensity maximum at the wavelength 572 nm appears against the background of the laser-induced fluorescence spectrum. A further increase in the pumping radiation intensity leads to the narrowing of the stimulated emission band and an increase in its intensity. The obtained results demonstrate the potential possibility of using the porous films of aluminium anode oxide, doped with laser dyes, in developing active elements for quantum electronics. (laser applications and other topics in quantum electronics)« less

  3. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-03-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared, the former showed higher antifouling properties generally. Aluminium-zinc alloy spray coated films had higher antifouling property. And the anti-property decreased in this order: Al-Zn alloy spray coating > Zinc spray coating > Aluminium spray coating > Stacked chromium/nickel spray coating. Aluminium and zinc spray coating has been evaluated high conventionally for anti-biofouling in marine environment. However, the Cr/Ni spray coating showed pretty high anti-fouling property.

  4. Quasiparticle spin resonance and coherence in superconducting aluminium

    NASA Astrophysics Data System (ADS)

    Quay, C. H. L.; Weideneder, M.; Chiffaudel, Y.; Strunk, C.; Aprili, M.

    2015-10-01

    Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (~100 ps), and its dependence on the sample thickness are consistent with Elliott-Yafet spin-orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (~10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.

  5. Optimization of Aluminium-to-Magnesium Ultrasonic Spot Welding

    NASA Astrophysics Data System (ADS)

    Panteli, A.; Chen, Y.-C.; Strong, D.; Zhang, Xiaoyun; Prangnell, P. B.

    2012-03-01

    The ability to join dissimilar materials in the automotive industry will result in more efficient multimaterial structures. However, welding of aluminium (Al) to magnesium (Mg) alloys is problematic because of the rapid formation of brittle intermetallic phases at the weld interface. Ultrasonic welding (USW) is a solid-state joining technology that may offer a potential solution, but USW of Al to Mg is currently not well understood. Here, we have investigated the effect of process variables and energy input on joint formation between Al-6111 and Mg-AZ31 alloys, and we report on the optimum welding conditions, heat generation, and the formation of a significant intermetallic reaction layer. Furthermore, the factors influencing the interface reaction rate and the advantages of precoating the Mg with Al are discussed.

  6. Experimental Study on Dissimilar Friction Stir welding of Aluminium Alloys (5083-H111 and 6082-T6) to investigate the mechanical properties

    NASA Astrophysics Data System (ADS)

    Kumar, H. M. Anil; Venkata Ramana, V.; Pawar, Mayur

    2018-03-01

    Friction stir welding is an innovative technology in the joining realm of metals and alloys. This technique is highly economical and suitable especially for non ferrous alloys compared to ferrous alloys. It finds many applications in various fields of aeronautics, automobile, ship building industries etc. The paper presents the comparative results of mechanical properties such as tensile strength, microstructure, macro structure and hardness on the similar and dissimilar aluminum alloys AA5083-H111 and AA6082-T6 under certain selected variables - constant tool rotational speed, its tilt angle, welding speed using friction stir welding process. It is observed from the experimental results that joint efficiency of dissimilar aluminium alloys is higher than the similar aluminum alloys.

  7. Intercalation of biomolecules into NiAl-NO 3 layered double hydroxide films synthesized in situ on anodic alumina/aluminium support

    NASA Astrophysics Data System (ADS)

    Zhao, Hua-Zhang; Chang, Ying-Yue; Yang, Jing; Yang, Qin-Zheng

    2013-03-01

    Layered double hydroxide (LDH) films were synthesized in situ on anodic alumina/aluminium (AAO/Al). Glucose oxidase (GOD) and L-ascorbic acid (vitamin C, VC) were intercalated respectively into the in-situ grown LDH films by anion-exchange in aqueous solutions. Dodecylsulfate (SDS) was used to expand the lamellar structure before GOD intercalation into the LDH film. The resulting products were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis (TGA). The results showed that VC and GOD were successfully intercalated into the in-situ synthesized LDH film. These biomolecules loaded LDH films could have potential applications in electrode modification, safe storage and effective delivery of bioactive compounds.

  8. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    NASA Astrophysics Data System (ADS)

    Kulhavy, Petr; Egert, Josef

    This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion) from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  9. Influence of attrition milling on nano-grain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawers, J.; Cook, D.

    1999-03-01

    Nanostructured materials have a relatively large proportion of their atoms associated with the grain boundary, and the method used to develop the nano-grains has a strong influence on the resulting grain boundary structure. In this study, attrition milling iron powders and blends of iron powders produced micron-size particles composed of nano-size grains. Mechanical cold-working powder resulted in dislocation generation, multiplication, and congealing that produced grain refinement. As the grain size approached nano-dimensions, dislocations were no longer sustained within the grain and once generated, rapidly diffused to the grain boundary. Dislocations on the grain boundary strained the local lattice structure which,more » as the grain size decreased, became the entire grain. Mechanical alloying of substitutional aluminium atoms into iron powder resulted in the aluminium atoms substituting for iron atoms in the grain boundary cells and providing a grain boundary structure similar to that of the iron powder processed in argon. Attrition milling iron powder in nitrogen gas resulted in nitrogen atoms being adsorbed onto the particle surface. Continued mechanical milling infused the nitrogen atoms into interstitial lattice sites on the grain boundary which also contributed to expanding and straining the local lattice.« less

  10. Siderophore-promoted dissolution of smectite by fluorescent Pseudomonas.

    PubMed

    Ferret, Claire; Sterckeman, Thibault; Cornu, Jean-Yves; Gangloff, Sophie; Schalk, Isabelle J; Geoffroy, Valérie A

    2014-10-01

    Siderophores are organic chelators produced by microorganisms to fulfil their iron requirements. Siderophore-promoted dissolution of iron-bearing minerals has been clearly documented for some siderophores, but few studies have addressed metabolizing siderophore-producing bacteria. We investigated iron acquisition from clays by fluorescent Pseudomonads, bacteria that are ubiquitous in the environment. We focused on the interactions between smectite and Pseudomonas aeruginosa, a bacterium producing two structurally different siderophores: pyoverdine and pyochelin. The presence of smectite in iron-limited growth media promoted planktonic growth of P. aeruginosa and biofilm surrounding the smectite aggregates. Chemical analysis of the culture media indicated increases in the dissolved silicon, iron and aluminium concentrations following smectite supplementation. The use of P. aeruginosa mutants unable to produce either one or both of the two siderophores indicated that pyoverdine, the siderophore with the higher affinity for iron, was involved in iron and aluminium solubilization by the wild-type strain. However, in the absence of pyoverdine, pyochelin was also able to solubilize iron but with a twofold lower efficiency. In conclusion, pyoverdine and pyochelin, two structurally different siderophores, can solubilize structural iron from smectite and thereby make it available for bacterial growth.

  11. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  12. Effect of oxide particles on the stabilization and final microstructure in aluminium

    PubMed Central

    Bachmaier, Andrea; Pippan, Reinhard

    2011-01-01

    Bulk aluminium samples containing alumina particles have been produced by different severe plastic deformation methods. Aluminium foils with different initial foil thicknesses were cold rolled to different amounts of strain and aluminium powders were consolidated and deformed by high pressure torsion (HPT). During processing, alumina particles from the foil or particle surface are easily incorporated and dispersed in the bulk material. The influence of these alumina particles on the developing microstructures and the mechanical properties has been studied. PMID:21976787

  13. Aluminium, carbonyls and cytokines in human nipple aspirate fluids: Possible relationship between inflammation, oxidative stress and breast cancer microenvironment.

    PubMed

    Mannello, F; Ligi, D; Canale, M

    2013-11-01

    The human breast is likely exposed to Al (aluminium) from many sources including diet and personal care products. Underarm applications of aluminium salt-based antiperspirant provide a possible long-term source of exposure, especially after underarm applications to shaved and abraded skin. Al research in breast fluids likely reflects the intraductal microenvironment. We found increased levels of aluminium in noninvasively collected nipple aspirate fluids (NAF) from 19 breast cancer patients compared with 16 healthy control subjects (268 vs 131 μg/l, respectively; p < 0.0001). In the same NAF samples we found significantly increased levels of protein oxidative carbonyls in cancer patients compared to healthy women (2.35 vs 0.41 nmol/mg prot, respectively; p < 0.0001). Aluminium content and carbonyl levels showed a significant positive linear correlation (r(2) 0.6628, p < 0.0001). In cancer NAF samples (containing higher amounts of aluminium salts) we also found a significantly increased levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-12 p70, and TNF-α) and chemoattractant CC and CXC chemokines (IL-8, MIP-1α and MCP-1). In 12 invasive cancer NAF samples we found a significant positive linear correlation among aluminium, carbonyls and pro-inflammatory IL-6 cytokine (Y = 64.79x-39.63, r(2) 0.8192, p < 0.0005), as well as pro-inflammatory monocyte chemoattractant MCP-1 cytokine (Y = 2026x-866, r(2) 0.9495, p < 0.0001). In addition to emerging evidence, our results support the possible involvement of aluminium ions in oxidative and inflammatory status perturbations of breast cancer microenvironment, suggesting aluminium accumulation in breast microenvironment as a possible risk factor for oxidative/inflammatory phenotype of breast cells. © 2013.

  14. Aluminium concentrations in Swedish forest streams and co-variations with catchment characteristics.

    PubMed

    Löfgren, Stefan; Cory, Neil; Zetterberg, Therese

    2010-07-01

    The negative effects of elevated concentrations of inorganic aluminium on aquatic organisms are well documented. Acid deposition is often cited as a main driver behind the mobilisation and speciation of aluminium in soils and surface waters. In the study, we tested the hypothesis that sulphur deposition is the main driver for elevated concentrations of inorganic aluminium in 114 base poor, boreal Swedish streams. However, the deposition of anthropogenic sulphate has decreased substantially since it peaked in the 1970s, and at the current deposition levels, we hypothesise that local site parameters play an important role in determining vulnerability to elevated concentrations of inorganic aluminium in boreal stream waters. Presented here are the results of a principal components analysis of stream water chemistry, acid deposition data and local site variables, including forest composition and stem volume. It is shown that the concentrations of both organic and inorganic aluminium are not explained by either historical or current acid deposition, but are instead explained by a combination of local site characteristics. Sites with elevated concentrations of inorganic aluminium were characterised by small catchments (<500 ha) dominated by mature stands of Norway spruce with high stem volume. Using data from the Swedish National Forest Inventory the area of productive forest land in Sweden with a higher vulnerability for elevated inorganic aluminium concentrations in forests streams is approximately 1.5 million hectares or 7% of the total productive forest area; this is higher in the south of Sweden (10%) and lower in the north (2%). A better understanding of the effects of natural processes and forest management in controlling aquatic inorganic aluminium concentrations is therefore important in future discussions about measures against surface water acidification.

  15. Effects of aluminium on electrical and mechanical properties of frog atrial muscle.

    PubMed Central

    Meiri, H.; Shimoni, Y.

    1991-01-01

    1. The effects of aluminium on membrane ionic currents were studied in single cardiac myocytes. Most of the work was done on frog atrial cells, but some experiments were also carried out on single cells isolated from rabbit ventricles and atria. 2. The effects of aluminium on the force of contraction of frog atrial trabeculae were also investigated. 3. Aluminium was prepared from AlCl3 as a stock 0.5 M solution which has a pH of 3.5. Before each experiment, this solution was added to the control solution, to give a final concentration of 20-100 micrograms ml-1 aluminium (0.75-3.75 mM AlCl3). The solutions were brought to a pH of 7.4 or 7.6. at which they consist of a mixture of amorphous aluminium hydroxides and a very small amount of soluble ionic aluminium complexes: free aluminium cations (less than 10 pM), aluminohydroxide anions (less than 8 microM). The addition of this suspension reduced the peak inward calcium currents in single rabbit atrial and ventricular cells and in frog atrial cells. In the latter, the peak current was reduced (at + 10 mV) to 45% of control (mean of 9 cells). This effect was reversible upon washout, and was obtained at all membrane potentials, with no shift of the calcium current voltage relationship along the voltage axis. 4. Aluminium also reduced the time-dependent potassium current IK. This reduction was observed at all membrane potentials. For example, at + 10 mV, the mean reduction of IK (n = 9) was to 69% of the control amplitude. This effect, which was very difficult to reverse, was not due to IK rundown.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2015425

  16. Aluminium leaching from red mud by filamentous fungi.

    PubMed

    Urík, Martin; Bujdoš, Marek; Milová-Žiaková, Barbora; Mikušová, Petra; Slovák, Marek; Matúš, Peter

    2015-11-01

    This contribution investigates the efficient and environmentally friendly aluminium leaching from red mud (bauxite residue) by 17 species of filamentous fungi. Bioleaching experiments were examined in batch cultures with the red mud in static, 7-day cultivation. The most efficient fungal strains in aluminium bioleaching were Penicillium crustosum G-140 and Aspergillus niger G-10. The A. niger G-10 strain was capable to extract up to approximately 141 mg·L(-1) of aluminium from 0.2 g dry weight red mud. Chemical leaching with organic acids mixture, prepared according to A. niger G-10 strain's respective fungal excretion during cultivation, proved that organic acids significantly contribute to aluminium solubilization from red mud. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Preliminary study on aluminum-air battery applying disposable soft drink cans and Arabic gum polymer

    NASA Astrophysics Data System (ADS)

    Alva, S.; Sundari, R.; Wijaya, H. F.; Majlan, E. H.; Sudaryanto; Arwati, I. G. A.; Sebayang, D.

    2017-09-01

    This study is in relation to preliminary investigation of aluminium-air battery using disposable soft drink cans as aluminium source for anode. The cathode uses commercial porous carbon sheet to trap oxygen from air. This work applies a commercial cashing to place carbon cathode, electrolyte, Arabic gum polymer, and aluminium anode in a sandwich-like arrangement to form the aluminium-air battery. The Arabic gum as electrolyte polymer membrane protects anode surface from corrosion due to aluminium oxide formation. The study result shows that the battery discharge test using constant current loading of 0.25 mA yields battery capacity of 0.437 mAh with over 100 minute battery life times at 4M NaOH electrolyte and 20 % Arabic gum polymer as the best performance in this investigation. This study gives significant advantage in association with beneficiation of disposable soft drink cans from municipal solid waste as aluminium source for battery anode.

  18. The quality of our drinking water: aluminium determination with an acoustic wave sensor.

    PubMed

    Veríssimo, Marta I S; Gomes, M Teresa S R

    2008-06-09

    A new methodology based on an inexpensive aluminium acoustic wave sensor is presented. Although the aluminium sensor has already been reported, and the composition of the selective membrane is known, the low detection limits required for the analysis of drinking water, demanded the inclusion of a preconcentration stage, as well as an optimization of the sensor. The necessary coating amount was established, as well as the best preconcentration protocol, in terms of oxidation of organic matter and aluminium elution from the Chelex-100. The methodology developed with the acoustic wave sensor allowed aluminium quantitation above 0.07 mg L(-1). Several water samples from Portugal were analysed using the acoustic wave sensor, as well as by UV-vis spectrophotometry. Results obtained with both methodologies were not statistically different (alpha=0.05), both in terms of accuracy and precision. This new methodology proved to be adequate for aluminium quantitation in drinking water and showed to be faster and less reagent consuming than the UV spectrophotometric methodology.

  19. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  20. Amorphous alumina coatings: processing, structure and remarkable barrier properties.

    PubMed

    Samélor, Diane; Lazar, Ana-Maria; Aufray, Maëlenn; Tendero, Claire; Lacroix, Loïc; Béguin, Jean-Denis; Caussat, Brigitte; Vergnes, Hugues; Alexis, Joël; Poquillon, Dominique; Pébère, Nadine; Gleizes, Alain; Vahlas, Constantin

    2011-09-01

    Amorphous aluminium oxide coatings were processed by metalorganic chemical vapour deposition (MOCVD); their structural characteristics were determined as a function of the processing conditions, the process was modelled considering appropriate chemical kinetic schemes, and the properties of the obtained material were investigated and were correlated with the nanostructure of the coatings. With increasing processing temperature in the range 350 degrees C-700 degrees C, subatmospheric MOCVD of alumina from aluminium tri-isopropoxide (ATI) sequentially yields partially hydroxylated amorphous aluminium oxides, amorphous Al2O3 (415 degrees C-650 degrees C) and nanostructured gamma-Al2O3 films. A numerical model for the process allowed reproducing the non uniformity of deposition rate along the substrate zone due to the depletion of ATI. The hardness of the coatings prepared at 350 degrees C, 480 degrees C and 700 degrees C is 6 GPa, 11 GPa and 1 GPa, respectively. Scratch tests on films grown on TA6V titanium alloy reveal adhesive and cohesive failures for the amorphous and nanocrystalline ones, respectively. Alumina coating processed at 480 degrees C on TA6V yielded zero weight gain after oxidation at 600 degrees C in lab air. The surface of such low temperature processed amorphous films is hydrophobic (water contact angle 106 degrees), while the high temperature processed nanocrystalline films are hydrophilic (48 degrees at a deposition temperature of 700 degrees C). It is concluded that amorphous Al2O3 coatings can be used as oxidation and corrosion barriers at ambient or moderate temperature. Nanostructured with Pt or Ag nanoparticles, they can also provide anti-fouling or catalytic surfaces.

  1. Derivation of a water quality guideline for aluminium in marine waters.

    PubMed

    Golding, Lisa A; Angel, Brad M; Batley, Graeme E; Apte, Simon C; Krassoi, Rick; Doyle, Chris J

    2015-01-01

    Metal risk assessment of industrialized harbors and coastal marine waters requires the application of robust water quality guidelines to determine the likelihood of biological impacts. Currently there is no such guideline available for aluminium in marine waters. A water quality guideline of 24 µg total Al/L has been developed for aluminium in marine waters based on chronic 10% inhibition or effect concentrations (IC10 or EC10) and no-observed-effect concentrations (NOECs) from 11 species (2 literature values and 9 species tested including temperate and tropical species) representing 6 taxonomic groups. The 3 most sensitive species tested were a diatom Ceratoneis closterium (formerly Nitzschia closterium; IC10 = 18 µg Al/L, 72-h growth rate inhibition) < mussel Mytilus edulis plannulatus (EC10 = 250 µg Al/L, 72-h embryo development) < oyster Saccostrea echinata (EC10 = 410 µg Al/L, 48-h embryo development). Toxicity to these species was the result of the dissolved aluminium forms of aluminate (Al(OH4 (-) ) and aluminium hydroxide (Al(OH)3 (0) ) although both dissolved, and particulate aluminium contributed to toxicity in the diatom Minutocellus polymorphus and green alga Dunaliella tertiolecta. In contrast, aluminium toxicity to the green flagellate alga Tetraselmis sp. was the result of particulate aluminium only. Four species, a brown macroalga (Hormosira banksii), sea urchin embryo (Heliocidaris tuberculata), and 2 juvenile fish species (Lates calcarifer and Acanthochromis polyacanthus), were not adversely affected at the highest test concentration used. © 2014 SETAC.

  2. Factors affecting the aluminium content of human femoral head and neck.

    PubMed

    Zioła-Frankowska, Anetta; Dąbrowski, Mikołaj; Kubaszewski, Łukasz; Rogala, Piotr; Frankowski, Marcin

    2015-11-01

    Tissues for the study were obtained intraoperatively during hip replacement procedures from 96 patients. In all the cases, the indication for this treatment was primary or secondary degenerative changes in the hip joint. The subject of the study was the head and neck of the femur, resected in situ. Aluminium concentrations measured in femoral head and neck samples from patients aged between 25 and 91 were varied. Statistical methods were applied to determine the variations in relation to the parameters from the background survey. Significant differences in the aluminium content of femoral head samples were observed between patients under and over 60 years of age. Based on the results, it was confirmed that the aluminium accumulates in bones over a lifetime. The study showed that the content of aluminium in the head and neck of the femur depends on the factors such as: type of medicines taken, contact with chemicals at work, differences in body anatomy and sex. The study on the levels of aluminium in bones and the factors affecting its concentration is a valuable source of information for further research on the role of aluminium in bone diseases. Based on the investigations, it was found that the GF-AAS technique is the best analytical tool for routine analysis of aluminium in complex matrix samples. The use of femoral heads in the investigations was approved by the Bioethics Committee of the University of Medical Sciences in Poznań (Poland). Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes.

    PubMed

    Vasudevan, Subramanyan; Lakshmi, Jothinathan; Jayaraj, Jeganathan; Sozhan, Ganapathy

    2009-05-30

    The present study provides an electrocoagulation process for the remediation of phosphate-contaminated water using aluminium, aluminium alloy and mild steel as the anodes and stainless steel as the cathode. The various parameters like effect of anode materials, effect of pH, concentration of phosphate, current density, temperature and co-existing ions, and so forth, and the adsorption capacity was evaluated using both Freundlich and Langmuir isotherm models. The adsorption of phosphate preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. The results showed that the maximum removal efficiency of 99% was achieved with aluminium alloy anode at a current density of 0.2 A dm(-2), at a pH of 7.0. The adsorption process follows second-order kinetics.

  4. Manufacturing and Machining Challenges of Hybrid Aluminium Metal Matix Composites

    NASA Astrophysics Data System (ADS)

    Baburaja, Kammuluri; Sainadh Teja, S.; Karthik Sri, D.; Kuldeep, J.; Gowtham, V.

    2017-08-01

    Manufacturing which involves material removal processes or material addition processes or material transformation processes. One or all the processes to obtain the final desired properties for a material with desired shape which meets the required precision and accuracy values for the expected service life of a material in working conditions. Researchers found the utility of aluminium to be the second largest after steel. Aluminium and its metal matrix composite possess wide applications in various applications in aerospace industry, automobile industry, Constructions and even in kitchen utensils. Hybrid Al-MMCconsist of two different materials, and one will be from organic origin along with the base material. In this paper an attempt is made to bring out the importance of utilization of aluminium and the challenges concerned in manufacturing and machining of hybrid aluminium MMC.

  5. Accumulation of Aluminium and Physiological Status of Tree Foliage in the Vicinity of a Large Aluminium Smelter

    PubMed Central

    Wannaz, E. D.; Rodriguez, J. H.; Wolfsberger, T.; Carreras, H. A.; Pignata, M. L.; Fangmeier, A.; Franzaring, J.

    2012-01-01

    A pollution gradient was observed in tree foliage sampled in the vicinity of a large aluminium production facility in Patagonia (Argentina). Leaves of Eucalyptus rostrata, and Populus hybridus and different needle ages of Pinus spec. were collected and concentrations of aluminium (Al) and sulphur (S) as well as physiological parameters (chlorophyll and lipid oxidation products) were analyzed. Al and S concentrations indicate a steep pollution gradient in the study showing a relationship with the physiological parameters in particular membrane lipid oxidation products. The present study confirms that aluminium smelting results in high Al and sulphur deposition in the study area, and therefore further studies should be carried out taking into account potentially adverse effects of these compounds on human and ecosystem health. PMID:22654642

  6. Synthesis of nanowires and nanoparticles of cubic aluminium nitride

    NASA Astrophysics Data System (ADS)

    Balasubramanian, C.; Godbole, V. P.; Rohatgi, V. K.; Das, A. K.; Bhoraskar, S. V.

    2004-03-01

    Nanostructures of cubic aluminium nitride were synthesized by DC arc-plasma-induced melting of aluminium in a nitrogen-argon ambient. The material flux ejected from the molten aluminium surface was found to react with nitrogen under highly non-equilibrium conditions and subsequently condense on a water-cooled surface to yield a mixture of nanowires and nanoparticles of crystalline cubic aluminium nitride. Both x-ray diffraction and electron diffraction measurements revealed that the as-synthesized nitrides adopted the cubic phase. Fourier transform infrared spectroscopy was used to understand the bonding configuration. Microstructural features of the synthesized material were best studied by transmission electron microscopy. From these analyses cubic aluminium nitride was found to be the dominating phase for both nanowires and nanoparticles synthesized at low currents. The typical particle size distribution was found to range over 15-80 nm, whereas the wires varied from 30 to 100 nm in diameter and 500 to 700 nm in length, depending upon the process parameters such as arc current and the nitrogen pressure. The reaction products inside the plasma zone were also obtained theoretically by minimization of free energy and the favourable zone temperature necessary for the formation of aluminium nitride was found to be {\\sim } 6000 K. Results are discussed in view of the highly non-equilibrium conditions that prevail during the arc-plasma synthesis.

  7. Effects of Aluminium on Rat Brain Mitochondria Bioenergetics: an In vitro and In vivo Study.

    PubMed

    Iglesias-González, Javier; Sánchez-Iglesias, Sofía; Beiras-Iglesias, Andrés; Méndez-Álvarez, Estefanía; Soto-Otero, Ramón

    2017-01-01

    Numerous studies have highlighted the potential of aluminium as an aetiological factor for some neurodegenerative disorders, particularly Alzheimer's disease and Parkinson's disease. Our previous studies have shown that aluminium can cause oxidative stress, reduce the activity of some antioxidant enzymes, and enhance the dopaminergic neurodegeneration induced by 6-hydroxydopamine in an experimental model of Parkinson's disease in rats. We now report a study on the effects caused by aluminium on mitochondrial bioenergetics following aluminium addition and after its chronic administration to rats. To develop our study, we used a high-resolution respirometry to test the mitochondrial respiratory capacities under the conditions of coupling, uncoupling, and non-coupling. Our study showed alterations in leakiness, a reduction in the maximum capacity of complex II-linked respiratory pathway, a decline in the respiration efficiency, and a decrease in the activities of complexes III and V in both models studied. The observed effects also included both an alteration in mitochondrial transmembrane potential and a decrease in oxidative phosphorylation capacity when relatively high concentrations of aluminium were added to the isolated mitochondria. These findings contribute to explain both the ability of aluminium to generate oxidative stress and its suggested potential to act as an etiological factor by promoting the progression of neurodegenerative disorders such as Parkinson's disease.

  8. Aluminium Toxicity to Plants as Influenced by the Properties of the Root Growth Environment Affected by Other Co-Stressors: A Review.

    PubMed

    Siecińska, Joanna; Nosalewicz, Artur

    Aluminium toxicity to crops depends on the acidity of the soil and specific plant resistance. However, it is also strongly affected by other environmental factors that have to be considered to properly evaluate the resultant effects on plants. Observed weather perturbations and predicted climate changes will increase the probability of co-occurrence of aluminium toxicity and other abiotic stresses.In this review the mechanisms of plant-aluminium interactions are shown to be influenced by soil mineral nutrients, heavy metals, organic matter, oxidative stress and drought. Described effects of aluminium toxicity include: root growth inhibition, reduction in the uptake of mineral nutrients resulting from the inhibition of transport processes through ion channels; epigenetic changes to DNA resulting in gene silencing. Complex processes occurring in the rhizosphere are highlighted, including the role of soil organic matter and aluminium detoxification by mucilage.There is a considerable research gap in the understanding of root growth in the soil environment in the presence of toxic aluminium concentrations as affected by interactions with abiotic stressors. This knowledge is important for the selection of feasible methods aimed at the reduction of negative consequences of crop production in acidic soils affected by adverse growth environment.

  9. Equivalent Crack Size Modelling of Corrosion Pitting in an AA7050-T7451 Aluminium Alloy and its Implications for Aircraft Structural Integrity

    DTIC Science & Technology

    2012-09-01

    15 3.5 Fractography ... Fractography Results .............................................................................................. 19 4.2.1 Fatigue Crack Growth Images...quantitative fractography [17, 18]. The determination of the ECS is achieved by a trial-and-error calculation with the aim of matching the experimental

  10. Dietary exposure to aluminium from wheat flour and puffed products of residents in Shanghai, China.

    PubMed

    Guo, Junfei; Peng, Shaojie; Tian, Mingsheng; Wang, Liwei; Chen, Bo; Wu, Min; He, Gengsheng

    2015-01-01

    A dietary survey of 3431 residents was conducted by a 24-h dietary recall method in Shanghai, China, quarterly from September 2013 to September 2014. A total of 400 food samples were tested for aluminium concentration, including wheat flour and puffed products from 2011 to 2013. Probabilistic analysis was used to estimate the dietary exposure to aluminium from wheat and puffed products. The means of dietary aluminium exposure for children (2-6 years old), juveniles (7-17 years old), adults (18-65 years old) and seniors (over 65 years old) were 1.88, 0.94, 0.44 and 0.42 mg kg(-1) body weight (bw) week(-1) respectively, with a population average of 0.51 mg kg(-1) bw week(-1). The proportions of those who had aluminium exposure from wheat and puffed products lower than the provisional tolerable weekly intake (PTWI) were 77%, 90%, 97%, and 97% respectively from children to seniors. We estimated that the proportions of people at risk would decrease by 13%, 6%, 2% and 2% respectively under the new China National Standards - GB 2760-2014 National Food Safety for Standards for using food additives. The results indicated that aluminium from wheat flour and puffed products is unlikely to cause adverse health effects in the general population in Shanghai; however, children were at a higher risk of excess aluminium exposure. Significant improvements in reducing the dietary exposure to aluminium are expected in the population, especially for children after the implementation of GB 2760-2014.

  11. Scanning the welded joints of aluminium alloys using subminiature eddy-current transducers

    NASA Astrophysics Data System (ADS)

    Dmitriev, Sergey; Ishkov, Alexey; Malikov, Vladimir; Sagalakov, Anatoly

    2018-03-01

    Aluminium has a reputation for ease of use, strength and durability. In addition to its exceptional aesthetic properties, solid aluminium does not burn. As architects, contractors, consultants and real estate owners look to meet stringent safety requirements in the construction and refurbishment of high-rise constructions for both residential and commercial uses, aluminium cladding provides an alternative that is not only safe but that is also durable and attractive. One of the ways to connect elements into a aluminium construction is welding. friction stir welding is one of the most efficient. The authors developed a measuring system based on subminiaturized eddy-current transducers aimed at examining locally the defects of welded joints in aluminium-magnesium alloy plates connected by means of friction stir welding. The authors made a modification of the Delyann filter, which allowed them to increase considerably the signal-noise relations. The dependency of the eddy-current transducer response on defects was provided, i.e. concealed cuts and openings inside the welded joint, at the frequencies of 100-10000 Hz of the exciting winding.

  12. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    PubMed

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Reduction of Defects on Microstructure Aluminium Nitride Using High Temperature Annealing Heat Treatment

    NASA Astrophysics Data System (ADS)

    Tanasta, Z.; Muhamad, P.; Kuwano, N.; Norfazrina, H. M. Y.; Unuh, M. H.

    2018-03-01

    Aluminium Nitride (AlN) is a ceramic 111-nitride material that is used widely as components in functional devices. Besides good thermal conductivity, it also has a high band gap in emitting light which is 6 eV. AlN thin film is grown on the sapphire substrate (0001). However, lattice mismatch between both materials has caused defects to exist along the microstructure of AlN thin films. The defects have affected the properties of Aluminium Nitride. Annealing heat treatment has been proved by the previous researcher to be the best method to improve the microstructure of Aluminium Nitride thin films. Hence, this method is applied at four different temperatures for two hour. The changes of Aluminium Nitride microstructures before and after annealing is observed using Transmission Electron Microscope. It is observed that inversion domains start to occur at temperature of 1500 °C. Convergent Beam Electron Diffraction pattern simulation has confirmed the defects as inversion domain. Therefore, this paper is about to extract the matters occurred during the process of producing high quality Aluminium Nitride thin films and the ways to overcome this problem.

  14. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells.

    PubMed

    Radziun, E; Dudkiewicz Wilczyńska, J; Książek, I; Nowak, K; Anuszewska, E L; Kunicki, A; Olszyna, A; Ząbkowski, T

    2011-12-01

    The rapid development of nanotechnology raises both enthusiasm and anxiety among researchers, which is related to the safety use of the manufactured materials. Thus, the aim of this study was to investigate the effect of aluminium oxide nanoparticles on the viability of selected mammalian cells in vitro. The aluminium oxide nanoparticles were characterised using SEM and BET analyses. Based on Zeta (ζ) potential measurements and particle size distribution, the tested suspensions of aluminium oxide nanoparticles in water and nutrient solutions with or without FBS were classified as unstable. Cell viability, the degree of apoptosis induction and nanoparticles internalization into the cells were assessed after 24 h of cell exposure to Al2O3 nanoparticles. Our results confirm the ability of aluminium oxide nanoparticles to penetrate through the membranes of L929 and BJ cells. Despite this, there was no significant increase in apoptosis or decrease in cell viability observed, suggesting that aluminium oxide nanoparticles in the tested range of concentrations has no cytotoxic effects on the selected mammalian cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode.

    PubMed

    Elabbas, S; Ouazzani, N; Mandi, L; Berrekhis, F; Perdicakis, M; Pontvianne, S; Pons, M-N; Lapicque, F; Leclerc, J-P

    2016-12-05

    This paper deals with the ability of electrocoagulation (EC) to remove simultaneously COD and chromium from a real chrome tanning wastewater in a batch stirred electro-coagulation cell provided with two aluminium-based electrodes (aluminium/copper/magnesium alloy and pure aluminium). Effects of operating time, current density and initial concentration of Cr(III) and COD have been investigated. The concentrations of pollutants have been successfully reduced to environmentally acceptable levels even if the concentrated effluent requires a long time of treatment of around 6h with a 400A/m(2) current density. The aluminium alloy was found to be more efficient than pure aluminium for removal of COD and chromium. Dilution of the waste has been tested for treatment: high abatement levels could be obtained with shorter time of treatment and lower current densities. Energy consumption of the electrocoagulation process was also discussed. The dilution by half of the concentrated waste leads to a higher abatement performance of both COD and chromium with the best energy efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A Study on 3-Body Abrasive Wear Behaviour of Aluminium 8011 / Graphite Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Anil, K. C.; Patil, Rahul

    2016-09-01

    Metals and alloys have found their vital role in many applications like structural, corrosive, tribological, etc., in engineering environment. The alloys/composites having high strength to low weight ratio have gained attention of many researchers recently. In this work, graphite reinforced Aluminium 8011 metal matrix composite was prepared by conventional stir casting route, by varying the weight % of reinforcement. Uniform distribution of Graphite in matrix alloy was confirmed by optical micrographs. Prepared composite specimens were subjected to 3-body abrasive testing by varying applied load and time, the silica particles of 400 grit size were used as abrasive particles. It was observed that with the increase of weight% of Graphite the wear resistance of composite was also increasing and on comparison it was found that reinforced composite gives good wear resistance than base alloy.

  17. Creation of energetic biothermite inks using ferritin liquid protein

    NASA Astrophysics Data System (ADS)

    Slocik, Joseph M.; McKenzie, Ruel; Dennis, Patrick B.; Naik, Rajesh R.

    2017-04-01

    Energetic liquids function mainly as fuels due to low energy densities and slow combustion kinetics. Consequently, these properties can be significantly increased through the addition of metal nanomaterials such as aluminium. Unfortunately, nanoparticle additives are restricted to low mass fractions in liquids because of increased viscosities and severe particle agglomeration. Nanoscale protein ionic liquids represent multifunctional solvent systems that are well suited to overcoming low mass fractions of nanoparticles, producing stable nanoparticle dispersions and simultaneously offering a source of oxidizing agents for combustion of reactive nanomaterials. Here, we use iron oxide-loaded ferritin proteins to create a stable and highly energetic liquid composed of aluminium nanoparticles and ferritin proteins for printing and forming 3D shapes and structures. In total, this bioenergetic liquid exhibits increased energy output and performance, enhanced dispersion and oxidation stability, lower activation temperatures, and greater processability and functionality.

  18. A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation

    PubMed Central

    Wang, Wei; Jiang, Bo; Xiong, Weiyi; Sun, He; Lin, Zheshuai; Hu, Liwen; Tu, Jiguo; Hou, Jungang; Zhu, Hongmin; Jiao, Shuqiang

    2013-01-01

    Due to their small footprint and flexible siting, rechargeable batteries are attractive for energy storage systems. A super-valent battery based on aluminium ion intercalation and deintercalation is proposed in this work with VO2 as cathode and high-purity Al foil as anode. First-principles calculations are also employed to theoretically investigate the crystal structure change and the insertion-extraction mechanism of Al ions in the super-valent battery. Long cycle life, low cost and good capacity are achieved in this battery system. At the current density of 50 mAg−1, the discharge capacity remains 116 mAhg−1 after 100 cycles. Comparing to monovalent Li-ion battery, the super-valent battery has the potential to deliver more charges and gain higher specific capacity. PMID:24287676

  19. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recyclingmore » flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)« less

  20. Hydrogen blistering under extreme radiation conditions

    NASA Astrophysics Data System (ADS)

    Sznajder, Maciej; Geppert, Ulrich; Dudek, Miroslaw

    2018-01-01

    Metallic surfaces, exposed to a proton flux, start to degradate by molecular hydrogen blisters. These are created by recombination of protons with metal electrons. Continued irradiation progresses blistering, which is undesired for many technical applications. In this work, the effect of the proton flux magnitude onto the degradation of native metal oxide layers and its consequences for blister formation has been examined. To study this phenomenon, we performed proton irradiation experiments of aluminium surfaces. The proton kinetic energy was chosen so that all recombined hydrogen is trapped within the metal structure. As a result, we discovered that intense proton irradiation increases the permeability of aluminium oxide layers for hydrogen atoms, thereby counteracting blister formation. These findings may improve the understanding of the hydrogen blistering process, are valid for all metals kept under terrestrial ambient conditions, and important for the design of proton irradiation tests.

  1. Quasiparticle spin resonance and coherence in superconducting aluminium.

    PubMed

    Quay, C H L; Weideneder, M; Chiffaudel, Y; Strunk, C; Aprili, M

    2015-10-26

    Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott-Yafet spin-orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.

  2. Quasiparticle spin resonance and coherence in superconducting aluminium

    PubMed Central

    Quay, C. H. L.; Weideneder, M.; Chiffaudel, Y.; Strunk, C.; Aprili, M.

    2015-01-01

    Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott–Yafet spin–orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics. PMID:26497744

  3. Investigation of pouring temperature and holding time for semisolid metal feedstock production

    NASA Astrophysics Data System (ADS)

    Razak, N. A.; Ahmad, A. H.; Rashidi, M. M.

    2017-10-01

    Semisolid metal (SSM) processing, as a kind of new technology that exploits forming of alloys between solidus and liquidus temperatures, has attracted great attention from investigators for its thixotropic behaviour as well as having advantages in reducing porosity, macrosegregation, and forming forces during shaping process. Various techniques are employed to produce feedstock with fine globular microstructures, and direct thermal method is one of them. In this paper, the effect from different pouring temperatures and holding times using a direct thermal method on microstructure and hardness of aluminium alloy 6061 is presented. Molten aluminium alloy 6061 was poured into a cylindrical copper mould and cooled down to the semisolid temperature before being quenched in water at room temperature. The effect of different pouring temperatures of 660 °C, 680 °C, 700 °C, and holding time of 20 s, and 60 s on the microstructure of aluminium alloy 6061 were investigated. From the micrographs, it was found that the most globular structures were achieved at processing parameters of 660 °C pouring temperature and 60 s holding time. The highest density and hardness of the samples were found at the same processing parameters. It can be concluded that the most spheroidal microstructure, the highest density, and the hardness were recorded at lower pouring temperature and longer holding time.

  4. A hybrid aluminium alloy and its zoo of interacting nano-precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenner, Sigurd, E-mail: sigurd.wenner@ntnu.no; Marioara, Calin Daniel; Andersen, Sigmund Jarle

    An alloy with aluminium as its base element is heat treated to form a multitude of precipitate phases known from different classes of industrial alloys: Al–Cu(–Mg), Al–Mg–Si–Cu, and Al–Zn–Mg. Nanometer-sized needle-shaped particles define the starting point of the phase nucleation, after which there is a split in the precipitation sequence into six phases of highly diverse compositions and morphologies. There are several unique effects of phases from different alloy systems being present in the same host lattice, of which we concentrate on two: the replacement of Ag by Zn on the Ω interface and the formation of combined plates ofmore » the θ′ and C phases. Using atomically resolved scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy, we investigate the formation mechanisms, crystal structures and compositions of the precipitates. - Graphical abstract: Display Omitted - Highlights: • An aluminium alloy composition in-between the 2/6/7xxx systems was investigated. • Six different phases from the three systems coexist in an over-aged state. • All phases with 〈001〉{sub Al} coherencies can nucleate on 6xxx needle precipitates. • Modified theta′ and omega interfaces are observed.« less

  5. Non-destructive and three-dimensional measurement of local strain development during tensile deformation in an aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Miura, H.; Toda, H.

    2015-08-01

    Anisotropy of mechanical responses depending on crystallographic orientation causes inhomogeneous deformation on the mesoscopic scale (grain size scale). Investigation of the local plastic strain development is important for discussing recrystallization mechanisms, because the sites with higher local plastic strain may act as potential nucleation sites for recrystallization. Recently, high-resolution X-ray tomography, which is non-destructive inspection method, has been utilized for observation of the materials structure. In synchrotron radiation X-ray tomography, more than 10,000 microstructural features, like precipitates, dispersions, compounds and hydrogen pores, can be observed in aluminium alloys. We have proposed employing these microstructural features as marker gauges to measure local strains, and then have developed a method to calculate the three-dimensional strain distribution by tracking the microstructural features. In this study, we report the development of local plastic strain as a function of the grain microstructure in an aluminium alloy by means of this three-dimensional strain measurement technique. Strongly heterogeneous strain development was observed during tensile loading to 30%. In other words, some parts of the sample deform little whereas another deforms a lot. However, strain in the whole specimen was keeping harmony. Comparing the microstructure with the strain concentration that is obtained by this method has a potential to reveal potential nucleation sites of recrystallization.

  6. IEC 61267: Feasibility of type 1100 aluminium and a copper/aluminium combination for RQA beam qualities.

    PubMed

    Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C

    2016-01-01

    In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Al{sub 2}O{sub 3} - TiO{sub 2}-A simple sol-gel strategy to the synthesis of low temperature sintered alumina-aluminium titanate composites through a core-shell approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasankar, M.; Ananthakumar, S.; Mukundan, P.

    A simple sol-gel based core-shell approach for the synthesis of alumina-aluminium titanate composite is reported. Alumina is the core and titania is the shell. The coating of titania has been performed in aqueous medium on alumina particle by means of heterocoagulation of titanyl chloride. Further heat treatment results in low temperature formation of aluminium titanate as well as low temperature sintering of alumina-aluminium titanate composites. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactants due to the core-shell approach involving nanoparticles. The mechanism of formation of aluminium titanate and themore » observations on densification features in the present process are compared with that of mixture of oxides under identical conditions. The sintered alumina-aluminium titanate composite has an average grain size of 2 {mu}m. - Graphical abstract: The article presents a simple sol-gel process through core-shell approach to the synthesis of low temperature sintered alumina-aluminium titanate. The lowering of the reaction temperature can be attributed to the maximisation of the contact surface between the reactant due to the core-shell approach. This material showed the better microstructure control compared to the standard solid-state mixing route.« less

  8. 75 FR 20817 - Magnesium Metal from the People's Republic of China: Preliminary Results of the 2008-2009...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... Aluminium Company Limited (``NALCO''), and one producer of zinc products - Hindustan Zinc Limited... Value Comments at Exhibit SV-11E. \\56\\ See 28th Annual Report 2008-2009, National Aluminium Company... 2008-09, Bhoruka Aluminium Limited, at 31 contained in TMI's Surrogate Value Comments at Exhibit SV-11C...

  9. Determination of trace and minor elements in alloys by atomic-absorption spectroscopy using an induction-heated graphite-well furnace as atom source-II.

    PubMed

    Ashy, M A; Headridge, J B; Sowerbutts, A

    1974-06-01

    Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour.

  10. Testing of stiffening ribs formed by incremental forming in thin-walled aircraft structures made of 2024-T3 ALCLAD aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kubit, Andrzej; Wydrzynski, Dawid; Bucior, Magdalena; Krasowski, Bogdan

    2018-05-01

    This paper presents the results of experimental tests on the fabrication of longitudinal stiffening ribs in 2024-T3 ALCLAD aluminum alloy sheet, which is widely used in the aircraft structures. The problem presented in this paper concerns the concept of rib-stiffening of the structure of aircraft skin. The ribs are intended to stiffen integral thin-walled structure. Different shapes and different parameters of the forming process were studied. The rib-stiffened samples of various depths of the ribs were tested experimentally in the buckling test.

  11. Analysis of compressive strength in flatwise and edgewise direction to characterize Al-7000 aluminium foam

    NASA Astrophysics Data System (ADS)

    Sutarno, Soepriyanto, Syoni; Korda, Akhmad A.; Dirgantara, Tatacipta

    2015-09-01

    The physical mechanical properties of Al-7000 aluminium foam product and processing has been evaluated in this study. The characterization through the compressive testing refers to flatwise direction provided more confident result than edgewise direction. This experiment may correlate with formation of side products of calcia alumina and alumina silica that involved in metal mixture of aluminium foam. These compounds are formed from additional calcium carbonate and silica in the mixture. Calcium carbonate (CaCO3) roles as a blowing agent source of carbon dioxide (CO2). The formation of calcia alumina (CaO.Al2O3) may role to strengthen of cell wall of aluminium foam and to improve the viscosity of melting metal. The Al-7000 aluminium foam indicated a decrease of compressive strength probably due to existence of alumina silica (3Al2O3.SiO2) in the metal mixture.

  12. Sulfone-based electrolytes for aluminium rechargeable batteries.

    PubMed

    Nakayama, Yuri; Senda, Yui; Kawasaki, Hideki; Koshitani, Naoki; Hosoi, Shizuka; Kudo, Yoshihiro; Morioka, Hiroyuki; Nagamine, Masayuki

    2015-02-28

    Electrolyte is a key material for success in the research and development of next-generation rechargeable batteries. Aluminium rechargeable batteries that use aluminium (Al) metals as anode materials are attractive candidates for next-generation batteries, though they have not been developed yet due to the lack of practically useful electrolytes. Here we present, for the first time, non-corrosive reversible Al electrolytes working at room temperature. The electrolytes are composed of aluminium chlorides, dialkylsulfones, and dilutants, which are realized by the identification of electrochemically active Al species, the study of sulfone dependences, the effects of aluminium chloride concentrations, dilutions and their optimizations. The characteristic feature of these materials is the lower chloride concentrations in the solutions than those in the conventional Al electrolytes, which allows us to use the Al metal anodes without corrosions. We anticipate that the sulfone-based electrolytes will open the doors for the research and development of Al rechargeable batteries.

  13. Evaluation of Aluminium Dross as Adsorbent for Removal of Carcinogenic Congo Red Dye in Wastewater

    NASA Astrophysics Data System (ADS)

    Zakaria, Mohamad Zulfika Hazielim b.; Zauzi, Nur Syuhada Ahmad; Baini, Rubiyah; Sutan, Norsuzailina Mohamed; Rezaur Rahman, Md

    2017-06-01

    In this study, aluminium dross waste generated from aluminium smelting industries was employed as adsorbent in removing of congo red dye in aqueous solution. The raw aluminium dross as adsorbent was characterized using Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET) for surface area and X-Ray Fluorescence (XRF) Spectroscopy. Adsorption experiments were carried out by batch system at different adsorbent mass, pH, and initial dye concentration. The results showed that the per cent removal of dye increased as adsorbent mass increased. It was found that 0.4 gram of adsorbent can remove approximately 100 % of dye at pH 9 for dye concentration 20 and 40 ppm. Therefore, it can be concluded that raw aluminium dross without undergone any treatment can be effectively used for the adsorption of congo red in textile wastewater related industries.

  14. Thermal analysis of laser additive manufacturing of aluminium alloys: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Bock, Frederic E.; Froend, Martin; Herrnring, Jan; Enz, Josephin; Kashaev, Nikolai; Klusemann, Benjamin

    2018-05-01

    Laser additive manufacturing (LAM) has become increasingly popular in industry in recent decades because it enables exceptional degrees of freedom regarding the structural design of lightweight components compared to subtractive manufacturing techniques. Laser metal deposition (LMD) of wire-fed material shows in particular the advantages such as high process velocity and efficient use of material compared to other LAM processes. During wire-based LMD, the material is deposited onto a substrate and supplemented by successive layers allowing a layer-wise production of complex three-dimensional structures. Despite the increased productivity of LMD, regarding the ability to process aluminium alloys, there is still a lack in quality and reproducibility due to the inhomogeneous temperature distribution during the process, leading to undesired residual stresses, distortions and inconsistent layer geometries and poor microstructures. In this study, the aluminium alloy AA5087 as wire and AA5754 as substrate material were utilized for LMD. In order to obtain information about the temperature field during LMD, thermocouple and thermography measurements were performed during the process. The temperature measurements were used to validate a finite element model regarding the heat distribution, which will be further used to investigate the temperature field evolution over time. To consider the continuous addition of material within the FE-model, an inactive/active element approach was chosen, where initially deactivated elements are activated corresponding to the deposition of material. The first results of the simulation and the experiments show good agreement. Therefore, the model can be used in the future for LMD process optimization, e.g., in terms of minimizing local variations of the thermal load for each layer.

  15. Optical and magnetic properties of free-standing silicene, germanene and T-graphene system

    NASA Astrophysics Data System (ADS)

    Chowdhury, Suman; Bandyopadhyay, Arka; Dhar, Namrata; Jana, Debnarayan

    2017-05-01

    The physics of two-dimensional (2D) materials is always intriguing in their own right. For all of these elemental 2D materials, a generic characteristic feature is that all the atoms of the materials are exposed on the surface, and thus tuning the structure and physical properties by surface treatments becomes very easy and straightforward. The discovery of graphene have fostered intensive research interest in the field of graphene like 2D materials such as silicene and germanene (hexagonal network of silicon and germanium, respectively). In contrast to the planar graphene lattice, the silicene and germanene honeycomb lattice is slightly buckled and composed of two vertically displaced sublattices.The magnetic properties were studied by introducing mono- and di-vacancy (DV), as well as by doping phosphorus and aluminium into the pristine silicene. It is observed that there is no magnetism in the mono-vacancy system, while there is large significant magnetic moment present for the DV system. The optical anisotropy of four differently shaped silicene nanodisks has revealed that diamond-shaped (DS) silicene nanodisk possesses highest static dielectric constant having no zero-energy states. The study of optical properties in silicene nanosheet network doped by aluminium (Al), phosphorus (P) and aluminium-phosphorus (Al-P) atoms has revealed that unlike graphene, no new electron energy loss spectra (EELS) peak occurs irrespective of doping type for parallel polarization. Tetragonal graphene (T-graphene) having non-equivalent (two kinds) bonds and non-honeycomb structure shows Dirac-like fermions and high Fermi velocity. The higher stability, large dipole moment along with high-intensity Raman active modes are observed in N-doped T-graphene. All these theoretical results may shed light on device fabrication in nano-optoelectronic technology and material characterization techniques in T-graphene, doped silicene, and germanene.

  16. Integration of active and passive cool roof system for attic temperature reduction

    NASA Astrophysics Data System (ADS)

    Yew, Ming Chian; Yew, Ming Kun; Saw, Lip Huat; Durairaj, Rajkumar

    2017-04-01

    The aim of this project is to study the capability of cool roof system in the reduction of heat transmission through metal roof into an attic. The cool roof system is designed in active and passive methods to reduce the thermal loads imposed to a building. Two main features are introduced to this cool roof system, which is thermal insulation coating (TIC) and moving air cavity (MAC) that served as active and passive manner, respectively. For MAC, two designs are introduced. Normal MAC is fabricated by six aluminium tubes whereby each aluminium tube is made up by sticking up of five aluminium cans. While improved MAC is also made by six aluminium tubes whereby each aluminium tube is custom made from steel rods and aluminium foils. MAC provides ventilation and heat reflection under the metal roof before the heat transfer into attic. It also coupled with three solar powered fans to increase heat flow inside the channel. The cool roof that incorporated TIC, MAC with solar powered fans and opened attic inlet showed a significant improvement with a reduction of up to 14 °C in the attic temperature compared to conventional roof system.

  17. Cancer risk among workers of a secondary aluminium smelter.

    PubMed

    Maltseva, A; Serra, C; Kogevinas, M

    2016-07-01

    Cancer risk in secondary aluminium production is not well described. Workers in this industry are exposed to potentially carcinogenic agents from secondary smelters that reprocess aluminium scrap. To evaluate cancer risk in workers in a secondary aluminium plant in Spain. Retrospective cohort study of male workers employed at an aluminium secondary smelter (1960-92). Exposure histories and vital status through 2011 were obtained through personal interviews and hospital records, respectively. Standardized mortality (SMRs) and incidence ratios (SIRs) were calculated. The study group consisted of 98 workers. We found increased incidence and mortality from bladder cancer [SIR = 2.85, 95% confidence interval (CI) 1.23-5.62; SMR = 5.90, 95% CI 1.58-15.11]. Increased incidence was also observed for prostate cancer and all other cancers but neither were statistically significant. No increased risk was observed for lung cancer. Results of this study suggest that work at secondary aluminium smelters is associated with bladder cancer risk. Identification of occupational carcinogens in this industry is needed. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Weldability of Aluminium Alloys for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Löveborn, D.; Larsson, J. K.; Persson, K.-A.

    Restrictions in CO2-emissions have caused increased demands on decreased weight and increased use of lightweight materials in the automotive industry. Aluminium has shown to be of great interest due to its beneficial weight to strength ratio, and are suitable for hang-on parts such as roof, doors etc. However, the use of aluminium requires reliable joining techniques. This project has been focusing on laser welding of aluminium. It have been reported earlier that hot cracks and porosity are common defects while joining aluminium with laser welding. The aim with this project has been to produce crack free laser welds while joining thin aluminium sheets. Two different optics have been used in this project, oscillating- and triple-spot optics. The results from the experiments show that both the oscillating optics and the triple-spot optics can produce crack free welds. The amount of pores is shown to be low for both cases. The results do also show that the amount of pores in the welds increases with the weld length while the flange length is of minor impact. The mechanical properties are similar for the both optics. The oscillation specimens receive a higher tensile strength while the triple-spot specimens receive a larger elongation at break value.

  19. Severe cerebral congophilic angiopathy coincident with increased brain aluminium in a resident of Camelford, Cornwall, UK.

    PubMed

    Exley, C; Esiri, M M

    2006-07-01

    In July 1988, 20 tonnes of aluminium sulphate was discharged by the South West Water Authority into the drinking water supplied to a large region of North Cornwall. Up to 20,000 people were exposed to concentrations of aluminium which were 500-3000 times the acceptable limit under European Union legislation (0.200 mg/l). Although this incident is currently the topic of a government inquiry, nothing is known about its longer-term repercussions on human health. The first neuropathological examination of a person who was exposed and died of an unspecified neurological condition was carried out. A rare form of sporadic early-onset beta amyloid angiopathy in cerebral cortical and leptomeningeal vessels, and in leptomeningeal vessels over the cerebellum was identified. In addition, high concentrations of aluminium were found coincident with the severely affected regions of the cortex. Although the presence of aluminium is highly unlikely to be adventitious, determining its role in the observed neuropathology is impossible. A clearer understanding of aluminium's role in this rare form of Alzheimer's related disease should be provided by future research on other people from the exposed population as well as similar neuropathologies in people within or outside this group.

  20. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  1. Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar

    2017-05-01

    This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material and has more strength. By the power press used as forming method we fabricate the honey comb core and stacking the sheets with adhesive as epoxy resin or laser beam welding and sandwich structure will form with two face sheets. Then the specimen is taken to be tested to know the flexural behaviour by the flexural test as 3 point and 4 pont bend test. After testing of two different tests then we get the force vs displacement curve by this we can know the maximum force and by loading configurations and its displacement or deflection then we can calculate flexural stiffness and core shear modulus by the variation of three parameters. Our ultimate aim is to achieve maximum strength by minimum weight.

  2. Comparative study on life cycle environmental impact assessment of copper and aluminium cables

    NASA Astrophysics Data System (ADS)

    Bao, Wei; Lin, Ling; Song, Dan; Guo, Huiting; Chen, Liang; Sun, Liang; Liu, Mei; Chen, Jianhua

    2017-11-01

    With the rapid development of industrialization and urbanization in China, domestic demands for copper and aluminium resources increase continuously and the output of copper and aluminium minerals rises steadily. The output of copper in China increased from 0.6 million tons (metal quantity) in 2003 to 1.74 million tons (metal quantity) in 2014, and the output of bauxite increased from 21 million tons in 2006 to 59.21 million tons in 2014. In the meantime, the import of copper and aluminium minerals of China is also on a rise. The import of copper concentrate and bauxite increased from 4.94 million tons and 9.68 million tons in 2006 to 10.08 million tons and 70.75 million tons in 2013 respectively. Copper and aluminium resources are widely applied in fields such as construction, electrical and electronics, machinery manufacturing, and transportation, and serve as important material basis for the national economic and social development of China. Cable industry is a typical industry where copper and aluminium resources are widely used. In this paper, a product assessment model is built from the perspective of product life cycle. Based on CNLCD database, differences in environmental impacts of copper and aluminium cables are analyzed from aspects such as resource acquisition, product production, transportation, utilization, and resource recycling. Furthermore, the advantages and disadvantages of products at different stages with different types of environmental impact are analyzed, so as to provide data support for cable industry in terms of product design and production, etc.

  3. Impacts of alum residues from Morton Jaffray Water Works on water quality and fish, Harare, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muisa, Norah; Hoko, Zvikomborero; Chifamba, Portia

    Metal pollution of freshwater due to human activities is a major problem confronting most urban centres in developing countries. This study determined the extent to which aluminium in the residues from Morton Jaffray Water Works in Harare were affecting the water quality of Manyame River and Lake Manyame. The study also measured aluminium bioaccumulation in Nile Tilapia ( Oreochromis niloticus) which is of importance to the commercial fisheries industry in Zimbabwe. Depth integrated water, and sediment grab samples and adult fish were collected per site in January and March, 2010. A total of six sites were selected on the Manyame River and in Lake Manyame. The levels of Total Aluminium (Al) were determined in sediments, water and fish tissues (liver, kidney, gill and muscle). Total solids, total dissolved solids, conductivity, pH, dissolved oxygen and temperature were also determined in water and residues. The texture of the sediments was also assessed. Aluminium concentration in water ranged from 2.19 mg/L to 68.93 mg/L during both sampling campaigns surpassing permissible maximum concentration limits of 0.087 to 0.75 mg/L suggested by the Environmental Protection Agency and African Union. The site upstream of the discharge point of the residues always had the lowest levels though it was higher than acceptable levels indicated above, thus suggesting the existence of other sources of aluminium in the catchment besides Morton Jaffray Water Works. However, there was a 10-fold and 100-fold increase in levels of aluminium in water and sediments, respectively, at the site 100 m downstream of the discharge point on the Manyame River. Mean aluminium concentrations in water and sediments at this site averaged 68.93 ± 61.74 mg/L and 38.18 ± 21.54 mg/L in water and 103.79 ± 55.96 mg/L and 131.84 ± 16.48 mg/L in sediments in sampling campaigns 1 and 2, respectively. These levels were significantly higher than levels obtained from all the other sites during both sampling campaigns (ANOVA: p < 0.05). This also indicated that the contribution of aluminium pollution from the water works residues was higher than all the other sources in the catchment. Aluminium levels were generally in the order of; sediments > fish > water. Bioaccumulation occurred in the fish and the order of bioconcentration was; kidney > liver > gill > muscle. The amounts of aluminium in the fish tissues investigated were significantly higher (maximum = 2.92 mg/g) than was reported in other studies reviewed (maximum = 0.18 mg/g). Thus, the water treatment plant residues are greatly increasing the concentrations of aluminium in the water system downstream of the plant thus creating a great risk of aluminium toxicity for fish. Treatment of the residues before discharge, substitution of alum with other coagulants, and re-use of the residues in buffer strips, agricultural lands and in sewage works should be considered.

  4. Studies on dynamic behavior of rotating mirrors

    NASA Astrophysics Data System (ADS)

    Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie

    2005-02-01

    A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.

  5. Preparation of magnesium metal matrix composites by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  6. Effect of laser irradiation on surface hardness and structural parameters of 7178 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Maryam, Siddra; Bashir, Farooq

    2018-04-01

    Aluminium 7178 samples were prepared and irradiated with Nd:YAG laser. The surfaces of exposed samples were investigated using optical microscopy, which revealed that the surface morphology of the samples is changed drastically as a function of laser shots. It is revealed from the micrographs that the laser heat effected area increases with the increase in the number of the laser pulses. Furthermore morphological and mechanical properties were studied using XRD and Vickers hardness testing. XRD study shows an increasing trend in Grain size with the increasing number of laser shots. And the hardness of the samples as a function of the laser shots shows that the hardness first increases and then it decreases gradually. It was observed that the grain size has no pronouncing effect on the hardness. Hardness profile has a decreasing trend with the increase in linear distance from the boundary of the laser heat affected area.

  7. Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkerk, B. E.; Soussou, A.; Carette, M.

    This Letter reports the thermal conductivity of aluminium nitride (AlN) thin-films deposited by reactive DC magnetron sputtering on single-crystal silicon substrates (100) with varying plasma and magnetic conditions achieving different crystalline qualities. The thermal conductivity of the films was measured at room temperature with the transient hot-strip technique for film thicknesses ranging from 100 nm to 4000 nm. The thermal conductivity was found to increase with the thickness depending on the synthesis conditions and film microstructure. The conductivity in the bulk region of the films, so-called intrinsic conductivity, and the boundary resistance were in the range [120-210] W m{sup -1}more » K{sup -1} and [2-30 Multiplication-Sign 10{sup -9}] K m{sup 2} W{sup -1}, respectively, in good agreement with microstructures analysed by x-ray diffraction, high-resolution-scanning-electron-microscopy, and transmission-electron-microscopy.« less

  8. Creation of energetic biothermite inks using ferritin liquid protein

    PubMed Central

    Slocik, Joseph M.; McKenzie, Ruel; Dennis, Patrick B.; Naik, Rajesh R.

    2017-01-01

    Energetic liquids function mainly as fuels due to low energy densities and slow combustion kinetics. Consequently, these properties can be significantly increased through the addition of metal nanomaterials such as aluminium. Unfortunately, nanoparticle additives are restricted to low mass fractions in liquids because of increased viscosities and severe particle agglomeration. Nanoscale protein ionic liquids represent multifunctional solvent systems that are well suited to overcoming low mass fractions of nanoparticles, producing stable nanoparticle dispersions and simultaneously offering a source of oxidizing agents for combustion of reactive nanomaterials. Here, we use iron oxide-loaded ferritin proteins to create a stable and highly energetic liquid composed of aluminium nanoparticles and ferritin proteins for printing and forming 3D shapes and structures. In total, this bioenergetic liquid exhibits increased energy output and performance, enhanced dispersion and oxidation stability, lower activation temperatures, and greater processability and functionality. PMID:28447665

  9. Microstructure and hardness performance of AA6061 aluminium composite using friction stir processing

    NASA Astrophysics Data System (ADS)

    Marini, C. D.; Fatchurrohman, N.

    2018-04-01

    Rice husk ash (RHA) is an industrial waste that has become a potential reinforced material for aluminium matrix composite (AMCs) due to low cost and abundantly available resources. Friction stir processing (FSP) has been introduced as a method to modify surface properties of the metal and alloy including theirs composite as well. The present work reports the production and characterization of AA6061 and AA6061/5 vol% RHA using FSP using parameters rotation speed 1000 rpm and traversed speed 25 mm/min. The microstructure was studied using optical microscopy (OM). A homogenous dispersion of RHA particles was obtained in the composite. No agglomeration or segregation was observed. The produced composite exhibited a fine grain structure. An improvement in hardness profile was observed as AA6061/5 vol% RHA improves in hardness compared to FSPed of AA6061 without reinforcement.

  10. Experimental analysis of energy absorption behaviour of Al-tube filled with pumice lightweight concrete under axial loading condition

    NASA Astrophysics Data System (ADS)

    Rajak, D. K.; Deshpande, P. G.; Kumaraswamidhas, L. A.

    2017-08-01

    This Paper aimed at experimental investigation of compressive behaviour of square tube filled with pumice lightweight concrete (PLC). Square section of 20×20×30 mm is investigated, which is the backbone structure. The compression deformation result shows the better folding mechanism, displacement value, and energy absorption. PLC concrete filled with aluminium thin-wall tubes has been revealed superior energy absorption capacity (EAC) under low strain rate at room temperature. Superior EAC resulted as a result of mutual deformation benefit between aluminium section and PLC is also analysed. PLC was characterised by Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Spectrometry (EDX) analysis for better understanding of material behaviour. Individual and comparative load bearing graphs is logged for better prospective of analysing. Novel approach aimed at validation of porous lightweight concrete for better lightweight EA filler material.

  11. Numerical Study on Recombination Efficiency at 4,4'-Bis(2,2'-diphenylvinyl)-1,1'-spirobiphenyl/Tris(8-quinolinolato)aluminium Interface in Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Hwang, Young Wook; Kim, Kwang Sik; Won, Tae Young

    2013-10-01

    In this paper, we report our numerical study on the electrical and optical properties of the organic light emitting diodes (OLEDs) devices with n-doped layer, which is inserted for the purpose of reducing the interface barrier height between the cathode and the electron transport layer (ETL). We performed finite element method (FEM) simulation on OLEDs in order to understand the transport behavior of carriers, recombination kinetics, and emission property. Our model includes Poisson's equation, continuity equation to account for behavior of electrons and holes and exciton continuity/transfer equation to account for recombination of carriers. We employ the multilayer structure which consists of indium tin oxide (ITO); 2,2',7,7'-tetrakis(N,N-diphenylamine)-9,9'-spirobi-fluorene (S-TAD); 4,4'-bis(2,2'-diphenylvinyl)-1,1'-spirobiphenyl (S-DPVBi); tris(8-quinolinolato)aluminium (Alq3); calcium (Ca).

  12. The study of voids in the AuAl thin-film system using the nuclear microprobe

    NASA Astrophysics Data System (ADS)

    de Waal, H. S.; Pretorius, R.; Prozesky, V. M.; Churms, C. L.

    1997-07-01

    A Nuclear Microprobe (NMP) was used to study void formation in thin film gold-aluminium systems. Microprobe Rutherford Backscattering Spectrometry (μRBS) was utilised to effectively obtain a three-dimensional picture of the void structure on the scale of a few nanometers in the depth dimension and a few microns in the in-plane dimension. This study illustrates the usefulness of the NMP in the study of materials and specifically thin-film structures.

  13. Influence of Hole Surface Finish, Cyclic Frequency and Spectrum Severity on the Fatigue Behaviour of Thick Section Aluminium Alloy Pin Joints

    DTIC Science & Technology

    1987-12-01

    with increasing frequency of oscillation, while Reed and Batter (Ref. 25) reported a decrease in fretting damage in 4140 steel when the frequency was...fatigue with reference to aircraft structures. SAE Tech. Pap. no. 790612, 1979. 15. Suresh, S. and Ritchie, R.O. Propagation of short ’atigue cracks...Library British Library, Document Supply Centre CAARC Co-ordinator, Structures Welding Institute, Library British Aerospace Kingston-upon-Thames

  14. Thermophysical and structural studies on some glass-ceramics and role of nano size crystallites

    NASA Astrophysics Data System (ADS)

    Kothiyal, G. P.; Arvind, A.; Kumar, Rakesh; Dixit, Anupam; Sharma, Kuldeep; Goswami, Madhumita

    2009-07-01

    In this paper, we present some studies on structure and thermophysical properties of glass and glass-ceramics with possible bio-medical and sealing applications. The glass-ceramics prepared for bio-medical applications include phosphate as well as silico-phosphate compositions. In vitro bio-compatibility/activity of these materials is discussed. The glass-ceramics used for the sealing application are lithium aluminium silicate (LAS) and lithium zinc silicate (LZS). The phase formation and some aspects of thermophysical properties and sealing are discussed.

  15. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  16. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    DOE PAGES

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia; ...

    2015-07-02

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Ultimately, using a nearest-neighbour statisticalmore » analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.« less

  17. Visual detection and sequential injection determination of aluminium using a cinnamoyl derivative.

    PubMed

    Elečková, Lenka; Alexovič, Michal; Kuchár, Juraj; Balogh, Ioseph S; Andruch, Vasil

    2015-02-01

    A cinnamoyl derivative, 3-[4-(dimethylamino)cinnamoyl]-4-hydroxy-6-methyl-3,4-2H-pyran-2-one, was used as a ligand for the determination of aluminium. Upon the addition of an acetonitrile solution of the ligand to an aqueous solution containing Al(III) and a buffer solution at pH 8, a marked change in colour from yellow to orange is observed. The colour intensity is proportional to the concentration of Al(III); thus, the 'naked-eye' detection of aluminium is possible. The reaction is also applied for sequential injection determination of aluminium. Beer׳s law is obeyed in the range from 0.055 to 0.66 mg L(-1) of Al(III). The limit of detection, calculated as three times the standard deviation of the blank test (n=10), was found to be 4 μg L(-1) for Al(III). The method was applied for the determination of aluminium in spiked water samples and pharmaceutical preparations. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Ultimately, using a nearest-neighbour statisticalmore » analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.« less

  19. Aluminium alloys in municipal solid waste incineration bottom ash.

    PubMed

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  20. Aluminium in food and daily dietary intake estimate in Greece.

    PubMed

    Bratakos, Sotirios M; Lazou, Andriana E; Bratakos, Michael S; Lazos, Evangelos S

    2012-01-01

    Aluminium content of foods, as well as dietary aluminium intake of the Greek adult population, was determined using graphite furnace atomic absorption spectroscopy after microwave sample digestion and food consumption data. Al content ranged from 0.02 to 741.2 mg kg⁻¹, with spices, high-spice foods, cereal products, vegetables and pulses found to be high in Al. Differences in aluminium content were found between different food classes from Greece and those from some other countries. Aluminium intake of Greeks is 3.7 mg/day based on DAFNE Food Availability Databank, which uses data from the Household Budget Surveys. On the other hand, according to the per capita food consumption data collected by both national and international organisations, Al intake is 6.4 mg day⁻¹. Greek adult population has an Al intake lower than the Provisional Tolerable Weekly Intake of 7 mg kg⁻¹ body weight established by EFSA. Cereals and vegetables are the main Al contributors, providing 72.4% of daily intake.

  1. Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai

    2016-02-01

    Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.

  2. Special issue on aluminium plasmonics

    DOE PAGES

    Gerard, Davy; Gray, Stephen K.

    2015-04-08

    Plasmonics is a rapidly growing field that takes advantage of the intense and confined electromagnetic fields that appear near metallic nanostructures illuminated at frequencies near their surface plasmon resonances. As plasmonics continues to develop, it faces the need to find new materials supporting well-defined surface plasmon resonances in different frequency ranges. In the visible and near-infrared ranges the noble metals, most typically gold and silver, exhibit relatively low losses. This is why they are quite ubiquitous in plasmonics literature. However it is somewhat ironic to see that a non-noble metal, aluminium, the metal upon which surface plasmons where first evidencedmore » in the 1950s, is now reappearing after fifty years of near oblivion as one of the 'hottest' materials for plasmonics. Several reasons explain the return of aluminium to the centre stage. First, aluminium exhibits good plasmonic properties in the ultraviolet and deep ultraviolet—a spectral range where gold and silver no longer behave as metals. Second, aluminium is cheap and widely available (Al is the third most abundant element in the earth's crust), criteria of paramount importance when discussing industry-related applications. It is furthermore compatible with complementary metal–oxide–semiconductor (CMOS) technology. In conclusion, this is why an ever-increasing number of papers report new advances on aluminium plasmonics.« less

  3. Special issue on aluminium plasmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerard, Davy; Gray, Stephen K.

    Plasmonics is a rapidly growing field that takes advantage of the intense and confined electromagnetic fields that appear near metallic nanostructures illuminated at frequencies near their surface plasmon resonances. As plasmonics continues to develop, it faces the need to find new materials supporting well-defined surface plasmon resonances in different frequency ranges. In the visible and near-infrared ranges the noble metals, most typically gold and silver, exhibit relatively low losses. This is why they are quite ubiquitous in plasmonics literature. However it is somewhat ironic to see that a non-noble metal, aluminium, the metal upon which surface plasmons where first evidencedmore » in the 1950s, is now reappearing after fifty years of near oblivion as one of the 'hottest' materials for plasmonics. Several reasons explain the return of aluminium to the centre stage. First, aluminium exhibits good plasmonic properties in the ultraviolet and deep ultraviolet—a spectral range where gold and silver no longer behave as metals. Second, aluminium is cheap and widely available (Al is the third most abundant element in the earth's crust), criteria of paramount importance when discussing industry-related applications. It is furthermore compatible with complementary metal–oxide–semiconductor (CMOS) technology. In conclusion, this is why an ever-increasing number of papers report new advances on aluminium plasmonics.« less

  4. Tensile Strength and Hardness Correlations with Microscopy in Friction welded Aluminium to Copper

    NASA Astrophysics Data System (ADS)

    Satish, Rengarajan; Seshagiri Rao, Vaddi; Ananthapadmanaban, Dattaguru; Ravi, Balappa

    2016-01-01

    Aluminium and copper are good conductors of heat and electricity, copper being the better conductor, is a costly metal indeed. On the other hand, aluminium is cheap, easily available and also has a lower density than copper. Hence, worldwide efforts are being made to partially replace copper wire. Solid state welding should be used to join aluminium to copper. This is because the use of fusion welding results in brittle phases formed in the weld interface. One of the solid state welding techniques used for joining aluminium to copper is friction welding. In this paper, an attempt has been made to join aluminium to copper by friction welding by varying the friction welding parameters, namely friction pressure, upset pressure, burn-off length and speed of rotation of the workpiece. Nine different friction welding parameter combinations were used during welding in accordance with ASTM standards and results have been reported. Tensile strength and hardness tests were carried out for each parameter combination. Optimum friction welding parameter combination was identified with respect to tensile strength. Scanning Electron Microscopy and Electron dispersive spectroanalysis were obtained to identify modes of fracture and presence of intermetallic phases for each friction welding combination with the aim to narrow down friction welding parameters that give good properties on the whole.

  5. Effect of basalt fibres reinforcement and aluminum trihydrate on the thermal properties of intumescent fire retardant coatings

    NASA Astrophysics Data System (ADS)

    Yasir, Muhammad; Amir, Norlaili Binti; Ahmad, Faiz; Syahirah Rodzhan, N.

    2017-08-01

    This research is carried out in order to study the synergistic effect of aluminium trihydrate and basalt fibres on the properties of fire resistant intumescent coatings. Intumescent fire retardant coatings were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder along with curing agent. Furthermore, individual and combinations of aluminium trihydrate and basalt fibres was incorporated in the formulations to analyse mechanical and chemical properties of the coatings. Char expansion was observed using furnace test, thermogravimetric analysis was used to determine residual weight, X-Ray Diffraction was performed to investigate compounds present in the char, shear test was conducted to determine char strength and scanning electron microscopy analysis was performed to observe morphology of the burnt char. From the microscopic investigation it was concluded that the dense structure of the char increased the char integrity by adding basalt and aluminium trihydrate as fillers. X-Ray Diffraction results shows the presence boron phosphate, and boric acid which enhanced the thermal performance of the coating up to 800°C. From the Thermogravimetric analysis it was concluded that the residual weight of the char was increased up to 34.9 % for IC-B2A4 which enhanced thermal performance of intumescent coating.

  6. Versatile organoaluminium catalysts based on heteroscorpionate ligands for the preparation of polyesters.

    PubMed

    Martínez, J; Martínez de Sarasa Buchaca, M; de la Cruz-Martínez, F; Alonso-Moreno, C; Sánchez-Barba, L F; Fernandez-Baeza, J; Rodríguez, A M; Rodríguez-Diéguez, A; Castro-Osma, J A; Otero, A; Lara-Sánchez, A

    2018-05-22

    A series of alkyl aluminium complexes based on heteroscorpionate ligands were designed as catalysts for the ring-opening polymerisation of cyclic esters and ring-opening copolymerisation of epoxides and anhydrides. Treatment of AlX3 (X = Me, Et) with ligands bpzbeH [bpzbe = 1,1-bis(3,5-dimethylpyrazol-1-yl)-3,3-dimethyl-2-butoxide], bpzteH [bpzte = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-para-tolylethoxide], and (R,R)-bpzmmH [(R,R)-bpzmm = (1R)-1-{(1R)-6,6-dimethyl-bicyclo[3.1.1]-2-hepten-2-yl}-2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] for 2 hours at 0 °C afforded the mononuclear dialkyl aluminium complexes [AlMe2{κ2-bpzbe}] (1), [AlEt2{κ2-bpzbe}] (2), [AlMe2{κ2-(R,R)-bpzmm}] (3) and [AlEt2{κ2-(R,R)-bpzmm}] (4), and the dinuclear dialkyl complexes [AlMe2{κ2-bpzte}]2 (5) and [AlEt2{κ2-bpzte}]2 (6). The molecular structures of the new complexes were determined by spectroscopic methods and confirmed by X-ray crystallography. The alkyl-containing aluminium complexes can act as highly efficient single-component initiators for the ring-opening polymerisation of ε-caprolactone and l-lactide and for the ring-opening copolymerisation of cyclohexene oxide and phthalic anhydride to give a range of biodegradable polyesters.

  7. Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions.

    PubMed

    Sumathi, Thangarajan; Shobana, Chandrasekar; Kumari, Balasubramanian Rathina; Nandhini, Devarajulu Nisha

    2011-12-01

    Cynodon dactylon (Poaceae) is a creeping grass used as a traditional ayurvedic medicine in India. Aluminium-induced neurotoxicity is well known and different salts of aluminium have been reported to accelerate damage to biomolecules like lipids, proteins and nucleic acids. The objective of the present study was to investigate whether the aqueous extract of C. dactylon (AECD) could potentially prevent aluminium-induced neurotoxicity in the cerebral cortex, hippocampus and cerebellum of the rat brain. Male albino rats were administered with AlCl(3) at a dose of 4.2 mg/kg/day i.p. for 4 weeks. Experimental rats were given C. dactylon extract in two different doses of 300 mg and 750 mg/keg/day orally 1 h prior to the AlCl(3) administration for 4 weeks. At the end of the experiments, antioxidant status and activities of ATPases in cerebral cortex, hippocampus and cerebellum of rat brain were measured. Aluminium administration significantly decreased the level of GSH and the activities of SOD, GPx, GST, Na(+)/K(+) ATPase, and Mg(2+) ATPase and increased the level of lipid peroxidation (LPO) in all the brain regions when compared with control rats. Pre-treatment with AECD at a dose of 750 mg/kg b.w increased the antioxidant status and activities of membrane-bound enzymes (Na(+)/K(+) ATPase and Mg(2+) ATPase) and also decreased the level of LPO significantly, when compared with aluminium-induced rats. The results of this study indicated that AECD has potential to protect the various brain regions from aluminium-induced neurotoxicity.

  8. A methodology for the assessment of inhalation exposure to aluminium from antiperspirant sprays.

    PubMed

    Schwarz, Katharina; Pappa, Gerlinde; Miertsch, Heike; Scheel, Julia; Koch, Wolfgang

    2018-04-01

    Inhalative exposure can occur accidentally when using cosmetic spray products. Usually, a tiered approach is applied for exposure assessment, starting with rather conservative, simplistic calculation models that may be improved with measured data and more refined modelling. Here we report on an advanced methodology to mimic in-use conditions for antiperspirant spray products to provide a more accurate estimate of the amount of aluminium possibly inhaled and taken up systemically, thus contributing to the overall body burden. Four typical products were sprayed onto a skin surrogate in defined rooms. For aluminium, size-related aerosol release fractions, i.e. inhalable, thoracic and respirable, were determined by a mass balance method taking droplet maturation into account. These data were included into a simple two-box exposure model, allowing calculation of the inhaled aluminium dose over 12 min. Systemic exposure doses were calculated for exposure of the deep lung and the upper respiratory tract using the Multiple Path Particle Deposition Model (MPPD) model. The total systemically available dose of aluminium was in all cases found to be less than 0.5 µg per application. With this study it could be demonstrated that refinement of the input data of the two-box exposure model with measured data of released airborne aluminium is a valuable approach to analyse the contribution of antiperspirant spray inhalation to total aluminium exposure as part of the overall risk assessment. We suggest the methodology which can also be applied to other exposure modelling approaches for spray products, and further is adapted to other similar use scenarios.

  9. Functional, structural and phylogenetic analysis of domains underlying the Al-sensitivity of the aluminium-activated malate/anion transporter, TaALMT1

    USDA-ARS?s Scientific Manuscript database

    TaALMT1 (Triticum aestivum Aluminum Activated Malate Transporter) is the founding member of a novel gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small subgroup of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (...

  10. Helping Young Children to See What Is Relevant and Why: Supporting Cognitive Change in Earth Science Using Analogy. Research Report

    ERIC Educational Resources Information Center

    Blake, Anthony

    2004-01-01

    This experimental study explores how 60 primary-age children's (9-11 years old) understanding of rocks was effected by instruction that used the conceptual structure of the rock cycle together with the analogy of aluminium can recycling. Using a combination of probes into children's understanding, including concept maps and semi-structured…

  11. Fatigue Crack Topography.

    DTIC Science & Technology

    1984-01-01

    nominal cycle frequency of 15 Hz. Buckling of the specimens during compression loading was prevented by felt-lined aluminium alloy antibuckling guides...evaluating ciack initiation time and crack propagation, prgram I was used for performing the major fatigue test with the aircraft structure. In...direction of the notch to prevent scratches in the through-the-thickness direction. Prior to testing, the notch surfaces were lightly etched to reveal

  12. Structural and luminescence studies of Ho{sup 3+}-doped zinc-aluminium-sodium-phosphate (ZANP) glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahmachary, K.; Rajesh, D.; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com

    Trivalent holmium doped zinc-aluminium-sodium-phosphate (ZANP) glasses were prepared by conventional melt-quenching technique and characterized for their structural and luminescence properties. The amorphous nature, elemental analysis and thermal stability of the glasses were studied by using X-ray diffraction, energy dispersive spectrum and differential scanning calorimetry analysis, respectively. The absorption and fluorescence spectra have been recorded at room temperature. Based on the absorption spectra, the Judd-Ofelt parameters and radiative parameters such as spontaneous transition probabilities (A{sub R}), branching ratios (β{sub R}), radiative lifetimes (τ{sub R}) were calculated and discussed. From the emission spectra emission peak positions (λ{sub P}), effective bandwidths (Δλ{sub eff})more » and stimulated emission cross-sections (σ{sub P}) were calculated for the observed emission transitions,{sup 5}S{sub 2} ({sup 5}F{sub 4}→{sup 5}I{sub 8}) and {sup 5}F{sub 5}→{sup 5}I{sub 8} in all the glass samples. The stimulated emission cross-section is higher for ZANPHo10 glass matrix and so it may be useful for laser excitation.« less

  13. Influence of the glass packing on the contamination of pharmaceutical products by aluminium. Part III: Interaction container-chemicals during the heating for sterilisation.

    PubMed

    Bohrer, Denise; do Nascimento, Paulo Cícero; Binotto, Regina; Becker, Emilene

    2003-01-01

    The interaction of chemicals with the container materials during heating for sterilisation was investigated, storing the components of parenteral nutrition solutions individually in sealed glass ampoules and in contact with a rubber stopper, and heating the system at 121 degrees C for 30 min. Subsequently, the aluminium content of the solutions was measured by atomic absorption spectrometry (AAS). The assay was also carried out with acids, alkalis and some complexing agents for Al. The containers were decomposed and also assayed for aluminium. 30 different commercial solutions for parenteral nutrition, stored either in glass or in plastic containers, were assayed measuring the aluminium present in the solutions and in the container materials. The results of all investigated container materials revealed an aluminium content of 1.57% Al in glass, 0.05% in plastic and 4.54% in rubber. The sterilisation procedure showed that even pure water was able to extract Al from glass and rubber, 22.5 +/- 13.3 microg/L and 79.4 +/- 22.7 microg/L respectively, while from plastic the aluminium leached was insignificant. The Al released from glass ampoules laid between 20 microg/L for leucine, ornithine and lysine solutions and 1500 microg/L for solutions of basic phosphates and bicarbonate; from rubber stoppers it reached levels over 500 microg/L for cysteine, aspartic acid, glutamic acid and cystine solutions. Ion-exchange properties and influence of pH can explain the interaction of glass with some chemicals (salts, acids and alkalis), but only an affinity for aluminium could explain the action of some amino acids and other chemicals, as albumin and heparin, on glass and rubber, considering the aluminium release. Experiments with complexing agents for Al allowed to conclude that the higher the stability constant of the complex, the higher the Al release from the container material.

  14. Hatchability and survival of oncomiracidia of Paradiplozoon ichthyoxanthon (Monogenea: Diplozoidae) exposed to aqueous aluminium.

    PubMed

    Gilbert, Beric M; Avenant-Oldewage, Annemariè

    2016-07-28

    Monogenea is a diverse group of ectoparasites showing great potential as sentinel organisms for monitoring environmental health. Exposure to metals negatively affects infrapopulations of monogeneans and exposure to aluminium has been found to negatively impact the survival of gyrodactylids. Samples of infected host fish, the smallmouth yellowfish Labeobarbus aeneus (Cyprinidae), were collected from the Vaal Dam, South Africa and transported back to the laboratory in dark 160 l containers. Eggs of the monogenean Paradiplozoon ichthyoxanthon infecting L. aeneus were collected and exposed to varying concentrations of aluminium along with a control group in static tanks. The eggs were checked every 24 h and hatching commenced 13-14 days after exposure. Water samples were taken from exposure tanks and acidified for analysis of Al levels with inductively-coupled plasma mass spectrometry. Hatching of eggs was variable between exposures, and in 30 μg Al/l and 60 μg Al/l was found to occur before eggs in control beakers, whereas, exposure to 120 μg Al/l delayed hatching and reduced hatchability. Survival of hatched oncomiracidia was concentration dependent and negatively correlated with aluminium concentrations. Lowest survival was recorded for 60 μg Al/l and 120 μg Al/l where all larvae died shortly after or during hatching. Normal development of embryos of P. ichthyoxanthon within eggs exposed to all doses of aluminium indicates that the egg shell is moderately impermeable to metals and inhibits movement of aluminium across the shell and interacting with developing embryos. Higher larval mortality rate in 120 μg/l exposure can be related to aluminium crossing the egg shell in the late stages and causing death of unhatched yet fully developed embryos, possibly due to changes in the permeability of the egg shell as embryos neared developmental completion. Accelerated death of oncomiracidia after hatching indicates sensitivity toward high concentrations of aluminium.

  15. Kinetics of dissolution of sapphire in melts in the CaO-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.; Klausen, Kim B.; Mao, Huahai

    2018-05-01

    The dissolution rate of sapphire in melts in the CAS system of varying silica activity, viscosity and degree of alumina saturation has been determined at 1600 °C and 1.5 GPa. After an initiation period of up to 1800 s, dissolution is controlled by diffusion of cations through the boundary layer adjacent to the dissolving sapphire. The dissolution rate decreases with increasing silica activity, viscosity and molar Al2O3/CaO. The calculated diffusion matrix for each solvent melt shows that CAS 1 and 9 which have molar Al2O3/CaO of 0.33 and 0.6 and dissolution rate constants of 0.65 × 10-6 and 0.59 × 10-6 m/s0.5 have similar directions and magnitudes of diffusive coupling: DCaO-Al2O3 and DAl2O3-CaO are both negative are approximately equal. The solvent with the fastest dissolution rate: CAS 4, which has a rate constant of 1.5 × 10-6 m/s0.5 and Al2O3/CaO of 0.31 has positive DCaO-Al2O3 and negative DAl2O3-CaO and the absolute values vary by a factor of 4. Although many studies show that aluminium is added to the melts via the reaction: Si4+ =Al3+ + 0.5Ca2+ the compositional profiles show that this reaction is not the only one involved in accommodating the aluminium added during sapphire dissolution. Rather, aluminium is incorporated as both tetrahedrally coordinated Al charge balanced by Ca and as aluminium not charge balanced by Ca (termed Alxs). This reaction: AlIV -Ca =Alxs +CaNBO where CaNBO is a non-bridging oxygen associated with calcium, may involve the formation of aluminium triclusters. The shape of the compositional profiles and oxide-oxide composition paths is controlled by the aluminium addition reaction. When Alxs exceeds 2%, CaO diffusion becomes increasingly anomalous and since the bond strength of Alxs correlates with CaO/CaO + Al2O3, the presence of more than 2% Alxs leads to significantly slower dissolution than when Alxs is absent or at low concentration. Thus, dissolution is controlled by diffusion of cations through the boundary layer, but this diffusion is itself controlled by the structural modifications required by the addition of new components to the melt. Comparison of quartz dissolution rates in similar melts shows that dissolution is much faster for quartz than for sapphire and that dissolution rates show the same correlation with silica activity and viscosity. We suggest that diffusive fluxes are related to changes in melt structure and the nature of the reaction that incorporates the added component. For the slow eigendirection, SiO2 addition occurs by a single reaction whereas Al2O3 addition requires a more complex two part reaction in which Al is accommodated by charge balance with Ca until Al is in excess of that which can be charge balanced. The Alxs incorporation reaction, is slower than the Si incorporation reaction which inhibits sapphire dissolution relative to quartz in melts of the same composition.

  16. New Light Alloys (Les Nouveaux Alliages Legers)

    DTIC Science & Technology

    1990-09-01

    Authors/Speakers iv Reference Introduction I by IGA P.Costa The Development of Aluminium Lithium Alloys: An Overview I by C. J.Peel The Microstructure...Magnesium Alloys 7 by DJ.Bray V 1 INTRODUCTION by Paul Costa Materials Department, Head, ONERA BP 72 F92322 Chatillon Cedex France The last fifteen years... INTRODUCTION For the last decade the aluminium industry has been redeveloping aluminium-lithium alloys for aerospace use. Whilst not new in concept or

  17. Development of the Damage Tolerance Criteria for an Aging Fleet

    DTIC Science & Technology

    2014-10-20

    show that it is possible to increase the fatigue life of aluminium alloys (2024 T3) repaired with composite materials doped with MWNT. Also, it is...possible to detect corrosion effects due to galvanic effects between MWNT and aluminium alloys . Motivation Currently it’s possible and it’s not...Objectives General Goal To study the fatigue life of aluminium alloys used in aeronautics and to investigate how to increase the fatigue

  18. Effect of exposure of miners to aluminium powder.

    PubMed

    Rifat, S L; Eastwood, M R; McLachlan, D R; Corey, P N

    1990-11-10

    'McIntyre Powder' (finely ground aluminium and aluminium oxide) was used as a prophylactic agent against silicotic lung disease between 1944 and 1979 in mines in northern Ontario. To find out whether the practice produced neurotoxic effects a morbidity prevalence study was conducted between 1988 and 1989. There were no significant differences between exposed and non-exposed miners in reported diagnoses of neurological disorder; however, exposed miners performed less well than did unexposed workers on cognitive state examinations; also, the proportion of men with scores in the impaired range was greater in the exposed than non-exposed group. Likelihood of scores in the impaired range increased with duration of exposure. The findings are consistent with putative neurotoxicity of chronic aluminium exposure.

  19. A Bimetallic Aluminium(Salphen) Complex for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide.

    PubMed

    Wu, Xiao; North, Michael

    2017-01-10

    A bimetallic aluminium(salphen) complex is reported as a sustainable, efficient and inexpensive catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. In the presence of this complex and tetrabutylammonium bromide, terminal and internal epoxides reacted at 50 °C and 10 bar carbon dioxide pressure to afford their corresponding cyclic carbonates in yields of 50-94 % and 30-71 % for terminal and internal cyclic carbonates, respectively. Mechanistic studies using deuterated epoxides and an analogous monometallic aluminium(salphen) chloride complex support a mechanism for catalysis by the bimetallic complex, which involves intramolecular cooperative catalysis between the two aluminium centres. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Life sciences and space research XXIII(3): Natural and artificial ecosystems; Proceedings of the Topical Meetings of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Tibbitts, T. W. (Editor); Thompson, B. G. (Editor); Volk, T. (Editor)

    1989-01-01

    The present conference discusses topics in the fields of higher plant growth under controlled environmental conditions, waste oxidation, carbon cycling, and biofermentor design and operation. Attention is given to CO2 and O2 effects on the development and fructification of wheat in closed systems, transpiration during life cycle in controlled wheat growth, sources and processing of CELSS wastes, waste-recycling in bioregenerative life support, and the effect of iodine disinfection products on higher plants. Also discussed are carbon cycling by cellulose-fermenting nitrogen-fixing bacteria, a bioreactor design with sunlight supply and operations systems for use in the space environment, gas bubble coalescence in reduced gravity conditions, and model system studies of a phase-separated membrane bioreactor.

  1. Remote sensing of the earth's surface; Proceedings of the Symposium 2, Topical Meeting, and Workshop I of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V. (Editor); Walter, L. S. (Editor); Maetzler, C. (Editor); Rott, H. (Editor)

    1989-01-01

    The present conference discusses topics in the spaceborne study of the earth's surface, crust, and lithosphere, recent results from SPOT and Landsat TM investigations, and microwave observations of snowpack and soil properties. Attention is given to airborne and satellite-borne gravimetry, stereoviewing from space, TM studies of volcanism and tectonism in central Mexico, remote sensing of volcanoes, the uses of SPOT in forest management, the tectonics of the central Andes, and the application of VLBI to crustal movement studies. Also discussed are Landsat TM band ratios for soil investigations, snow dielectric measurements, the microwave radiometry of snow, microwave signatures of bare soil, the estimation of Alpine snow properties from Landsat TM data, and an experimental study of vegetable canopy microwave emissions.

  2. Active control of structures using macro-fiber composite (MFC)

    NASA Astrophysics Data System (ADS)

    Kovalovs, A.; Barkanov, E.; Gluhihs, S.

    2007-12-01

    This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.

  3. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    NASA Astrophysics Data System (ADS)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  4. Characterisation of Ga-coated and Ga-brazed aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferchaud, E.; Christien, F., E-mail: frederic.christien@univ-nantes.fr; Barnier, V.

    This work is devoted to the brazing of aluminium using liquid gallium. Gallium was deposited on aluminium samples at {approx} 50 Degree-Sign C using a liquid gallium 'polishing' technique. Brazing was undertaken for 30 min at 500 Degree-Sign C in air. EDS (Energy Dispersive X-ray Spectroscopy) and AES (Auger Electron Spectroscopy) characterisation of Ga-coated samples has shown that the Ga surface layer thickness is of ten (or a few tens of) nanometres. Furthermore, aluminium oxide layer (Al{sub 2}O{sub 3}) was shown to be 'descaled' during Ga deposition, which ensures good conditions for further brazing. Cross-section examination of Ga-coated samples showsmore » that liquid gallium penetrates into the aluminium grain boundaries during deposition. The thickness of the grain boundary gallium film was measured using an original EDS technique and is found to be of a few tens of nanometres. The depth of gallium grain boundary penetration is about 300 {mu}m at the deposition temperature. The fracture stress of the brazed joints was measured from tensile tests and was determined to be 33 MPa. Cross-section examination of brazed joints shows that gallium has fully dissolved into the bulk and that the joint is really autogenous. - Highlights: Black-Right-Pointing-Pointer Aluminium can be brazed using liquid gallium deposited by a 'polishing' technique. Black-Right-Pointing-Pointer The aluminium oxide layer is 'descaled' during liquid Ga 'polishing' deposition. Black-Right-Pointing-Pointer EDS can be used for determination of surface and grain boundary Ga film thickness. Black-Right-Pointing-Pointer The surface and grain boundary Ga film thickness is of a few tens of nm. Black-Right-Pointing-Pointer Surface and grain boundary gallium dissolves in the bulk during brazing.« less

  5. On the microstructure analysis of FSW joints of aluminium components made via direct metal laser sintering

    NASA Astrophysics Data System (ADS)

    Scherillo, Fabio; Astarita, Antonello; di Martino, Daniela; Contaldi, Vincenzo; di Matteo, Luca; di Petta, Paolo; Casarin, Renzo; Squillace, Antonino; Langella, Antonio

    2017-10-01

    Additive Manufacturing (AM), applied to metal industry, is a family of processes that allow complex shape components to be realized from raw materials in the form of powders. The compaction of the powders can be achieved by local melting of the powder bed or by solid state sintering. Direct Metal Laser Sintering (DMLS) is an additive manufacturing process in which a focalized laser beam is the heat source that allows the powders to be compacted. By DMLS it is possible to realize complex shape components. One of the limits of DMLS, as for every additive layer manufacturing techniques, is the unfeasibility to realize large dimension parts. Due to this limit the study of joining process of parts made via ALM is of great interest. One of the most promising options is the Friction Stir Welding (FSW), a solid state welding technique that has been proven to be very effective in the welding of metals difficult to weld, above all aluminium alloys. Since FSW is a solid-state technique, the microstructure of the various zone of the weld bead depends not only by the process itself but also by the parent microstruct ure of the parts to be welded. Furthermore, parts made of aluminium alloy via DMLS have a particular microstructure that is the result of repeated severe thermal cycles. In the present work the authors, starting from the description of the parent microstructure of parts made of AlSi10Mg aluminium alloy, study the microstructure evolution occurred within the joint made by Friction Stir Welding, analysing in details the microstructure of the main well recognized zone of the weld bead. The structure of the parent material is characterized by the presence of melting pools with a very fine microstructure. In the joint the recrystallization, the grain refinement and, above all, the redistribution of intermetallic phases occurs, resulting in an homogenization of the microstructure and in an increase of micro hardness.

  6. Acute oral toxicity and biodistribution study of zinc-aluminium-levodopa nanocomposite

    NASA Astrophysics Data System (ADS)

    Kura, Aminu Umar; Saifullah, Bullo; Cheah, Pike-See; Hussein, Mohd Zobir; Azmi, Norazrina; Fakurazi, Sharida

    2015-03-01

    Layered double hydroxide (LDH) is an inorganic-organic nano-layered material that harbours drug between its two-layered sheets, forming a sandwich-like structure. It is attracting a great deal of attention as an alternative drug delivery (nanodelivery) system in the field of pharmacology due to their relative low toxic potential. The production of these nanodelivery systems, aimed at improving human health through decrease toxicity, targeted delivery of the active compound to areas of interest with sustained release ability. In this study, we administered zinc-aluminium-LDH-levodopa nanocomposite (ZAL) and zinc-aluminium nanocomposite (ZA) to Sprague Dawley rats to evaluate for acute oral toxicity following OECD guidelines. The oral administration of ZAL and ZA at a limit dose of 2,000 mg/kg produced neither mortality nor acute toxic signs throughout 14 days of the observation. The percentage of body weight gain of the animals showed no significant difference between control and treatment groups. Animal from the two treated groups gained weight continuously over the study period, which was shown to be significantly higher than the weight at the beginning of the study ( P < 0.05). Biochemical analysis of animal serum showed no significant difference between rats treated with ZAL, ZA and controls. There was no gross lesion or histopathological changes observed in vital organs of the rats. The results suggested that ZAL and ZA at 2,000 mg/kg body weight in rats do not induce acute toxicity in the animals. Elemental analysis of tissues of treated animals demonstrated the wider distribution of the nanocomposite including the brain. In summary, findings of acute toxicity tests in this study suggest that zinc-aluminium nanocomposite intercalated with and the un-intercalated were safe when administered orally in animal models for short periods of time. It also highlighted the potential distribution ability of Tween-80 coated nanocomposite after oral administration.

  7. ’Head-On’ Scattering of a Tubular Cylinder of Finite Length for Radar Target Identification Purposes

    DTIC Science & Technology

    1985-03-01

    environment. The anechoic chamber is enclosed with aluminium plates and internally lined with a radio frequency absorbing material. The absorbing material...provides the necessary attenuation to the reflections from the walls, floor and ceiling, and the aluminium surface provides protection against external...inch aluminium sphere is used. Some measurements are taken with a cylinder with fins attached .The description of the cylinder with fins is shown in

  8. Atmospheric Corrosivity at Australian and Overseas Airbases and Airports

    DTIC Science & Technology

    2014-07-01

    climatic conditions, the correlation between the GCIA and weight loss data from aluminium alloy coupons exposed in the open at 38 sites in the US...corrosivity. The test consists of an aluminium wire wrapped around a copper bolt exposed in the atmosphere for three months; the weight loss of the wire...Abbreviations/Acronyms AAC Army Aviation Centre AB Air Base ADF Australian Defence Force AFB Air Force Base Al aluminium ANGB Air National Guard Base

  9. High Velocity Firings of Slug Projectiles in a Double-Travel 120-MM Gun System

    DTIC Science & Technology

    1991-04-01

    constraints presented by TBD. This charge configuration was then tested using aluminium slug projectiles to avoid the unnecessary expenditure of APFSDS...test projectile was a depleted uranium alloy (U-.75Ti) rod with a standard, four piece, aluminum sabot assembly. The launch package had a nominal...the rod is shown in Figure 2. Figure 2. Scaled, Long Rod Penetrator. Figure 3. Aluminium Slug Projectile. The aluminium slug rounds, fired at Range 18

  10. Neutron production from 200-500 MeV proton interaction with spacecraft materials.

    PubMed

    Maurer, Richard H; Kinnison, James D; Roth, David R

    2005-01-01

    We report on detailed energy spectra of neutron production > 14 MeV from collisions of 200-500 MeV protons with combinations of aluminium, graphite and polyethylene. Comparisons of normalised neutron spectra are made with respect to incident proton energy, angle of neutron production and material. In general, carbon (graphite) or polyethylene (by itself or in combination with aluminium) reduce secondary neutron production > 14 MeV relative to the production from interactions in aluminium.

  11. Speciation analysis of aluminium in plant parts of Betula pendula and in soil.

    PubMed

    Zioła-Frankowska, Anetta; Frankowski, Marcin

    2018-03-01

    The research presents the first results of aluminium speciation analysis in aqueous extracts of individual plant parts of Betula pendula and soil samples, using High Performance Ion Chromatography with Diode Array Detection (HPIC-DAD). The applied method allowed us to carry out a full speciation analysis of aluminium in the form of predominant aluminium-fluoride complexes: AlF (x=2,3,4) (3-x) (first analytical signal), AlF 2+ (second analytical signal) and Al 3+ (third analytical signal) in samples of lateral roots, tap roots, twigs, stem, leaf and soil collected under roots of B. pendula. Concentrations of aluminium and its complexes were determined for two types of environment characterised by different degree of human impact: contaminated site of the Chemical Plant in Luboń and protected area of the Wielkopolski National Park. For all the analysed samples of B. pendula and soil, AlF (x=2,3,4) (3-x) had the largest contribution, followed by Al 3+ and AlF 2+ . Significant differences in concentration and contribution of Al-F complexes and Al 3+ form, depending on the place of sampling (different anthropogenic pressure) and plant part of B. pendula were observed. Based on the obtained results, it was found that transport of aluminium is "blocked" by lateral roots, and is closely related to Al content of soil. Copyright © 2017. Published by Elsevier B.V.

  12. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    NASA Astrophysics Data System (ADS)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  13. AE Monitoring of Diamond Turned Rapidly Soldified Aluminium 443

    NASA Astrophysics Data System (ADS)

    Onwuka, G.; Abou-El-Hossein, K.; Mkoko, Z.

    2017-05-01

    The fast replacement of conventional aluminium with rapidly solidified aluminium alloys has become a noticeable trend in the current manufacturing industries involved in the production of optics and optical molding inserts. This is as a result of the improved performance and durability of rapidly solidified aluminium alloys when compared to conventional aluminium. Melt spinning process is vital for manufacturing rapidly solidified aluminium alloys like RSA 905, RSA 6061 and RSA 443 which are common in the industries today. RSA 443 is a newly developed alloy with few research findings and huge research potential. There is no available literature focused on monitoring the machining of RSA 443 alloys. In this research, Acoustic Emission sensing technique was applied to monitor the single point diamond turning of RSA 443 on an ultrahigh precision lathe machine. The machining process was carried out after careful selection of feed, speed and depths of cut. The monitoring process was achieved with a high sampling data acquisition system using different tools while concurrent measurement of the surface roughness and tool wear were initiated after covering a total feed distance of 13km. An increasing trend of raw AE spikes and peak to peak signal were observed with an increase in the surface roughness and tool wear values. Hence, acoustic emission sensing technique proves to be an effective monitoring method for the machining of RSA 443 alloy.

  14. Effect of atomic parameters on determination of aluminium abundance in atmospheres of late-type stars

    NASA Astrophysics Data System (ADS)

    Menzhevitski, V. S.; Shimanskaya, N. N.; Shimansky, V. V.; Kudryavtsev, D. O.

    2014-04-01

    We study the effect of the photoionization cross sections for the ground state of Al I on the inferred aluminium abundance in stellar atmospheres. We match the theoretical and observed line profiles of the resonance λλ 3944.01, 3961.52 Å and subordinate λλ 6696.03, 6698.68 Å doublets in high-resolution spectra of the metal-poor solar-type stars HD22879 and HD201889. We determine the parameters of these stars from their photometric and spectroscopic data. Our computations show that the profiles can be matched and a single aluminium abundance inferred simultaneously from both groups of spectral lines only with low photoionization cross sections (about 10-12 Mb). Larger cross sections (about 58-65 Mb) make such fits impossible. We therefore conclude that small photoionization cross sections should be preferred for the determination of aluminium abundances in metal-poor stars. We redetermine the aluminium abundances in the atmospheres of halo stars. The resulting abundances prove to be lower by 0.1-0.15 dex than our earlier determinations which does not affect the conclusions based on our earlier estimates. In particular, the NLTE [Al/Fe]-[Fe/H] dependence, on the whole, agrees only qualitatively with the results of theoretical predictions. Therefore further refinement of the theory of nuclear synthesis of aluminium in the process of the chemical evolution of the Galaxy remains a task of current importance.

  15. A Study on Effect of Graphite Particles on Tensile, Hardness and Machinability of Aluminium 8011 Matrix Material

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Anil, K. C.; Karabasappagol, Prasann J.

    2016-09-01

    Industrial application point of view, metal matrix composites in general and Aluminium alloy matrix composites in particular are ideal candidates because of their favourable engineering properties. Being lightweight Aluminium matrix composites are widely used in aircraft, defence and automotive industries. In this work Aluminium 8011 metal matrix was reinforced with fine Graphite particles of 50 μm. developed by two-step Stir casting method. Graphite weight %was varied in the range 2, 4, 6 and 8%. Uniform dispersion of graphite particle is examined under optical microscope. Tensile test coupons were prepared as per standard to determine % of elongation and tensile strength for various % of graphite particle. Hardness of developed composite for various % of graphite particle and Machinability parameters were also studied for effect on surface finish. It was observed that with increase of weight percentage of Graphite particles up to 8% in Aluminium 8011 alloy matrix there was increase in tensile strength, decrease in % of elongation with increase in hardness. Machinability study revealed that, there was decrease in surface roughness with increase in Graphite content.

  16. Detection and characterisation of aluminium-containing nanoparticles in Chinese noodles by single particle ICP-MS.

    PubMed

    Loeschner, Katrin; Correia, Manuel; López Chaves, Carlos; Rokkjær, Inge; Sloth, Jens J

    2018-01-01

    This study investigated Chinese noodles for the presence of aluminium-containing nanoparticles by using inductively coupled plasma mass spectrometry in single particle mode (spICP-MS) after enzymatic digestion by α-amylase. The aluminium concentrations in the noodle samples, determined by conventional ICP-MS without or with the use of hydrofluoric acid for digestion, were 5.4 ± 1.9 µg/g and 10.1 ± 2.2 µg/g (N = 21), respectively. Aluminium-containing nanoparticles were detected by spICP-MS in all 21 samples. Depending on the assumed particle composition, Al 2 O 3 or Al 2 O 3 ∙2SiO 2 ∙2H 2 O, the median particle diameters were either below or above 100 nm, respectively. The minimum detectable particle diameter by spICP-MS was between 54 and 83 nm. The mass recovery of aluminium in the form of particles was between 5% and 18%. The presented work reports for the first time the detection of Al-containing particles in food by spICP-MS.

  17. Fractal dimension values of cerebral and cerebellar activity in rats loaded with aluminium.

    PubMed

    Kekovic, Goran; Culic, Milka; Martac, Ljiljana; Stojadinovic, Gordana; Capo, Ivan; Lalosevic, Dusan; Sekulic, Slobodan

    2010-07-01

    Aluminium interferes with a variety of cellular metabolic processes in the mammalian nervous system and its intake might increase a risk of developing Alzheimer's disease (AD). While cerebral involvement even at the early stages of intoxication is well known, the role of cerebellum is underestimated. Our aim was to investigate cerebral and cerebellar electrocortical activity in adult male rats exposed to chronic aluminium treatment by nonlinear analytic tools. The adult rats in an aluminium-treated group were injected by AlCl(3), intraperitoneally (2 mg Al/kg, daily for 4 weeks). Fractal analysis of brain activity was performed off-line using Higuchi's algorithm. The average fractal dimension of electrocortical activity in aluminium-treated animals was lower than the average fractal dimension of electrocortical activity in the control rats, at cerebral but not at cerebellar level. The changes in the stationary and nonlinear properties of time series were more expressed in cerebral electrocortical activity than in cerebellar activity. This can be useful for developing effective diagnostic and therapeutic strategies in neurodegenerative diseases.

  18. Friction stir lap joining of automotive aluminium alloy and carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bang, H. S.; Das, A.; Lee, S.; Bang, H. S.

    2018-05-01

    Multi-material combination such as aluminium alloys and carbon-fiber-reinforced plastics (CFRP) are increasingly used in the aircraft and automobile industries to enhance strength-to-weight ratio of the respective parts and components. Various processes such as adhesive bonding, mechanical fasteners and laser beam joining were employed to join metal alloy and CFRP sheets. However, long processing time of adhesive bonding, extra weight induced by mechanical fasteners and high operating cost of the laser is major limitations of these processes. Therefore, friction stir welding is an alternative choice to overcome those limitations in joining of CFRP and aluminium alloys. In the present work, an attempt is undertaken to join AA5052 alloy and polyamide 66 CFRP sheets by friction stir lap joining technique using pinned and pin-less tools. The joint qualities are investigated extensively at different joining conditions using two different types of tools and surface ground aluminium sheets. The results show that pin-less tool and surface ground aluminium alloy can provide the suitable joint with maximum joint strength around 8 MPa.

  19. Characterisation of RF-sputtered platinum films from industrial production plants using slow positrons

    NASA Astrophysics Data System (ADS)

    Osipowicz, A.; Härting, M.; Hempel, M.; Britton, D. T.; Bauer-Kugelmann, W.; Triftshäuser, W.

    1999-08-01

    Platinum films, used in thin film technology, produced by radio-frequency sputter deposition on aluminium oxide substrates under different conditions, have been studied by positron beam and other techniques, before and after production annealing. The defect structure in the layers has been characterised using both positron lifetime and Doppler-broadening spectroscopy, and compared with X-ray studies of crystallinity and texture.

  20. Classification of Magneto-Optic Images using Neural Networks

    NASA Technical Reports Server (NTRS)

    Nath, Shridhar; Wincheski, Buzz; Fulton, Jim; Namkung, Min

    1994-01-01

    A real time imaging system with a neural network classifier has been incorporated on a Macintosh computer in conjunction with an MOI system. This system images rivets on aircraft aluminium structures using eddy currents and magnetic imaging. Moment invariant functions from the image of a rivet is used to train a multilayer perceptron neural network to classify the rivets as good or bad (rivets with cracks).

  1. A method for the routine determination of aluminium in serum and water by flameless atomic absorption spectrometry.

    PubMed

    Parkinson, I S; Ward, M K; Kerr, D N

    1982-10-27

    A simple but reliable method for the routine determination of aluminium in serum and water by flameless atomic absorption spectrometry is described. No preparatory procedures are required for water samples, although serum is mixed with a wetting agent (Triton X-100) to allow complete combustion of the samples and to improve analytical precision. Precautions to prevent contamination during sample handling are discussed and instrumental parameters are defined. The method has a sensitivity of 35.5 pg and detection limits of 2.3 micrograms Al/l for serum and 1.3 micrograms Al/l for water. The method was used to determine the aluminium concentration in serum of 46 normal subjects. The mean aluminium content was 7.3 micrograms/l (range 2--15 micrograms/l.

  2. Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, K.; Abe, Y.; Sakai, S.

    2010-06-15

    Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for amore » large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.« less

  3. Finite Element Analysis of Composite Aircraft Fuselage Frame

    NASA Astrophysics Data System (ADS)

    Dandekar, Aditya Milind

    Composites have been introduced in aircraft industries, for their stronger, stiffer, and lighter properties than their metal-alloys counterparts. The general purpose of an aircraft is to transport commercial or military payload. Aircraft frames primarily maintains the shape of fuselage and prevent instability of the structure. Fuselage is similar as wing in construction which consist of longitudinal elements (longerons and stringers), transverse elements (frames and bulkheads) and its external skin. The fuselage is subjected to forces such as the wing reactions, landing gear reaction, empennage reaction, inertia forces subjected due to size and weight, internal pressure forces due to high altitude. Frames also ensure fail-safe design against skin crack propagation due to hoops stress. Ideal fuselage frames cross section is often circular ring shape with a frame cap of Z section. They are mainly made up of light alloy commonly used is aluminium alloys such as Al-2024, Al-7010, Al-7050, Al-7175. Aluminium alloys have good strength to density ratios in compression and bending of thin plate. A high strength to weight ratio of composite materials can result in a lighter aircraft structure or better safety factor. This research focuses on analysis of fuselage frame under dynamic load condition with change in material. Composites like carbon fibre reinforced plastics [CFRP] and glass fibre reinforced plastics [GFRP] are compared with traditional aluminium alloy Al-7075. The frame is subjected to impact test by dropping it at a velocity of 30 ft. / secs from a height of 86 inch from its centre of gravity. These parameters are considered in event of failure of landing gear, and an aircraft is subject to belly landing or gear-up landing. The shear flow is calculated due to impact force which acts in radial direction. The frame is analysed under static structural and explicit dynamic load conditions. Geometry is created in ANSYS Design Modeler. Analysis setup is created using ANSYS Explicit Dynamic (AUTODYN) and ANSYS Composite PrepPost (ACP-Pre) modules. Shear flow and Stress Flow equations are solved by generating a MATLAB code.

  4. Structural and dielectric properties of Zn1-xAlxO nanoparticles

    NASA Astrophysics Data System (ADS)

    Giri, N.; Mondal, A.; Sarkar, S.; Ray, R.

    2018-05-01

    Aluminium doped ZnO (AZO) nano-crystalline sample has been synthesized using chemical precipitation method with different doping concentrations. Detailed structural and morphological investigations of Zn1-xAlxO have been carried out using X-ray diffraction (XRD) and FE-SEM, respectively. Dependence of grain size of AZO with dopant concentration has been studied. Ac conductivity, dielectric constant and dielectric loss of Zn1-xAlxO (0 ≤ x ≤ 0.1) are investigated as a function of frequency (ω) and doping concentration (x) at room temperature.

  5. Electrical burn injuries of workers using portable aluminium ladders near overhead power lines.

    PubMed

    Moghtader, J C; Himel, H N; Demun, E M; Bellian, K T; Edlich, R F

    1993-10-01

    The use of aluminium ladders around high voltage power lines has resulted in a significant number of electrical injuries and electrocutions. Workers often misjudge wire distances or lose control of fully extended ladders, thereby exposing themselves to electrocution hazard. High-voltage electrical burns of two workers using an aluminium ladder that contacted a high voltage power line are reported. The circumstances surrounding the injury, the clinical management of the case, and the methods of prevention are presented and discussed.

  6. Elasto-Plastic 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

    DTIC Science & Technology

    2015-08-01

    primarily concerned with the results of a three-dimensional elasto– plastic finite element contact analysis of a typical aluminium fatigue test coupon...determine the nonlinear three-dimensional elasto–plastic contact stress distributions around a circular hole in an aluminium plate that is fitted...Australian Air Force (RAAF) airframes. An aluminium -alloy fatigue test coupon (see Figure 1) has been designed and applied in support of the validation of

  7. Kinetics of intercalation of fluorescent probes in magnesium–aluminium layered double hydroxide within a multiscale reaction–diffusion framework

    PubMed Central

    Saliba, Daniel

    2016-01-01

    We report the synthesis of magnesium–aluminium layered double hydroxide (LDH) using a reaction–diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium–aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698034

  8. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    NASA Astrophysics Data System (ADS)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  9. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection.

    PubMed

    Prakash, Ram; Hossain, Afaque M; Pal, U N; Kumar, N; Khairnar, K; Mohan, M Krishna

    2017-12-12

    A structurally simple dielectric barrier discharge based mercury-free plasma UV-light source has been developed for efficient water disinfection. The source comprises of a dielectric barrier discharge arrangement between two co-axial quartz tubes with an optimized gas gap. The outer electrode is an aluminium baked foil tape arranged in a helical form with optimized pitch, while the inner electrode is a hollow aluminium metallic rod, hermetically sealed. Strong bands peaking at wavelengths 172 nm and 253 nm, along with a weak band peaking at wavelength 265 nm have been simultaneously observed due to plasma radiation from the admixture of xenon and iodine gases. The developed UV source has been used for bacterial deactivation studies using an experimental setup that is an equivalent of the conventional house-hold water purifier system. Deactivation studies for five types of bacteria, i.e., E. coli, Shigella boydii, Vibrio, Coliforms and Fecal coliform have been demonstrated with 4 log reductions in less than ten seconds.

  10. Gate bias stress stability under light irradiation for indium zinc oxide thin-film transistors based on anodic aluminium oxide gate dielectrics

    NASA Astrophysics Data System (ADS)

    Li, Min; Lan, Linfeng; Xu, Miao; Wang, Lei; Xu, Hua; Luo, Dongxiang; Zou, Jianhua; Tao, Hong; Yao, Rihui; Peng, Junbiao

    2011-11-01

    Thin-film transistors (TFTs) using indium zinc oxide as the active layer and anodic aluminium oxide (Al2O3) as the gate dielectric layer were fabricated. The device showed an electron mobility of as high as 10.1 cm2 V-1 s-1, an on/off current ratio of as high as ~108, and a turn-on voltage (Von) of only -0.5 V. Furthermore, this kind of TFTs was very stable under positive bias illumination stress. However, when the device experienced negative bias illumination stress, the threshold voltage shifted to the positive direction. It was found that the instability under negative bias illumination stress (NBIS) was due to the electrons from the Al gate trapping into the Al2O3 dielectric when exposed to the illuminated light. Using a stacked structure of Al2O3/SiO2 dielectrics, the device became more stable under NBIS.

  11. Mechanical properties of aluminium fused SiO2 particulate composites cast using metallic and non-metallic chills

    NASA Astrophysics Data System (ADS)

    Harshith, H. S.; Hemanth, Joel

    2018-04-01

    This research work aims at developing and mechanical characterization of aluminium (LM13) based metal matrix composite reinforced with varying percentage of fused SiO2 (3%,6%,9%,12%). The mechanical properties are completely dependent on the microstructural parameters of the system. Also the microstructure further depends on the cooling rates during solidification process. Various Chills like Silicon carbide, Mild steel, Copper were used during the casting process to increase the rate of solidification, which enhances the mechanical properties of the composite. The chill casted specimens were subjected to tensile and hardness tests followed by microstructure studies. A casting produced using mild steel chill exhibited higher young's modulus and was found to be maximum at 9% reinforcement. Finer microstructure and better UTS were seen for specimen's casted using copper chills, whereas silicon carbide and mild steel chills gave rise to very coarse structure with reduced UTS values compared to copper chills.

  12. Thin Gauge Twin-Roll Casting, Process Capabilities and Product Quality

    NASA Astrophysics Data System (ADS)

    Daaland, O.; Espedal, A. B.; Nedreberg, M. L.; Alvestad, I.

    Traditionally industrial twin roll casters have been operated at gauges 6-10 mm, depending on the type of caster and the final product requirements. Over the past few years it has become apparent that a significant increase in productivity can be achieved when the casting gauge is reduced. Hydro Aluminium embarked on an extensive research and development, thin gauge casting programme, in the beginning of the 1990's and this paper presents some results from a five year lasting project (joint programme between Hydro Aluminium a.s. and Lauener Engineering). Based on more than 400 casting trials the major benefits and limitations of casting at reduced gauge and increased speed are outlined. Important aspects related to process development and product quality are discussed including: productivity and limitations, surface defects, microstructural characteristics, cooling rates and dendrite structure, segregation behaviour and mechanical properties after thermo-mechanical processing. Results for casting of several alloys are given. Additionally, numerical modelling results of the strip casting process are included.

  13. Microstructural Study of Micron-Sized Craters Simulating Stardust Impacts in Aluminum 1100 Targets

    NASA Technical Reports Server (NTRS)

    Leroux, Hugues; Borg, Janet; Troadec, David; Djouadi, Zahia; Horz, Friedrich

    2006-01-01

    Various microscopic techniques were used to characterize experimental micro- craters in aluminium foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminium foils to be returned by the Stardust mission. First, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using TEM (Transmission Electron Microscopy), EDS, and electron diffraction methods. The TEM samples were prepared by Focused Ion Beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that InfraRed microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.

  14. Occurrence of downy mildews on ornamental plants and their control by chemical compounds.

    PubMed

    Skrzypczak, C

    2007-01-01

    The downy mildew on Coreopsis grandiflora caused by Plasmopara halstedii was observed during summer, mainly in July and August. Symptoms of the disease were first seen on external leaves and progressively spread to inner parts of plant rosette. On Alyssum saxatile downy mildew symptoms induced by Peronospora parasitica were observed during whole vegetation period with the strongest expression in early spring and late summer. Amistar 250 SC (25% azoxystrobine), Mildex 711,9 WG (66.7% phosethyl aluminium + 4.4% fenamidone), Previcur Energy 840 SL (530 g/l propamocarb + 310 g/l phosetyl aluminium) and Tanos 50 WG (25% cymoxanil + 25% famoxate) were used for pathogens control. In the protection of Coreopsis grandiflora against P. halstedii all tested compounds, applied curatively, decreased sporulation of the pathogen. On treaded plants at least 4-time less leaves were diseased. In the control of P. parasitica on Alyssum saxatile, the smallest number of swallowed structures on leaves was noticed on plants treated with azoxystrobine at conc. 250 microg/cm3.

  15. Effect of solvent volume on the physical properties of aluminium doped nanocrystalline zinc oxide thin films deposited using a simplified spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Jabena Begum, N.; Mohan, R.; Ravichandran, K.

    2013-01-01

    Aluminium doped zinc oxide (AZO) thin films were deposited by employing a low cost and simplified spray technique using a perfume atomizer from starting solutions having different volumes (10, 20, … , 50 mL) of solvent. The effect of solvent volume on the structural, electrical, optical, photoluminescence (PL) and surface morphological properties was studied. The electrical resistivity of the AZO films is remarkably influenced by the variation in the solvent volume. The X-ray diffraction profiles clearly showed that all the films have preferential orientation along the (0 0 2) plane irrespective of the solvent volume. The crystallite size was found to be in the nano range of 35-46 nm. The optical transmittance in the visible region is desirably high (>85%). The AFM images show columnar morphology with varying grain size. The PL studies revealed that the AZO film deposited from 50 mL of solvent volume has good quality with lesser defect density.

  16. IR thermography for the assessment of the thermal conductivity of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Nazarov, S.; Rossi, S.; Bison, P.; Calliari, I.

    2017-05-01

    Aluminium alloys are here considered as a structural material for aerospace applications, guaranteeing lightness and strength at the same time. As aluminium alone is not particularly performing from a mechanical point of view, in this experimental solution it is produced as an alloy with Lithium added at 6 % in weight. To increase furtherly the strength of the material, two new alloys are produced by adding 0.5 % in weight of the rare earth elements Neodymium (Nd) and Yttrium (Y). The improvement of the mechanical properties is measured by means of hardness tests. At the same time the thermophysical properties are measured as well, at various temperature, from 80 °C to 500 °C. Thermal diffusivity is measured by Laser Flash equipment in vacuum. One possible drawback of the Al-Li alloy produced at so high percentage of Li (6 %) is an essential anisotropy that is evaluated by IR thermography thank to its imaging properties that allows to measure simultaneously both the in-plane and through-depth thermal diffusivity.

  17. Further studies of the anodic dissolution in sodium chloride electrolyte of aluminium alloys containing tin and gallium

    NASA Astrophysics Data System (ADS)

    Nestoridi, Maria; Pletcher, Derek; Wharton, Julian A.; Wood, Robert J. K.

    As part of a programme to develop a high power density, Al/air battery with a NaCl brine electrolyte, the high rate dissolution of an aluminium alloy containing tin and gallium was investigated in a small volume cell. The objective was to define the factors that limit aluminium dissolution in condition that mimic a high power density battery. In a cell with a large ratio of aluminium alloy to electrolyte, over a range of current densities the extent of dissolution was limited to ∼1000 C cm -2 of anode surface by a thick layer of loosely bound, crystalline deposit on the Al alloy anode formed by precipitation from solution. This leads to a large increase in impedance and acts as a barrier to transport of ions.

  18. Synergistic effects of carboxymethyl cellulose and ZnO as alkaline electrolyte additives for aluminium anodes with a view towards Al-air batteries

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Wang, Dapeng; Zhang, Daquan; Gao, Lixin; Lin, Tong

    2016-12-01

    The synergistic effects of carboxymethyl cellulose (CMC) and zinc oxide (ZnO) have been investigated as alkaline electrolyte additives for the AA5052 aluminium alloy anode in aluminium-air battery by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of CMC and ZnO effectively retards the self-corrosion of AA5052 alloy in 4 M NaOH solution. A complex film is formed via the interaction between CMC and Zn2+ ions on the alloy surface. The carboxyl groups adsorbed on the surface of aluminium make the protective film more stable. The cathodic reaction process is mainly suppressed significantly. AA5052 alloy electrode has a good discharge performance in the applied electrolyte containing the composite CMC/ZnO additives.

  19. Misalignment calibration of geomagnetic vector measurement system using parallelepiped frame rotation method

    NASA Astrophysics Data System (ADS)

    Pang, Hongfeng; Zhu, XueJun; Pan, Mengchun; Zhang, Qi; Wan, Chengbiao; Luo, Shitu; Chen, Dixiang; Chen, Jinfei; Li, Ji; Lv, Yunxiao

    2016-12-01

    Misalignment error is one key factor influencing the measurement accuracy of geomagnetic vector measurement system, which should be calibrated with the difficulties that sensors measure different physical information and coordinates are invisible. A new misalignment calibration method by rotating a parallelepiped frame is proposed. Simulation and experiment result show the effectiveness of calibration method. The experimental system mainly contains DM-050 three-axis fluxgate magnetometer, INS (inertia navigation system), aluminium parallelepiped frame, aluminium plane base. Misalignment angles are calculated by measured data of magnetometer and INS after rotating the aluminium parallelepiped frame on aluminium plane base. After calibration, RMS error of geomagnetic north, vertical and east are reduced from 349.441 nT, 392.530 nT and 562.316 nT to 40.130 nT, 91.586 nT and 141.989 nT respectively.

  20. Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, A.; Laboratoire de Genie des Materiaux et Procedes Associes; Paillard, P.

    At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the producedmore » weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.« less

  1. [Photophysical properties and photodynamic activity of nanostructured aluminium phthalocyanines].

    PubMed

    Udartseva, O O; Lobanov, A V; Andeeva, E R; Dmitrieva, G S; Mel'nikov, M Ia; Buravkova, L B

    2014-01-01

    We developed water-soluble supramolecular complexes of aluminium phthalocyanine based on mesoporous silica nanoparticles and polyvinylpirrolidone containing rare photoactive nanoaggregates. Radiative lifetimes, extinction coefficients and energy of electronic transitions of isolated and associated metal phthalocyanine complexes were calculated. Nontoxic concentrations of synthesized nanocomposite photosensibilizers were in vitro determined. In present study we compared photodynamic treatment efficacy using different modifications of aluminium phthalocyanine (Photosens®, AlPc-nSiO2 and AlPc-PVP). Mesenchymal stromal cells were used as a model for photodynamic treatment. Intracellular accumulation of aluminium phthalocyanine based on mesoporous silica nanoparticles AlPc-nSiO2 was the most efficient. Illumination of phthalocyanine-loaded cells led to reactive oxygen species generation and subsequent apoptotic cell death. Silica nanoparticles provided a significant decrease of effective phthalocyanine concentration and enhanced cytotoxicity of photodynamic treatment.

  2. Dye sensitized solar cell based on environmental friendly eosin Y dye and Al doped titanium dioxide nano particles

    NASA Astrophysics Data System (ADS)

    Kulkarni, Swati S.; Bodkhe, Gajanan A.; Shirsat, Sumedh M.; Hussaini, S. S.; Shejwal, N. N.; Shirsat, Mahendra D.

    2018-03-01

    Present communication deals with the development of cost effective dye sensitized solar cell (DSSC) with eco-friendly materials. Eco-friendly Eosin Y dye was used to sensitize photo anode which was fabricated using undoped and Aluminium doped titanium dioxide (TiO2) nanoparticles. Undoped and Aluminium doped TiO2 nanoparticles were synthesized by simple and cost effective sol-gel method. Aluminium doped and undoped TiO2 nanoparticles were characterized using UV-visible, FT-IR spectroscopy, x-ray Diffraction, and Scanning Electron Micrograph with EDX. The photo-voltaic activity of the cell was studied under light irradiation of 100 milliwatt cm-2. Aluminium doped TiO2 nanoparticle photo electrode exhibits more than 60% increase in cell efficiency as compared to the undoped TiO2 nanoparticle photo electrode.

  3. The protection of meloxicam against chronic aluminium overload-induced liver injury in rats.

    PubMed

    Yang, Yang; He, Qin; Wang, Hong; Hu, Xinyue; Luo, Ying; Liang, Guojuan; Kuang, Shengnan; Mai, Shaoshan; Ma, Jie; Tian, Xiaoyan; Chen, Qi; Yang, Junqing

    2017-04-04

    The present study was designed to observe the protective effect and mechanisms of meloxicam on liver injury caused by chronic aluminium exposure in rats. The histopathology was detected by hematoxylin-eosin staining. The levels of prostaglandin E2, cyclic adenosine monophosphate and inflammatory cytokines were detected by enzyme linked immunosorbent assay. The expressions of cyclooxygenases-2, prostaglandin E2 receptors and protein kinase A were measured by western blotting and immunohistochemistry. Our experimental results showed that aluminium overload significantly damaged the liver. Aluminium also significantly increased the expressions of cyclooxygenases-2, prostaglandin E2, cyclic adenosine monophosphate, protein kinase A and the prostaglandin E2 receptors (EP1,2,4) and the levels of inflammation and oxidative stress, while significantly decreased the EP3 expression in liver. The administration of meloxicam significantly improved the impairment of liver. The contents of prostaglandin E2 and cyclic adenosine monophosphate were significantly decreased by administration of meloxicam. The administration of meloxicam also significantly decreased the expressions of cyclooxygenases-2 and protein kinase A and the levels of inflammation and oxidative stress, while significantly increased the EP1,2,3,4 expressions in rat liver. Our results suggested that the imbalance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway is involved in the injury of chronic aluminium-overload rat liver. The protective mechanism of meloxicam on aluminium-overload liver injury is attributed to reconstruct the balance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway.

  4. Alteration of aluminium inhibition of synaptosomal (Na(+)/K(+))ATPase by colestipol administration.

    PubMed

    Silva, V S; Oliveira, L; Gonçalves, P P

    2013-11-01

    The ability of aluminium to inhibit the (Na(+)/K(+))ATPase activity has been observed by several authors. During chronic dietary exposure to AlCl3, brain (Na(+)/K(+))ATPase activity drops, even if no alterations of catalytic subunit protein expression and of energy charge potential are observed. The aluminium effect on (Na(+)/K(+))ATPase activity seems to implicate the reduction of interacting protomers within the oligomeric ensemble of the membrane-bound (Na(+)/K(+))ATPase. The activity of (Na(+)/K(+))ATPase is altered by the microviscosity of lipid environment. We studied if aluminium inhibitory effect on (Na(+)/K(+))ATPase is modified by alterations in synaptosomal membrane cholesterol content. Adult male Wistar rats were submitted to chronic dietary AlCl3 exposure (0.03 g/day of AlCl3) and/or to colestipol, a hypolidaemic drug (0.31 g/day) during 4 months. The activity of (Na(+)/K(+))ATPase was studied in brain cortex synaptosomes with different cholesterol contents. Additionally, we incubate synaptosomes with methyl-β-cyclodextrin for both enrichment and depletion of membrane cholesterol content, with or without 300 μM AlCl3. This enzyme activity was significantly reduced by micromolar AlCl3 added in vitro and when aluminium was orally administered to rats. The oral administration of colestipol reduced the cholesterol content and concomitantly inhibited the (Na(+)/K(+))ATPase. The aluminium inhibitory effect on synaptosomal (Na(+)/K(+))ATPase was reduced by cholesterol depletion both in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The etiology of occupational pulmonary aluminosis--the past and the present.

    PubMed

    Smolkova, Petra; Nakladalova, Marie

    2014-12-01

    The authors review pulmonary aluminosis caused by exposure to dust containing aluminium and its compounds, mainly oxides. Special attention is paid to various factors of occupational exposure as to an important etiologic issue. The condition has a rich and interesting history dating back to the 1930s. The most significant occupational exposures are associated with processes in bauxite smelting, the use of fine aluminium powder, exposure to aluminium welding fumes, grinding and polishing of aluminium materials. A literature search for relevant scientific studies in English was performed using the following internet databases: relevant sections of The Cochrane Library, EBSCO Discovery Service, Ovid, ProQuest Science Journals, PubMed, ScienceDirect, Scopus and Web of Knowledge. The initial clinical manifestations of pulmonary aluminosis are exertional dyspnea with dry, non-productive cough. Depending on the type and length of the occupational exposure, ventilatory defects may vary considerably from restrictive to obstructive pattern. Radiographic findings commonly showing nodular or slightly irregular opacities are predominantly located in the upper, less frequently in the lower lung fields, or can have a diffuse pattern. In advanced stages, severe pulmonary fibrosis with honeycombing occured. Although pulmonary aluminosis is a very rare disease, it still occurs. Since the industrial importance and use of aluminium continue to rise, lung damage from exposure to respirable aluminium particles should not be overlooked but monitored and prevented. Even today, the pathophysiology of pulmonary aluminosis has not been explained as yet.

  6. Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization

    NASA Astrophysics Data System (ADS)

    Qi, Jiantao; Thompson, George E.

    2016-07-01

    In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.

  7. Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS.

    PubMed

    Benfield, Robert E; Grandjean, Didier; Dore, John C; Esfahanian, Hamid; Wu, Zhonghua; Kröll, Michael; Geerkens, Marcus; Schmid, Günter

    2004-01-01

    Mesoporous alumina membranes ("anodic aluminium oxide", or "AAO") are made by anodic oxidation of aluminium metal. These membranes contain hexagonal arrays of parallel non-intersecting cylindrical pores perpendicular to the membrane surface. By varying the anodisation voltage, the pore diameters are controllable within the range 5-250 nm. We have used AAO membranes as templates for the electrochemical deposition of metals within the pores to produce nanowires. These represent assemblies of one-dimensional quantum wires with prospective applications in electronic, optoelectronic and magnetic devices. Detailed characterisation of the structures of these nanowire assemblies on a variety of length scales is essential to understand their physical properties and evaluate their possible applications. We have used EXAFS, XANES, WAXS, high energy X-ray diffraction and SAXS to study their structure and bonding. In this paper we report the results of our studies of four different nanowire systems supported in AAO membranes. These are the ferromagnetic metals iron and cobalt, the superconducting metal tin, and the semiconductor gallium nitride. Iron nanowires in pores of diameter over the range 12 nm-72 nm are structurally very similar to bcc bulk iron. They have a strong preferred orientation within the alumina pores. Their XANES shows significant differences from that of bulk iron, showing that the electronic structure of the iron nanowires depends systematically on their diameter. Cobalt nanowires are composed of a mixture of hcp and fcc phases, but the ratio of the two phases does not depend in a simple way on the pore diameter or preparation conditions. In bulk cobalt, the fcc beta-phase is normally stable only at high temperatures. Strong preferred orientation of the c-axis in the pores was found. Tin nanowires in alumina membranes with pores diameters between 12 nm and 72 nm have a tetragonal beta-structure at ambient temperature and also at 80 K. Magnetic susceptibility measurements show that they are diamagnetic, and become superconducting at the same temperature as bulk tin (3.7 K). Gallium nitride nanowires have been prepared in alumina membranes with pore diameter 24 nm by a novel method. Gallium nitrate was deposited in the pores from aqueous solution and thermolysed at 1000 degrees C to form Ga2O3, which was reacted with ammonia at 1000 degrees C. The GaN nanowires have the wurtzite structure. Preparation at 1150 degrees C led to the incorporation of aluminium in the GaN. The mesoscopic ordering of the pores in the AAO membranes and their filling by metal nanowires has been studied by SAXS, which shows patterns of Bragg peaks arising from the pore arrays. Additionally, the cobalt nanowires have been the subject of an initial ASAXS study.

  8. Transmission electron microscopy observations on phase transformations during aluminium/mullite composites formation by gas pressure infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlyta, M., E-mail: miroslawa.pawlyta@polsl.pl; Tomiczek, B.; Dobrzański, L.A.

    The porous ceramic preforms were manufactured using the powder metallurgy technique. First, the start-up material (halloysite with the addition of carbon fibres as the pore-forming agent) was slowly heated to 800 °C and then sintered at 1300 °C. Degradation of the carbon fibres enabled the open canals to form. At the end of the sintering process, the porous ceramic material consisting mainly of two phases (mullite and cristobalite) was formed, without any residual carbon content. During infiltration, the liquid metal filled the empty spaces (pores) effectively and formed the three-dimensional network of metal in the ceramic. The cristobalite was almostmore » entirely decomposed. In the areas of its previous occurrence, there are new pores, only in the ceramic grains. The mullite, which was formed from halloysite during annealing, crystallized in the Pbam orthorhombic space group, with the (3Al{sub 2}O{sub 3}·2SiO{sub 2}) stoichiometric composition. The mullite structure does not change during the infiltration. The composite components are tightly connected. A transition zone between the ceramics and the metal, having the thickness of about 200 nm, was formed. The nanocrystalline zone, identified as γ-Al{sub 2}O{sub 3}, was formed by diffusing the product of the cristobalite decomposition into the aluminium alloy matrix. There is an additional, new phase, identified as (Mg,Si)Al{sub 2}O{sub 4} in the outer parts of the transition zone. - Highlights: • Phase changes after the infiltration of aluminium into porous mullite preforms were observed by TEM. • TEM observations confirm that during infiltration cristobalite was decomposed and the structure of mullite did not change. • Between the ceramic and the metal, a transition zone comprising a layer of γ-Al{sub 2}O{sub 3} and (Mg,Si)Al{sub 2}O{sub 4} was formed.« less

  9. Characterization and processing of heat treated aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Doifode, Yogesh; Kulkarni, S. G.

    2018-05-01

    The present study is carried out to determine density and porosity of Aluminium bagasse ash reinforced composite produced by powder metallurgy method. Bagasse ash is used as reinforcement material having high silica and alumina contents and varied from 5 weight % to 40 weight%. The manufactured composite is heat treated, the main objective of heat treatment is to prepare the material structurally and physically fit for engineering application. The results showed that the density decreases with percentage increase in reinforcement of bagasse ash from 2.6618 gm/cm3 to 1.9830 gm/cm3 with the minimum value at 40 weight% bagasse ash without heat treatment whereas after heat treatment density of composite increases due filling up of voids and porous holes. Heat treatment processing is the key to this improvement, with the T6 heat treated composite to convene the reduced porosity of composite. Consequently aluminium metal matrix composite combines the strength of the reinforcement to achieve a combination of desirable properties not available in any single material. It may observe that porosity in case of powder metallurgy samples showed more porosity portions compare to the casting samples. In order to achieve optimality in structure and properties of Bagasse ash-reinforcement heat treatment techniques have evolved. Generally, the ceramic reinforcements increase the density of the base alloy during fabrication of composites. However, the addition of lightweight reinforcements reduces the density of the hybrid composites. The results also showed that, the density varies from to with minimum value at 40 wt. % BA. The results of the statistical analysis showed that there are significant differences among the means of each property of the composites at various levels of BA replacement .It was concluded that bagasse ash can be used as reinforcement and the produced composites have low density and heat treatment reduces porosity which could be used in automobile industry for the production of engine parts.

  10. Piezoelectric Behaviour of Sputtered Aluminium Nitride Thin Film for High Frequency Ultrasonic Sensors

    NASA Astrophysics Data System (ADS)

    Herzog, T.; Walter, S.; Bartzsch, H.; Gittner, M.; Gloess, D.; Heuer, H.

    2011-06-01

    Many new materials and processes require non destructive evaluation in higher resolutions by phased array ultrasonic techniques in a frequency range up to 250 MHz. This paper presents aluminium nitride, a promising material for the use as a piezoelectric sensor material in the considered frequency range, which contains the potential for high frequency phased array application in the future. This work represents the fundamental development of piezoelectric aluminium nitride films with a thickness of up to 10 μm. We have investigated and optimized the deposition process of the aluminium nitride thin film layers regarding their piezoelectric behavior. Therefore a specific test setup and a measuring station were created to determine the piezoelectric charge constant (d33) and the electro acoustic behavior of the sensor. Single element transducers were deposited on silicon substrates with aluminium electrodes for top and bottom, using different parameters for the magnetron sputter process, like pressure and bias voltage. Afterwards acoustical measurements up to 500 MHz in pulse echo mode have been carried out and the electrical and electromechanical properties were qualified. In two different parameter sets for the sputtering process excellent piezoelectric charge constant of about 8.0 pC/N maximum were obtained.

  11. Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.

    PubMed

    Wang, Kuen-Sheng; Chiou, Ing-Jia

    2004-10-01

    The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.

  12. Optimization of epoxy-aluminium composites used in cryosorption pumps by thermal conductivity studies from 4.5 K to 300 K

    NASA Astrophysics Data System (ADS)

    Verma, R.; Shivaprakash, N. C.; Kasthurirengan, S.; Behera, U.

    2017-12-01

    Cryosorption pump is a capture vacuum pump which retains gas molecules by chemical or physical interaction on their internal surfaces when cooled to cryogenic temperatures. Cryosorption pumps are the only solution in nuclear fusion systems to achieve high vacuum in the environment of hydrogen and helium. An important aspect of this development is the proper adhesion of the activated carbons on the metallic panels using a high thermal conductivity and high bonding strength adhesive. Typical adhesives used are epoxy based. The thermal conductivity of the adhesive can be improved by using fine aluminium powder as the filler in the base epoxy matrix. However, the thermal conductivity data of such epoxy-aluminium composites is not available in literature. Hence, we have measured the thermal conductivities of the above epoxy-aluminium composites (with varied volume fraction of aluminium in epoxy) in the temperature range from 4.5 K to 300 K using a G-M cryocooler based thermal conductivity experimental set-up. The experimental results are discussed in this paper which will be useful towards the development of cryosoprtion pumps with high pumping speeds.

  13. The Role of Zinc Layer During Wetting of Aluminium on Zinc-coated Steel in Laser Brazing and Welding

    NASA Astrophysics Data System (ADS)

    Gatzen, M.; Radel, T.; Thomy, C.; Vollertsen, F.

    The zinc layer of zinc-coated steel is known to be a crucial factor for the spreading of liquid aluminium on the coated surface. For industrial brazing and welding processes these zinc-coatings enable a fluxless joining between aluminium and steel in many cases. Yet, the reason for the beneficial effect of the zinc to the wetting process is not completely understood. Fundamental investigations on the wetting behaviour of single aluminium droplets on different zinc-coated steel surfaces have revealed a distinct difference between coated surfaces at room temperature and at elevated temperature regarding the influence of different coating thicknesses. In this paper the case of continuous laser brazing and welding processes of aluminium and commercial galvanized zinc-coated steel sheets are presented. It is shown that in the case of bead-on-plate laser beam brazing, the coating thickness has a measureable effect on the resulting wetting angle and length but does not have a significant impact in case of overlap laser beam welding. This might be linked to different heat transfer conditions. The results also strongly indicate that proper initialbreakup of oxide layers is still required to accomplish good wetting on zinc-coated surfaces.

  14. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator.

    PubMed

    Bodénan, F; Guyonnet, D; Piantone, P; Blanc, P

    2010-07-01

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al(0), as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al(0) are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Porphyry copper enrichment linked to excess aluminium in plagioclase

    NASA Astrophysics Data System (ADS)

    Williamson, B. J.; Herrington, R. J.; Morris, A.

    2016-03-01

    Porphyry copper deposits provide around 75%, 50% and 20% of world copper, molybdenum and gold, respectively. The deposits are mainly centred on calc-alkaline porphyry magmatic systems in subduction zone settings. Although calc-alkaline magmas are relatively common, large porphyry copper deposits are extremely rare and increasingly difficult to discover. Here, we compile existing geochemical data for magmatic plagioclase, a dominant mineral in calc-alkaline rocks, from fertile (porphyry-associated) and barren magmatic systems worldwide, barren examples having no associated porphyry deposit. We show that plagioclase from fertile systems is distinct in containing `excess’ aluminium. This signature is clearly demonstrated in a case study carried out on plagioclase from the fertile La Paloma and Los Sulfatos copper porphyry systems in Chile. Further, the presence of concentric zones of high excess aluminium suggests its incorporation as a result of magmatic processes. As excess aluminium has been linked to high melt water contents, the concentric zones may record injections of hydrous fluid or fluid-rich melts into the sub-porphyry magma chamber. We propose that excess aluminium may exclude copper from plagioclase, so enriching the remaining melts. Furthermore, this chemical signature can be used as an exploration indicator for copper porphyry deposits.

  16. Design principles of a rotating medium speed mechanism

    NASA Technical Reports Server (NTRS)

    Hostenkamp, R. G.; Achtermann, E.; Bentall, R. H.

    1976-01-01

    Design principles of a medium speed mechanism (MSM) are presented, including discussion on the relative merits of beryllium and aluminium as structural materials. Rotating at a speed of 60 rpm, the application envisaged for the MSM was as a despin bearing for the despun platform or despun antenna of a spin stabilized satellite. The MSM was built and tested to qualification level and is currently undergoing real time life testing.

  17. Structure-Property Relations in Aluminum-Lithium Alloys

    DTIC Science & Technology

    1989-01-01

    adsorbed ( Mughrabi et al , 1983). Such dislocations could not re-enter the grain during the reverse cycle of stress and the associated slip would be...ASTM STP 601, ASTM, 33 Mughrabi , H., Wang, R., Differt, D., Essmann, U. (1983) ASTM STP 811, ASTM, 5 Muller, W. et al (1986) Aluminium-Lithium Alloys...behaviour of Al -Li-Cu-Mg-Zr alloys ...... 34 2.4 Mechanical behaviour ......................................... 35 2.4.1 Elastic modulus

  18. Aurally-adequate time-frequency analysis for scattered sound in auditoria

    NASA Astrophysics Data System (ADS)

    Norris, Molly K.; Xiang, Ning; Kleiner, Mendel

    2005-04-01

    The goal of this work was to apply an aurally-adequate time-frequency analysis technique to the analysis of sound scattering effects in auditoria. Time-frequency representations were developed as a motivated effort that takes into account binaural hearing, with a specific implementation of interaural cross-correlation process. A model of the human auditory system was implemented in the MATLAB platform based on two previous models [A. Härmä and K. Palomäki, HUTear, Espoo, Finland; and M. A. Akeroyd, A. Binaural Cross-correlogram Toolbox for MATLAB (2001), University of Sussex, Brighton]. These stages include proper frequency selectivity, the conversion of the mechanical motion of the basilar membrane to neural impulses, and binaural hearing effects. The model was then used in the analysis of room impulse responses with varying scattering characteristics. This paper discusses the analysis results using simulated and measured room impulse responses. [Work supported by the Frank H. and Eva B. Buck Foundation.

  19. Intermetallic layers in temperature controlled Friction Stir Welding of dissimilar Al-Cu-joints

    NASA Astrophysics Data System (ADS)

    Marstatt, R.; Krutzlinger, M.; Luderschmid, J.; Constanzi, G.; Mueller, J. F. J.; Haider, F.; Zaeh, M. F.

    2018-06-01

    Friction Stir Welding (FSW) can be performed to join dissimilar metal combinations like aluminium and copper, which is of high interest in modern production of electrical applications. The amount of intermetallic phases in the weld seam is significantly reduced compared to traditional fusion welding technologies. Because the solidus temperature is typically not reached during FSW, the growth of intermetallic phases is impeded and the intermetallic layer thicknesses typically remains on the scale of a few hundred nanometres. These layers provide a substance-to-substance bond, which is the main joining mechanism. Latest research confirms that the layer formation is most likely driven by the heat input during processing. Hence, the welding temperature is the key to achieve high quality joints. In this study, aluminium and copper sheets were welded in lap joint configuration using temperature-controlled FSW. An advanced in-tool measurement set-up was used to determine precise temperature data. Scanning electron microscopy (SEM) was used to analyse metallurgical aspects (e.g. structure and composition of the intermetallic phases) of the joints. The results show a correlation between the welding temperature and the thickness of the intermetallic layer and its structure. The temperature control significantly improved the correlation compared to previous studies. This leads to an enhanced understanding of the dominating joining mechanisms.

  20. AlNbO oxides as new supports for hydrocarbon oxidation II. Catalytic properties of VO sub x -grafted AlNbO oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P.G. Pries de; Eon, J.G.; Volta, J.C.

    1992-09-01

    Vanadium oxides were immobilized by grafting VOCl{sub 3} on AlNbO oxides calcined between 500 and 750 C. Chemical analysis, XPS, and STEM measurements suggest an incomplete but homogeneous stoichiometric reaction between superficial hydroxyl groups and vanadyl oxychloride. By FTIR studies, it is observed that the interaction involves preferentially basic hydroxyl groups bonded to aluminium cations. UV-visible spectra show that mainly V{sup 5+} is present at the solid surface. Corresponding spectra are compatible with tetrahedral symmetry, in agreement with a previous {sup 51}V NMR investigation. The acido-basic properties of the catalyst were tested by isopropanol decomposition and compared with the correspondingmore » supports. It has been observed that basicity is higher for VO{sub x} grafted on AlBnO oxide calcined at high temperature and corresponding to the AlNbO{sub 4} structure. VO{sub x} grafted on AlNbO oxides calcined at intermediate temperatures and corresponding to a AlNbO disorganized structure present a good selectivity for the oxidative dehydrogenation of propane into propene. It has been observed that, for both reactions, the turnover number increases with the temperature of calcination of the catalysts. The reactivity of the aluminium niobiate support.« less

  1. Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.

  2. Latest Progress In Novel High Conductivity And Highly Stable Composite Structure Developments For Satellite Applications

    NASA Astrophysics Data System (ADS)

    Klebor, Maximillian; Reichmann, Olaf; Pfeiffer, Ernst K.; Ihle, Alexander; Linke, Stefan; Tschepe, Christoph; Roddecke, Susanne; Richter, Ines; Berrill, Mark; Santiago-Prowald, Julian

    2012-07-01

    Materials such as aluminium, titanium and carbon fibre based composites are indispensable in space business. However, special demands on spaceborne applications require both new ideas and new concepts but also powerful novel materials. These days the trend is to substitute aluminium for CFRP basically in order to safe mass or to decrease thermal expansions. Nevertheless there are upcoming requirements that cannot be met using standard CFRP materials. In this connection innovative composites have to be introduced. In the frame of this paper three major applications for such material requests are considered, i.e.: • antennas • satellite platform structural panels • radiators. The new composites need to cope with the following challenges and demands: high operational temperature range, high stiffness, high strength, high thermal conductivity, vacuum compatibility, low mass, high in- orbit stability, compatibility with metallic parts and many more. Some of these demands have to be fulfilled in conjunction. Herein the innovative composites cover new raw materials and their combination, manufacturing process enhancement as well as new inspection and test methods. It has been observed that by using the developed CFRPs it is possible to satisfy and excel the needs. However, these materials feature a different behaviour than conventional composites which has to be taken into account during future design.

  3. DARPA Advanced Cannon Propellant (ACP) Library User’s Guide. Appendix F. Patents Dealing with Fluid Propellant Technology

    DTIC Science & Technology

    1981-06-15

    tallisation temperature were added 0.4 parts of hydrox- mannitol, and 15.0 parts coarse aluminium powder were ypropylated guar gum which was allowed to...3.0 parts of8 15 coarse aluminium powder , 0.5 parts of hydroxy- propylated guar gum , 0.2 parts of zinc chromate and A slurry was prepared by the mixing...4 molecules of ethylene oxide), 10 parts of foaming agent and entrapped air bubbles into the comn- coarse aluminium powder , 0.7 parts of guar gum

  4. Mathematical modeling of the MHD stability dependence on the interpole distance in the multianode aluminium electrolyser

    NASA Astrophysics Data System (ADS)

    Kuzmin, R. N.; Savenkova, N. P.; Shobukhov, A. V.; Kalmykov, A. V.

    2018-03-01

    The paper deals with investigation of the MHD-stability dependence on the depth of the anode immersion in the process of aluminium electrolysis. The proposed 3D three-phase mathematical model is based on the Navier-Stokes and Maxwell equation systems. This model makes it possible to simulate the distributions of the main physical fields both in horizontal and vertical planes. The suggested approach also allows to study the dynamics of the border between aluminium and electrolyte and the shape of the back oxidation zone.

  5. Towards an understanding of the adjuvant action of aluminium

    PubMed Central

    Marrack, Philippa; McKee, Amy S.; Munks, Michael W.

    2011-01-01

    The efficacy of vaccines depends on the presence of an adjuvant in conjunction with the antigen. Of these adjuvants, the ones that contain aluminium, which were first discovered empirically in 1926, are currently the most widely used. However, a detailed understanding of their mechanism of action has only started to be revealed. In this Timeline article, we briefly describe the initial discovery of aluminium adjuvants and discuss historically important advances. We also summarize recent progress in the field and discuss their implications and the remaining questions on how these adjuvants work. PMID:19247370

  6. Layered double hydroxide films on nanoporous anodic aluminum oxide/aluminum wire: a new fiber for rapid analysis of Origanum vulgare essential oils.

    PubMed

    Piryaei, Marzieh

    2018-01-01

    Zn/Al layered double hydroxide (LDH) films were fabricated in situ with anodic aluminium oxide aluminium as both the substrate and the sole aluminium source by means of urea hydrolysis. Headspace solid phase microextraction using LDH fibre in combination with capillary GC-MS was utilised as a monitoring technique for the collection and detection of the volatile compounds of Origanum vulgare. Experimental parameters, including the sample weight, microwave power, extraction time and humidity effect, were examined and optimised.

  7. Band gap and conductivity variations of ZnO thin films by doping with Aluminium

    NASA Astrophysics Data System (ADS)

    Vattappalam, Sunil C.; Thomas, Deepu; T, Raju Mathew; Augustine, Simon; Mathew, Sunny

    2015-02-01

    Zinc Oxide thin films were prepared by Successive Ionic layer adsorption and reaction technique(SILAR). Aluminium was doped for different doping concentrations from 3 at.% to 12 at.% in steps of 3 at.%. Conductivity of the samples were taken at different temperatures. UV Spectrograph of the samples were taken and the band gap of each sample was found from the data. It was observed that as the doping concentration of Aluminium increases, the band gap of the samples decreases and concequently conductivity of the samples increases.

  8. [Mechanism of renal elimination of 2 elements of group IIIA of the periodic table : aluminum and indium].

    PubMed

    Galle, P

    1981-01-05

    Aluminium and indium, two elements of group IIIA of the periodic table, are concentrated by the kidney inside lysosomes of proximal tubule cell. In these lysosomes, aluminium and indium are precipitated as non-soluble phosphate salts and these precipitates are then expelled in the tubular lumen and eliminated with the urinary flow. These data have been visualized by analytical microscopy (ion microscopy and X ray microanalysis). Local acid phosphatases are assumed to permit the concentration of aluminium and indium salts inside the lysosomes.

  9. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    NASA Astrophysics Data System (ADS)

    Ahmad, K. H.; Hossain, A. K.

    2017-11-01

    Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without the nanoparticles. The results obtained from the second stage of investigation proved that butanol acted as a surfactant and thus addition of butanol helped to improve the properties of the biofuel-nanoparticle blends. In the third stage of the study, the spray characteristics of fossil diesel, biodiesel, biodiesel + 100ppm aluminium oxide nanoparticles, rapeseed oil, rapeseed oil + 100ppm aluminium oxide nanoparticles, 90% biodiesel & 10% butanol, 90% biodiesel & 10% butanol + 100ppm aluminium oxide nanoparticles, 90% rapeseed oil & 10% butanol and 90% rapeseed oil & 10% butanol + 100ppm aluminium oxide nanoparticles were investigated. It was found that amongst all fuels, blend containing 90% biodiesel + 10% butanol + 100ppm aluminium oxide nanoparticles gave better spray characteristics; for example, the liquid sheet angle was 7.14% lower and the spray cone angle was 7.87% higher than the corresponding fossil diesel values. The study concluded that the spray characteristics and properties of biofuels could be improved by blending with both aluminium oxide nanoparticles and butanol.

  10. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression.

    PubMed

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J L; Bal, Amanjit; Gill, Kiran Dip

    2013-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits-NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. © 2013.

  11. Exposure and inhalation risk assessment in an aluminium cast-house.

    PubMed

    Godderis, L; Vanderheyden, W; Van Geel, J; Moens, G; Masschelein, R; Veulemans, H

    2005-12-01

    To date the exposure, absorption and respiratory health effects of cast-house workers have not been described since most studies performed in the aluminium industry are focused on exposure and health effects of potroom personnel. In the present study, we assessed the external exposure and the absorbed dose of metals in personnel from the aluminium cast house. This was combined with an evaluation of respiratory complaints and the lung function of the personnel. 30 workers from an aluminium casting plant participated and 17 individuals of the packaging and distribution departments were selected as controls. The exposure was assessed by the quantification of total inhalable fume with metal fraction and by the determination of urinary aluminium, chromium, beryllium, manganese and lead concentration. Carbon monoxide (CO), carbon dioxide (CO2), aldehydes and polyaromatic hydrocarbons and man-made mineral fibres concentration were assessed as well. In order to evaluate their respiratory status each participant filled out a questionnaire and their lung function was tested by forced spirometry. Total inhalable fume exposure was maximum 4.37 mg m(-3). Exposure to the combustion gases, man-made mineral fibres and metal fume was well below the exposure limits. Beryllium could not be detected in the urine. The values of aluminium, manganese and lead in the urine were all under the respective reference value. One individual had a urinary chromium excretion above the ACGIH defined biological exposure index (BEI) of 30 microg g(-1) creatinine. There was no significant difference in any of the categories of the respiratory questionnaire and in the results of the spirometry between cast house personnel and referents (Chi-square, all p > 0.05). Exposure in cast houses seem to be acceptable under these conditions. However, peak exposure to fumes cannot be excluded and the potential risk of chromium and beryllium exposure due to the recycling of aluminium requires further attention.

  12. Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses

    PubMed Central

    Stoddard, Frederick L.

    2017-01-01

    Background Faba bean is an important starch-based protein crop produced worldwide. Soil acidity and aluminium toxicity are major abiotic stresses affecting its production, so in regions where soil acidity is a problem, there is a gap between the potential and actual productivity of the crop. Hence, we set out to evaluate acidity and aluminium tolerance in a range of faba bean germplasm using solution culture and pot experiments. Methods A set of 30 accessions was collected from regions where acidity and aluminium are or are not problems. The accessions were grown in solution culture and a subset of 10 was grown first in peat and later in perlite potting media. In solution culture, morphological parameters including taproot length, root regrowth and root tolerance index were measured, and in the pot experiments the key measurements were taproot length, plant biomass, chlorophyll concentration and stomatal conductance. Result Responses to acidity and aluminium were apparently independent. Accessions Dosha and NC 58 were tolerant to both stress. Kassa and GLA 1103 were tolerant to acidity showing less than 3% reduction in taproot length. Aurora and Messay were tolerant to aluminium. Babylon was sensitive to both, with up to 40% reduction in taproot length from acidity and no detectable recovery from Al3+ challenge. Discussion The apparent independence of the responses to acidity and aluminium is in agreement with the previous research findings, suggesting that crop accessions separately adapt to H+ and Al3+ toxicity as a result of the difference in the nature of soil parent materials where the accession originated. Differences in rankings between experiments were minor and attributable to heterogeneity of seed materials and the specific responses of accessions to the rooting media. Use of perlite as a potting medium offers an ideal combination of throughput, inertness of support medium, access to leaves for detection of their stress responses, and harvest of clean roots for evaluation of their growth. PMID:28194315

  13. Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses.

    PubMed

    Belachew, Kiflemariam Y; Stoddard, Frederick L

    2017-01-01

    Faba bean is an important starch-based protein crop produced worldwide. Soil acidity and aluminium toxicity are major abiotic stresses affecting its production, so in regions where soil acidity is a problem, there is a gap between the potential and actual productivity of the crop. Hence, we set out to evaluate acidity and aluminium tolerance in a range of faba bean germplasm using solution culture and pot experiments. A set of 30 accessions was collected from regions where acidity and aluminium are or are not problems. The accessions were grown in solution culture and a subset of 10 was grown first in peat and later in perlite potting media. In solution culture, morphological parameters including taproot length, root regrowth and root tolerance index were measured, and in the pot experiments the key measurements were taproot length, plant biomass, chlorophyll concentration and stomatal conductance. Responses to acidity and aluminium were apparently independent. Accessions Dosha and NC 58 were tolerant to both stress. Kassa and GLA 1103 were tolerant to acidity showing less than 3% reduction in taproot length. Aurora and Messay were tolerant to aluminium. Babylon was sensitive to both, with up to 40% reduction in taproot length from acidity and no detectable recovery from Al 3+ challenge. The apparent independence of the responses to acidity and aluminium is in agreement with the previous research findings, suggesting that crop accessions separately adapt to H + and Al 3+ toxicity as a result of the difference in the nature of soil parent materials where the accession originated. Differences in rankings between experiments were minor and attributable to heterogeneity of seed materials and the specific responses of accessions to the rooting media. Use of perlite as a potting medium offers an ideal combination of throughput, inertness of support medium, access to leaves for detection of their stress responses, and harvest of clean roots for evaluation of their growth.

  14. 78 FR 16675 - Application for Final Commitment for a Long-Term Loan or Financial Guarantee in Excess of $100...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    .... Parties Principal Supplier: General Electric. Obligor: Emirates Aluminium Company Limited PJSC. Guarantor(s): Mubadala Development Company PJSC, Dubai Aluminium Company PJSC. Description of Items Being...

  15. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.

    PubMed

    Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X

    2014-09-10

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  16. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3 resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4- and NO3- ions present in the aqueous solution. The NO3- ions exhibit higher affinity towards the intermetallic particles resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4- ions. Further, increase in the concentration of NO3- ions in the solution retards precipitation of the steam generated aluminium hydroxide layer.

  17. Fabrication of near-field optical apertures in aluminium by a highly selective corrosion process in the evanescent field.

    PubMed

    Haefliger, D; Stemmer, A

    2003-03-01

    A simple, one-step process to fabricate high-quality apertures for scanning near-field optical microscope probes based on aluminium-coated silicon nitride cantilevers is presented. A thin evanescent optical field at a glass-water interface was used to heat the aluminium at the tip apex due to light absorption. The heat induced a breakdown of the passivating oxide layer and local corrosion of the metal, which selectively exposed the front-most part of the probe tip from the aluminium. Apertures with a protruding silicon nitride tip up to 72 nm in height were fabricated. The height of the protrusion was controlled by the extent of the evanescent field, whereas the diameter depended on the geometry of the probe substrate. The corrosion process proved to be self-terminating, yielding highly reproducible tip heights. Near-field optical resolution in a transmission mode of 85 nm was demonstrated.

  18. Content and bioaccessibility of aluminium in duplicate diets from southern Spain.

    PubMed

    Cabrera-Vique, Carmen; Mesías, Marta

    2013-08-01

    Aluminium is found naturally in foods and beverages, but levels increase notably during processing, packaging, storage, and cooking, as a consequence of its presence in food additives and the wide use of aluminium utensils and vessels. Dietary intake of Al was estimated in 2 population groups in southern Spain (families and university students) in a duplicate diet sampling study. Diets were sampled for 7 consecutive days, and Al was determined in acid-mineralized samples with electrothermal atomization-atomic absorption spectrometry (ETA-AAS). Mean values for Al intake were 2.93 and 1.01 mg/d in families and students, respectively, ranging from 0.12 to 10.00 mg/d. Assuming an average adult weight of 60 kg, the mean dietary exposures to aluminium were 0.34 and 0.12 mg/kg body weight/week in these groups, which amounted to 17% and 6% of the 2 mg/kg body weight estimated as the tolerable weekly intake by the Joint FAO/WHO Expert Committee on Food Additives. Bioaccessibility of dietary Al tested with in vitro studies ranged from 0.30 to 17.26% (absorbable fraction). The highest aluminium intakes were observed in subjects consuming diets with a low adherence to the Mediterranean diet, which were associated to high consumption of processed and canned food. On the contrary, subjects consuming diets with a high adherence to the Mediterranean diet patterns showed the lowest Al intakes. The present findings are useful for giving both a reliable estimate of total aluminium dietary intake and tolerable intake levels according to usual dietary habits. © 2013 Institute of Food Technologists®

  19. The influence of aluminium, steel and polyurethane shoeing systems and of the unshod hoof on the injury risk of a horse kick. An ex vivo experimental study.

    PubMed

    Sprick, Miriam; Fürst, Anton; Baschnagel, Fabio; Michel, Silvain; Piskoty, Gabor; Hartnack, Sonja; Jackson, Michelle A

    2017-09-12

    To evaluate the damage inflicted by an unshod hoof and by the various horseshoe materials (steel, aluminium and polyurethane) on the long bones of horses after a simulated kick. Sixty-four equine radii and tibiae were evaluated using a drop impact test setup. An impactor with a steel, aluminium, polyurethane, or hoof horn head was dropped onto prepared bones. An impactor velocity of 8 m/s was initially used with all four materials and then testing was repeated with a velocity of 12 m/s with the polyurethane and hoof horn heads. The impact process was analysed using a high-speed camera, and physical parameters, including peak contact force and impact duration, were calculated. At 8 m/s, the probability of a fracture was 75% for steel and 81% for aluminium, whereas polyurethane and hoof horn did not damage the bones. At 12 m/s, the probability of a fracture was 25% for polyurethane and 12.5% for hoof horn. The peak contact force and impact duration differed significantly between 'hard materials' (aluminium and steel) and 'soft materials' (polyurethane and hoof horn). The observed bone injuries were similar to those seen in analogous experimental studies carried out previously and comparable to clinical fracture cases suggesting that the simulated kick was realistic. The probability of fracture was significantly higher for steel and aluminium than for polyurethane and hoof horn, which suggests that the horseshoe material has a significant influence on the risk of injury for humans or horses kicked by a horse.

  20. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.

    PubMed

    Chowra, Umakanta; Yanase, Emiko; Koyama, Hiroyuki; Panda, Sanjib Kumar

    2017-01-01

    Aluminium-induced oxidative damage caused by excessive ROS production was evaluated in black gram pulse crop. Black gram plants were treated with different aluminium (Al 3+ ) concentrations (10, 50 and 100 μM with pH 4.7) and further the effects of Al 3+ were characterised by means of root growth inhibition, histochemical assay, ROS content analysis, protein carbonylation quantification and 1 H-NMR analysis. The results showed that aluminium induces excessive ROS production which leads to cellular damage, root injury, stunt root growth and other metabolic shifts. In black gram, Al 3+ induces cellular damage at the earliest stage of stress which was characterised from histochemical analysis. From this study, it was observed that prolonged stress can activate certain aluminium detoxification defence mechanism. Probably excessive ROS triggers such defence mechanism in black gram. Al 3+ can induce excessive ROS initially in the root region then transported to other parts of the plant. As much as the Al 3+ concentration increases, the rate of cellular injury and ROS production also increases. But after 72 h of stress, plants showed a lowered ROS level and cellular damage which indicates the upregulation of defensive mechanisms. Metabolic shift analysis also showed that the black gram plant under stress has less metabolic content after 24 h of treatment, but gradually, it was increased after 72 h of treatment. It was assumed that ROS played the most important role as a signalling molecule for aluminium stress in black gram.

  1. Aluminium chloride promotes tumorigenesis and metastasis in normal murine mammary gland epithelial cells

    PubMed Central

    Tenan, Mirna; Ferrari, Paolo; Sappino, André‐Pascal

    2016-01-01

    Aluminium salts, present in many industrial products of frequent use like antiperspirants, anti‐acid drugs, food additives and vaccines, have been incriminated in contributing to the rise in breast cancer incidence in Western societies. However, current experimental evidence supporting this hypothesis is limited. For example, no experimental evidence that aluminium promotes tumorigenesis in cultured mammary epithelial cells exists. We report here that long‐term exposure to concentrations of aluminium—in the form of aluminium chloride (AlCl3)—in the range of those measured in the human breast, transform normal murine mammary gland (NMuMG) epithelial cells in vitro as revealed by the soft agar assay. Subcutaneous injections into three different mouse strains with decreasing immunodeficiency, namely, NOD SCID gamma (NSG), NOD SCID or nude mice, revealed that untreated NMuMG cells form tumors and metastasize, to a limited extent, in the highly immunodeficient and natural killer (NK) cell deficient NSG strain, but not in the less permissive and NK cell competent NOD SCID or nude strains. In contrast, NMuMG cells transformed in vitro by AlCl3 form large tumors and metastasize in all three mouse models. These effects correlate with a mutagenic activity of AlCl3. Our findings demonstrate for the first time that concentrations of aluminium in the range of those measured in the human breast fully transform cultured mammary epithelial cells, thus enabling them to form tumors and metastasize in well‐established mouse cancer models. Our observations provide experimental evidence that aluminium salts could be environmental breast carcinogens. PMID:27541736

  2. Investigation on Mechanical and Fatigue behaviour of Aluminium Based SiC/ZrO2 Particle Reinforced MMC

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Govindaraju, N.; Suryanarayan, C. P.

    2018-04-01

    The study is the work on Aluminium Metal Matrix Composites (MMC’s), which have wider applications in automobile, aerospace and defense industries, hi-tech engineering and power transmission due to their lightweight, high strength and other unique properties. The Aluminium Matrix Composites (AMC’s) refer to a kind of light weight high performance Aluminium centric material system. AMC’s consist of a non-metallic reinforcement which when included into aluminium matrix offers an advantage over the base material. Reinforcements like SiC, B4C, Al2O3, TiC, TiB2, TiO2 are normally preferred to improve mechanical properties of such composites. Here Aluminium 6061 is preferred as matrix material, while silicon carbide (SiC) and Zirconium di-oxide (ZrO2) is selected as reinforcement compounds. Conventional Stir casting procedure is employed to fabricate the necessary composites compositions, which are I. Al:SiC::100:5 and II. Al:ZrO2:SiC::100:3:2. Experimental results depict that the composition II provides higher hardness of 53.6 RHN as opposed to 45.8 RHN of composition I. In tensile strength composition II demonstrates 96.43 N/mm2 as opposed to 67.229 N/mm2 tensile strength of composition II. The fatigue test indicate a expected number of life cycles to failure of 105 cycles for composition II and over 104 cycles for composition I, at stress ranges of 79.062 MPa and 150.651 MPa respectively.

  3. 78 FR 67116 - Aluminum Extrusions From the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Xinlong Group Co., Ltd. Zhongshan Gold Mountain Aluminium Factory Ltd. (ZGM) \\7\\ \\7\\ In the Initiation... company name is spelled ``Zhongshan Gold Mountain Aluminium Factory Ltd.'' as indicated above. See Letter...

  4. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10 mg/kg b.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) andmore » Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. - Highlights: • Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded subunits. • It decreases the mtDNA copy number and mitochondrial content in rat brain. • It down-regulates the mRNA and protein levels of PGC-1α, NRF-1, NRF-2 and Tfam. • It also disturbs the mitochondrial or nuclear architecture of neurons. • Finally it also decreases mitochondrial number in HC and CS regions of rat brain.« less

  5. Al(0.5)Nb(1.5)(PO(4))(3).

    PubMed

    Zhao, Dan; Liang, Peng; Su, Ling; Chang, Huan; Yan, Shi

    2011-02-12

    Single crystals of the title compound, aluminium niobium triphosphate, Al(0.5)Nb(1.5)(PO(4))(3), have been synthesized by a high-temperature reaction in a platinium crucible. The Al(III) and Nb(V) atoms occupy the same site on the axis, with disorder in the ratio of 1:3. The fundamental building units of the title structure are isolated Al/NbO(6) octa-hedra and PO(4) tetra-hedra (. 2 symmetry), which are further inter-locked by corner-sharing O atoms, leading to a three-dimensional framework structure with infinite channels along the a axis.

  6. Determination of heavy metal toxicity of finished leather solid waste.

    PubMed

    Aslan, Ahmet

    2009-05-01

    This paper investigates the toxicity in leather products of heavy metals known to be detrimental to the ecosystem. Heavy metal concentrations in leather samples were identified with ICP-OES, and toxicity was determined using a MetPLATE bioassay. Chromium and aluminium were found to constitute 98% of the total concentration of heavy metals in finished leather tanned with chromium and aluminium salts, while in some vegetable-tanned leather, zirconium was the only heavy metal identified. The average inhibition values for chromium, aluminium and vegetable tanned leather were 98.08%, 97.04% and 62.36%, respectively.

  7. Computational Investigation of Structured Shocks in Al/SiC-Particulate Metal-Matrix Composites

    DTIC Science & Technology

    2011-06-01

    used to implement the dynamic-mixture model into the VUMAT user-material subroutine of ABAQUS /Explicit. Owing to the attendant large strains and...that the residual thermal - expansion effects are more pronounced in the aluminium-matrix than in SiC-particulates. This finding is consistent with the...simple waves (CSWs) (Davison, 2008). . In accordance with the previously observed larger thermal - expansion effects in Al, Figure 5(b) shows that the

  8. Fabrication of amplitude-phase type diffractive optical elements in aluminium films

    NASA Astrophysics Data System (ADS)

    Fomchenkov, S. A.; Butt, M. A.

    2017-11-01

    In the course of studies have been conducted a method of forming the phase diffractive optical elements (DOEs) by direct laser writing in thin films of aluminum. The quality of the aluminum films were investigated depending on the parameters of magnetron sputtering process. Moreover, the parameters of the laser writing process in thin films of aluminum were optimized. The structure of phase diffractive optical elements was obtained by the proposed method.

  9. Predicting the thermal conductivity of aluminium alloys in the cryogenic to room temperature range

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.

    2005-06-01

    Aluminium alloys are being used increasingly in cryogenic systems. However, cryogenic thermal conductivity measurements have been made on only a few of the many types in general use. This paper describes a method of predicting the thermal conductivity of any aluminium alloy between the superconducting transition temperature (approximately 1 K) and room temperature, based on a measurement of the thermal conductivity or electrical resistivity at a single temperature. Where predictions are based on low temperature measurements (approximately 4 K and below), the accuracy is generally better than 10%. Useful predictions can also be made from room temperature measurements for most alloys, but with reduced accuracy. This method permits aluminium alloys to be used in situations where the thermal conductivity is important without having to make (or find) direct measurements over the entire temperature range of interest. There is therefore greater scope to choose alloys based on mechanical properties and availability, rather than on whether cryogenic thermal conductivity measurements have been made. Recommended thermal conductivity values are presented for aluminium 6082 (based on a new measurement), and for 1000 series, and types 2014, 2024, 2219, 3003, 5052, 5083, 5086, 5154, 6061, 6063, 6082, 7039 and 7075 (based on low temperature measurements in the literature).

  10. Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium

    NASA Astrophysics Data System (ADS)

    Mkoko, Z.; Abou-El-Hossein, K.

    2015-08-01

    Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.

  11. Nanostructure of aluminium (Al) - Doped zinc oxide (AZO) thin films

    NASA Astrophysics Data System (ADS)

    Hussin, Rosniza; Husin, M. Asri

    2017-12-01

    Aluminium (Al)-doped Zinc Oxide (ZnO) was deposited on glass substrates by using the sol-gel dip coating technique. Next, AZO sol-gel solution was produced via sol-gel method. Al was used as doped element with molar ratios of 1%, 2%, and 3%, while the calcination temperatures were set at 400°C, 500°C, and 600°C for 2 hours. In fact, characterization was carried out in order to determine the effect of calcination temperature and molar ratio of doping by using several techniques, such as X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy (FESEM), and Ultraviolet-Visible spectroscopy (UV-Vis). XRD was performed to investigate the crystal structure in which the ZnO was in wurtzite hexagonal form. Next, Energy Dispersive Spectroscopy (EDS) was used to determine the composition of thin films where the result revealed the existence of zinc, oxygen, and aluminium. The roughness of the deposited film was later measured by using the AFM approach where the findings indicated increment in RMS from 8.496 nm to 35.883 nm as the temperature was increased. Additionally, FESEM was carried out to look into the microstructure surfaces of the deposited AZO thin film for increased temperature caused the particle to grow bigger for all molar ratio of dopant. Lastly, UV-Vis was conducted to study the optical properties of AZO, in which the result demonstrated that AZO thin film possessed the highest transmittance percentage among all samples above 90% with band gap value that ranged from 3.25 eV to 3.32 eV.

  12. On the hot cracking susceptibility of a semisolid aluminium 6061 weld: Application of a coupled solidification- thermomechanical model

    NASA Astrophysics Data System (ADS)

    Zareie Rajani, H. R.; Phillion, A. B.

    2015-06-01

    A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.

  13. 78 FR 34649 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Trading Co., Ltd.... 12.57 20.75 Pingguo Asia Aluminium Co., Ltd. 12.57 20.75 (Pingguo) Shandong Huasheng...., Ltd...... 12.57 20.75 Zhongshan Gold Mountain Aluminium 12.57 20.75 Factory Ltd., Gold Mountain...

  14. Alpha-Tocopherol Supplementation Restricts Aluminium- and Ethanol-Induced Oxidative Damage in Rat Brain but Fails to Protect Against Neurobehavioral Damage.

    PubMed

    Nayak, Prasunpriya; Sharma, Shiv Bhushan; Chowdary, N V S

    2018-04-05

    The concurrent presence of oxidative stress (OS) and aluminium exposure is an inducer of neurodegenerative changes. Aluminium can augment OS in a pro-oxidant dominant condition. Antioxidative property of α-tocopherol may be useful in restricting these degenerative changes in the brain. OS parameters are tested in frontal cortex (FC), hippocampus (HC), and cerebellum (CL) of α-tocopherol-supplemented (5 IU/day) male Wistar rats exposed to aluminium (10 mg Al/Kg/day; "Al"), ethanol (0.6 g ethanol/Kg/day; "Et"), and both ("Al-Et") and vehicle-treated control ("C") for 4 weeks. The α-tocopherol supplementation restricted regional alterations of reduced glutathione, superoxide dismutase, catalase, and glutathione peroxidase. Accordingly, the regional superoxide and peroxide handling capacities (SPHC) also remain unaltered. Al-Et group demonstrated significant elevation in the lipid peroxidation level in FC and CL regions compared to the group C; similar elevations in lipid peroxidation were noted in all the tested brain regions of Al group. Likewise, declines in glutathione reductase activity were noted in HC (versus Et group) and CL (versus Al and Et groups) of Al-Et group. Interestingly, changes in behavioral patterns of all the treatment groups are comparable while differing from that of the control group. Significant difference with group C is observed during first through fourth weeks, third to fourth weeks, and second to third weeks in terms of spontaneous motor activity, Rota Rod performance, and Hebb-Williams maze performance, respectively. Hence, the current dose and duration of α-tocopherol supplementation failed to provide full protection against the aluminium-induced neurodegeneration; nevertheless, it could provide only partial protection toward aluminium-induced augmentation of OS in specific brain regions.

  15. The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    NASA Astrophysics Data System (ADS)

    Yussuf, N. M.; Embong, Z.; Abdullah, S.; Masirin, M. I. M.; Tajudin, S. A. A.; Ahmad, S.; Sahari, S. K.; Anuar, A. A.; Maxwell, O.

    2018-01-01

    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

  16. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    NASA Astrophysics Data System (ADS)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  17. New quaternary carbide Mg1.52Li0.24Al0.24C0.86 as a disorder derivative of the family of hexagonal close-packed (hcp) structures and the effect of structure modification on the electrochemical behaviour of the electrode.

    PubMed

    Pavlyuk, Volodymyr; Kulawik, Damian; Ciesielski, Wojciech; Pavlyuk, Nazar; Dmytriv, Grygoriy

    2018-03-01

    Magnesium alloys are the basis for the creation of light and ultra-light alloys. They have attracted attention as potential materials for the accumulation and storage of hydrogen, as well as electrode materials in metal-hydride and magnesium-ion batteries. The search for new metal hydrides has involved magnesium alloys with rare-earth transition metals and doped by p- or s-elements. The synthesis and characterization of a new quaternary carbide, namely dimagnesium lithium aluminium carbide, Mg 1.52 Li 0.24 Al 0.24 C 0.86 , belonging to the family of hexagonal close-packed (hcp) structures, are reported. The title compound crystallizes with hexagonal symmetry (space group P-6m2), where two sites with -6m2 symmetry and one site with 3m. symmetry are occupied by an Mg/Li statistical mixture (in Wyckoff position 1a), an Mg/Al statistical mixture (in position 1d) and C atoms (2i). The cuboctahedral coordination is typical for Mg/Li and Mg/Al, and the C atom is enclosed in an octahedron. Electronic structure calculations were used for elucidation of the ability of lithium or aluminium to substitute magnesium, and evaluation of the nature of the bonding between atoms. The presence of carbon in the carbide phase improves the corrosion resistance of the Mg 1.52 Li 0.24 Al 0.24 C 0.86 alloy compared to the ternary Mg 1.52 Li 0.24 Al 0.24 alloy and Mg.

  18. Analysis of wear properties of aluminium based journal bearing alloys with and without lubrication.

    NASA Astrophysics Data System (ADS)

    Mathavan, J. Joy; Patnaik, Amar

    2016-09-01

    Apart from classical bearing materials, Aluminium alloys are used as bearing materials these days because of their superior quality. In this analysis, new Aluminium based bearing materials, with filler metals Si, Ni, and Cr are prepared by metal mould casting in burnout furnace machine, and tribological properties of these alloys with and without lubrication were tested. The experiments for wear with lubrication are conducted on multiple specimen tester and experiments without lubrication is conducted on Pin on disk tribometer. The disc material used was SAE 1050 steel. Wear tests were conducted at a sliding speed of 0.785 m/s and at a normal load of 20 N. Coefficient of friction values, temperature changes and wear of the specimens were plotted on graph according to the above mentioned working conditions. Hardness and weight losses of the specimens were calculated. The obtained results demonstrate how the friction and wear properties of these samples have changed with the % addition of Silicon, Chromium and Nickel to the base metal aluminium.

  19. Improving operational anodising process performance using simulation approach

    NASA Astrophysics Data System (ADS)

    Liong, Choong-Yeun; Ghazali, Syarah Syahidah

    2015-10-01

    The use of aluminium is very widespread, especially in transportation, electrical and electronics, architectural, automotive and engineering applications sectors. Therefore, the anodizing process is an important process for aluminium in order to make the aluminium durable, attractive and weather resistant. This research is focused on the anodizing process operations in manufacturing and supplying of aluminium extrusion. The data required for the development of the model is collected from the observations and interviews conducted in the study. To study the current system, the processes involved in the anodizing process are modeled by using Arena 14.5 simulation software. Those processes consist of five main processes, namely the degreasing process, the etching process, the desmut process, the anodizing process, the sealing process and 16 other processes. The results obtained were analyzed to identify the problems or bottlenecks that occurred and to propose improvement methods that can be implemented on the original model. Based on the comparisons that have been done between the improvement methods, the productivity could be increased by reallocating the workers and reducing loading time.

  20. Expression of metallothioneins I and II related to oxidative stress in the liver of aluminium-treated rats.

    PubMed

    Ghorbel, Imen; Chaabane, Mariem; Elwej, Awatef; Boudawara, Ons; Abdelhedi, Sameh; Jamoussi, Kamel; Boudawara, Tahya; Zeghal, Najiba

    2016-10-01

    Hepatotoxicity, induced by aluminium chloride (AlCl 3 ), has been well studied but there are no reports about liver metallothionein (MT) genes induction. Therefore, it is of interest to establish the mechanism involving the relation between MT gene expression levels and the oxidative stress status in hepatic cells of aluminium-treated rats. Aluminium (Al) was administered to rats in their drinking water at a dose of 50 mg/kg body weight for three weeks. AlCl 3 provoked hepatotoxicity objectified by an increase in malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), advanced oxidation protein products (AOPP), protein carbonyls (PCO) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH) and vitamin C. CAT and Glutathione peroxidase (GPx) activities were decreased while Mn-SOD gene expression, total Metallothionein content and MT I and MT II genes induction were increased. There are changes in plasma of some trace elements, albumin levels, transaminases, LDH and ALP activities. All these changes were supported by histopathological observations.

  1. Experimental investigation of the combustion products in an aluminised solid propellant

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Li, Shipeng; Liu, Mengying; Guan, Dian; Sui, Xin; Wang, Ningfei

    2017-04-01

    Aluminium is widely used as an important additive to improve ballistic and energy performance in solid propellants, but the unburned aluminium does not contribute to the specific impulse and has both thermal and momentum two-phase flow losses. So understanding of aluminium combustion behaviour during solid propellant burning is significant when improving internal ballistic performance. Recent developments and experimental results reported on such combustion behaviour are presented in this paper. A variety of experimental techniques ranging from quenching and dynamic measurement, to high-speed CCD video recording, were used to study aluminium combustion behaviour and the size distribution of the initial agglomerates. This experimental investigation also provides the size distribution of the condensed phase products. Results suggest that the addition of an organic fluoride compound to solid propellant will generate smaller diameter condensed phase products due to sublimation of AlF3. Lastly, a physico-chemical picture of the agglomeration process was also developed based on the results of high-speed CCD video analysis.

  2. Joining of Aluminium Alloy and Steel by Laser Assisted Reactive Wetting

    NASA Astrophysics Data System (ADS)

    Liedl, Gerhard; Vázquez, Rodrigo Gómez; Murzin, Serguei P.

    2018-03-01

    Compounds of dissimilar materials, like aluminium and steel offer an interesting opportunity for the automotive industry to reduce the weight of a car body. Thermal joining of aluminium and steel leads to the formation of brittle intermetallic compounds, which negatively affects the properties of the welded joint. Amongst others, growth of such intermetallic compounds depends on maximum temperature and on the time at certain temperatures. Laser welding with its narrow well seam and its fast heating and cooling cycles provides an excellent opportunity to obtain an ultrathin diffusion zone. Joining of sheet metal DC01 with aluminium alloy AW6016 has been chosen for research. The performed experimental studies showed that by a variation of the beam power and scanning speed it is possible to obtain an ultrathin diffusion zone with narrow intermetallic interlayers. With the aim of supporting further investigation of laser welding of the respective and other dissimilar pairings a multi-physical simulation model has been developed.

  3. Inhibition effect of Arabic gum and cellulose acetate coatings on aluminium in acid/base media

    NASA Astrophysics Data System (ADS)

    Alva, S.; Sundari, R.; Rahmatullah, A.; Wahyudi, H.

    2018-03-01

    Nowadays aluminium is broadly used for battery purpose due to its conductivity, non toxic and economic reasons. Arabic gum and cellulose acetate are used as potential inhibitors to hinder corrosion effect on aluminium plate immersed in a solution of hydrochloric acid or sodium hydroxide. This investigation has studied the corrosion rate in terms of different concentrations of acid or base media. The average inhibition efficiency in the interested concentration range of both HCl and NaOH (0.1 M – 3.0 M) for 1 × 1 cm2 aluminium (Al) plate coated by 20% Arabic gum (AG) and 5% cellulose acetate (CA) with each thickness of 0.5 mm is found to be higher than 90%. The electrochemical behavior of corrosion effect is examined by cyclic voltammetric performance with respect to HCl or NaOH media. This investigation is useful especially for the study of Arabic gum and cellulose acetate utilized as polymer inhibitor in strong corrosive media.

  4. Surface treatments for aluminium alloys

    NASA Astrophysics Data System (ADS)

    Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.

    2018-01-01

    Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.

  5. Reducing electrocoagulation harvesting costs for practical microalgal biodiesel production.

    PubMed

    Dassey, Adam J; Theegala, Chandra S

    2014-01-01

    Electrocoagulation has shown potential to be a primary microalgae harvesting technique for biodiesel production. However, methods to reduce energy and electrode costs are still necessary for practical application. Electrocoagulation tests were conducted on Nannochloris sp. and Dunaliella sp. using perforated aluminium and iron electrodes under various charge densities. Aluminium electrodes were shown to be more efficient than iron electrodes when harvesting both algal species. Despite the lower harvesting efficiency, however, the iron electrodes were more energy and cost efficient. Operational costs of less than $0.03/L oil were achieved when harvesting Nannochloris sp. with iron electrodes at 35% harvest efficiency, whereas aluminium electrodes cost $0.75/L oil with 42% harvesting efficiency. Increasing the harvesting efficiencies for both aluminium and iron electrodes also increased the overall cost per litre of oil, therefore lower harvesting efficiencies with lower energy inputs was recommended. Also, increasing the culturing salinity to 2 ppt sodium chloride for freshwater Nannochloris sp. was determined practical to improve the electrocoagulation energy efficiency despite a 25% reduction in cell growth.

  6. Removal of oil and grease from automobile garage wastewater using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Manilal, A. M.; Harinarayanan Nampoothiri, M. G.; Soloman, P. A.

    2017-06-01

    Wastewater from automobile garages and workshops is an important contributor to the water pollution. Oil and grease is one of the major content of wastewater from vehicle garages. Wastewater from a public transport depot at Thrissur district in Kerala, India was collected for the study. A batch reactor has been devised to assess the efficacy of electrocoagulation in removing oil and grease from the wastewater. Aluminium and iron were tested as the anode material with stainless steel as cathode. Experiments were conducted to investigate the effect of various operating parameters such as current density, pH, time and salt concentration on oil and grease removal. The results shown that aluminium is superior to iron in removing the oil and grease from the wastewater. The reactor with aluminium as anode was able to remove 90.8 % of the oil and grease at a current density of 0.6 A/dm2 in 15 minutes. The calculated specific energy consumption is also less for aluminium in comparison with iron.

  7. Thermal ablation of an aluminium film upon absorption of a femtosecond laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezhanov, S G; Kanavin, A P; Uryupin, S A

    We have found the time dependence of the ablation depth of aluminium irradiated by a femtosecond laser pulse. It is shown to what extent an increase in the radiation energy flux density leads to an increase in the quasi-stationary value of the ablation depth. By reducing the aluminium film thickness down to one hundred nanometres and less, the ablation depth significantly increases. At the same time, the quasi-stationary value of the ablation depth of a thin film is obtained due to the removal of heat from the focal spot region. (interaction of laser radiation with matter. laser plasma)

  8. Transmittance jump in a thin aluminium layer during laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykovsky, N E; Senatsky, Yu V; Pershin, S M

    A jump in the transmittance (from ∼0.1% to ∼50% for ∼1 ns) of an optical gate on a Mylar film (a thin aluminium layer on a Lavsan substrate) irradiated by nanosecond (10{sup -7} – 10{sup -8} s) pulses of a neodymium laser with an intensity up to 0.1 GW cm{sup -2} has been recorded. The mechanism of a fast (10{sup -10} – 10{sup -11} s) increase in the transmittance of the aluminium layer upon its overheating (without boiling) to the metal – insulator phase-transition temperature is discussed. (interaction of laser radiation with matter. laser plasma)

  9. Deformation dynamics and spallation strength of aluminium under a single-pulse action of a femtosecond laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashitkov, Sergei I; Komarov, P S; Ovchinnikov, A V

    An interferometric method is developed and realised using a frequency-modulated pulse for diagnosing a dynamics of fast deformations with a spatial and temporal resolution under the action of a single laser pulse. The dynamics of a free surface of a submicron-thick aluminium film is studied under an action of the ultrashort compression pulse with the amplitude of up to 14 GPa, excited by a femtosecond laser heating of the target surface layer. The spallation strength of aluminium was determined at a record high deformation rate of 3 Multiplication-Sign 10{sup 9} s{sup -1}. (extreme light fields and their applications)

  10. Gun Propellant Residues Dispersed from Static Artillery Firings of LG1 Mark 2 and C3 105-mm Howitzers

    DTIC Science & Technology

    2008-10-01

    nitroglycerine (NG). In this study, aluminium witness plates were placed in front of the muzzle of the gun to collect residues propelled in the environment...témoins en aluminium ont été placées en face de la bouche du canon pour récolter les résidus de tirs propulsés dans l’environnement. Les plaques ont été...the Mark II and C3 105-mm howitzers, during an artillery exercise performed from May 9 to May 12, 2005 at CFB Gagetown in New-Brunswick. Aluminium

  11. Amélioration des performances du procédé de soudage TIG sur un acier au carbone et un alliage d'aluminium par dépôt de silice

    NASA Astrophysics Data System (ADS)

    Sire, Stéphane; Marya, Surendar

    This Note presents ways to improve the weld penetration potential of TIG process by optimising silica application around the joints in a plain carbon steel and an aluminium alloy 5086. Whereas for plain carbon steels, full coverage of joint improves penetration, the presence of a blank zone around the joint in the flux coating on aluminium 5086 using AC-TIG seems to be the best solution for cosmetic and deep welds. To cite this article: S. Sire, S. Marya, C. R. Mecanique 330 (2002) 83-89.

  12. TEM study of {beta} Prime precipitate interaction mechanisms with dislocations and {beta} Prime interfaces with the aluminium matrix in Al-Mg-Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.

    The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less

  13. Molecular breeding of cereals for aluminium resistance

    USDA-ARS?s Scientific Manuscript database

    Aluminium (Al3+) toxicity is the primary factor limiting crop production on acidic soils worldwide. In addition to an application of lime for soil amelioration, Al3+ resistant plant varieties have been deployed to raise productivity on such hostile soils. This has been possible due to the exploita...

  14. Data-Enabled Quantification of Aluminum Microstructural Damage Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Wayne, Steven F.; Qi, G.; Zhang, L.

    2016-08-01

    The study of material failure with digital analytics is in its infancy and offers a new perspective to advance our understanding of damage initiation and evolution in metals. In this article, we study the failure of aluminum using data-enabled methods, statistics and data mining. Through the use of tension tests, we establish a multivariate acoustic-data matrix of random damage events, which typically are not visible and are very difficult to measure due to their variability, diversity and interactivity during damage processes. Aluminium alloy 6061-T651 and single crystal aluminium with a (111) orientation were evaluated by comparing the collection of acoustic signals from damage events caused primarily by slip in the single crystal and multimode fracture of the alloy. We found the resulting acoustic damage-event data to be large semi-structured volumes of Big Data with the potential to be mined for information that describes the materials damage state under strain. Our data-enabled analyses has allowed us to determine statistical distributions of multiscale random damage that provide a means to quantify the material damage state.

  15. Microstructural and mechanical investigation of aluminium alloy (Al 1050) melted by microwave hybrid heating

    NASA Astrophysics Data System (ADS)

    Shashank Lingappa, M.; Srinath, M. S.; Amarendra, H. J.

    2017-07-01

    Microwave processing of metals is an emerging area. Melting of bulk metallic materials through microwave irradiation is still immature. In view of this, the present paper discusses the melting of bulk Al 1050 metallic material through microwave irradiation. The melting process is carried out successfully in a domestic microwave oven with 900 W power at 2450 MHz frequency. Metallurgical and mechanical characterization of the processed and as-received material is carried out. Aluminium phase is found to be dominant in processed material when tested through x-ray diffraction (XRD). Microstructure study of as-cast metal through scanning electron microscopy (SEM) reveals the formation of uniform hexagonal grain structure free from pores and cavities. The average tensile strength of the cast material is found to be around 21% higher, when compared to as-received material. Vickers’ microhardness of the as-cast metal is measured and is 10% higher than that of the as-received metal. Radiography on as-cast metal shows no significant defects. Al 1050 material melted through microwave irradiation has exhibited superior properties than the as-received Al 1050.

  16. Feasibility of track-based multiple scattering tomography

    NASA Astrophysics Data System (ADS)

    Jansen, H.; Schütze, P.

    2018-04-01

    We present a tomographic technique making use of a gigaelectronvolt electron beam for the determination of the material budget distribution of centimeter-sized objects by means of simulations and measurements. In both cases, the trajectory of electrons traversing a sample under test is reconstructed using a pixel beam-telescope. The width of the deflection angle distribution of electrons undergoing multiple Coulomb scattering at the sample is estimated. Basing the sinogram on position-resolved estimators enables the reconstruction of the original sample using an inverse radon transform. We exemplify the feasibility of this tomographic technique via simulations of two structured cubes—made of aluminium and lead—and via an in-beam measured coaxial adapter. The simulations yield images with FWHM edge resolutions of (177 ± 13) μm and a contrast-to-noise ratio of 5.6 ± 0.2 (7.8 ± 0.3) for aluminium (lead) compared to air. The tomographic reconstruction of a coaxial adapter serves as experimental evidence of the technique and yields a contrast-to-noise ratio of 15.3 ± 1.0 and a FWHM edge resolution of (117 ± 4) μm.

  17. Strain Measurement in Aluminium Alloy during the Solidification Process Using Embedded Fibre Bragg Gratings.

    PubMed

    Weraneck, Klaus; Heilmeier, Florian; Lindner, Markus; Graf, Moritz; Jakobi, Martin; Volk, Wolfram; Roths, Johannes; Koch, Alexander W

    2016-11-04

    In recent years, the observation of the behaviour of components during the production process and over their life cycle is of increasing importance. Structural health monitoring, for example of carbon composites, is state-of-the-art research. The usage of Fibre Bragg Gratings (FBGs) in this field is of major advantage. Another possible area of application is in foundries. The internal state of melts during the solidification process is of particular interest. By using embedded FBGs, temperature and stress can be monitored during the process. In this work, FBGs were embedded in aluminium alloys in order to observe the occurring strain. Two different FBG positions were chosen in the mould in order to compare its dependence. It was shown that FBGs can withstand the solidification process, although a compression in the range of one percent was measured, which is in agreement with the literature value. Furthermore, different lengths of the gratings were applied, and it was shown that shorter gratings result in more accurate measurements. The obtained results prove that FBGs are applicable as sensors for temperatures up to 740 °C.

  18. Study on Evaluation Methods for Mechanical Properties of Organic Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Yokoyama, T.; Utsumi, Y.; Kanematsu, H.; Masuda, T.

    2013-04-01

    This paper describes the evaluation method of the mechanical properties of the materials constituting organic semiconductor, and the test result of the relation between applied strain and the fracture of thin films. The final target of this work is the improvement of flexibility of organic light emitting diode(OLED), the tensile test of the thin films coated on flexible substrate is conducted, and the vulnerable parts of the constituent material of the OLED is quantitatively understood, further the guideline for designing OLED structure will be obtained. In the present paper, tensile test of an aluminium oxide thin films deposited on a poly-ethylene-tere-phtalate (PET) substrate was carried out under constant conditions, the following results were obtained:(1)Cracking of the aluminium oxide thin films was observed using an optical transparent formula microscope at more than 40 times magnification; (2)Cracking was initiated at a strain of about 3%; (3)the number of cracks increased proportional to the strain, and saturated at about 9% strain; (4)Organic thin films α-NPD caused the same cracking as oxide thin films.

  19. Effect of cell-size on the energy absorption features of closed-cell aluminium foams

    NASA Astrophysics Data System (ADS)

    Nammi, S. K.; Edwards, G.; Shirvani, H.

    2016-11-01

    The effect of cell-size on the compressive response and energy absorption features of closed-cell aluminium (Al) foam were investigated by finite element method. Micromechanical models were constructed with a repeating unit-cell (RUC) which was sectioned from tetrakaidecahedra structure. Using this RUC, three Al foam models with different cell-sizes (large, medium and small) and all of same density, were built. These three different cell-size pieces of foam occupy the same volume and their domains contained 8, 27 and 64 RUCs respectively. However, the smaller cell-size foam has larger surface area to volume ratio compared to other two. Mechanical behaviour was modelled under uniaxial loading. All three aggregates (3D arrays of RUCs) of different cell-sizes showed an elastic region at the initial stage, then followed by a plateau, and finally, a densification region. The smaller cell size foam exhibited a higher peak-stress and a greater densification strain comparing other two cell-sizes investigated. It was demonstrated that energy absorption capabilities of smaller cell-size foams was higher compared to the larger cell-sizes examined.

  20. Tensile strength of aluminium nitride films

    NASA Astrophysics Data System (ADS)

    Zong, Deng Gang; Ong, Chung Wo; Aravind, Manju; Tsang, Mei Po; Loong Choy, Chung; Lu, Deren; Ma, Dejun

    2004-11-01

    Two-layered aluminium nitride (AlN)/silicon nitride microbridges were fabricated for microbridge tests to evaluate the elastic modulus, residual stress and tensile strength of the AlN films. The silicon nitride layer was added to increase the robustness of the structure. In a microbridge test, load was applied to the centre of a microbridge and was gradually increased by a nano-indenter equipped with a wedge tip until the sample was broken, while displacement was recorded coherently. Measurements were performed on single-layered silicon nitride microbridges and two-layered AlN/silicon nitride microbridges respectively. The data were fitted to a theory to derive the elastic modulus, residual stress and tensile strength of the silicon nitride films and AlN films. For the AlN films, the three parameters were determined to be 200, 0.06 and 0.3 GPa, respectively. The values of elastic modulus obtained were consistent with those measured by conventional nano-indentation method. The tensile strength value can be used as a reference to reflect the maximum tolerable tensile stress of AlN films when they are used in micro-electromechanical devices.

  1. Applications of laser ultrasound NDT methods on composite structures in aerospace industry

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Focke, Oliver; v. Kopylow, Christoph

    2008-09-01

    Composite materials are used more and more in aircraft production. Main composite types are Carbon Fiber Reinforced Plastics (CFRP), Glass Fiber Reinforced Plastics (GFRP) and metal-aluminium laminates (e. g. Glass Fiber Aluminium Reinforced GLARE©). Typical parts made of CFRP material are flaps, vertical and horizontal tail planes, center wing boxes, rear pressure bulkheads, ribs and stringers. These composite parts require adequate nondestructive testing (NDT) methods. Flaws to be detected are delaminations and debondings, porosity and foreign body inclusion. Manual ultrasonic testing with single element transducers is still the most applied method for composite parts with small and medium size. The extension of the conventional ultrasound technique for nondestructive testing with the laser ultrasound method brings new possibilities into the production processes for example the inspection of complex CFRP-components and the possibilities of online observation under remote control. In this paper we describe the principle of laser ultrasound with respect to the demands of nondestructive testing especially of small complex CFRP and C/PPS parts. We report applications of laser-based ultrasound options with generated types of guided and bulk waves on modern aircraft materials.

  2. Distribution of trace elements in a modified and grain refined aluminium-silicon hypoeutectic alloy.

    PubMed

    Faraji, M; Katgerman, L

    2010-08-01

    The influence of modifier and grain refiner on the nucleation process of a commercial hypoeutectic Al-Si foundry alloy (A356) was investigated using optical microscopy, scanning electron microscopy (SEM) and electron probe microanalysis technique (EPMA). Filtering was used to improve the casting quality; however, it compromised the modification of silicon. Effect of filtering on strontium loss was also studied using the afore-mentioned techniques. EPMA was used to trace the modifying and grain refining agents inside matrix and eutectic Si. This was to help understanding mechanisms of nucleation and modification in this alloy. Using EPMA, the negative interaction of Sr and Al3TiB was closely examined. In modified structure, it was found that the maximum point of Sr concentration was in line with peak of silicon; however, in case of just 0.1wt% added Ti, the peak of Ti concentration was not in line with aluminium, (but it was close to Si peak). Furthermore, EPMA results showed that using filter during casting process lowered the strontium content, although produced a cleaner melt. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Modifications of aluminum film caused by micro-plasmoids and plasma spots in the effluent of an argon non-equilibrium plasma jet

    NASA Astrophysics Data System (ADS)

    Engelhardt, Max; Ries, Stefan; Hermanns, Patrick; Bibinov, Nikita; Awakowicz, Peter

    2017-09-01

    A smooth layer of hard aluminium film is deposited onto a glass substrate with a multi-frequency CCP discharge and then treated in the effluent of a non-equilibrium atmospheric pressure plasma jet (N-APPJ) operated with Ar flow. A thin filament is formed in the argon N-APPJ through contraction of a diffuse feather-like discharge. The aluminium surface treated in the effluents of the N-APPJ is significantly modified. Erosion tracks of different forms and micro-balls composed of aluminium are observed on the treated surface. Based on CCD images of active plasma discharge channels, SEM images of the treated surface and current-voltage characteristics, these surface modifications are interpreted as traces of plasma spots and plasmoids. Plasma spots are focused plasma channels, which are characterized by an intense emission in CCD images at the contact point of a plasma channel with the treated metal surface and by deep short tracks on the aluminium surface, observed in SEM images. Plasmoids are plasma objects without contact to any power supply which can produce long, thin and shallow traces, as can be observed on the treated surface using electron microscopy. Based on observed traces and numerous transformations of plasma spots to plasmoids and vice versa, it is supposed that both types of plasma objects are formed by an extremely high axial magnetic field and differ from each other due to the existence or absence of contact to a power supply and the consequential transport of electric current. The reason for the magnetic field at the axis of these plasma objects is possibly a circular current of electron pairs in vortices, which are formed in plasma by the interaction of ionization waves with the substrate surface. The extremely high magnetic field of plasma spots and plasmoids leads to a local destruction of the metal film and top layer of the glass substrate and to an attraction of paramagnetic materials, namely aluminium and oxygen. The magnetic attraction of aluminium is a reason for the extraction of some pieces of metal and the formation of erosion tracks and holes in the metal film. In the absence of metal atomization, the extracted aluminium forms spherical micro-particles, which are distributed over the surface of the treated metal film by the gas flow. A thin (100 nm) gold (diamagnetic) layer on top of the aluminium film surface reduces the erosion rate of plasma spots and plasmoids drastically (more than three orders of magnitude).

  4. Chromium Recharging Processes in the Y3Al5O12: Mg, Cr Single Crystal under the Reducing and Oxidizing Annealing Influence

    DTIC Science & Technology

    2001-01-01

    approximately 0.2% of total number of chromium ions occupied tetrahedral sites forming phototropic centers in the YAG: Mg, Cr crystal. Keywords: yttrium...aluminium garnet, Cr doping, thermal treatment, phototropic centers, optical characterization, electron paramagnetic resonance. 1. INTRODUCTION An...of garnet structure while the main part of chromium occupies octahedral sites in three-valence state. 10-12 The dependence of amount of phototropic

  5. Production of Open Cell Bulk Metallic Glass Foam Structures via Electromechanical Forming

    DTIC Science & Technology

    2011-07-20

    brazing of aluminium alloys using liquid gallium (UKpatent application 0128623.6). Science and Technology of Welding and Joining, 2003. 8(2): p. 149-153...interface approaches V2 the bulk strength of the alloy . Recent efforts have focused on varying the stress state at the interface in order to evaluate...gallium surface treatments have shown promise in the successful diffusion bonding of aluminum alloys and stainless steel alloys [1]. However, in the

  6. Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation

    NASA Astrophysics Data System (ADS)

    Ciambelli, P.; Arurault, L.; Sarno, M.; Fontorbes, S.; Leone, C.; Datas, L.; Sannino, D.; Lenormand, P.; Le Blond Du Plouy, S.

    2011-07-01

    Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.

  7. Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation.

    PubMed

    Ciambelli, P; Arurault, L; Sarno, M; Fontorbes, S; Leone, C; Datas, L; Sannino, D; Lenormand, P; Du Plouy, S Le Blond

    2011-07-01

    Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.

  8. Ho3+-doped strontium-aluminium-bismuth-borate glasses for green light emission.

    PubMed

    Rajesh, D; Dhamodhara Naidu, M; Ratnakaram, Y C; Balakrishna, A

    2014-11-01

    Strontium-aluminium-bismuth-borate glasses (SAlBiB) doped with different concentrations of Ho(3+) were prepared using conventional melt quenching technique and their structural and optical properties investigated. X-ray diffraction and scanning electron microscopy analysis were used to study the structural properties. Optical properties were studied by measuring the optical absorption and visible luminescence spectra. The Judd-Ofelt (J-O) theory was applied to evaluate J-O intensity parameters, Ω(λ) (λ = 2, 4 and 6). Using J-O intensity parameters, radiative properties such as spontaneous transition probabilities (A(R)), branching ratios (β(R)) and radiative lifetimes (τ(R)) were determined. From the emission spectra, a strong green emission nearly at 549 nm corresponding to the transition, (5)S2 ((5)F4)→(5)I(8) was observed. Emission peak positions (λ(P)), effective bandwidths (Δλ(eff)) and stimulated emission cross-sections (σ(p)) were calculated for the observed emission transitions, (5)F3 →(5)I(8), (5)S2((5)F4)→(5)I(8) and (5)F5 →(5)I(8) of Ho(3+) in all the glass matrices. Chromaticity color coordinates were calculated using the emission spectra. The experimental results suggest that SAlBiB glass matrix with 1.5 mol% of Ho(3+) has better emission properties. Copyright © 2014 John Wiley & Sons, Ltd.

  9. A systematic investigation of aluminium ion speciation at high temperature. Part 1. Solution studies.

    PubMed

    Shafran, Kirill L; Perry, Carole C

    2005-06-21

    Speciation diagrams of aluminium ions in aqueous solution (0.2 M) at high temperature (90 degrees C) have been obtained from 48 h time-resolved multi-batch titration experiments monitored by 27Al NMR spectroscopy, potentiometry and dynamic light scattering. The quantitative speciation patterns and kinetic data obtained offer a dynamic picture of the distribution of soluble and insoluble Al species as a function of hydrolysis ratio h(h=[OH-]/[Al3+]) over a very broad range of conditions (-1.0 < or =h < or = 4.0). Monomeric, small oligomeric, tridecameric (the 'Al13-mer') and the recently characterised 30-meric aluminium species (the 'Al30-mer') as well as aluminium hydroxide have been identified and quantified. The Al13-mer species dominates over a relatively broad range of hydrolysis ratios (1.5 < or =h< or = 2.7) during the first 6 h of experiment, but are gradually replaced by Al30-mers at longer reaction times. Kinetic profiles indicate that the formation of the Al30-mer is limited by the disappearance of the Al13 species at mildly acidic conditions. The estimated rate constants of both hydrolytic processes show good internal correlation at h> or = 1.5. The effect of local perturbations leading to the formation of aluminium hydroxide below the electroneutrality point (h= 3.0) has been estimated quantitatively.

  10. Pre-Column Derivatization HPLC Procedure for the Quantitation of Aluminium Chlorohydrate in Antiperspirant Creams Using Quercetin as Chromogenic Reagent.

    PubMed

    Kalogria, Eleni; Varvaresou, Athanasia; Papageorgiou, Spyridon; Protopapa, Evaggelia; Tsaknis, Ioannis; Matikas, Alexios; Panderi, Irene

    2014-01-01

    This article describes the development and validation of a selective high-performance liquid chromatography method that allows, after liquid-liquid extraction and pre-column derivatization reaction with quercetin, the quantification of aluminium chlorohydrate in antiperspirant creams. Chromatographic separation was achieved on an XTerra MS C18 analytical column (150 × 3.0 mm i.d., particle size 5 μm) using a mobile phase of acetonitrile:water (15:85, v/v) containing 0.08 % trifluoroacetic acid at a flow rate of 0.30 mL min -1 . Ultraviolet spectrophotometric detection at 415 nm was used. The assay was linear over a concentration range of 3.7-30.6 μg mL -1 for aluminium with a limit of quantitation of 3.74 μg mL -1 . Quality control samples (4.4, 17.1 and 30.6 μg mL -1 ) in five replicates from five different runs of analysis demonstrated intra-assay precision (% coefficient of variation <3.8 %), inter-assay precision (% coefficient of variation <5.4 %) and an overall accuracy (% recovery) between 96 and 101 %. The method was used to quantify aluminium in antiperspirant creams containing 11.0, 13.0 and 16.0 % (w/w) aluminium chlorohydrate, respectively.

  11. Determination of the coefficient of dynamic friction between coatings of alumina and metallic materials

    NASA Astrophysics Data System (ADS)

    Santos, A.; Córdoba, E.; Ramírez, Z.; Sierra, C.; Ortega, Y.

    2017-12-01

    This project aims to determine the coefficient of dynamic friction between micrometric size coatings of alumina and metallic materials (Steel and aluminium); the methodology used to achieve the proposed objective consisted of 4 phases, in the first one was developed a procedure that allowed, from a Pin on Disk machine built based on the specifications given by the ASTM G99-05 standard (Standard test method for wear tests with a Pin on Disk machine), to determine the coefficient of dynamic friction between two materials in contact; subsequently the methodology was verified through tests between steel-steel and steel-aluminium, due to these values are widely reported in the literature; as a third step, deposits of alumina particles of micrometric size were made on a steel substrate through thermal spraying by flame; finally, the tests were carried out between pins of steel of aluminium and alumina coating to determine the coefficients of dynamic friction between these two surfaces. The results of the project allowed to verify that the developed methodology is valid to obtain coefficients of dynamic friction between surfaces in contact since the percentages of error were of 3.5% and 2.1% for steel-steel and aluminium-steel, respectively; additionally, it was found that the coefficient of friction between steel-alumina coatings is 0.36 and aluminium-alumina coating is 0.25.

  12. Treatment of dairy effluents by electrocoagulation using aluminium electrodes.

    PubMed

    Tchamango, Serge; Nanseu-Njiki, Charles P; Ngameni, Emmanuel; Hadjiev, Dimiter; Darchen, André

    2010-01-15

    This work sets out to examine the efficiency of an electrolytic treatment: electrocoagulation, applied to dairy effluents. The experiments were carried out using a soluble aluminium anode on artificial wastewater derived from solutions of milk powder. The flocks generated during this treatment were separated by filtration. The analysis of the filtrates showed that the chemical oxygen demand (COD) was reduced by up to 61% while the removal of phosphorus, nitrogen contents, and turbidity were 89, 81 and 100%, respectively. An analogous treatment applied to phosphate and lactose solutions revealed that lactose was not eliminated, a fact that could account for the rather poor lowering of the COD. Compared to the chemical coagulation treatment with aluminium sulphate, the efficiency of the electrocoagulation technique was almost identical. However the wastewaters treated by electrocoagulation differed by the fact that they exhibited a lower conductivity and a neutral pH value (by contrast to the acid nature of the solution treated by the chemical coagulation). This result (low conductivity, neutral pH) tends to show that it may be possible to recycle the treated water for some industrial uses. Moreover, the electrocoagulation process uses fewer reagents: the mass of the aluminium anode dissolved during the treatment is lower compared to the quantity of the aluminium salt used in chemical coagulation. These two observations clearly show that the electrocoagulation technique is more performing. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Zirconium-based conversion film formation on zinc, aluminium and magnesium oxides and their interactions with functionalized molecules

    NASA Astrophysics Data System (ADS)

    Fockaert, L. I.; Taheri, P.; Abrahami, S. T.; Boelen, B.; Terryn, H.; Mol, J. M. C.

    2017-11-01

    Zirconium-based conversion treatment of zinc, aluminium and magnesium oxides have been studied in-situ using ATR-FTIR in a Kretschmann geometry. This set-up was coupled to an electrochemical cell, which allowed to obtain chemical and electrochemical information simultaneously as a function of conversion time. This elucidated the strong relation between physico-chemical surface properties and zirconium-based conversion kinetics. Whereas the surface hydroxyl density of zinc and aluminium increased during conversion, magnesium (hydr)oxide was shown to dissolve in the acid solution. Due to this dissolution, strong surface alkalization can be expected, explaining the rapid conversion kinetics. AES depth profiling was used to determine the final oxide thickness and elemental composition. This confirmed that magnesium is most active and forms a zirconium oxide layer approximately 10 times thicker than zinc. On the other hand, the presence of zirconium oxide on aluminium is very low and can be considered as not fully covering the metal oxide. Additionally, the converted oxide chemistry was related to the bonding mechanisms of amide functionalized molecules using ATR-FTIR and XPS. It was shown that inclusion of zirconium altered the acid-base properties, increasing the substrate proton donating capabilities in case of magnesium oxide and increasing hydrogen bonding and Bronsted interactions due to increased surface hydroxide fractions on zinc and aluminium substrates.

  14. Fabrication and nanoscale characterization of magnetic multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Elawayeb, Mohamed

    Magnetic multilayers nanowires are scientifically fascinating and have potential industrial applications in many areas of advanced nanotechnology. These applications arise due to the nanoscale dimensions of nanostructures that lead to unique physical properties. Magnetic multilayer nanowires have been successfully produced by electrodeposition into templates. Anodic Aluminium Oxide (AAO) membranes were used as templates in this process; the templates were fabricated by anodization method in acidic solutions at a fixed voltage. The fabrication method of a range of magnetic multilayer nanowires is described in this study and their structure and dimensions were analyzed using scanning electron microscope (SEM), Transmission electron microscope (TEM) and scanning transmission electron microscopy (STEM). This study is focused on the first growth of NiFe/Pt and NiFe/Fe magnetic multilayer nanowires, which were successfully fabricated by pulse electrodeposition into the channels of porous anodic aluminium oxide (AAO) templates, and characterized at the nanoscale. Individual nanowires have uniform structure and regular periodicity. The magnetic and nonmagnetic layers are polycrystalline, with randomly oriented fcc lattice structure crystallites. Chemical compositions of the individual nanowires were analyzed using TEM equipped with energy-dispersive x-ray analysis (EDX) and electron energy loss spectrometry (EELS). The electrical and magnetoresistance properties of individual magnetic multilayer nanowires have been measured inside a SEM using two sharp tip electrodes attached to in situ nanomanipulators and a new electromagnet technique. The giant magnetoresistance (GMR) effect of individual magnetic multilayer nanowires was measured in the current - perpendicular to the plane (CPP) geometry using a new in situ method at variable magnetic field strength and different orientations..

  15. New numerical approach for the modelling of machining applied to aeronautical structural parts

    NASA Astrophysics Data System (ADS)

    Rambaud, Pierrick; Mocellin, Katia

    2018-05-01

    The manufacturing of aluminium alloy structural aerospace parts involves several steps: forming (rolling, forging …etc), heat treatments and machining. Before machining, the manufacturing processes have embedded residual stresses into the workpiece. The final geometry is obtained during this last step, when up to 90% of the raw material volume is removed by machining. During this operation, the mechanical equilibrium of the part is in constant evolution due to the redistribution of the initial stresses. This redistribution is the main cause for workpiece deflections during machining and for distortions - after unclamping. Both may lead to non-conformity of the part regarding the geometrical and dimensional specifications and therefore to rejection of the part or additional conforming steps. In order to improve the machining accuracy and the robustness of the process, the effect of the residual stresses has to be considered for the definition of the machining process plan and even in the geometrical definition of the part. In this paper, the authors present two new numerical approaches concerning the modelling of machining of aeronautical structural parts. The first deals with the use of an immersed volume framework to model the cutting step, improving the robustness and the quality of the resulting mesh compared to the previous version. The second is about the mechanical modelling of the machining problem. The authors thus show that in the framework of rolled aluminium parts the use of a linear elasticity model is functional in the finite element formulation and promising regarding the reduction of computation times.

  16. Electronic Structures and Optical Properties of α-Al2O3Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Li, Chunlei; Liu, Lijia; Sham, Tsun-Kong

    2013-04-01

    The electronic structure and optical properties of α-Al2O3 nanowires (NWs) have been investigated using X-ray absorption near-edge structures (XANES) and X-ray excited optical luminescence (XEOL). The XANES were recorded in total electron yield (TEY) and total fluorescence yield (TFY) across the K- and L3,2-edges of aluminium and the K-edge of oxygen. The results indicate that the NWs are of a core/shell structure with a single-crystalline core and an amorphous shell. The XEOL spectra of the NWs show an intense peak at 404 nm, which comes from the F centre located in the amorphous shell of the NWs. The implication of these findings and the sensitivity of XEOL for defect detection are discussed.

  17. Dynamic Crushing Response of Closed-cell Aluminium Foam at Variable Strain Rates

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Kader, M. A.; Escobedo, J. P.; Hazell, P. J.; Appleby-Thomas, G. J.; Quadir, M. Z.

    2015-06-01

    The impact response of aluminium foams is essential for assessing their crashworthiness and energy absorption capacity for potential applications. The dynamic compactions of closed-cell aluminium foams (CYMAT) have been tested at variable strain rates. Microstructural characterization has also been carried out. The low strain rate impact test has been carried out using drop weight experiments while the high strain compaction test has been carried out via plate impact experiments. The post impacted samples have been examined using optical and electron microscopy to observe the microstructural changes during dynamic loading. This combination of dynamic deformation during impact and post impact microstructural analysis helped to evaluate the pore collapse mechanism and impact energy absorption characteristics.

  18. One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ziheng, E-mail: ziheng.liu@unsw.edu.au; Hao, Xiaojing; Ho-Baillie, Anita

    In this work, one-step aluminium-assisted crystallization of Ge on Si is achieved via magnetron sputtering by applying an in-situ low temperature (50 °C to 150 °C) heat treatment in between Al and Ge depositions. The effect of heat treatment on film properties and the growth mechanism of Ge epitaxy on Si are studied via X-ray diffraction, Raman and transmission electron microscopy analyses. Compared with the conventional two-step process, the one-step aluminium-assisted crystallization requires much lower thermal budget and results in pure Ge epitaxial layer, which may be suitable for use as a virtual substrate for the fabrication of III-V solar cells.

  19. Hypervelocity sub 10-micron impacts into aluminium foil: new experimental data and implications for comet 81P/Wild-2's dust fluence

    NASA Astrophysics Data System (ADS)

    Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.; Horz, Friedrich; Cole, Mike J.

    2009-06-01

    Recent experimental work (Price, M. C. et. al., LPSC XXXX, #1564, 2009) has shown that the lip-to-lip diameter of hypervelocity impact craters at micron-scales (Dp< 10 microns) is a non-linear function of the impactor's diameter (Dp). We present data for monodisperse silica projectiles impacting aluminium-1100 and elemental aluminium at 6.1 kmsec and discuss the implications of this effect for the Stardust fluence calibration for micron-scale particles (which make up the majority of the impactor flux). Hydrocodes have been used to investigate the potential causes of the phenomena and the results are presented.

  20. Radical-Mediated Reactions of α-Bromo Aluminium Thioacetals, α-Bromothioesters, and Xanthates for Thiolactone Synthesis.

    PubMed

    McCourt, Ruairí O; Dénès, Fabrice; Scanlan, Eoin M

    2018-04-13

    Thiolactones have attracted considerable attention in recent years as bioactive natural products, lead compounds for drug discovery, molecular probes, and reagents for polymerisation. We have investigated radical-mediated C-C bond forming reactions as a strategy for thiolactone synthesis. Cyclisation of an α-bromo aluminium thioacetal was investigated under radical conditions. It was found that at low temperature, a radical fragmentation and rearrangement process occurs. A putative reaction mechanism involving a previously unreported aluminium templated thiol-ene step for the rearrangement process is presented. Cyclisation reactions of α-bromo thioesters and α-xanthate thioesters under radical mediated conditions furnished the desired thiolactones in moderate yields.

Top