Science.gov

Sample records for aluminum alloy aa

  1. Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    Stir Welded 7050 -T651 Aluminum , Acta 903 Mater., 2003, 51, p 713–729 904 14. O. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction...REPORT Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys 14. ABSTRACT 16. SECURITY...is combined with the basic physical metallurgy of two wrought aluminum alloys to predict/assess their FSW behaviors. The two alloys selected are AA5083

  2. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    273 7906. J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural 791Investigation of Friction Stir Welded 7050 -T651 Aluminum , Acta 792Mater...REPORT Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...During Friction Stir Welding of AA5059 Aluminum Alloys Report Title ABSTRACT Workpiece material flow and stirring/mixing during the friction stir welding

  3. Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.

    1991-01-01

    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys.

  4. Electrochemical test for predicting microbiologically influenced corrosion of aluminum and AA 7005 alloy

    SciTech Connect

    Ayllon, E.S. ); Rosales, B.M. )

    1994-08-01

    The susceptibility of pure aluminum (Al) and Aluminum Association (AA) 7005 alloy (UNS A97005) to pitting by microbiologically influenced corrosion (MIC) in an integral jet fuel tank was determined through polarization measurements. Usually, the most corrosive reported species is the fungus Hormonconis resinae. The effect of its proliferation on pure Al and AA 7005-T6 alloy was studied through anodic and cathodic potentiodynamic polarization. The type and relative amount of corrosion damage to the metal were determined. Morphology of the attack was analyzed by scanning electron microscopy (SEM). Distribution of the alloying elements was determined using energy dispersive x-ray analysis (EDXA).

  5. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Rajakumar, S.; Balasubramanian, V.

    2012-06-01

    AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.

  6. Interface Formation During Fusion™ Casting of AA3003/AA4045 Aluminum Alloy Ingots

    NASA Astrophysics Data System (ADS)

    Di Ciano, Massimo; Caron, E. J. F. R.; Weckman, D. C.; Wells, M. A.

    2015-12-01

    Fusion™ casting is a unique Direct Chill continuous casting process whereby two different alloys can be cast simultaneously, producing a laminated ingot for rolling into clad sheet metal such as AA3003/AA4045 brazing sheet. Better understanding of the wetting and interface formation process during Fusion™ casting is required to further improve process yields and also explore use of other alloy systems for new applications. In this research, AA3003-core/AA4045-clad ingots were cast using a well-instrumented lab-scale Fusion™ casting system. As-cast Fusion™ interfaces were examined metallurgically and by mechanical testing. Computational fluid dynamic analyses of the FusionTM casts were also performed. It was shown that the liquid AA4045-clad alloy was able to successfully wet and create an oxide-free, metallurgical, and mechanically sound interface with the lightly oxidized AA3003-core shell material. Based on the results of this study, it is proposed that the bond formation process at the alloys interface during casting is a result of discrete penetration of AA4045 liquid at defects in the preexisting AA3003 oxide, dissolution of underlying AA3003 by liquid AA4045, and subsequent bridging between penetration sites. Spot exudation on the AA3003 chill cast surface due to remelting and inverse segregation may also improve the wetting and bonding process.

  7. A study of continuously cast ingots of aluminum alloy AA2014 with increased ultrasonic characteristics

    NASA Astrophysics Data System (ADS)

    Nayan, Niraj; Agarwal, Alok; Govind; Jha, A. K.; Narayanan, P. Ramesh; Sreekumar, K.; Mittal, M. C.

    2011-10-01

    Ingots of aluminum alloy AA2014 obtained in a Wagstaff DC continuous casting machine and meeting the class "A" requirements of ultrasonic control by the method of damping of signal (AMS 2630B) are studied. The yield meeting these requirements is equal to only 20%. The causes of the low yield are determined.

  8. Springback analysis on AA 6061 aluminum alloy sheets

    NASA Astrophysics Data System (ADS)

    Ramulu, Perumalla Janaki; Rao, P. Srinivasa; Yimer, Wassihun

    2016-10-01

    In automotive industry, sheet metal forming process play a key role with respect to economy and weight reduction ratio. In sheet metal forming, one of the operations is bending operation in which sheet will not go under sever deformation. The end components are made by applying the continuous load on the sheet in the bending process. In bending process, elastic limits of materials are exceeded, but flow limit thereof cannot be exceeded. Therefore, the material still keeps a portion of its original flexibility character. When the load is released, the material on forcing compress side tries to enlarge, whereas the material on tensile side tries to shrink. As a result, the material tries to spring back and the bended material by flexing slightly tries to open. Springback varies according to thickness of the material, material and process parameters, type of material, period when punch load stays on the material, dimensions of die, force applied, and bending radius. In order to make bending at a desired angle, springback amounts should be avoided. In the present work, experimentation on AA 6061 alloy sheet springback analysis has done with seven different rolling directions. Results are noted with respect to load, displacement, and die angle on the springback effect. It observed that springback affect is existed notably in the AA 6061 alloys with respect to die angle.

  9. FRICTION-STIR-LAP-WELDS OF AA6111 ALUMINUM ALLOY

    SciTech Connect

    Yadava, Manasij; Mishra, Rajiv S.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.

    2007-01-09

    Lap joints of 1 mm thick AA6111 aluminum sheets were made by friction stir welding, using robotic and conventional machines. Welds were made for advancing as well as retreating side loading. Thinning in welds was quantified. Lap shear test of welds was conducted in as-welded and paint-baked conditions. Conventional machine welds showed less thinning and better strength than robotic machine welds. Process forces in conventional machine welding were higher. Paint bake treatment improved the weld strength; but the improvement varied with process parameters. Advancing side loaded welds achieved higher strength than the retreating side loaded welds. Fracture location was found to occur on the loaded side of the weld and along the thinning defect.

  10. [Comparison of texture distribution of cold rolled DC and CC AA 5052 aluminum alloy at different positions through thickness direction by XRD].

    PubMed

    Chen, Ming-biao; Ma, Min; Yang, Qing-xiang; Wang, Shan; Liu, Wen-chang; Zhao, Ying-mei

    2013-09-01

    To provide gist of DC AA 5052 and CC AA 5052 aluminum alloy to industry production and application, the texture variation of cold rolled sheets through thickness direction was studied by X-ray diffraction method, and the difference in texture at surface, quarter and center layer was analyzed. The hot plates of direct chill cast (DC) AA 5052 and continuous cast (CC) AA 5052 aluminum alloy were annealed at 454 degrees C for 4 hours and then cold rolled to different reductions. The strength and volume fraction of the fiber in CC AA 5052 aluminum alloy is larger than in DC AA 5052 aluminum alloy after same rolling reduction The volume fraction of the recrystallization texture cube in the CC AA 5052 aluminum alloy is less than in the DC AA 5052 aluminum alloy, which result in that CC AA 5052 aluminum alloy needs less cold rolling reduction than DC AA 5052 aluminum alloy for generating the texture with same intensity and volume fraction at surface layer, quarter layer and center layer. The manufacturability and performance of CC AA 5052 aluminum alloy is superior to DC AA 5052 aluminum alloy for use in stamping.

  11. Analysis of the flow property of aluminum alloy AA6016 based on the fracture morphology using the hydroforming technology

    NASA Astrophysics Data System (ADS)

    Lang, Lihui; Zhang, Quanda; Sun, Zhiying; Wang, Yao

    2017-09-01

    In this paper, the hydraulic bulging experiments were respectively carried out using AA6016-T4 aluminum alloy and AA6016-O aluminum alloy, and the deformation properties and fracture mechanism of aluminum alloy under the conditions of thermal and hydraulic were analyzed. Firstly, the aluminum alloy AA6016 was dealt with two kinds of heat treatment systems such as solid solution heat treatment adding natural ageing and full annealing, then the aluminum alloy such as AA6016-T4 and AA6016-O were obtained. In the same working environment, the two kinds of materials were used in the process of hydraulic bulging experiments, according to the observation and measurement of the deformation sizes of grid circles and material thicknesses near the fracture region, the flow properties and development trend of fracture defect of the materials were analyzed comprehensively from the perspective of qualitative analysis and quantitative analysis; Secondly, the two kinds of materials were sampled in different regions of the fracture area and the microstructure morphology of the fracture was observed by the scanning electron microscope (SEM). The influence laws of the heat treatment systems on the fracture defect of the aluminum alloy under the condition of the liquid pressure were studied preliminarily by observing the distribution characteristics of the fracture microstructure morphology of dimple. At the same time, the experimental research on the ordinary stamping forming process of AA6016-O was carried out and the influence law of different forming process on the fracture defect of the aluminum alloy material was studied by observing the distribution of the fracture microstructure morphology; Finally, the development process of the fracture defect of aluminum alloy sheet was described theoretically from the view of the stress state.

  12. Modeling the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Khamei, A. A.; Dehghani, K.; Mahmudi, R.

    2015-05-01

    Solutionized AA6061 aluminum alloy was processed by equal-channel angular pressing followed by cold rolling. The hot ductility of the material was studied after severe plastic deformation. The hot tensile tests were carried out in the temperature range of 300-500°C and at the strain rates of 0.0005-0.01 s-1. Depending on the temperature and strain rate, the applied strain level exhibited significant effects on the hot ductility, strain-rate sensitivity, and activation energy. It can be suggested that the possible mechanism dominated the hot deformation during tensile testing is dynamic recovery and dislocation creep. Constitutive equations were developed to model the hot ductility of the severe plastic deformed AA6061 alloy.

  13. Developing an Empirical Relationship to Predict Tensile Strength of Friction Stir Welded AA2219 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Elangovan, K.; Balasubramanian, V.; Babu, S.

    2008-12-01

    AA2219 aluminum alloy (Al-Cu-Mn alloy) has gathered wide acceptance in the fabrication of lightweight structures requiring a high strength-to-weight ratio and good corrosion resistance. Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the joint strength. An attempt has been made to develop an empirical relationship between FSW variables to predict tensile strength of the friction stir welded AA2219 aluminum alloy. To obtain the desired strength, it is essential to have a complete control over the relevant process parameters to maximize the tensile strength on which the quality of a weldment is based. Therefore, it is very important to select and control the welding process parameter for obtaining maximum strength. To achieve this various prediction methods such as response surface method (RSM), analysis of variance (ANOVA), Student’s t-test, coefficient of determination, etc., can be applied to define the desired output variables through developing mathematical models to specify the relationship between the output parameters and input variables. Four factors, five levels central composite design have been used to minimize number of experimental conditions. The developed mathematical relationship can be effectively used to predict the tensile strength of FSW joints of AA2219 aluminum alloy at 95% confidence level.

  14. Integral Hot Gas Pressure Forming of an AA2219 Aluminum Alloy Ellipsoidal Shell

    NASA Astrophysics Data System (ADS)

    Yuan, S. J.; Zhang, R.; Zhang, W. W.

    2017-02-01

    To overcome the poor plastic deformation performance of AA2219 aluminum alloy sheet and its weld seam at room temperature, an integral hot gas pressure forming (IHGPF) process for a combined welded ellipsoidal shell was proposed. A simulation of the IHGPF process was conducted to analyze the axis length variation and thickness distribution during the forming process of the combined welded ellipsoidal shell at elevated temperature. The results demonstrated that lengths of the short and long axes were 150 mm and 220 mm, respectively, and that maximum wall thinning occurred at the pole. Furthermore, an experiment was conducted using IHGPF, and the forming accuracy was measured by three-dimensional video technology. A sound ellipsoidal shell with final axis length ratio of 1.5 was obtained with a shell diameter accuracy of more than 99.3%. It was experimentally proven that an aluminum alloy ellipsoidal shell can be formed using the proposed IHGPF technology.

  15. Integral Hot Gas Pressure Forming of an AA2219 Aluminum Alloy Ellipsoidal Shell

    NASA Astrophysics Data System (ADS)

    Yuan, S. J.; Zhang, R.; Zhang, W. W.

    2017-04-01

    To overcome the poor plastic deformation performance of AA2219 aluminum alloy sheet and its weld seam at room temperature, an integral hot gas pressure forming (IHGPF) process for a combined welded ellipsoidal shell was proposed. A simulation of the IHGPF process was conducted to analyze the axis length variation and thickness distribution during the forming process of the combined welded ellipsoidal shell at elevated temperature. The results demonstrated that lengths of the short and long axes were 150 mm and 220 mm, respectively, and that maximum wall thinning occurred at the pole. Furthermore, an experiment was conducted using IHGPF, and the forming accuracy was measured by three-dimensional video technology. A sound ellipsoidal shell with final axis length ratio of 1.5 was obtained with a shell diameter accuracy of more than 99.3%. It was experimentally proven that an aluminum alloy ellipsoidal shell can be formed using the proposed IHGPF technology.

  16. Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075

    NASA Astrophysics Data System (ADS)

    Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.

    High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.

  17. Effect of cooling rate on microstructure of friction-stir welded AA1100 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yi, D.; Mironov, S.; Sato, Y. S.; Kokawa, H.

    2016-06-01

    In this work, the microstructural changes occurring during cooling of friction-stir welded aluminum alloy AA1100 were evaluated. To this end, friction-stir welding (FSW) was performed in a wide range of cooling rates of 20-62 K/s and the evolved microstructures were studied by using electron backscatter diffraction. Below 0.6 Tm (Tm being the melting point), the stir zone material was found to experience no significant changes during cooling. At higher FSW temperatures, however, notable changes occurred in the welded material, including grain growth, sharpening of texture, reduction of the fraction of high-angle boundaries and material softening.

  18. Microstructure and Salt Fog Corrosion Behavior of AA2219 Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, G.; Subba Rao, V. V.; Rao, S. R. K.

    2017-07-01

    Plates (8.1-mm-thick) from aluminum alloy AA2219-T87 are studied after friction stir welding. The plates are subjected to salt fog corrosion tests according to ASTM B117 at different pH values and different spraying times. The regions affected by corrosion are studied in different zones of welded joints by the methods of optical and transmission electron microscopy. The corrosion resistance is determined in acid, basic and neutral solutions. The resistances of the base metal and of the zones of welded joints are compared.

  19. Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints

    SciTech Connect

    Elangovan, K.; Balasubramanian, V.

    2008-09-15

    This paper reports on studies of the influences of various post-weld heat treatment procedures on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Rolled plates of 6-mm thick AA6061 aluminum alloy were used to fabricate the joints. Solution treatment, an artificial aging treatment and a combination of both were given to the welded joints. Tensile properties such as yield strength, tensile strength, elongation and joint efficiency were evaluated. Microstructures of the welded joints were analyzed using optical microscopy and transmission electron microscopy. A simple artificial aging treatment was found to be more beneficial than other treatment methods to enhance the tensile properties of the friction stir-welded AA6061 aluminum alloy joints.

  20. The Solidification Behavior of AA2618 Aluminum Alloy and the Influence of Cooling Rate.

    PubMed

    Liu, Yulin; Liu, Ming; Luo, Lei; Wang, Jijie; Liu, Chunzhong

    2014-12-09

    In AA2618 aluminum alloy, the iron- and nickel-rich intermetallics formed during solidification are of great effect on the mechanical properties of the alloy at both room temperature and elevated temperatures. However, the solidification behavior of the alloy and the formation mechanism of the intermetallics during solidification of the alloy are not clear. This research fills the gap and contributes to understanding the intermetallic of the alloy. The results showed that cooling rate was of great influence on the formation of the intermetallics. Under the condition of slow cooling, the as-cast microstructures of the alloy were complex with many coarse eutectic compounds including Al₉FeNi, Al₇(CuNi)₅, Si, Al₂Cu and Al₂CuMg. The phase Al₉FeNi was the dominant intermetallic compound, which precipitated at the earlier stage of the solidification by eutectic reaction L → α-Al + Al₉FeNi. Increasing the cooling rate would suppress the formation of the coarse eutectic intermetallics. Under the condition of near-rapid cooling, the as-cast microstructures of the alloy consisted of metastable intermetallics Al₉FeNi and Al₂Cu; the equilibrium eutectic compounds were suppressed. This research concluded that intermetallics could be refined to a great extent by near-rapid cooling.

  1. The Solidification Behavior of AA2618 Aluminum Alloy and the Influence of Cooling Rate

    PubMed Central

    Liu, Yulin; Liu, Ming; Luo, Lei; Wang, Jijie; Liu, Chunzhong

    2014-01-01

    In AA2618 aluminum alloy, the iron- and nickel-rich intermetallics formed during solidification are of great effect on the mechanical properties of the alloy at both room temperature and elevated temperatures. However, the solidification behavior of the alloy and the formation mechanism of the intermetallics during solidification of the alloy are not clear. This research fills the gap and contributes to understanding the intermetallic of the alloy. The results showed that cooling rate was of great influence on the formation of the intermetallics. Under the condition of slow cooling, the as-cast microstructures of the alloy were complex with many coarse eutectic compounds including Al9FeNi, Al7(CuNi)5, Si, Al2Cu and Al2CuMg. The phase Al9FeNi was the dominant intermetallic compound, which precipitated at the earlier stage of the solidification by eutectic reaction L → α-Al + Al9FeNi. Increasing the cooling rate would suppress the formation of the coarse eutectic intermetallics. Under the condition of near-rapid cooling, the as-cast microstructures of the alloy consisted of metastable intermetallics Al9FeNi and Al2Cu; the equilibrium eutectic compounds were suppressed. This research concluded that intermetallics could be refined to a great extent by near-rapid cooling. PMID:28788281

  2. Development of Processing Maps and Constitutive Relationship for Thermomechanical Processing of Aluminum Alloy AA2219

    NASA Astrophysics Data System (ADS)

    Narayana Murty, S. V. S.; Sarkar, Aditya; Ramesh Narayanan, P.; Venkitakrishnan, P. V.; Mukhopadhyay, J.

    2017-05-01

    Isothermal uniaxial compression tests were conducted on aluminum alloy AA2219 to study the evolution of microstructure over a wide range of temperatures (300-500 °C) and strain rates (0.001-100 s-1) with a view to study the flow behavior and concurrent microstructural evolution. True stress-true strain curves showed only a gradual flow softening at all temperatures except at 300 °C where strain hardening was followed by severe flow softening. Processing map delineating the stable `safe' and unstable `unsafe' regions during hot working is developed and validated by comparing the microstructures observed in the deformed compression specimens. Optimum processing parameters (temperature 450 °C and strain rate 0.001 s-1) for hot deformation of AA2219 were proposed based on contour maps of efficiency of power dissipation and strain rate sensitivity parameter. The activation energy value ( Q avg) of AA2219 for hot working was computed to be 169 kJ/mol. Finally, a constitutive equation for hot working of AA2219 was established as: \\dot{ɛ} = 4.99 × 109 \\cdot \\exp (0.06149σ ) \\cdot \\exp ( { - 168.958/RT} ).

  3. Microstructure, Macrosegregation, and Thermal Analysis of Direct Chill Cast AA5182 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jamaly, N.; Haghdadi, N.; Phillion, A. B.

    2015-05-01

    The variation in microstructure, macrosegregation, and solidification behavior during aluminum alloy Direct Chill casting is investigated with respect to geometry. Optical microscopy, energy-dispersive analysis, and differential scanning calorimetry were employed to study the grain size evolution, distribution of alloying elements, and solidification sequence across the cross section of DC cast AA5182 aluminum alloy. The results show that (1) grain size increases from the surface to center of the ingot, corresponding to a decrease in the heat extraction rate; (2) there is a considerable macrosegregation of Mg, Mn, and Cr, with Mg showing negative segregation at the center and positive segregation at the surface, Mn showing negative segregation both at center and surface and positive segregation elsewhere, and Cr showing positive segregation at the center and negative segregation at the surface; (3) the solidus and the reaction temperatures vary as a function of position due to the local chemical composition and cooling rate. These findings, which show the interconnectivity of grain size, segregation, and solidification sequence, are useful in further analysis of the DC casting process and in predicting casting-related defects, specifically hot tear formation.

  4. The optimized mechanical properties of the new aluminum alloy AA 6069

    SciTech Connect

    Bergsma, S.C.; Kassner, M.E.; Li, X.; Delos-Reyes, M.A.; Hayes, T.A.

    1996-02-01

    AA 6069, a new aluminum alloy, has been developed for application in hot and cold extrusion and forging. It contains {approximately}2 Mg + Si, {approximately}1% Cu, 0.2% Cr, and 0.1% V. Nominal T6 properties of the ingot without hot or cold deformation are 415 MPa (60 ksi) ultimate tensile strength (UTS), 380 MPa (55 ksi) yield strength, and 12% elongation. Properties after hot and cold extrusion in the T6 condition rate from 380 to 490 MPa (55 to 71 ksi) UTS, 345 to 450 MPa (50 to 65 ksi) yield strength, and 10 to 22% elongation. This alloy also has favorable fatigue and corrosion-fatigue properties due to a combination of composition, high solidification rate, controlled homogenization, thermal and mechanical processing, and T6 practice. Current development applications include cold-impact air-bag components, high-pressure cylinders, and automotive suspension and drive-train parts. Unlike alloys 2024-T3 and 7129-T6, of comparable strength, diluted 6069 is scrap compatible with many other 5xxx and 6xxx alloys.

  5. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  6. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  7. Fatigue Behavior of Oil Jet Peened Aluminum Alloy, AA 6063-T6

    NASA Astrophysics Data System (ADS)

    Grinspan, Alphonse Sahaya; Gnanamoorthy, Rajappa

    Oil jet peening is a new surface modification process developed for the introduction of compressive residual stresses. This paper describes the effect of oil jet peening on the fatigue performance of aluminum alloy, AA 6063-T6. Specimens were peened at an oil injection pressure of 40 MPa with various nozzle-traveling velocities. Each impact of oil droplet generates an indentation on the surface of specimen. The surface roughness increases with decreasing nozzle-traveling velocity. The maximum compressive residual stress developed is about 75% of yield strength. Fatigue life depends on the compressive residual stress as well as surface roughness of oil jet peened specimens. Fracture mechanism of unpeened and oil jet peened specimens were studied using optical and scanning electron microscopes.

  8. The effect of microstructure on cavitation during hot deformation in fine-grained AA5083 aluminum alloy sheet material

    NASA Astrophysics Data System (ADS)

    Chang, Jung-Kuei

    Aluminum alloys are of great interest to the automobile industry for vehicle mass reduction, which improves vehicle performance and reduces emissions. Hot forming processes, such as superplastic forming (SPF) and quick-plastic forming (QPF) have been developed to take advantage of the improved formability of certain aluminum materials at elevated temperature. Commercial fine-grained aluminum alloy AA5083 sheet is the most commonly used material in the SPF and QPF forming processes. Hot formability of AA5083 is often limited by material cavitation during forming, which makes understanding and controlling cavitation an issue of primary importance for improving hot sheet forming processes. The thermomechanical processing history of AA5083 can strongly affect superplastic performance, causing variations in formability between material lots. These variations are closely related to microstructure, and intermetallic particles are prime suspects for controlling cavitation behavior. However, there has been little more than anecdotal evidence available that these particles nucleate or influence cavitation. Interactions between intermetallic particles and cavities were, thus, analyzed using both two-dimensional (2-D) and three-dimensional (3-D) microstructure characterization techniques. Analysis of 3-D microstructures from AA5083 specimens deformed under conditions similar to the SPF and QPF processes provide conclusive proof that cavities form at specific types of intermetallic particles. Differences in cavitation between materials deformed under the SPF and QPF processes result from differences in deformation mechanisms. These differences are illustrated by the formation of filaments on fracture surfaces of superplastically deformed AA5083 specimens, which have been characterized.

  9. Effect of Postweld Aging Treatment on Fatigue Behavior of Pulsed Current Welded AA7075 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Balasubramanian, V.; Ravisankar, V.; Madhusudhan Reddy, G.

    2008-04-01

    This article reports the effect of postweld aging treatment on fatigue behavior of pulsed current welded AA 7075 aluminum alloy joints. AA7075 aluminum alloy (Al-Zn-Mg-Cu alloy) has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers, and railway transport systems. The preferred welding processes of AA7075 aluminum alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Rolled plates of 10 mm thickness have been used as the base material for preparing multipass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al-5Mg (wt.%)) grade aluminum alloy. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW), and (iv) pulsed current GMAW (PCGMAW) processes. Argon (99.99% pure) has been used as the shielding gas. Rotary bending fatigue testing machine has been used to evaluate fatigue behavior of the welded joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. Grain refinement is accompanied by an increase in fatigue life and endurance limit. Simple postweld aging treatment applied to the joints is found to be beneficial to enhance the fatigue performance of the welded joints.

  10. Some observations on cyclic deformation structures in the high-strength commercial aluminum alloy AA 7150

    SciTech Connect

    Hanlon, D.N.; Rainforth, W.M.

    1998-11-01

    Load-controlled fatigue testing of the aluminum alloy AA 7150 has been conducted using four-point bending with an R ratio of + 0.1 over a range of maximum stress levels from 60 to 120% of the 0.2% proof stress. The alloy, in the form of 12.5-mm rolled plate, was investigated in underaged (UA), peak-aged (PA), and overaged (OA) conditions, corresponding to a change in average precipitate sizes from 5 nm in the UA condition to 21 nm in the OA condition. Three orientations of the plate were investigated. Orientation and aging condition influenced the degree of surface topographical development but not fatigue life. Detailed transmission electron microscopy (TEM) of the fatigued surface indicated that deformation in all aging conditions occurred by planar slip. Slip was generally restricted to a single slip system within each grain, and subgrain boundaries offered little resistance to dislocation movement facilitating long slip line lengths (measured up to 310 {micro}m) between adjacent high-angle grain boundaries. Planar slip observed in the OA condition is attributed to shearing of large strengthening precipitates, which is promoted by long slip line lengths. No evidence of surface specific changes in slip character was observed.

  11. Experimental investigation of micro-channels produced in aluminum alloy (AA 2024) through laser machining

    NASA Astrophysics Data System (ADS)

    Ahmed, Naveed; Alahmari, Abdulrahman M.; Darwish, Saied; Khan, Awais Ahmad

    2016-11-01

    Aluminum and its alloys are growingly used in various applications including micro-channel heat exchangers and heat sinks to facilitate heat transfer though micro-fluidic flows. Micro-channels with precise control over geometrical features are very important in order to design micro-fluidic flow dynamics and its characteristics. In this research, Nd:YAG laser beam micro-milling has been utilized to produce micro-channels in aluminum alloy (AA 2024) having cross-sectional size of 400 × 200 µm2. The objective was to control the material removal rate (MRR) of the process in order to get the micro-channels' geometries (width, depth and taperness of sidewalls) close to the designed geometries. In this context, parametric effects of predominant laser parameters on the process performance have been categorically studied. Quadratic mathematical models have further been developed to estimate the MRR and each geometrical aspect of micro-channels over different levels of laser parameters. Additionally, multi-objective optimization has been performed to get an optimized set of laser parameters generating the accurate machining geometries with appropriate material removal per laser scan. Finally, the models and optimization results were validated through confirmatory experimental tests. The results reveal that the précised micro-channel geometries can be obtained through laser beam micro-milling by selecting the appropriate combination of laser parameters (lamp current intensity of 84.48 %, laser pulse frequency of 35.70 kHz and laser scanning speed of 300 mm/s) that can collectively remove a required amount of material thickness per laser scan.

  12. Effect of Nano-crystalline Ceramic Coats Produced by Plasma Electrolytic Oxidation on Corrosion Behavior of AA5083 Aluminum Alloy

    SciTech Connect

    Thayananth, T.; Muthupandi, V.; Rao, S. R. Koteswara

    2010-10-04

    High specific strength offered by aluminum and magnesium alloys makes them desirable in modern transportation industries. Often the restrictions imposed on the usage of these alloys are due to their poor tribological and corrosion properties. However, their corrosion properties can be further enhanced by synthesizing ceramic coating on the substrate through Plasma Electrolytic Oxidation (PEO) process. In this study, nano-crystalline alumina coatings were formed on the surface of AA5083 aluminum alloy test coupons using PEO process in aqueous alkali-silicate electrolyte with and without addition of sodium aluminate. X-ray diffraction (XRD) studies showed that the crystallite size varied between 38 and 46 nm and {alpha}- and {gamma}- alumina were the dominant phases present in the coatings. Corrosion studies by potentiodynamic polarization tests in 3.5% NaCl revealed that the electrolyte composition has an influence on the corrosion resistance of nano-crystalline oxide layer formed.

  13. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  14. Microstructure and Mechanical Properties of Cryorolled Aluminum Alloy AA2219 in Different Thermomechanical Processing Conditions

    NASA Astrophysics Data System (ADS)

    Sarkar, Aditya; Saravanan, K.; Nayan, Niraj; Murty, S. V. S. Narayana; Narayanan, P. Ramesh; Venkitakrishnan, P. V.; Mukhopadhyay, J.

    2017-01-01

    In the present study, aluminum alloy AA2219-T87 bars were cryorolled to various amounts of deformation in two pre-deformation conditions: (1) without solution treatment i.e., as-received T87 (WST-CR) and (2) with solution treatment (ST + CR). The solution treated and cryorolled bars were further annealed leading to a third condition: (3) solution treated, cryorolled, and annealed (CR + Annealed). Room-temperature mechanical properties have been evaluated for all three cryorolled conditions. Significant improvement in the 0.2 pct YS and UTS values was obtained for bars cryorolled to cross-sectional area reduction of more than 50 pct in the solution-treated condition (ST + CR), whereas for bars cryorolled in the without solution-treated condition (WST-CR), only an improvement in the 0.2 pct YS was observed. Cryorolling did not enhance the precipitation kinetics nor did it increase the response of the alloy to aging. The mechanical properties were correlated to the microstructures obtained by optical and transmission electron microscopy. Microstructural evolution in the ST + CR condition indicated gradual progression of the principal restoration mechanism from dynamic recovery (DRV) to dynamic recrystallization with an increasing amount of plastic deformation. Transmission electron microscopy of WST-CR and ST + CR specimens showed an increase in dislocation density as a function of the amount of deformation indicating suppression of DRV at cryogenic temperatures. Cryorolling in the solution-treated condition to cross-sectional area reduction of more than 50 pct (ST + 70 pct CR) was found to impart an optimum combination of strength and percent elongation in the present study.

  15. Evaluation of Vitreous and Devitrifying Enamels as Hot Forming Lubricants for Aluminum AA5083 Alloy

    NASA Astrophysics Data System (ADS)

    Riahi, A. R.; Morales, A. T.; Alpas, A. T.

    2008-06-01

    The adhesion of aluminum to tool surfaces during the hot forming of sheet aluminum alloys presents challenging tribological problems. Graphite and boron nitride are commonly used as aluminum adhesion mitigating solid lubricants for hot forming processes, but lubricant breakdown in high-stress areas, such as corners and bends, remains an issue compromising the quality of the formed parts as well as the tool life. Low-melting temperature enamels may provide an affordable and easy to apply alternative. In this study, vitreous (amorphous glass) and devitrifying (two phase crystalline glass) layers were deposited on the surface of sheet aluminum samples with a sedimentation technique. Enamel lubrication was effective in preventing aluminum transfer to the steel counterface. Hence, the prospect exists for the use of these enamels as aluminum workpiece lubricants in hot forming operations.

  16. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Rajendrana, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2017-01-01

    AA2014 aluminum alloy (Al-Cu alloy) has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW) parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE), analysis of variance (ANOVA), response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  17. Corrosion of AA 7075 aluminum alloy in media contaminated with Cladosporium resinae

    SciTech Connect

    Ayllon, E.S.; Rosales, B.M. )

    1988-09-01

    In an aircraft fuel, microbial contamination creates serious corrosion problems. The wing tank bottom and sides are affected by the growth of a biological sludge associated with the condensed water. The behavior of the AA 7075 Al alloy in a culture of the principal contaminant, the fungus Cladosporium resinae, is determined. The influences of other microbial contaminants of the medium, alloying elements, and surface heterogeneities of the alloy in the nucleation and propagation of the pitting are analyzed. The electrochemical treatments applied reproduce the attack observed in service conditions.

  18. Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints

    NASA Astrophysics Data System (ADS)

    Babu, S.; Elangovan, K.; Balasubramanian, V.; Balasubramanian, M.

    2009-04-01

    AA2219 aluminium alloy (Al-Cu-Mn alloy) has gathered wide acceptance in the fabrication of lightweight structures requiring a high strength-to-weight ratio and good corrosion resistance. In contrast to the fusion welding processes that are routinely used for joining structural aluminium alloys, the friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force etc., and the tool pin profile play a major role in determining the joint strength. An attempt has been made here to develop a mathematical model to predict the tensile strength of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. A central composite design with four factors and five levels has been used to minimize the number of experimental conditions. The response surface method (RSM) has been used to develop the model. The developed mathematical model has been optimized using the Hooke and Jeeves search technique to maximize the tensile strength of the friction stir welded AA2219 aluminium alloy joints.

  19. Experimental Investigation on Friction Stir Welding of Cryorolled AA2219 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Babu, K. Kamal; Panneerselvam, K.; Sathiya, P.; Haq, A. Noorul; Sundarrajan, S.; Mastanaiah, P.; Murthy, C. V. Srinivasa

    2017-07-01

    In this paper, experimental investigation on cryorolled aluminum AA2219-T87 plate by using friction stir welding (FSW) process is carried out. AA2219-T87 plates with a size of 200×100×22.4 mm were rolled and reduced to 12.2mm thickness (more than 45% of reduction in total thickness of the base material) at cryogenic temperature (operating temperature range -90--30∘C). The cryorolled (CR) plates have reduced grain size, improved hardness and increased corrosion resistance property compared with the uncryorolled AA2219-T87 plates. FSW joints of cryorolled AA2219-T87 plates were prepared using cylindrical threaded FSW tool pin profile. Mechanical and metallurgical behaviors of friction stir welded joints were analyzed and the effects of the FSW process parameters are discussed in this paper. The variation of microhardness in the FSW joint regions were correlated with the microstructure of FSW joints. Cryorolled plate and FSW joints were tested for corrosion resistance using potentiodynamic polarization test. FSW joints shows better result during the corrosion resistance analysis compared to base AA2219-T87. The X-ray diffraction (XRD) test results showed that fine α-Al grains with eutectic phase (Al2Cu) were present in the weld nugget (WN). The large clusters of strengthening precipitates were reduced in size and merged with the weld nugget portion.

  20. Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014

    NASA Astrophysics Data System (ADS)

    Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.

    2013-01-01

    Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.

  1. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

    NASA Astrophysics Data System (ADS)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2016-12-01

    In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

  2. Correlation between Electrical Resistivity, Particle Dissolution, Precipitation of Dispersoids, and Recrystallization Behavior of AA7020 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Eivani, A. R.; Ahmed, H.; Zhou, J.; Duszczyk, J.

    2009-10-01

    This research concerns the effect of homogenization treatment on the electrical resistivity of AA7020 aluminum alloy variants with different Zr and Cr contents. Small changes in the Zr and Cr contents of the as-cast alloy increase the electrical resistivity significantly. After employing various homogenization treatments, the electrical resistivity decreases, which is due to the depletion of Zr, Cr, and Mn in the matrix, by forming small dispersoids. The optimum treatment proposed in order to obtain the smallest recrystallized grains is to hold the material at 550 °C for 24 hours, which results in the lowest electrical resistivity. The viability of the proposed treatment was tested through hot compression tests and static annealing. Indeed, the samples homogenized at 550 °C for 24 hours showed the smallest recrystallized grains compared to those homogenized at other temperatures.

  3. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

    NASA Astrophysics Data System (ADS)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-04-01

    In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

  4. Through-thickness recrystallization characteristics of a laminated AA3xxx–AA6xxx aluminum alloy system

    SciTech Connect

    Liao, L.H.; Jin, H.; Gallerneault, M.; Esmaeili, S.

    2015-03-15

    The through-thickness annealing behavior of a laminated AA3xxx–AA6xxx alloy system at 300 °C has been studied by scanning electron microscopy, electron backscatter diffraction analysis, electron probe micro-analysis, differential scanning calorimetry, and hardness measurement. Results show that the recrystallization process starts at the interface region between the AA3xxx (clad) and AA6xxx (core) layers. Subsequently, the recrystallization process front progresses into the core layer, while the clad layer is the last region to recrystallize. It is also found that precipitation precedes recrystallization in the entire laminate at the investigated temperature. The preferential onset of recrystallization at the interface region is attributed to the net driving pressure being the highest in this region. The factors that lead to such enhanced net driving pressure are (a) deformation incompatibility between the two alloy layers, (b) lower solute content of the interface, which also leads to lower volume fraction of precipitates, and (c) an accelerated rate of precipitate coarsening due to the presence of a higher density of dislocations. The gradual progress of recrystallization from the interface towards the core layer is dictated by precipitate coarsening and the dependence of its rate on the density of deformation-induced dislocations. The lower driving pressure due to lower work hardening capacity, high solute drag pressure due to Mn, and additional Zener drag from precipitates that form due to solute redistribution during annealing explain the late initiation of recrystallization in the clad layer. - Highlights: • The through-thickness recrystallization of a laminated system is investigated. • The early onset of recrystallization at the interface is discussed. • The effects of precipitation and coarsening on recrystallization are analyzed.

  5. A Through Process Model for Extruded AA3xxx Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Poole, W. J.; Wells, M. A.; Parson, N. C.

    The application of extruded AA3xxx aluminum tubing in automotive heat exchanger systems is a growth area. This work involves the development of a series of linked mathematical models which describe microstructure evolution as a function of processing conditions including homogenization, hot extrusion and the final brazing heat treatment. It is necessary to link the processes and track microstructure through the processes in order to predict final microstructure and properties of the aluminum in heat exchanger applications. For example, the homogenization step is critical to control the morphology, shape and spatial distribution of second phase particles, i.e. dispersoids and constituent particles. The results of i) a chemistry dependent finite difference model for homogenization, ii)a finite element based hot extrusion model and iii) a model for cold work and annealing model will be described with emphasis on the successes of the model but the challenges for future work will also be addressed.

  6. Influences of post weld heat treatment on tensile strength and microstructure characteristics of friction stir welded butt joints of AA2014-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2016-08-01

    Friction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.

  7. Full Field Measurement of The Dynamic Response of AA6061-T6 Aluminum Alloy under High Strain Rate Compression and Torsion Loads

    NASA Astrophysics Data System (ADS)

    Odoh, Daniel Oghenekewhe Oluwatobi

    The dynamic response of AA6061-T6 aluminum alloy under high strain rate loading in compression and torsion loading conditions was studied using the split Hopkinson pressure bar, the Kolsky torsion bar, and the high speed digital image correlation system. AA6061-T6 alloy, the most widely used in the AA6000 series, is a multi-purpose Al-Mg-Si-Cu alloy containing about 0.4 % wt. of Cu and other alloying additives. The properties of AA6061-T6 aluminum alloy including medium to high strength, good fracture toughness, and high corrosion resistance make it to find application in high performance structures such as the automotive parts, panels, and armored carriers. In this work, the effect of strain rate during dynamic test on formation of adiabatic shear bands in AA6061-T6 alloy was investigated. A post deformation analysis of the tested specimen was performed in order to determine the damage evolution and strain localization along the narrow adiabatic shear bands within the specimen. The formation of an adiabatic shear band in the aluminum alloy tested was found to depend on the strain rate at which the test was conducted. Stress, strain, and strain rate data obtained from the elastic waves in the compression and torsion bar tests were also compared with those obtained using the high speed digital cameras. Results show good agreement between both measurement techniques with the 3D digital image correlation technique giving a slightly lower result. Scanning and electron microscopy results show that both deformed and transformed bands can be formed in AA6061-T6 alloy during dynamic loading. The type of adiabatic shear band formed depends on the strain rate at which test was performed.

  8. SUPERPLASTIC MICROSTRUCTURE OF MODIFIED AA-5083 ALUMINUM ALLOY PROCESSED BY EQUAL CHANNEL ANGULAR EXTRUSION

    SciTech Connect

    Herling, Darrell R.; Smith, Mark T.

    2000-01-12

    The Equal Channel Angular Extrusion (ECAE) process offers several potential advantages in the processing of SPF-grade aluminum alloys. The ability of the ECAE process to achieve high levels of work through localized shearing can develop a well defined subgrain structure and provide a mechanism for distributing the eutectic constituent particles and dispersoids that play a critical role in the recrystallization process and resulting thermally stable fine-grain size. In addition, with ECAE there is the unique ability to achieve these desirable microstructures in bulk form, without reducing the dimensions of the starting material, as is the case in conventional processing of SPF materials. The objective of this work was to process, via ECAE, a 5000-series aluminum alloy in bulk-form to produce a fine-grain (~1 mm), thermally stable SPF microstructure. Previous work performed at Pacific Northwest National Laboratory on modified 5000-series alloys identified several compositional features that assist in developing a fine, thermally stable microstructure required for SPF. These modifications, which include an increase in Mn level and the addition of Zr, develop fine dispersoids that assist in grain refinement and control excessive grain growth at SPF temperatures. This research work was sponsored by the Office of Heavy Vehicle Technologies within the Department of Energy-Office of Transportation Technologies.

  9. A computational study of low-head direct chill slab casting of aluminum alloy AA2024

    NASA Astrophysics Data System (ADS)

    Hasan, Mainul; Begum, Latifa

    2016-04-01

    The steady state casting of an industrial-sized AA2024 slab has been modeled for a vertical low-head direct chill caster. The previously verified 3-D CFD code is used to investigate the solidification phenomena of the said long-range alloy by varying the pouring temperature, casting speed and the metal-mold contact heat transfer coefficient from 654 to 702 °C, 60-180 mm/min, and 1.0-4.0 kW/(m2 K), respectively. The important predicted results are presented and thoroughly discussed.

  10. Investigation into the stress corrosion cracking properties of AA2099, an aluminum-lithium-copper alloy

    NASA Astrophysics Data System (ADS)

    Padgett, Barbara Nicole

    Recently developed Al-Li-Cu alloys show great potential for implementation in the aerospace industry because of the attractive mix of good mechanical properties and low density. AA2099 is an Al-Li-Cu alloy with the following composition Al-2.69wt%Cu-1.8wt%Li-0.6wt%Zn-0.3wt%Mg-0.3wt%Mn-0.08wt%Zr. The environmental assisted cracking and localized corrosion behavior of the AA2099 was investigated in this thesis. The consequences of uncontrolled grain boundary precipitation via friction stir welding on the stress corrosion cracking (SCC) behavior of AA2099 was investigated first. Using constant extension rate testing, intergranular corrosion immersion experiments, and potentiodynamic scans, the heat-affected zone on the trailing edge of the weld (HTS) was determined to be most susceptible of the weld zones. The observed SCC behavior for the HTS was linked to the dissolution of an active phase (Al2CuLi, T1) populating the grain boundary. It should be stated that the SCC properties of AA2099 in the as-received condition were determined to be good. Focus was then given to the electrochemical behavior of precipitate phases that may occupy grain and sub-grain boundaries in AA2099. The grain boundary micro-chemistry and micro-electrochemistry have been alluded to within the literature as having significant influence on the SCC behavior of Al-Li-Cu alloys. Major precipitates found in this alloy system are T1 (Al 2CuLi), T2 (Al7.5Cu4Li), T B (Al6CuLi3), and theta (Al2 Cu). These phases were produced in bulk form so that the electrochemical nature of each phase could be characterized. It was determined T1 was most active electrochemically and theta was least. When present on grain boundaries in the alloy, electrochemical behavior of the individual precipitates aligned with the observed corrosion behavior of the alloy (e.g. TB was accompanied by general pitting corrosion and T 1 was accompanied by intergranular corrosion attack). In addition to the electrochemical behavior of

  11. Brazing dissimilar aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dalalian, H.

    1979-01-01

    Dip-brazing process joins aluminum castings to aluminum sheet made from different aluminum alloy. Process includes careful cleaning, surface preparation, and temperature control. It causes minimum distortion of parts.

  12. A synergistic combination of tetraethylorthosilicate and multiphosphonic acid offers excellent corrosion protection to AA1100 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Dalmoro, Viviane; dos Santos, João H. Z.; Armelin, Elaine; Alemán, Carlos; Azambuja, Denise S.

    2013-05-01

    This work describes a new mechanism for the incorporation of organophosphonic acid into silane self-assembly monolayers, which has been used to protect AA1100 aluminum alloy. The protection improvement has been attributed to the fact that phosphonic structures promote the formation of strongly bonded and densely packed monolayer films, which show higher surface coverage and better adhesion than conventional silane systems. In order to evaluate the linking chemistry offered by phosphonic groups, two functionalized organophosphonic groups have been employed, 1,2-diaminoethanetetrakis methylenephosphonic acid (EDTPO) and aminotrimethylenephosphonic acid (ATMP), and combined with tetraethylorthosilicate (TEOS) films prepared by sol-gel synthesis. Results suggest that phosphonic acids may interact with the surface through a monodentate and bidentate coordination mode and, in addition, form one or more strong and stable linkages with silicon through non-hydrolysable bonds. Therefore, the incorporation of a very low concentration of phosphonic acids on TEOS solutions favors the complete coverage of the aluminum substrate during the silanization process, which is not possible using TEOS alone. The linking capacity of phosphonic acid has been investigated by FTIR-RA spectroscopy, SEM and EDX analysis, X-ray photoelectron spectroscopy (XPS), and quantum mechanical calculations. Finally, electrochemical impedance spectroscopy has been used to study the corrosion protection revealing that EDTPO-containing films afforded more protection to the AA1100 substrate than ATMP-containing films.

  13. Microstructure, Hardness and Impact Toughness of Heat-Treated Nanodispersed Surface and Friction Stir-Processed Aluminum Alloy AA7075

    NASA Astrophysics Data System (ADS)

    Refat, M.; Elashery, A.; Toschi, S.; Ahmed, M. M. Z.; Morri, A.; El-Mahallawi, I.; Ceschini, L.

    2016-11-01

    Friction stir processing (FSP) is a recent surface engineering processing technique that is gaining wide recognition for manufacturing nanodispersed surface composites, which are of high specific strength, hardness and resistance to wear and corrosion. Herein, four-pass FSP was applied on aluminum alloy 7075 (AA7075-O) with and without the addition of alumina nanoparticles (Al2O3) of average size 40 nm. All FSP parameters were constant at 40 mm/min transverse speed, 500 rpm and tilt angle of 3°. FSP rotation direction was reversed every other pass. The friction stir-processed materials were sectioned and solution treated at 515 °C for 1.5 h, followed by age hardening at 120 °C for 12, 24, 36, 48 and 60 h. The effect of heat treatment regimes on microstructure, hardness and toughness was examined, as well as the fracture mode. The new friction stir-processed surfaces without and with nanodispersion showed enhancement in the hardness of the surface of the AA7075-O material (65 HV) to almost a double (100 and 140 HV) after four-pass FSP (before heat treatment) without and with incorporating nanoalumina particles, respectively. After 48-h aging at 120 °C, a significant enhancement in impact toughness was achieved for both the friction stir-processed without and with nanodispersion (181 and 134 J, respectively), compared to the reference material AA7075 in T6 condition (104 J).

  14. Corrosion Fatigue Mechanism on Hot-Forged AA6082 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Saleema, N.; Gauthier, P.; Chen, X.-G.

    An attempt has been made to understand the corrosion fatigue phenomenon in AA6082 aluminum hot-forged parts. Fatigue and corrosion fatigue experiments of forged parts produced by two different feedstock materials have been performed in the lab air and in a corrosive 3.5% NaCl solution under different stress levels. The scanning electron microscopy was used to study the rupture and to identify failure modes. With corrosion and mechanical stress working together, the failure occurred earlier in the specimens subjected to a 3.5% NaCl solution as compared to those subjected to the lab air irrespective of the material forms (cast-forged or extruded-forged). The corrosion fatigue performance of these specimens with different stress levels as well as the crack initiation and propagation were elaborated. It was found that there is no significant variation in corrosion fatigue resistance for final cast-forged and extruded-forged products.

  15. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  16. Effect of the Number of Welding Repairs with GTAW on the Mechanical Behavior of AA7020 Aluminum Alloy Welded Joints

    NASA Astrophysics Data System (ADS)

    Maya-Johnson, Santiago; Santa, Juan Felipe; Mejía, Oscar L.; Aristizábal, Santiago; Ospina, Sebastian; Cortés, Paula Andrea; Giraldo, Jorge Enrique

    2015-10-01

    In this work, two different tests were done to establish the effect of heating cycles by welding in an AA7020-T6 aluminum alloy welded with ER5087 and ER5356 electrodes. During 10 months, welds were done to simulate in the laboratory several welding repairs (up to six repairs). Tensile and hardness measurements were done to evaluate the evolution of the properties against time. It was found that a single pass is enough to generate a heat-affected zone (HAZ) of 30 mm, and after four repairs the width of the HAZ exceeds 210 mm. In the HAZ, two regions were observed: the dissolution zone, which recovers a percentage of hardness by natural aging, and the over-aging zone, showing no increase in hardness. The results indicate that there is a maximum number of welding repairs that can be performed in a heat-treatable aluminum superstructure before it fails on the HAZ of the base material, since the tensile strength is reduced around 40 pct compared to the base metal.

  17. Fatigue damage characterization using surface acoustic wave nonlinearity in aluminum alloy AA7175-T7351

    NASA Astrophysics Data System (ADS)

    Jaya Rao, V. V. S.; Kannan, Elankumaran; Prakash, Raghu V.; Balasubramaniam, Krishnan

    2008-12-01

    Nonlinear ultrasonic (NLU) harmonic generation system was used to characterize the fatigue damage in a flat hour-glass, high strength Al-Cu-Zn-Mg alloy, AA7175-T7351 specimens. Experiments were carried out to introduce controlled levels of fatigue damage under constant amplitude loading to determine the NLU response using surface acoustic wave (or Rayleigh mode) at regular intervals of fatigue life. The NLU parameter (A2/A12) plotted as a function of percentage of fatigue life shows two peaks for all the samples tested, independent of the amplitude of fatigue loading. The first peak appeared between 40%-50% of fatigue life and the second peak between 80%-90% of fatigue life. Among the two flat surfaces of the specimen, a higher nonlinearity response was observed on the surface which had the first crack initiation. The appearance of two peaks in the nonlinear response during fatigue damage progression is explained based on the dislocation dynamics and dislocation-crack interaction present in the specimens during the fatigue process.

  18. Microstructure and Mechanical Properties of Welded Joints of Aluminum Alloy AA7020-T6 Obtained by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, G.; Subba Rao, V. V.; Rao, S. R. K.

    2017-07-01

    Plates from alloy AA7020 (Al - Zn - Mg) with a thickness of 4.5 mm are studied after T6 heat treatment and friction stir welding. Tensile and bending tests are performed. The hardness of the welds is measured in transverse direction. The microstructure over cross section of a weld is studied by the methods of light and transmission electron microscopy. The weldability of alloy AA7020 by friction stir welding is shown to be high.

  19. Statistical and Graphical Assessment of Circumferential and Radial Hardness Variation of AISI 4140, AISI 1020 and AA 6082 Aluminum Alloy

    PubMed Central

    Al-Khalid, Hamad; Alaskari, Ayman; Oraby, Samy

    2011-01-01

    Hardness homogeneity of the commonly used structural ferrous and nonferrous engineering materials is of vital importance in the design stage, therefore, reliable information regarding material properties homogeneity should be validated and any deviation should be addressed. In the current study the hardness variation, over wide spectrum radial locations of some ferrous and nonferrous structural engineering materials, was investigated. Measurements were performed over both faces (cross-section) of each stock bar according to a pre-specified stratified design, ensuring the coverage of the entire area both in radial and circumferential directions. Additionally the credibility of the apparatus and measuring procedures were examined through a statistically based calibration process of the hardness reference block. Statistical and response surface graphical analysis are used to examine the nature, adequacy and significance of the measured hardness values. Calibration of the apparatus reference block proved the reliability of the measuring system, where no strong evidence was found against the stochastic nature of hardness measures over the various stratified locations. Also, outlier elimination procedures were proved to be beneficial only at fewer measured points. Hardness measurements showed a dispersion domain that is within the acceptable confidence interval. For AISI 4140 and AISI 1020 steels, hardness is found to have a slight decrease trend as the diameter is reduced, while an opposite behavior is observed for AA 6082 aluminum alloy. However, no definite significant behavior was noticed regarding the effect of the sector sequence (circumferential direction). PMID:28817030

  20. Major and Minor Constituents of Aluminum Alloys

    DTIC Science & Technology

    1986-03-01

    sample alloys obtained by both techniques. Keywords: Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma Atomic Emission Spectroscopy(ICP-AES).... absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy are used for the determination of major magnesium, lithium, copper, zinc...An accurate analysis of aluminum alloys is required for quality control and characterization purposes. The two analytical techniques atomic

  1. Studies of homogenization of dc cast billets of aluminum alloy AA2014 by the methods of calorimetry and metallography

    NASA Astrophysics Data System (ADS)

    Nayan, Niraj; Narayana Murty, S. V. S.; Govind; Mittal, M. C.; Sinha, P. P.

    2010-09-01

    Modes for heat treatment for homogenizing the cast structure and raising the processibility of alloy AA2014 are determined by empirical methods with the use of light microscopy. The time and temperature of annealing, which determine minimization of dendritic segregation and dissolution of particles of secondary phase, are chosen for a typical commercial ingot. Homogenization at 500°C for 26 h is chosen for alloy AA2014 (the Russian counterpart is AK8) with a mean grain size of 200 μm.

  2. The "Lazy S" Feature in Friction Stir Welding of AA2099 Aluminum -Lithium Alloy

    DTIC Science & Technology

    2007-12-01

    Processing,” Materials Science and Engineering, v. 50, Issues 1-2, p.1-78, 2005. [4] H. Babel , C. Parrish, and K. K. Sankaran, “Al-Li Alloys...al., “Challenges in Developing High Performance Al-Li Alloys,” Center for Advanced Aerospace Materials, p.98-107, 2004. [10] H. Babel , C...DISTRIBUTION LIST 1. Defense Technical Information Center Fort Belvoir, Virginia 2. Dudley Knox Library Naval Postgraduate School Monterey, California

  3. Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111–TiAl6V4 dissimilar joints

    SciTech Connect

    Zhang, C.Q. Robson, J.D.; Ciuca, O.; Prangnell, P.B.

    2014-11-15

    Aluminum alloy AA6111 and TiAl6V4 dissimilar alloys were successfully welded by high power ultrasonic spot welding. No visible intermetallic reaction layer was detected in as-welded AA6111/TiAl6V4 welds, even when transmission electron microscopy was used. The effects of welding time and natural aging on peak load and fracture energy were investigated. The peak load and fracture energy of welds increased with an increase in welding time and then reached a plateau. The lap shear strength (peak load) can reach the same level as that of similar Al–Al joints. After natural aging, the fracture mode of welds transferred from ductile fracture of the softened aluminum to interfacial failure due to the strength recovery of AA6111. - Highlights: • Dissimilar Al/Ti welds were produced by high power ultrasonic spot welding. • No visible intermetallic reaction layer was detected on weld interface. • The lap shear strength can reach the same level as that of similar Al–Al joints. • The fracture mode becomes interfacial failure after natural aging.

  4. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    NASA Astrophysics Data System (ADS)

    Saleema, N.; Sarkar, D. K.; Paynter, R. W.; Gallant, D.; Eskandarian, M.

    2012-11-01

    Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark treatments such as anodization, which involve use of strong acids and multiple steps of treatment procedures. The NaOH treatment reported in this work is a very simple method with the use of a very dilute solution with simple ultrasonication being sufficient to produce durable joints.

  5. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  6. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  7. Aluminum Alloy 7068 Mechanical Characterization

    DTIC Science & Technology

    2009-08-01

    strength of 99 ksi (2). The commonly specified material properties for extruded 7068 aluminum are shown in table 1, along with 7050 and 7075 aluminum ...alloys for comparison (3). Table 1. Mechanical property comparison of high-strength aluminum alloys. Property Alloy 7068 7075 7050 Elastic... Aluminum Alloy 7068 Mechanical Characterization by Michael Minnicino, David Gray, and Paul Moy ARL-TR-4913 August 2009

  8. Towards the problem of forming full strength welded joints on aluminum alloy sheets. Part II: AA7475

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Tatiana; Tarasov, Sergey; Eliseev, Alexander; Fortuna, Anastasiya

    2016-11-01

    The microstructural evolution in welded joint zones obtained both by friction stir welding and ultrasonic- assisted friction stir welding on dispersion hardened 7475 aluminum alloy has been examined together with the analysis of mechanical strength and microhardness. It was established that ultrasonic-assisted friction stir provided leveled microhardness profiles across the weld zones as well as higher joint strength as compared to those of standard friction stir welding.

  9. The structure and composition of chromate conversion coatings formed on aluminum-copper alloy AA2024-T3 and thin film analogs of constituent intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Vasquez, Marvin Jaime

    2002-01-01

    A comprehensive suite of spectroscopy have been used to study the composition and structure of Chromate Conversion Coatings (CCC) formed on Aluminum Copper (Al-Cu) alloy AA2024-T3 and constituent Intermetallic Compounds (IMCs). Based on previous work the CCC formed over the IMCs is expected to be thinner and therefore different in structure and composition than the CCC formed on the matrix. The formation of the CCC over the different IMCs is expected to be dependent on the chemistry and the interaction of the IMCs with accelerators such as ferricyanide. Surface chemical and structural data determined by X-ray Photoelectron Spectroscopy (XPS), Synchrotron Infrared Microspectroscopy, X-ray Absorption Near Edge Spectroscopy (XANES), Extended X-ray Absorption Fine Structure (EXAFS), Secondary Ion Mass Spectrometry (SIMS), and Secondary Electron Microscopy/Energy Dispersive Analysis of X-rays (SEM/EDAX) have been developed to refine an existing model for the CCC formed on the AA2024-T3 surface, an Al-Cu aircraft alloy, by considering the composition and structure of the CCC formed on constituent intermetallic compounds (IMCs). The limited corrosion behavior of AA2024-T3 aluminum alloy is generally attributed to the presence of a variety of constituent IMC. These IMC particles are of the order of 1--20 mum which makes their direct analysis exceedingly difficult and has lead to a limited understanding of their surface chemical properties relative to CCC formation. To overcome this limitation, it was necessary to develop for the first time large area samples composed of compositionally homogenous thin films of the various IMCs found on the AA2024-T3 surface, which were galvanically attached to thin films of Al-4.2wt%Cu (representative of the AA2024-T3 matrix). This was performed in a two-step process: Disks of IMC compositions were formed by Reactive Arc Melting (RAM), followed by ultra-fast laser ablation of the RAM IMCs resulting in the formation of homogenous thin films

  10. Effects of Cryogenic Forging and Anodization on the Mechanical Properties of AA 7075-T73 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Shih, Teng-Shih; Liao, Tien-Wei; Hsu, Wen-Nong

    2016-03-01

    In this study, high-strength AA7075 alloy samples were cryogenically forged after annealing and then subjected to solution and aging treatments. The cryogenically forged 7075-T73 alloy samples displayed equiaxed fine grains associated with abundant fine precipitates in their matrix. Compared with conventional 7075-T73 alloy samples, the cryogenically forged samples exhibited an 8-12% reduction in tensile strength and an increased fatigue strength and higher corrosion resistance. The fatigue strength measured at 107 cycles was 225 MPa in the bare samples; the strength was increased to 250 MPa in the cryogenically forged samples. The effect of anodization on the corrosion resistance of the bare samples was improved from (E corr) -0.80 to -0.61 V.

  11. Comparative quantification and statistical analysis of η′ and η precipitates in aluminum alloy AA7075-T651 by TEM and AFM

    SciTech Connect

    Garcia-Garcia, Adrian Luis Dominguez-Lopez, Ivan Lopez-Jimenez, Luis Barceinas-Sanchez, J.D. Oscar

    2014-01-15

    Quantification of nanometric precipitates in metallic alloys has been traditionally performed using transmission electron microscopy, which is nominally a low throughput technique. This work presents a comparative study of quantification of η′ and η precipitates in aluminum alloy AA7075-T651 using transmission electron microscopy (TEM) and non-contact atomic force microscopy (AFM). AFM quantification was compared with 2-D stereological results reported elsewhere. Also, a method was developed, using specialized software, to characterize nanometric size precipitates observed in dark-field TEM micrographs. Statistical analysis of the quantification results from both measurement techniques supports the use of AFM for precipitate characterization. Once the precipitate stoichiometry has been determined by appropriate analytical techniques like TEM, as it is the case for η′ and η in AA7075-T651, the relative ease with which specimens are prepared for AFM analysis could be advantageous in product and process development, and quality control, where a large number of samples are expected for analysis on a regular basis. - Highlights: • Nanometric MgZn{sub 2} precipitates in AA7075-T651 were characterized using AFM and TEM. • Phase-contrast AFM was used to differentiate metal matrix from MgZn{sub 2} precipitates. • TEM and AFM micrographs were analyzed using commercially available software. • AFM image analysis and TEM 2-D stereology render statistically equivalent results.

  12. In situ pH measurement during the formation of conversion coatings on an aluminum alloy (AA2024).

    PubMed

    Li, Liangliang; Desouza, Annika Laura; Swain, Greg M

    2013-08-07

    The measurement of interfacial pH change is important for understanding the formation mechanism of conversion coatings that are used to protect metals from corrosion. In this work, we used a tungsten microelectrode to measure the interfacial pH change near the surface of an aluminium alloy (AA2024) during the formation of two conversion coatings: (i) a trivalent chromium pretreatment (TCP) and (ii) a Ti-based, non-chromium-containing coating. The tungsten microelectrode exhibited an open circuit potential (OCP) that changed linearly as a function of the solution pH with a slope of -64 mV per pH. The microelectrode was positioned near the AA2024-T3 surface and its potential was measured as a function of time along with the OCP of the alloy sample during formation of the two coatings. The microelectrode exhibited a negative shift in potential immediately upon initiation of the coating formation, consistent with a significant increase in the interfacial pH of 2-6 units depending on the coating system. The pH increase is attributed to proton-consuming cathodic reactions that occur on the alloy surface once the passivating oxide layer is dissolved: hydrogen evolution and oxygen reduction. The increased pH causes the hydrolysis of the soluble fluorometalate precursor species in the baths, which precipitate forming a hydrated metal oxide coating (e.g., ZrO2·nH2O).

  13. Measurements and Modeling of Stress in Precipitation-Hardened Aluminum Alloy AA2618 during Gleeble Interrupted Quenching and Constrained Cooling

    NASA Astrophysics Data System (ADS)

    Chobaut, Nicolas; Carron, Denis; Saelzle, Peter; Drezet, Jean-Marie

    2016-11-01

    Solutionizing and quenching are the key steps in the fabrication of heat-treatable aluminum parts such as AA2618 compressor impellers for turbochargers as they highly impact the mechanical characteristics of the product. In particular, quenching induces residual stresses that can cause unacceptable distortions during machining and unfavorable stresses in service. Predicting and controlling stress generation during quenching of large AA2618 forgings are therefore of particular interest. Since possible precipitation during quenching may affect the local yield strength of the material and thus impact the level of macroscale residual stresses, consideration of this phenomenon is required. A material model accounting for precipitation in a simple but realistic way is presented. Instead of modeling precipitation that occurs during quenching, the model parameters are identified using a limited number of tensile tests achieved after representative interrupted cooling paths in a Gleeble machine. This material model is presented, calibrated, and validated against constrained coolings in a Gleeble blocked-jaws configuration. Applications of this model are FE computations of stress generation during quenching of large AA2618 forgings for compressor impellers.

  14. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2016-06-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  15. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  16. Corrosion of aluminum and aluminum alloys

    SciTech Connect

    Davis, J.R.

    1999-01-01

    This new handbook presents comprehensive coverage of the corrosion behavior of aluminum and aluminum alloys, with emphasis on practical information about how to select and process these materials in order to prevent corrosion attack. Described are the characteristics of these materials and the influences of composition, mechanical working, heat treatment, joining methods, microstructure, and environmental variables on their corrosion.

  17. Corrosion behavior of aluminum-lithium alloys

    SciTech Connect

    Garrard, W.N. )

    1994-03-01

    Corrosion behavior of three aluminum-lithium (Al-Li) alloys was investigated in aerated 0.5 M sodium sulfate (Na[sub 2]SO[sub 4]), deaerated 3.5% sodium chloride (NaCl), and aerated 3.5% NaCl. Corrosion behavior of the Aluminum Association (AA) alloys 2090-T8E41 (UNS A92090, sheet), AA 8090-T851 (UNS A98090, sheet), and AA 8090-T82551 (UNS A98090, bar) was compared to behavior of the conventional AA 7075-T6 (UNS A97075, sheet). Uniform corrosion was the predominant form of attack in aerated Na[sub 2]SO[sub 4] and deaerated NaCl, although some localized attack resulted from corrosion of intermetallics on specimen surfaces. Pitting was the main form of attack in aerated NaCl. In all three media, the sheet materials corroded at a similar rate, but the bar form of AA 8090 corroded at a lower rate. Pretreatment of the alloys by immersion in a cerium (Ce) solution inhibited pitting in aerated NaCl but only for a short period.

  18. In-Situ Investigation of Hot Tearing in Aluminum Alloy AA1050 via Acoustic Emission and Cooling Curve Analysis

    NASA Astrophysics Data System (ADS)

    Pekguleryuz, M. O.; Li, X.; Aliravci, C. A.

    2009-06-01

    Hot tearing in the AA1050 alloy was investigated in real time and in situ using acoustic emission (AE) and cooling curve analysis techniques and a ring mold. Activities involving AE have been detected in three zones of the solidification curve. The characteristic signals for hot tearing were an AE energy of over 600 e.u. and an average frequency of 125 ± 15 kHz in zone II. For hot cracking, the AE energy was over 650 e.u. and the average frequency was 128 ± 17 kHz in zone III. The hot-tear start temperature ranged from 636 °C to 653 °C; the nonequilibrium solidus T' S , from 556 °C to 614 °C; the fraction solid at hot-tear onset from 0.71 to 0.99; and the Clyne-Davis hot-tear susceptibility coefficient (HSC) from 0.25 to 0.81. The HSC correlated inversely with a total energy of solidification cracking ( E total) {text{HSC}} \\cong 167left( {E_{text{total}} } right)^{ - 0.8}. A hot-tear susceptibility factor (HSF) = (pct Fe)·(cooling rate (CR))2 was related to the HSC and T' S as HSC = 0.002 HSF + 0.3 and T' S = -0.3 HSF + 617.

  19. Aluminum alloys with improved strength

    NASA Technical Reports Server (NTRS)

    Deiasi, R.; Adler, P.

    1975-01-01

    Mechanical strength and stress corrosion of new BAR and 7050 alloys that include Zn instead of Cr have been studied and compared with those of 7075 aluminum alloy. Added mechanical strength of new alloys is attributed to finer grain size of 5 to 8 micrometers, however, susceptibility to stress corrosion attack is increased.

  20. Stress Corrosion Cracking Behavior of Multipass TIG-Welded AA2219 Aluminum Alloy in 3.5 wt pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2012-09-01

    The stress corrosion cracking (SCC) behavior of the AA2219 aluminum alloy in the single-pass (SP) and multipass (MP) welded conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using a slow-strain-rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both the BM and welded joints. The results showed that the ductility ratio ( ɛ NaCl/( ɛ air) was 0.97 and 0.96, respectively, for the BM and MP welded joint, and the same was marginally reduced to 0.9 for the SP welded joint. The fractographic examination of the failed samples revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy under all welded conditions. To understand the decrease in the ductility of the SP welded joint, preexposure SSRT followed by microstructural observations were made, which showed that the decrease in ductility ratio of the SP welded joint was caused by the electrochemical pitting that assisted the nucleation of cracks in the form of corrosion induced mechanical cracking rather than true SCC failure of the alloy. The microstructural examination and polarization tests demonstrated a clear grain boundary (GB) sensitization of the PMZ, resulting in severe galvanic corrosion of the SP weld joint, which initiated the necessary conditions for the localized corrosion and cracking along the PMZ. The absence of PMZ and a refined fusion zone (FZ) structure because of the lesser heat input and postweld heating effect improved the galvanic corrosion resistance of the MP welded joint greatly, and thus, failure occurred along the FZ.

  1. Aluminum alloys for aerostructures

    SciTech Connect

    Staley, J.T.; Liu, J.; Hunt, W.H. Jr.

    1997-10-01

    Demands on the airframe industry have shifted over the years, but they have always moved in the direction of lower weight, higher damage tolerance, and longer-term durability. Up to the 1960s, the greatest need was for high strength to reduce weight. In the 1970s, higher fracture toughness and corrosion resistance were sought for enhanced damage tolerance and durability. In the early 1980s, the requirement for reduced weight was renewed, but by the late 1980s and early 1990s, durability became a concern again. Today`s focus is on materials that can help achieve low-cost manufacturing without sacrificing performance; future needs are likely to include both affordability and higher performance. This article describes the development of high-strength aluminum alloy materials that have satisfied past and current requirements, and identifies possible aluminum-intensive approaches that combine alternate design concepts and emerging materials technologies for low-cost, low-weight, damage-tolerant, and durable airframe structures of the future.

  2. Effect of Temperature and Velocity of Pressing on Grain Refinement in AA5083 Aluminum Alloy During Repetitive Corrugation and Straightening Process

    NASA Astrophysics Data System (ADS)

    Thangapandian, N.; Balasivanandha Prabu, S.; Padmanabhan, K. A.

    2016-12-01

    Repetitive corrugation and straightening experiments were carried out on sheets of aluminum alloy, AA5083, at room temperature and 573 K (300 °C) and two pressing velocities (0.5 and 2 mm/s). In every case, the sheet was processed to the maximum possible number of passes. Electron backscattered diffraction analysis and transmission electron microscopy were used to characterize microstructure evolution. After room temperature processing with a pressing velocity of 0.5 mm/s, the average grain size had decreased to 11 microns from 45 microns, with 70 pct of the grain boundaries of the high-angle type. In contrast, sub-grain formation was present at a pressing velocity of 2 mm/s. Mechanical properties like tensile strength and hardness were correlated with microstructures. It is concluded that the velocity of pressing plays a crucial role in grain refinement and recovery and the resulting mechanical properties, as the time available for dislocation rearrangements during processing depends strongly on this variable. An increase in temperature of deformation leads to softening and a deterioration in the mechanical properties.

  3. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  4. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  5. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  6. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  7. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  8. Advanced Cast Aluminum Alloys

    DTIC Science & Technology

    2009-02-01

    microstructure of the Al - Zn -Mg- Cu alloys was similar to the as-cast microstructure ...Further, new research has been initiated on ultra-high strength, microalloyed Al - Zn -Mg- Cu alloys with the goal of producing complex castings with...wrought 2519 alloy . Further, new research has been initiated on ultra-high strength, microalloyed Al - Zn -Mg- Cu alloys with the goal of producing

  9. Effects of Initial Temper Condition and Postweld Heat Treatment on the Properties of Dissimilar Friction-Stir-Welded Joints between AA7075 and AA6061 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    İpekoğlu, Güven; Çam, Gürel

    2014-06-01

    In this study, dissimilar AA7075-O/6061-O and AA7075-T6/6061-T6 butt joints were produced by friction stir welding (FSW), and postweld heat treatment (PWHT) was applied to the joints obtained. The effects of initial temper condition and PWHT on the microstructure and mechanical properties of the dissimilar joints were thus investigated. It was demonstrated that sound dissimilar joints can be produced for both temper conditions. A hardness increase in the joint area ( i.e., strength overmatching) was obtained in the joints produced in the O-temper condition, whereas a hardness loss was observed in the joint area of the joints obtained in the T6 temper condition. It was also well demonstrated that PWHT could be used in order to improve the joint properties for both O and T6 joints provided that the joint is defect-free prior to subsequent heat treatment.

  10. Towards the problem of forming full strength welded joints on aluminum alloy sheets. Part I: AA2024

    NASA Astrophysics Data System (ADS)

    Fortuna, Sergey; Eliseev, Alexander; Kalashnikova, Tatiana; Kolubaev, Evgeny

    2016-11-01

    This work shows the microstructural evolution of solid solution grains and secondary phase precipitates in the stirring zones of ultrasonic-assisted friction stir welding (UAFSW) and standard friction stir welding (FSW). As shown, fine spherical AlMgCu precipitates dominate in FSW stirring zone whereas nanosized Al2MgCu (S-phase) platelets ones are the main finding in UAFSW sample. The mechanical strength of AA2024 is provided by precipitation of coherent intermetallic S-phase particles. The dominating amount of S-phase precipitates in UAFSW sample provided the ultimate stress level close to that of the base metal, i.e. 402 MPa as compared to 302 MPa of FSW sample. These values constituted 93 and 85%, respectively, of the base metal strength.

  11. Supersaturated Aluminum Alloy Powders.

    DTIC Science & Technology

    1981-07-15

    shown in Fig. 18 . It .an be clearly seen that most of the iron is concentrated in the precipitates (Fig. 18 ), X-ray mapping immage for the chromium...At 232°C our alloys are comparable to 2� and 2618 in their tensile properties, and except for alloy #1 which at t i temperature has elongation of...demonstrate better yield strength and UTS than the 2219, 2618 and are comparable to the ALCOA alloy. They show however higher ductility than the ALCOA alloy

  12. Environmentally assisted crack growth rates of high-strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Connolly, Brain J.; Deffenbaugh, Kristen L.; Moran, Angela L.; Koul, Michelle G.

    2003-01-01

    The scope of this project is to evaluate the environmentally assisted long crack growth behavior of candidate high-strength aluminum alloys/tempers, specifically AA7150-T7751 and AA7040-T7651, for consideration as viable replacements/refurbishment for stress-corrosion cracking in susceptible AA7075-T6 aircraft components found in aging aircraft systems.

  13. Frictional conditions between alloy AA6060 aluminium and tool steel

    SciTech Connect

    Wideroee, Fredrik; Welo, Torgeir

    2011-05-04

    The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples to measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.

  14. Frictional conditions between alloy AA6060 aluminium and tool steel

    NASA Astrophysics Data System (ADS)

    Widerøe, Fredrik; Welo, Torgeir

    2011-05-01

    The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples to measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.

  15. Aluminum Alloys--Industrial Deformable, Sintered and Light Aluminum Alloys

    DTIC Science & Technology

    1974-10-30

    thin film on the particles of the highly dispersed aluminum powder when it is ground in spherical mills in a nitrogen atmosphere in which the...principal elements, certain small admixtures are introduced into the alloys, which have a considerable effect on the decay kinetics of the oversaturated...strengthened by the insoluble dispersed alumina particles. Fine grinding of the original powder provides the dispersion of the oxide films and particles

  16. Nd:YAG laser welding aluminum alloys

    SciTech Connect

    Jimenez, E. Jr.

    1992-02-01

    Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

  17. Aluminum Alloy 7050 Extrusions.

    DTIC Science & Technology

    1977-03-01

    Artificial Aging Conditions 250 A-l Fatigue Crack Growth Data for C5A Extruded Panel, 7050-T7351X, L-T Orientation, R=0.1 254 A-2 Fatigue...cooldd aluminum and steel bottom blocks (Figure 2) were fabricated for use with this tooling. Metal was melted in a 10,000-lb capacity open- hearth ...time factor, effects of heating through this temperature range to the maximum artificial agirg temperature are additive. The solution of the

  18. Superplasticity in aluminum alloys

    SciTech Connect

    Nieh, T. G.

    1997-12-01

    We have characterized in the Al-Mg system the microstructure and mechanical properties of a cold-rolled Al-6Mg-0.3Sc alloy. The alloy exhibited superplasticity at relatively high strain rates (about 10-2 s-1). At a strain rate of 10-2 s-1 there exists a wide temperature range (475-520`C) within which the tensile elongation is over 1000%. There also exists a wide strain rate range (10-3 - 10-1 s-1) within which the tensile elongation is over 500%. The presence of Sc in the alloy results in a uniform distribution of fine coherent Al3SC precipitates which effectively pin grain and subgrain boundaries during static and continuous recrystallization. As a result, the alloy retains its fine grain size (about 7 micron), even after extensive superplastic deformation (>1000%). During deformation, dislocations Mg with a high Schmidt factor slip across subgrains but are trapped by subgrain boundaries, as a result of the strong pining of Al3Sc. This process leads to the conversion of low-angled subgrain boundaries to high-angled grain boundaries and the subsequent grain boundary sliding, which produces superelasticity. A model is proposed to describe grain boundary sliding accommodated by dislocation glide across grains with a uniform distribution of coherent precipitates. The model predictions is consistent with experimental observations.

  19. Welding high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Parks, P. G.; Hoppes, R. V.; Hasemeyer, E. A.; Masubuchi, K.

    1974-01-01

    Handbook has been published which integrates results of 19 research programs involving welding of high-strength aluminum alloys. Book introduces metallurgy and properties of aluminum alloys by discussing commercial alloys and heat treatments. Several current welding processes are reviewed such as gas tungsten-arc welding and gas metal-arc welding.

  20. Microbial corrosion of aluminum alloy.

    PubMed

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors.

  1. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  2. Hot stamping of AA7075 aluminum sheets

    NASA Astrophysics Data System (ADS)

    Mendiguren, J.; Saenz de Argandona, E.; Galdos, L.

    2016-11-01

    In this work the formability of a high strength aluminium alloy (AA7075-T6) for the stamping of an automotive component has been studied. Due to the low formability of the selected alloy, two different heat assisted forming strategies have been analysed. On the one hand, the W-temper process, where the thermal process is carried out prior to the forming operation. On the other hand, the hot stamping process, where the thermal process is carried out at the same time as the forming. The results showed that both technology were able to form the component avoiding any failure of the material. On the contrary, both processes reduced the final mechanical properties of the material compared to the as received material condition. However, the obtained mechanical properties doubled the strength of commonly used 5xxx and 6xxx aluminium alloys.

  3. About Alloying of Aluminum Alloys with Transition Metals

    NASA Astrophysics Data System (ADS)

    Zakharov, V. V.

    2017-05-01

    An attempt is made to advance Elagin's principles of alloying of aluminum alloys with transition metals (TM) such as Mn, Cr, Zr, Ti, V with allowance for the ternary equilibrium and metastable Al - TM - TM phase diagrams. The key moments in the analysis of the phase diagrams are the curves (surfaces) of joint solubility of TM in aluminum, which bound the range of the aluminum solid solution. It is recommended to use combinations of such TM (two and more), the introduction of which into aluminum alloys widens the phase range of the aluminum solid solution.

  4. Kinetics of aluminum lithium alloys

    NASA Astrophysics Data System (ADS)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  5. Experimental and Mathematical Procedure for Characterization of the Thermal Profile in a Quasi-Unidirectional Solidification Aluminum Alloy AA354 Casting

    NASA Astrophysics Data System (ADS)

    Fragoso, Bruno; Santos, Henrique

    2013-08-01

    In this work, the authors show how to build a semi-industrial scale macrothermal analysis experimental apparatus for low-pressure aluminum casting AA354 with quasi-unidirectional solidification. Several thermocouples were connected to a multichannel electronic device allowing a sampling rate up to 10 Hz; the thermocouples were installed in the mold at different locations to acquire the discontinuous cooling curves at those same locations. With this type of experiment and appropriate mathematical procedures, it was possible to build a reasonable response surface T = f( x,t) and the respective derivatives: partial T/partial t and partial T/partial x. Exponential polynomials were applied for modeling the curves and linear interpolation to relate the several cooling curves. Mathematical tools applied to the modeled curves allowed the authors to identify different solidification events and correlate them with the specific thermal gradient and cooling conditions.

  6. Application of modern aluminum alloys to aircraft

    NASA Astrophysics Data System (ADS)

    Starke, E. A., Jr.; Staley, J. T.

    Aluminum alloys have been the primary material of choice for structural components of aircraft since about 1930. Although polymer matrix composites are being used extensively in high-performance military aircraft and are being specified for some applications in modern commercial aircraft, aluminum alloys are the overwhelming choice for the fuselage, wing, and supporting structure of commercial airliners and military cargo and transport. Well known performance characteristics, known fabrication costs, design experience, and established manufacturing methods and facilities, are just a few of the reasons for the continued confidence in aluminum alloys that will ensure their use in significant quantities for the rest of this century and likely well into the next one. But most significantly, there have been major advances in aluminum aircraft alloys that continue to keep them in a competitive position. In the early years aluminum alloys were developed by trial and error, but over the past thirty years there have been significant advances in our understanding of the relationships among composition, processing, microstructural characteristics and properties. This knowledge base has led to improvements in properties that are important to aircraft applications. This review covers the performance and property requirements for airframe components in current aircraft and describes aluminum alloys and product forms which meet these requirements. It also discusses the structure/property relationships of aluminum aircraft alloys and describes the background and drivers for the development of modern aluminum alloys to improve performance. Finally, technologies under development for future aircraft are discussed.

  7. Microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system.

    PubMed

    Yang, S S; Lin, J Y; Lin, Y T

    1998-09-01

    To investigate the microbiologically induced corrosion of aluminum alloys in fuel-oil/aqueous system, aluminum alloys A356, AA 5052, AA 5083 and AA 6061 were chosen as the test alloys and Cladosporium and several fuel-oil contaminated microbes isolated in Taiwan were used as test organisms. Aluminum alloy AA 5083 in fuel-oil/aqueous system was the most susceptible material for microbial corrosion, then followed by aluminum alloys AA 5052 and A356, and AA 6061 was more resistant to microbial aggression. Mixed culture had high capability of corrosion, then followed by Penicillium sp. AM-F5, Fusarium sp. AM-F1, Pseudomonas aeruginosa AM-B5, Ps. fluorescens AM-B9, C. resinae ATCC 22712, Penicillium sp. AM-F2, Candida sp. AM-Y1 and Ps. aeruginosa AM-B11. From energy dispersive spectrometer analysis, aluminum and magnesium contents decreased in the corrosion area, while chlorine and sulfur contents increased. The major organic acid produced in fuel-oil/aqueous system was acetic acid, and the total organic acids content had a positive correlation with the degree of microbial corrosion.

  8. Low-aluminum content iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  9. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  10. Textures, microstructures, anisotropy and formability of aluminum-manganese-magnesium and aluminum-magnesium alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jiantao

    In this dissertation work, the microstructure and texture evolution of continuous cast (CC) and direct chill (DC) cast Al-Mn-Mg (AA 3105 and AA 3015) and Al-Mg (AA 5052) alloys during cold rolling and annealing are systematically investigated. Macrotexture analyses were based on three-dimensional orientation distribution functions (ODFs) calculated from incomplete pole figures from X-ray diffraction by using arbitrarily defined cell (ADC) and series expansion methods. A new technique, electron backscatter diffraction (EBSD), was adopted for microtexture and mesotexture investigation. The anisotropy and formability of Al-Mn-Mg and Al-Mg alloys are correlated to the texture results. For aluminum alloys studied in this work, a stronger Cube orientation is observed in DC hot band than in CC hot band after complete recrystallization. alpha and beta fibers become well developed beyond 50% cold rolling in both CC and DC aluminum alloys. The highest intensity along the beta fiber (skeleton line) is located between the Copper and the S orientations in both materials after high cold rolling reductions. In both CC and DC aluminum alloys, a cell structure develops with the indication of increasing CSL Sigma1 boundaries during the early stages of cold rolling. There is no evidence of the development of twin boundaries (Sigma3, Sigma9, Sigma27a & 27b) in either CC or DC aluminum alloys when the cold rolling reductions are less than 40%. The R and Cube textures are dominant recrystallization texture components in CC and DC AA 5052 alloys. The volume fraction of the Cube component is increased by increasing cold rolling reduction and annealing temperature but not by increasing annealing time while the volume fraction of the R component is only increased by increasing cold rolling reduction. Stronger Cube and R orientations are found at the surface layer than at half-thickness layer of cold rolled hot bands after annealing. The Cube and P textures are dominant recrystallization

  11. First principles pseudopotential calculations on aluminum and aluminum alloys

    SciTech Connect

    Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.

    1993-12-31

    Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.

  12. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  13. Surface alloying of silicon into aluminum substrate.

    SciTech Connect

    Xu, Z.

    1998-10-28

    Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

  14. Laser welding of the AA 2024-T3 aluminum alloy by using two different laser sources (Nd:YAG or CO2)

    NASA Astrophysics Data System (ADS)

    Ludovico, Antonio D.; Daurelio, Giuseppe; De Filippis, L. A. C.; Scialpi, A.; Squeo, F.

    2005-03-01

    In this experimental work the weldability of an Al alloy AA 2024-T3 by using two different laser sources, (CO2 and Nd:YAG), has been tested for experiments. A ROFIN SINAR, 1500 W continuous wave (c.w.) max power level, emitting at 10.6 μm, and a HAAS TRUMPH source, 3000 W max power level, pulsed beam, that produces na 1.06 μm wavelength have been used. The thicknesses employed are 0.8-1.6 and 2.0 mm for the Nd:YAG, 1 and 1.6 mm for the CO2. In order to define a possible laser welding process optimisation versus the best quality and relative mechanical properties of the butt joints, different laser working parameters have been studied and experimented. Moreover two diverse welding techniques, that is by using a filler wire or without one have been applied and the relative results have been compared. The best selected butt joints have been cahracterized by some visual examinations, micro and macrographs of transverse sections, micro-hardness data and plots as well as some tensile tests. Finally, according to the results as above, physical-technological evaluations and comparisons have been reported.

  15. Determination of forming limit diagrams of AA6013-T6 aluminum alloy sheet using a time and position dependent localized necking criterion

    NASA Astrophysics Data System (ADS)

    Dicecco, S.; Butcher, C.; Worswick, M.; Boettcher, E.; Chu, E.; Shi, C.

    2016-11-01

    The forming limit behaviour of AA6013-T6 aluminium alloy sheet was characterized under isothermal conditions at room temperature (RT) and 250°C using limiting dome height (LDH) tests. Full field strain measurements were acquired throughout testing using in situ stereoscopic digital image correlation (DIC) techniques. Limit strain data was generated from the resulting full field strain measurements using two localized necking criteria: ISO12004- 2:2008 and a time and position dependent criterion, termed the “Necking Zone” (NZ) approach in this paper, introduced by Martinez-Donaire et al. (2014). The limit strains resulting from the two localization detection schemes were compared. It was found that the ISO and NZ limit strains at RT are similar on the draw-side of the FLD, while the NZ approach yields a biaxial major limit strain 14.8% greater than the ISO generated major limit strain. At 250°C, the NZ generated major limit strains are 31-34% greater than the ISO generated major limit strains for near uniaxial, plane strain and biaxial loading conditions, respectively. The significant variance in limit strains between the two methodologies at 250°C highlights the need for a validation study regarding warm FLC determination.

  16. Effect of Welding Parameters on Microstructure, Thermal, and Mechanical Properties of Friction-Stir Welded Joints of AA7075-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Lotfi, Amir Hossein; Nourouzi, Salman

    2014-06-01

    A high-strength Al-Zn-Mg-Cu alloy AA7075-T6 was friction-stir welded with various process parameter combinations incorporating the design of the experiment to investigate the effect of welding parameters on the microstructure and mechanical properties. A three-factors, five-level central composition design (CCD) has been used to minimize the number of experimental conditions. The friction-stir welding parameters have significant influence on the heat input and temperature profile, which in turn regulates the microstructural and mechanical properties of the joints. The weld thermal cycles and transverse distribution of microhardness of the weld joints were measured, and the tensile properties were tested. The fracture surfaces of tensile specimens were observed by a scanning electron microscope (SEM), and the formation of friction-stir processing zone has been analyzed macroscopically. Also, an equation was derived to predict the final microhardness and tensile properties of the joints, and statistical tools are used to develop the relationships. The results show that the peak temperature during welding of all the joints was up to 713 K (440 °C), which indicates the key role of the tool shoulder diameter in deciding the maximum temperature. From this investigation, it was found that the joint fabricated at a rotational speed of 1050 rpm, welding speed of 100 mm/min, and shoulder diameter of 14 mm exhibited higher mechanical properties compared to the other fabricated joints.

  17. Microstructure and Mechanical Properties of AA1235 Aluminum Foil Stocks Produced Directly from Electrolytic Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yu, Kun; Wen, Li; Yao, Sujuan; Dai, Yilong; Wang, Zhifeng

    2016-02-01

    A new process is developed to obtain high-quality AA1235 aluminum foil stocks and to replace the traditional manufacture process. During the new manufacture process, AA1235 aluminum sheets are twin-roll casted directly through electrolytic aluminum melt (EAM), and subsequently the sheets are processed into aluminum foil stocks by cold rolling and annealing. Microstructure and mechanical properties of the AA1235 aluminum sheets produced through such new process are investigated in each state by optimal microscope, scanning electron microscopy, X-ray diffraction, orientation imaging microscopy, transmission electron microscopy, etc. The results show that compared with the traditional AA1235 aluminum foil stocks produced through re-melted aluminum melt (RAM), the amount of impurities is decreased in the EAM aluminum foil stocks. The EAM aluminum foil stock obtains less β-FeSiAl5 phases, but more α-Fe2SiAl8 phases. The elongation of EAM aluminum foil stocks is improved significantly owing to more cubic orientation. Especially, the elongation value of the EAM aluminum foil stocks is approximately 25 pct higher than that of the RAM aluminum foil stocks. As a result, the EAM aluminum foil stocks are at an advantage in increasing the processing performance for the aluminum foils during subsequent processes.

  18. Solution Potentials Indicate Aluminum-Alloy Tempers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Report discusses use of solution potential as measure of temper of aluminum alloys. Technique based on fact that different tempers or heat treatments exhibit different solution potentials as function of aging time.

  19. DYNAMIC TESTS OF STRUCTURAL ALUMINUM ALLOYS.

    DTIC Science & Technology

    A series of dynamic tests was conducted on three grades of structural aluminum alloys: (a) 6061-T6, (b) 6063 - T5 , and (c) 5456-H321. The effects of...at the maximum test rates. The 6063 - T5 aluminum shoed no change in yield stress and a 5.8% increase in tensile strength at the maximum test rate

  20. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  1. Materials data handbook: Aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  2. Weldable aluminum alloy has improved mechanical properties

    NASA Technical Reports Server (NTRS)

    Westerlund, R. W.

    1966-01-01

    Weldable aluminum alloy has good resistance to stress-corrosion cracking, shows unchanged strength and formability after storage at room temperature, and can be pre-aged, stretched, and aged. Since toxic fumes of cadmium oxide are evolved when the new alloy is welded, adequate ventilation must be provided.

  3. Precipitation hardening in aluminum alloy 6022

    SciTech Connect

    Miao, W.F.; Laughlin, D.E.

    1999-03-05

    Although the precipitation process in Al-Mg-Si alloys has been extensively studied, the understanding of the hardening process is still incomplete, since any change in composition, processing and aging practices, etc., could affect the precipitation hardening behavior. In this paper, hardness measurements, differential scanning calorimetry and transmission electron microscopy have been utilized to study the precipitation hardening behavior in aluminum alloy 6022.

  4. Materials data handbook: Aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 6061 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  5. Materials data handbook: Aluminum alloy 5456

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 5456 is presented. The scope of the information includes physical and mechanical property data at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  6. Materials data handbook: Aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information on aluminum alloy 7075 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  7. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  8. Processing of 2090 Aluminum Alloy for Superplasticity

    DTIC Science & Technology

    1988-06-01

    behavior has now been extensively documented in Al-Mg alloys, with elongations in excess of 1,000 percent obtained in many cases in these alloys. The...crucial. Characteristics of superplastic behavior include a fine grain size (two to five microns), a strain rate sensitivity coefficient m > 0.3, 1 I| and...seven to eight percent less and demonstrates ten percent higher stiffness than 7075 aluminum, an alloy it was designed to replace. This is due to the

  9. NASA-427: A New Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  10. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  11. Study of Processing and Microstructure of a Superplastic 5083 Aluminum Alloy

    DTIC Science & Technology

    2002-09-01

    AA5083 aluminum alloys designated lot numbers 978083 and 978901 were conducted at the Naval Postgraduate School in conjunction with mechanical testing...the ARCO materials and corresponding AA5083 materials, designated lot numbers 978083(A25) and 978901(A20), that were deformed under tensile...the OIM system were the AA5083 alloys deformed at 500ºC and 3x10-4s-1 and designated lot numbers 978083(A24) or 978901(A17). The procedure used to

  12. Environmental fatigue in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  13. Nondestructive determination of mechanical properties. [aluminum alloys

    NASA Technical Reports Server (NTRS)

    Schneider, E.; Chu, S. L.; Salma, K.

    1984-01-01

    Aluminum alloys of types 1100, 3003, 5052, 6061, and 2024 were used to study the sensitivity of the acousto-elastic constant to changes in the microstructure. Results show that there is a strong relationship between the acousto-elastic constants and the yield strength and hardness. This relationship depends on whether the alloy is strain hardened or precipitation hardened. In strain hardened alloys, the constants increase as the amount of solid solution is decreased, while the behavior is the opposite in precipitation hardened alloys.

  14. Hybrid manufacturing processes for fusion welding and friction stir welding of aerospace grade aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gegesky, Megan Alexandra

    Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction to aerospace grade aluminum alloys as well as non-weldable alloys, is new. This is brought about by a lowered required clamping force required by adding a fusion weld before a friction stir processing technique. The changes in properties associated with joining techniques include: microstructural changes, changes in hardness, tensile strength, and corrosion resistance. This thesis illustrates these changes for the non-weldable AA2024-T351 and AA7075-T651 as well as the weldable alloy AA5052-H32. The microhardness, tensile strength and corrosion resistance of the four processing states: base material, fusion welded material, friction stir welded material, and friction stir processed fusion welded material is studied. The plausibility of this hybrid process for the three different materials is characterized, as well as plausible applications for this joining technique.

  15. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  16. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2016-12-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  17. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2017-01-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  18. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  19. Aluminum-lithium alloys with hafnium

    SciTech Connect

    Rioja, R.J.; Bretz, P.E.; Jacoby, J.

    1989-09-26

    This patent describes an aluminum base alloy suitable for forming into a wrought product having improved combinations of strength and fracture toughness. The alloy consisting essentially of 0.2 to 5.0 wt % Li, 0.05 to 6.0 wt % Mg, 0.2 to 5.0 wt % Cu, 0 to 2.0 wt % Mn, 0 to 1.0 wt, % Zr, 0.05 to 12.0 wt. % Zn, 0.05 to 1.0 wt. % Hf, 0.5 wt.% Fe, 0.5 wt. % max. Si, the balance aluminum and incidental impurities.

  20. Mechanical Properties of Aluminum-alloy Rivets

    NASA Technical Reports Server (NTRS)

    Brueggeman, Wm C

    1936-01-01

    The development of metal construction for aircraft has created a need for accurate and detailed information regarding the strength of riveted joints in aluminum-alloy structures. To obtain this information the National Bureau of Standards in cooperation with the National Advisory Committee for Aeronautics is investigating the strength of riveted joints in aluminum alloys. The strength of riveted joints may be influenced by the form of the head, the ratio of the rivet diameter to the sheet thickness, the driving stress, and other factors. This note gives the results of tests to develop the riveting technique for test specimens and to determine the effects of these factors.

  1. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    DTIC Science & Technology

    2012-01-01

    strength 7075-T651aluminum alloy . Johnson - Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration...structural components made of high strength 7075-T651aluminum alloy . Johnson - Cook model constants determined for Al7075-T651 alloy bar material...rate sensitivity, Johnson - Cook , constitutive model. PACS: 62.20 .Dc, 62.20..Fe, S 62.50. +p, 83.60.La INTRODUCTION Aluminum 7075 alloys are

  2. Phases in lanthanum-nickel-aluminum alloys

    SciTech Connect

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  3. Cryogenic properties of aluminum alloys and composites

    SciTech Connect

    Hill, M.A.; Rollett, A.D.; Jacobson, L.A.; Borch, N.R.; Gibbs, W.S.; Patterson, R.A.; Carter, D.H.

    1989-01-01

    Several aluminum-based materials have been evaluated for possible application at cryogenic temperatures. These included the Al-Li alloy 2090, a high purity mechanically alloyed Al, SiC whisker reinforced Al 2124, and SiC particulate reinforced Al 6061. Mechanical properties, thermal properties and electrical properties were measured for these materials. Their performance in a radio frequency cavity was also determined. 4 refs., 6 figs.

  4. Degassing of Aluminum Alloys Using Ultrasonic Vibration

    SciTech Connect

    Meek, T. T.; Han, Q.; Xu, H.

    2006-06-01

    The research was intended to lead to a better fundamental understanding of the effect of ultrasonic energy on the degassing of liquid metals and to develop practical approaches for the ultrasonic degassing of alloys. The goals of the project described here were to evaluate core principles, establish a quantitative basis for the ultrasonic degassing of aluminum alloy melts, and demonstrate the application of ultrsaonic processing during ingot casting and foundry shape casting.

  5. Welding the four most popular aluminum alloys

    SciTech Connect

    Irving, B.

    1994-02-01

    The fact that business is good in aluminum welding is a sure sign that more manufacturers and fabricators are using GMA and GTA welding to build new products out of this lightweight nonferrous metal. Among the most widely specified weldable grades are Alloys 6061, 5083, 5052 and 5454. A rundown on these four alloys, including properties and selected applications, is provided. Any company working with aluminum for the first time needs to know something about these four alloys. Alloys of copper-magnesium-silicon combination, of which 6061 is one, are heat-treatable. The three 5XXX series alloys, on the other hand, are nonheat-treatable. According to P.B. Dickerson, consultant, Lower Burrell, Pa., 5083, because of its high magnesium content, is the easiest of the four alloys to arc weld. Dickerson put the cut-off point in weldability at 3.5% magnesium. To prevent cracking, he added, both 6061 and 5052 require much more filler metal than do the other two alloys. Alloy 6061 consists of 0.25Cu, 0.6Si, 1.0Mg, and 0.20Cr. The main applications for 6061 aluminum are structural, architectural, automotive, railway, marine and pipe. It has good formability, weldability, corrosion resistance and strength. Although the 6XXX series alloys are prone to hot cracking, this condition can be readily overcome by correct choice of joint design and electrode. The most popular temper for 6061 is T6, although the -T651, -T4, and -F temper are also popular. The -T651 temper is like a -T6 temper, only it has received some final stretch hardening. The -T4 temper has been solution heat-treated and quenched. The -F temper is in the as-fabricated condition.

  6. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  7. Technology of welding aluminum alloys-II

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Step-by-step procedures were developed for high integrity manual and machine welding of aluminum alloys. Detailed instructions are given for each step with tables and graphs to specify materials and dimensions. Throughout work sequence, processing procedure designates manufacturing verification points and inspection points.

  8. Crack Repair in Aerospace Aluminum Alloy Panels by Cold Spray

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Silvello, A.

    2017-02-01

    The cold-spray process has recently been recognized as a very useful tool for repairing metallic sheets, achieving desired adhesion strengths when employing optimal combinations of material process parameters. We present herein the possibility of repairing cracks in aluminum sheets by cold spray. A 2099 aluminum alloy panel with a surface 30° V notch was repaired by cold spraying of 2198 and 7075 aluminum alloy powders. The crack behavior of V-notched sheets subjected to bending loading was studied by finite-element modeling (FEM) and mechanical experiments. The simulations and mechanical results showed good agreement, revealing a remarkable K factor reduction, and a consequent reduction in crack nucleation and growth velocity. The results enable prediction of the failure initiation locus in the case of repaired panels subjected to bending loading and deformation. The stress concentration was quantified to show how the residual stress field and failure are affected by the mechanical properties of the sprayed materials and by the geometrical and mechanical properties of the interface. It was demonstrated that the crack resistance increases more than sevenfold in the case of repair using AA2198 and that cold-spray repair can contribute to increased global fatigue life of cracked structures.

  9. Issues for conversion coating of aluminum alloys with hydrotalcite

    SciTech Connect

    Drewien, C.A.; Buchheit, R.G.

    1993-12-01

    Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.

  10. Metallography of Aluminum and Its Alloys : Use of Electrolytic Polishing

    NASA Technical Reports Server (NTRS)

    Jacquet, Pierre A

    1955-01-01

    Recent methods are described for electropolishing aluminum and aluminum alloys. Numerous references are included of electrolytic micrographic investigations carried out during the period 1948 to 1952. A detailed description of a commercial electrolytic polishing unit, suitable for micrographic examination of aluminum and its alloys, is included.

  11. Deposition of Amorphous Aluminum Alloys as a Replacement for Aluminum Cladding

    DTIC Science & Technology

    2009-02-05

    1 DEPOSITION OF AMORPHOUS ALUMINUM ALLOYS AS A REPLACEMENT FOR ALUMINUM CLADDING US Army Corrosion Summit February 3-5, 2009 Clearwater, FL Ben...REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Depostion of Amorphous Aluminum Alloys as a Replacement for Aluminum ...Tantalum for gun barrel applications WC-Co-Cr for landing gear ID Co-Cr-Al-Y bond coat for thermal barrier system Pure aluminum for Cd replacement

  12. Dimensional control of quasisingle crystals of aluminum alloy in production

    SciTech Connect

    Radchenko, A.I.; Karuskevich, M.V.; Naim, V.R.

    1995-01-01

    The article deals with a method of controlling the dimensions of quasisingle crystal grains of an aluminum alloy used instead of single crystal specimens in static fatigue tests with the object of substantiating a discrete probabilistic model of the fatigue of metals and alloys. We obtained a mathematical model of dimensional control of quasisingle crystals of the aluminum alloy.

  13. Implementation of Finite Strain-Based Constitutive Formulation in LLLNL-DYNA3D to Predict Shockwave Propagation in Commercial Aluminum Alloys AA7010

    NASA Astrophysics Data System (ADS)

    Mohd Nor, M. K.; Ma'at, N.; Kamarudin, K. A.; Ismail, A. E.

    2016-11-01

    The constitutive models adopted to represent dynamic plastic behaviour are of great importance in the current design and analysis of forming processes. Many have studied this topic, leading to results in various technologies involving analytical, experimental and computational methods. Despite of this current status, it is generally agreed that there is still a need for improved constitutive models. There are still many issues relating to algorithm implementation of the proposed constitutive model in the selected code to represent the proposed formulation. Using this motivation, the implementation of a new constitutive model into the LLNL-DYNA3D code to predict the deformation behaviour of commercial aluminium alloys is discussed concisely in this paper. The paper initially explains the background and the basic structure of the LLNL-DYNA3D code. This is followed by a discussion on the constitutive models that have been chosen as the starting point for this work. The initial stage of this implementation work is then discussed in order to allow all the required material data and the deformation gradient tensor F to be read and initialised for the main analysis. Later, the key section of this implementation is discussed, which mainly relates to subroutine f3dm93 including equation of state (EOS) implementation. The implementation of the elastic-plastic part with isotropic plastic hardening, which establishes the relationship between stress and strain with respect to the isoclinic configuration Ω¯ i in the new deviatoric plane, is then presented before the implemented algorithm is validated against Plate Impact test data of the Aluminium Alloy 7010. A good agreement is obtained in each test.

  14. Diffusion bonding of superplastic aluminum alloys

    SciTech Connect

    Sunwoo, A.J.

    1993-12-01

    Ability to diffusion bond aluminum alloys, in particular superplastic aluminum alloys, will complete the technology-base that is strongly needed to enhance the use of superplastic forming (SPF) technology. Concurrent diffusion bonding (DB)-SPF is considered to be an energy-saving manufacturing process since it simplifies the production of complex components. Moreover, because of increased design flexibility, overall manufacturing cost and component weight are significantly reduced. Diffusion bonding is an attractive manufacturing option for applications where the preservation of the base metal microstructure and, in turn, mechanical properties is imperative in the bond area. The process utilizes either the solid state or transient liquid phase (TLP) bonding to produce a bond with microstructure continuity in the joint. In addition, there is no localized thermal gradient present to induce distortion or to create residual stresses in the component, thereby increasing structural integrity.

  15. The Delayed Fracture of Aluminum Alloys.

    DTIC Science & Technology

    1981-01-01

    if necessary and Identify by block number) aluminum alloys, stress - corrosion cracking, oxide film, Auger electron spectroscopy, Auger depth profiling...revere Ide If r ecester’ nd Ientify by block number). b -. ,h 0 unJaInenta mechanZsm of stress - corrosion cracking (SCC) has been studied for high-purity...these specimens is not intergranular. Fracture appears to have originated through pitting corrosion , which caused local stress concentration leading to

  16. Thermal coatings for titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  17. Superplasticity in Thermomechanically Processed High Magnesium Aluminum-Magnesium Alloys.

    DTIC Science & Technology

    1984-03-01

    California DTIC EECTE JL I 1984 THESIS SUPERPLASTICITY IN THERMOMECHANICALLY PROCESSED HIGH MAGNESIUM ALUMINUM-MAGNESIUM ALLOYS C:L by CD) John J. Becker...High Magnesium Aluminum- March 1984 Magnesium Alloys S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(&) John J. Becker 9...magnesium, aluminum-magnesium alloys were investigated. The thermomechanical processing itself included warm rolling at 300°C to 94% reduction

  18. On the Critical Technological Issues of Friction Stir Welding T-Joints of Dissimilar Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Scala, A.; Prisco, A.

    2012-08-01

    In this article, friction stir welded T-joints of innovative dissimilar aluminum alloys have been produced and tested with the aim to investigate the feasibility of using this joining technique, in this configuration, in the aerospace field with the final aim to save weight. The introduction of both this new welding technique and innovative alloys, such as AA 2198 and AA 6056, could allow making lighter and stronger structures. Some experiments, carried out previously, have shown that the fixturing device, the tool geometry, and the tilt angle play a significant role in the joint soundness. A wide experimental characterization has been carried out on FSW T-joints of AA 6056 T4 extrudes to AA 2198 T3 rolled plates. The results attained allow to put in evidence some critical issues on the investigated configuration and can be considered as a further acquired knowledge in the understanding and the design of friction stir processes.

  19. Mechanical properties of laser welded aluminum alloys

    SciTech Connect

    Douglass, D.M.; Mazumder, J.

    1996-12-31

    The demand for lighter weight vehicles has prompted accelerated development in processing aluminum alloys for automobile structural applications. One of the current research initiatives centers on laser beam welding of aluminum alloys. Autogenous butt welds have been performed on Al 3003, 5754, 6111, and 6061-T6 plates with a 6 kW CO2 laser. For 6061, tensile data indicate about 60% of the base metal strength was attained in the as-welded condition, with a brittle fracture occurring through the weld. A post-weld heat treatment to the T6 condition resulted in a recovery of original ultimate tensile strengths, although these also failed in the weld. Hardness measurements of the post-weld T6 reveal a uniform hardness across the HAZ and fusion zone that is comparable to the original hardness. All 3003 welds fractured in the parent material in a ductile fashion. A high quality bead was consistently achieved with the 3003 alloy, whereas the other alloys demonstrated bead irregularities. SEM photographs reveal large, spherical pores, suggesting that they were formed by gas entrapment rather than by shrinkage.

  20. Melt Conditioned Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Scamans, Geoff; Li, Hu-Tian; Fan, Zhongyun

    High shear melt conditioning of aluminum alloy melts disperses oxide films and provides potent nuclei to promote non-dendritic solidification leading to refined as cast microstructures for shape castings, semis or continuously cast product forms. A new generation of high shear melt conditioning equipment has been developed based on a dispersive mixer that can condition either a batch melt or can provide a continuous melt feed. Most significantly the melt conditioner can be used directly in the sump of a DC caster where it has a dramatic effect on the cast microstructure. The present goals are to expand the castable alloy range and to increase the tolerance of alloys used in transport applications to impurities to increase the use of recycled metal. The paper will review the current status of the melt conditioning technology across the range of casting options and will highlight development opportunities.

  1. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  2. Bismuth alloy potting seals aluminum connector in cryogenic application

    NASA Technical Reports Server (NTRS)

    Flower, J. F.; Stafford, R. L.

    1966-01-01

    Bismuth alloy potting seals feedthrough electrical connector for instrumentation within a pressurized vessel filled with cryogenic liquids. The seal combines the transformation of high-bismuth content alloys with the thermal contraction of an external aluminum tube.

  3. Dry machinability of aluminum alloys.

    SciTech Connect

    Shareef, I.; Natarajan, M.; Ajayi, O. O.; Energy Technology; Department of IMET

    2005-01-01

    Adverse effects of the use of cutting fluids and environmental concerns with regard to cutting fluid disposability is compelling industry to adopt Dry or near Dry Machining, with the aim of eliminating or significantly reducing the use of metal working fluids. Pending EPA regulations on metal cutting, dry machining is becoming a hot topic of research and investigation both in industry and federal research labs. Although the need for dry machining may be apparent, most of the manufacturers still consider dry machining to be impractical and even if possible, very expensive. This perception is mainly due to lack of appropriate cutting tools that can withstand intense heat and Built-up-Edge (BUE) formation during dry machining. The challenge of heat dissipation without coolant requires a completely different approach to tooling. Special tooling utilizing high-performance multi-layer, multi-component, heat resisting, low friction coatings could be a plausible answer to the challenge of dry machining. In pursuit of this goal Argonne National Labs has introduced Nano-crystalline near frictionless carbon (NFC) diamond like coatings (DLC), while industrial efforts have led to the introduction of composite coatings such as titanium aluminum nitride (TiAlN), tungsten carbide/carbon (WC/C) and others. Although, these coatings are considered to be very promising, they have not been tested either from tribological or from dry machining applications point of view. As such a research program in partnership with federal labs and industrial sponsors has started with the goal of exploring the feasibility of dry machining using the newly developed coatings such as Near Frictionless Carbon Coatings (NFC), Titanium Aluminum Nitride (TiAlN), and multi-layer multicomponent nano coatings such as TiAlCrYN and TiAlN/YN. Although various coatings are under investigation as part of the overall dry machinability program, this extended abstract deals with a systematic investigation of dry

  4. Microstructures and properties of aluminum die casting alloys

    SciTech Connect

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  5. High cycle fatigue of AA6082 and AA6063 aluminum extrusions

    NASA Astrophysics Data System (ADS)

    Nanninga, Nicholas E.

    The high cycle fatigue behavior of hollow extruded AA6082 and AA6063 aluminum extrusions has been studied. Hollow extruded aluminum profiles can be processed into intricate shapes, and may be suitable replacements for fatigue critical automotive applications requiring reduced weight. There are several features inherent in hollow aluminum extrusions, such as seam welds, charge welds, microstructural variations and die lines. The effects of such extrusion variables on high cycle fatigue properties were studied by taking specimens from an actual car bumper extrusion. It appears that extrusion die lines create large anisotropy differences in fatigue properties, while welds themselves have little effect on fatigue lives. Removal of die lines greatly increased fatigue properties of AA6082 specimens taken transverse to the extrusion direction. Without die lines, anisotropy in fatigue properties between AA6082 specimens taken longitudinal and transverse to the extrusion direction, was significantly reduced, and properties associated with the orientation of the microstructure appears to be isotropic. A fibrous microstructure for AA6082 specimens showed great improvements in fatigue behavior. The effects of elevated temperatures and exposure of specimens to NaCl solutions was also studied. Exposure to the salt solution greatly reduced the fatigue lives of specimens, while elevated temperatures showed more moderate reductions in fatigue lives.

  6. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  7. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  8. On the Study of the Sheet Bendability in AA5754-O Temper Alloy

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Jin, H.; Wu, P. D.; Lloyd, D. J.

    2016-10-01

    The bendability of AA5754 aluminum alloy in fully recrystallized temper (O temper) has been studied. Both experimental and numerical work showed that a strong {001}<100> Cube crystallographic texture in the sheet provides improved bendability compared with a low Cube texture sheet, even though the tensile properties of both sheets are similar. A crystal-based finite element model also showed that the textural distribution influences bendability, while the initial surface topography has little effect.

  9. Laser assisted arc welding for aluminum alloys

    SciTech Connect

    Fuerschbach, P.W.

    2000-01-01

    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  10. High strength cast aluminum alloy development

    NASA Astrophysics Data System (ADS)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  11. Hot deformation of aluminum alloys 2

    SciTech Connect

    Bieler, T.R. ); Lalli, L.A. ); MacEwen, S.R. )

    1998-01-01

    This volume is the proceedings of the second symposium addressing scientific and modeling issues that are important for prediction of hot deformation of aluminum and its alloys. This symposium focuses more on the processing route itself, and it explores new techniques for characterizing microstructures, laboratory testing to emulate industrial processing, and perhaps most importantly, the emergence of mathematical modeling as a reliable, validated tool to simulate not only processing strain paths, but also the evolution of properties during forming. Separate abstracts were prepared for all 35 papers in this volume.

  12. Bonding of Aluminum Alloys in Compound Casting

    NASA Astrophysics Data System (ADS)

    Feng, Jian; Ye, Bing; Zuo, Lijie; Wang, Qudong; Wang, Qigui; Jiang, Haiyan; Ding, Wenjiang

    2017-10-01

    The influence of the coating materials, coating thickness, and casting process on the interfacial microstructure and mechanical properties of the overcast A6061 bars with aluminum A356 and A6061 alloys was studied by OM, SEM/EDS, and mechanical testing. Results indicate that Ni coating has better thermal stability than Cu coating that heavily reacts with liquid Al alloy and forms a reaction zone around 130-150 μm during gravity casting. In the gravity casting, coarse and cracked Al3Ni phase distributes along the interfacial region and degrades the mechanical properties of the overcast joints. In squeeze casting, however, fine and dispersed Ni-rich strengthening phases form uniformly in the interfacial zone and improve the metallurgical bonding of the joints. The heat transition and application of pressure during solidification are two key factors in determining the integrity and mechanical properties of the overcast joints.

  13. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  14. Welding of Aluminum Alloys to Steels: An Overview

    DTIC Science & Technology

    2013-08-01

    joining techniques for the dissimilar materials. 2. Recent technologies for joining aluminum alloys to steels ...2012) 143-147. UNCLASSIFIED 33 UNCLASSIFIED [19] J. Bruckner, Considering thermal processes for dissimilar metals- joining steel to aluminum in...Murakami, K. Nakata, H. Tong, M. Ushio, Dissimilar metal joining of aluminum to steel by MIG arc brazing using flux cored wire, ISIJ Int. 43 (10)

  15. Measurements of degree of sensitization (DoS) in aluminum alloys using EMAT ultrasound.

    PubMed

    Li, Fang; Xiang, Dan; Qin, Yexian; Pond, Robert B; Slusarski, Kyle

    2011-07-01

    Sensitization in 5XXX aluminum alloys is an insidious problem characterized by the gradual formation and growth of beta phase (Mg(2)Al(3)) at grain boundaries, which increases the susceptibility of alloys to intergranular corrosion (IGC) and intergranular stress-corrosion cracking (IGSCC). The degree of sensitization (DoS) is currently quantified by the ASTM G67 Nitric Acid Mass Loss Test, which is destructive and time consuming. A fast, reliable, and non-destructive method for rapid detection and the assessment of the condition of DoS in AA5XXX aluminum alloys in the field is highly desirable. In this paper, we describe a non-destructive method for measurements of DoS in aluminum alloys with an electromagnetic acoustic transducer (EMAT). AA5083 aluminum alloy samples were sensitized at 100°C with processing times varying from 7days to 30days. The DoS of sensitized samples was first quantified with the ASTM 67 test in the laboratory. Both ultrasonic velocity and attenuation in sensitized specimens were then measured using EMAT and the results were correlated with the DoS data. We found that the longitudinal wave velocity was almost a constant, independent of the sensitization, which suggests that the longitudinal wave can be used to determine the sample thickness. The shear wave velocity and especially the shear wave attenuation are sensitive to DoS. Relationships between DoS and the shear velocity, as well as the shear attenuation have been established. Finally, we performed the data mining to evaluate and improve the accuracy in the measurements of DoS in aluminum alloys with EMAT. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  17. Investigation of Superplastic Behavior in FSP 5083 Aluminum Alloy

    DTIC Science & Technology

    2007-06-01

    Mishra, M. Mahoney, “Microstructural investigation of friction stir welded 7050 -T651 aluminum .” Acta Materialia. Vol. 51 (2007...SUPERPLASTIC BEHAVIOR IN FSP 5083 ALUMINUM ALLOY by Marc Thompson Bland June 2007 Thesis Advisor: Terry R. McNelley Co-Advisor...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Investigation of Superplastic Behavior in FSP 5083 Aluminum Alloy 6. AUTHOR(S) Marc Thompson Bland

  18. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  19. The Elastic Constants for Wrought Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  20. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)

    2002-01-01

    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  1. Direct-Chill Co-Casting of AA3003/AA4045 Aluminum Ingots via Fusion™ Technology

    NASA Astrophysics Data System (ADS)

    Caron, Etienne J. F. R.; Pelayo, Rosa E. Ortega; Baserinia, Amir R.; Wells, Mary A.; Weckman, David C.; Barker, Simon; Gallerneault, Mark

    2014-06-01

    Laboratory-scale experiments were conducted to cast AA3003/AA4045 clad ingots via Fusion™ Technology, a novel process developed by Novelis Inc. for the production of aluminum clad materials such as brazing sheet. Experimental results were used to validate a steady-state thermofluids model of the Fusion™ Technology co-casting process. The numerical model was able to accurately predict the temperature field within the AA3003/AA4045 clad ingot as well as the shape of the AA3003 liquid sump. The model was also used to quantify the temperature, fraction solid, and velocity fields in a clad ingot cast with an asymmetrical molten metal-feeding system. Feeding of core and clad molten metals at opposite corners of the mold was found to reduce the risks of hot spots and liquid metal breakthrough from the core sump to the clad side of the Fusion™ Technology mold. The use of a diffuser for the AA3003 core molten metal and of a vertical feeding tube for the AA4045 clad produced different flow patterns and liquid sump shapes on either side of the mold. The quality of the metallurgical bond at the core/clad interface appeared good near the clad inlet and at the ingot centerline, but poor near the edges of the ingot. SEM-EDS analysis of the chemical composition across the interface showed that a 1 to 20- μm-deep penetration of silicon from the AA4045 clad into the AA3003 core had occurred at visually acceptable interfaces, whereas silicon diffusion across poor interfaces was very limited. A study of the model-predicted fraction solid history at different points along the interface indicated that reheating of the AA3003 core is not required to form a visually acceptable metallurgical bond. However, a sufficient amount of interaction time between the solid AA3003 core shell and the silicon-rich AA4045 clad liquid is required to chemically dissolve the surface of the core and form a good metallurgical bond. An approximate dissolution depth of 750 to 1000 μm was observed along

  2. Corrosion behavior of SiC-reinforced aluminum alloys. Technical review, 1 May 1985-1 September 1987

    SciTech Connect

    McIntyre, J.F.; Le, A.H.; Golledge, S.; Conrad, R.

    1987-09-25

    The corrosion behavior of SiC reinforced aluminum alloys exposed to chloride environments is reported. Electrochemical techniques were used to characterize corrosion behavior. Corrosion topography was investigated using scanning electron microscopy and energy-dispersive x-ray spectroscopy. The effect of heat treatment on the corrosion behavior of SiC/AA-2124 was investigated. Results indicate that intermetallics strongly influence corrosion.

  3. Stress corrosion in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  4. Aluminum alloy welding and stress-corrosion testing. Final report

    SciTech Connect

    Gates, W.G.; Jimenez, E.

    1981-04-01

    The weldability, strength, and corrosion resistance of four 5XXX aluminum alloys electron beam welded to 6061-T6 aluminum alloy without a filler metal were evaluated. Adding filler metal raises weld energy requirements and makes the process more difficult to control. In this study, instead of using a filler metal, a high-magnesium 5XXX alloy was welded to the 6061 alloy. The four 5XXX alloys used (5456-H321, 5052-H34, 5086-H323, and 5083-H32) were selected for their high magnesium content which reduces weld crack sensitivity.

  5. Structure-property relationships of dissimilar friction stir welded aluminum alloys

    NASA Astrophysics Data System (ADS)

    Quinones, Rogie Irwin Rodriguez

    In this work, the relationship between microstructure and mechanical properties of dissimilar friction stir welded AA6061-to-AA7050 aluminum alloys were evaluated. Experimental results from this study revealed that static strength increased with the tool rotational speed and was correlated with the material intermixing. Fully-reversed low cycle fatigue experimental results showed an increase in the strain hardening properties as well as the number of cycles-to-failure as the tool rotational speed was increased. Furthermore, under both static and cyclic loading, fracture of the joint was dominated by the AA6061 alloy side of the weld. In addition, inspection of the fatigue surfaces revealed that cracks initiated from intermetallic particles located near the surface. In order to determine the corrosion resistance of the dissimilar joint, corrosion defects were produced on the crown surface of the weld by static immersion in 3.5% NaCl for various exposure times. Results revealed localized corrosion damage in the thermo-mechanically affected and heat affected zones. Results demonstrated a decrease in the fatigue life, with evidence of crack initiation at the corrosion defects; however, the fatigue life was nearly independent of the exposure time. This can be attributed to total fatigue life dominated by incubation time. Furthermore, two types of failure were observed: fatigue crack initiation in the AA6061 side at high strain amplitudes (>0.3%); and fatigue crack initiation in the AA7050 side at low strain amplitudes (<0.2%). Lastly, a microstructure-sensitive model based on a multi-stage fatigue damage concept was extended to the dissimilar friction stir welded joints in order to capture the crack initiation and propagation in as-welded and pre-corroded conditions. Good correlation between experimental fatigue results and the model was achieved based on the variation in the initial defect size, microstructure, and mechanical properties of the dissimilar friction stir

  6. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology.

    PubMed

    Longtin, Rémi; Hack, Erwin; Neuenschwander, Jürg; Janczak-Rusch, Jolanta

    2011-12-22

    Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties.

  7. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Güler, Hande

    2014-10-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  8. Ballistic Evaluation of 6055 Aluminum

    DTIC Science & Technology

    2015-09-01

    alloy (AA) 6055-T651 produced by Alcoa as part of a Defense Acquisition Challenge Program. Ballistic evaluation was performed using armor-piercing...compared to other ballistic-grade aluminum alloys , namely AA6061 and AA7039. The results of these experiments were used to derive the acceptance tables...as those of M2 Bradley Infantry Fighting Vehicles. Also in 2012, the Aluminum Association assigned a new 6XXX-series alloy designation to Alcoa for

  9. Preparation and characterization of a GPTMS/graphene coating on AA-2024 alloy

    NASA Astrophysics Data System (ADS)

    Dun, Yuchao; Zuo, Yu

    2017-09-01

    A γ-(2,3-epoxypropoxy) propyltrimethoxysilane/graphene (GPTMS/rGO) coating on AA-2024 aluminum alloy was prepared by immersing the aluminum alloy sample in a silane/graphene oxide solution and curing in oven at 180 °C. Silanol groups were grafted onto graphene oxide sheets during hydrolysis. The graphene oxide was stacked layer by layer through silanol groups. The synthesized coating was characterized with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectra and scanning electron microscopy. The thickness of the composite coating increased greatly compared with that of silane coating, due to the mutual riveting effect. The covalent metallic-siloxane bonds (AlOSi) improved the adhesion force greatly. The laminate structure of graphene increased the hardness and declined the brittleness over 200 °C. The GPTMS/rGO coating showed good corrosion resistance. In 3.5% NaCl solution the anodic current density of the aluminum alloy sample with GPTMS/rGO coating was reduced by several orders of magnitude compared with those of bare aluminum alloy or the sample with graphene film.

  10. Fabrication of Porous Aluminum Using Gases Intrinsically Contained in Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Utsunomiya, Takao

    2009-06-01

    Closed-cell porous aluminum was fabricated using gases intrinsically contained in aluminum alloy die castings without using a blowing agent. By incorporating the friction stir processing technique, porous aluminum with a porosity of more than 50 pct was successfully obtained at a holding temperature of 923 to 948 K and a holding time of 10 minutes. This proposed die-casting route has high potential for fabricating porous aluminum at a low cost by a higher productivity process.

  11. Formability analysis of aluminum alloys through deep drawing process

    NASA Astrophysics Data System (ADS)

    Pranavi, U.; Janaki Ramulu, Perumalla; Chandramouli, Ch; Govardhan, Dasari; Prasad, PVS. Ram

    2016-09-01

    Deep drawing process is a significant metal forming process used in the sheet metal forming operations. From this process complex shapes can be manufactured with fewer defects. Deep drawing process has different effectible process parameters from which an optimum level of parameters should be identified so that an efficient final product with required mechanical properties will be obtained. The present work is to evaluate the formability of Aluminum alloy sheets using deep drawing process. In which effects of punch radius, lubricating conditions, die radius, and blank holding forces on deep drawing process observed for AA 6061 aluminum alloy sheet of 2 mm thickness. The numerical simulations are performed for deep drawing of square cups using three levels of aforesaid parameters like lubricating conditions and blank holding forces and two levels of punch radii and die radii. For numerical simulation a commercial FEM code is used in which Hollomon's power law and Hill's 1948 yield criterions are implemented. The deep drawing setup used in the FEM code is modeled using a CAD tool by considering the modeling requirements from the literature. Two different strain paths (150x150mm and 200x200mm) are simulated. Punch forces, thickness distributions and dome heights are evaluated for all the conditions. In addition failure initiation and propagation is also observed. From the results, by increasing the coefficient of friction and blank holding force, punch force, thickness distribution and dome height variations are observed. The comparison has done and the optimistic parameters were suggested from the results. From this work one can predict the formability for different strain paths without experimentation.

  12. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  13. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  14. Thermotransport in liquid aluminum-copper alloys

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A thermotransport study was made on a series of liquid aluminum-copper alloys which contained from trace amounts to 33 weight percent copper. The samples in the form of narrow capillaries were held in known temperature gradient of thermotransport apparatus until the stationary state was reached. The samples were analyzed for the concentration of copper along the length. Copper was observed to migrate to the colder regions in all the samples. The heat of transport, Q*, was determined for each composition from a plot of concentration of copper versus reciprocal absolute temperature. The value of Q* is the highest at trace amounts of copper (4850 cal/gm-atom), but decreases with increasing concentration of copper and levels off to 2550 cal/gm-atom at about 25 weight percent copper. The results are explained on the basis of electron-solute interaction and a gas model of diffusion.

  15. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  16. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  17. Fatigue crack propagation in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  18. Surface passivation of aluminum alloy 6061 with gaseous trichlorosilane: A surface investigation

    NASA Astrophysics Data System (ADS)

    Ngongang, Rickielle; Marceau, Eric; Carrier, Xavier; Pradier, Claire-Marie; Methivier, Christophe; Blanc, Jean-Luc; Carre, Martine

    2014-02-01

    A molecular-scale investigation of the interaction at room temperature between gaseous trichlorosilane (HSiCl3), used as a passivating agent, and surfaces of aluminum alloy AA6061 in a polished or hydroxylated state is conducted. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) provide information on the topography and morphology of AA6061 before and after hydroxylation and surface passivation, while surface chemistry has been investigated by Polarization Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) and X-ray photoelectron spectroscopy (XPS). Oxidation and hydroxylation of the polished alloy surface in boiling water strongly modifies the roughness of the surface, with formation of platelets and needles of oxyhydroxide AlOOH. PM-IRRAS and XPS reveal that, upon adsorption, HSiCl3 dissociates and mainly forms HSiOHn(OAl)3-n, HSi(OSi)n(OAl)3-n and condensed HSiOx species, by reaction with sbnd OH groups from the AlOOH surface phase. The amount of deposited Si-containing species is larger on the rough surface of the hydroxylated alloy and this deposit is accompanied by a decrease of the amount of free sbnd OH groups evidenced by PM-IRRAS. These results can find applications in the field of functionalization of aluminum alloys. It is suggested that a homogeneous oxidation of the alloy surface prior to exposure to gaseous HSiCl3 may enhance the adsorption of the passivating agent.

  19. Simulating weld-fusion boundary microstructures in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios D.; Lippold, John C.

    2004-02-01

    A fundamental study of weld-fusion boundary microstructure evolution in aluminum alloys was conducted in an effort to understand equiaxed grain zone formation and fusion boundary nucleation and growth phenomena. In addition to commercial aluminum alloys, experimental Mg-bearing alloys with Zr and Sc additions were studied along with the widely used Cu- and Licontaining alloy 2195-T8. This article describes work conducted to clarify the interrelation among composition, base metal substrate, and temperature as they relate to nucleation and growth phenomena at the fusion boundary.

  20. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  1. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon

    2011-01-01

    NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  2. Paint-Bonding Improvement for 2219 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.; Cibula, Audrey Y.

    1987-01-01

    Bonding of adhesives and primers to 2219 aluminum alloy improved by delaying rinse step in surface-treatment process. Delaying rinse allows formation of rougher surface for stronger bonding and greater oxide buildup.

  3. Measurement of Thermodynamic Properties of Titanium Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Mehrotra, Gopal

    1995-01-01

    This final report is a summary of the work done by Professor Mehrotra at NASA Lewis Research Center. He has worked extensively on the measurement of thermodynamic properties of titanium aluminum alloys over the past six years.

  4. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  5. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  6. Microstructure-sensitive plasticity and fatigue modeling of extruded 6061 aluminum alloys

    NASA Astrophysics Data System (ADS)

    McCullough, Robert Ross

    In this study, the development of fatigue failure and stress anisotropy in light weight ductile metal alloys, specifically Al-Mg-Si aluminum alloys, was investigated. The experiments were carried out on an extruded 6061 aluminum alloy. Reverse loading experiments were performed up to a prestrain of 5% in both tension-followed-by-compression and compression-followed-by-tension. The development of isotropic and kinematic hardening and subsequent anisotropy was indicated by the observation of the Bauschinger effect phenomenon. Experimental results show that 6061 aluminum alloy exhibited a slight increase in the kinematic hardening versus applied prestrain. However, the ratio of kinematic-to-isotropic hardening remained near unity. An internal state variable (ISV) plasticity and damage model was used to capture the evolution of the anisotropy for the as-received T6 and partially annealed conditions. Following the stress anisotropy experiments, the same extruded 6061 aluminum alloy was tested under fully reversing, strain-controlled low cycle fatigue at up to 2.5% strain amplitudes and two heat treatment conditions. Observations were made of the development of striation fields up to the point of nucleation at cracked and clustered precipitants and free surfaces through localized precipitant slip band development. A finite element enabled micro-mechanics study of fatigue damage development of local strain field in the presence of hard phases was conducted. Both the FEA and experimental data sets were utilized in the implementation of a multi-stage fatigue model in order to predict the microstructure response, including fatigue nucleation and propagation contributions on the total fatigue life in AA6061. Good correlation between experimental and predicted results in the number of cycles to final failure was observed. The AA6061 material maintained relatively consistent low cycle fatigue performance despite two different heat treatments.

  7. Friction Stir Welding of Aluminum and Titanium Alloys

    DTIC Science & Technology

    2007-11-02

    What is this? Jata/US Air Force Typical FSW Tools W-Re tool in collet- style tool holder. Used for welding steels and Ti alloys 3-piece self...Friction Stir Welding of Aluminum and Titanium alloys NATO Advanced Research Workshop Metallic Materials with High Structural Efficiency Kyiv...valid OMB control number. 1. REPORT DATE 18 MAR 2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Friction Stir Welding of Aluminum

  8. Brazing of Stainless Steel to Various Aluminum Alloys in Air

    NASA Astrophysics Data System (ADS)

    Liu, Shuying; Suzumura, Akio; Ikeshoji, Toshi-Taka; Yamazaki, Takahisa

    Brazing of a stainless steel to various aluminum alloys was carried out using an Al-Si filler metal and a fluoride-active flux in air. The brazeability was remarkably different by the aluminum alloys and the brazing conditions. It was considered that the differences were originated with the compositions of base metals and the filler metal, the solidus temperature and the partially melting behavior of the aluminum alloys, and the behavior of the surface oxide film layers of both base metals. On the other hand, the obstruction of brazeability was identified as the rapid reaction between the aluminum alloys and the brazing filler metal, which makes the molten brazing filler metal disappear at the joining interface before the wetting occurs to the stainless steel. Taking this phenomena into consideration, it was attempted to make previous wetting of the brazing filler to the stainless steel before brazing to the aluminum alloys. This method provided the successful brazed joints for the most combinations of the stainless steel and the aluminum alloys.

  9. An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  10. Mechanical and microstructural characterization of single and double pass Aluminum AA6061 friction stir weld joints

    NASA Astrophysics Data System (ADS)

    Othman, N. H.; Shah, L. H.; Ishak, M.

    2015-12-01

    This study focuses on the effect of single pass (SP), double sided pass (DSP) and normal double pass (NDP) method on friction stir welding of aluminum AA6061. Two pieces of AA6061 alloy with thickness of 6 mm were friction stir welded by using conventional milling machine. The rotational speeds that were used in this study were 800 rpm, 1000 rpm and 1200 rpm, respectively. The welding speed is fixed to 100 mm/min. Microstructure observation of welded area was studied by using optical microscope. Tensile test and Vickers hardness test were used to evaluate the mechanical properties of this specimen. Mechanical property analysis results indicate that at low rotational speeds, defects such as surface lack of fill and tunneling in the welded area can be observed. Vickers hardness of specimens however did not vary much when rotational speed is varied. Welded specimens using single pass method shows higher tensile strength and hardness value compared to both double pass methods up to 180.61 MPa. Moreover, DSP showed better tensile test and hardness test compared to NDP method. The optimum parameters were found to be single pass method with 1200 rpm of rotational speed. Therefore economically sound to only perform SP method to obtain maximum tensile strength for AA6061 FSW with thickness of 6 mm.

  11. Aluminum alloy anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Z. H.; Chen, Z. F.; Fu, Q. W.; Jiang, X. Y.

    2017-03-01

    Aluminum has larger theoretical capacity of 2235 mAh/g than that of graphite (372 mAh/g), but it has big disadvantages including shorter cycle life and higher irreversible capacity loss. Improving cycle performance can be obtained via alloying of aluminum. In this paper, two ternary aluminum alloy, Al7Cu2Fe and Al73Cu5Fe22 were prepared. The main phase of Al7Cu2Fe alloy was Al7Cu2Fe. The heat treatment increased the proportion of Al7Cu2Fe. The main phase of Al73Cu5Fe22 alloy was Al60Cu30Fe10. The heat treatment reduced the proportion of Al60Cu30Fe10. For two alloys, the heat treatment could increase discharge capacity compared with cast alloy. The discharge capacity was improved by 50%. The content of aluminum in alloys has little effect on improving cycle performance, and it has obvious influence on the phase structure of alloy with heat treatment.

  12. Corrosion protection of aluminum alloys in contact with other metals

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  13. Tribological Properties of Aluminum Alloy treated by Fine Particle Peening/DLC Hybrid Surface Modification

    NASA Astrophysics Data System (ADS)

    Amano, Y.; Nanbu, H.; Kameyama, Y.; Komotori, J.

    2010-06-01

    In order to improve the adhesiveness of the DLC coating, Fine Particle Peening (FPP) treatment was employed as pre-treatment of the DLC coating process. FPP treatment was performed using SiC shot particles, and then AA6061-T6 aluminum alloy was DLC-coated. A SiC-rich layer was formed around the surface of the aluminum alloy by the FPP treatment because small chips of shot particles were embedded into the substrate surface. Reciprocating sliding tests were conducted to measure the friction coefficients. While the DLC coated specimen without FPP treatment showed a sudden increase in friction coefficient at the early stage of the wear cycles, the FPP/DLC hybrid treated specimen maintained a low friction coefficient value during the test period. Further investigation revealed that the tribological properties of the substrate after the DLC coating were improved with an increase in the amount of Si at the surface.

  14. Evaluation of 8090 and Weldalite-049 Aluminum-Lithium Alloys

    DTIC Science & Technology

    1992-09-01

    AD-A258 121 MTL TR 92-59 , ’"-AD EVALUATION OF 8090 AND WELDALITE-049 ALUMINUM -LITHIUM ALLOYS THOMAS M. HOLMES and ERNEST S. C. CHIN MATERIALS...EVALUATION OF 8090 AND WELDALITE-049 ALUMINUM -LITHIUM ALLOYS 6- PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 4. CONTRACT OR GRANT NUMBERt’) Thomas M...in &lack 20,. it dlihl-., im R.port) 1. SUPPLEMENTARY NOTES It. KEY WORDS (Contfnuoe on reverse side it nereaary and identity by black number) Aluminum

  15. Influences of Nickel and Vanadium Impurities on Microstructure of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Suming; Yao, Ji-Yong; Sweet, Lisa; Easton, Mark; Taylor, John; Robinson, Paul; Parson, Nick

    2013-05-01

    In recent years, the deterioration in the available coke quality for anode production has led to increased levels of metal impurities such as nickel and vanadium in primary aluminum. There is growing concern from the industry with regard to the impact of increased Ni and V levels on the downstream properties of Al alloy products. This article presents a detailed investigation of the influences of Ni and V impurities on microstructure of three common Al alloys, i.e., AA6063, AA3102, and A356, in both as-cast and heat-treated conditions. The characterization techniques employed include scanning electron microscopy, electron backscattered diffraction, energy-dispersive x-ray spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. It is shown that the phase constituents of AA6063 are not altered by Ni additions up to 0.05% or V additions up to 0.04%. Whereas there is no change in phase constituents with increasing Ni up to 0.015% for AA3102, the addition of 0.05% Ni seems to have significant influence on the microstructure. For A356, Ni additions up to 0.02% do not seem to have significant influence on the microstructure, but a new phase with significantly high Ni content is formed when the Ni impurity level is increased to 0.05%. The deep insight obtained in this work should be helpful to understand the influences of Ni and V impurities on properties of Al alloys.

  16. Calcium metal as a scavenger for antimony from aluminum alloys

    SciTech Connect

    Bonsignore, P.V.; Daniels, E.J.; Wu, C.T.

    1994-10-04

    Previous work has shown that trace amounts of antimony (Sb) can affect the mechanical properties of strontium (Sr) modified aluminum castings. ANL has been investigating technology to remove or neutralize Sb to reduce its negative effect on the physical properties of those alloys. Review of past work on processing and recovery of scrap aluminum inferred that calcium (Ca) is an effective scavenger of Sb, bismuth, lead and cadmium. Following up on that lead, we have found that Ca is, indeed, effective for removing Sb from molten aluminum alloys although its effectiveness can be compromised by a wide range of processing conditions. A minimum ratio of about four to one, by weight, of Ca to Sb appears necessary to insure an effective scavenging of contained Sb.in 356 aluminum alloys.

  17. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    SciTech Connect

    Merton Flemings; srinath Viswanathan

    2001-05-15

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  18. Materials data handbook: Aluminum alloy 2014, 2nd edition

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A revised edition of the materials data handbook on the aluminum alloy 2014 is presented. The scope of the information presented includes physical and mechanical property data at cryogenic, ambient and elevated temperatures, supplemented with useful information in such areas as material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication and joining techniques. Design data are presented, as available, and these data are complemented with information on the typical behavior of the alloy.

  19. Excimer laser induced plasma for aluminum alloys surface carburizing

    NASA Astrophysics Data System (ADS)

    Fariaut, F.; Boulmer-Leborgne, C.; Le Menn, E.; Sauvage, T.; Andreazza-Vignolle, C.; Andreazza, P.; Langlade, C.

    2002-01-01

    Currently, while light alloys are useful for automotive industries, their weak wear behavior is a limiting factor. The excimer laser carburizing process reported here has been developed to enhance the mechanical and chemical properties of aluminum alloys. An excimer laser beam is focused onto the alloy surface in a cell containing 1 bar methane or/and propylene gas. A vapor plasma expands from the surface, the induced shock wave dissociates and ionizes the ambient gas. Carbon atoms diffuse into the plasma in contact with the irradiated surface. An aluminum carbide layer is created by carbon diffusion in the surface liquid layer during the recombination phase of the plasma.

  20. An investigation of plastic fracture in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Low, J. R., Jr.; Vanstone, R. H.; Merchant, R. H.

    1972-01-01

    The brittle fracture of many high strength alloys such as steel, titanium, and aluminum was shown to occur by a process called plastic fracture. According to this process microscopic voids form at impurity particles, then grow and coalesce to cause the final rupture. To further understand the role of impurities, four aluminum alloys were investigated: 2024-T851, 2124-T851, 7075-T7351 and 7079-T651. Fractography, quantitative metallography, and microprobe studies assessed the roles of various impurity particles relative to these alloys.

  1. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  2. Characterization of the Microstructure, Fracture, and Mechanical Properties of Aluminum Alloys 7085-O and 7175-T7452 Hollow Cylinder Extrusions

    NASA Astrophysics Data System (ADS)

    Benoit, Samuel G.; Chalivendra, Vijaya B.; Rice, Matthew A.; Doleski, Robert F.

    2016-09-01

    Microstructural, tensile, and fracture characterizations of cylindrically forged forms of aluminum alloys AA7085-O and AA7175-T7452 were performed. Mechanical and fracture properties were investigated along radial, circumferential, and longitudinal directions to determine directional dependency. American Society for Testing and Materials (ASTM) test methods (ASTM E8-04 and ASTM E1820) were employed for both the tensile and fracture characterizations, respectively. The tensile and fracture properties were related to microstructure in each direction. The strength, elongation at break, and ultimate tensile strength of AA7085-O were higher than those of AA7175-T7452. AA7175-T7452 alloy failed in a brittle manner during fracture studies. AA7085-O outperformed AA7175-T7452 on fracture energy in all of the orientations studied. Smaller grain sizes on the planes normal to circumferential and longitudinal directions showed improvement in both elongation at break and fracture energy values compared to those of radial direction. Scanning electron microscopy images demonstrated cleavage fracture in AA7175-T7452 and transgranular fracture in AA7085-O.

  3. Preparation of cast aluminum alloy-mica particle composites

    NASA Technical Reports Server (NTRS)

    Deonath, MR.; Bhat, R. T.; Rohatgi, P. K.

    1980-01-01

    A method for making aluminum-mica particle composites is presented in which mica particles are stirred in molten aluminum alloys followed by casting in permanent molds. Magnesium is added either as an alloying element or in the form of pieces to the surface of the alloy melts to disperse up to 3 wt% mica powders in the melts and to obtain high recoveries of mica in the castings. The mechanical properties of the aluminum alloy-mica composite decrease with increasing mica content; however, even at 2.2% it has a tensile strength of 14.22 kg/sq mm with 1.1% elongation, a compression strength of 42.61 kg/sq mm, and an impact strength of 0.30 kgm/sq cm. Cryogenic and self-lubricating bearing are mentioned applications.

  4. Effect of quenching rate on precipitation kinetics in AA2219 DC cast alloy

    NASA Astrophysics Data System (ADS)

    Elgallad, E. M.; Zhang, Z.; Chen, X.-G.

    2017-06-01

    Slow quenching of direct chill (DC) cast aluminum ingot plates used in large mold applications is often used to decrease quench-induced residual stresses, which can deteriorate the machining performance of these plates. Slow quenching may negatively affect the mechanical properties of the cast plates when using highly quench-sensitive aluminum alloys because of its negative effect on the precipitation hardening behavior of such alloys. The effect of the quenching rate on precipitation kinetics in AA2219 DC cast alloy was systematically studied under water and air quenching conditions using differential scanning calorimetry (DSC) technique. Transmission electron microscopy (TEM) was also used to characterize the precipitate microstructure. The results showed that the precipitation kinetics of the θ‧ phase in the air-quenched condition was mostly slower than that in the water-quenched one. Air quenching continuously increased the precipitation kinetics of the θ phase compared to water quenching. These results revealed the contributions of the inadequate precipitation of the strengthening θ‧ phase and the increased precipitation of the equilibrium θ phase to the deterioration of the mechanical properties of air-quenched AA2219 DC cast plates. The preexisting GP zones and quenched-in dislocations affected the kinetics of the θ‧ phase, whereas the preceding precipitation of the θ‧ phase affected the kinetics of the θ phase by controlling its precipitation mechanism.

  5. Friction Stir Welding of Age-Hardenable Aluminum Alloys: A Parametric Approach Using RSM Based GRA Coupled With PCA

    NASA Astrophysics Data System (ADS)

    Vijayan, D.; Rao, V. S.

    2014-04-01

    Age-hardenable aluminum alloys, primarily used in the aerospace, automobile and marine industries (2×××, 6××× and 7×××), can be welded using solid-state welding techniques. Friction stir welding is an emerging solid-state welding technique used to join both similar and dissimilar materials. The strength of a friction stir welded joint depends on the joining process parameters. Therefore, a combination of the statistical techniques of a response surface methodology based on a grey relational analysis coupled to a principal component analysis was proposed to select the process parameters suitable for joining AA 2024 and AA 6061 aluminum alloys via friction stir welding. The significant process parameters, such as rotational speed, welding speed, axial load and pin shapes (PS) were considered during the statistical experiment. The results indicate that the square PS plays a vital role and yields an ultimate tensile strength of 141 MPa for an elongation of 12 % versus cylinder and taper pin profiles. The root cause for joint strength loss and fracture mode was analyzed using scanning electron microscopy. Severe material flow during macro defects, such as pin holes and porosity, degrades the joint strength by approximately 44 % for AA 2024 and 51 % for AA 6061 fabricated FS-welded aluminum alloys relative to the base material. The results of this approach are useful for accurately controlling the response and optimize the process parameters.

  6. Constitutive Behavior and Deep Drawability of Three Aluminum Alloys Under Different Temperatures and Deformation Speeds

    NASA Astrophysics Data System (ADS)

    Panicker, Sudhy S.; Prasad, K. Sajun; Basak, Shamik; Panda, Sushanta Kumar

    2017-08-01

    In the present work, uniaxial tensile tests were carried out to evaluate the stress-strain response of AA2014, AA5052 and AA6082 aluminum alloys at four temperatures: 303, 423, 523 and 623 K, and three strain rates: 0.0022, 0.022 and 0.22 s-1. It was found that the Cowper-Symonds model was not a robust constitutive model, and it failed to predict the flow behavior, particularly the thermal softening at higher temperatures. Subsequently, a comparative study was made on the capability of Johnson-Cook (JC), modified Zerilli-Armstrong (m-ZA), modified Arrhenius (m-ARR) and artificial neural network (ANN) for modeling the constitutive behavior of all the three aluminum alloys under the mentioned strain rates and temperatures. Also, the improvement in formability of the materials was evaluated at an elevated temperature of 623 K in terms of cup height and maximum safe strains by conducting cylindrical cup deep drawing experiments under two different punch speeds of 4 and 400 mm/min. The cup heights increased during warm deep drawing due to thermal softening and increase in failure strains. Also, a small reduction in cup height was observed when the punch speed increased from 4 to 400 mm/min at 623 K. Hence, it was suggested to use high-speed deformation at elevated temperature to reduce both punch load and cycle time during the deep drawing process.

  7. Formability Evaluation of Aluminum Alloy 6061-T6 Sheet at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Chen, Zhu; Fang, Gang; Zhao, Jia-Qing

    2017-09-01

    The formability of aluminum alloy 6061-T6 sheet was evaluated, and the effects of temperature and strain rate on the formability were analyzed. Uniaxial tension tests and Nakajima tests were conducted at room temperature to obtain the constitutive parameters of AA 6061-T6 and establish the forming limit diagram (FLD), respectively. Moreover, uniaxial tension tests were performed at the temperatures ranging between 180 and 380 °C and the strain rates ranging between 0.0005 and 0.05 s-1, and the constitutive equations of AA 6061-T6 were established. Nakajima tests at temperature 330 °C and two forming speeds (15 and 150 mm/min) were carried out to evaluate the formability of AA6061-T6 at elevated temperatures. In consequence, FLDs under different forming conditions were established and compared. Experimental results showed that the forming limit of AA 6061-T6 increased with the increasing temperature and the decreasing forming speed. The present investigation presented the formability of AA 6061-T6 under different forming conditions, which provided a guidance to design the warm/hot forming of AA 6061 sheet. The FLDs and constitutive equations established through these experiments will be used to predict the forming defects in the forming process design.

  8. Elevated temperature crack growth in aluminum alloys: Tensile deformation of 2618 and FVS0812 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Leng, Yang; Gangloff, Richard P.

    1990-01-01

    Understanding the damage tolerance of aluminum alloys at elevated temperatures is essential for safe applications of advanced materials. The objective of this project is to investigate the time dependent subcritical cracking behavior of powder metallurgy FVS0812 and ingot metallurgy 2618 aluminum alloys at elevated temperatures. The fracture mechanics approach was applied. Sidegrooved compact tension specimens were tested at 175, 250, and 316 C under constant load. Subcritical crack growth occurred in each alloy at applied stress intensity levels (K) of between about 14 and 25 MPa/m, well below K (sub IC). Measured load, crack opening displacement and displacement rate, and crack length and growth rate (da/dt) were analyzed with several continuum fracture parameters including, the C-integral, C (sub t), and K. Elevated temperature growth rate data suggest that K is a controlling parameter during time dependent cracking. For FVS0812, da/dt is highest at 175 C when rates are expressed as a function of K. While crack growth rate is not controlled by C (sub t) at 175 C, da/dt appears to better correlate with C (sub t) at higher temperatures. Creep brittle cracking at intermediate temperatures, and perhaps related to strain aging, is augmented by time dependent transient creep plasticity at higher temperatures. The C (sub t) analysis is, however, complicated by the necessity to measure small differences in the elastic crack growth and creep contributions to the crack opening displacement rate. A microstructural study indicates that 2618 and FVS0812 are likely to be creep brittle materials, consistent with the results obtained from the fracture mechanics study. Time dependent crack growth of 2618 at 175 C is characterized by mixed transgranular and intergranular fracture. Delamination along the ribbon powder particle boundaries occurs in FVS0812 at all temperatures. The fracture mode of FVS0812 changes with temperature. At 175 C, it is characterized as dimpled rupture

  9. Thermoelectrical power analysis of precipitation in 6013 aluminum alloy

    SciTech Connect

    Abdala, M.R.W.S.; Garcia de Blas, J.C. Acselrad, O.

    2008-03-15

    The 6013 aluminum alloy was first developed for application in the aircraft industry and, more recently, as a replacement option for the use of the 6061 alloy in the automotive industry. The present work describes the evolution of the process of formation and dissolution of different kinds of precipitates in 6013 aluminum alloy, subjected to different conditions of heat treatment, using for this purpose measurements of thermoelectrical power, Vickers microhardness and differential scanning calorimeter (DSC). Although in the last years many works have been published on the use of thermoelectrical power (TEP) measurements for the analysis of precipitation process in traditional alloys such as 6061, there is still little information related to 6013 alloy. The results obtained are compared with a previous characterization work on the same alloy using transmission electron microscopy. It was observed that TEP measurements are very sensitive to precipitation phenomena in this alloy, and it has been found that there is an inverse relation between TEP and Vickers microhardness values, which allowed proposing a precipitation sequence for 6013 aluminum alloy.

  10. Work hardening behavior in aluminum alloy 2090

    SciTech Connect

    Tseng, Carol

    1993-12-01

    An investigation into the work hardening behavior of an aluminum alloy 2090-T81 Al-3.05Cu-2.16Li-0.12Zr at various test temperatures, heat treatment conditions and microstructures was conducted. One microstructure consisted of unrecrystallized, highly textured grains, and the other microstructure was composed of recrystallized grains. Microstructural effects on work hardening were divided into two levels of contribution: the grain structure level, which consisted of the grain size and shape, subgrains and texture, and the microconsistent level, which included the precipitates and solutes. Two heat treatments were studied: the as-received, peak-aged condition, and the solution heat treated condition where the as-received plate was resolutionized. Observations of the deformed surface of both as-received grain structures at various prestrains indicated that there was no correlation between an increase in slip homogeneity and an increase in work hardening. The increase in out-of-plane grain rotation at lower temperatures was not primarily responsible for the increase in work hardening. In addition, the fully plastic deformation microstructure for the unrecrystallized microstructure appeared very inhomogeneous as the grains deformed in bands; there were also bands of grains that had very little to no deformation. From the work hardening plots it was found that an unrecrystallized, (110)<112> textured grain structure with a homogeneous distribution of subgrains produced the highest rate of work hardening between 300 K and 77 K. When the microconstituents are added to both grain structures, both the work hardening rate in the elastic-plastic and fully plastic regimes and the level of work hardening at which the elastic-plastic to fully plastic transition occurred were affected.

  11. Microstructure-based Constitutive Models for Residual Mechanical Behavior of Aluminum Alloys after Fire Exposure

    NASA Astrophysics Data System (ADS)

    Summers, Patrick Timothy

    Aluminum alloys are increasingly being used in a broad spectrum of applications such as lightweight structures, light rail, bridge decks, marine crafts, and off-shore platforms. The post-fire (residual) integrity of aluminum structures is of particular concern as a severe degradation in mechanical properties may occur without catastrophic failure, even for short duration, low intensity fires. The lack of research characterizing residual mechanical behavior results in an unquantified mechanical state of the structure, potentially requiring excessively conservative repair. This research aims to develop an in-depth understanding of the mechanisms governing the residual aluminum alloys so as to establish a knowledge-base to assist intelligent structural repair. In this work, the residual mechanical behavior after fire exposure of marine-grade aluminum alloys AA5083-H116 and AA6061-T651 is characterized by extensive mechanical testing. Metallography was performed to identify the as-received and post-fire microstructural state. This extensive characterization was utilized to develop constitutive models for the residual elastoplastic mechanical behavior of the alloys. The constitutive models were developed as a series of sub-models to predict (i) microstructural evolution, (ii) residual yield strength, and (iii) strain hardening after fire exposure. The AA5083-H116 constitutive model was developed considering the microstructural processes of recovery and recrystallization. The residual yield strength was calculated considering solid solution, subgrain, and grain strengthening. A recovery model was used to predict subgrain growth and a recrystallization model was used to predict grain nucleation and growth, as well as subgrain annihilation. Strain hardening was predicted using the Kocks-Mecking-Estrin law modified to account for the additional dislocation storage and dynamic recovery of subgrains. The AA6061- T651 constitutive model was developed considering precipitate

  12. Influence of Process Parameters on Laser Weld Characteristics in Aluminum Alloys

    DTIC Science & Technology

    1988-08-01

    1 1󈧚 , 4 4 2.1.2 Alloying Element Vaporization Alloying elements added to aluminum for improving the mechanical properties and corrosion...effects the properties of the base metal surrounding the weld zone called the heat affected zone (HAZ). In the non-heat treatable aluminum alloys in the...Hydrogen in Aluminum . Magnesium, Copper, and Their Alloys . Int. Metall. Reviews, Review 201, 20:166-184. 31. Hatch, J.E. 1984. Aluminum , Properties and

  13. Friction stir welding process to repair voids in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  14. Microstructure, accumulated strain, and mechanical behavior of AA6061 Al alloy severely deformed at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Magalhães, D. C.; Kliauga, A. M.; Ferrante, M.; Sordi, V. L.

    2017-05-01

    The combination of Severe Plastic Deformation (SPD) and cryogenic temperatures can be an efficient way to obtain metals and alloys with very refined microstructure and thus optimize the strength-ductility pair. However, there is still a lack of studies on cryogenic SPD process and their effects on microstructure and mechanical properties, especially in precipitation-hardenable aluminum alloys. This study describes the effect of low temperature processing on microstructure, aging kinetic and tensile properties of AA6061 Al alloy after cryo-SPD. Samples of AA6061 Al alloy in the solutionized state was processed by Equal-channel angular pressing (ECAP) at 77 K and 298 K, up to accumulate true strains up to 4.2. Results indicated that the aging kinetic is accelerated when deformation is performed at cryogenic temperature, dislocation density measurement by x-ray and diffraction analysis at TEM achieved a saturation level of 2×1015 m-2 by ECAP at 298K and 5×1015 m-2 after cryogenic ECAP plus precipitation hardening. The same level of yield strength was observed in both deformation procedures but an improvement in uniform elongation was achieved by cryogenic ECAP followed by a T6 treatment

  15. Corrosion protection comparison of a chromate conversion coating to a novel conductive polymer coating on aluminum alloys

    SciTech Connect

    Racicot, R.J.; Yang, S.C.; Brown, R.

    1997-12-01

    Comparisons of the corrosion resistance performance of a novel polyaniline based double strand conductive polymer coating versus a chromate conversion coating on two aluminum alloys were made. Potentiodynamic scans, electrochemical impedance spectroscopy (EIS) in 0.5N NaCl solutions and ASTM B-117 salt spray tests were performed on coated samples of AA7075-T6 and AA2024-T3 aluminum alloys. Results show the conductive polymer film offers, at the least, an equivalent protection performance as the chromate coating with a two order of magnitude reduction in corrosion current densities in cyclic polarization tests, near equivalent impedance values and less undercutting of a scribed area in salt spray test samples. In an acidic salt solution of pH 3.6, the conductive polymer offers an improved performance with a one order of magnitude higher impedance over the chromate coatings.

  16. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  17. Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured From Detailed Military Specifications

    DTIC Science & Technology

    2012-07-01

    elements was eventually designated 17S ( 2017 ) and is the progenitor of the 2 series of aluminum alloys . Alcoa obtained the rights to produce...Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured From Detailed Military Specifications by Kevin Doherty...International Conference on Aluminum Alloys (ICAA13), pp. 541–546, Pittsburgh, PA, 3–7 June 2012. Approved for public

  18. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  19. In situ EBSD during tensile test of aluminum AA3003 sheet.

    PubMed

    Kahl, Sören; Peng, Ru Lin; Calmunger, Mattias; Olsson, Björn; Johansson, Sten

    2014-03-01

    Miniature tensile-test specimens of soft-annealed, weakly textured AA3003 aluminum sheet in 0.9 mm thickness were deformed until fracture inside a scanning electron microscope. Tensile strength measured by the miniature tensile test stage agreed well with the tensile strength by regular tensile testing. Strain over the microscope field of view was determined from changes in positions of constituent particles. Slip lines were visible in secondary electron images already at 0.3% strain; activity from secondary slip systems became apparent at 2% strain. Orientation rotation behavior of the tensile load axis with respect to the crystallographic axes agreed well with previously reported trends for other aluminum alloys. Start of the fracture and tensile crack propagation were documented in secondary electron images. The region of fracture nucleation included and was surrounded by many grains that possessed high Schmid factors at zero strain. Crystal lattice rotation angles in the grains surrounding the initial fracture zone were higher than average while rotations inside the initial fracture zone were lower than average for strains from zero to 31%. The orientation rotation behavior of the tensile load axes of the grains around the fracture zone deviated from the average behavior in this material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Improved thermal treatment of aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  1. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties

    NASA Astrophysics Data System (ADS)

    Zhu, Wen; Li, Wenfang; Mu, Songlin; Fu, Nianqing; Liao, Zhongmiao

    2017-05-01

    In this study, a Ti/Zr/V conversion coating (TZVCC) was deposited on the surface of aluminum alloy 6063 (AA6063) as an alternative of the chromate conversion coating (CCC). Both the TZVCC treated AA6063 (TZVCC/AA6063) and CCC treated AA6063 (CCC/AA6063) were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and contact angle measuring device. The anti-corrosion performance of the TZVCC/AA6063 and CCC/AA6063 was evaluated by electrochemical measurements and neutral salt spray tests. It showed that both the surface roughness and surface free energy of the AA6063 were significantly increased after TZVCC treatment. The anti-corrosion performance of TZVCC/AA6063 was superior to that of CCC/AA6063. In addition, the effects of the TZVCC and CCC on the adhesion properties and anti-corrosion performance of epoxy coating applied on samples were examined by pull-off tests and electrochemical impedance spectroscopy (EIS). The dry, wet and recovery adhesive strengths of the epoxy coating on TZVCC treated samples (epoxy coated TZVCC/AA6063) were very close to those of epoxy coating on CCC treated ones (epoxy coated CCC/AA6063). The epoxy coated TZVCC/AA6063 showed better corrosion resistance than the epoxy coated CCC/AA6063 and epoxy coated AA6063.

  2. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  3. Thermodynamics of Titanium-Aluminum-Oxygen Alloys Studied

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Titanium-aluminum alloys are promising intermediate-temperature alloys for possible compressor applications in gas-turbine engines. These materials are based on the a2-Ti3Al + g-TiAl phases. The major issue with these materials is high oxygen solubility in a2-Ti3Al, and oxidation of unsaturated alloys generally leads to mixed non-protective TiO2+Al2O3 scales. From phase diagram studies, oxygen saturated a2-Ti3Al(O) is in equilibrium with Al2O3; however, oxygen dissolution has a detrimental effect on mechanical properties and cannot be accepted. To better understand the effect of oxygen dissolution, we examined the thermodynamics of titanium-aluminum-oxygen alloys.

  4. Phases in lanthanum-nickel-aluminum alloys. Part 2

    SciTech Connect

    Mosley, W.C.

    1992-08-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  5. Microstructural Characterization of Aluminum-Lithium Alloys 1460 and 2195

    NASA Technical Reports Server (NTRS)

    Wang, Z. M.; Shenoy, R. N.

    1998-01-01

    Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) techniques were employed to characterize the precipitate distributions in lithium-containing aluminum alloys 1460 and 2195 in the T8 condition. TEM examinations revealed delta prime and T1 as the primary strengthening precipitates in alloys 1460 and 2195 respectively. TEM results showed a close similarity of the Russian alloy 1460 to the U.S. alloy 2090, which has a similar composition and heat treatment schedule. DSC analyses also indicate a comparable delta prime volume fraction. TEM study of a fractured tensile sample of alloy 1460 showed that delta prime precipitates are sheared by dislocations during plastic deformation and that intense stress fields arise at grain boundaries due to planar slip. Differences in fracture toughness of alloys 1460 and 2195 are rationalized on the basis of a literature review and observations from the present study.

  6. The effects of aluminum alloy compositions in DIMOX process

    SciTech Connect

    Kim, Chang Wook; Kim, Cheol Soo

    1996-12-31

    Al{sub 2}O{sub 3}-Al composites have been produced by the directed oxidation of binary and ternary aluminum alloys. The Mg, Si, Zn, Sn, Cu, Ni, Ca and Ce have been investigated as alloying elements. The oxidation amount of Al-1wt%Mg alloy was more than that of Al-3wt%Mg alloy. The ternary systems such as Al-Mg-(Si, Sn) alloys were fabricated in the form of porous composites with large amount of oxidation. The amount of oxidation in Al-Mg-(Cu, Ni) was relatively less than that in Al-Mg-(Si, Sn) with some micro pores. Al{sub 2}O{sub 3}-Al composite is always locally growing in Al-xMg-xZn alloys at 1200{degrees}C.

  7. Aluminum alloy 6013 sheet for new U. S. Navy aircraft

    SciTech Connect

    Kaneko, R.S.; Bakow, L.; Lee, E.W. Naval Air Development Center, Warminster, PA )

    1990-05-01

    The recently developed aluminum alloy 6013-T6 has been selected for the fuselage skin and other applications on the U.S. Navy's P-7A airplane, in place of the traditional 2024-T3 clad sheet. Alloy 6013-T6 is naturally corrosion resistant, like the well-established alloy 6061, and hence is used unclad. Its fatigue strength, fatigue crack growth and fracture toughness compare favorably with 2024-T3. Replacement of alloy 2024 with alloy 6013 also reduces manufacturing costs for formed parts, because 6013 is readily formed in the T4 temper, then simply aged to T6, thus avoiding the costly heat treatments and straightening required for alloy 2024. 5 refs.

  8. Fundamental Studies on the Aluminum-Lithium-Beryllium Alloy System,

    DTIC Science & Technology

    1985-07-01

    in recognition of the overriding importance of low density in weight savings in aerospace structures ,is the development of low density and high...successful PM alloys have also been producedf’ jIn order to take further advantage of density decreases in aluminum alloys, it * is not possible simply to...and ductility. In the search for other elements that can * decrease density it is important to note that associated decreases in modulus * are not

  9. Environment assisted degradation mechanisms in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.

  10. Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Soler, Lluís; Macanás, Jorge; Muñoz, Maria; Casado, Juan

    Production of hydrogen using aluminum and aluminum alloys with aqueous alkaline solutions is studied. This process is based on aluminum corrosion, consuming only water and aluminum which are cheaper raw materials than other compounds used for in situ hydrogen generation, such as chemical hydrides. In principle, this method does not consume alkali because the aluminate salts produced in the hydrogen generation undergo a decomposition reaction that regenerates the alkali. As a consequence, this process could be a feasible alternative for hydrogen production to supply fuel cells. Preliminary results showed that an increase of base concentration and working solution temperature produced an increase of hydrogen production rate using pure aluminum. Furthermore, an improvement of hydrogen production rates and yields was observed varying aluminum alloys composition and increasing their reactive surface, with interesting results for Al/Si and Al/Co alloys. The development of this idea could improve yields and reduce costs in power units based on fuel cells which use hydrides as raw material for hydrogen production.

  11. Simulations of Forming Limit Diagrams for the Aluminum Sheet Alloy 5754CC

    SciTech Connect

    Dasappa, Prasad; Inal, Kaan; Mishra, Raja

    2010-06-15

    In this paper, the capability of the four different yield functions to predict forming limit diagrams of continuous cast AA-5754 Aluminum sheet have been compared with focus on the differences in the predicted limit strains based on the method of determining the yield function parameters that do not employ a linear transformation tensor on the stress tensor. The yield functions proposed by Hill (1948, 1990 and 1993) and Barlat (1989), which have been successfully used to predict material anisotropy in aluminum alloys in the literature, have been considered in this study. The forming limit diagrams (FLDs) have been calculated numerically based on these yield functions together with the Marciniak-Kuczynski (M-K) approach.

  12. Materials data handbooks prepared for aluminum alloys 2014, 2219, and 5456, and stainless steel alloy 301

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Materials data handbooks summarize all presently known properties of commercially available structural aluminum alloys 2014, 2219, and 5456 and structural stainless steel alloy 301. The information includes physical and mechanical property data and design data presented in tables, illustrations, and text.

  13. On the Formation of Lightweight Nanocrystalline Aluminum Alloys by Electrodeposition

    NASA Astrophysics Data System (ADS)

    Hilty, Robert D.; Masur, Lawrence J.

    2017-08-01

    New nanocrystalline aluminum alloys have been fabricated by electrodeposition. These are thermodynamically stable alloys of Al-Mn and Al-Zr with grain sizes <100 nm. Al-Mn and Al-Zr alloys are characterized here showing high strength (up to 1350 MPa) and hardness (up to 450 HVN) while maintaining the specific gravity of Al. Smooth and dense deposits plated from ionic liquids, such as EMIM:Cl (1-Ethyl-3-methylimidazolium chloride), can develop to thicknesses of 1 mm or more.

  14. High Strength Aluminum Alloy For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  15. High Strength Aluminum Alloy For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  16. Current Technologies for the Removal of Iron from Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Damoah, Lucas N.

    In the current paper, the Fe-rich phases in and their detrimental effect on aluminum alloys are summarized. The existence of brittle platelet ß-Fe-rich phases lowers the mechanical properties of aluminum alloys. The methods to neutralize the detrimental effect of iron are discussed. The use of high cooling rate, solution heat treatment and addition of elements such as Mn, Cr, Be, Co, Mo, Ni, V, W, Cu, Sr, or the rare earth elements Y, Nd, La and Ce are reported to modify the platelet Fe-rich phases in aluminum alloys. The mechanism of the modification is briefly described. Technologies to remove iron from aluminum are extensively reviewed. The precipitation and removal of Fe-rich phases (sludge) are discussed. The dense phases can be removed by methods such as gravitational separation, electromagnetic separation, and centrifuge. Other methods include electrolysis, electro-slag refining, fractional solidification, and fluxing refining. The expensive three-layer cell electrolysis process is the most successful technique to remove iron from aluminum so far.

  17. Interpretation of aluminum-alloy weld radiography

    NASA Technical Reports Server (NTRS)

    Duren, P. C.; Risch, E. R.

    1971-01-01

    Report proposes radiographic terminology standardization which allows scientific interpretation of radiographic films to replace dependence on individual judgement and experience. Report includes over 50 photographic pages where radiographs of aluminum welds with defects are compared with prepared weld sections photomacrographs.

  18. Aluminum alloy material structure impact localization by using FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiubin

    2014-12-01

    The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.

  19. Characteristics of aluminum alloy microplastic deformation in different structural states

    SciTech Connect

    Seregin, G.V.; Efimenko, L.L.; Leonov, M.V.

    1995-07-01

    The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.

  20. Study made of ductility limitations of aluminum-silicon alloys

    NASA Technical Reports Server (NTRS)

    Bailey, W. A.; Frederick, S. F.

    1967-01-01

    Study of the relation between microstructure and mechanical properties of aluminum-silicon alloys determines the cause of the variations in properties resulting from differences in solidification rate. It was found that variations in strength are a consequence of variations in ductility and that ductility is inversely proportional to dendrite cell size.

  1. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  2. Plane-strain tension tests on aluminum alloy sheet

    SciTech Connect

    Taha, F.; Hosford, W.; Graf, A.

    1995-04-01

    A simple way of making plane-strain tension tests on sheet specimens has been developed. This method was used to test sheets of aluminum alloy 2008 T4 and the results were analyzed in terms of a high exponent yield criterion and isotropic hardening. Experimentally measured forces agreed with those calculated from strain measurements using uniaxial tension test curves.

  3. Secondary Heating Under Quenching Cooling of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Tsukrov, S. L.; Ber, L. B.

    2017-07-01

    Variants of secondary heating of aluminum alloys are considered, i.e., under quenching of plates in a water tank or on a horizontal quenching unit with water jet cooling, under continuous quenching of strips, and under quenching of tubes in vertical furnaces. Recommendation are given for removal or substantial reduction of the intensity of secondary heating under industrial conditions.

  4. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  5. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  6. Tin soldering of aluminum and its alloys

    NASA Technical Reports Server (NTRS)

    Gallo, Gino

    1921-01-01

    A method is presented for soldering aluminum to other metals. The method adopted consists of a galvanic application to the surface of the light-metal parts to be soldered, of a layer of another metal, which, without reacting electrolytically on the aluminum, adheres strongly to the surface to which it is applied, and is, on the other hand, adapted to receive the soft solder. The metal found to meet the criteria best was iron.

  7. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  8. The Effect of Alloy Additions on Superplasticity in Thermomechanically Processed High Magnesium Aluminum-Magnesium Alloys.

    DTIC Science & Technology

    1984-12-01

    AD-Ri55 142 THE EFFECT OF ALLOY ADDITIONS ON SUPERPLASTICITY IN I/2 THERMOMECHANICALLY PR-.(U) NAVAL POSTGRADUATE SCHOOL UNCLSSIIED MONTEREY CA R J...Ln Monterey, California DTr J U N 1985 * THESIS THE EFFECT OF ALLOY ADDITIONS ON SUPERPLASTICITY IN THERMOMECHANICALLY PROCESSED HIGH MAGNESIUM *0...ALUMINUM-MAGNESIUM ALLOYS >by 0 (Richard J. Self December 1984 C-31 Thesis Advisor: Terry McNelley Approved for public release; distribution is unlimited

  9. Development Program for Natural Aging Aluminum Casting Alloys

    SciTech Connect

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  10. Cryogenic mechanical properties of low density superplastic aluminum alloys

    SciTech Connect

    Verzasconi, S.L.

    1989-05-01

    Two alloy systems, mainly Al-Li-Cu and Al-Mg-Sc, were studied in this work. Both of these systems have been shown to be superplastically formable in the conditions chosen, and both provide a significant density reduction over a currently used aluminum cryogenic fuel tankage material, 2219. The Al-Mg-Sc alloy provides over 50 percent of the density reduction of 2090 over 2219. In addition to lower density, Al-Li alloys have a higher elastic modulus (stiffness) than conventional aerospace alloys. The main purpose of this work is to characterize the cryogenic strength and toughness of several Al-Cu-Li and Al-Mg-Sc alloys. In addition, the microstructures and fracture surfaces are characterized and related to these properties where possible. 43 refs.

  11. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  12. Primary and secondary creep in aluminum alloys as a solid state transformation

    NASA Astrophysics Data System (ADS)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2016-08-01

    Despite the massive literature and the efforts devoted to understand the creep behavior of aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters and experimental conditions is, at present, still missing. The analysis of creep is typically carried out in terms of the so-called steady or secondary creep regime. The present work offers an alternative view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers primary and secondary creep together as solid state isothermal transformations, similar to recrystallization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-Kolmogorov equation, typically used to analyze these transformations, can also be employed to explain creep deformation. The description is fully compatible with present (empirical) models of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at different temperatures and stresses to validate the proposed model.

  13. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.

    2015-12-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.

  14. Superplastic behavior in a commercial 5083 aluminum alloy

    SciTech Connect

    Vetrano, J.S.; Lavender, C.A.; Smith, M.T.; Bruemmer, S.M. ); Hamilton, C.H. . Dept. of Mechanical and Materials Engineering)

    1994-03-01

    When considering the forming and post-forming properties required of a superplastic material, attractive candidates are commercial Al-Mg-Mn weldable alloys such as AA5083. There have been several investigations of hot deformation of 5083-type alloys in the literature. Only two studies evaluated commercial-purity 5083 and they achieved tensile elongations of 150% and 200%. Alloy modification has produced improved behavior in three 5083-type alloys developed specifically for SPF. Two were deemed high-purity 5083 (low Fe and Si) and achieved elongations of 450% and 630%. Engineering strains up to 700% were measured by Watanabe et al. in a 5083-based alloy with the addition of 0.6% Cu as a grain refiner. These results suggest that alloy modifications such as reduced Fe and Si contents or Cu additions may be required to improve superplastic response. Unfortunately, specific SPF-grade 5083 alloys are substantially more expensive than the commercial grade, and the addition of Cu decreases the corrosion resistance of the base material. The purpose of this work is to examine the effect of prior degrees of cold work on the SPF behavior of a standard-grade 5083 alloy. Superplastic behavior of this material at 510[degree]C is assessed and compared to published results for the SPF-grade alloys.

  15. Aluminum(3)(scandium, zirconium) dispersoids in aluminum alloys: Coarsening and recrystallization control

    NASA Astrophysics Data System (ADS)

    Riddle, Yancy Willard

    2000-10-01

    With proper metallurgical techniques, the addition of scandium and/or zirconium to aluminum will form recrystallization inhibitors in wrought product called "dispersoids". Zirconium forms Al3Zr dispersoids with aluminum, which is currently the most potent dispersoid in commercial use. However, scandium forms Al3Sc dispersoids with aluminum, which have been shown to surpass the effectiveness of Al3Zr in some cases. Scandium is not currently a common addition to commercial Al alloys as little is known about its performance compared to Al-Zr. In this work, recrystallization and dispersoid coarsening are systematically studied as an effect of Sc and Zr content in Al. Comparison is made between the performance of wrought experimental Al alloys containing Al3Zr, Al3Sc, and Al3(Sc, Zr) dispersoids. Effectiveness of Al3Sc is limited to dispersoids less than 25nm radius, the point at which Al3Sc transforms from coherent to non-coherent. Alloys containing Al3(Sc, Zr) more effectively control recrystallization through combined volume fraction and thermal stability effects compared to alloys containing Al3Sc. Scandium shifts the recrystallization mechanism of A1 and Al-Zr alloys from nucleation-and-growth of new grains to boundary migration pinned by dispersoids. During annealing of cold rolled alloys, impinging boundaries dissociate coherent Al3Sc for which a disordering mechanism is proposed. As a practical measure, Sc and/or excess Zr are added to 7050 for comparison with the experimental alloys. The performance of modified 7050 alloys resembles the trends of the experimental alloys. In summary, the Al3(Sc, Zr) dispersoid is a more effective recrystallization inhibitor than any other dispersoid currently in use.

  16. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    SciTech Connect

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  17. Grain size control and superplasticity in 6013-type aluminum alloys

    NASA Astrophysics Data System (ADS)

    Troeger, Lillianne Plaster Whitelock

    Aluminum alloys have been the material of choice for aircraft construction since the 1930's. Currently, the automotive industry is also showing an increasing interest in aluminum alloys as structural materials. 6xxx aluminum alloys possess a combination of strength and formability which makes them attractive to both industries. In addition, 6xxx alloys are highly weldable, corrosion resistant, and low in cost as compared with the 2xxx and 7xxx aluminum alloys. Superplastic forming (SPF) is a manufacturing process which exploits the phenomenon of superplasticity in which gas pressure is used to form complex-shaped parts in a single forming operation. This reduces part counts and the need for fasteners and connectors, resulting in reduced product weight. Reduced product/vehicle weight improves fuel economy. Most alloys must be specially processed for superplasticity. Much research effort has been directed at the development of thermomechanical processes for the grain refinement of aluminum alloys by static or dynamic recrystallization. to induce superplasticity. While large numbers of studies have been conducted on 2xxx, 5xxx, 7xxx, and 8xxx aluminum alloys, very few studies have been focused on the grain refinement of 6xxx aluminum alloys for superplasticity. The current research describes a new thermomechanical process for application to 6xxx aluminum alloys for grain refinement and superplasticity. The process is shown to successfully refine and induce superplasticity in an Al-Mg-Si-Cu alloy which falls within the compositional limits of both 6013 and 6111. The grain refinement is by particle-stimulated nucleation of recrystallization. The microstructural evolution during the thermomechanical processing is characterized in terms of precipitate size, shape, distribution and composition; texture; recrystallization; and grain size, shape, and thermal stability. The new process produces a statically-stable, weakly-textured, equiaxed grain structure with an average

  18. Microstructural and superplastic characteristics of friction stir processed aluminum alloys

    NASA Astrophysics Data System (ADS)

    Charit, Indrajit

    Friction stir processing (FSP) is an adapted version of friction stir welding (FSW), which was invented at The Welding Institute (TWI), 1991. It is a promising solid state processing tool for microstructural modification at localized scale. Dynamic recrystallization occurs during FSP resulting in fine grained microstructure. The main goal of this research was to establish microstructure/superplasticity relationships in FSP aluminum alloys. Different aluminum alloys (5083 Al, 2024 Al, and Al-8.9Zn-2.6Mg-0.09Sc) were friction stir processed for investigating the effect of alloy chemistry on resulting superplasticity. Tool rotation rate and traverse speeds were controlled as the prime FSP parameters to produce different microstructures. In another study, lap joints of 7475 Al plates were also studied to explore the possibility of developing FSW/superplastic forming route. Microstructures were evaluated using optical, scanning and transmission electron microscopy, orientation imaging microscopy and differential scanning calorimetry. Mechanical properties were evaluated using tensile testing. FSP 2024 Al (3.9 mum grain size) exhibited an optimum ductility of 525% at a strain rate of 10-2 s-1 and 430°C. Grain boundary sliding mechanism was found to be the dominant mode of deformation in this alloy. In 5083 Al alloy, it was found that changing the process parameters, grain sizes in the range of 3.5--8.5 mum grain size could be obtained. Material processed with colder processing parameters showed a decrease in ductility due to microstructural instability, and followed solute drag dislocation glide mechanism. On the other hand, materials processed with hotter parameter combinations showed mode of deformation related to grain boundary sliding mechanism. FSP of as-cast Al-Zn-Mg-Sc alloy resulted in ultrafine grains (0.68 mum) with attractive combination of high strain rate and low temperature superplasticity. This also demonstrated that superplastic microstructures could be

  19. A Model for Gas Microporosity in Aluminum and Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Felicelli, Sergio D.; Wang, Liang; Pita, Claudio M.; Escobar de Obaldia, Enrique

    2009-04-01

    A quantitative prediction of the amount of gas microporosity in aluminum and magnesium-alloy castings is performed with a continuum model of dendritic solidification. The distribution of the pore volume fraction and pore size is calculated from a set of conservation equations that solves the transport phenomena during solidification at the macroscale and the hydrogen diffusion into the pores at the microscale. A technique based on a pseudo-alloy solute that is transported by the melt is used to determine the potential sites of pore growth, subject to considerations of mechanical and thermodynamic equilibrium. The modeling results for aluminum alloy A356 are found to agree well with published studies. In view of the limited availability of experimental data for Mg-alloy gravity-poured castings, the formation of porosity in AZ91 is studied qualitatively, assuming that casting conditions are similar to A356. In particular, the minimum initial hydrogen content that leads to the formation of gas porosity was compared for both alloys. It is found that the initial hydrogen content necessary for forming porosity is much higher in AZ91 than in A356. This is attributed to significant differences in the solubility of the hydrogen in both alloys.

  20. Nitrate reduction in water by aluminum alloys particles.

    PubMed

    Bao, Zunsheng; Hu, Qing; Qi, Weikang; Tang, Yang; Wang, Wei; Wan, Pingyu; Chao, Jingbo; Yang, Xiao Jin

    2017-07-01

    Nano zero-valent iron (NZVI) particles have been extensively investigated for nitrate reduction in water. However, the reduction by NZVI requires acidic pH conditions and the final product is exclusively ammonium, leading to secondary contamination. In addition, nanomaterials have potential threats to environment and the transport and storage of nanomaterials are of safety concerns. Aluminum, the most abundant metal element in the earth's crust, is able to reduce nitrate, but the passivation of aluminum limits its application. Here we report Al alloys (85% Al) with Fe, Cu or Si for aqueous nitrate reduction. The Al alloys particles of 0.85-0.08 mm were inactivate under ambient conditions and a simple treatment with warm water (45 °C) quickly activated the alloy particles for rapid reduction of nitrate. The Al-Fe alloy particles at a dosage of 5 g/L rapidly reduced 50 mg-N/L nitrate at a reaction rate constant (k) of 3.2 ± 0.1 (mg-N/L)(1.5)/min between pH 5-6 and at 4.0 ± 0.1 (mg-N/L)(1.5)/min between pH 9-11. Dopping Cu in the Al-Fe alloy enhanced the rates of reduction whereas dopping Si reduced the reactivity of the Al-Fe alloy. The Al alloys converted nitrate to 20% nitrogen and 80% ammonium. Al in the alloy particles provided electrons for the reduction and the intermetallic compounds in the alloys were likely to catalyze nitrate reduction to nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Technology of welding aluminum alloys-III

    NASA Technical Reports Server (NTRS)

    Harrison, J. R.; Kor, L. J.; Oleksiak, C. E.

    1978-01-01

    Control of porosity in weld beads was major objective in development of aluminum welding program. Porosity, most difficult defect to control, is caused by hydrogen gas unable to escape during solidification. Hard tooling allows hotter bead than free-fall tooling so hydrogen bubbles can boil out instead of forming pores. Welding position, moisture, and cleanliness are other important factors in control of porosity.

  2. Technology of welding aluminum alloys-I

    NASA Technical Reports Server (NTRS)

    Harrison, J. R.; Korb, L. J.; Oleksiak, C. E.

    1978-01-01

    Systems approach to high-quality aluminum welding uses square-butt joints, kept away from sharp contour changes. Intersecting welds are configured for T-type intersections rather than crossovers. Differences in panel thickness are accommodated with transition step areas where thickness increases or decreases within weld, but never at intersection.

  3. Hydrogen interactions in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Smith, S. W.; Scully, J. R.

    1991-01-01

    A program is described which seeks to develop an understanding of the effects of dissolved and trapped hydrogen on the mechanical properties of selected Al-Li-Cu-X alloys. A proposal is made to distinguish hydrogen (H2) induced EAC from aqueous dissolution controlled EAC, to correlate H2 induced EAC with mobile and trapped concentrations, and to identify significant trap sites and hydride phases (if any) through use of model alloys and phases. A literature review shows three experimental factors which have impeded progress in the area of H2 EAC for this class of alloys. These are as listed: (1) inter-subgranular fracture in Al-Li alloys when tested in the S-T orientation in air or vacuum make it difficult to readily detect H2 induced fracture based on straight forward changes in fractography; (2) the inherently low H2 diffusivity and solubility in Al alloys is further compounded by a native oxide which acts as a H2 permeation barrier; and (3) H2 effects are masked by dissolution assisted processes when mechanical testing is performed in aqueous solutions.

  4. Solute Enhanced Strain Hardening of Aluminum Alloys to Achieve Improved Combinations of Strength and Toughness

    NASA Astrophysics Data System (ADS)

    Hovanec, Christopher James

    2011-12-01

    The feasibility of achieving improved combinations of strength and toughness in aluminum alloy 2524 through solute enhanced strain hardening (SESH) has been explored in this study and shown to be viable. The effectiveness of SESH is directly dependent on the strain hardening rate (SHR) of the material being processed. Aluminum alloy 2524 naturally ages to the T4-temper after solution heat treating and quenching. The SHR of strain free and post cold rolled material as a function of natural aging time has been measured by means of simple compression. It has been determined that the SHR of AA2524 is more effective with solute in solution rather than clustered into GP zones. It has also been shown that the typical rapid formation of GP zones at room temperature (natural aging) is inhibited by moderate cold rolling strains (□CR ≥ 0.2) through dislocation aided vacancy annihilation. The practical limitations of quenching rate have been determined using hardness and eddy current electrical conductivity measurements. It has been shown that too slow of a quench rate results in solute being lost to both the formation of GP zones and embrittling precipitates during the quench, while too rapid of a quench rate results in mid-plane cracking of the work piece during the SESH processing. The mid-plane cracking was overcome by using an uphill quenching procedure to relieve residual stresses within the work piece. Aluminum alloy 2524 strengthened through SESH to a yield strength 11% greater than that in the T6-Temper exhibits: equivalent toughness, 5% greater UTS, 1% greater elongation, 7% greater R.A., and absorbs 15% more energy during tensile testing. At yield strengths comparable to published data for 2x24 alloys, the SESH 2524 exhibited up to a 60% increase in fracture toughness. The fractured surfaces of the SESH material exhibited transgranular dimpled rupture as opposed to the grain boundary ductile fracture (GBPF) observed in the artificially aged material.

  5. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barrett, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified.

  6. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  7. Approaches for mechanical joining of 7xxx series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Jäckel, M.; Grimm, T.; Landgrebe, D.

    2016-10-01

    This paper shows a numerical and experimental analysis of the different problems occurring during or after the conventional self-pierce riveting with semi-tubular and solid rivets of the high strength aluminum alloy EN AW-7021 T4. Furthermore this paper describes different pre-process methods by which the fracture in the high strength aluminum, caused by the self-pierce riveting processes, can be prevented and proper joining results are achieved. On this basis, the different approaches are compared regarding joint strength.

  8. Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  9. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  10. Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin

    Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.

  11. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  12. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  13. Chromate Conversion Coating of Aluminum Alloys

    DTIC Science & Technology

    1975-07-10

    a sodium sulfate-nitric acid solution sometimes used to clean aluminum prior to spotwelding. Immersion times were varied in the chromate-sulfate...Good results were also obtained with sodium sulfate-nitric acid and an 8 minute treatment in one non-chromete proprietary solution. Average resis...molybdate or tungstate salts with the ferricyanide ion considered to be the most effective accelerator. Water for Bath Make-Up and Rinsing It is very

  14. Evaluation and control of environmental corrosion for aluminum and steel alloys

    NASA Technical Reports Server (NTRS)

    Franklin, D. B.

    1977-01-01

    Corrosion protection systems for aerospace application and the effects of surface treatments and methods of controlling stress corrosion are evaluated. Chromate pigmented systems were found to be most effective for aluminum alloys; zinc-rich coatings gave the greatest protection to steel alloys. Various steel and aluminum alloys are rated for stress corrosion resistance.

  15. Statistical Analysis of Strength Data for an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Neergaard, Lynn; Malone, Tina; Gentz, Steven J. (Technical Monitor)

    2000-01-01

    Aerospace vehicles are produced in limited quantities that do not always allow development of MIL-HDBK-5 A-basis design allowables. One method of examining production and composition variations is to perform 100% lot acceptance testing for aerospace Aluminum (Al) alloys. This paper discusses statistical trends seen in strength data for one Al alloy. A four-step approach reduced the data to residuals, visualized residuals as a function of time, grouped data with quantified scatter, and conducted analysis of variance (ANOVA).

  16. Statistical Analysis of Strength Data for an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Neergaard, L.; Malone, T.

    2001-01-01

    Aerospace vehicles are produced in limited quantities that do not always allow development of MIL-HDBK-5 A-basis design allowables. One method of examining production and composition variations is to perform 100% lot acceptance testing for aerospace Aluminum (Al) alloys. This paper discusses statistical trends seen in strength data for one Al alloy. A four-step approach reduced the data to residuals, visualized residuals as a function of time, grouped data with quantified scatter, and conducted analysis of variance (ANOVA).

  17. Welding high-strength aluminum alloys at the Paton Institute

    SciTech Connect

    Kuchuk, Yatsenko, S.I.; Cherednichok, V.T.; Semenov, L.A. )

    1993-07-01

    The choice of the flash method for welding aluminum-alloy sections was governed first of all by the possibility of producing homogeneous-structure joints with the minimum amount of possible discontinuities and an insignificant metal strength loss in the welding zone. The aluminum alloy welding technology under consideration relies on the method of flash welding without using any protective atmospheres. The reason is first of all that a complex cross-sectional shape of workpieces being joined, their configuration and considerable overall dimensions make it difficult to use chambers of any type. Besides, conducted studies ascertained that in flash welding, in contrast to various fusion welding processes, the use of protective atmospheres or a vacuum is of little benefit. Here are the results of studying the specifics of thermal and electric processes in flashing, the physical features of weld joint formation, the basics of the welding technology, and the characteristics of the equipment.

  18. The analysis of aluminum alloy structure beams under static load

    NASA Astrophysics Data System (ADS)

    Ho, Minghsiung; Wang, Pinning; Yeh, Jungpeng

    2017-04-01

    The Aluminum alloy had been applications in many areas. In this study, the models with four type's cross-section were designed and analyzed. Analyses of the use of aluminum alloy materials are 5086-H32, 6061-T6, 7005-T6 and 7075-T6. The materials selected are based on the recommendations of the casting plant. The boundary conditions are set according to the actual conditions of use. Force and torsion are used to apple on models under different conditions. The results of stress and deformation are discussed. The stress results were shown that 40x80 model with hollow cross-section under two end fixed middle beam load had the highest stresses of 41.177 MPa nearby fixed end position. The beam model of 40x80 hollow cross-section under boundary condition of one end fixed and one end force load like a cantilever beam has the maximum deformation 1.587 mm.

  19. A Fundamental Study of Fatigue in Powder Metallurgy Aluminum Alloys.

    DTIC Science & Technology

    1981-08-01

    Rearick (20) have confirmed the beneficial effect of material flow during densification; endurance limits in rotating bend on P/M processed compositions...INTRODUCTION Recent studies on aluminum alloys have shown that lateral flow during consolidation, aimed at eliminating porosity and the fragmentation of surface...removed from each forging. Slices cut from the forgings were solution treated at a temperature of 488C (910*F) for two hours and water quenched. The

  20. Deformation behavior of submicrocrystalline aluminum alloys during dynamic loading

    NASA Astrophysics Data System (ADS)

    Brodova, I. G.; Petrova, A. N.; Razorenov, S. V.; Plekhov, O. P.; Shorokhov, E. V.

    2016-04-01

    The structure and the mechanical properties of aluminum V95 and AMts alloys with various grain sizes (from micron to submicron) are studied in a wide range of strain rates (from 10-3 to 105 s-1). Submicrocrystalline (200-600 nm) materials are formed by dynamic channel-angular pressing at a strain rate of 105 s-1 using a pulsed power source.

  1. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Hong, Min-Sung; Park, In-Jun; Kim, Jung-Gu

    2017-07-01

    This study examined the alloying effect of Cu content on the localized corrosion properties of Al alloy in synthetic acid rain containing 200 ppm of Cl- ion. In aluminum alloy tubes, a small amount of Cu is contained as the additive to improve the mechanical strength or as the impurity. The Cu-containing intermetallic compound, Al2Cu can cause galvanic corrosion because it has more noble potential than Al matrix. Therefore aluminum tube could be penetrated by localized corrosion attack. The results were obtained from electrochemical test, scanning electron microscopy, and time of flight secondary ion mass spectrometry (ToF-SIMS) mapping. Severe localized corrosion was occurred on the Al-0.03 wt% Cu alloy. The negative effect of Cu on the pitting corrosion was attributed to the presence of the Al2Cu precipitates.

  2. Corrosion of Aluminum Alloys by IRFNA

    DTIC Science & Technology

    1990-02-24

    and electropolishing and anodising, have been studied. aNeither had a significant long term effect on the corrosion rate of 2014 alumninium alloy in... steel spatula. (iv) The cell was assembled and raw eghed, the charge of galled Acid being determined by difference. Two additional bottom-working...The anodiuing solution was 1swt% sulphuric acid And the conditions were 25oC, 1 Mwm, 12V. The anodic oxide film waS scaled in delonised water (30

  3. The Development of Aluminum-Lithium Alloys.

    DTIC Science & Technology

    1980-07-31

    Metallurgy Sander A. Levy, Director Department of Metallurgical Services and Ingot Casting Technology __j: Grant E. Spangle $, Gereral Director bd...of the Aqeinq Mechanism of the Alloy Al-Li," translated from Fiz. Metal Metalloved., V. 42, N. 3, 1976 , pp. 546-556. [8] B. Noble and G. E. Thompson...34 translated from Fiz. Metal Metalloved., 42, N. 5, 1976 , pp. 1021-1028. -159- [19] Z. A. Sviderskaya, E. S. Kadaner, N. I. Turkina, and V. I

  4. Modeling aluminum-lithium alloy welding characteristics

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  5. Welding of aluminum alloy with high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Abe, Nobuyuki; Morikawa, Atsuhito; Tsukamoto, Masahiro; Maeda, Koichi; Namba, Keizo

    2003-06-01

    Characterized by high conversion efficiency, small size, light weight and a long lifetime, high power diode lasers are currently being developed for application to various types of metal fabrication, such as welding. In this report, a 4kW high power direct diode laser was used to weld aluminum alloys, which are the focus of increasing attention from the automobile industry because of their light weight, high formability and easy recyclability. The applicability of a direct diode laser to aluminum alloy bead-on plate, butt and lap-fillet welding was studied under various welding conditions. A sound bead without cracks was successfully obtained when 1 mm thick aluminum alloy was welded by bead-on welding at a speed of 12m/min. Moreover, the bead cross section was heat conduction welding type rather than the keyhole welding type of conventional laser welding. Investigation of the welding phenomena with a high-speed video camera showed no spattering or laser plasma, so there was no problem with laser plasma damaging the focusing lens despite the diode laser's short focusing distance.

  6. Investigation of surface oxides on aluminum alloys by valence band photoemission

    NASA Astrophysics Data System (ADS)

    Claycomb, Gregory D.; Sherwood, Peter M. A.

    2002-07-01

    Core level and valence band x-ray photoelectron spectroscopy are used to study the chemical composition of the surface films on aluminum alloys. Certain alloying elements may preferentially migrate to the surface of an alloy, thereby altering the composition and consequently the chemistry of the surface. The behavior of a 6061 aluminum alloy is compared with that of pure aluminum. It is shown that the type of magnesium film formed at the alloy surface can be determined by comparing the valence band spectra of the aluminum alloy surface with that of known magnesium and aluminum compounds. The experimental valence band spectra of these compounds are supported by spectra generated from band structure calculations. The effect of boiling water on the surface film is discussed, with significant differences in surface chemistry being seen for the metal and the alloy. copyright 2002 American Vacuum Society.

  7. Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro

    DTIC Science & Technology

    2011-09-01

    Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro by John F. Chinella and Zhanli Guo...ARL-TR-5660 September 2011 Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro John F...Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  8. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    DTIC Science & Technology

    2015-02-01

    Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg, Clara Hofmeister...Ground, MD 21005-5069 ARL-TR-7208 February 2015 Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free...4. TITLE AND SUBTITLE Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent 5a. CONTRACT

  9. Diffusion bonding of Al7075 alloy to titanium aluminum vanadate alloy

    NASA Astrophysics Data System (ADS)

    Alhazaa, Abdulaziz Nasser

    The aluminum alloy (Al7075) and titanium alloy (Ti-6Al-4V) are used in a variety of applications in the aerospace industry. However, the high cost of Ti-6Al-4V alloy has been a major factor which has limited its use and therefore, the ability to join Al7075 alloy to Ti-6Al-4V alloy can provide a product that is less costly, but retains the high strength and light weight properties necessary for the transport industry. However, the large difference in the physical properties between these two alloys prevents the use of conventional joining techniques such as fusion welding to join these dissimilar alloys. Therefore, the diffusion bonding technique was used to join Al7075 alloy to Ti-6Al-4V alloy with the objective of minimizing microstructural changes of the two alloys during the bonding process. In this thesis, solid state and liquid phase bonding processes were undertaken. Solid state bonding was employed without interlayers and was successful at 510°C and 7 MPa. The bond interface showed an absence of the oxides due to the dissolution of oxygen into the titanium solution. Bonds made using copper interlayers at a temperature sufficient enough to form eutectic liquid formation between copper and aluminum were produced. The intermetallics theta(Al2Cu), S(Al2CuMg) and T(Al2Mg3Zn3) were identified at the aluminum interface while Cu3Ti2 intermetallic was identified at the titanium interface. Bonds made using tin based alloys interlayers and copper coatings were successful and gave the highest shear strength. The eutectic formation on the Al7075 alloy was responsible for joint formation at the aluminum interface while the formation of Sn3Ti5 intermetallic was responsible for the joint formation at titanium interface. The corrosion rate of the bonds decreased with increasing bonding time for joints made using the tin based interlayer in 3% NaCl solution. However, the presence of copper within the joint increased the corrosion rate of the bonds and this was attributed to

  10. Russian aluminum-lithium alloys for advanced reusable spacecraft

    NASA Astrophysics Data System (ADS)

    Charette, Ray O.; Leonard, Bruce G.; Bozich, William F.; Deamer, David A.

    1998-01-01

    Cryotanks that are cost-affordable, robust, fuel-compatible, and lighter weight than current aluminum design are needed to support next-generation launch system performance and operability goals. The Boeing (McDonnell Douglas Aerospace-MDA) and NASA's Delta Clipper-Experimental Program (DC-XA) flight demonstrator test bed vehicle provided the opportunity for technology transfer of Russia's extensive experience base with weight-efficient, highly weldable aluminum-lithium (Al-Li) alloys for cryogenic tank usage. As part of NASA's overall reusable launch vehicle (RLV) program to help provide technology and operations data for use in advanced RLVs, MDA contracted with the Russian Academy of Sciences (RAS/IMASH) for design, test, and delivery of 1460 Al-Li alloy liquid oxygen (LO2) cryotanks: one for development, one for ground tests, and one for DC-XA flight tests. This paper describes the development of Al-Li 1460 alloy for reusable LO2 tanks, including alloy composition tailoring, mechanical properties database, forming, welding, chemical milling, dissimilar metal joining, corrosion protection, completed tanks proof, and qualification testing. Mechanical properties of the parent and welded materials exceeded expectations, particularly the fracture toughness, which promise excellent reuse potential. The LO2 cryotank was successfully demonstrated in DC-XA flight tests.

  11. Activity and diffusion of metals in binary aluminum alloys

    SciTech Connect

    Jao, C. S.

    1980-12-01

    To determine the activity of zinc in Zn-Al alloys, the electromotive force (emf) of the cell: Zn/ZnCl/sub 2/-KC1 (eut)/Zn,Al was measured at temperatures between 569.5 K (296.5C) and 649.5 K (376.5C). The applicability of a two-suffix Margules equation was demonstrated, in good agreement with theoretical expectations. The diffusion coefficient of Zn in Al determined from a planar diffusion model for the experimental data was about 3 x 10/sup -10/ cm/sup 2//sec to 2 x 10/sup -9/ cm/sup 2//sec in the range of temperature studied. This is higher than that found in the literature. The most plausible reason appears to be the high alumina concentration in the working electrode because of partial oxidation. Oxidation of the alloying metals was the primary cause of poor alloying between calcium/or zinc and aluminum, thereby frustrating similar measurements at a Ca-Al/or Zn-Al alloy. The literature on the activity of calcium and zinc is aluminum is reviewed.

  12. Characteristics of laser surface melted aluminum alloys.

    PubMed

    Weinman, L S; Kim, C; Tucker, T R; Metzbower, E A

    1978-03-15

    Specimens of Al-Fe 1-4 w/o, 2024 and 6061 Al have been surface melted with a pulsed Nd-glass laser. A TEM and SEM study showed that the dendrite spacings were from 2500 A to 4000 A which corresponds to a cooling rate of over 10(6) degrees C/sec. Melt depths obtained were in the range of 30-100 microm. No significant surface vaporization was observed at energy densities up to 440 J/cm(2). Fracture surfaces of the commerical alloys demonstrated elongated porosity in the melt areas, probably due to internal hydrogen.

  13. Enhancement of superplastic formability in a high strength aluminum alloy

    NASA Technical Reports Server (NTRS)

    Agrawal, S. P.; Turk, G. R.; Vastava, R.

    1988-01-01

    A 7475 aluminum alloy was developed for superplastic forming (SPF). By lowering the Fe and Si contents in this alloy significantly below their normal levels and optimizing the thermomechanical processing to produce sheet, over 2000 percent thickness strain to failure was obtained. The microstructure, elevated-temperature uniaxial and biaxial tension, and cavitation behavior of the alloy were determined. In addition, a constitutive model was used to form a generic structural shape from which mechanical test specimens were removed and post-SPF characteristics were evaluated. The constitutive model included both material strain hardening and strain rate hardening effects, and was verified by accurately predicting forming cycles which resulted in successful component forming. Stress-life fatigue, stress rupture, and room and elevated temperature tensile tests were conducted on the formed material.

  14. Elevated temperature fracture of RS/PM aluminum alloy 8009

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Yang, Leng; Gangloff, Richard P.

    1991-01-01

    The fracture behavior of advanced powder metallurgy Al-Fe-V-Si alloy 8009 (previously called FVS0812) is being characterized under monotonic loads, as a function of temperature. Particular attention is focused on contributions to the fracture mechanism from the fine grained dispersoid strengthened microstructure, dissolved solute from rapid solidification, and the moist air environment. Time-dependent crack growth is characterized in advanced aluminum alloys at elevated temperatures with the fracture mechanics approach, and cracking mechanisms are examined with a metallurgical approach. Specific tasks were to obtain standard load crack growth experimental information from a refined testing system; to correlate crack growth kinetics with the j-integral and time dependent C(sub t)(t); and to investigate the intermediate temperature embrittlement of 8009 alloy in order to understand crack growth mechanisms.

  15. Surface and microstructural characterization of laser beam welds in an aluminum alloy

    NASA Astrophysics Data System (ADS)

    Nascente, P. A. P.; Bolfarini, C.; Benassi, C. L.; Alcantara, N. G.; Santos, J. F.

    2002-07-01

    The weldability of aluminum alloys is one of the main requirements to be considered for their application in the automotive and aerospace industry. In this work, the weld joints of an AA7020 alloy obtained by laser process were characterized by scanning electron microscopy, energy-dispersive x-ray spectrometry, wavelength-dispersive x-ray spectrometry, and x-ray photoelectron spectroscopy. The laser process can be described as a high-speed solidification process. The solidification rate can be estimated from the correlation among several solidification rates and the corresponding dendritic/cellular spacings, and the value calculated for this rate was 3.0 x103 K/s. The inclusions present in the base metal were identified as (Cr,Fe)4Si4Al13, which were not observed in the fused zone. The fused zone microstructure showed two distinct phases: an aluminum solid solution and fine precipitates of MgZn2. The transition from the base metal to the fused zone presented a narrow heat-affected zone. A strong depletion of Zn was observed, and this does not influence the hot tearing susceptibility since hot cracks were not observed in the weld zone. copyright 2002 American Vacuum Society.

  16. Airborne bacteria associated with corrosion of mild steel 1010 and aluminum alloy 1100.

    PubMed

    Rajasekar, Aruliah; Xiao, Wang; Sethuraman, Manivannan; Parthipan, Punniyakotti; Elumalai, Punniyakotti

    2017-03-01

    A novel approach to measure the contribution of airborne bacteria on corrosion effects of mild steel (MS) and aluminum alloy (AA) as a function of their exposure period, and the atmospheric chemical composition was investigated at an urban industrial coastal site, Singapore. The 16S rRNA and phylogenetic analyses showed that Firmicutes are the predominant bacteria detected in AA and MS samples. The dominant bacterial groups identified were Bacillaceae, Staphylococcaceae, and Paenibacillaceae. The growth and proliferation of these bacteria could be due to the presence of humidity and chemical pollutants in the atmosphere, leading to corrosion. Weight loss showed stronger corrosion resistance of AA (1.37 mg/cm(2)) than MS (26.13 mg/cm(2)) over the exposure period of 150 days. The higher corrosion rate could be a result of simultaneous action of pollutants and bacterial exopolysaccharides on the metal surfaces. This study demonstrates the significant involvement of airborne bacteria on atmospheric corrosion of engineering materials.

  17. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    PubMed

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks.

  18. Investigations on Laser Beam Welding of Different Dissimilar Joints of Steel and Aluminum Alloys for Automotive Lightweight Construction

    NASA Astrophysics Data System (ADS)

    Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan

    Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.

  19. Constitutive behaviour of an as-cast AA7050 alloy in the sub-solidus temperature range

    NASA Astrophysics Data System (ADS)

    Subroto, T. A. S.; Miroux, A. G.; Eskin, D. G.; Katgerman, L.

    2012-01-01

    Aluminum alloy 7050 is of interest for aerospace industries due to its superior mechanical properties. However, its inherent solidification behaviour may augment the accumulation of residual stresses due to uneven cooling conditions upon direct-chill (DC) casting. This can increase the propensity of cold cracking (CC), which is a potentially catastrophic phenomenon in casting ingots. To predict the outcome of the aluminum casting process, ALSIM software is utilised. This software has the capability to predict CC susceptibility during the casting process. However, at the moment, ALSIM lacks the information regarding material constitutive behaviour in the sub-solidus temperature range, which is considered important for studying CC phenomenon. At the moment, ALSIM only has a partial constitutive database for AA7050 and misses data, especially in the vicinity of non-equilibrium solidus (NES) point. The present work presents measurements of tensile constitutive parameters in the temperature range between 400 °C and NES, which is for this alloy defined as 465 °C. The mechanical behaviour is tested in a Gleeble 3800 thermo-mechanical simulator. Constitutive parameters such as stress-strain curves, strain-rate sensitivity and ductility of the alloy have been measured at different test temperatures. With these constitutive data, we expect to improve the accuracy of ALSIM simulations in terms of CC prediction, and gain more insight into the evolution of mechanical properties of AA7050 in the temperature nearby the NES.

  20. Microstructural issues in a friction-stir-welded aluminum alloy

    SciTech Connect

    Flores, O.V.; Kennedy, C.; Murr, L.E.; Brown, D.; Pappu, S.; Nowak, B.M.; McClure, J.C.

    1998-02-03

    Recent observations of microstructures associated with friction-stir welding (FSW) in a number of aluminum alloys have consistently demonstrated the actual weld zone to consist of a (dynamically) recrystallized grain structure resulting from the extreme, solid-state, plastic deformation characterizing the process. Because of solubilities associated with the various precipitates in 7075 and 6061 aluminum alloys, and the fact that the precipitates were either homogeneously distributed throughout both the original (unwelded) work-piece plates and the well zones (or formed varying densities of Widmanstaetten patterns within the original and recrystallized grains), it has been difficult to follow the stirring of stable, second-phase particles from the base metal (work-piece) into the weld zone. In the present investigation, a compositionally modified 1100 aluminum alloy (nominally 99.2% Al, 0.5% Fe, 0.15% Cu, 0.12% Si, 0.05 Mn, 0.04 Ti, balance in weight percent of Be and Mg), forming a stable microdendritic (second-phase), equiaxed, cell structure was friction-stir welded. These thermally stable, geometrically specific, precipitates in the base metal were compared with their disposition within the friction-stir-weld zone. In addition, as-cast plates of this alloy were cold-rolled 50% and friction-stir-welded in order to compare these two schedules (as-cast and 50% cold-rolled) in terms of residual hardness variations and related microstructural issues as well as the effect of prior deformation on the friction-stir welding process.

  1. Finite Element Modelling of the Sawing of DC Cast AA2024 Aluminium Alloy Slabs

    SciTech Connect

    Drezet, J.-M.; Ludwig, O.; Heinrich, B.

    2007-04-07

    In the semi-continuous casting of large cross-section rolling sheet ingots of high-strength aluminum alloys (2xxx and 7xxx series), the control of the residual (internal) stresses generated by the non-uniform cooling becomes a necessity. These stresses must be relieved by a thermal treatment before the head and foot of the ingot can be cut. Otherwise, the saw can be caught owing to compressive stresses or cut parts may be ejected thus injuring people or damaging equipment. These high added-value ingots need to be produced in secure conditions. Moreover, a better control of the sawing procedure could allow the suppression of the thermal treatment and therefore save time and energy. By studying the stress build-up during casting and the stress relief during sawing, key parameters for the control and optimization of the processing steps, can be derived. To do so, the direct chill (DC) casting of the AA2024 alloy is modeled with ABAQUS 6.5 with special attention to the thermo-mechanical properties of the alloy. The sawing operation is then simulated by removing mesh elements so as to reproduce the progression of the saw in the ingot. Preliminary results showing the stress relief during sawing accompanied by the risk of saw blocking due to compression or initiating a crack ahead of the saw, are analyzed with an approach based on the rate of strain energy release.

  2. Microstructure and Mechanical Properties of Nanostructured 1050/6061 Aluminum Alloy Fabricated by Four-Layer Stack Accumulative Roll-Bonding.

    PubMed

    Lee, Seong-Hee; Lee, Seong Ro

    2015-07-01

    An ultrafine grained AA1050/AA6061 Al alloy sheet was successfully fabricated by four-layer stack ARB process. The ARB of AA1050 and AA6061 alloy sheets was performed up to 3 cycles without a lubricant at ambient temperature. The sample fabricated by the ARB was a multi-layer aluminum alloy sheet in which AA1050 and AA6061 layers are alternately stacked. The layer thickness of the each alloy became thinner and elongated to the rolling direction with increasing the number of ARB cycles. The tensile strength increased with the ARB, it reached about 347 MPa which is almost 2.4 times that of the starting material. The grain size decreased with increasing of the number of ARB cycles, became about 190 nm in thickness after 3 cycles. The variation of mechanical properties with the ARB was similar to those of the other ARB processed materials. However, the texture development was different from those of the conventional ARB processed materials.

  3. Modeling of Flow Stress of High Titanium Content 6061 Aluminum Alloy Under Hot Compression

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Guan, Yingping; Wang, Zhenhua

    2016-09-01

    Hot compression tests were performed on high titanium content 6061 aluminum alloy (AA 6061-Ti) using a Gleeble-3500 thermomechanical testing system at temperatures from 350 to 510 °C with a constant strain rate in the range of 0.001-10 s-1. Three types of flow stress models were established from the experimental stress-strain curves, the correlation coefficient ( R), mean absolute relative error ( MARE), and root mean square deviation ( RMSD) between the predicted data and the experimental data were also calculated. The results show that the Fields-Backofen model, which includes a softening factor, was the simplest mathematical expression with a level of precision appropriate for the numerical simulations. However, the Arrhenius and artificial neural network (ANN) models were also consistent with the experimental results but they are more limited in their application in terms of their accuracy and the mathematical expression of the models.

  4. Effect of surface nanostructuring of aluminum alloy on post plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Masiha, H. R.; Bagheri, H. R.; Gheytani, M.; Aliofkhazraei, M.; Sabour Rouhaghdam, A.; Shahrabi, T.

    2014-10-01

    AA1230 aluminum alloy samples were coated by plasma electrolytic oxidation (PEO). The samples with and without surface mechanical attrition treatment (SMAT) were coated in phosphate- and silicate-based electrolytes and in the presence of Si3N4 nanoparticles. Besides, morphology and properties of the produced coatings were examined. To determine the corrosion resistance of the coatings, potentiodynamic polarization technique was used. All coated samples were subjected to wear test in order to compare coating wear properties of the SMATed and unSMATed samples. Then the effects of SMAT preprocessing and its duration on the properties of the coatings prepared by PEO were investigated. The results indicated that the mean coefficient of friction of the coated samples decreased by near 83% with respect to the uncoated (raw) samples. Furthermore, the SMATed samples showed thicker coatings as compared to unSMATed samples due to an increase in their matrix reactivity.

  5. Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024

    NASA Technical Reports Server (NTRS)

    Riddell, William T.; Piascik, Robert S.

    1998-01-01

    The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.

  6. Residual Stresses in Friction-Stir-Welded 2195 and 7075 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Hatamleh, Omar; Rivero, Iris V.; Maredia, Arif

    2008-12-01

    Surface residual stresses (RSs) were characterized along friction-stir-welded 2195 and 7075 aluminum alloy (AA) plates. The surface measurements were obtained through X-ray diffraction (XRD) at five different locations along the weld. Each location consisted of several regions across the welded plate including the weld nugget, thermomechanically affected zone (TMAZ), heat-affected zone (HAZ), and base material. Measurements revealed that RSs were not uniform along the welded plate, with the highest RSs obtained on the middle of the plate. The RSs across the weld were also asymmetric relative to the weld centerline, with RSs as high as 231 MPa in the TMAZ for the retreating side of the weld.

  7. Stress corrosion testing of a superplastically deformed aluminum-lithium alloy

    SciTech Connect

    Srinivasan, M.N.

    1998-05-01

    An investigation was conducted to study the stress corrosion cracking (SCC) tendency of a superplastically deformed aluminum-lithium-based alloy (AA X2094 [UNS A92094]) that had been received in a thermomechanically processed form suitable for dynamic recrystallization. Tensile specimens made from sheets of this material were superplastically deformed at a constant true strain rate of 2 {times} 10{sup {minus}4}/s and a temperature of {approximately}500 C. Specimens then were subjected to stress corrosion testing using the slow strain rate tensile testing (SSRT) technique at a constant initial strain rate of 2 {times} 10{sup {minus}6}/s. Effects of different superplastic deformation variables and stress corrosion testing conditions on the stress-strain relationship of the test specimens were studied.

  8. Role of Laser Cladding Parameters in Composite Coating (Al-SiC) on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Riquelme, Ainhoa; Escalera-Rodriguez, María Dolores; Rodrigo, Pilar; Rams, Joaquin

    2016-08-01

    The effect of the different control parameters on the laser cladding fabrication of Al/SiCp composite coatings on AA6082 aluminum alloy was analyzed. A high-power diode laser was used, and the laser control parameters were optimized to maximize the size (height and width) of the coating and the substrate-coating interface quality, as well as to minimize the melted zone depth. The Taguchi DOE method was applied using a L18 to reduce the number of experiments from 81 to only 18 experiments. Main effects, signal-noise ratio and analysis of variance were used to evaluate the effect of these parameters in the characteristics of the coating and to determine their optimum values. The influence of four control parameters was evaluated: (1) laser power, (2) scanning speed, (3) focal condition, and (4) powder feed ratio. Confirmation test with the optimal control parameters was carried out to evaluate the Taguchi method's effectivity.

  9. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGES

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; ...

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  10. Material characterization and finite element simulations of aluminum alloy sheets during non-isothermal forming process

    NASA Astrophysics Data System (ADS)

    Zhang, Nan

    The utilization of more non-ferrous materials is one of the key factors to succeed out of the constantly increasing demand for lightweight vehicles in automotive sector. Aluminum-magnesium alloys have been identified as the most promising substitutions to the conventional steel without significant compromise in structural stiffness and strength. However, the conventional forming methods to deform the aluminum alloy sheets are either costly or insufficient in formability which limit the wide applications of aluminum alloy sheets. A recently proposed non-isothermal hot stamping approach, which is also referred as Hot Blank - Cold Die (HB-CD) stamping, aims at fitting the commercial grade aluminum alloy sheets, such as AA5XXX and AA7XXX, into high-volume and cost-effective production for automotive sector. In essence, HB-CD is a mutation of the conventional hot stamping approach for boron steel (22MnB5) which deforms the hot blank within the cold tool set. By elevating the operation temperature, the formability of aluminum alloy sheets can be significantly improved. Meanwhile, heating the blank only and deforming within the cold tool sets allow to reduce the energy and time consumed. This research work aims at conducting a comprehensive investigation of HB-CD with particular focuses on material characterization, constitutive modeling and coupled thermo-mechanical finite element simulations with validation. The material properties of AA5182-O, a popular commercial grade of aluminum alloy sheet in automotive sector, are obtained through isothermal tensile testing at temperatures from 25° to 300°, covering a quasi-static strain-rate range (0.001--0.1s-1). As the state-of-the-art non-contact strain measurement technique, digital image correlation (DIC) system is utilized to evaluate the stress-strain curves as well as to reveal the details of material deformation with full-field and multi-axis strain measurement. Material anisotropy is characterized by extracting the

  11. Mechanical properties of anodized coatings over molten aluminum alloy.

    PubMed

    Grillet, Anne M; Gorby, Allen D; Trujillo, Steven M; Grant, Richard P; Hodges, V Carter; Parson, Ted B; Grasser, Thomas W

    2008-01-01

    A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. We have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen or argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Machining marks were not found to significantly affect the strength.

  12. Controlled Quenching of Aluminum Alloys in Flexible Spray Fields

    NASA Astrophysics Data System (ADS)

    Rose, Andrea; Schuettenberg, Sven; Hornig, Nils; von Hehl, Axel; Fritsching, Udo

    During heat treatment of age hardenable aluminum alloys, the resulting mechanical properties are particularly influenced by the quenching process. To achieve the required strength, a high quenching rate after solution annealing is necessary, otherwise a homogeneous distribution of quenching intensity should be realized in order to avoid distortion. Controlled quenching within the heat treatment process of aluminum components can be realized by flexible spray fields. Suitable heat transfer conditions of the component are achievable by adjusted flexible flow fields (local and/or temporal) based on simulation of heat transfer by Computational Fluid Dynamics (CFD). By the use of gas-(air), spray-(water/air) or jet-(water) flow fields, it is possible to adapt the quenching intensity to the part geometry and/or to the load profile in order to influence the mechanical properties as well as the distortion after heat treatment. For this purpose, a flexible spray nozzle field was integrated into heat treatment process for age hardening of different wrought-, cast-, and spray-formed aluminum alloys.

  13. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    NASA Astrophysics Data System (ADS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J. B.; Cano, F. J.; Lapeña, N.

    2015-08-01

    Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an oxidation process occurred in the vicinity of the alloy's intermetallic particles. The amount of the Zr deposits at these locations increased with coating's formulations without Ti, which provided the best corrosion resistance. The Cr-free conversion coatings developed in this study for the AA7075-T6 and AA2024-T3 alloys do not meet yet the strict requirements of the aircraft industry. However, they significantly improved the corrosion

  14. The Effect of Impurities on the Processing of Aluminum Alloys

    SciTech Connect

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic

  15. Aluminum rich alloys for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Choi, Go

    The recent environmental problem and depletion of natural power resources have intensified the search for clean and renewable energy which has become one of the major issues of the Twenty-first century. Furthermore, global demand for freshwater has been increasing, raising concerns for water insufficiency. The goal of this research is to seek and introduce a viable technology that could potentially solve both energy and water crises. It has been investigated that Al-Ga-In-Sn quaternary system alloys can split water and produce hydrogen and heat. This paper focuses on the aluminum-rich Al-Ga-In-Sn quaternary system alloys, exploring the mystery behind the mechanism. As the paper will show, this technology can be applied to both salt water and sea water, and is thus a potential solution for marine applications and desalination. However, it has been shown that the alloy reacts differently depending on the fabrication method and environmental conditions. Various experiments were conducted to understand this phenomenon. This paper discusses several different reactions caused by various cooling rates and compositions, which effectively changes the crystal structure of the alloy and its liquid phase. Characteristics of the liquid phase define the alloy and determine its applications.

  16. Textures in Strip-Cast Aluminum Alloys: Their On-Line Monitoring and Quantitative Effects on Formability. Final Technical Report

    SciTech Connect

    Man, Chi-Sing

    2003-07-27

    production process even more meaningful. The present project included a study to determine how the anisotropic plastic behavior of a continuous-cast AA 5754 aluminum alloy depends on quantifiable texture coefficients. Formulae which show explicitly the effects of texture on the directional dependence of the q-value (a formability parameter) and of the uniaxial flow stress, respectively, were derived. Measurements made on a batch of as-received AA 5754 hot band and its O-temper counterpart corroborate the validity of these formulae. On the other hand, these measurements also indicate that some microstructure(s) other than texture could play a significant role in the plastic anisotropy of the AA 5754 alloy. For the q-value of a set of O-temper samples of this alloy, the additional microstructure that affects plastic anisotropy was shown to be grain shape. A formula that captures both the effects of crystallographic texture and grain shape on the q-value of the O-temper material was derived. A simple quadratic plastic potential that delivers this q-value formula was written down. Verification of the adequacy of this plastic potential, however, requires further investigations.

  17. Fundamental studies on electrochemical production of dendrite-free aluminum and titanium-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata

    A novel dendrite-free electrorefining of aluminum scrap was investigated by using AlCl3-1-Ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte. Electrodeposition of aluminum were conducted on copper/aluminum cathodes at voltage of 1.5 V, temperatures (50-110°C), stirring rate (0-120 rpm), molar ratio (MR) of AlCl3:EMIC (1.25-2.0) and electrode surface modification (modified/unmodified). The study was focused to investigate the effect of process variables on deposit morphology, cathode current density and their role in production of dendrite-free aluminum. The deposits were characterized using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Modified electrodes and stirring rate (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential (etacrt≈ -0.54 V) for dendrite formation. Pure aluminum (>99%) was deposited with current efficiency of 84-99%. Chronoamperometry study was conducted using AlCl3-EMIC and AlCl3-1-Butyl-3-methyl-imidazolium chloride (BMIC) (MR = 1.65:1) at 90°C to understand the mechanism of aluminum electrodeposition and find out diffusion parameter of electroactive species Al2C 7-. It was concluded that electrodeposition of aluminum is a diffusion controlled instantaneous nucleation process and diffusion coefficient of Al2C7- was found to be 5.2-6.9 x 10-11 m2/s and 2.2 x 10-11 m2/s for AlCl3-EMIC and AlCl3-BMIC, respectively. A novel production route of Ti-Al alloys was investigated using AlCl 3-BMIC-TiCl4 (MR = 2:1:0.019) and AlCl3-BMIC (MR = 2:1) electrolytes at constant voltages of 1.5-3.0 V and temperatures (70-125°C). Ti sheet was used as anode and cathode. Characterization of electrodeposited Ti-Al alloys was carried out using SEM, EDS, XRD and inductively coupled plasma-optical emission spectrometer (ICP-OES). Effect of voltage and temperature on cathode current density, current efficiency, composition and morphology of Ti

  18. Direct-soldering 6061 aluminum alloys with ultrasonic coating.

    PubMed

    Ding, Min; Zhang, Pei-lei; Zhang, Zhen-yu; Yao, Shun

    2010-02-01

    In this study, the authors applied furnace soldering with ultrasonic coating method to solder 6061 aluminum alloy and investigated the effects of both coating time and soldering temperature on its properties. The following results were obtained: firstly, the solder region mainly composed of four kinds of microstructure zones: rich Sn zone, rich-Pb zone, Sn-Pb eutectic phase and rich Al zone. Meanwhile, the microanalysis identified a continuous reaction product at the alumina-solder interface as a rich-Pb zone. Therefore, the joint strength changed with soldering time and soldering temperature. Secondly, the tensile data had significantly greater variability, with values ranging from 13.99MPa to 24.74MPa. The highest value was obtained for the samples coated with Sn-Pb-Zn alloy for 45s. Fractures occurred along the solder-alumina interface for the 6061 aluminum alloy with its surface including hybrid tough fracture of dimple and tear ridge. The interface could initially strip at the rich Bi zone with the effect of shear stress.

  19. Bearing Strengths of Some Wrought-aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  20. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  1. Chromate-free talc chemical conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.; Drewien, C.A.; Stoner, G.E.

    1993-10-01

    We have found that aluminum alloys exhibit unusual passivity when exposed to alkaline Li-salt solutions. Observed passivity is due to the formation of a polycrystalline Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O film on the aluminum surface. This film is persistent in aggressive environments and provides a significant degree of corrosion protection. On this basis, we have developed a simple non-electrolytic method of forming corrosion resistant coatings in alkaline Li-salt solution. This process is procedurally similar to traditional conversion coating methods, offers desirable properties, and has a low toxic hazard. In this paper, coating methods, coating characterization, and coating properties are presented. Results from parallel test performed with a commercial chromate conversion coatings are presented for comparison.

  2. Fatigue damage study in aluminum-2024 T3 alloys

    NASA Technical Reports Server (NTRS)

    Ferguson, Milton W.

    1992-01-01

    The grain structure of aluminum 2024, a commonly used commercial alloy is investigated, and these findings are correlated with the fatigue property of the material. Samples of aluminum 2024 were polished and etched in different reagents. Optical micrographs (at 500X) of samples etched in Keller's reagent revealed grain boundaries as well as some particles present in the microstructure. Normal x-ray scans of samples etched for different intervals of time in Keller's reagent indicate no significant variations in diffraction peak positions; however, the width of the rocking curve increased with the time of etching. These results are consistent with the direct dependence of the width of the rocking curve on the range of grain orientation. Etching removes the preferred orientation layer of the sample produced by polishing; thereby, causing the width to increase.

  3. Chromate-free corrosion resistant conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.; Drewien, C.A.; Martinez, M.A.; Stoner, G.E.

    1995-03-01

    Inorganic polycrystalline hydrotalcite, Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O, coatings can be formed on aluminum and aluminum alloys by exposure to alkaline lithium carbonate solutions. This process is conducted using methods similar to traditional chromate conversion coating procedures, but does not use or produce toxic chemicals. The coating provides anodic protection and delays the onset of pitting during anodic polarization. Cathodic reactions are also inhibited which may also contribute to corrosion protection. Recent studies have shown that corrosion resistance can be increased by sealing hydrotalcite coated surfaces to transition metal salt solutions including Ce(NO{sub 3}){sub 3}, KMnO{sub 4} and Na{sub 2}MoO{sub 4}. Results from these studies are also reported.

  4. Corrosion fatigue of 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  5. Investigation of High Speed Friction Test for Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ooki, K.; Takahashi, S.

    2016-08-01

    To shorten the development stage of automobiles, FEM simulation has been applied. It was important to increase the accuracy of the sheet metal simulation results. The friction coefficient between the sheet metal and dies the greatly affected the simulation results. Therefore, apparatus for measuring the friction coefficient with a specific press forming speed (300 mm/s) has been developed. The materials of the sheet metals and dies were aluminum alloys and die steel respectively. It was found that the friction was affected by the difference between the velocity of the sheet metal and that of the dies.

  6. Effects of Machining on the Microstructure of Aluminum Alloy 7075

    NASA Astrophysics Data System (ADS)

    Tabei, A.; Liang, S. Y.; Garmestani, H.

    Experimental investigations show that depending on the parameters, aggressive machining of aluminum alloy 7075 can trigger several microstructural phenomena including recrystallization, grain growth and crystallographic texture modifications below the machined surface. Increasing the depth of cut will lead to a significant recrystallization and consequently grain refinement. On the other hand, increasing the feed rate will result into development of a unique crystallographic texture. The mechanical and thermal loads imposed to the material experiences by machining leads to such microstructural phenomena. Finite element analysis is used to determine these loads.

  7. Thermodynamics of iron-aluminum alloys at 1573 K

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Mehrotra, Gopal M.

    1993-01-01

    The activities of iron and aluminum were measured in Fe-Al alloys at 1573 K, using the ion-current-ratio technique in a high-temperature Knudsen cell mass spectrometer. The Fe-Al solutions exhibited negative deviations from ideality over the entire composition range. The activity coefficients gamma(Fe), and gamma(Al) are given by six following equations as a function of mole fraction, X(Fe), X(Al). The results show good agreement with those obtained from previous investigations at other temperatures by extrapolation of the activity data to 1573 K.

  8. Low-Distortion Quenching of Aluminum Alloys in Polymer Media

    NASA Astrophysics Data System (ADS)

    Senatorova, O. G.; Mikhailova, I. F.; Ivanov, A. L.; Mitasov, M. M.; Sidel'nikov, V. V.

    2016-03-01

    The cooling capacity of the Aqua-Quench 260 quenching medium with different concentrations of polyalkylene glycol (12, 15, 22 and 30%) is studied. Cooling curves and dependences of the cooling rate on the temperature of the polymer medium are plotted. The mechanical and corrosion properties of pilot pressings from the most widely used aluminum forging alloys V95pch, AK4-1ch, AK6ch and 1933 quenched in a solution of Aqua-Quench 260 with an additive of polyalkylene glycol are determined in comparison with quenching in hot and cold water.

  9. Mathematical Model of Dynamic Recrystallization of Aluminum Alloy 3003

    NASA Astrophysics Data System (ADS)

    Chen, Guiqing; Fu, Gaosheng; Yan, Wenduan; Cheng, Chaozeng; Zou, Zechang

    2013-07-01

    Aluminum alloy 3003 is studied after isothermal compression in a Gleeble-1500 machine at a rate of 0.01 - 10 sec - 1 in the temperature range of 300 - 500°C. The curves plotted in the coordinates "strain hardening rate - strain" are used to determine the critical strain ɛc and the static strain ɛs for dynamic recrystallization, and the curve of the dynamic recrystallization is plotted. A mathematical model describing the kinetics of the dynamic recrystallization as a function of the treatment parameters is suggested.

  10. Mechanism of Intergranular Penetration of Ga in an Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ding, Boxiong; Hoagland, Richard

    1998-03-01

    The intergranular penetration rates of gallium in 7050-T74 aluminum alloy were examined at temperatures from 25C to 180C under stress free condition. The results provide an estimate of activation energy of the penetration process. The penetration of Ga is observed to occur along the grain boundary and also spread over the surface, but much more slowly. Experiments were also performed at 23C involving solid Ga. These results together with mechanism controlling the intergranular penetration of Ga in Al will be discussed. This work was supported by DARPA.

  11. FRICTION STIR SPOT WELDING OF 6016 ALUMINUM ALLOY

    SciTech Connect

    Mishra, Rajiv S.; Webb, S.; Freeney, T. A.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.; Herling, Darrell R.

    2007-01-08

    Friction stir spot welding (FSSW) of 6016 aluminum alloy was evaluated with conventional pin tool and new off-center feature tools. The off-center feature tool provides significant control over the joint area. The tool rotation rate was varied between 1000 and 2500 rpm. Maximum failure strength was observed in the tool rotation range of 1200-1500 rpm. The results are interpreted in the context of material flow in the joint and influence of thermal input on microstructural changes. The off-center feature tool concept opens up new possibilities for plunge-type friction stir spot welding.

  12. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  13. Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    Distortion frequently occurs during machining of age hardening aluminum alloys due to residual stresses introduced during the quenching step in the heat treatment process. This report quantifies, compares, and discusses the effectiveness of several methods for minimizing residual stresses and machining distortion in aluminum alloys 7075 and 6061.

  14. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  15. Column and Plate Compressive Strength of Extruded XB75S-T Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Heimerl, George J.; Roy, J. Albert

    1944-01-01

    Results are presented of tests to determine the column and plate compressive strength of extruded XB75S-T aluminum alloy, and comparative values are shown for 24S-T aluminum-alloy sheet. Stress-strain curves are also given,

  16. Environmental Effects on Fatigue Crack Growth in 7075 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Bonakdar, A.; Wang, F.; Williams, J. J.; Chawla, N.

    2012-08-01

    The fatigue behavior of aluminum alloys is greatly influenced by the environmental conditions. In this article, fatigue crack growth rates were measured for 7075-T651 Al alloy under ultrahigh vacuum (UHV, ~10-10 Torr), dry air, and water vapor. Standard compact tension (CT) specimens were tested along the L-T orientation under various load ratios of 0.1, 0.5, and 0.8. Fracture surfaces and crack morphologies were studied using scanning electron microscopy and crack deflection analysis. The crack growth behavior under vacuum was affected by friction and possible rewelding of crack surfaces, causing an asymmetry in the crack growth behavior, from load shedding to constant load. The enhancement of crack growth at higher moisture levels was observed and is discussed in terms of moisture decreasing friction between the crack faces. The effect of crack deflection as a function of R ratio and environment is also presented.

  17. Laser beam welding of 5182 aluminum alloys sheet.

    SciTech Connect

    Leong, K. H.; Sabo, K. R.; Altshuller, B.; Wilkinson, T. L.; Albright, C. E.; Technology Development; Alcan International Limited; Reynolds Metals Co.; Ohio State Univ.

    1999-06-01

    Conditions were determined for consistent coupling of a CO{sub 2} laser beam to weld 5182 aluminum alloy sheet. Full penetration butt and bead-on-plate welds on 0.8 and 1.8 mm sheets were performed. Process conditions examined included beam mode, spot size and irradiance, shielding gas flow, and edge quality and fitup. The observed weld quality variations with the different process parameters were consistent with physical phenomena and a threshold irradiance model. Optimal conditions were determined for obtaining consistent welds on 5182 alloy sheets. Formability and tensile tests were performed on the welded samples. All test failures occurred in the fusion zone. Reduction in formability and tensile strength of the welded samples are discussed with respect to weld profiles and process parameters.

  18. Serrated flow and surface markings in aluminum alloys

    SciTech Connect

    Li, M., Lege, D.J.

    1998-01-01

    Serrated flow and associated progressive surface markings severely restrict the application of some aluminum sheet alloys for automotive body exteriors. This paper attempts to approach the phenomenon from the localization theory of continuum mechanics as well as from the classical atomistic and dislocation considerations. Plane strain tension tests were conducted for a commercial Al-Mg alloy (5182-O) at different strain rates and temperatures, and the local temperature changes were measured by an infrared thermal imaging system. Continuum mechanics analysis provided the insight into the myth that band surface markings never appear under biaxial tension strain states. In addition, continuum mechanics analysis shed light on the observation that PLC bands were not seen on the surface of plane strain tension specimens even though the stress-strain curves exhibited serrations. Finally, it is emphasized that only by combining the efforts of continuum mechanics at the macroscale and materials science at the microscale, can a complete understanding of the phenomenon be reached.

  19. The Weathering of Aluminum Alloy Sheet Materials Used in Aircraft

    NASA Technical Reports Server (NTRS)

    Mutchler, Willard

    1935-01-01

    This report presents the results of an investigation of the corrosion of aluminum alloy sheet materials used in aircraft. It has for its purpose to study the causes of corrosion embrittlement in duralumin-type alloys and the development of methods for its elimination. The report contains results, obtained in an extensive series of weather-exposure tests, which reveal the extent to which the resistance of the materials to corrosion was affected by variable factors in their heat treatment and by the application of various surface protective coatings. The results indicate that the sheet materials are to be regarded as thoroughly reliable, from the standpoint of their permanence in service, provided proper precautions are taken to render them corrosion-resistant.

  20. Process capability improvement through DMAIC for aluminum alloy wheel machining

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, P. Srinivasa; Babu, B. Surendra

    2017-07-01

    This paper first enlists the generic problems of alloy wheel machining and subsequently details on the process improvement of the identified critical-to-quality machining characteristic of A356 aluminum alloy wheel machining process. The causal factors are traced using the Ishikawa diagram and prioritization of corrective actions is done through process failure modes and effects analysis. Process monitoring charts are employed for improving the process capability index of the process, at the industrial benchmark of four sigma level, which is equal to the value of 1.33. The procedure adopted for improving the process capability levels is the define-measure-analyze-improve-control (DMAIC) approach. By following the DMAIC approach, the C p, C pk and C pm showed signs of improvement from an initial value of 0.66, -0.24 and 0.27, to a final value of 4.19, 3.24 and 1.41, respectively.

  1. Corrosive wear behavior of 2014 and 6061 aluminum alloy composites

    NASA Astrophysics Data System (ADS)

    Varma, S. K.; Andrews, S.; Vasquez, G.

    1999-02-01

    Alloys of 2014 and 6061 aluminum reinforced with 0.1 volume fraction of alumina particles (VFAP) were subjected to impact scratching during a corrosive wear process. The transient currents generated due to the impact were measured in the two composites as well as in their respective monoliths. The effect of solutionizing time on the transient currents was correlated to the near surface microstructures, scratch morphology, concentration of quenched-in vacancies, and changes in grain sizes. It was observed that the transient current values increase with an increase in solutionizing time, indicating that the corrosive wear behavior is not strongly affected by the grain boundaries. However, a combination of pitting and the galvanic corrosion may account for the typical corrosive wear behavior exhibited by the alloys and the composites of this study.

  2. Metallurgical aspects in laser welding of steels and aluminum alloys

    SciTech Connect

    Kutsuna, Muneharu

    1996-12-31

    Rapid cooled microstructures, solid state transformation, hardness distribution, porosity formation, hot cracking and crack susceptibility are discussed as the metallurgical aspects in laser welding of carbon steels, stainless steels and aluminum alloys in the present paper. In the cases of CO{sub 2} and YAG laser welding, the thermal cycles during welding of carbon steels showed a rapid heating rate of 10{sup 5} K/s and a rapid cooling rate of 10{sup 4} K/s. The solid state transformations during the thermal cycle are different from that in steel welds by arc. The microstructure in heat affected zone consists of ferrite band or matrix and hard martensite colonies with high carbon. It seems a kind of composite materials. The hardness distribution of steel welds by laser is different from that of arc welds in which the location of maximum hardness is coarse grain zone. However, it is the center of fusion zone or near the base metal in laser welds of carbon steel. Even in ultra low carbon steel welds, the hardness of weld metal is higher than 200 Hv and the microstructure is bainitic ferrite and low carbon martensite which have a low cold crack susceptibility. In addition, two mechanisms of porosity formation in laser welding of aluminum alloys including A3003, A5052, A5083, A5182 and A6061 alloys were investigated using the fundamental knowledge and the solidification crack susceptibility in laser welding of A5052, A5083, A6061 and A7NO1 alloys were studied for the application of laser welding in industries.

  3. Effect of chemical composition variation on microstructure and mechanical properties of a 6060 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Silva, M. S.; Barbosa, C.; Acselrad, O.; Pereira, L. C.

    2004-04-01

    The 6XXX series aluminum alloys (Al-Mg-Si) are widely used in many different engineering and architectural applications. These alloys usually undergo a thermal treatment, which consists of a heat treatment solution and artificial aging, since the desirable mechanical properties depend on the microstructural state of the material. The recycling of materials has been increasing recently for economic and ecologic reasons. By using scrap was raw material, important reductions in energy and total costs can be achieved, and, at the same time, negative environmental impacts can be greatly reduced. In the present work, the possibility of using a larger amount of scrap as raw material in the production of an AA 6060 alloy is evaluated by analyzing the difference in microstructure and mechanical properties between a commercial 6060 alloy and a variation with higher Fe and lower Si contents that was specially produced for this study. Both materials were placed into a heat treatment solution at 560 °C for 1 h, and then underwent water quenching followed by artificial aging at 180 °C for different periods of time. Hardness and tension tests were used to evaluate the mechanical properties. Light and transmission electron microscopy have been used to determine important features such as grain size before and after being placed into the heat treatment solution, and the characteristics of the second-phase particles in the two materials. This study leads to the conclusion that a higher amount of scrap material can be used in the production of 6060 Al alloy without significant changes in mechanical properties compared with the more usual compositions.

  4. Development of Enriched Borated Aluminum Alloy for Basket Material of Cask for Spent Nuclear Fuel

    SciTech Connect

    Katsura Kajihara; Yasuhiro Aruga; Jun Shimojo; Hiroaki Taniuchi; Tsutomu Takeda; Masatosi Sasaki

    2002-07-01

    New enriched borated aluminum alloys manufactured by melting process are developed, which resulted in supplying structural basket materials for spent nuclear fuel packagings. In this process, the borated aluminum alloys were melted in a vacuum induction furnace at elevated temperature than that of ordinary aluminum melting processes. Boron dissolves into the matrix at the temperature of 1273 K or more, and fine aluminum diboride is precipitated and uniformly dispersed upon cooling rapidity. It is confirmed that boron is homogeneously dispersed with the fine particles of approximate 5 in average size in the product. Tensile strength and creep property at elevated temperature in 1 mass-%B 6061-T651 plate and 1 mass-%B 3004 extruded rectangular pipe as structural materials are examined. It is confirmed that the both of borated aluminum alloys have stable strength and creep properties that are similar to those of ordinary aluminum alloys. (authors)

  5. Intergranular corrosion of an aluminum-magnesium-silicon-copper alloy

    SciTech Connect

    Burleigh, T.D.; Ludwiczak, E.; Petri, R.A.

    1995-01-01

    The intergranular (intercrystalline) corrosion (IGC) of a heat-treated aluminum-magnesium-silicon-copper alloy was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM revealed that tall chimneys of corrosion product formed on the surface above the pits during oxygenated salt water immersion. It was postulated that pitting corrosion occurred first and that the corrosion chimneys maintained the acidic, chloride pit environment that subsequently caused IGC (preferential dissolution of the region adjacent to the grain boundaries). TEM foils of the same alloy were immersed in a model pit solution (dilute hydrochloric acid) and showed IGC identical to the corrosion attack seen in the bulk samples. Potentiodynamic polarization in the dilute HCl solution verified that pure Al corroded many times faster than the bulk alloy. These results indicated IGC of this alloy occurred because the depleted region adjacent to the grain boundaries corroded rapidly in acidic solutions. The presence of pits with corrosion chimneys, or some type of occluded cells, must have maintained the acidic environment, which caused IGC.

  6. Super High Strength Aluminum Alloy Processed by Mechanical Alloying and Hot Extrusion

    NASA Astrophysics Data System (ADS)

    Zheng, Ruixiao; Yang, Han; Wang, Zengjie; Wen, Shizhen; Liu, Tong; Ma, Chaoli

    Nanostructure strengthened aluminum alloy was prepared by powder metallurgic technology. The rapid solidification Al-Cu-Mg alloy powder was used in this study. To obtain nanostructure, the commercial powder was intensely milled under certain ball milling conditions. The milled powder was compacted first by cold isostatic pressing (CIP) at a compressive pressure of 300MPa, and then extruded at selected temperature for several times to obtain near full density material. Microstructure and mechanical properties of the extruded alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and mechanical tests. It is revealed that the compressive strength of extruded alloy is higher than 800MPa. The strengthening mechanism associated with the nanostructure is discussed.

  7. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    NASA Technical Reports Server (NTRS)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  8. Study of Plastic Deformation in Binary Aluminum Alloys by Internal-Friction Methods

    NASA Technical Reports Server (NTRS)

    Olson, E. C.; Maringer, R. E.; Marsh, L. L.; Manning, G. K.

    1959-01-01

    The damping capacity of several aluminum-copper alloys has been investigated during tensile elongation. This damping is shown to depend on strain rate, strain, temperature, alloy content, and heat treatment. A tentative hypothesis, based on the acceleration of solute atom diffusion by deformation-produced vacancies, is proposed to account for the observed behavior. Internal-friction maxima are observed in deformed aluminum and aluminum-copper alloys at -70 deg and -50 deg C. The peaks appear to be relatively insensitive to frequency and alloy content, but they disappear after annealing at temperatures nearing the recrystallization temperature.

  9. Microstructure Evolution and Mechanical Properties of Severely Plastically Deformed (SPD) Aluminum Alloys

    DTIC Science & Technology

    2007-05-31

    TITLE AND SUBTITLE 5a. CONTRACT NUMBER Microstructure Evolution and Mechanical Properties of Severely Plastically Deformed (SPD) Aluminum Alloys 5b...modeling study has been carried out to characterize the structure and mechanical properties of severely plastically deformed (SPD) aluminum and its...these routes is the expectation that since the fracture toughness of precipitation hardened aluminum alloys is known to be degraded by grain boundary

  10. Hip Consolidation of Aluminum-Rich Intermetallic Alloys and Their Composites

    DTIC Science & Technology

    1992-02-03

    AD-A251 429 Report No. NAWCADWAR-92003-60 HIP CONSOLIDATION OF ALUMINUM -RICH INTERMETALLIC ALLOYS AND THEIR COMPOSITES William E. Frazier, Ph.D. and...DATES COVERED 3 Februar 1992 Final 9/0 - 9/91 4. TITLE AND SUBTITLE S. FUNDING NUMBERS HIP CONSOLIDATION OF ALUMINUM -RICH INTERMETALLIC ALLOYS AND THEIR...crystallographic symmetry. This paper describes preliminary work directed towards utilizing HIP technology to consolidate aluminum -rich intermetallics

  11. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  12. Interdiffusion and reaction between pure magnesium and aluminum alloy 6061

    DOE PAGES

    Kammerer, C. C.; Fu, Mian; Zhou, Le; ...

    2015-06-01

    Using solid-to-solid couples investigation, this study characterized the reaction products evolved and quantified the diffusion kinetics when pure Mg bonded to AA6061 is subjected to thermal treatment at 300°C for 720 hours, 350°C for 360 hours, and 400°C for 240 hours. Characterization techniques include optical microscopy, scanning electron microscopy with X-ray energy dispersive spectroscopy, and transmission electron microscopy. Parabolic growth constants were determined for γ-Mg17Al12, β-Mg2Al3, and the elusive ε-phase. Similarly, the average effective interdiffusion coefficients of major constituents were calculated for Mg (ss), γ-Mg17Al12, β-Mg2Al3, and AA6061. The activation energies and pre-exponential factors for both parabolic growth constant andmore » average effective interdiffusion coefficients were computed using the Arrhenius relationship. The activation energy for growth of γ-Mg17Al12 was significantly higher than that for β-Mg2Al3 while the activation energy for interdiffusion of γ-Mg17Al12 was only slightly higher than that for β-Mg2Al3. As a result, comparisons are made between the results of this study and those of diffusion studies between pure Mg and pure Al to examine the influence of alloying additions in AA6061.« less

  13. Friction stir welding process and material microstructure evolution modeling in 2000 and 5000 series of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yalavarthy, Harshavardhan

    Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned

  14. Hydrogen-environment-assisted cracking of an aluminum-zinc-magnesium(copper) alloy

    NASA Astrophysics Data System (ADS)

    Young, George Aloysius, Jr.

    There is strong evidence to indicate that hydrogen embrittlement plays a significant, if not controlling, role in the environmentally assisted cracking of 7XXX series aluminum alloys. In order to better understand hydrogen environment assisted cracking (HEAC), crack growth rate tests in the K-independent stage II crack growth regime were conducted on fracture mechanics specimens of an Al-6.09Zn-2.14Mg-2.19Cu alloy (AA 7050) and a low copper variant (Al-6.87Zn-2.65Mg-0.06Cu). Crack growth rate tests were performed in 90% relative humidity (RH) air between 25 and 90°C to assure hydrogen embrittlement control. The underaged, peak aged, and overaged tempers were investigated. Hydrogen uptake in humid air, hydrogen diffusion, and hydrogen trapping were investigated for each temper. Lastly, near crack tip hydrogen concentration depth profiles were analyzed via nuclear reaction analysis (NRA) and secondary ion mass spectroscopy (SIMS) using a liquid gallium, focused ion beam sputtering source (FIB/SIMS). The results of this study help explain and quantify empirically known trends concerning HEAC resistance and also establish new findings. In the copper bearing alloy, overaged tempers are more resistant but not immune to HEAC. Humid air is an aggressive environment for Al-Zn-Mg alloys because water vapor reacts with bare aluminum to produce high surface concentrations of hydrogen. This occurs in all tempers. Hydrogen diffuses from the near surface region to the high triaxial stress region ahead of the crack tip and collects at the high angle grain boundaries. The combination of tensile stress and high hydrogen concentration at the grain boundaries then causes intergranular fracture. Crack extension bares fresh metal and the process of hydrogen production, uptake, diffusion to the stressed grain boundary, and crack extension repeats. One reason increased degree of aging improves HEAC resistance in copper bearing 7XXX series alloys is that volume lattice and effective

  15. Development and Processing Improvement of Aerospace Aluminum Alloys-Development of AL-Cu-Mg-Ag Alloy (2139)

    NASA Technical Reports Server (NTRS)

    Cho, Alex; Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report supplement in presentation format describes a comprehensive multi-tasked contract study to continue the development of the silver bearing alloy now registered as aluminum alloy 2139 by the Aluminum Association. Two commercial scale ingots were processed into nominal plate gauges of two, four and six inches, and were extensively characterized in terms of metallurgical and crystallographic structure, and resulting mechanical properties. This report includes comparisons of the property combinations for this alloy and 2XXX and 7XXX alloys more widely used in high performance applications. Alloy 2139 shows dramatic improvement in all combinations of properties, moreover, the properties of this alloy are retained in all gauge thicknesses, contrary to typical reductions observed in thicker gauges of the other alloys in the comparison. The advancements achieved in this study are expected to result in rapid, widespread use of this alloy in a broad range of ground based, aircraft, and spacecraft applications.

  16. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  17. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    NASA Technical Reports Server (NTRS)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  18. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  19. Laser shocking of 2024 and 7075 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Fairand, B. P.; Slater, J. E.

    1977-01-01

    The effect of laser generated stress waves on the microstructure, hardness, strength and stress corrosion resistance of 2024 and 7075 aluminum alloys was investigated. Pulsed CO2 and neodymium-glass lasers were used to determine the effect of wavelength and pulse duration on pressure generation and material property changes. No changes in material properties were observed with CO2 laser. The strength and hardness of 2024-T351 and the strength of 7075-T73 aluminum alloys were substantially improved by the stress wave environments generated with the neodymium-glass laser. The mechanical properties of 2024-T851 and 7075-T651 were unchanged by the laser treatment. The correlation of the laser shock data with published results of flyer plate experiments demonstrated that a threshold pressure needed to be exceeded before strengthening and hardening could occur. Peak pressures generated by the pulsed laser source were less than 7.0 GPa which was below the threshold pressure required to change the mechanical properties of 2024-T851 and 7075-T651. Corrosion studies indicated that laser shocking increased the resistance to local attack in 2024-T351 and 7075-T651.

  20. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    PubMed

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa.

  1. Study on the rheoformability of semi-solid 7075 wrought aluminum alloy using seed process =

    NASA Astrophysics Data System (ADS)

    Zhao, Qinfu

    Semisolid metal forming is becoming more and more attractive in the foundry industry due to its low cost and easy operation to produce high quality near-net-shape components. Over the past years, semisolid forming technique is mainly applied on the casting aluminum alloys due to their superior castability because of low melting temperature and viscosity. In semisolid forming field, thixoforming has been majorly used which involves of reheating the billet into semisolid state followed by casting process. Rheocasting is a more economic semisolid processing compared to thixoforming, which the semisolid billet is produced directly from liquid phase. The SEED process is one of reliable rheocasting techniques to produce high quality semisolid billets. To produce high quality semisolid billets, their unique rheological properties have been the most important issue need to be fully investigated. The aim of present project is to produce high quality semisolid AA7075 billets by SEED process and analyze their rheological properties under various process conditions. The effect of the SEED processing parameters and grain refiners on the semisolid microstructure and rheoformability were investigated. The deformation and rheological behavior of the semisolid billets of AA7075 base and its grain-refined alloys were studied using parallel-plate viscometer. In the first part, the evolution of liquid fraction to temperature of semisolid AA7075 alloy was investigated using Differential Scanning Calorimetry (DSC). It was found that the liquidus and solidus temperature of AA7075 alloy were 631 °C and 490°C respectively. And the corresponding temperatures of solid fraction of 40% and 60% were 622°C and 610°C, which was recognized as the temperature window for semisolid forming of this alloy. In the second part, the semisolid slurries were rheocasted using SEED technology and the effect of the SEED process parameters like swirling frequency and demolding temperature on evolution of

  2. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

    NASA Astrophysics Data System (ADS)

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu

    2016-06-01

    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  3. Characterization of tribological behaviour of graphitic aluminum matrix composites, grey cast iron, and aluminum silicon alloys

    NASA Astrophysics Data System (ADS)

    Riahi, Ahmad Reza

    In recent years a number of aluminum-silicon alloys and some graphitic aluminum matrix composites have been fabricated for potential tribological applications in the automotive industry, in particular for lightweight high efficiency internal combustion engines to replace conventional uses of cast iron. This study provides a systematic investigation for wear mechanisms in dry sliding of the graphitic aluminum-matrix composites (A356 Al-10%SiC-4%Gr and A356 Al-5%Al2O3-3%Gr) developed for cylinder liner applications. Two eutectic Al-Si alloys (modified with rare earth elements) developed for wear resistant engine blocks were also studied. The tribological behavior of grey cast iron (ASTM A30), which is a traditional material for engine components, was also investigated as reference. For graphitic aluminum matrix composites, a wear mapping approach has been adopted. Three main regimes: ultra mild, mild and severe wear regions were determined in the maps; additionally, a scuffing region was observed. In the ultra mild wear regime the wear resistance was primarily due to the hard particles supporting the load. It was shown that the onset of severe wear in graphitic composites occurred at considerably higher loads compared to A356 aluminum alloy and A356 Al-20% SiC composite. At the onset of severe wear, the surface temperatures and coefficient of friction of the graphitic composites was lower than that of A356 Al-20% SiC. At all testing conditions in the mild wear regime, a protective tribo-layer was formed, which by increasing the speed and load became more continuous, more compact, smoother, and harder. The tribo-layers were removed at the onset of severe wear. An experimental wear map of grey cast iron was constructed; it consisted of three wear regimes: ultra mild, mild and severe wear. In the ultra mild regime a compacted fine iron oxide powder formed on the contact. The onset of severe wear was started with local material transfer to the steel counterface, and

  4. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  5. The effect of quenching on physical characteristics of recycled AA6061 aluminum chips

    NASA Astrophysics Data System (ADS)

    Samsi, Mohd Arif; Mustapa, Mohammad Sukri; Badarulzaman, Nur Azam; Lajis, Mohd Amri; Kadir, Muhammad Irfan Abd; Mahdi, Ahmed Sahib

    2017-05-01

    This research is to investigate physical characteristics of the milled recycling aluminum AA6061 according to the change of the quenching time (heat treatment) using the milling process and followed by a cold press forging process. The chips of AA6061 are produced from high speed milling process. Physical properties of the milled recycled chip of AA6061 were studied. Six values of quenching time were taken (0, 2, 4, 6, 8, and 10) hours. On the other hand, the quenching and aging temperature is constant. The results were showing that the microstructure, porosity and density that the optimum is 8 hours. But for microhardness Vickers, the optimum is at 2 hours. It's shows that the optimum value of density (2.55 g/cm3), porosity (1.95 %), and hardness value (122.02 Hv). It can be concluded; 2 hours of quenching time is the best choice for all groups.

  6. Anisotropic effects on constitutive model parameters of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter S.; Joshi, Vasant S.

    2012-03-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. Model constants are determined from tension, compression or torsion stress-strain at low and high strain rates at different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloy. Johnson- Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulation go well beyond minor parameter tweaking and experimental results show drastically different behavior it becomes important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy quasi-static and high strain rate tensile tests were performed on specimens fabricated in the longitudinal "L", transverse "T", and thickness "TH" directions of 1' thick Al7075 Plate. While flow stress at a strain rate of ~1/s as well as ~1100/s in the thickness and transverse directions are lower than the longitudinal direction. The flow stress in the bar was comparable to flow stress in the longitudinal direction of the plate. Fracture strain data from notched tensile specimens fabricated in the L, T, and Thickness directions of 1' thick plate are used to derive fracture constants.

  7. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter; Joshi, Vasant

    2011-06-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.

  8. Upgrading scrap automotive aluminum alloys with the impulse atomization and quench technique

    SciTech Connect

    Olsen, K.; Sterzik, G.; Henein, H.

    1995-12-31

    As aluminum alloy usage in automobiles grows, there are increasing demands on recycling processes and facilities to deal with mixed alloy automotive aluminum scrap. These processes and facilities strive to produce near virgin aluminum stock, which can be relatively costly and difficult. One alternative is to use physical processing methods to upgrade the scrap properties instead of chemically refining the scrap. The Impulse Atomization Process (IAP, patent pending) is a new process for making metallic and ceramic powders. It can produce fine homogeneous microstructures in scrap aluminum alloys due to high undercooling and rapid solidification. The particles have a very narrow size distribution and are in a convenient form for consolidation. This paper compares and contrasts the microstructural features of Impulse Atomized and quenched Impulse Atomized powders, for both AL6061 and a scrap aluminum alloy composition.

  9. Development of corrosion resistant aluminum heat exchanger, Part 1: Development of new aluminum alloy sheets for sacrificial anode

    SciTech Connect

    Hagiwara, M.; Baba, Y.; Tanabe, Z.; Miura, T.; Hasegawa, Y.; Iijima, K.

    1986-01-01

    The sacrificial anodic effect of Al-Zn alloy reduced markedly in aluminium heat exchanger as car air conditioner manufactured by vacuum brazing conventionally used, as zinc elements preferentially evaporate in vacuum-heating. It was found that Al-Sn alloy had superior electrochemical characteristics than Al-Zn alloy (AA7072) as the sacrificial anodic material used in vacuum brazing. According to many experimental results, the new brazing sheet-fin with Al-Mn-Sn alloy core metal has been developed. This fin has favorable formability and prominent sacrificial anodic effect. Therefore, this fin is excellent material for car air conditioner manufactured by vacuum brazing.

  10. Atom probe tomography study of the nanoscale heterostructure around an Al20Mn3Cu2 dispersoid in aluminum alloy 2024.

    PubMed

    Parvizi, Reza; Marceau, Ross K W; Hughes, Anthony E; Tan, Mike Y; Forsyth, Maria

    2014-12-16

    Atom probe tomography (APT) has been used to investigate the surface and sub-surface microstructures of aluminum alloy 2024 (AA2024) in the T3 condition (solution heat treated, cold worked, and naturally aged to a substantially stable condition). This study revealed surface Cu enrichment on the alloy matrix, local chemical structure around a dispersoid Al20Mn3Cu2 particle including a Cu-rich particle and S-phase particle on its external surface. Moreover, there was a significant level of hydrogen within the dispersoid, indicating that it is a hydrogen sink. These observations of the nanoscale structure around the dispersoid particle have considerable implications for understanding both corrosion and hydrogen embrittlement in high-strength aluminum alloys.

  11. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  12. High-strength laser welding of aluminum-lithium scandium-doped alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Ivanova, M. Yu.

    2016-11-01

    The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.

  13. Experimental analysis of Exfoliation rate on Aluminum alloy Al7010

    NASA Astrophysics Data System (ADS)

    Choudhury, Ankur; Gopakumar, Abhimanyu; Athul, K. P.; Adinath, D. R.; Prashanth, Mrudula

    2017-08-01

    Aluminium alloys are increasingly being used in the manufacture of structures of airplanes and automobiles due to their superior properties such as high strength to weight ratio and excellent mechanical properties. AA7010 Al alloy is a 7xxx series alloy that is mainly used in the aircraft industries. Al 7010 is said to have high tensile strength as well as high fatigue strength. It is also stress corrosion resistant. However due to exposure to extreme marine and industrial environments, the metal may be subjected to corrosion such as exfoliation corrosion. Exfoliation is a special form of intergranular corrosion that proceeds laterally from the sites of initiation along planes parallel to the surface, generally at grain boundaries, forming corrosion products that force metal away from the body of the material, giving rise to a layered appearance. Exfoliation corrosion may cause heavy damage to aircrafts in the long run. In the present work, the test has been conducted on Al7010 samples for the determination of rate and extent of exfoliation corrosion by subjecting them to artificial corrosive conditions that mimic the actual marine and industrial environments. The samples are heat treated to T6 and T7 tempers prior subjecting them to the corrosive environments, as most of the aircraft materials are subjected to T6 and T7 tempers to enhance the properties before being put to commercial use. Samples are tested according to ASTM G34 and rated by comparing them with standard photographs. Also electrical conductivity tests on the samples have been carried out which reveals that the electrical conductivity of the Al 7010 alloy increases upon heat treatment.

  14. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  15. Mechanisms of fatigue crack retardation following single tensile overloads in powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bray, G. H.; Reynolds, A. P.; Starke, E. A., Jr.

    1992-01-01

    In ingot metallurgy (IM) alloys, the number of delay cycles following a single tensile overload typically increases from a minimum at an intermediate baseline stress intensity range, Delta-K(B), with decreasing Delta-K(B) approaching threshold and increasing Delta-K(B) approaching unstable fracture to produce a characteristic 'U' shaped curve. Two models have been proposed to explain this behavior. One model is based on the interaction between roughness and plasticity-induced closure, while the other model only utilizes plasticity-induced closure. This article examines these models, using experimental results from constant amplitude and single overload fatigue tests performed on two powder metallurgy (PM) aluminum alloys, AL-905XL and AA 8009. The results indicate that the 'U'-shaped curve is primarily due to plasticity-induced closure, and that the plasticity-induced retardation effect is through-thickness in nature, occurring in both the surface and interior regions. However, the retardation effect is greater at the surface, because the increase in plastic strain at the crack tip and overload plastic zone size are larger in the plane-stress surface regions than in the plane-strain interior regions. These results are not entirely consistent with either of the proposed models.

  16. Influence of ECAP temperature on the formability of a particle reinforced 2017 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Härtel, M.; Frint, P.; F-X Wagner, M.

    2017-03-01

    Severe plastic deformation methods are commonly used to increase the strength of materials by generating ultrafine-grained microstructures. The application of these methods to Al-Cu alloys is, however, difficult because of their poor formability at room temperature. An additional reduction of formability of such alloys occurs when ceramic particles are added as reinforcement: this often triggers shear localization and crack initiation during ECAP. This is the main reason why equal-channel angular pressing (ECAP) of aluminum matrix composites (AMCs) can generally only be performed at elevated temperatures and using ECAP dies with a channel angle larger than 90° (e.g. 120°). In this study we present a brief first report on an alternative approach for the improvement of the formability of an AMC (AA2017, 10 % SiC): ECAP at low temperatures. We show that, using a temperature of -60 °C and a channel angle of 90° (corresponding to an equivalent strain of 1.1), ECAP of the AMC can be successfully performed without material failure. The mechanical properties of the strongly deformed AMC are analyzed by tensile testing. Our results indicate that the increased formability of the AMC at low temperatures can be attributed to the suppression of unstable plastic flow that affects formability at room temperature.

  17. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  18. Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M; Truhan, John J.

    2009-01-01

    Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

  19. Micromechanical models of delamination in aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Messner, Mark Christian

    Aluminum lithium (Al-Li) alloys are lighter, stiffer, and tougher than conventional aerospace aluminum alloys. Replacing conventional aluminums with Al-Li could substantially decrease the weight and cost of aerospace structures. However, Al-Li alloys often fracture intergranularly via a mechanism called delamination cracking. While secondary delamination cracks can improve the effective toughness of a component, no current model accurately predicts the initiation and growth of intergranular cracks. Since simulations cannot incorporate delamination into a structural model, designers cannot quantify the effect of delamination cracking on a particular component. This uncertainty limits the application of Al-Li alloys. Previous experiments identify microstructural features linked to delamination. Fractography of failed surfaces indicates plastic void growth triggers intergranular failure. Furthermore, certain types of soft/stiff grain boundaries tend to localize void growth and nucleate delamination cracks. This dissertation develops a mechanism for the initiation of delamination on the microscale that accounts for these experimental observations. Microscale simulations of grain boundaries near a long primary crack explore the delamination mechanism on the mesoscale. In these simulations, a physically-based crystal plasticity (CP) model represents the constitutive response of individual grains. This CP model incorporates plastic voriticity correction terms into a standard objective stress rate integration, to accurately account for the kinematics of lattice deformation. The CP model implements slip system hardening with a modular approach to facilitate quick testing and calibration of different theories of hardening. The microscale models reveal soft/stiff grain boundaries develop elevated mean stress and plastic strain as a consequence of the mechanics of the interface. These elevated stresses and strain drive plastic void growth. The results indicate plastic void

  20. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  1. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  2. Selection of Aluminum Alloys for U.S. Army Vehicles Using Multi-Attribute Utility Analysis

    DTIC Science & Technology

    1989-01-01

    maker’s preferences, it was determined that a n aluminum alloy, 2519-T87 (conforming to MIL-A-46192) shows great promisse-for replacing the currently used...MTLTR89- AD-A204 018 AD SELECTION OF ALUMINUM ALLOYS FOR U.S. ARMY VEHICLES USING MULTI-ATTRIBUTE UTILITY ANALYSIS STEVEN A. GEDEON and CHARLES T...TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED SELECTION OF ALUMINUM ALLOYS FOR U.S. ARMY Final Report VEHICLES USING MULTI-ATTRIBUTE UTILITY

  3. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics.

    PubMed

    Jakse, N; Pasturel, A

    2014-09-07

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  4. Butt weld of aluminum alloy plates 6063 and LY12 by laser beam

    NASA Astrophysics Data System (ADS)

    Xia, Jin'an; Cheng, Zhaogu; Xu, Guoliang; Li, Xianqin

    2000-02-01

    By means of a transverse flow 5 kW CO2 laser with low- order mode laser beam output, 1 - 4 mm thick aluminum alloy plates 6063 and LY12 were successfully butt welded. The result shows that the butt weldability and the weld quality of the aluminum alloy plates are mainly dependent on incident laser power density, laser beam defocused distance and shielding gas. The relationship between the weld quality of the aluminum alloy plates and the welding parameters is discussed. The macrostructure and microstructure of the welded seams are analyzed. The mechanical properties of the welded seams are discussed.

  5. Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

    NASA Astrophysics Data System (ADS)

    Holroyd, N. J. Henry; Scamans, G. M.

    2013-03-01

    Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack ("pop-in" vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies ( E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (<0.2 wt pct) are typically ranging from

  6. Interdiffusion and reaction between pure magnesium and aluminum alloy 6061

    SciTech Connect

    Kammerer, C. C.; Fu, Mian; Zhou, Le; Keiser, Jr., Dennis D.; Sohn, Yong Ho

    2015-06-01

    Using solid-to-solid couples investigation, this study characterized the reaction products evolved and quantified the diffusion kinetics when pure Mg bonded to AA6061 is subjected to thermal treatment at 300°C for 720 hours, 350°C for 360 hours, and 400°C for 240 hours. Characterization techniques include optical microscopy, scanning electron microscopy with X-ray energy dispersive spectroscopy, and transmission electron microscopy. Parabolic growth constants were determined for γ-Mg17Al12, β-Mg2Al3, and the elusive ε-phase. Similarly, the average effective interdiffusion coefficients of major constituents were calculated for Mg (ss), γ-Mg17Al12, β-Mg2Al3, and AA6061. The activation energies and pre-exponential factors for both parabolic growth constant and average effective interdiffusion coefficients were computed using the Arrhenius relationship. The activation energy for growth of γ-Mg17Al12 was significantly higher than that for β-Mg2Al3 while the activation energy for interdiffusion of γ-Mg17Al12 was only slightly higher than that for β-Mg2Al3. As a result, comparisons are made between the results of this study and those of diffusion studies between pure Mg and pure Al to examine the influence of alloying additions in AA6061.

  7. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE PAGES

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  8. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    SciTech Connect

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtained when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.

  9. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  10. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  11. Evaluation of the StressWave Cold Working (SWCW) Process on High-Strength Aluminum Alloys for Aerospace

    DTIC Science & Technology

    2009-02-01

    Aluminum Alloys, Fatigue Life Enhancement, Short Transverse Cracking, 70S5 Aluminum , 7050 Aluminum , Spectrum Crack Growth, Compressive Residual...to better understand the mechanisms that produce cracks at holes in certain high- strength aluminum alloys (2297/2397-T87 and 7050 -T7451) when using...consisted of room temperature constant amplitude fatigue testing on open hole zero load transfer coupons made from 7085 and 7050 aluminum plate, in the

  12. Threshold for fatigue macrocrack propagation in some aluminum alloys

    NASA Astrophysics Data System (ADS)

    McKittrick, J.; Liaw, P. K.; Kwun, S. I.; Fine, M. E.

    1981-08-01

    Measurement of the threshold for fatigue macrocrack propagation, ΔKo, in a number of aluminum alloys has shown an increase with grain size and decrease with increase in strength as with steels. The results are not primarily due to environmental enhancement of fatigue crack growth because an even larger variation in ΔKo with microstructural change is noted at 77 K than at 300 K. In particular, ΔKo of high purity 2124-T4 increases much more on cooling from 300 to 77 K than does ΔKo of 2024-T4. It is suggested that ΔKo is determined by the stress necessary to operate a dislocation source near the crack tip. A Frank-Read type source is proposed for 2024-T4 with constituent particles acting as pinning points while double cross-slip, a thermally activated process, is proposed for the source in high purity 2124-T4.

  13. Mechanisms of pressure filtration of liquid aluminum alloys

    NASA Astrophysics Data System (ADS)

    Cao, X.

    2006-12-01

    The Prefil Footprinter, a portable pressure filtration instrument, is usually used to detect the quality of liquid aluminum alloys. However, no investigations have ever been done to calculate the cake resistance to date. Based on the identification and classification of flow behavior using the first derivative method for filtrate mass vs filtration time curves, conventional filtration equations are successfully employed to understand the filtration behaviors. From the analyses of the variations of cake resistance with filtration time, the filtration mechanisms are discussed in detail over the different filtration stages. During the steady stage, either incompressible or compressible cake mode is the main mechanism. At the initial and terminal transient stages, however, deep-bed filtration, complete straining, and solidification clogging may appear. Solid inclusions in liquid metal have significant influence on the cake structures and properties. Some important issues related to the heterogeneity of filter media and test methodology are highlighted in this work.

  14. Small-crack effects in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  15. Recent Developments in the Formability of Aluminum Alloys

    SciTech Connect

    Banabic, Dorel; Paraianu, Liana; Jurco, Paul; Cazacu, Oana

    2005-08-05

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program.

  16. Laser-initiated combustion studies of selected aluminum, copper, iron, and nickel alloys

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Clark, A. F.

    1981-01-01

    The results of combustion studies at atmospheric pressure on ten metal alloys are presented. The alloys studied were aluminum alloys 1100, 2219, 6061, and tensile-50; 304, 347 and 21-6-9 stainless steel; inconel 600; beryllium copper and a bronze. It was found that once ignition was achieved all alloys would generally burn to completion. The overall combustion process appears to obey a first order rate process. Preliminary conclusions are presented along with recommendations for future work.

  17. Factors Influencing Fracture Toughness and Other Properties of Aluminum- Lithium Alloys

    DTIC Science & Technology

    1979-06-14

    tramp elements sodium, potassium and sulfuir presumably segregated in the grain boundaries. Furthermore, the hydrogen content of the alloys was also shown...tion of these elements at grain boundaries is worth noting. Furthermore, the hydrogen content of the Al-Li and A1-Mg-Li alloys is significantly higher...than the hydrogen content of typical commerical high strength aluminum alloys. Fatigue Crack Growth (FCG) The FCG performance of the Al-Cu-Li alloy

  18. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.

    2014-05-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  19. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    SciTech Connect

    Shen, Junjun Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  20. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.

    PubMed

    Løvik, Amund N; Modaresi, Roja; Müller, Daniel B

    2014-04-15

    Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (vehicle-component-alloy-element model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements.

  1. High-temperature corrosion of iron-aluminum and iron-aluminum-yttrium alloys

    NASA Astrophysics Data System (ADS)

    Insoo, Kim

    The high-temperature corrosion behavior of Fe3Al alloy has been investigated by conducting two studies: (1) corrosion of Fe 3Al and Fe3Al-Y alloys in oxidizing atmosphere and (2) corrosion of Fe3Al in mixed chlorine/oxygen environments. In the first study, oxidation of the two alloys, Fe-14.3 wt% Al and Fe-14.1 wt% Al-0.3 wt% Y, was carried out in the temperature range of 800 to 1100°C to investigate the general oxidation behavior of Fe3Al and the effect of yttrium on the oxidation of Fe3Al in terms of oxidation kinetics, oxide scale adhesion and microstructure. At lower temperatures (<1000°C), the oxidation rate of the two alloys was nearly identical, and the parabolic rate constant obtained as a function of temperature was Kp = 5128 exp[--39500 (cal/mol)/RT] mg2/cm4 h. At higher temperatures, however, yttrium-added Fe3Al alloy exhibited lower oxidation rate and much more improved oxide adhesion. The lower oxidation rate observed in Fe3Al-Y alloy seems to be due to the followings: (1) a decrease in aluminum diffusion through alumina scale and (2) modification of the scale growth mechanism from simultaneous countercurrent diffusion of aluminum and oxygen to predominant inward diffusion of oxygen, which generates less growth stress and thus prevents the formation of fast diffusion paths such as microcracks. The adhesion improvement of alumina scale formed on the Fe3Al-Y was attributed to the modification of alumina growth mechanism by the addition of Y to the Fe3Al alloy. The change of growth mechanism leads to the formation of pegs, decrease of the oxide growth stress, and decrease of voids formation, which enhances the adhesion of alumina scale to the Fe3Al alloy. The second study has focused on the corrosion of Fe3Al in the temperature range of 600--800°C in Cl2-Ar gas mixtures containing traces of oxygen as an impurity. Weight gain was observed during the corrosion of Fe3Al at 600°C in 0.25% Cl2-Ar, which is due to the formation of Fe2O3, while continuous

  2. Fatigue properties of as-welded AA6005 and AA6082 aluminium alloys in T1 and T5 temper condition

    SciTech Connect

    Ranes, M.; Kluken, A.O.; Midling, O.T.

    1996-12-31

    The present investigation was undertaken to determine the as-welded fatigue properties of AA6005 and AA6082 aluminium alloys in the T1 and T5 temper conditions. Extruded flat bars of the base materials were welded by means of the Metal Inert Gas (MIG), Friction Stir and Plasma-keyhole techniques. The latter technique was only employed for alloy AA6005. The weldments were subsequently fatigue tested at a load ratio of 0.5. The results revealed that the friction stir welds had fatigue properties superior to both the MIG and Plasma-keyhole welds. For alloy AA6005 the fatigue properties of the friction stir weld was close to the base material properties. The shortest fatigue life was exhibited by the MIG welds. The fatigue strength of these weldments appear to be affected by the base metal temper condition. For this reason, MIG welds on alloy AA6082 should be performed in the T5 temper condition, while alloy AA6005 should be welded in the T1 temper condition. Plasma-keyhole welds should be performed on T1 tempered material rather than on T5 tempered material. Repair welding of MIG welds on the T1 tempered base material resulted in improved fatigue properties of AA6082 weldments, while the fatigue strength of AA6005 weldments remained unaffected. The fatigue properties of MIG welds in alloy AA6082 correspond well with the static strength properties.

  3. Fretting of Nickel-Chromium-Aluminum Alloys at Temperatures to 816 C

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    A series of four nickel-based alloys containing 10 percent and 20 percent chromium in combination with 2 percent and 5 percent aluminum were fretted in dry air at temperatures to 816 C. At all temperatures, the alloys showed far less fretting wear than did high-purity nickel. This was attributed to the formation of protective oxide films on the alloys, the result of the selective oxidation of the alloy constituents. Increasing the aluminum concentration reduced fretting wear at all temperatures. Increasing the chromium concentration from 10 percent to 20 percent resulted in decreased fretting wear at 23 and 540 C, but increased fretting wear at 650 and 816 C.

  4. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  5. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  6. Thermal cycling of silicon carbide whisker/aluminum alloy composite

    SciTech Connect

    Patterson, W.G.

    1988-01-01

    There are many aspects of the mechanical behavior of whisker reinforced alloys that are not well understood. The effects of thermal fatigue, for example, have been extensively studied for continuous-fiber composites but not for whisker composites. A model was developed here for thermal-fatigue damage in whisker-reinforced metal-matrix composites, taking into account both metallurgical transformations and thermal-stress damage. Also, thermal-cycling tests were performed on 2124-T6 aluminum alloy reinforced with a 15% volume fraction of SiC whiskers. The microstructure and mechanical properties of the composite were evaluate before and thermal cycling. Unlike metal-matrix composites with continuous fibers, the only thermal-stress damage sustained by SiC{sub w}/Al were changes in dimensions as large as 7.4%. There were no indications of matrix or fiber cracking, void formation, interfacial debonding, or concentrated plastic flow. Thermal-stress deformation appears to have been balanced by recovery and recrystallization. The effects of thermal cycling on composite strength were determined to be primarily due to overaging of matrix precipitates. The whiskers accelerated overaging, and may have increased the extent to which overaging could occur.

  7. Modeling of Microporosity Size Distribution in Aluminum Alloy A356

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Cockcroft, Steve; Zhu, Jindong; Reilly, Carl

    2011-12-01

    Porosity is one of the most common defects to degrade the mechanical properties of aluminum alloys. Prediction of pore size, therefore, is critical to optimize the quality of castings. Moreover, to the design engineer, knowledge of the inherent pore population in a casting is essential to avoid potential fatigue failure of the component. In this work, the size distribution of the porosity was modeled based on the assumptions that the hydrogen pores are nucleated heterogeneously and that the nucleation site distribution is a Gaussian function of hydrogen supersaturation in the melt. The pore growth is simulated as a hydrogen-diffusion-controlled process, which is driven by the hydrogen concentration gradient at the pore liquid interface. Directionally solidified A356 (Al-7Si-0.3Mg) alloy castings were used to evaluate the predictive capability of the proposed model. The cast pore volume fraction and size distributions were measured using X-ray microtomography (XMT). Comparison of the experimental and simulation results showed that good agreement could be obtained in terms of both porosity fraction and size distribution. The model can effectively evaluate the effect of hydrogen content, heterogeneous pore nucleation population, cooling conditions, and degassing time on microporosity formation.

  8. A Summary of Results of Various Investigations of the Mechanical Properties of Aluminum Alloys at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Hartmann, E C; Sharp, W H

    1942-01-01

    The available sources of data on the mechanical properties of aluminum alloys at low temperatures are listed and a summary of the material to be found in each source is given. There is included a discussion of the results of recent tests of aluminum alloys at low temperatures made at the Aluminum Research Laboratories.

  9. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    SciTech Connect

    Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging

  10. Microstructure of aluminum-iron alloys subjected to severe plastic deformation

    SciTech Connect

    Senkov, O.N.; Froes, F.H.; Stolyarov, V.V.; Valiev, R.Z.; Liu, J.

    1998-04-14

    The present paper describes detailed experiments on structure and phase characterization carried out on aluminum-iron alloys after intense torsion straining. The equilibrium solubility of iron in the aluminum lattice at room temperature has been reported to be 0.025 at.%. Alloying of aluminum with iron can increase the high-temperature strength due to a dispersion of second-phase particles. This effect can be enhanced by increasing the solid solubility extension of iron in the aluminum matrix and producing non-equilibrium phases by techniques such as RS, MA or even a laser treatment. In the present work, the severe plastic deformation approach has been used to extend the iron solubility in aluminum and to produce a nano-grained structure in several Al-Fe alloys.

  11. Minimum quantity lubrication machining of aluminum and magnesium alloys

    NASA Astrophysics Data System (ADS)

    Bhowmick, Sukanta

    2011-12-01

    The use of minimum quantity lubrication (MQL) machining, i.e. drilling and tapping of aluminum and magnesium alloys using very low quantities of cutting fluids was studied and the MQL machining performance was compared to dry and conventional flooded conditions. An experimental drilling station with an MQL system was built to measure torque and thrust force responses. Uncoated and diamond-like carbon (DLC) coated HSS drills were tested against 319 Al and AZ91 alloys using 10--50 ml/h of distilled water (H 2O-MQL) and a fatty acid based MQL agent (FA-MQL). The results indicated that H2O-MQL used in conjunction with non-hydrogenated DLC (NH-DLC) coatings reduced the average torque and thrust-force compared to dry cutting and achieved a performance comparable with conventional flooded drilling. At least 103 holes could be drilled using NH-DLC in H2O-MQL and uncoated HSS in FA-MQL in drilling of both 319 Al and AZ91. MQL drilling and tapping provided a stable machining performance, which was evident from the uniform torque and force patterns and also resulted in desirable hole surface, thread quality and chip segments. The maximum temperature generated in the workpiece during MQL machining was lower than that observed in dry drilling and tapping, and comparable to flooded conditions. The mechanical properties of the material adjacent to drilled holes, as evaluated through plastic strain and hardness measurements, revealed a notable softening in case of dry drilling, with magnesium alloys exhibiting a recrystallized grain zone, but not for MQL drilling. Softened aluminum and magnesium promoted adhesion to the tools resulted built-up edge formation and consequently high torques and thrust-forces were generated. NH-DLC coatings' low COF in H 2O-MQL against 319 Al (0.10) and AZ91 (0.12) compared to uncoated HSS (0.63 and 0.65) limited the temperature increase during NH-DLC in H2 O-MQL drilling and hence both torques and thrust forces were effectively reduced.

  12. The mechanism of stress-corrosion cracking in 7075 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Jacobs, A. J.

    1970-01-01

    Various aspects of stress-corrosion cracking in 7075 aluminum alloy are discussed. A model is proposed in which the continuous anodic path along which the metal is preferentially attacked consists of two phases which alternate as anodes.

  13. Cryogenic Fracture Toughness Evaluation of an Investment Cast Aluminum-Beryllium Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne; McGill, Preston

    2006-01-01

    This document is a viewgraph presentation that details the fracture toughness of Aluminum-Beryllium Alloy for use in structures at cryogenic temperatures. Graphs and charts are presented in the presentation

  14. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  15. Study to determine peening stress profile of rod peened aluminum structural alloys versus shot peened material

    NASA Technical Reports Server (NTRS)

    Rosas, R. E.; Calfin, B. G.

    1976-01-01

    The objective of this program was to determine the peening stress profiles of rod peened aluminum structural alloys versus shot peened material to define the effective depth of the compressed surface layer.

  16. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOEpatents

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  17. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-17

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  18. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-01

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  19. Study of Henna (Lawsonia inermis) as Natural Corrosion Inhibitor for Aluminum Alloy in Seawater

    NASA Astrophysics Data System (ADS)

    Nik, W. B. Wan; Zulkifli, F.; Sulaiman, O.; Samo, K. B.; Rosliza, R.

    2012-09-01

    Commercial henna (Lawsonia inermis) was investigated to inhibit the corrosion of aluminum alloy through immersion in seawater. The aluminum alloy (5083) was prepared in size of 25mm × 25mm × 3mm. The immersion test was conducted in seawater with different concentration of henna, 100ppm, 300ppm, 500ppm for duration of 60 days. Four characterizations were performed in this study which was weight loss study, Fourier Transform Infrared (FTIR), Electrochemical Impedance Spectroscopy (EIS) and adsorption isotherm. The results indicated that henna has major constituents of lawsone which contributed to the chemisorptions or adsorption process by forming an isolation layers on the aluminum alloy surface which follows the Langmuir adsorption isotherm. It was found that the protection layer attached on metal was not permanent and precipitation occurred as the time increases. The highest inhibition efficiency was found at 88% (500ppm). This research found that henna is an excellent natural inhibitor for aluminum alloy in seawater.

  20. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    DTIC Science & Technology

    2010-07-01

    FSW behavior of a prototypical solution-strengthened and strain-hardened aluminum alloy, AA5083-H131, is modeled using a fully coupled thermo...is followed by a computational investigation in which FSW behavior of a prototypical solution-strengthened and strain-hardened aluminum alloy, AA5083...provided. This is followed by a computational investigation in which FSW behavior of a prototypical solution-strengthened and strain-hardened aluminum

  1. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  2. Review and Study of Physics Driven Pitting Corrosion Modeling in 2024-T3 Aluminum Alloys (Postprint)

    DTIC Science & Technology

    2015-05-01

    AFRL-RX-WP-JA-2015-0218 REVIEW AND STUDY OF PHYSICS DRIVEN PITTING CORROSION MODELING IN 2024-T3 ALUMINUM ALLOYS (POSTPRINT) Lingyu...2014 – 1 April 2015 4. TITLE AND SUBTITLE REVIEW AND STUDY OF PHYSICS DRIVEN PITTING CORROSION MODELING IN 2024-T3 ALUMINUM ALLOYS (POSTPRINT) 5a...12.2086274. 14. ABSTRACT Material degradation due to corrosion and corrosion fatigue has been recognized to significantly affect the airworthiness of

  3. Effect of Chromate and Chromate-Free Organic Coatings on Corrosion Fatigue of an Aluminum Alloy

    DTIC Science & Technology

    2012-02-20

    the vicinity. Bentonite is hydrated alumino silicate clay primarily composed of the smectite class mineral montmorillonite [73]. The ideal formula for...used as inhibitors. It was studied also bentonite clay , which contains 99% of montmorillonite. The reason of choosing bentonite as aluminum alloy...natural bentonite , natural zeolite and Ca-ion exchanged and Zn-ion exchanged zeolites were studied as aluminum alloy corrosion inhibitors in organic

  4. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  5. Fretting Wear-Resistant, Micro-Arc Oxidation Coatings for Aluminum and Titanium Alloy Bearings (Preprint)

    DTIC Science & Technology

    2007-03-01

    AFRL-ML-WP-TP-2007-443 FRETTING WEAR-RESISTANT, MICRO-ARC OXIDATION COATINGS FOR ALUMINUM AND TITANIUM ALLOY BEARINGS (PREPRINT) K.J. Choppy...COATINGS FOR ALUMINUM AND TITANIUM ALLOY BEARINGS (PREPRINT) 5c. PROGRAM ELEMENT NUMBER 65502F 5d. PROJECT NUMBER 3005 5e. TASK NUMBER ML...PERFORMING ORGANIZATION Infoscitex Corporation 303 Bear Hill Road Waltham, MA 02451 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S

  6. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    PubMed Central

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-01-01

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation and minimum reduction in the thickness of the tube. PMID:28793629

  7. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.

    PubMed

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-23

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  8. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens.

    PubMed

    Tsujino, Jiromaru; Hidai, Kazuaki; Hasegawa, Atsushi; Kanai, Ryoichi; Matsuura, Hisanori; Matsushima, Kaoru; Ueoka, Tetsugi

    2002-05-01

    Welding characteristics of aluminum, aluminum alloy and stainless steel plate specimens of 6.0 mm thickness by a 15 kHz ultrasonic butt welding system were studied. There are no detailed welding condition data of these specimens although the joining of these materials are required due to anticorrosive and high strength characteristics for not only large specimens but small electronic parts especially. These specimens of 6.0 mm thickness were welded end to end using a 15 kHz ultrasonic butt welding equipment with a vibration source using eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction thyristor power amplifier. The stainless steel plate specimens electrolytically polished were joined with welding strength almost equal to the material strength under rather large vibration amplitude of 25 microm (peak-to-zero value), static pressure 70 MPa and welding time of 1.0-3.0 s. The hardness of stainless steel specimen adjacent to a welding surface increased about 20% by ultrasonic vibration.

  9. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  10. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  11. Laser fusing of HVOF thermal sprayed alloy 625 on nickel-aluminum bronze

    SciTech Connect

    Brenna, R.T.; Pugh, J.L.; Denney, P.E.

    1994-12-31

    A preliminary study has been conducted to determine the feasibility of laser fusing alloy 625 onto nickel-aluminum-bronze base metal. Laser fusing was performed by melting a pre-coated surface of alloy 625 that had been applied by the high velocity oxyfuel (HVOF) thermal spray process. The laser fusing was successful in producing a metallurigical bond between alloy 625 and the substrate. Minor modification to the heat-affected zone of the base metal was observed by microhardness measurements, and defect-free interfaces were produced between alloy 625 and nickel-aluminum-bronze by the process. The laser is a high energy density source that can be used for precise thermal processing of materials including surface modification. Laser fusing is the full or partial melting of a coating material that has been previously applied in some fashion to the substrate. Thermal spray coating of nickel-aluminum-bronze material with alloy 625 was conducted at the David Taylor Research Center. Nickel-aluminum-bronze specimens 2 x 3-in. by 1/2-in. thick were coated with alloy 25 utilizing the HVOF equipment. Coating thicknesses of approximately 0.014-in. (0.3 mm) were produced for subsequent laser fusing experiments. A preliminary study has been conducted to determine the feasibility of laser fusing a HVOF thermal sprayed alloy 625 coating onto nickel-aluminum-bronze base metal. Conclusions of this investigation were as follows: (1) Laser fusing was successful in producing a metallurgical bond between HVOF thermal sprayed alloy 625 and the nickel-aluminum-bronze. (2) Only minor microstructural modification to the heat-affected zone of the base metal ws observed by microhardness measurements. (3) Defect-free interfaces were produced between thermal sprayed alloy 625 and nickel-aluminum-bronze by laser fusing.

  12. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  13. Oxidation resistance of aluminum-coated Fe-20Cr alloys containing rare earths or yttrium

    SciTech Connect

    Sigler, D.R. )

    1993-10-01

    Aluminum-coated Fe-20Cr (rare earth or yttrium) alloy foils were developed with oxidation resistance equivalent or superior to Fe-20Cr-5Al (rare earth or yttrium) alloy foils. The coated foils were made by dipping Fe-20Cr sheet into a salt-covered aluminum bath and then rolling the sheet to foil. Oxidation resistance of the coated foil was enhanced by adding rare earths or yttrium to the Fe-20Cr substrate alloys to insure oxide adherence. Test results indicate that only sufficient addition to tie up sulfur as a stable sulfide is needed in the Fe-20Cr alloy. Aluminum-coated foils show lower oxide growth rates than similar Fe-Cr-Al alloys, most likely the result of fewer impurities (particularly Fe) is the coated foils' growing oxide scale. 31 refs., 18 figs., 2 tabs.

  14. Numerical simulation of different pulse width of long pulsed laser on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Jin, Guangyong; Zhang, Wei; Chen, Gui-bo; Bi, Juan

    2015-03-01

    Established a physical model to simulate the melt ejection induced by long pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. This simulation is based on the interaction between single pulsed laser with different pulse width and different peak energy and aluminum alloy material. By comparing the theoretical simulation data and the actual test data, we discover that: the theoretical simulation curve is well consistent with the actual experimental curve, this two-dimensional model is with high reliability; when the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature at the center of aluminum alloy surface reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole appears on the surface of the target, an increment of the keyhole, the maximum temperature at the center of aluminum alloy surface gradually moves inwardly. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  15. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys

    SciTech Connect

    Chen, Y.C.; Feng, J.C.; Liu, H.J.

    2009-06-15

    Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys was characterized by transmission electron microscopy. In the weld nugget zone and the thermo-mechanically affected zone some metastable precipitates overaged to equilibrium phase while others solutionized into the aluminum solid solution. In the heat-affected zone the precipitates coarsened.

  16. Brazing process using'al-Si filler alloy reliably bonds aluminum parts

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Johnson, W. R.

    1966-01-01

    Brazing process employs an aluminum-silicon filler alloy for diffusion bonding of aluminum parts in a vacuum or inert gas atmosphere. This process is carried out at temperatures substantially below those required in conventional process and produces bonds of greater strength and reliability.

  17. Electrochemical behavior of anodized AA6063-T6 alloys affected by matrix structures

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Sen; Shih, Teng-Shih; Wu, Chen-En

    2013-01-01

    AA 6063 alloys were cold-rolled (CR) either before or after solution treatment (S) and then different samples were artificially aged (T6) to obtain different samples (CRST6 and SCRT6). The highest dislocation density was observed in the SCRT6 sample which also showed the lowest particle count among the three samples; ST6, CRST6 and SCRT6. Subsequently, all samples were anodized in a 15 wt% sulfuric acid solution for different time spans to obtain anodic aluminum oxide (AAO) films. The anodized samples were further analyzed with X-ray Photoelectron Spectroscopy (XPS) analysis. We determined that the constituent phases in the AAO film were composed of hydrated amorphous alumina, hydrated oxide (Al(OH)3) and oxyhydroxide (AlOOH) phases together with some silicon-containing particles trapped in the films on all samples. In the electrochemical test, the silicon-containing particles and hydrated Al(OH)3 oxide that existed at the electrolyte/film (e/f) interface were found to inversely influence the corrosion resistance of the anodized samples.

  18. Wear of aluminum and hypoeutectic aluminum-silicon alloys in boundary-lubricated pin-on disk sliding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Brainard, W. A.

    1979-01-01

    The friction and wear of pure aluminum and a number of hypoeutectic aluminum-silicon alloys (with 3 to 12 wt %Si) were studied with a pin-on-disk apparatus. The contacts were lubricated with mineral oil and sliding was in the boundary-lubrication regime at 2.6 cm/sec. Surfaces were analyzed with photomicrographs, scanning electron microscopy, X-ray dispersive analysis, and diamond pyramid hardness measurements. There were two wear regimes for the alloys - high and low - whereas pure aluminum exhibited a high wear rate throughout the test period. Wear rate decreased and the transition stress from high to low wear increased with increasing hardness. There was no correlation between friction coefficient and hardness. A least squares curve fit indicated a wear-rate dependence greater than the inverse first power of hardness. The lower wear rates of the alloys may be due to the composites of silicon platelets in aluminum resulting in increased hardness and thus impairing the shear of the aluminum.

  19. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    SciTech Connect

    Zaitseva, L.V.; Romaniv, V.I.

    1984-05-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid.

  20. Lightweight materials for automotive applications/topic 2: Wear resistant aluminum alloy

    SciTech Connect

    Viswanathan, S.

    1997-01-31

    The replacement of cast iron by aluminum alloys in automotive engine blocks and heads represents a significant weight reduction in automobiles. The primary hurdle to the widespread use of aluminum alloy engine blocks in the North American automobile industry was high cost. The lack of wear resistance in most aluminum alloys added to manufacturing cost, since expensive procedures such as the incorporation of cast iron liners or special coatings were needed to achieve the required wear properties. The project targeted the development of a wear resistant aluminum alloy, as well as tools and the knowledge-base required to design the casting process, to allow it to be cast economically into engine blocks without the use of a cast iron liner or special coating, thereby providing benefits to both the material and manufacturing aspects of the process. The project combined the alloy development, wear and microstructural characterization, and casting modeling capabilities of the laboratory with the partners extensive alloy and casting process development and manufacturing experience to develop a suitable wear resistant aluminum alloy and casting process.

  1. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys.

    PubMed

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-05-08

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg₂Al₃. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  2. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    PubMed Central

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-01-01

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research. PMID:28788646

  3. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  4. Structure-Property Relationships of Solid State Additive Manufactured Aluminum Alloy 2219 and Inconel 625

    NASA Astrophysics Data System (ADS)

    Rivera Almeyda, Oscar G.

    In this investigation, the processing-structure-property relations are correlated for solid state additively manufactured (SSAM) Inconel 625 (IN 625) and a SSAM aluminum alloy 2219 (AA2219). This is the first research of these materials processed by a new SSAM method called additive friction stir (AFS). The AFS process results in a refined grain structure by extruding solid rod through a rotating tool generating heat and severe plastic deformation. In the case of the AFS IN625, the IN625 alloy is known for exhibiting oxidation resistance and temperature mechanical stability, including strength and ductility. This study is the first to investigate the beneficial grain refinement and densification produced by AFS in IN625 that results in advantageous mechanical properties (YS, UTS, epsilonf) at both quasi-static and high strain rate. Electron Backscatter Diffraction (EBSD) observed dynamic recrystallization and grain refinement during the layer deposition in the AFS specimens, where the results identified fine equiaxed grain structures formed by dynamic recrystallization (DRX) with even finer grain structures forming at the layer interfaces. The EBSD quantified grains as fine as 0.27 microns in these interface regions while the average grain size was approximately 1 micron. Additionally, this is the first study to report on the strain rate dependence of AFS IN625 through quasi-static (QS) (0.001/s) and high strain rate (HR) (1500/s) tensile experiments using a servo hydraulic frame and a direct tension-Kolsky bar, respectively, which captured both yield and ultimate tensile strengths increasing as strain rate increased. Fractography performed on specimens showed a ductile fracture surface on both QS, and HR. Alternatively, the other AFS material system investigated in this study, AA2219, is mostly used for aerospace applications, specifically for rocket fuel tanks. EBSD was performed in the cross-section of the AA2219, also exhibiting DRX with equiaxed microstructure

  5. Development of nanostructured coatings for protecting the surface of aluminum alloys against corrosion and ice accretion

    NASA Astrophysics Data System (ADS)

    Farhadi, Shahram

    Ice and wet snow accretion on outdoor structures is a severe challenge for cold climate countries. A variety of de-icing and anti-icing techniques have been developed so far to counter this problem. Passive approaches such as anti-icing or icephobic coatings that inhibit or retard ice accumulation on the surfaces are gaining in popularity. Metal corrosion should also be taken into account as metallic substrates are subject to corrosion problems when placed in humid or aggressive environments. Development of any ice-releasing coatings on aluminum structures, as they must be durable enough, is therefore closely related to anti-corrosive protection of that metal. Accordingly, series of experiments have been carried out to combine reduced ice adhesion and improved corrosion resistance on flat AA2024 substrates via thin films of single and double layer alkyl-terminated SAMs coatings. More precisely, alkyl-terminated aluminum substrates were prepared by depositing layer(s) of 18C-SAMs on BTSE-grafted AA2024 or mirror-polished AA2024 surfaces. This alloy is among the most widely used aluminum alloys in transportation systems (including aircraft), the military, etc. The stability of the coatings in an aggressive environment, their overall ice-repellent performance as well as their corrosion resistance was systematically studied. The stability of one-layer and two-layer coatings in different media was tested by means of CA measurements, demonstrating gradual loss of the hydrophobic property after ~1100-h-long immersion in water, associated by decrease in water CA. Surface corrosion was observed in all cases, except that the double-layer coating system provided improved anti-corrosive protection. All single layer coatings showed initial shear stress of ice detachment values of ~1.68 to 2 times lower than as-received aluminum surfaces and about ~1.22 to 1.5 times lower than those observed on mirror-polished surfaces. These values gradually increased after as many as 5 to 9

  6. Intermediate layer, microstructure and mechanical properties of aluminum alloy/stainless steel butt joint using laser-MIG hybrid welding-brazing method

    NASA Astrophysics Data System (ADS)

    Zhu, Zongtao; Wan, Zhandong; Li, Yuanxing; Xue, Junyu; Hui, Chen

    2017-07-01

    Butt joining of AA6061 aluminum (Al) alloy and 304 stainless steel of 2-mm thickness was conducted using laser-MIG hybrid welding-brazing method with ER4043 filler metal. To promote the mechanical properties of the welding-brazing joints, two kinds of intermediate layers (Al-Si-Mg alloy and Ag-based alloy) are used to adjust the microstructures of the joints. The brazing interface and the tensile strength of the joints were characterized. The results showed that the brazing interface between Al alloy and stainless steel consisted of double layers of Fe2Al5 (near stainless steel) and Fe4Al13 intermetallic compounds (IMCs) with a total thickness of 3.7 μm, when using Al-Si-Mg alloy as the intermediate layer. The brazing interface of the joints using Ag-based alloy as intermediate layer also consists of double IMC layers, but the first layer near stainless steel was FeAl2 and the total thickness of these two IMC layers decreased to 3.1 μm. The tensile strength of the joints using Al-Si-Mg alloy as the intermediate layer was promoted to 149 MPa, which was 63 MPa higher than that of the joints using Al-Si-Mg alloy as the intermediate layer. The fractures occurred in the brazing interface between Al alloy and stainless steel.

  7. Measurement and control of ice adhesion to aluminum 6061 alloy

    NASA Astrophysics Data System (ADS)

    Archer, Paul; Gupta, Vijay

    1998-10-01

    A new experimental strategy for measuring the tensile strength of ice coatings to structural surfaces is presented. In this experiment, a laser-induced compressive stress pulse travels through a 1 mm-thick substrate disc that has a layer of ice grown on its front surface. The compressive stress pulse reflects into a tensile wave from the free surface of the ice and pulls the iceinterface apart, given a sufficient amplitude. The interface strength was calculated by recording the free surface velocity of an Al substrate using a Doppler interferometer and calculating the stress at the interface using a finite-difference elastic wave mechanics simulation with the free surface velocity as an input. The test procedure was used to study ice adhesion on 6061 aluminum alloy sheets. It was found that the adhesion strength of ice to unpolished aluminum substrates was 274 MPa at -10°C. This value decreased with temperature, down to 179 MPa at -40°C. Interestingly, this decrement in the tensile strength could be directly related to the existence of a liquid-like layer that is known to exist on the surface of solid ice till -30°C. The interface strength was also shown to decrease by polishing the Al substrate surface or by adding thin polymer coatings on the unpolished Al substrate. The sensitivity of the technique to such microstructural changes in the interfacial region is indicative of the experiments ability to provide basic adhesion data, which in turn, can be used to solve the deicing problem from a fundamental standpoint. 1998 Elsevier Science Ltd.

  8. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  9. Multiscale Modeling of Damage Processes in Aluminum Alloys: Grain-Scale Mechanisms

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Veilleux, M. G.; Bozek, J. E.; Glaessgen, E. H.; Ingraffea, A. R.

    2008-01-01

    This paper has two goals related to the development of a physically-grounded methodology for modeling the initial stages of fatigue crack growth in an aluminum alloy. The aluminum alloy, AA 7075-T651, is susceptible to fatigue cracking that nucleates from cracked second phase iron-bearing particles. Thus, the first goal of the paper is to validate an existing framework for the prediction of the conditions under which the particles crack. The observed statistics of particle cracking (defined as incubation for this alloy) must be accurately predicted to simulate the stochastic nature of microstructurally small fatigue crack (MSFC) formation. Also, only by simulating incubation of damage in a statistically accurate manner can subsequent stages of crack growth be accurately predicted. To maintain fidelity and computational efficiency, a filtering procedure was developed to eliminate particles that were unlikely to crack. The particle filter considers the distributions of particle sizes and shapes, grain texture, and the configuration of the surrounding grains. This filter helps substantially reduce the number of particles that need to be included in the microstructural models and forms the basis of the future work on the subsequent stages of MSFC, crack nucleation and microstructurally small crack propagation. A physics-based approach to simulating fracture should ultimately begin at nanometer length scale, in which atomistic simulation is used to predict the fundamental damage mechanisms of MSFC. These mechanisms include dislocation formation and interaction, interstitial void formation, and atomic diffusion. However, atomistic simulations quickly become computationally intractable as the system size increases, especially when directly linking to the already large microstructural models. Therefore, the second goal of this paper is to propose a method that will incorporate atomistic simulation and small-scale experimental characterization into the existing multiscale

  10. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    SciTech Connect

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi

    2015-01-15

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  11. A method for studying weld fusion boundary microstructure evolution in aluminum alloys

    SciTech Connect

    Kostrivas, A.; Lippold, J.C.

    2000-01-01

    Aluminum alloys may exhibit a variety of microstructures within the fusion zone adjacent to the fusion boundary. Under conventional weld solidification conditions, epitaxial nucleation occurs off grains in the heat-affected zone (HAZ) and solidification proceeds along preferred growth directions. In some aluminum alloys, such as those containing Li and Zr, a nondendritic equiaxed grain zone (EQZ) has been observed along the fusion boundary that does not nucleate epitaxially from the HAZ substrate. The EQZ has been the subject of considerable study because of its susceptibility to cracking during initial fabrication and repair. The motivation of this investigation was to develop a technique that would allow the nature and evolution of the fusion boundary to be studied under controlled thermal conditions. A melting technique was developed to simulate the fusion boundary of aluminum alloys using the Gleeble{reg{underscore}sign} thermal simulator. Using a steel sleeve to contain the aluminum, samples wee heated to incremental temperatures above the solidus temperature of a number of alloys. In Alloy 2195, a 4Cu-1Li alloy, an EQZ could be formed by heating in the temperature range approximately from 630--640 C. At temperatures above 640 C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in Alloys 5454-H34, 6061-T6 and 2219-T8. Nucleation in these alloys was observed to be epitaxial. Details of the technique and its effectiveness for performing controlled melting experiments at incremental temperatures above the solidus are described.

  12. Exploratory Development for Design Data on Structural Aluminum Alloys in Representative Aircraft Environments

    DTIC Science & Technology

    1977-07-01

    Alloy," Final Report under Naval Air Systems Command Contract N00019-69- C-0292, January 1970. 6. D. J. Brownhill, C. F. Babilon , G. E. Nordmark and D. 0...34Further Development of Aluminum Alloy X7050," Final Report under Naval Air Systems Command Contract N00019- 71-C-0131, May 1972. 9. C. F. Babilon , R

  13. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H. W.; Farahmand, B.; Rioja, R.

    2003-01-01

    This viewgraph report presents an examination of the fracture toughness of aluminum-lithium alloy C458 for use in cryotank structures. Topics cover include: cryogenics, alloy composition, strengthing precipitates in C458, cryogenic fracture toughness improvements, design of experiments for measuring aging optimization of C458 plate and effects of aging of properties of C458 plate.

  14. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H. W.; Farahmand, B.; Rioja, R.

    2003-01-01

    This viewgraph report presents an examination of the fracture toughness of aluminum-lithium alloy C458 for use in cryotank structures. Topics cover include: cryogenics, alloy composition, strengthing precipitates in C458, cryogenic fracture toughness improvements, design of experiments for measuring aging optimization of C458 plate and effects of aging of properties of C458 plate.

  15. Superhydrophobic aluminum alloy surfaces by a novel one-step process.

    PubMed

    Saleema, N; Sarkar, D K; Paynter, R W; Chen, X-G

    2010-09-01

    A simple one-step process has been developed to render aluminum alloy surfaces superhydrophobic by immersing the aluminum alloy substrates in a solution containing NaOH and fluoroalkyl-silane (FAS-17) molecules. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements have been performed to characterize the morphological features, chemical composition and superhydrophobicity of the surfaces. The resulting surfaces provided a water contact angle as high as ∼162° and a contact angle hysteresis as low as ∼4°. The study indicates that it is possible to fabricate superhydrophobic aluminum surfaces easily and effectively without involving the traditional two-step processes.

  16. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    SciTech Connect

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng Zhou, Zhi Ping

    2014-03-15

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  17. Explosion bonding: aluminum-magnesium alloys bonded to austenitic stainless steel

    SciTech Connect

    Patterson, R.A.

    1982-01-01

    The explosion bonding of 5000 series aluminum alloys to 300 series stainless steel alloys is summarized. The process technique involves a parallel gap arrangement with copper or aluminum bonding aids. Successful bonds have been achieved using either a single shot process for joining the trilayer clad or a sequential shot technique for each metal component. Bond success is monitored through a combined metallographic and tensile strength evaluation. Tensile properties are shown to be strongly dependent upon process parameters and the amount of intermetallic formation at the aluminum bond interface. Empirical data has been compared with experimental and destructive test results to determine the optimum procedures.

  18. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  19. On the growth of small fatigue cracks in aluminum-lithium alloy 2090

    SciTech Connect

    Venkatesward-Rao, K.T.; Yu, W.; Ritchie, R.O.

    1986-01-01

    It is the objective of this article to examine the behavior of small (2 to 1000 ..mu..m) fatigue cracks in a commercial Al-Li-Cu-Zr alloy, and to compare results with those determined on conventional long (greater than or equal to 20 mm) crack samples. The development of ultra-lightweight aluminum-lithium alloys has aroused much interest in the aerospace industry with the prospect of the design of aircraft with alloys of lower density and increased modulus. Moreover, although Li additions can cause low ductility and toughness properties, Al-Li-X alloys generally show far superior fatigue crack growth resistance to traditional aluminum alloys, such as 2124 and 7050. However, the latter observations are based exclusively on long (greater than or equal to 10 mm) crack studies; to date little information is available on the behavior of small fatigue cracks in these alloys.

  20. Enhanced Sintering Kinetics in Aluminum Alloy Powder Consolidated Using DC Electric Fields

    NASA Astrophysics Data System (ADS)

    McWilliams, Brandon; Yu, Jian; Kellogg, Frank; Kilczewski, Steven

    2017-02-01

    Direct current (DC) electric currents were applied during sintering of aluminum alloy (AA5083) green powder compacts and it was found that the kinetics of sintering were greatly enhanced compared to samples processed without a field. In situ sintering kinetics during pressure-less sintering employing electric field strengths and amperages ranging from 0 to 56 V/cm and 0 to 3 A were quantified using digital image correlation. It was found that the application of a DC field during sintering results in a discontinuous change in volume at a critical temperature along with a transition in electrical properties of the compact from insulating to conductive. This effect is similar to the phenomena observed in the flash sintering process currently being actively researched for ceramic powder processing. The temperature at which the flash event occurs was found to be field strength dependent and doubling the field strength was found to decrease the flash temperature by 25 pct. Joule heating of the specimen was measured using thermal imaging and it was found to not contribute enough additional thermal energy to account for the substantially increased sintering rates observed in specimens processed using electric fields.

  1. The Effect of Electric Current and Strain Rate on Serrated Flow of Sheet Aluminum Alloy 5754

    NASA Astrophysics Data System (ADS)

    Zhao, Kunmin; Fan, Rong; Wang, Limin

    2016-03-01

    Electrically assisted tensile tests are carried out on sheet aluminum alloy AA5754 at electric current densities ranging from 0 to 30.4 A/mm2 and strain rates ranging from 10-3 to 10-1 s-1. The strain rate sensitivity and the serrated flow behavior are investigated in accordance with dynamic strain aging mechanism. The strain rate sensitivity changes from negative to positive and keeps increasing with current density. The tendency toward serrated flow is characterized by the onset of Portevin-Le Chatelier (PLC) instabilities, which are influenced by strain rate, temperature, and electric current. The evolutions of three types of serrated flow are observed and analyzed with respect to strain rate and current density. The magnitude of serration varies with strain rate and current density. The serrated flow can be suppressed by a high strain rate, a high temperature, or a strong electric current. The threshold values of these parameters are determined and discussed. Conventional oven-heated tensile tests are conducted to distinguish the electroplasticity. The flow stress reduces more in electrically assisted tension compared to oven-heated tension at the same temperature level. The electric current helps suppress the serrated flow at the similar temperature level of oven-heating.

  2. Correlation between shear punch and tensile data for neutron-irradiated aluminum alloys

    SciTech Connect

    Hamilton, M.L.; Edwards, D.J.; Toloczko, M.B.

    1995-04-01

    This work was performed to determine whether shear punch and tensile data obtained on neutron irradiated aluminum alloys exhibited the same type of relationship as had been seen in other work and to assess the validity of extrapolating the results to proton-irradiated alloys. This work was also meant to be the first of a series of similar test matrices designed to determine whether the shear punch/tensile relationship varied or was the same for different alloy classes.

  3. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  4. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  5. Accelerated Corrosion Testing of Graphite/Epoxy Composites and Aluminum Alloy Mechanically-Fastened Joints

    DTIC Science & Technology

    1985-06-20

    45/02/90)4/±,45/0)s and aluminum alloy plates ( 2124 -T851) were fabricated using either titanium (NAS1154V4) or A-286 CRES (HS 21140) fasteners. The... 2124 -T851, which is sup- posed to be a more corrosive resistant ahuminum alloy than the 2024 seri~es. Also the substructure was chromic acid anodized...AFWAL-TR-84--3115 ACCELERATED CORROSION TESTING OF GRAPHITE/EPOXY COMPOSITES AND ALUMINUM ALLOY MECHANICALLY-FASTENED JOINTS Rlk S. D. Thompson, SJB

  6. Synthesis and Properties of Elevated Temperature P/M Aluminum Alloys.

    DTIC Science & Technology

    1985-11-30

    7D-A±164 086 SYNTHESIS ND PROPERTIES OF ELEVTED TEMPERATRE PIN L/2ALUMINU" ALLOYS(U) NORTHMEST RN UNIV EVANSTON IL DEPT OF MATERIALS SCIENCE AND E...Subtitle) S. TYPE OF REPORT & PERIOD COVERED Final Report SYNTHESIS AND PROPERTIES OF ELEVATED 10/1/81 - 9/30/85 TEMPERATURE P/M ALUMINUM ALLOYS 6...v. --- -r .v ’AFOSR -rR, FINAL REPORT -. on SYNTHESIS AND PROPERTIES OF ELEVATED TEMPERATURE P/M ALUMINUM ALLOYS covering period 1 October

  7. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  8. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  9. Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants

    NASA Astrophysics Data System (ADS)

    de Cicco, Michael P.; Turng, Lih-Sheng; Li, Xiaochun; Perepezko, John H.

    2011-08-01

    Different types of nanoparticles in aluminum (Al) alloy A356 nanocomposites were shown to catalyze nucleation of the primary Al phase. Nanoparticles of SiC β, TiC, Al2O3 α, and Al2O3 γ were added to and dispersed in the A356 matrix as nucleation catalysts using an ultrasonic mixing technique. Using the droplet emulsion technique (DET), undercoolings in the nanocomposites were shown to be significantly reduced compared to the reference A356. None of the nanocomposites had a population of highly undercooled droplets that were observed in the reference samples. Also, with the exception of the A356/Al2O3 α nanocomposite, all nanocomposites showed a reduction in undercooling necessary for the onset of primary Al nucleation. The observed nanocomposite undercoolings generally agreed with the undercooling necessary for free growth. The atomic structure of the particles showed an influence on nucleation potency as A356/Al2O3 γ nanocomposites had smaller undercoolings than A356/Al2O3 α nanocomposites. The nucleation catalysis illustrates the feasibility of, and basis for, grain refinement in metal matrix nanocomposites (MMNCs).

  10. Numerical simulation of high speed incremental forming of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Giuseppina, Ambrogio; Teresa, Citrea; Luigino, Filice; Francesco, Gagliardi

    2013-12-01

    In this study, an innovative process is analyzed with the aim to satisfy the industrial requirements, such as process flexibility, differentiation and customizing of products, cost reduction, minimization of execution time, sustainable production, etc. The attention is focused on incremental forming process, nowadays used in different fields such as: rapid prototyping, medical sector, architectural industry, aerospace and marine, in the production of molds and dies. Incremental forming consists in deforming only a small region of the workspace through a punch driven by a NC machine. SPIF is the considered variant of the process, in which the punch gives local deformation without dies and molds; consequently, the final product geometry can be changed by the control of an actuator without requiring a set of different tools. The drawback of this process is its slowness. The aim of this study is to assess the IF feasibility at high speeds. An experimental campaign will be performed by a CNC lathe with high speed to test process feasibility and the influence on materials formability mainly on aluminum alloys. The first results show how the material presents the same performance than in conventional speed IF and, in some cases, better material behavior due to the temperature field. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process substantially confirming experimental evidence.

  11. Chemical conditions inside occluded regions on corroding aircraft aluminum alloys.

    PubMed

    Lewis, K S; Yuan, J; Kelly, R G

    1999-07-30

    Corrosion of aluminum alloy structures costs the US Air Force in the order of US$1 x 10(9) annually. Corrosion develops in areas of overlap such as aircraft lap-splice joints and under protective organic coatings. Capillary electrophoresis (CE) has been used to determine the local chemistries at these corrosion sites of solutions that were extracted using a microsampling system. Analysis of the local solution within lap-splice joints from aircraft has been performed in two ways: rehydration of corrosion products and direct microsampling. The solutions collected were analyzed with CE to quantitatively determine the species present during corrosion. The most common ions detected were Cl-, NO2-, NO3-, HCO3-, K+, Al3+, Ca2+, Na+ and Mg2+. Studies of the solution chemistry under local coating defects are required to understand coating failure and develop more durable coatings. A microsampling system and micro pH sensor were developed to extract solution from and measure pH in defects with diameters as small as 170 microns. Actively corroding defects contained high concentrations of Cl-, Al3+, Mg2+, Mn2+ and Cu2+ whereas only trace levels of Mg2+ were found in repassivated defects. The effects of these species on initiation and propagation of corrosion are discussed.

  12. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  13. Ultrasonic measurement of residual stress in shot peened aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Anton I.; Veronesi, William A.

    2001-04-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to non-destructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper addresses issues encountered in near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth inversely related to the excitation frequency, by making measurements at different frequencies, the method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity from 4A-16A. Several factors were found to contribute to the measured responses: surface roughness, near surface texture change, dislocation density increase and residual stress. In this paper, the contributions of residual stress, dislocation density and surface roughness to the overall effect are separately estimated. It is shown that the experimentally observed velocity change in shot peened samples is dominated by the effect of surface roughness while the role of residual stress is much smaller.

  14. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  15. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  16. Analysis of Particle-Stimulated Nucleation (PSN)-Dominated Recrystallization for Hot-Rolled 7050 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Adam, Khaled F.; Long, Zhengdong; Field, David P.

    2017-04-01

    In 7xxx series aluminum alloys, the constituent large and small second-phase particles present during deformation process. The fraction and spatial distribution of these second-phase particles significantly influence the recrystallized structure, kinetics, and texture in the subsequent treatment. In the present work, the Monte Carlo Potts model was used to model particle-stimulated nucleation (PSN)-dominated recrystallization and grain growth in high-strength aluminum alloy 7050. The driving force for recrystallization is deformation-induced stored energy, which is also strongly affected by the coarse particle distribution. The actual microstructure and particle distribution of hot-rolled plate were used as an initial point for modeling of recrystallization during the subsequent solution heat treatment. Measurements from bright-field TEM images were performed to enhance qualitative interpretations of the developed microstructure. The influence of texture inhomogeneity has been demonstrated from a theoretical point of view using pole figures. Additionally, in situ annealing measurements in SEM were performed to track the orientational and microstructural changes and to provide experimental support for the recrystallization mechanism of PSN in AA7050.

  17. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities.

    PubMed

    Chen, Xuanzhen; Peng, Yong; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping

    2017-01-01

    This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture.

  18. Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yan; Song, Ren-guo; Sun, Bin; Lu, Hai; Wang, Chao

    2016-07-01

    Potentiodynamic polarization tests and slow strain rate test (SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking (SCC) behavior of 7003 aluminum alloy (AA7003) in acid and alkaline chloride solutions under various applied potentials ( E a). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution (AD) at open-circuit potential (OCP) and is highly susceptible to hydrogen embrittlement (HE) at high negative E a in the solutions with pH levels of 4 and 11. The susceptibility increases with negative shift in the potential when E a is less than -1000 mV vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when E a is equal to -1000 mV vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.

  19. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities

    PubMed Central

    Chen, Xuanzhen; Peng, Shan; Yao, Song; Chen, Chao; Xu, Ping

    2017-01-01

    This study aims to investigate the flow and fracture behavior of aluminum alloy 6082-T6 (AA6082-T6) at different strain rates and triaxialities. Two groups of Charpy impact tests were carried out to further investigate its dynamic impact fracture property. A series of tensile tests and numerical simulations based on finite element analysis (FEA) were performed. Experimental data on smooth specimens under various strain rates ranging from 0.0001~3400 s-1 shows that AA6082-T6 is rather insensitive to strain rates in general. However, clear rate sensitivity was observed in the range of 0.001~1 s-1 while such a characteristic is counteracted by the adiabatic heating of specimens under high strain rates. A Johnson-Cook constitutive model was proposed based on tensile tests at different strain rates. In this study, the average stress triaxiality and equivalent plastic strain at facture obtained from numerical simulations were used for the calibration of J-C fracture model. Both of the J-C constitutive model and fracture model were employed in numerical simulations and the results was compared with experimental results. The calibrated J-C fracture model exhibits higher accuracy than the J-C fracture model obtained by the common method in predicting the fracture behavior of AA6082-T6. Finally, the Scanning Electron Microscope (SEM) of fractured specimens with different initial stress triaxialities were analyzed. The magnified fractographs indicate that high initial stress triaxiality likely results in dimple fracture. PMID:28759617

  20. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    NASA Technical Reports Server (NTRS)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.