Science.gov

Sample records for aluminum alloy sheets

  1. Plane-strain tension tests on aluminum alloy sheet

    SciTech Connect

    Taha, F.; Hosford, W.; Graf, A.

    1995-04-01

    A simple way of making plane-strain tension tests on sheet specimens has been developed. This method was used to test sheets of aluminum alloy 2008 T4 and the results were analyzed in terms of a high exponent yield criterion and isotropic hardening. Experimentally measured forces agreed with those calculated from strain measurements using uniaxial tension test curves.

  2. Aluminum alloy 6013 sheet for new U. S. Navy aircraft

    SciTech Connect

    Kaneko, R.S.; Bakow, L.; Lee, E.W. Naval Air Development Center, Warminster, PA )

    1990-05-01

    The recently developed aluminum alloy 6013-T6 has been selected for the fuselage skin and other applications on the U.S. Navy's P-7A airplane, in place of the traditional 2024-T3 clad sheet. Alloy 6013-T6 is naturally corrosion resistant, like the well-established alloy 6061, and hence is used unclad. Its fatigue strength, fatigue crack growth and fracture toughness compare favorably with 2024-T3. Replacement of alloy 2024 with alloy 6013 also reduces manufacturing costs for formed parts, because 6013 is readily formed in the T4 temper, then simply aged to T6, thus avoiding the costly heat treatments and straightening required for alloy 2024. 5 refs.

  3. Laser beam welding of 5182 aluminum alloys sheet.

    SciTech Connect

    Leong, K. H.; Sabo, K. R.; Altshuller, B.; Wilkinson, T. L.; Albright, C. E.; Technology Development; Alcan International Limited; Reynolds Metals Co.; Ohio State Univ.

    1999-06-01

    Conditions were determined for consistent coupling of a CO{sub 2} laser beam to weld 5182 aluminum alloy sheet. Full penetration butt and bead-on-plate welds on 0.8 and 1.8 mm sheets were performed. Process conditions examined included beam mode, spot size and irradiance, shielding gas flow, and edge quality and fitup. The observed weld quality variations with the different process parameters were consistent with physical phenomena and a threshold irradiance model. Optimal conditions were determined for obtaining consistent welds on 5182 alloy sheets. Formability and tensile tests were performed on the welded samples. All test failures occurred in the fusion zone. Reduction in formability and tensile strength of the welded samples are discussed with respect to weld profiles and process parameters.

  4. The Weathering of Aluminum Alloy Sheet Materials Used in Aircraft

    NASA Technical Reports Server (NTRS)

    Mutchler, Willard

    1935-01-01

    This report presents the results of an investigation of the corrosion of aluminum alloy sheet materials used in aircraft. It has for its purpose to study the causes of corrosion embrittlement in duralumin-type alloys and the development of methods for its elimination. The report contains results, obtained in an extensive series of weather-exposure tests, which reveal the extent to which the resistance of the materials to corrosion was affected by variable factors in their heat treatment and by the application of various surface protective coatings. The results indicate that the sheet materials are to be regarded as thoroughly reliable, from the standpoint of their permanence in service, provided proper precautions are taken to render them corrosion-resistant.

  5. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-17

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  6. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-01

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  7. Brazing dissimilar aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dalalian, H.

    1979-01-01

    Dip-brazing process joins aluminum castings to aluminum sheet made from different aluminum alloy. Process includes careful cleaning, surface preparation, and temperature control. It causes minimum distortion of parts.

  8. Springback analysis on AA 6061 aluminum alloy sheets

    NASA Astrophysics Data System (ADS)

    Ramulu, Perumalla Janaki; Rao, P. Srinivasa; Yimer, Wassihun

    2016-10-01

    In automotive industry, sheet metal forming process play a key role with respect to economy and weight reduction ratio. In sheet metal forming, one of the operations is bending operation in which sheet will not go under sever deformation. The end components are made by applying the continuous load on the sheet in the bending process. In bending process, elastic limits of materials are exceeded, but flow limit thereof cannot be exceeded. Therefore, the material still keeps a portion of its original flexibility character. When the load is released, the material on forcing compress side tries to enlarge, whereas the material on tensile side tries to shrink. As a result, the material tries to spring back and the bended material by flexing slightly tries to open. Springback varies according to thickness of the material, material and process parameters, type of material, period when punch load stays on the material, dimensions of die, force applied, and bending radius. In order to make bending at a desired angle, springback amounts should be avoided. In the present work, experimentation on AA 6061 alloy sheet springback analysis has done with seven different rolling directions. Results are noted with respect to load, displacement, and die angle on the springback effect. It observed that springback affect is existed notably in the AA 6061 alloys with respect to die angle.

  9. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-08-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.

  10. Single-point incremental forming of 2024-T3 aluminum alloy sheets

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqiang; Yu, Honghan; Guo, Guiqiang; Li, Dongsheng

    2013-12-01

    Many aluminum alloy sheet metal parts with complex geometry in airplane are often formed by drop hammer forming with intermediate annealing and then heat treated into T temper. The manufacturing cost is very high because of a number of forming and heat treatment steps. Incremental sheet forming can form complex parts because of larger forming limit than conventional stamping. So the research that the part is formed directly from T temper aluminum alloy sheet using incremental sheet forming is very attractive. 2024-T3 is the aluminum alloy used mostly in aerospace manufacturing. Single-point incremental forming experiments with 2024-T3 are carried to form cone shape parts. In this work, the formability of 2024-T3 aluminum alloy sheets in single-point incremental forming was preliminarily studied. Effect of tool diameter and wall angle on the formability were investigated. It is found that the surface roughness can be reduced and the forming depth of the cone shape part can be increased by increasing the tool diameter.

  11. Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Woods, Walter

    1946-01-01

    Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.

  12. Identification of heat treatments for better formability in an aluminum-lithium alloy sheet

    NASA Astrophysics Data System (ADS)

    Bairwa, M. L.; Desai, Sharvari G.; Date, P. P.

    2005-10-01

    Research in the weight of an automobile is a continuous process among auto manufacturers. The “body in white” (BIW, i.e., the body of the car) deserves attention, being a major contributor to the weight of the vehicle. By virtue of a high strength to weight ratio (density smaller than aluminum) and a higher Young’s modulus than aluminum, aluminum-lithium alloy sheet appears to hold promise as an autobody material. Because auto components are required in large numbers and are formed at room temperature, formability under these conditions becomes significant. Aluminum-lithium alloys acquire, because of aging over a short period of time, a good amount of strength and hence dent resistance. In principle, they can be given, through suitable heat treatments, a high formability as well as dent resistance, i.e., an ideal combination of properties. To this end, tensile properties have been determined for a number of heat treatments comprising three different solutionizing temperatures and for three aging times at each of the three aging temperatures. Considerable influence of heat treatment was observed on the mechanical properties (which in turn characterize both formability and dent resistance), such as the strain hardening exponent, average normal anisotropy, yield stress, ultimate tensile stress, and percentage elongation to failure. For each property, the best three heat treatments leading to a high formability were identified. Consequently, heat treatments that imparted the greatest formability for processes such as deep drawing and stretch forming have been identified. The investigations show that the best heat treatment for one property may not be the best for another property, calling for a compromise to obtain the most practicable heat treatment schedule. Results shed light on not only the biaxial formability but also springback behavior that is important in the BIW components. Further, the properties obtained from the heat treatment giving good formability

  13. On the micromechanisms of fatigue-crack propagation in aluminum- lithium alloys: Sheet vs. plate material

    SciTech Connect

    Rao Venkateswara, K.T.; Ritchie, R.O. California Univ., Berkeley, CA . Dept. of Materials Science and Mineral Engineering); Bucci, R.J. . Alcoa Labs.)

    1989-12-01

    Micromechanisms influencing the propagation of long (>10 mm) fatigue cracks in aluminum-lithium alloys are examined by specifically comparing crack-growth kinetics in a peak-aged Al-Li-Cu-Zr alloy 2090, processed as 1.6-mm thin (T83) sheet and 12.7-mm thick (T81) plate. It is found that in general crack-growth rates are significantly faster in the sheet material at equivalent stress-intensity levels, due to differences in the role of crack-tip shielding, resulting from crack deflection and consequent crack closure from wedging of fracture-surface asperities. Microstructurally, such differences are related to variations in the degree of recrystallization, grain structure and deformation texture in the two wrought-product forms. 14 refs., 4 figs.

  14. Effects of temperature and blank holding force on biaxial forming behavior of aluminum sheet alloys

    NASA Astrophysics Data System (ADS)

    Li, Daoming; Ghosh, Amit K.

    2004-06-01

    Biaxial forming behavior is investigated for three aluminum sheet alloys (Al 5182 containing 1% Mn (5182+Mn), Al 5754, and 6111-T4) using a heated die and punch in the warm forming temperature range of 200-350 °C. It is found that, while all three alloys exhibit significant improvement in their formability compared with that at room temperature, the non-heat-treatable alloys 5182 + Mn and 5754 give higher part depths than that of heat-treatable 6111-T4. The formability generally increases with decreasing BHP (BHP), but increasing the forming temperature and/or BHP minimizes the wrinkling tendency and improves the forming performance. The stretchability of the sheet alloys increase with increasing temperature and increasing BHP. For the alloys and forming conditions involved in the current study, the formability, measured in terms of part depth, comes mainly from the drawing of metal into the die cavity, although stretching effects do influence the overall forming behavior. The optimum formability is achieved by setting the die temperature 50 °C higher than the punch temperature to enhance the drawing component. Setting the die temperature higher than the punch temperature also improves the strain distribution in a part in such a manner that postpones necking and fracture by altering the location of greatest thinning.

  15. Thirty year atmospheric corrosion performance of 55% aluminum-zinc alloy-coated sheet steel

    SciTech Connect

    Townsend, H.E.; Borzillo, A.R.

    1996-04-01

    In 1964, a series of aluminum-zinc (Al-Zn) alloy coatings were applied to steel sheet on a laboratory continuous hot-dip coating pilot line. The coated sheets were exposed in outdoor corrosion tests in severe marine, moderate marine, rural, and industrial atmospheres. Following eight years of testing, the 55% Al-Zn composition was selected as the optimum composition because it combined excellent long-term durability with the ability to provide cut-edge protection to the steel substrate. Now, after 30 years of continued outdoor testing, the results show conclusively that the 55% Al-Zn alloy coating has better than twice the life of an ordinary zinc coating of equal thickness, and that it provides enduring cut-edge protection. Following identification of the optimum composition in 1972, steel sheet with the 55% Al-Zn alloy coating was produced commercially by Bethlehem Steel. Large quantities of this material have been put in service as unpainted roofing on metal buildings. Inspections of these buildings show that the corrosion performance is excellent for roofs that have been in service for up to 22 years in a variety of US environments. These results confirm the conclusions of the earlier outdoor tests.

  16. Simulations of Forming Limit Diagrams for the Aluminum Sheet Alloy 5754CC

    SciTech Connect

    Dasappa, Prasad; Inal, Kaan; Mishra, Raja

    2010-06-15

    In this paper, the capability of the four different yield functions to predict forming limit diagrams of continuous cast AA-5754 Aluminum sheet have been compared with focus on the differences in the predicted limit strains based on the method of determining the yield function parameters that do not employ a linear transformation tensor on the stress tensor. The yield functions proposed by Hill (1948, 1990 and 1993) and Barlat (1989), which have been successfully used to predict material anisotropy in aluminum alloys in the literature, have been considered in this study. The forming limit diagrams (FLDs) have been calculated numerically based on these yield functions together with the Marciniak-Kuczynski (M-K) approach.

  17. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  18. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  19. Formability analysis of aluminum alloy sheets at elevated temperatures with numerical simulation based on the M-K method

    SciTech Connect

    Bagheriasl, Reza; Ghavam, Kamyar; Worswick, Michael

    2011-05-04

    The effect of temperature on formability of aluminum alloy sheet is studied by developing the Forming Limit Diagrams, FLD, for aluminum alloy 3000-series using the Marciniak and Kuczynski technique by numerical simulation. The numerical model is conducted in LS-DYNA and incorporates the Barlat's YLD2000 anisotropic yield function and the temperature dependant Bergstrom hardening law. Three different temperatures; room temperature, 250 deg. C and 300 deg. C, are studied. For each temperature case, various loading conditions are applied to the M-K defect model. The effect of the material anisotropy is considered by varying the defect angle. A simplified failure criterion is used to predict the onset of necking. Minor and major strains are obtained from the simulations and plotted for each temperature level. It is demonstrated that temperature improves the forming limit of aluminum 3000-series alloy sheet.

  20. Formation of the structure of thin-sheet rolled product from a high-strength sparingly alloyed aluminum alloy ``nikalin''

    NASA Astrophysics Data System (ADS)

    Shurkin, P. K.; Belov, N. A.; Akopyan, T. K.; Alabin, A. N.; Aleshchenko, A. S.; Avxentieva, N. N.

    2017-09-01

    The regime of thermomechanical treatment of flat ingots of a high-strength sparingly alloyed alloy based on the Al-Zn-Mg-Ni-Fe system upon the production of thin-sheet rolled products with a reduction of more than 97% has been substantiated. Using experimental and calculated methods, the structure and phase composition of the experimental alloy in the as cast and deformed state and after heat treatment including quenching with subsequent aging have been studied. It has been found that the structure of the wrought semi-finished products after aging according to T and T1 regimes consists of the precipitation-hardened aluminum matrix and uniformly distributed isolated particles of Al9FeNi with a size of 1-2 μm, which provides a combination of high strength and satisfactory plasticity at the level of standard high-strength aluminum alloys of the Al-Zn-Mg-Cu system. The fractographic analysis confirmed that the tested samples underwent a ductile fracture.

  1. Material characterization and finite element simulations of aluminum alloy sheets during non-isothermal forming process

    NASA Astrophysics Data System (ADS)

    Zhang, Nan

    The utilization of more non-ferrous materials is one of the key factors to succeed out of the constantly increasing demand for lightweight vehicles in automotive sector. Aluminum-magnesium alloys have been identified as the most promising substitutions to the conventional steel without significant compromise in structural stiffness and strength. However, the conventional forming methods to deform the aluminum alloy sheets are either costly or insufficient in formability which limit the wide applications of aluminum alloy sheets. A recently proposed non-isothermal hot stamping approach, which is also referred as Hot Blank - Cold Die (HB-CD) stamping, aims at fitting the commercial grade aluminum alloy sheets, such as AA5XXX and AA7XXX, into high-volume and cost-effective production for automotive sector. In essence, HB-CD is a mutation of the conventional hot stamping approach for boron steel (22MnB5) which deforms the hot blank within the cold tool set. By elevating the operation temperature, the formability of aluminum alloy sheets can be significantly improved. Meanwhile, heating the blank only and deforming within the cold tool sets allow to reduce the energy and time consumed. This research work aims at conducting a comprehensive investigation of HB-CD with particular focuses on material characterization, constitutive modeling and coupled thermo-mechanical finite element simulations with validation. The material properties of AA5182-O, a popular commercial grade of aluminum alloy sheet in automotive sector, are obtained through isothermal tensile testing at temperatures from 25° to 300°, covering a quasi-static strain-rate range (0.001--0.1s-1). As the state-of-the-art non-contact strain measurement technique, digital image correlation (DIC) system is utilized to evaluate the stress-strain curves as well as to reveal the details of material deformation with full-field and multi-axis strain measurement. Material anisotropy is characterized by extracting the

  2. Prediction of the Properties of Heat-Affected Zone of Welded Joints of Sheets from Aluminum Alloys with Structured Surface

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. G.

    2016-05-01

    Welded joints of light structured sheets from aluminum alloy EN AW-6181-T4 (DIN EN 515) of the Al - Si - Mg system are studied. The welding is performed in an argon environment with a short arc by the method of cold metal transfer (CMT®). The results of the study are used in an amended Leblond model for describing the variation of the properties of the heat-affected zone of welded joints of structured sheets.

  3. Elasto-Plasticity Behavior of Type 5000 and 6000 Aluminum Alloy Sheets and Its Constitutive Modeling

    SciTech Connect

    Tamura, Shohei; Sumikawa, Satoshi; Hamasaki, Hiroshi; Yoshida, Fusahito; Uemori, Takeshi

    2010-06-15

    To examine the deformation characteristic of type 5000 and 6000 aluminum alloy sheets, uniaxial tension, biaxial stretching and in-plane cyclic tension-compression experiments were performed, and from these, r-values (r{sub 0}, r{sub 45} and r{sub 90}), yield loci and cyclic stress-strain responses were obtained. For the accurate description of anisotropies of the materials, high-ordered anisotropic yield functions, such as Gotoh's biquadratic yield function and Barlat's Yld2000-2d, are necessary. Furthermore, for the simulation of cyclic behavior, an advanced kinematic hardening model, such as Yoshida-Uemori model (Y-U model), should be employed. The effect of the selection of material models on the accuracy of the springback prediction was discussed by performing hat bending FE simulation using several yield functions and two types of hardening laws (the isotropic hardening model and Y-U model).

  4. Bending Tests of Circular Cylinders of Corrugated Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Buckwalter, John C; Reed, Warren D; Niles, Alfred S

    1937-01-01

    Bending tests were made of two circular cylinders of corrugated aluminum-alloy sheet. In each test failure occurred by bending of the corrugations in a plane normal to the skin. It was found, after analysis of the effect of short end bays, that the computed stress on the extreme fiber of a corrugated cylinder is in excess of that for a flat panel of the same basic pattern and panel length tested as a pin-ended column. It is concluded that this increased strength was due to the effects of curvature of the pitch line. It is also concluded from the tests that light bulkheads closely spaced strengthen corrugated cylinders very materially.

  5. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  6. Measurement and analysis of critical CTOA for an aluminum alloy sheet

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.; Newman, J. C., Jr.; Bigelow, C. A.

    1993-01-01

    The stable tearing behavior of thin sheets of 2024-T3 aluminum alloy was investigated for middle crack tension, M(T), and compact tension, C(T), specimens. The surface crack-tip opening angle (CTOA), applied loads, crack extension, and local displacements were measured. A critical CTOA fracture criterion was incorporated into a two-dimensional, elastic plastic finite element code and used to simulate the experimental fracture behavior. The CTOA measurements and observations of the fracture surfaces have shown that large values for surface CTOA were observed for small crack extensions (less than the sheet thickness); substantial tunneling of the crack was associated with small crack extensions; crack tunneling in the M(T) specimen was less than that observed in the C(T) configuration; for larger crack extensions, the measured CTOA values were determined to be approximately 6 degrees for both the M(T) and C(T) configuration; and for larger crack extensions, crack tunneling remained constant. The two-dimensional finite element predictions of fracture behavior assumed a constant critical CTOA value of 6 degrees and accounted for local crack tip constraint with a plane strain core of elements ahead of the crack tip. The plane strain core extended 5 mm above the crack plane. The simulations were within +/- 4 percent of the maximum applied load for the C(T) tests within 2 percent for the M(T) tests.

  7. High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui

    2017-03-01

    In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.

  8. High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui

    2017-02-01

    In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.

  9. Adaptive Control for Partial- and Full-Penetration Spot Welding of Aluminum Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Kawahito, Yousuke; Katayama, Seiji

    A new procedure of in-process monitoring and adaptive control for stable formation of laser spot lap welds has been developed with the objectives of producing sound partial- and full-penetration welds without through-holes and swell in A3003 aluminum alloy sheets, respectively. In the case of the formation of partial-penetration welds, the reflected laser beam and the radiated heat from the welding area were effectively utilized as in-process monitoring signals in detecting melting and though-hole formation in the upper sheet during laser irradiation. Laser pulse duration and peak power were controlled at every 0.15 ms interval during spot welding on the basis of the heat radiation signal detecting the though-hole. In the full-penetration welds, spot welding was performed at low laser power density to reduce the swell of joint part. Then the concavity level of a weld fusion zone increased remarkably with an increase in the pulse duration. Therefore, the laser pulse duration was controlled at 0.15 ms intervals on the basis of the total intensity of heat radiation so as to produce a satisfactory spot weld fusion zone. As a result, fully penetrated welds of desirable sizes with the reduced swells were consistently produced in all 20 samples. These results proved the effectiveness of in-process monitoring and the availability of adaptive control.

  10. Formability Evaluation of Aluminum Alloy 6061-T6 Sheet at Room and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Chen, Zhu; Fang, Gang; Zhao, Jia-Qing

    2017-09-01

    The formability of aluminum alloy 6061-T6 sheet was evaluated, and the effects of temperature and strain rate on the formability were analyzed. Uniaxial tension tests and Nakajima tests were conducted at room temperature to obtain the constitutive parameters of AA 6061-T6 and establish the forming limit diagram (FLD), respectively. Moreover, uniaxial tension tests were performed at the temperatures ranging between 180 and 380 °C and the strain rates ranging between 0.0005 and 0.05 s-1, and the constitutive equations of AA 6061-T6 were established. Nakajima tests at temperature 330 °C and two forming speeds (15 and 150 mm/min) were carried out to evaluate the formability of AA6061-T6 at elevated temperatures. In consequence, FLDs under different forming conditions were established and compared. Experimental results showed that the forming limit of AA 6061-T6 increased with the increasing temperature and the decreasing forming speed. The present investigation presented the formability of AA 6061-T6 under different forming conditions, which provided a guidance to design the warm/hot forming of AA 6061 sheet. The FLDs and constitutive equations established through these experiments will be used to predict the forming defects in the forming process design.

  11. A microscopic study of crack initiation mechanisms in 7075 aluminum alloy sheets.

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Liebowitz, H.

    1973-01-01

    A study of the opening mode of crack initiation in 7075-T6 aluminum alloy sheets has been conducted with the aid of a scanning electron microscope. Observations were made from several orientations, including the top view of the specimen which showed the notch profile and the edge view of the specimen which showed the entire notch front along the specimen thickness. It was found that the edge view exhibited the first signs of permanent deformation at about 55% of the breaking strength. These changes took the form of deformation bands which were aligned in the direction of the tensile axis and apparently defined limiting regions of homogeneous slip. It is felt that the appearance of microcracks at loads approaching the breaking strength was of fundamental importance in the formation of the final fracture surface. Many of these microcraks were initiated at intermetallic particles and other metallurgically weak regions on the notch surface. It was also possible to correlate the strain in the notch with the stress intensity factor for the various loads. Very large plastic strains were observed on the notch tip as compared to published values of elongation at fracture for unnotched specimens.

  12. The Effect of Electric Current and Strain Rate on Serrated Flow of Sheet Aluminum Alloy 5754

    NASA Astrophysics Data System (ADS)

    Zhao, Kunmin; Fan, Rong; Wang, Limin

    2016-03-01

    Electrically assisted tensile tests are carried out on sheet aluminum alloy AA5754 at electric current densities ranging from 0 to 30.4 A/mm2 and strain rates ranging from 10-3 to 10-1 s-1. The strain rate sensitivity and the serrated flow behavior are investigated in accordance with dynamic strain aging mechanism. The strain rate sensitivity changes from negative to positive and keeps increasing with current density. The tendency toward serrated flow is characterized by the onset of Portevin-Le Chatelier (PLC) instabilities, which are influenced by strain rate, temperature, and electric current. The evolutions of three types of serrated flow are observed and analyzed with respect to strain rate and current density. The magnitude of serration varies with strain rate and current density. The serrated flow can be suppressed by a high strain rate, a high temperature, or a strong electric current. The threshold values of these parameters are determined and discussed. Conventional oven-heated tensile tests are conducted to distinguish the electroplasticity. The flow stress reduces more in electrically assisted tension compared to oven-heated tension at the same temperature level. The electric current helps suppress the serrated flow at the similar temperature level of oven-heating.

  13. The effect of thickness on fatigue crack propagation in 7475-T731 aluminum alloy sheet

    NASA Technical Reports Server (NTRS)

    Daiuto, R. A.; Hillberry, B. M.

    1984-01-01

    Tests were conducted on three thicknesses of 7475-T731 aluminum alloy sheet to investigate the effect of thickness on fatigue crack propagation under constant amplitude loading conditions and on retardation following a single peak overload. Constant amplitude loading tests were performed at stress ratios of 0.05 and 0.75 to obtain data for conditions with crack closure and without crack closure, respectively. At both stress ratios a thickness effect was clearly evident, with thicker specimens exhibiting higher growth rates in the transition from plane strain to plane stress region. The effect of thickness for a stress ratio of 0.05 corresponded well with the fracturing mode transitions observed on the specimens. A model based on the strain energy release rate which accounted for the fracture mode transition was found to correlate the thickness effects well. The specimens tested at the stress ratio of 0.75 did not make the transition from tensile mode to shear mode, indicating that another mechanism besides crack closure or fracture mode transition was active.

  14. A microscopic study of crack initiation mechanisms in 7075 aluminum alloy sheets.

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Liebowitz, H.

    1973-01-01

    A study of the opening mode of crack initiation in 7075-T6 aluminum alloy sheets has been conducted with the aid of a scanning electron microscope. Observations were made from several orientations, including the top view of the specimen which showed the notch profile and the edge view of the specimen which showed the entire notch front along the specimen thickness. It was found that the edge view exhibited the first signs of permanent deformation at about 55% of the breaking strength. These changes took the form of deformation bands which were aligned in the direction of the tensile axis and apparently defined limiting regions of homogeneous slip. It is felt that the appearance of microcracks at loads approaching the breaking strength was of fundamental importance in the formation of the final fracture surface. Many of these microcraks were initiated at intermetallic particles and other metallurgically weak regions on the notch surface. It was also possible to correlate the strain in the notch with the stress intensity factor for the various loads. Very large plastic strains were observed on the notch tip as compared to published values of elongation at fracture for unnotched specimens.

  15. Finite-element analyses and fracture simulation in thin-sheet aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.; Bigelow, C. A.

    1992-01-01

    A two-dimensional, elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy under monotonic loading after precracking at different cyclic stress levels. Tests were conducted on three types of specimens: middle-crack, three-hole-crack and blunt-notch tensile specimens. An experiment technique was developed to measure CTOA during crack growth initiation and stable tearing using a high-resolution video camera and recorder. Crack front shapes were also measured during initiation and stable tearing using a fatigue marker-load technique. Three-dimensional elastic-plastic finite-element analyses of these crack shapes for stationary cracks were conducted to study the crack-front opening displacements. Predicted load against crack extension on middle-crack tension specimens agreed well with test results even for large-scale plastic deformations. The analyses were able to predict the effects of specimen size and precracking stress history on stable tearing. Predicted load against load-line displacements agreed well with test results up to maximum load bu the analyses tended to overpredict displacements as crack grew beyond the maximum load under displacement-controlled conditions. During the initiation phase, the measured CTOA values were high but decreased and remained nearly constant after a small amount of stable tearing. The constant value of CTOA agree well with the calculated value from the finite-element analysis. The larger CTOA values measured at the sheet surface during the initiation phase may be associated with the crack tunneling observed in the tests. Three-dimensional analyses for nonstraight crack fronts predicted much higher displacements near the free surface than in the interior.

  16. Development of corrosion resistant aluminum heat exchanger, Part 1: Development of new aluminum alloy sheets for sacrificial anode

    SciTech Connect

    Hagiwara, M.; Baba, Y.; Tanabe, Z.; Miura, T.; Hasegawa, Y.; Iijima, K.

    1986-01-01

    The sacrificial anodic effect of Al-Zn alloy reduced markedly in aluminium heat exchanger as car air conditioner manufactured by vacuum brazing conventionally used, as zinc elements preferentially evaporate in vacuum-heating. It was found that Al-Sn alloy had superior electrochemical characteristics than Al-Zn alloy (AA7072) as the sacrificial anodic material used in vacuum brazing. According to many experimental results, the new brazing sheet-fin with Al-Mn-Sn alloy core metal has been developed. This fin has favorable formability and prominent sacrificial anodic effect. Therefore, this fin is excellent material for car air conditioner manufactured by vacuum brazing.

  17. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  18. Fracture behavior of large-scale thin-sheet aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dewit, Roland; Fields, Richard J.; Mordfin, Leonard; Low, Samuel R.; Harne, Donald

    1994-01-01

    A series of fracture tests on large-scale, pre-cracked, aluminum alloy panels is being carried out to examine and to characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were specially designed to enable the panel specimens to be loaded in tension, in a 1780-kN-capacity universal testing machine. Twelve panel specimens, each consisting of a single sheet of bare 2024-T3 aluminum alloy, 3988 mm high, 2286 mm wide, and 1.016 mm thick are being fabricated with simulated through-cracks oriented horizontally at mid-height. Using existing information, a test matrix has been set up that explores regions of failure that are controlled by fracture mechanics, with additional tests near the boundary between plastic collapse and fracture. In addition, a variety of multiple site damage (MSD) configurations have been included to distinguish between various proposed linkage mechanisms. All tests but one use anti-buckling guides. At this writing seven specimens have been tested. Three were fabricated with a single central crack, three others had multiple cracks on each side of the central crack, and one had a single crack but no anti-buckling guides. Each fracture event was recorded on film, video, computer, magnetic tape, and occasionally optical microscopy. The visual showed the crack tip with a load meter in the field of view, using motion picture film for one tip and SVHS video tape for the other. The computer recorded the output of the testing machine load cell, the stroke, and twelve strain gages at 1.5 second intervals. A wideband FM magnetic tape recorder was used to record data from the same sources. The data were analyzed by two different procedures: (1) the plastic zone model based on the residual strength diagram; and (2) the R-curve. The first three tests were used to determine the basic material properties, and these results were then used in the analysis of the two subsequent tests with MSD cracks. There is

  19. Texture Control of Aluminum, Iron, and Magnesium Alloy Sheets to Increase Their Plastic Strain Ratios

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung; Han, Heung Nam

    2011-08-01

    It is known that the limiting drawing ratio of sheet metals is proportional to their plastic strain ratios, and the plastic strain ratios of fcc and bcc metal sheets increase with increasing <111>//ND component in their textures. Conventional cold rolling and subsequent annealing of fcc metals cannot give rise to the <111>//ND component. Specifically, the cold rolling texture of polycrystalline fcc metals is characterized by the fiber connecting the {112}<111>, {123}<634>, and {011}<211> orientations in the Euler space, which is often called the β-fiber. The density of each component in the fiber depends on the stacking fault energy of metals. The {112}<111> and {123}<634> textured Al alloy sheets evolve the {001}<100> texture, when recrystallized. The low plastic strain ratios of the Al alloy sheets are attributed to the {001}<100> texture. The <111>//ND texture can be obtained in shear deformed fcc sheets. Bcc steels develop the <111>//ND texture when cold rolled and recrystallized. However, the density of <111>//ND depends on the content of dissolved interstitial elements such as carbon and nitrogen. The density of the <111>//ND component decreases with increasing concentration of the dissolved interstitial elements. For a given steel, the density of the <111>//ND component can vary with varying thermomechanical treatment. Magnesium alloy sheets are subjected to sheet forming processes at temperatures of 200 °C or higher because of their basal plane texture, or the <0002>//ND orientation. Many studies have been made to alleviate the component so that the magnesium alloy sheets can have better formability. In this article, the above issues are briefly reviewed and discussed.

  20. Effect of Brake Forming in Various Tempers on the Strength of Alclad 75S-T Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Woods, Walter; Heimerl, George J

    1947-01-01

    Results are presented of tests to determine the effect of brake forming in various tempers on the strength of Alclad 75S-T aluminum alloy sheet in the direction parallel to the brake. The tensile and compressive strengths of Alclad 75S-T sheet, formed in the O and W tempers, were either increased or little affected compared with those of similarly treated unformed material. When Alclad 75S-T sheet 'as received' was formed, however, the tensile yield stress was reduced about 7 percent for the with-grain direction and 1 percent for the cross-grain direction, whereas the tensile ultimate and compressive yield stresses were increased somewhat. The elongation was always slightly reduced as a result of forming.

  1. The effect of microstructure on cavitation during hot deformation in fine-grained AA5083 aluminum alloy sheet material

    NASA Astrophysics Data System (ADS)

    Chang, Jung-Kuei

    Aluminum alloys are of great interest to the automobile industry for vehicle mass reduction, which improves vehicle performance and reduces emissions. Hot forming processes, such as superplastic forming (SPF) and quick-plastic forming (QPF) have been developed to take advantage of the improved formability of certain aluminum materials at elevated temperature. Commercial fine-grained aluminum alloy AA5083 sheet is the most commonly used material in the SPF and QPF forming processes. Hot formability of AA5083 is often limited by material cavitation during forming, which makes understanding and controlling cavitation an issue of primary importance for improving hot sheet forming processes. The thermomechanical processing history of AA5083 can strongly affect superplastic performance, causing variations in formability between material lots. These variations are closely related to microstructure, and intermetallic particles are prime suspects for controlling cavitation behavior. However, there has been little more than anecdotal evidence available that these particles nucleate or influence cavitation. Interactions between intermetallic particles and cavities were, thus, analyzed using both two-dimensional (2-D) and three-dimensional (3-D) microstructure characterization techniques. Analysis of 3-D microstructures from AA5083 specimens deformed under conditions similar to the SPF and QPF processes provide conclusive proof that cavities form at specific types of intermetallic particles. Differences in cavitation between materials deformed under the SPF and QPF processes result from differences in deformation mechanisms. These differences are illustrated by the formation of filaments on fracture surfaces of superplastically deformed AA5083 specimens, which have been characterized.

  2. Microstructural control in an aluminum core alloy for brazing sheet applications

    NASA Astrophysics Data System (ADS)

    Marshall, G. J.; Bolingbroke, R. K.; Gray, A.

    1993-09-01

    The use of aluminum alloys for automotive heat exchangers has increased considerably in the last 15 to 20 years, and in parallel, new alloys have been developed to meet the increased demand for higher strengths and improved corrosion resistance. An Al-Mn alloy, X800, has been developed by Alcan to significantly increase the corrosion resistance of radiator tubes when subjected to typical service environments. Conventional alloy tubes, 3xxx or 6xxx, fail by intergranular attack, whereas X800 utilizes the diffusion of Si during brazing to form a sacrificial layer between core and cladding and thus prevent penetration through the core. The Si penetrates up to a depth of 70 µm into the core alloy and combines with both the Mn in solid solution and the coarse constituent particles to form the α-AlMnSi phase. In contrast to the core, the interface layer exhibits a high dispersoid density, a modified coarse particle chemistry, and a lower Mn level in solid solution after brazing. Three layers remain after brazing; an α-Al residual cladding, the interface layer with a band of dense precipitates (BDP), and the X800 core. Free corrosion potential measurements confirmed the lowering of the potential within the BDP by about 30 mV compared to —710 mV for the brazed X800 core.

  3. Tensile deformation behavior of spray-deposited FVS0812 heat-resistant aluminum alloy sheet at elevated temperatures

    SciTech Connect

    Yan Qiqi; Fu Dingfa . E-mail: Fudingfa69@163.com; Deng Xuefeng; Zhang Hui; Chen Zhenhua

    2007-06-15

    The tensile deformation behavior of spray deposited FVS0812 heat-resistant aluminum alloy sheet was studied by uniaxial tension tests at temperatures ranging from 250 deg. C to 450 deg. C and strain rates from 0.001 to 0.1 s{sup -1}. The associated fracture surfaces were examined by scanning electron microscopy (SEM). The results show that the degree of work-hardening increases with decreasing temperature, and exhibits a small decrease with increasing strain rate; the strain rate sensitivity exponent increases with increasing temperature. The flow stress increases with increasing strain rate but decreases with increasing temperature. The total elongations to fracture increase not only with increasing temperature, but also with increasing strain rate, which is in marked contrast with the normal inverse dependence of elongation on the strain rate exhibited by conventional aluminum alloy sheets. The SEM fracture analysis indicates that the dependence of elongation on the strain rate may be due to the presence of a transition from plastic instability at lower strain rates to stable deformation at higher strain rates for fine-grained materials produced by spray deposition.

  4. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  5. Friction stir welding of thin-sheet, age-hardenable aluminum alloys: A study of process/structure/property relationships

    NASA Astrophysics Data System (ADS)

    Shukla, Alpesh Khushalchand

    Friction Stir Welding (FSW) is a relatively new joining process that, as a solid-state process, offers several advantages over conventional fusion welding. Although FSW has been used extensively for the joining of age-hardenable aluminum alloys, the detailed effects of process parameters on the microstructures and mechanical properties of these welds have not been studied, especially for thin-sheet alloys. The present study investigated the FSW of thin-sheet, age-hardenable aluminum alloys, including: the development and optimization of welding process parameters that produce high-integrity, defect-free welds; the systematic evaluation of the effect of the base metal microstructure, FSW process parameters, and corresponding weld zone thermal conditions on microstructure evolution across the weld zone; the analysis of FSW mechanical properties and fracture behavior; and the development of relationships between the process parameters, microstructure, properties, and fracture that allow the optimization of weld performance. Two alloy systems, viz., Al-Cu-Mg (2024) and Al-Cu-Li (2195) in naturally-aged and artificially-aged conditions, respectively, were studied. Process optimization in 1 mm thick 2024-T3 sheet resulted in superior properties versus those of FS welds in thick sheet and plate, and nearly 100% joint efficiency. Microstructures, hardness and tensile properties of FS welds in 2024-T3 exhibited a strong dependency on process parameters. The heat of welding promoted various weld zone microstructures that were produced via the dissolution of base metal GPB zones, the nucleation of GBP and GPB II, and the nucleation and coarsening of S phase. SZ hardness for 2024-T3 welds exhibited a strong, but unusual dependency on the FSW process parameters, which was related to different mechanisms related to GPB zone formation. The microstructures of FS welds in 1 mm thick 2195-T8 were generally insensitive to the FSW process parameters. For all weld heat inputs, FSW

  6. Tensile and pack compressive tests of some sheets of aluminum alloy, 1025 carbon steel, and chromium-nickel steel

    NASA Technical Reports Server (NTRS)

    Atchison, C S; Miller, James A

    1942-01-01

    Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.

  7. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  8. Prediction of Crack Growth under Variable-Amplitude Loading in Thin-Sheet 2024-T3 Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1997-01-01

    The present paper is concerned with the application of a "plasticity-induced" crack closure model to study fatigue crack growth under various load histories. The model was based on the Dugdale model but modified to leave plastically deformed material in the wake of the advancing crack. The model was used to correlate crack growth rates under constant-amplitude loading and then used to predict crack growth under variable-amplitude and spectrum loading on thin-sheet 2024- T3 aluminum alloys. Predicted crack-opening stresses agreed well with test data from the literature. The crack-growth lives agreed within a factor of two for single and repeated spike overloads/underloads and within 20 percent for spectrum loading. Differences were attributed to fretting-product-debris-induced closure and three-dimensional affects not included in the model.

  9. Fracture testing of large-scale thin-sheet aluminum alloy

    NASA Astrophysics Data System (ADS)

    Dewit, Roland; Fields, Richard J.; Low, Samuel R., III; Harne, Donald E.; Foecke, Tim

    1995-05-01

    A series of fracture tests on large-scale, pre-cracked, aluminum alloy panel was carried out to examine and to characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were specially designed to enable the panel specimens to be loaded in tension in a 1780-kN-capacity universal testing machine. Using existing information, a test matrix was set up to explore regions of failure controlled by fracture mechanics, with additional tests near the boundary between plastic collapse and fracture. In addition, a variety of multiple site damage (MSD) configurations were included to distinguish between various proposed linkage mechanisms. All tests but one used anti-buckling guides. The data were analyzed by two different procedures: (1) the plastic zone model based on the residual strength diagram; and (2) the R-curve. The first three tests were used to determine the basic material properties, and these results were then used in the analysis of the subsequent tests with MSD cracks.

  10. Orientation effects on the measurement and analysis of critical CTOA in an aluminum alloy sheet

    NASA Technical Reports Server (NTRS)

    Sutton, M. A.; Dawicke, D. S.; Newman, J. C., Jr.

    1994-01-01

    Fracture tests were conducted on 76.2mm wide, 2.3mm thick middle crack tension (M(T)) specimens machined from 2024-T3 aluminum sheet. The specimens were tested on the T-L orientation and comparisons were made to similar tests conducted in the L-T orientation. Measurement of critical crack tip opening angle (CTOA), applied stress, and crack front shape were made as a function of crack extension. A two-dimensional, elastic-plastic finite element analysis was used to simulate the fracture behavior for both orientations. The results indicate that the T-L orientation had a 10 percent lower stress at fracture than similar tests conducted in the L-T orientation. Correspondingly, the critical CTOA in the T-L tests reached a constant value of 4.7 degrees after 2-3mm of crack extension and the L-T tests reached a value of 6 degrees. The fracture surfaces of the T-L specimens were observed to remain flat, while those of the L-T specimens transitioned to a 45 degree slant fracture after about 2-3mm of crack extension. The tunneling behavior of the two orientations also differed; the T-L specimens reached a deeply tunneled stabilized crack front shape while, the L-T specimens were observed to have only a small amount of tunneling once the crack began to grow on the 45 degree slant. The two-dimensional, elastic-plastic finite element analysis was able to simulate the fracture behavior for both the T-L and L-T orientations.

  11. Spot welding of steel and aluminum using insert sheet

    SciTech Connect

    Oikawa, H.; Saito, T.; Yoshimura, T.

    1994-12-31

    Automobile industries have been increasingly interested in the use of aluminum and thus joining of steel and aluminum becomes of importance. The joining of the two types of metal raises a problem of brittle welds caused by the formation of intermetallic compounds. The authors solved the problem by using an insert sheet. This paper deals with the resistance spot welding of steel and aluminum sheets using insert sheets. The insert sheet used in the present development was a steel/aluminum clad sheet of the 0.8 mm thickness with 50% steel and 50% aluminum. The clad sheet was produced by warm rolling of steel and aluminum with a direct resistance heating process. Steel to be warm rolled was of EDDQ of the 0.4 mm thickness and aluminum was of JIS A1050 of 0.6 mm thickness. The mechanical properties of the insert clad sheets were in between those of the steel sheets and the aluminum sheets, while the clad sheets showed much better formability than the aluminum sheets. Resistance spot welding was conducted for 0.8 mm thick EDDQ steel sheets and 1.0 mm thick aluminum alloy (AL-5.5%Mg) sheets under the welding force of 1.96 kN, welding current ranging between 4.2 and 20.1 kA, and welding time from 0.5 to 10 cycles. The steel was spot welded to the steel side of the insert sheet while the aluminum was welded to the aluminum side. What the authors investigated were the applicable welding current range, nugget diameter, tensile shear strength, U-tension strength, and macro- and microstructures. In conclusion, steel sheets can be spot welded to aluminum sheets without difficulty by using clad sheets as insert materials while the strength level of the dissimilar metal spot welds is close to that of aluminum joints.

  12. Tests of Aluminum-alloy Stiffened-sheet Specimens Cut from an Airplane Wing

    NASA Technical Reports Server (NTRS)

    Holt, Marshall

    1943-01-01

    The specimens used in the present tests were cut from an actual airplane wing of the stressed-skin type. The specimens thus obtained were not representative of the usual type of laboratory specimens because the stiffeners were not exactly parallel nor evenly spaced and, in one case, the skin consisted of pieces of sheet of different thicknesses. The test data obtained indicate that the buckling strain of stiffened curved sheet can be computed with reasonable accuracy by the equation given by Wenzek. The ultimate loads of the specimens when tested as flat sheet were within +/-11 percent of the product of the compressive yield strength and the cross-sectional area of the stiffeners. A rivet spacing equal to 98 times the sheet thickness was a source of weakness, and rivet spacings up to 36 times the sheet thickness appeared satisfactory.

  13. Fracture Tests on Thin Sheet 2024-T3 Aluminum Alloy for Specimens with and Without Anti-Buckling Guides

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; Newman, James C., Jr. (Technical Monitor)

    2001-01-01

    A series of fracture test were conducted to determine the effects of specimen type specimen width and buckling on the fracture behavior of cracked thin sheet (0.063 inch thick) 2024-T3 aluminum alloy. A summary of the experimental measurements is presented for fracture tests conducted on two specimen types and various widths. Middle-crack tension M(T) and compact tension C(T) specimens were tested in the L-T and T-L orientation with duplicate tests for each condition. Four widths (W= 3, 12, 24, and 40 inch) were tested for the middle-crack tension specimens, and three widths (W=2, 4, and 6 inch) were tested for the compact tension specimens. The M(T) specimens were tested in either a constrained (out-of-plane displacements restrained with antibuckling guides) or unconstrained conditions were the specimen was free to buckle out of plane Measurements were made of load against crack extension for all specimens.

  14. Comparison of the Effects of Tool Geometry for Friction Stir Welding Thin Sheet Aluminum Alloys for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight

    2006-01-01

    In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.

  15. Comparison of the Effects of Tool Geometry for Friction Stir Welding Thin Sheet Aluminum Alloys for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight

    2006-01-01

    In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.

  16. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  17. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  18. Properties of the joints of sheets of 1565ch alloy in combination with other aluminum alloys that were performed by friction welding with mixing

    NASA Astrophysics Data System (ADS)

    Drits, A. M.; Ovchinnikov, V. V.

    2016-06-01

    The structure and properties of the butt-welded joints of a 1565ch M aluminum alloy with AMg5, AMg6, AV (60661), and 7021 alloys that were performed by friction welding with mixing are studied. The mechanical properties of these joints and their fracture zones are determined as functions of a combination of the alloys to be joined. These alloys are found to have good weldability under friction welding with mixing.

  19. Modelling the plastic anisotropy of aluminum alloy 3103 sheets by polycrystal plasticity

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Holmedal, B.; Hopperstad, O. S.; Dumoulin, S.

    2014-10-01

    The plastic anisotropy of AA3103 sheets in the cold-rolled condition (H18 temper) and in the fully annealed condition (O temper) was studied experimentally and numerically in this work. The microstructure and texture of the two materials were characterized and the anisotropic plastic behaviour was measured by in-plane uniaxial tension tests along every 15° from the rolling direction to the transverse direction of the sheet. Five polycrystal plasticity models, namely the full-constraint Taylor model, the Alamel model, the Alamel type III model, the visco-plastic self-consistent crystal plasticity model and the crystal plasticity finite element method (CPFEM), were employed to predict the plastic anisotropy in the plane of the sheet. Experimentally observed grain shapes were taken into consideration. In addition, a hybrid modelling method was employed where the advanced yield function Yld2004-18p was calibrated to stress points provided by CPFEM simulations along 89 in-plane strain-paths. This provided a close approximation to in-plane CPFEM predictions and is one convenient way to include the influence of realistic grain morphology on the plastic anisotropy. Based on comparisons between the experimental and the predicted results, the hybrid modelling method is considered as the most accurate way of describing the plastic anisotropy. The Alamel type III and Alamel models are also recommended as accurate and time-efficient models for predicting the plastic anisotropy of the AA3103 sheets in H18 and O tempers.

  20. Deformation and fracture of thin sheet aluminum-lithium alloys: The effect of cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Gangloff, Richard P.

    1990-01-01

    The objective is to characterize the fracture behavior and to define the fracture mechanisms for new Al-Li-Cu alloys, with emphasis on the role of indium additions and cryogenic temperatures. Three alloys were investigated in rolled product form: 2090 baseline and 2090 + indium produced by Reynolds Metals, and commercial AA 2090-T81 produced by Alcoa. The experimental 2090 + In alloy exhibited increases in hardness and ultimate strength, but no change in tensile yield strength, compared to the baseline 2090 composition in the unstretched T6 condition. The reason for this behavior is not understood. Based on hardness and preliminary Kahn Tear fracture experiments, a nominally peak-aged condition was employed for detailed fracture studies. Crack initiation and growth fracture toughness were examined as a function of stress state and microstructure using J(delta a) methods applied to precracked compact tension specimens in the LT orientation. To date, J(delta a) experiments have been limited to 23 C. Alcoa 2090-T81 exhibited the highest toughness regardless of stress state. Fracture was accompanied by extensive delamination associated with high angle grain boundaries normal to the fatigue precrack surface and progressed microscopically by a transgranular shear mechanism. In contrast the two peak-aged Reynolds alloys had lower toughness and fracture was intersubgranular without substantial delamination. The influences of cryogenic temperature, microstructure, boundary precipitate structure, and deformation mode in governing the competing fracture mechanisms will be determined in future experiments. Results contribute to the development of predictive micromechanical models for fracture modes in Al-Li alloys, and to fracture resistant materials.

  1. Crack-tip-opening angle measurements and crack tunneling under stable tearing in thin sheet 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.

    1993-01-01

    The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.

  2. Aluminum Alloy 7068 Mechanical Characterization

    DTIC Science & Technology

    2009-08-01

    strength of 99 ksi (2). The commonly specified material properties for extruded 7068 aluminum are shown in table 1, along with 7050 and 7075 aluminum ...alloys for comparison (3). Table 1. Mechanical property comparison of high-strength aluminum alloys. Property Alloy 7068 7075 7050 Elastic... Aluminum Alloy 7068 Mechanical Characterization by Michael Minnicino, David Gray, and Paul Moy ARL-TR-4913 August 2009

  3. Low-aluminum content iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  4. Towards the problem of forming full strength welded joints on aluminum alloy sheets. Part II: AA7475

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Tatiana; Tarasov, Sergey; Eliseev, Alexander; Fortuna, Anastasiya

    2016-11-01

    The microstructural evolution in welded joint zones obtained both by friction stir welding and ultrasonic- assisted friction stir welding on dispersion hardened 7475 aluminum alloy has been examined together with the analysis of mechanical strength and microhardness. It was established that ultrasonic-assisted friction stir provided leveled microhardness profiles across the weld zones as well as higher joint strength as compared to those of standard friction stir welding.

  5. Influence of extrinsic crack deflection and delamination mechanisms on the cryogenic toughness of aluminum-lithium alloy 2090: Behavior in plate (T81) vs sheet (T83) material

    SciTech Connect

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1989-02-01

    Cryogenic strength-toughness relationships are examined in 1.6-mm- thick sheet of commercial 2090-T8 aluminum-lithium alloy, and results compared with behavior in 12.7-mm-thick rolled plate. Unlike the significant increase in L-T fracture toughness exhibited by thick place sections at cryogenic temperatures, the thin sheet (of normally similar composition and microstructure) shows a marked decrease in toughness between 298 and 77 K. Such contrasting observations are attributed primarily to the low short-transverse toughness of the 2090-plate material, which results in enhanced through-thickness intergranular splitting during low-temperature fracture and hence to a prominent role of crack-divider delamination toughening. 23 refs., 6 figs., 1 tab.

  6. Weld Repair of Thin Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  7. Improvements in springback control by external force laser-assisted sheet bending of titanium and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gisario, A.; Barletta, M.; Venettacci, S.

    2016-12-01

    The present investigation deals with an external-force laser assisted bending process of Grade 2 CP titanium and AA 7075 T6 aluminum sheets. High bending angles, sharp fillet radii and control of springback were achieved by tuning the contact pressure of a hydraulically driven tool with the local and selective heating of the bending zone by irradiation with a high power diode laser. First, the role of laser operational parameters, namely power, scanning speed and number of passes, in metal bending was investigated, allowing to identify the most suitable processing window. Second, a custom-built equipment to measure the bending angle during the forming process, together with the metal temperature, was implemented. Real-time monitoring of the bending angle and temperature allowed to evaluate the continuous evolution of the geometry of the metal substrates during the external force laser-assisted bending process. Experimental results showed both metal sheets could be bent to high angles with very low fillet radii by the appropriate combination of the tooling contact pressure and selective laser heating of the bending zone. Laser heating also reduces the risk of rupture in both metals during bending at high angles, limits the springback extent up to 10 times on titanium and 30 times on aluminum in comparison with conventional bending process and does not affect significantly the visual appearance of the bending zone.

  8. Corrosion of aluminum and aluminum alloys

    SciTech Connect

    Davis, J.R.

    1999-01-01

    This new handbook presents comprehensive coverage of the corrosion behavior of aluminum and aluminum alloys, with emphasis on practical information about how to select and process these materials in order to prevent corrosion attack. Described are the characteristics of these materials and the influences of composition, mechanical working, heat treatment, joining methods, microstructure, and environmental variables on their corrosion.

  9. Spray forming of superplastic aluminum sheet

    SciTech Connect

    Lavender, C.A.; Smith, M.T.; McHugh, K.M.; Key, J.F.

    1995-12-31

    Ingot metallurgy (I/M) processing methods for superplastic aluminum sheet require substantial hot, warm and final cold rolling reduction steps to produce the desired fine grain size and thermally-stable microstructure necessary for superplastic forming (SPF). The rapid solidification rates associated with spray forming offer the potential for economic processing of near net-thickness SPF sheet having alloy compositions that are not possible with conventional ingot metallurgy. To evaluate the application of spray forming for SPF aluminum sheet, a modified 5083 alloy was supplied to Idaho National Engineering Laboratory for processing using laboratory spray-forming equipment. Spray-formed sheet specimens were then supplied to the Battelle Pacific Northwest Laboratory for characterization and comparison with conventional I/M-based SPF sheet. Results show that the spray formed material, when processed using appropriate homogenization and cold reduction steps (3:1 total reduction), has an equiaxed grain size of 2--4 {micro}m near the deposition substrate. However, microstructural examination indicates that grain size increases as a function of the distance from the deposition substrate. Tensile tests were conducted at a temperature of 550 C and constant strain rates over a range of 5 {times} 10{sup {minus}4} to 5 {times} 10{sup {minus}3} s{sup {minus}1} to evaluate the superplastic behavior of the spray-formed samples. Results show that the spray-formed material having a 3:1 cold rolling reduction has superplastic elongation equivalent to I/M materials processed with a 60:1 reduction.

  10. Mechanical Properties of Aluminum-alloy Rivets

    NASA Technical Reports Server (NTRS)

    Brueggeman, Wm C

    1936-01-01

    The development of metal construction for aircraft has created a need for accurate and detailed information regarding the strength of riveted joints in aluminum-alloy structures. To obtain this information the National Bureau of Standards in cooperation with the National Advisory Committee for Aeronautics is investigating the strength of riveted joints in aluminum alloys. The strength of riveted joints may be influenced by the form of the head, the ratio of the rivet diameter to the sheet thickness, the driving stress, and other factors. This note gives the results of tests to develop the riveting technique for test specimens and to determine the effects of these factors.

  11. Tensile Properties of 7075-T6 and 2024-T3 Aluminum-alloy Sheet Heated at Uniform Temperature Rates Under Constant Load

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Inge, John E

    1955-01-01

    Results are presented of tests to determine the effect of heating at uniform temperature rates from 0.2 degrees to 100 degrees F. per second on the tensile properties of 7075-T6 d(75s-T6) and 2024-T3 (24s-T3) aluminum-alloy sheet under constant-load conditions. Yield and rupture stresses, obtained under rapid-heating conditions, are compared with results of elevated-temperature stress-strain tests for 1/2-hour exposure. Master yield-and-rupture-stress curves based on linear temperature-rate parameter are presented. Yield and rupture stresses and temperatures may be predicted by means of master curves and the parameter.

  12. Influence of Crack-Tip Configurations on the Fracture Response of 0.04-Inch Thick 2024-T3 Aluminum Alloy Sheet

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; Newman, James C. (Technical Monitor)

    2002-01-01

    A series of fracture tests were conducted on Middle-crack tension M(T) and compact tension C(T) specimens to determine the effects of specimen type, specimen width, notch tip sharpness and buckling on the fracture behavior of cracked thin sheet (0.04 inch thick) 2024-T3 aluminum alloy material. A series of M(T) specimens were tested with three notch tip configurations: (1) a fatigue pre-cracked notch, (2) a 0.010-inch-diameter wire electrical discharge machined (EDM) notch, and (3) a EDM notch sharpened with a razor blade. The test procedures are discussed and the experimental results for failure stress, load vs. crack extension and the material stress-strain response are reported.

  13. Aluminum alloys with improved strength

    NASA Technical Reports Server (NTRS)

    Deiasi, R.; Adler, P.

    1975-01-01

    Mechanical strength and stress corrosion of new BAR and 7050 alloys that include Zn instead of Cr have been studied and compared with those of 7075 aluminum alloy. Added mechanical strength of new alloys is attributed to finer grain size of 5 to 8 micrometers, however, susceptibility to stress corrosion attack is increased.

  14. A laboratory means to produce tough aluminum sheet from powder

    NASA Astrophysics Data System (ADS)

    Singleton, O. R.; Royster, D. M.; Thomas, J. R.

    The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.

  15. A laboratory means to produce tough aluminum sheet from powder

    NASA Technical Reports Server (NTRS)

    Singleton, O. R.; Royster, D. M.; Thomas, J. R.

    1990-01-01

    The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.

  16. Microstructure and mechanical properties of twin-wire arc sprayed Ni-Al composite coatings on 6061-T6 aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Wang, Ji-xiao; Liu, Jing-shun; Zhang, Lun-yong; Sun, Jian-fei; Wang, Zhi-ping

    2014-05-01

    We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coatings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experimental conditions. The abrasive wear behavior and interface diffusion behavior of the composite coatings were evaluated by dry/wet rubber wheel abrasive wear tests and heat treatment, respectively. Experimental results indicate that the composite coatings exhibit features of adhesive wear. Besides, the Vickers microhardness of NiAl and Ni3Al intermetallic compounds is relatively larger than that of the substrate, which is beneficial for enhancing the wear resistance. With the increase of annealing temperature and time, the interface diffusion area between the Ni-Al coating and the substrate gradually expands with the formation of NiAl3 and Ni2Al3 phases, and is controlled by diffusion of aluminum atoms. The grain growth exponent n of diffusion kinetics of the Ni-Al coating, calculated via a high-temperature diffusion model at 400, 480, and 550°C, is between 0.28 and 0.38. This satisfies the cubic law, which is consistent with the general theoretical relationship of high-temperature diffusion.

  17. Axial Fatigue Tests at Zero Mean Stress of 24S-T Aluminum-alloy Sheet with and Without a Circular Hole

    NASA Technical Reports Server (NTRS)

    Brueggeman, W C; Mayer, M JR; Smith, W H

    1944-01-01

    Axial fatigue tests were made on 189 coupon specimens of 0.032-inch 24S-T aluminum-alloy sheet and a few supplementary specimens of 0.004-inch sheet. The mean load was zero. The specimens were restrained against lateral buckling by lubricated solid guides described in a previous report on this project. About two-thirds of the 0.032-inch specimens were plain coupons nominally free from stress raisers. The remainder contained a 0.1285-inch drilled hole at the center where the reduced section was 0.5 inch wide. S-N diagrams were obtained for cycles to failure between about 1000 and 10 to the 7th power cycles for the plain specimens and 17 and 10 to the 7th power cycles for the drilled specimens. The fatigue stress concentration factor increased from about 1.08 for a stress amplitude causing failure at 0.25 cycles (static) to a maximum of 1.83 at 15,000 cycles and then decreased gradually. The graph for the drilled specimens showed less scatter than that for the plain specimens.

  18. Aluminum alloys for aerostructures

    SciTech Connect

    Staley, J.T.; Liu, J.; Hunt, W.H. Jr.

    1997-10-01

    Demands on the airframe industry have shifted over the years, but they have always moved in the direction of lower weight, higher damage tolerance, and longer-term durability. Up to the 1960s, the greatest need was for high strength to reduce weight. In the 1970s, higher fracture toughness and corrosion resistance were sought for enhanced damage tolerance and durability. In the early 1980s, the requirement for reduced weight was renewed, but by the late 1980s and early 1990s, durability became a concern again. Today`s focus is on materials that can help achieve low-cost manufacturing without sacrificing performance; future needs are likely to include both affordability and higher performance. This article describes the development of high-strength aluminum alloy materials that have satisfied past and current requirements, and identifies possible aluminum-intensive approaches that combine alternate design concepts and emerging materials technologies for low-cost, low-weight, damage-tolerant, and durable airframe structures of the future.

  19. Corrosion behavior of aluminum-lithium alloys

    SciTech Connect

    Garrard, W.N. )

    1994-03-01

    Corrosion behavior of three aluminum-lithium (Al-Li) alloys was investigated in aerated 0.5 M sodium sulfate (Na[sub 2]SO[sub 4]), deaerated 3.5% sodium chloride (NaCl), and aerated 3.5% NaCl. Corrosion behavior of the Aluminum Association (AA) alloys 2090-T8E41 (UNS A92090, sheet), AA 8090-T851 (UNS A98090, sheet), and AA 8090-T82551 (UNS A98090, bar) was compared to behavior of the conventional AA 7075-T6 (UNS A97075, sheet). Uniform corrosion was the predominant form of attack in aerated Na[sub 2]SO[sub 4] and deaerated NaCl, although some localized attack resulted from corrosion of intermetallics on specimen surfaces. Pitting was the main form of attack in aerated NaCl. In all three media, the sheet materials corroded at a similar rate, but the bar form of AA 8090 corroded at a lower rate. Pretreatment of the alloys by immersion in a cerium (Ce) solution inhibited pitting in aerated NaCl but only for a short period.

  20. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  1. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  2. Laboratory produced P/M aluminum 2XXX + Zr sheet

    NASA Technical Reports Server (NTRS)

    Royster, Dick M.; Singleton, O. R.

    1988-01-01

    A laboratory-scale batch of aluminum alloy sheeting samples in the 2XXX + Zr system has been produced by P/M techniques in the T8X temper and subjected to tensile and Kahn tear property tests in both the longitudinal and long-transverse directions. The results obtained were compared to those of a NASA study concerning the same alloy powders; it appears that laboratory production-scale sheet-sample properties are good to excellent predictors of pilot-scale process products' tensile and tear notch toughness properties. The tear resistance toughness of the laboratory samples was not predictive of the pilot-scale products, however.

  3. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  4. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  5. Material Modeling of 6000 Series Aluminum Alloy Sheets with Different Density Cube Textures and Effect on the Accuracy of Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Yanaga, Daisaku; Kuwabara, Toshihiko; Uema, Naoyuki; Asano, Mineo

    2011-08-01

    Biaxial tensile tests of 6000 series aluminum alloy sheet with different density cube textures were carried out using cruciform specimens similar to that developed by one of the authors [Kuwabara, T. et al., J. Material Process. Technol., 80/81(1998), 517-523.]. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. Successive contours of plastic work in stress space and the directions of plastic strain rates were precisely measured and compared with those calculated using selected yield functions. The Yld2000-2d yield functions with exponents of 12 and 6 [Barlat, F. et al., Int. J. Plasticity 19 (2003), 1297-1319] are capable of reproducing the general trends of the work contours and the directions of plastic strain rates observed for test materials with high and low cube textures, respectively. Hydraulic bulge tests were also conducted and the variation of thickness strain along the meridian direction of the bulged specimen was compared with that calculated using finite element analysis (FEA) based on the Yld2000-2d yield functions with exponents of 12 and 6. The differences of cube texture cause significant differences in the strain distributions of the bulged specimens, and the FEA results calculated using the Yld2000-2d yield functions show good agreement with the measurement results.

  6. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  7. Advanced Cast Aluminum Alloys

    DTIC Science & Technology

    2009-02-01

    microstructure of the Al - Zn -Mg- Cu alloys was similar to the as-cast microstructure ...Further, new research has been initiated on ultra-high strength, microalloyed Al - Zn -Mg- Cu alloys with the goal of producing complex castings with...wrought 2519 alloy . Further, new research has been initiated on ultra-high strength, microalloyed Al - Zn -Mg- Cu alloys with the goal of producing

  8. Development of Twin-Belt Cast AA5XXX Series Aluminum Alloy Materials for Automotive Sheet Applications

    DTIC Science & Technology

    2009-02-01

    elongation (EL), and r-average value at 15% plastic strain were measured by tensile testing specified by JIS Z2241. The stretching limit dome height... LDH ) was measured by dome testing with a 100mm diameter hemispherical punch installed in a stamping machine. The test piece dimension was 200mm...read as LDH . Stress corrosion cracking (SCC) was also evaluated. To increase the susceptibility to SCC, 1mm sheets were additionally cold rolled to

  9. Supersaturated Aluminum Alloy Powders.

    DTIC Science & Technology

    1981-07-15

    shown in Fig. 18 . It .an be clearly seen that most of the iron is concentrated in the precipitates (Fig. 18 ), X-ray mapping immage for the chromium...At 232°C our alloys are comparable to 2� and 2618 in their tensile properties, and except for alloy #1 which at t i temperature has elongation of...demonstrate better yield strength and UTS than the 2219, 2618 and are comparable to the ALCOA alloy. They show however higher ductility than the ALCOA alloy

  10. Non-Heat Treatable Alloy Sheet Products

    SciTech Connect

    Hayden, H.W.; Barthold, G.W.; Das, S.K.

    1999-08-01

    ALCAR is an innovative approach for conducting multi-company, pre-competitive research and development programs. ALCAR has been formed to crate a partnership of aluminum producers, the American Society of Mechanical Engineers Center for Research and Technology Development (ASME/CRTD), the United States Department of Energy (USDOE), three USDOE National Laboratories, and a Technical Advisory Committee for conducting cooperative, pre-competitive research on the development of flower-cost, non-heat treated (NHT) aluminum alloys for automotive sheet applications with strength, formability and surface appearance similar to current heat treated (HT) aluminum alloys under consideration. The effort has been supported by the USDOE, Office of Transportation Technology (OTT) through a three-year program with 50/50 cost share at a total program cost of $3 million. The program has led to the development of new and modified 5000 series aluminum ally compositions. Pilot production-size ingots have bee n melted, cast, hot rolled and cold rolled. Stamping trials on samples of rolled product for demonstrating production of typical automotive components have been successful.

  11. Aluminum Alloys--Industrial Deformable, Sintered and Light Aluminum Alloys

    DTIC Science & Technology

    1974-10-30

    thin film on the particles of the highly dispersed aluminum powder when it is ground in spherical mills in a nitrogen atmosphere in which the...principal elements, certain small admixtures are introduced into the alloys, which have a considerable effect on the decay kinetics of the oversaturated...strengthened by the insoluble dispersed alumina particles. Fine grinding of the original powder provides the dispersion of the oxide films and particles

  12. Nd:YAG laser welding aluminum alloys

    SciTech Connect

    Jimenez, E. Jr.

    1992-02-01

    Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

  13. Prediction of macroscopic anisotropy in rolled aluminum-lithium sheet

    SciTech Connect

    Choi, S.H.; Barlat, F.

    1999-10-08

    The low density and high Young's modulus of Al-Li based alloys have stimulated their development for applications in aircraft manufacture. However, the anisotropy of tensile properties in Al-Li based alloys is usually higher than that of other aluminum alloys. Macroscopic anisotropy of Al-Li based alloys has been widely studied due to its importance in process design. In order to understand the effect of crystallographic texture on the macroscopic properties more rigorously, a more fundamental approach is required. In the present study, the effect of crystallographic texture on the macroscopic properties of a 2090-T3 sheet metal was investigated using the visco-plastic, self-consistent (VPSC) polycrystal model. This model satisfies both stress equilibrium and strain compatibility conditions.

  14. Aluminum Alloy 7050 Extrusions.

    DTIC Science & Technology

    1977-03-01

    Artificial Aging Conditions 250 A-l Fatigue Crack Growth Data for C5A Extruded Panel, 7050-T7351X, L-T Orientation, R=0.1 254 A-2 Fatigue...cooldd aluminum and steel bottom blocks (Figure 2) were fabricated for use with this tooling. Metal was melted in a 10,000-lb capacity open- hearth ...time factor, effects of heating through this temperature range to the maximum artificial agirg temperature are additive. The solution of the

  15. Superplasticity in aluminum alloys

    SciTech Connect

    Nieh, T. G.

    1997-12-01

    We have characterized in the Al-Mg system the microstructure and mechanical properties of a cold-rolled Al-6Mg-0.3Sc alloy. The alloy exhibited superplasticity at relatively high strain rates (about 10-2 s-1). At a strain rate of 10-2 s-1 there exists a wide temperature range (475-520`C) within which the tensile elongation is over 1000%. There also exists a wide strain rate range (10-3 - 10-1 s-1) within which the tensile elongation is over 500%. The presence of Sc in the alloy results in a uniform distribution of fine coherent Al3SC precipitates which effectively pin grain and subgrain boundaries during static and continuous recrystallization. As a result, the alloy retains its fine grain size (about 7 micron), even after extensive superplastic deformation (>1000%). During deformation, dislocations Mg with a high Schmidt factor slip across subgrains but are trapped by subgrain boundaries, as a result of the strong pining of Al3Sc. This process leads to the conversion of low-angled subgrain boundaries to high-angled grain boundaries and the subsequent grain boundary sliding, which produces superelasticity. A model is proposed to describe grain boundary sliding accommodated by dislocation glide across grains with a uniform distribution of coherent precipitates. The model predictions is consistent with experimental observations.

  16. Welding high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Parks, P. G.; Hoppes, R. V.; Hasemeyer, E. A.; Masubuchi, K.

    1974-01-01

    Handbook has been published which integrates results of 19 research programs involving welding of high-strength aluminum alloys. Book introduces metallurgy and properties of aluminum alloys by discussing commercial alloys and heat treatments. Several current welding processes are reviewed such as gas tungsten-arc welding and gas metal-arc welding.

  17. Microbial corrosion of aluminum alloy.

    PubMed

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors.

  18. Investigation of High Speed Friction Test for Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ooki, K.; Takahashi, S.

    2016-08-01

    To shorten the development stage of automobiles, FEM simulation has been applied. It was important to increase the accuracy of the sheet metal simulation results. The friction coefficient between the sheet metal and dies the greatly affected the simulation results. Therefore, apparatus for measuring the friction coefficient with a specific press forming speed (300 mm/s) has been developed. The materials of the sheet metals and dies were aluminum alloys and die steel respectively. It was found that the friction was affected by the difference between the velocity of the sheet metal and that of the dies.

  19. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  20. Column and Plate Compressive Strength of Extruded XB75S-T Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Heimerl, George J.; Roy, J. Albert

    1944-01-01

    Results are presented of tests to determine the column and plate compressive strength of extruded XB75S-T aluminum alloy, and comparative values are shown for 24S-T aluminum-alloy sheet. Stress-strain curves are also given,

  1. About Alloying of Aluminum Alloys with Transition Metals

    NASA Astrophysics Data System (ADS)

    Zakharov, V. V.

    2017-05-01

    An attempt is made to advance Elagin's principles of alloying of aluminum alloys with transition metals (TM) such as Mn, Cr, Zr, Ti, V with allowance for the ternary equilibrium and metastable Al - TM - TM phase diagrams. The key moments in the analysis of the phase diagrams are the curves (surfaces) of joint solubility of TM in aluminum, which bound the range of the aluminum solid solution. It is recommended to use combinations of such TM (two and more), the introduction of which into aluminum alloys widens the phase range of the aluminum solid solution.

  2. Kinetics of aluminum lithium alloys

    NASA Astrophysics Data System (ADS)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  3. The effect of engineered surface texture on sheet aluminum formability

    NASA Astrophysics Data System (ADS)

    Jarvis, Glenn William

    In industrial sheet metal forming many variables affect the stamping of an acceptable part. These include mechanical properties of the sheet metal, part design, die design, lubrication, stamping press, surface condition, etc. Attempts to control many of these variables have been made, but in general the sheet metal stamping process is still more art than science. Part and die design are still based primarily on experience. This makes the introduction of new materials or processes difficult since the previous historical experience is, in general, not directly applicable across materials or processes. This has been most evident in the recent interest in the use of aluminum sheet to replace steel sheet in automotive applications. The driving force for this substitution has been the significant weight reductions which are possible. Since sheet metal stamping technology has been very much an experience driven profession, primarily with mild steel, direct substitution of aluminum for steel proved more difficult than anticipated. Steel has a better intrinsic formability than aluminum at comparable strength levels. It is therefore necessary to develop technologies which will increase the press formability of aluminum sheet, thus increasing the flexibility afforded to part designers, the robustness of the stamping process, and the integrity of the formed part. The application of engineered surface texture has been shown to improve formability of parts in industrial applications and has been applied to steel sheet for a long period of time and is now beginning to be applied to aluminum sheet. The primary benefit attributed to engineered surface texture is an improvement in the frictional response of the sheet and tooling during forming. In this work we studied the influence of engineered surface texture on the intrinsic formability of the base material, in our case sheet aluminum. In order to accomplish this study aluminum alloy 6111-T4 sheet was obtained with four different

  4. Application of modern aluminum alloys to aircraft

    NASA Astrophysics Data System (ADS)

    Starke, E. A., Jr.; Staley, J. T.

    Aluminum alloys have been the primary material of choice for structural components of aircraft since about 1930. Although polymer matrix composites are being used extensively in high-performance military aircraft and are being specified for some applications in modern commercial aircraft, aluminum alloys are the overwhelming choice for the fuselage, wing, and supporting structure of commercial airliners and military cargo and transport. Well known performance characteristics, known fabrication costs, design experience, and established manufacturing methods and facilities, are just a few of the reasons for the continued confidence in aluminum alloys that will ensure their use in significant quantities for the rest of this century and likely well into the next one. But most significantly, there have been major advances in aluminum aircraft alloys that continue to keep them in a competitive position. In the early years aluminum alloys were developed by trial and error, but over the past thirty years there have been significant advances in our understanding of the relationships among composition, processing, microstructural characteristics and properties. This knowledge base has led to improvements in properties that are important to aircraft applications. This review covers the performance and property requirements for airframe components in current aircraft and describes aluminum alloys and product forms which meet these requirements. It also discusses the structure/property relationships of aluminum aircraft alloys and describes the background and drivers for the development of modern aluminum alloys to improve performance. Finally, technologies under development for future aircraft are discussed.

  5. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  6. Study on the Formation and Characterization of the Intermetallics in Friction Stir Welding of Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Ghosh, R. N.; Pal, T. K.

    2014-10-01

    Multimaterial fabrication such as joining of steel and aluminum is currently prominent in a variety of industries. Friction stir welding is a novel solid-state welding process that causes good joint strength between steel and aluminum. However, the phenomenon contributing significant strength at the interface is not yet clear. In the present study, the interface of the friction stir lap-welded aluminum and coated steel sheet having joint strength maximum (71.4 pct of steel base metal) and minimum, respectively, under two parameter combinations, i.e., 1000 rpm 50 mm min-1 and 500 rpm 100 mm min-1, was exclusively characterized by X-ray diffraction, transmission electron microscopy (TEM), concentration profile, and elemental mapping by electron-probe microanalysis. A TEM-assisted EDS study identifies the morphologies of large size Al13Fe4 and small size Fe3Al-type intermetallic compounds at the interface. The diffusion-induced intermetallic growth (thickness) measured from a backscattered image and concentration profile agreed well with the numerically calculated one. The growth of these two phases at 1000 rpm 50 mm min-1 is attributed to the slower cooling rate (~3.5 K/s) with higher diffusion time (44 seconds) along the interface in comparison to the same for 500 rpm 100 mm min-1 with faster cooling rate (~10 K/s) and less diffusion time (13.6 seconds). The formation of thermodynamically stable and hard intermetallic phase Al13Fe4 at 1000 rpm and travel speed 50 mm min-1 in amounts higher than 500 rpm and a travel speed of 100 mm min-1 results in better joint strength, i.e., 71.4 pct, of the steel base metal.

  7. First principles pseudopotential calculations on aluminum and aluminum alloys

    SciTech Connect

    Davenport, J.W.; Chetty, N.; Marr, R.B.; Narasimhan, S.; Pasciak, J.E.; Peierls, R.F.; Weinert, M.

    1993-12-31

    Recent advances in computational techniques have led to the possibility of performing first principles calculations of the energetics of alloy formation on systems involving several hundred atoms. This includes impurity concentrations in the 1% range as well as realistic models of disordered materials (including liquids), vacancies, and grain boundaries. The new techniques involve the use of soft, fully nonlocal pseudopotentials, iterative diagonalization, and parallel computing algorithms. This approach has been pioneered by Car and Parrinello. Here the authors give a review of recent results using parallel and serial algorithms on metallic systems including liquid aluminum and liquid sodium, and also new results on vacancies in aluminum and on aluminum-magnesium alloys.

  8. Investigation of Three Analytical Hypothesis for Determining Material Creep Behavior under Varied Loads, with an Application to 2024-T3 Aluminum-Alloy Sheet in Tension at 400 F

    NASA Technical Reports Server (NTRS)

    Berkovits, Avraham

    1961-01-01

    Three existing hypotheses are formulated mathematically to estimate tensile creep strain under varied loads and constant temperature from creep data obtained under constant load and constant temperature. hypotheses investigated include the time-hardening, strain-hardening, and life-fraction rules. Predicted creep behavior is compared with data obtained from tensile creep tests of 2024-T3 aluminum-alloy sheet at 400 F under cyclic-load conditions. creep strain under varied loads is presented on the basis of an equivalent stress, derived from the life-fraction rule, which reduces the varied-load case to a constant-load problem. Creep strain in the region of interest for structural design and rupture times, determined from the hypotheses investigated, are in fair agreement with data in most cases, although calculated values of creep strain are generally greater than the experimental values because creep recovery is neglected in the calculations.

  9. The influence of surface topography on the forming friction of automotive aluminum sheet

    SciTech Connect

    Kramer, Pamela Ann

    1998-05-01

    Interest in utilizing aluminum alloys in automobiles has increased in recent years as a result of the desire to lower automobile weight and, consequently, increase fuel economy. While aluminum alloy use in cast parts has increased, outer body panel applications are still being investigated. The industry is interested in improving the formability of these sheet alloys by a combination of alloy design and processing. A different avenue of improving the formability of these alloys may be through patterning of the sheet surface. Surface patterns hold the lubricant during the forming process, with a resulting decrease in the sheet-die surface contact. While it has been speculated that an optimum surface pattern would consist of discrete cavities, detailed investigation into the reduction of forming friction by utilizing discrete patterns is lacking. A series of discrete patterns were investigated to determine the dependence of the forming friction of automotive aluminum alloys on pattern lubricant carrying capacity and on material strength. Automotive aluminum alloys used in outer body panel applications were rolled on experimental rolls that had been prepared with a variety of discrete patterns. All patterns for each alloy were characterized before and after testing both optically and, to determine pattern lubricant capacity, using three dimensional laser profilometry. A draw bead simulation (DBS) friction tester was designed and fabricated to determine the forming friction of the patterned sheets. Tensile testing and frictionless DBS testing were performed to ascertain the material properties of each sheet. The most striking result of this work was the inversely linear dependence of forming friction on the lubricant carrying capacity of the discrete patterns.

  10. Surface alloying of silicon into aluminum substrate.

    SciTech Connect

    Xu, Z.

    1998-10-28

    Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

  11. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  12. Solution Potentials Indicate Aluminum-Alloy Tempers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Report discusses use of solution potential as measure of temper of aluminum alloys. Technique based on fact that different tempers or heat treatments exhibit different solution potentials as function of aging time.

  13. DYNAMIC TESTS OF STRUCTURAL ALUMINUM ALLOYS.

    DTIC Science & Technology

    A series of dynamic tests was conducted on three grades of structural aluminum alloys: (a) 6061-T6, (b) 6063 - T5 , and (c) 5456-H321. The effects of...at the maximum test rates. The 6063 - T5 aluminum shoed no change in yield stress and a 5.8% increase in tensile strength at the maximum test rate

  14. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  15. Major and Minor Constituents of Aluminum Alloys

    DTIC Science & Technology

    1986-03-01

    sample alloys obtained by both techniques. Keywords: Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma Atomic Emission Spectroscopy(ICP-AES).... absorption spectroscopy and inductively coupled plasma atomic emission spectroscopy are used for the determination of major magnesium, lithium, copper, zinc...An accurate analysis of aluminum alloys is required for quality control and characterization purposes. The two analytical techniques atomic

  16. Materials data handbook: Aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  17. Weldable aluminum alloy has improved mechanical properties

    NASA Technical Reports Server (NTRS)

    Westerlund, R. W.

    1966-01-01

    Weldable aluminum alloy has good resistance to stress-corrosion cracking, shows unchanged strength and formability after storage at room temperature, and can be pre-aged, stretched, and aged. Since toxic fumes of cadmium oxide are evolved when the new alloy is welded, adequate ventilation must be provided.

  18. Precipitation hardening in aluminum alloy 6022

    SciTech Connect

    Miao, W.F.; Laughlin, D.E.

    1999-03-05

    Although the precipitation process in Al-Mg-Si alloys has been extensively studied, the understanding of the hardening process is still incomplete, since any change in composition, processing and aging practices, etc., could affect the precipitation hardening behavior. In this paper, hardness measurements, differential scanning calorimetry and transmission electron microscopy have been utilized to study the precipitation hardening behavior in aluminum alloy 6022.

  19. Materials data handbook: Aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 6061 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  20. Materials data handbook: Aluminum alloy 5456

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 5456 is presented. The scope of the information includes physical and mechanical property data at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  1. Materials data handbook: Aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information on aluminum alloy 7075 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  2. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  3. Processing of 2090 Aluminum Alloy for Superplasticity

    DTIC Science & Technology

    1988-06-01

    behavior has now been extensively documented in Al-Mg alloys, with elongations in excess of 1,000 percent obtained in many cases in these alloys. The...crucial. Characteristics of superplastic behavior include a fine grain size (two to five microns), a strain rate sensitivity coefficient m > 0.3, 1 I| and...seven to eight percent less and demonstrates ten percent higher stiffness than 7075 aluminum, an alloy it was designed to replace. This is due to the

  4. NASA-427: A New Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  5. Determination of forming limit diagrams of AA6013-T6 aluminum alloy sheet using a time and position dependent localized necking criterion

    NASA Astrophysics Data System (ADS)

    Dicecco, S.; Butcher, C.; Worswick, M.; Boettcher, E.; Chu, E.; Shi, C.

    2016-11-01

    The forming limit behaviour of AA6013-T6 aluminium alloy sheet was characterized under isothermal conditions at room temperature (RT) and 250°C using limiting dome height (LDH) tests. Full field strain measurements were acquired throughout testing using in situ stereoscopic digital image correlation (DIC) techniques. Limit strain data was generated from the resulting full field strain measurements using two localized necking criteria: ISO12004- 2:2008 and a time and position dependent criterion, termed the “Necking Zone” (NZ) approach in this paper, introduced by Martinez-Donaire et al. (2014). The limit strains resulting from the two localization detection schemes were compared. It was found that the ISO and NZ limit strains at RT are similar on the draw-side of the FLD, while the NZ approach yields a biaxial major limit strain 14.8% greater than the ISO generated major limit strain. At 250°C, the NZ generated major limit strains are 31-34% greater than the ISO generated major limit strains for near uniaxial, plane strain and biaxial loading conditions, respectively. The significant variance in limit strains between the two methodologies at 250°C highlights the need for a validation study regarding warm FLC determination.

  6. Formability Prediction Of Aluminum Sheet In Automotive Applications

    SciTech Connect

    Leppin, Christian; Daniel, Dominique; Shahani, Ravi; Gese, Helmut; Dell, Harry

    2007-05-17

    In the following paper, a full mechanical characterization of the AA6016 T4 aluminum alloy car body sheet DR100 is presented. A comprehensive experimental program was performed to identify and model the orthotopic elasto-plastic deformation behavior of the material and its fracture characteristics including criteria for localized necking, ductile fracture and shear fracture. The commercial software package MF GenYld + CrachFEM in combination with the explicit finite element code Ls-Dyna is used to validate the quality of the material model with experiments, namely, prediction of the FLD, deep drawing with a cross-shaped punch and finally, analysis of a simplified hemming process using a solid discretization of the problem. The focus is on the correct prediction of the limits of the material in such processes.

  7. Oxidation resistance of aluminum-coated Fe-20Cr alloys containing rare earths or yttrium

    SciTech Connect

    Sigler, D.R. )

    1993-10-01

    Aluminum-coated Fe-20Cr (rare earth or yttrium) alloy foils were developed with oxidation resistance equivalent or superior to Fe-20Cr-5Al (rare earth or yttrium) alloy foils. The coated foils were made by dipping Fe-20Cr sheet into a salt-covered aluminum bath and then rolling the sheet to foil. Oxidation resistance of the coated foil was enhanced by adding rare earths or yttrium to the Fe-20Cr substrate alloys to insure oxide adherence. Test results indicate that only sufficient addition to tie up sulfur as a stable sulfide is needed in the Fe-20Cr alloy. Aluminum-coated foils show lower oxide growth rates than similar Fe-Cr-Al alloys, most likely the result of fewer impurities (particularly Fe) is the coated foils' growing oxide scale. 31 refs., 18 figs., 2 tabs.

  8. Crack Repair in Aerospace Aluminum Alloy Panels by Cold Spray

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Silvello, A.

    2017-02-01

    The cold-spray process has recently been recognized as a very useful tool for repairing metallic sheets, achieving desired adhesion strengths when employing optimal combinations of material process parameters. We present herein the possibility of repairing cracks in aluminum sheets by cold spray. A 2099 aluminum alloy panel with a surface 30° V notch was repaired by cold spraying of 2198 and 7075 aluminum alloy powders. The crack behavior of V-notched sheets subjected to bending loading was studied by finite-element modeling (FEM) and mechanical experiments. The simulations and mechanical results showed good agreement, revealing a remarkable K factor reduction, and a consequent reduction in crack nucleation and growth velocity. The results enable prediction of the failure initiation locus in the case of repaired panels subjected to bending loading and deformation. The stress concentration was quantified to show how the residual stress field and failure are affected by the mechanical properties of the sprayed materials and by the geometrical and mechanical properties of the interface. It was demonstrated that the crack resistance increases more than sevenfold in the case of repair using AA2198 and that cold-spray repair can contribute to increased global fatigue life of cracked structures.

  9. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  10. Electromagnetic forming of aluminium alloy sheet

    NASA Astrophysics Data System (ADS)

    Oliveira, D. A.; Worswick, M.

    2003-09-01

    A numerical method for modeling the high rate deformation and impact that occurs during the electromagnetic forming process is presented with supporting experimental data, used to validate the predictions. The numerical model employs “loose" two-way coupling of the electromagnetic analysis with the elastic-plastic structural analysis. An electromagnetic finite element code is used to model the time varying currents that are discharged through the coil in order to obtain the transient magnetic forces that are imparted to the workpiece. The body forces generated by electromagnetic induction are then used as the loading condition to model the high rate deformation of the workpiece using an explicit dynamic finite element code. A series of high rate electromagnetic forming experiments are performed on 1 and 1.6 mm AA5754 and 1 mm AA5182 aluminum alloy sheet. The experiments consider free forming, while also serving as a basis to validate the predictive capability of the numerical models. The experiments exhibited high rate formability limits that were similar to conventional quasistatic forming limits. The numerical model accurately predicted the final geometry of the samples as well as the measured strain distributions.

  11. Environmental fatigue in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  12. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  13. Nondestructive determination of mechanical properties. [aluminum alloys

    NASA Technical Reports Server (NTRS)

    Schneider, E.; Chu, S. L.; Salma, K.

    1984-01-01

    Aluminum alloys of types 1100, 3003, 5052, 6061, and 2024 were used to study the sensitivity of the acousto-elastic constant to changes in the microstructure. Results show that there is a strong relationship between the acousto-elastic constants and the yield strength and hardness. This relationship depends on whether the alloy is strain hardened or precipitation hardened. In strain hardened alloys, the constants increase as the amount of solid solution is decreased, while the behavior is the opposite in precipitation hardened alloys.

  14. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  15. Aluminum core structures brazed without use of flux

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Aluminum alloy face sheets are brazed to aluminum alloy honeycomb cores without using corrosive flux by means of one or three methods. The completed brazed structure has the high-strength characteristics of heat treated aluminum alloys.

  16. FABRICATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Saller, H.A.

    1959-12-15

    A process is presented for producing a workable article of a uranium- aluminum alloy in which the uranium content is between 14 and 70% by weight; aluminum powder and powdered UAl/sub 2/, UAl/sub 3/, UAl/sub 5/, or UBe/sub 9/ are mixed, and the mixture is compressed into the shape desired and sintered at between 450 and 600 deg C.

  17. Aluminum-lithium alloys with hafnium

    SciTech Connect

    Rioja, R.J.; Bretz, P.E.; Jacoby, J.

    1989-09-26

    This patent describes an aluminum base alloy suitable for forming into a wrought product having improved combinations of strength and fracture toughness. The alloy consisting essentially of 0.2 to 5.0 wt % Li, 0.05 to 6.0 wt % Mg, 0.2 to 5.0 wt % Cu, 0 to 2.0 wt % Mn, 0 to 1.0 wt, % Zr, 0.05 to 12.0 wt. % Zn, 0.05 to 1.0 wt. % Hf, 0.5 wt.% Fe, 0.5 wt. % max. Si, the balance aluminum and incidental impurities.

  18. On the Study of the Sheet Bendability in AA5754-O Temper Alloy

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Jin, H.; Wu, P. D.; Lloyd, D. J.

    2016-10-01

    The bendability of AA5754 aluminum alloy in fully recrystallized temper (O temper) has been studied. Both experimental and numerical work showed that a strong {001}<100> Cube crystallographic texture in the sheet provides improved bendability compared with a low Cube texture sheet, even though the tensile properties of both sheets are similar. A crystal-based finite element model also showed that the textural distribution influences bendability, while the initial surface topography has little effect.

  19. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    DTIC Science & Technology

    2012-01-01

    strength 7075-T651aluminum alloy . Johnson - Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration...structural components made of high strength 7075-T651aluminum alloy . Johnson - Cook model constants determined for Al7075-T651 alloy bar material...rate sensitivity, Johnson - Cook , constitutive model. PACS: 62.20 .Dc, 62.20..Fe, S 62.50. +p, 83.60.La INTRODUCTION Aluminum 7075 alloys are

  20. Phases in lanthanum-nickel-aluminum alloys

    SciTech Connect

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  1. Cryogenic properties of aluminum alloys and composites

    SciTech Connect

    Hill, M.A.; Rollett, A.D.; Jacobson, L.A.; Borch, N.R.; Gibbs, W.S.; Patterson, R.A.; Carter, D.H.

    1989-01-01

    Several aluminum-based materials have been evaluated for possible application at cryogenic temperatures. These included the Al-Li alloy 2090, a high purity mechanically alloyed Al, SiC whisker reinforced Al 2124, and SiC particulate reinforced Al 6061. Mechanical properties, thermal properties and electrical properties were measured for these materials. Their performance in a radio frequency cavity was also determined. 4 refs., 6 figs.

  2. Degassing of Aluminum Alloys Using Ultrasonic Vibration

    SciTech Connect

    Meek, T. T.; Han, Q.; Xu, H.

    2006-06-01

    The research was intended to lead to a better fundamental understanding of the effect of ultrasonic energy on the degassing of liquid metals and to develop practical approaches for the ultrasonic degassing of alloys. The goals of the project described here were to evaluate core principles, establish a quantitative basis for the ultrasonic degassing of aluminum alloy melts, and demonstrate the application of ultrsaonic processing during ingot casting and foundry shape casting.

  3. Enhancement of superplastic formability in a high strength aluminum alloy

    NASA Technical Reports Server (NTRS)

    Agrawal, S. P.; Turk, G. R.; Vastava, R.

    1988-01-01

    A 7475 aluminum alloy was developed for superplastic forming (SPF). By lowering the Fe and Si contents in this alloy significantly below their normal levels and optimizing the thermomechanical processing to produce sheet, over 2000 percent thickness strain to failure was obtained. The microstructure, elevated-temperature uniaxial and biaxial tension, and cavitation behavior of the alloy were determined. In addition, a constitutive model was used to form a generic structural shape from which mechanical test specimens were removed and post-SPF characteristics were evaluated. The constitutive model included both material strain hardening and strain rate hardening effects, and was verified by accurately predicting forming cycles which resulted in successful component forming. Stress-life fatigue, stress rupture, and room and elevated temperature tensile tests were conducted on the formed material.

  4. Welding the four most popular aluminum alloys

    SciTech Connect

    Irving, B.

    1994-02-01

    The fact that business is good in aluminum welding is a sure sign that more manufacturers and fabricators are using GMA and GTA welding to build new products out of this lightweight nonferrous metal. Among the most widely specified weldable grades are Alloys 6061, 5083, 5052 and 5454. A rundown on these four alloys, including properties and selected applications, is provided. Any company working with aluminum for the first time needs to know something about these four alloys. Alloys of copper-magnesium-silicon combination, of which 6061 is one, are heat-treatable. The three 5XXX series alloys, on the other hand, are nonheat-treatable. According to P.B. Dickerson, consultant, Lower Burrell, Pa., 5083, because of its high magnesium content, is the easiest of the four alloys to arc weld. Dickerson put the cut-off point in weldability at 3.5% magnesium. To prevent cracking, he added, both 6061 and 5052 require much more filler metal than do the other two alloys. Alloy 6061 consists of 0.25Cu, 0.6Si, 1.0Mg, and 0.20Cr. The main applications for 6061 aluminum are structural, architectural, automotive, railway, marine and pipe. It has good formability, weldability, corrosion resistance and strength. Although the 6XXX series alloys are prone to hot cracking, this condition can be readily overcome by correct choice of joint design and electrode. The most popular temper for 6061 is T6, although the -T651, -T4, and -F temper are also popular. The -T651 temper is like a -T6 temper, only it has received some final stretch hardening. The -T4 temper has been solution heat-treated and quenched. The -F temper is in the as-fabricated condition.

  5. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  6. Technology of welding aluminum alloys-II

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Step-by-step procedures were developed for high integrity manual and machine welding of aluminum alloys. Detailed instructions are given for each step with tables and graphs to specify materials and dimensions. Throughout work sequence, processing procedure designates manufacturing verification points and inspection points.

  7. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    NASA Technical Reports Server (NTRS)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  8. Evaluation of Vitreous and Devitrifying Enamels as Hot Forming Lubricants for Aluminum AA5083 Alloy

    NASA Astrophysics Data System (ADS)

    Riahi, A. R.; Morales, A. T.; Alpas, A. T.

    2008-06-01

    The adhesion of aluminum to tool surfaces during the hot forming of sheet aluminum alloys presents challenging tribological problems. Graphite and boron nitride are commonly used as aluminum adhesion mitigating solid lubricants for hot forming processes, but lubricant breakdown in high-stress areas, such as corners and bends, remains an issue compromising the quality of the formed parts as well as the tool life. Low-melting temperature enamels may provide an affordable and easy to apply alternative. In this study, vitreous (amorphous glass) and devitrifying (two phase crystalline glass) layers were deposited on the surface of sheet aluminum samples with a sedimentation technique. Enamel lubrication was effective in preventing aluminum transfer to the steel counterface. Hence, the prospect exists for the use of these enamels as aluminum workpiece lubricants in hot forming operations.

  9. Issues for conversion coating of aluminum alloys with hydrotalcite

    SciTech Connect

    Drewien, C.A.; Buchheit, R.G.

    1993-12-01

    Hydrotalcite coatings on aluminum alloys are being developed for corrosion protection of aluminum in aggressive saline environments. Coating bath composition, surface pretreatment, and alloying elements in aluminum all influence the performance of these coatings during salt spray testing. The coating bath, comprised of lithium carbonate, requires aging by dissolution of aluminum into the bath in order to grow corrosion resistant coatings. Coatings formed in non- aged baths do not perform well in salt spray testing. The alloying elements in aluminum alloys, especially copper, influence the coating growth and formation leading to thin coatings. The effect of the alloy elements is to limit the supply of aluminum to the coating/electrolyte interface and hinder growth of hydrotalcite upon aluminum alloys.

  10. Metallography of Aluminum and Its Alloys : Use of Electrolytic Polishing

    NASA Technical Reports Server (NTRS)

    Jacquet, Pierre A

    1955-01-01

    Recent methods are described for electropolishing aluminum and aluminum alloys. Numerous references are included of electrolytic micrographic investigations carried out during the period 1948 to 1952. A detailed description of a commercial electrolytic polishing unit, suitable for micrographic examination of aluminum and its alloys, is included.

  11. Deposition of Amorphous Aluminum Alloys as a Replacement for Aluminum Cladding

    DTIC Science & Technology

    2009-02-05

    1 DEPOSITION OF AMORPHOUS ALUMINUM ALLOYS AS A REPLACEMENT FOR ALUMINUM CLADDING US Army Corrosion Summit February 3-5, 2009 Clearwater, FL Ben...REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Depostion of Amorphous Aluminum Alloys as a Replacement for Aluminum ...Tantalum for gun barrel applications WC-Co-Cr for landing gear ID Co-Cr-Al-Y bond coat for thermal barrier system Pure aluminum for Cd replacement

  12. The Effect of Impurities on the Processing of Aluminum Alloys

    SciTech Connect

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

    2007-04-23

    database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting of the

  13. Dimensional control of quasisingle crystals of aluminum alloy in production

    SciTech Connect

    Radchenko, A.I.; Karuskevich, M.V.; Naim, V.R.

    1995-01-01

    The article deals with a method of controlling the dimensions of quasisingle crystal grains of an aluminum alloy used instead of single crystal specimens in static fatigue tests with the object of substantiating a discrete probabilistic model of the fatigue of metals and alloys. We obtained a mathematical model of dimensional control of quasisingle crystals of the aluminum alloy.

  14. Serrated flow and surface markings in aluminum alloys

    SciTech Connect

    Li, M., Lege, D.J.

    1998-01-01

    Serrated flow and associated progressive surface markings severely restrict the application of some aluminum sheet alloys for automotive body exteriors. This paper attempts to approach the phenomenon from the localization theory of continuum mechanics as well as from the classical atomistic and dislocation considerations. Plane strain tension tests were conducted for a commercial Al-Mg alloy (5182-O) at different strain rates and temperatures, and the local temperature changes were measured by an infrared thermal imaging system. Continuum mechanics analysis provided the insight into the myth that band surface markings never appear under biaxial tension strain states. In addition, continuum mechanics analysis shed light on the observation that PLC bands were not seen on the surface of plane strain tension specimens even though the stress-strain curves exhibited serrations. Finally, it is emphasized that only by combining the efforts of continuum mechanics at the macroscale and materials science at the microscale, can a complete understanding of the phenomenon be reached.

  15. Diffusion bonding of superplastic aluminum alloys

    SciTech Connect

    Sunwoo, A.J.

    1993-12-01

    Ability to diffusion bond aluminum alloys, in particular superplastic aluminum alloys, will complete the technology-base that is strongly needed to enhance the use of superplastic forming (SPF) technology. Concurrent diffusion bonding (DB)-SPF is considered to be an energy-saving manufacturing process since it simplifies the production of complex components. Moreover, because of increased design flexibility, overall manufacturing cost and component weight are significantly reduced. Diffusion bonding is an attractive manufacturing option for applications where the preservation of the base metal microstructure and, in turn, mechanical properties is imperative in the bond area. The process utilizes either the solid state or transient liquid phase (TLP) bonding to produce a bond with microstructure continuity in the joint. In addition, there is no localized thermal gradient present to induce distortion or to create residual stresses in the component, thereby increasing structural integrity.

  16. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  17. The Delayed Fracture of Aluminum Alloys.

    DTIC Science & Technology

    1981-01-01

    if necessary and Identify by block number) aluminum alloys, stress - corrosion cracking, oxide film, Auger electron spectroscopy, Auger depth profiling...revere Ide If r ecester’ nd Ientify by block number). b -. ,h 0 unJaInenta mechanZsm of stress - corrosion cracking (SCC) has been studied for high-purity...these specimens is not intergranular. Fracture appears to have originated through pitting corrosion , which caused local stress concentration leading to

  18. Constitutive Modeling of Magnesium Alloy Sheets

    SciTech Connect

    Lee, M. G.; Piao, K.; Wagoner, R. H.; Lee, J. K.; Chung, K.; Kim, H. Y.

    2007-05-17

    Magnesium alloy sheets have unique mechanical properties: high in-plane anisotropy/asymmetry of yield stress and hardening response, which have not been thoroughly studied. The unusual mechanical behavior of magnesium alloys has been understood by the limited symmetry crystal structure of h.c.p metals and thus by deformation twinning. In this paper, the phenomenological continuum plasticity models considering the unusual plastic behavior of magnesium alloy sheet were developed for a finite element analysis. A new hardening law based on two-surface model was developed to consider the general stress-strain response of metal sheets such as Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. In terms of the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified to include the anisotropy of magnesium alloys. Also, characterization procedures of material parameters for the constitutive equations were presented and finally the correlation of simulation with measurements was performed to validate the proposed theory.

  19. Technology maturation project on optimization of sheet metal forming of aluminum for use in transportation systems

    NASA Astrophysics Data System (ADS)

    Johnson, Ken I.; Smith, Mark T.; Lavender, Curt A.; Khalell, Mohammad A.

    1994-10-01

    Using aluminum instead of steel in transportation systems could dramatically reduce the weight of vehicles, an effective way of decreasing energy consumption and emissions. The current cost of sheet metal formed (SMF) aluminum alloys (about $4 per pound) and the relatively long forming times of current materials are serious drawbacks to the widespread use of SMF in industry. The interdependence of materials testing and model development is critical to optimizing SMF since the current process is conducted in a heated, pressurized die where direct measurement of critical SMF parameters is extremely difficult. Numerical models provide a means of tracking the forming process, allowing the applied gas pressure to be adjusted to maintain the optimum SMF behavior throughout the forming process. Thus, models can help produce the optimum SMF component in the least amount of time. The Pacific Northwest Laboratory is integrating SMF model development with research in improved aluminum alloys for SMF. The objectives of this research are: develop and characterize competitively priced aluminum alloys for SMF applications in industry; improve numerical models to accurately predict the optimum forming cycle for reduced forming time and improved quality; and verify alloy performance and model accuracy with forming tests conducted in PNL's Superplastic Forming User Facility. The activities performed in this technology maturation project represent a critical first step in achieving these objectives through cooperative research among industry, PNL, and universities.

  20. Thermal coatings for titanium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Cunnington, George R.; Clark, Ronald K.; Robinson, John C.

    1993-01-01

    Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

  1. High Strength and Compatible Aluminum Alloy for Hydrogen-Peroxide Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2004-01-01

    This paper describes the development of a new high strength and Hydrogen Peroxide (HP) propellant compatible aluminum alloy for NASA Hyper-X vehicle's fuel tanks and structures. The tensile strength of the new alloy is more than 3 times stronger than the conventional 5254 alloy while it still maintains HP compatibility similar to 5254 (Class 1 category). The alloy development strategy consists of selecting certain rare earth and transition metals, with unique electrochemical properties, that will not act as catalysts to decompose liquid HP at the atomic level. Such elements will added to the aluminum alloy and the mixture will be cast and rolled into thin sheet metals. Test coupons are machined from sheet metals for HP long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloy using Friction Stir Welding has also been explored. Currently, aluminum alloy 5254 is the state-of-the-art material for HP storage, but its yield strength is very low (420 ksi) and may not be suitable for the development of light-weight fuel tanks for Hyper-X vehicles. The new high strength and HP compatible alloy could represent an enabling material technology for NASA's Hyper-X vehicles, where flight weight reduction is a critical requirement. These X-planes are currently under studied as air-breathing hypersonic research vehicles featuring a lifting body configuration with a Rocket Based Combined Cycle (RBCC) engine system.

  2. High Strength and Compatible Aluminum Alloy for Hydrogen-Peroxide Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2004-01-01

    This paper describes the development of a new high strength and Hydrogen Peroxide (HP) propellant compatible aluminum alloy for NASA Hyper-X vehicle's fuel tanks and structures. The tensile strength of the new alloy is more than 3 times stronger than the conventional 5254 alloy while it still maintains HP compatibility similar to 5254 (Class 1 category). The alloy development strategy consists of selecting certain rare earth and transition metals, with unique electrochemical properties, that will not act as catalysts to decompose liquid HP at the atomic level. Such elements will added to the aluminum alloy and the mixture will be cast and rolled into thin sheet metals. Test coupons are machined from sheet metals for HP long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloy using Friction Stir Welding has also been explored. Currently, aluminum alloy 5254 is the state-of-the-art material for HP storage, but its yield strength is very low (420 ksi) and may not be suitable for the development of light-weight fuel tanks for Hyper-X vehicles. The new high strength and HP compatible alloy could represent an enabling material technology for NASA's Hyper-X vehicles, where flight weight reduction is a critical requirement. These X-planes are currently under studied as air-breathing hypersonic research vehicles featuring a lifting body configuration with a Rocket Based Combined Cycle (RBCC) engine system.

  3. Superplasticity in Thermomechanically Processed High Magnesium Aluminum-Magnesium Alloys.

    DTIC Science & Technology

    1984-03-01

    California DTIC EECTE JL I 1984 THESIS SUPERPLASTICITY IN THERMOMECHANICALLY PROCESSED HIGH MAGNESIUM ALUMINUM-MAGNESIUM ALLOYS C:L by CD) John J. Becker...High Magnesium Aluminum- March 1984 Magnesium Alloys S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(&) John J. Becker 9...magnesium, aluminum-magnesium alloys were investigated. The thermomechanical processing itself included warm rolling at 300°C to 94% reduction

  4. Mechanical properties of laser welded aluminum alloys

    SciTech Connect

    Douglass, D.M.; Mazumder, J.

    1996-12-31

    The demand for lighter weight vehicles has prompted accelerated development in processing aluminum alloys for automobile structural applications. One of the current research initiatives centers on laser beam welding of aluminum alloys. Autogenous butt welds have been performed on Al 3003, 5754, 6111, and 6061-T6 plates with a 6 kW CO2 laser. For 6061, tensile data indicate about 60% of the base metal strength was attained in the as-welded condition, with a brittle fracture occurring through the weld. A post-weld heat treatment to the T6 condition resulted in a recovery of original ultimate tensile strengths, although these also failed in the weld. Hardness measurements of the post-weld T6 reveal a uniform hardness across the HAZ and fusion zone that is comparable to the original hardness. All 3003 welds fractured in the parent material in a ductile fashion. A high quality bead was consistently achieved with the 3003 alloy, whereas the other alloys demonstrated bead irregularities. SEM photographs reveal large, spherical pores, suggesting that they were formed by gas entrapment rather than by shrinkage.

  5. Melt Conditioned Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Scamans, Geoff; Li, Hu-Tian; Fan, Zhongyun

    High shear melt conditioning of aluminum alloy melts disperses oxide films and provides potent nuclei to promote non-dendritic solidification leading to refined as cast microstructures for shape castings, semis or continuously cast product forms. A new generation of high shear melt conditioning equipment has been developed based on a dispersive mixer that can condition either a batch melt or can provide a continuous melt feed. Most significantly the melt conditioner can be used directly in the sump of a DC caster where it has a dramatic effect on the cast microstructure. The present goals are to expand the castable alloy range and to increase the tolerance of alloys used in transport applications to impurities to increase the use of recycled metal. The paper will review the current status of the melt conditioning technology across the range of casting options and will highlight development opportunities.

  6. Fusion boundary microstructure evolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios Dimitrios

    2000-10-01

    A melting technique was developed to simulate the fusion boundary of aluminum alloys using the GleebleRTM thermal simulator. Using a steel sleeve to contain the aluminum, samples were heated to incremental temperatures above the solidus temperature of a number of alloys. In alloy 2195, a 4wt%Cu-1wt%Li alloy, an equiaxed non-dendritic zone (EQZ) could be formed by heating in the temperature range from approximately 630 to 640°C. At temperatures above 640°C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in alloys 5454-H34, 6061-T6, and 2219-T8. Additionally, experimental alloy compositions were produced by making bead on plate welds using an alloy 5454-H32 base metal and 5025 or 5087 filler metals. These filler metals contain zirconium and scandium additions, respectively, and were expected to influence nucleation and growth behavior. Both as-welded and welded/heat treated (540°C and 300°C) substrates were tested by melting simulation, resulting in dendritic and EQZ structures depending on composition and substrate condition. Orientation imaging microscopy (OIM(TM)) was employed to study the crystallographic character of the microstructures produced and to verify the mechanism responsible for EQZ formation. OIM(TM) proved that grains within the EQZ have random orientation. In all other cases, where the simulated microstructures were dendritic in nature, it was shown that epitaxy was the dominant mode of nucleation. The lack of any preferred crystallographic orientation relationship in the EQZ supports a theory proposed by Lippold et al that the EQZ is the result of heterogeneous nucleation within the weld unmixed zone. EDS analysis of the 2195 on STEM revealed particles with ternary composition consisted of Zr, Cu and Al and a tetragonal type crystallographic lattice. Microdiffraction line scans on EQZ grains in the alloy 2195 showed very good agreement between the measured Cu

  7. Bismuth alloy potting seals aluminum connector in cryogenic application

    NASA Technical Reports Server (NTRS)

    Flower, J. F.; Stafford, R. L.

    1966-01-01

    Bismuth alloy potting seals feedthrough electrical connector for instrumentation within a pressurized vessel filled with cryogenic liquids. The seal combines the transformation of high-bismuth content alloys with the thermal contraction of an external aluminum tube.

  8. Dry machinability of aluminum alloys.

    SciTech Connect

    Shareef, I.; Natarajan, M.; Ajayi, O. O.; Energy Technology; Department of IMET

    2005-01-01

    Adverse effects of the use of cutting fluids and environmental concerns with regard to cutting fluid disposability is compelling industry to adopt Dry or near Dry Machining, with the aim of eliminating or significantly reducing the use of metal working fluids. Pending EPA regulations on metal cutting, dry machining is becoming a hot topic of research and investigation both in industry and federal research labs. Although the need for dry machining may be apparent, most of the manufacturers still consider dry machining to be impractical and even if possible, very expensive. This perception is mainly due to lack of appropriate cutting tools that can withstand intense heat and Built-up-Edge (BUE) formation during dry machining. The challenge of heat dissipation without coolant requires a completely different approach to tooling. Special tooling utilizing high-performance multi-layer, multi-component, heat resisting, low friction coatings could be a plausible answer to the challenge of dry machining. In pursuit of this goal Argonne National Labs has introduced Nano-crystalline near frictionless carbon (NFC) diamond like coatings (DLC), while industrial efforts have led to the introduction of composite coatings such as titanium aluminum nitride (TiAlN), tungsten carbide/carbon (WC/C) and others. Although, these coatings are considered to be very promising, they have not been tested either from tribological or from dry machining applications point of view. As such a research program in partnership with federal labs and industrial sponsors has started with the goal of exploring the feasibility of dry machining using the newly developed coatings such as Near Frictionless Carbon Coatings (NFC), Titanium Aluminum Nitride (TiAlN), and multi-layer multicomponent nano coatings such as TiAlCrYN and TiAlN/YN. Although various coatings are under investigation as part of the overall dry machinability program, this extended abstract deals with a systematic investigation of dry

  9. Surface development of an aluminum brazing sheet during heating studied by XPEEM and XPS

    NASA Astrophysics Data System (ADS)

    Rullik, L.; Bertram, F.; Niu, Y. R.; Evertsson, J.; Stenqvist, T.; Zakharov, A. A.; Mikkelsen, A.; Lundgren, E.

    2016-10-01

    X-ray photoelectron emission microscopy (XPEEM) was used in combination with other microscopic and spectroscopic techniques to follow the surface development of an aluminum brazing sheet during heating. The studied aluminum alloy sheet is a composite material designed for vacuum brazing. Its surface is covered with a native aluminum oxide film. Changes in the chemical state of the alloying elements and the composition of the surface layer were detected during heating to the melting temperature. It was found that Mg segregates to the surface upon heating, and the measurements indicate the formation of magnesium aluminate. During the heating the aluminum oxide as well as the silicon is observed to disappear from the surface. Our measurements is in agreement with previous studies observing a break-up of the oxide and the outflow of the braze cladding onto the surface, a process assisted by the Mg segregation and reaction with surface oxygen. This study also demonstrates how XPEEM can be utilized to study complex industrial materials.

  10. Microstructures and properties of aluminum die casting alloys

    SciTech Connect

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  11. Bearing Tests of Magnesium-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Sharp, W H; Moore, R L

    1943-01-01

    Bearing tests of AM-3S, AM-52S, and AM-C57S magnesium-alloy sheet in various thicknesses and tempers were made. Bearing yield and ultimate strengths were determined and compared for various edge distances and for various ratios of loading-pin diameter to sheet thickness. Tensile strengths were determined and ratios of average bearing yield and ultimate strength to tensile strength are given. The results of the tests indicated that ultimate bearing strengths increased with edge distances up to 1.5 to 2 times the diameter of the loading pin; that ultimate bearing strengths are a function of the ratio of pin diameter to sheet thickness; and that these properties are effected only slightly by increases in edge distance greater than 1.5 diameters.

  12. Formability analysis of aluminum alloys through deep drawing process

    NASA Astrophysics Data System (ADS)

    Pranavi, U.; Janaki Ramulu, Perumalla; Chandramouli, Ch; Govardhan, Dasari; Prasad, PVS. Ram

    2016-09-01

    Deep drawing process is a significant metal forming process used in the sheet metal forming operations. From this process complex shapes can be manufactured with fewer defects. Deep drawing process has different effectible process parameters from which an optimum level of parameters should be identified so that an efficient final product with required mechanical properties will be obtained. The present work is to evaluate the formability of Aluminum alloy sheets using deep drawing process. In which effects of punch radius, lubricating conditions, die radius, and blank holding forces on deep drawing process observed for AA 6061 aluminum alloy sheet of 2 mm thickness. The numerical simulations are performed for deep drawing of square cups using three levels of aforesaid parameters like lubricating conditions and blank holding forces and two levels of punch radii and die radii. For numerical simulation a commercial FEM code is used in which Hollomon's power law and Hill's 1948 yield criterions are implemented. The deep drawing setup used in the FEM code is modeled using a CAD tool by considering the modeling requirements from the literature. Two different strain paths (150x150mm and 200x200mm) are simulated. Punch forces, thickness distributions and dome heights are evaluated for all the conditions. In addition failure initiation and propagation is also observed. From the results, by increasing the coefficient of friction and blank holding force, punch force, thickness distribution and dome height variations are observed. The comparison has done and the optimistic parameters were suggested from the results. From this work one can predict the formability for different strain paths without experimentation.

  13. High-Strain-Rate Forming of Aluminum and Steel Sheets for Automotive Applications

    SciTech Connect

    Rohatgi, Aashish; Stephens, Elizabeth V; Soulami, Ayoub; Davies, Richard W; Smith, Mark T

    2010-06-01

    The formability of aluminum alloy AA5182-O and DP600 steel sheets at high-strain-rates was investigated using an electrohydraulic forming (EHF) setup. Test sheets, ~150 mm diameter x 1 mm thick, were clamped around their circumference and subjected to a pressure-pulse (several 100's duration) generated by a high-energy (up to ~34 kJ) under-water electrical discharge. The real-time strain and strain-rate of the deforming sheets were quantified by the digital image correlation (DIC) technique using a pair of high-speed cameras (~15's per frame). Strain-rate amplification was observed when the sheets were deformed into a conical die, with the maximum in-plane strain-rate and strain for aluminum measured as ~1200 /s and ~0.2, respectively. The deformation behavior of the sheets was modeled using ABAQUS/finite element explicit code and better correlation, between the predicted and the experimental sheet deformation behavior, was observed when an alternate pressure-profile was used instead of the one available from the literature.

  14. Evaluation and Characterization of In-Line Annealed Continuous Cast Aluminum Sheet

    SciTech Connect

    Dr Subodh K. Das

    2006-01-17

    This R&D program will develop optimized, energy-efficient thermo-mechanical processing procedures for in-line annealing of continuously cast hot bands of two 5000 series aluminum alloys (5754 and 5052). The implementation of the R&D will result in the production of sheet with improved formability at high levels of productivity consistency and quality. The proposed R&D involves the following efforts: (1) Design and build continuous in-line annealing equipment for plant-scale trials; (2) Carry out plant-scale trials at Commonwealth Aluminum Corp.'s (CAC) plant in Carson; (3) Optimize the processing variables utilizing a metallurgical model for the kinetics of microstructure and texture evolution during thermo-mechanical processing; (4) Determine the effects of processing variables on the microstructure, texture, mechanical properties, and formability of aluminum sheet; (5) Develop design parameters for commercial implementation; and (6) Conduct techno-economic studies of the recommended process equipment to identify impacts on production costs. The research and development is appropriate for the domestic industry as it will result in improved aluminum processing capabilities and thus lead to greater application of aluminum in various industries including the automotive market. A teaming approach is critical to the success of this effort as no single company alone possesses the breadth of technical and financial resources for successfully carrying out the effort. This program will enable more energy efficient aluminum sheet production technology, produce consistent high quality product, and have The proposal addresses the needs of the aluminum industry as stated in the aluminum industry roadmap by developing new and improved aluminum processes utilizing energy efficient techniques. The effort is primarily related to the subsection on Rolling and Extrusion with the R&D to address energy and environmental efficiencies in aluminum manufacturing and will provide

  15. Monolayer boron-aluminum compacted sheet material

    NASA Technical Reports Server (NTRS)

    Sumner, E. V.

    1973-01-01

    The manufacturing techniques, basic materials used, and equipment required to produce monolayer boron-aluminum composites are described. Tentative materials and process specifications are included. Improvements in bonding and filament spacing obtained through use of brazing powder in the fugitive binder are discussed.

  16. Cast B2-phase iron-aluminum alloys with improved fluidity

    DOEpatents

    Maziasz, Philip J.; Paris, Alan M.; Vought, Joseph D.

    2002-01-01

    Systems and methods are described for iron aluminum alloys. A composition includes iron, aluminum and manganese. A method includes providing an alloy including iron, aluminum and manganese; and processing the alloy. The systems and methods provide advantages because additions of manganese to iron aluminum alloys dramatically increase the fluidity of the alloys prior to solidification during casting.

  17. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  18. Twenty-five-year corrosion tests of 55% Al-Zn alloy coated steel sheet

    SciTech Connect

    Townsend, H.E. )

    1993-04-01

    Long-term atmospheric corrosion tests of steel sheet hot-dip coated with a series of aluminum-zinc alloy compositions were conducted in a wide range of environments. In a severe marine environment, coatings containing 44.6% or more aluminum lasted about three times as long as conventional galvanized with the same coating thickness. In moderate marine, rural, and industrial environments, coatings containing 44.6% or more aluminum remained intact after 25 years and have already lasted twice as long as conventional galvanized.

  19. Laser assisted arc welding for aluminum alloys

    SciTech Connect

    Fuerschbach, P.W.

    2000-01-01

    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  20. Hot stamping of AA7075 aluminum sheets

    NASA Astrophysics Data System (ADS)

    Mendiguren, J.; Saenz de Argandona, E.; Galdos, L.

    2016-11-01

    In this work the formability of a high strength aluminium alloy (AA7075-T6) for the stamping of an automotive component has been studied. Due to the low formability of the selected alloy, two different heat assisted forming strategies have been analysed. On the one hand, the W-temper process, where the thermal process is carried out prior to the forming operation. On the other hand, the hot stamping process, where the thermal process is carried out at the same time as the forming. The results showed that both technology were able to form the component avoiding any failure of the material. On the contrary, both processes reduced the final mechanical properties of the material compared to the as received material condition. However, the obtained mechanical properties doubled the strength of commonly used 5xxx and 6xxx aluminium alloys.

  1. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.

    2017-10-01

    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  2. Fundamental studies on electrochemical production of dendrite-free aluminum and titanium-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata

    A novel dendrite-free electrorefining of aluminum scrap was investigated by using AlCl3-1-Ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte. Electrodeposition of aluminum were conducted on copper/aluminum cathodes at voltage of 1.5 V, temperatures (50-110°C), stirring rate (0-120 rpm), molar ratio (MR) of AlCl3:EMIC (1.25-2.0) and electrode surface modification (modified/unmodified). The study was focused to investigate the effect of process variables on deposit morphology, cathode current density and their role in production of dendrite-free aluminum. The deposits were characterized using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Modified electrodes and stirring rate (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential (etacrt≈ -0.54 V) for dendrite formation. Pure aluminum (>99%) was deposited with current efficiency of 84-99%. Chronoamperometry study was conducted using AlCl3-EMIC and AlCl3-1-Butyl-3-methyl-imidazolium chloride (BMIC) (MR = 1.65:1) at 90°C to understand the mechanism of aluminum electrodeposition and find out diffusion parameter of electroactive species Al2C 7-. It was concluded that electrodeposition of aluminum is a diffusion controlled instantaneous nucleation process and diffusion coefficient of Al2C7- was found to be 5.2-6.9 x 10-11 m2/s and 2.2 x 10-11 m2/s for AlCl3-EMIC and AlCl3-BMIC, respectively. A novel production route of Ti-Al alloys was investigated using AlCl 3-BMIC-TiCl4 (MR = 2:1:0.019) and AlCl3-BMIC (MR = 2:1) electrolytes at constant voltages of 1.5-3.0 V and temperatures (70-125°C). Ti sheet was used as anode and cathode. Characterization of electrodeposited Ti-Al alloys was carried out using SEM, EDS, XRD and inductively coupled plasma-optical emission spectrometer (ICP-OES). Effect of voltage and temperature on cathode current density, current efficiency, composition and morphology of Ti

  3. High strength cast aluminum alloy development

    NASA Astrophysics Data System (ADS)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  4. Hot deformation of aluminum alloys 2

    SciTech Connect

    Bieler, T.R. ); Lalli, L.A. ); MacEwen, S.R. )

    1998-01-01

    This volume is the proceedings of the second symposium addressing scientific and modeling issues that are important for prediction of hot deformation of aluminum and its alloys. This symposium focuses more on the processing route itself, and it explores new techniques for characterizing microstructures, laboratory testing to emulate industrial processing, and perhaps most importantly, the emergence of mathematical modeling as a reliable, validated tool to simulate not only processing strain paths, but also the evolution of properties during forming. Separate abstracts were prepared for all 35 papers in this volume.

  5. Bonding of Aluminum Alloys in Compound Casting

    NASA Astrophysics Data System (ADS)

    Feng, Jian; Ye, Bing; Zuo, Lijie; Wang, Qudong; Wang, Qigui; Jiang, Haiyan; Ding, Wenjiang

    2017-10-01

    The influence of the coating materials, coating thickness, and casting process on the interfacial microstructure and mechanical properties of the overcast A6061 bars with aluminum A356 and A6061 alloys was studied by OM, SEM/EDS, and mechanical testing. Results indicate that Ni coating has better thermal stability than Cu coating that heavily reacts with liquid Al alloy and forms a reaction zone around 130-150 μm during gravity casting. In the gravity casting, coarse and cracked Al3Ni phase distributes along the interfacial region and degrades the mechanical properties of the overcast joints. In squeeze casting, however, fine and dispersed Ni-rich strengthening phases form uniformly in the interfacial zone and improve the metallurgical bonding of the joints. The heat transition and application of pressure during solidification are two key factors in determining the integrity and mechanical properties of the overcast joints.

  6. Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014

    NASA Astrophysics Data System (ADS)

    Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.

    2013-01-01

    Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.

  7. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  8. [Comparison of texture distribution of cold rolled DC and CC AA 5052 aluminum alloy at different positions through thickness direction by XRD].

    PubMed

    Chen, Ming-biao; Ma, Min; Yang, Qing-xiang; Wang, Shan; Liu, Wen-chang; Zhao, Ying-mei

    2013-09-01

    To provide gist of DC AA 5052 and CC AA 5052 aluminum alloy to industry production and application, the texture variation of cold rolled sheets through thickness direction was studied by X-ray diffraction method, and the difference in texture at surface, quarter and center layer was analyzed. The hot plates of direct chill cast (DC) AA 5052 and continuous cast (CC) AA 5052 aluminum alloy were annealed at 454 degrees C for 4 hours and then cold rolled to different reductions. The strength and volume fraction of the fiber in CC AA 5052 aluminum alloy is larger than in DC AA 5052 aluminum alloy after same rolling reduction The volume fraction of the recrystallization texture cube in the CC AA 5052 aluminum alloy is less than in the DC AA 5052 aluminum alloy, which result in that CC AA 5052 aluminum alloy needs less cold rolling reduction than DC AA 5052 aluminum alloy for generating the texture with same intensity and volume fraction at surface layer, quarter layer and center layer. The manufacturability and performance of CC AA 5052 aluminum alloy is superior to DC AA 5052 aluminum alloy for use in stamping.

  9. Welding of Aluminum Alloys to Steels: An Overview

    DTIC Science & Technology

    2013-08-01

    joining techniques for the dissimilar materials. 2. Recent technologies for joining aluminum alloys to steels ...2012) 143-147. UNCLASSIFIED 33 UNCLASSIFIED [19] J. Bruckner, Considering thermal processes for dissimilar metals- joining steel to aluminum in...Murakami, K. Nakata, H. Tong, M. Ushio, Dissimilar metal joining of aluminum to steel by MIG arc brazing using flux cored wire, ISIJ Int. 43 (10)

  10. Filler wire for aluminum alloys and method of welding

    NASA Technical Reports Server (NTRS)

    Bjorkman, Jr., Gerald W. O. (Inventor); Cho, Alex (Inventor); Russell, Carolyn K. (Inventor)

    2003-01-01

    A weld filler wire chemistry has been developed for fusion welding 2195 aluminum-lithium. The weld filler wire chemistry is an aluminum-copper based alloy containing high additions of titanium and zirconium. The additions of titanium and zirconium reduce the crack susceptibility of aluminum alloy welds while producing good weld mechanical properties. The addition of silver further improves the weld properties of the weld filler wire. The reduced weld crack susceptibility enhances the repair weldability, including when planishing is required.

  11. Investigation of Superplastic Behavior in FSP 5083 Aluminum Alloy

    DTIC Science & Technology

    2007-06-01

    Mishra, M. Mahoney, “Microstructural investigation of friction stir welded 7050 -T651 aluminum .” Acta Materialia. Vol. 51 (2007...SUPERPLASTIC BEHAVIOR IN FSP 5083 ALUMINUM ALLOY by Marc Thompson Bland June 2007 Thesis Advisor: Terry R. McNelley Co-Advisor...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Investigation of Superplastic Behavior in FSP 5083 Aluminum Alloy 6. AUTHOR(S) Marc Thompson Bland

  12. The Elastic Constants for Wrought Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  13. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)

    2002-01-01

    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  14. Stress corrosion in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  15. Aluminum alloy welding and stress-corrosion testing. Final report

    SciTech Connect

    Gates, W.G.; Jimenez, E.

    1981-04-01

    The weldability, strength, and corrosion resistance of four 5XXX aluminum alloys electron beam welded to 6061-T6 aluminum alloy without a filler metal were evaluated. Adding filler metal raises weld energy requirements and makes the process more difficult to control. In this study, instead of using a filler metal, a high-magnesium 5XXX alloy was welded to the 6061 alloy. The four 5XXX alloys used (5456-H321, 5052-H34, 5086-H323, and 5083-H32) were selected for their high magnesium content which reduces weld crack sensitivity.

  16. Benign joining of ultrafine grained aerospace aluminum alloys using nanotechnology.

    PubMed

    Longtin, Rémi; Hack, Erwin; Neuenschwander, Jürg; Janczak-Rusch, Jolanta

    2011-12-22

    Ultrafine grained aluminum alloys have restricted applicability due to their limited thermal stability. Metalized 7475 alloys can be soldered and brazed at room temperature using nanotechnology. Reactive foils are used to release heat for milliseconds directly at the interface between two components leading to a metallurgical joint without significantly heating the bulk alloy, thus preserving its mechanical properties.

  17. Crack propagation in aluminum sheets reinforced with boron-epoxy

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.

    1979-01-01

    An analysis was developed to predict both the crack growth and debond growth in a reinforced system. The analysis was based on the use of complex variable Green's functions for cracked, isotropic sheets and uncracked, orthotropic sheets to calculate inplane and interlaminar stresses, stress intensities, and strain-energy-release rates. An iterative solution was developed that used the stress intensities and strain-energy-release rates to predict crack and debond growths, respectively, on a cycle-by-cycle basis. A parametric study was made of the effects of boron-epoxy composite reinforcement on crack propagation in aluminum sheets. Results show that the size of the debond area has a significant effect on the crack propagation in the aluminum. For small debond areas, the crack propagation rate is reduced significantly, but these small debonds have a strong tendency to enlarge. Debond growth is most likely to occur in reinforced systems that have a cracked metal sheet reinforced with a relatively thin composite sheet.

  18. Behavior of painted steel and aluminum sheet in laboratory corrosion tests

    SciTech Connect

    Townsend, H.E.

    1995-11-01

    Cold rolled steel, electrogalvanized steel (60 g/m{sup 2} coating), and three aluminum-alloy (2036, 5182, and 6111) sheet products were painted with a full automotive paint system. These materials were tested in two laboratory cyclic corrosion test environments, namely, GM9540Ps(B) and CCT-4. Resistance to cosmetic corrosion was measured in terms of underfilm paint delamination on scribed, flat panels. Crevice corrosion resistance was determined in terms of pitting on lapped panels of like materials, and galvanic corrosion resistance in terms of pitting on lapped panels of unlike materials. Cosmetic corrosion of the aluminum alloys was found to be much better than that of cold rolled, and slightly better than that of electrogalvanized steel. The CCT-IV test was found to be more severe than GM9540P(B) for cosmetic corrosion, but GM9540P(B) was more severe for galvanic corrosion. Galvanic current measurements indicate that the difference is related to the salt solutions used in each test. Aluminum alloys were found to be prone to crevice corrosion and to galvanic corrosion when coupled to steel. These results indicate that comparative evaluations of the corrosion resistance of these materials must take into account the possibility of crevice and galvanic effects.

  19. The Mechanical Property Data Base from an Air Force/Industry Cooperative Test Program on High Temperature Aluminum Alloys

    DTIC Science & Technology

    1994-02-01

    WL-TR-94-/,J27 AD-A282 911 THE MECHANICAL PROPERTY DATA BASE FROM AN AIR FORCE/INDUSTRY COOPERATIVE TEST PROGRAM ON HIGH TEMPERATURE ALUMINUM ALLOYS...Property Data Baserfrom an Air Force/ PE 62102F Industry Cooperative Test Program on High Temperature PR 2418 Aluminum Allovs- 6. AUTHOR(S) TA 07 Mary Ann...8217 unlimited. 13. ABSTRACT (Maximum 200 wo:ds) A mechanical property data base on high temperature aluminum alloys produced by Allied Signal (8009’ sheet

  20. Behavior of painted steel and aluminum sheet in laboratory automotive corrosion tests

    SciTech Connect

    Townsend, H.E.

    1996-01-01

    Because of environmental concern and government pressure, automakers are exploring ways to increase the fuel economy of vehicles. Mass reduction can be achieved by substituting plastics, aluminum, or high-strength steel for ordinary grades of steel in the autobody. Estimates of fuel economy increases range from 3% to 7% for each 10% reduction in mass. The use of aluminum for mass reduction currently is receiving considerable attention. Cold-rolled steel, electrogalvanized steel (60 g/m{sup 2} coating), and three aluminum alloy sheet products (Al 2036, Al 5182, and Al 6111) were painted with a full automotive paint system. These materials were tested in two laboratory cyclic corrosion test environments, GM9540P(B) and CCT-IV. Resistance to cosmetic corrosion was measured in terms of underfilm paint delamination on scribed, flat panels. Crevice corrosion resistance was determined in terms of pitting on lapped panels of like materials, and galvanic corrosion resistance was determined in terms of pitting on lapped panels of unlike materials. Cosmetic corrosion of the aluminum alloys was found to be much better than that of cold-rolled steel and slightly better than that of electrogalvanized steel. The CCT-IV test was found to be more severe than GM9540P(B) for cosmetic corrosion, but GM9540P(B) was more severe for galvanic corrosion. Galvanic current measurements indicated the difference was related to the salt solutions used in each test. The aluminum alloys were prone to crevice corrosion and to galvanic corrosion when coupled to steel. Results indicated that comparative evaluations of the corrosion resistance of these materials must take into account the possibility of crevice and galvanic effects.

  1. Fabrication of Porous Aluminum Using Gases Intrinsically Contained in Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Utsunomiya, Takao

    2009-06-01

    Closed-cell porous aluminum was fabricated using gases intrinsically contained in aluminum alloy die castings without using a blowing agent. By incorporating the friction stir processing technique, porous aluminum with a porosity of more than 50 pct was successfully obtained at a holding temperature of 923 to 948 K and a holding time of 10 minutes. This proposed die-casting route has high potential for fabricating porous aluminum at a low cost by a higher productivity process.

  2. Wear characteristics of severely deformed aluminum sheets by accumulative roll bonding (ARB) process

    SciTech Connect

    Talachi, A. Kazemi; Eizadjou, M. Manesh, H. Danesh; Janghorban, K.

    2011-01-15

    Wear behavior of severely deformed aluminum sheets by accumulative roll bonding (ARB) process was characterized using a pin on disc wear machine at different conditions. The sheets were processed up to eight ARB cycles in order to induce a high strain ({approx} 6.4) to the samples. EBSD results showed that after eight cycles of ARB, sheets were found to contain ultrafine grains with high fraction of high angle grain boundaries. Wear experiments were conducted under different loading and operating conditions, including dry and immersion lubrication, and rotation speeds. Wear was continuously monitored by measuring the wear rates and morphologies of worn surfaces by scanning electron microscope (SEM). Contrary to expectation, the wear resistance of the ARBed Al sheets was less than the non-processed sheets. Wear rates of the ARBed Al sheets increased by increasing wear load and rotation speed, while, immersion lubrication decreased the wear rate significantly. Based on the observation and results, a model for the wear of the ARBed Al was proposed. - Research Highlights: {yields}The wear rate of the ARBed Al was higher than that of the non-processed alloy. {yields}This unexpected behavior was related to the low strain hardening capability and evolution of the ARB subsurface microstructure during the wear process. {yields}Sliding wear of the ARBed Al proceeded by surface deformation, and progressed by delamination of the deformed surface layer. {yields}The wear rate of ARBed Al increased by increasing applied load and sliding speed.

  3. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  4. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  5. Thermotransport in liquid aluminum-copper alloys

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A thermotransport study was made on a series of liquid aluminum-copper alloys which contained from trace amounts to 33 weight percent copper. The samples in the form of narrow capillaries were held in known temperature gradient of thermotransport apparatus until the stationary state was reached. The samples were analyzed for the concentration of copper along the length. Copper was observed to migrate to the colder regions in all the samples. The heat of transport, Q*, was determined for each composition from a plot of concentration of copper versus reciprocal absolute temperature. The value of Q* is the highest at trace amounts of copper (4850 cal/gm-atom), but decreases with increasing concentration of copper and levels off to 2550 cal/gm-atom at about 25 weight percent copper. The results are explained on the basis of electron-solute interaction and a gas model of diffusion.

  6. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  7. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  8. Fatigue crack propagation in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  9. Simulating weld-fusion boundary microstructures in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios D.; Lippold, John C.

    2004-02-01

    A fundamental study of weld-fusion boundary microstructure evolution in aluminum alloys was conducted in an effort to understand equiaxed grain zone formation and fusion boundary nucleation and growth phenomena. In addition to commercial aluminum alloys, experimental Mg-bearing alloys with Zr and Sc additions were studied along with the widely used Cu- and Licontaining alloy 2195-T8. This article describes work conducted to clarify the interrelation among composition, base metal substrate, and temperature as they relate to nucleation and growth phenomena at the fusion boundary.

  10. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  11. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon

    2011-01-01

    NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  12. Paint-Bonding Improvement for 2219 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Daech, Alfred F.; Cibula, Audrey Y.

    1987-01-01

    Bonding of adhesives and primers to 2219 aluminum alloy improved by delaying rinse step in surface-treatment process. Delaying rinse allows formation of rougher surface for stronger bonding and greater oxide buildup.

  13. Measurement of Thermodynamic Properties of Titanium Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Mehrotra, Gopal

    1995-01-01

    This final report is a summary of the work done by Professor Mehrotra at NASA Lewis Research Center. He has worked extensively on the measurement of thermodynamic properties of titanium aluminum alloys over the past six years.

  14. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  15. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  16. The Effect of Anodic Oxide Films on the Nickel-Aluminum Reaction in Aluminum Braze Sheet

    NASA Astrophysics Data System (ADS)

    Tadgell, Colin A.; Wells, Mary A.; Corbin, Stephen F.; Colley, Leo; Cheadle, Brian; Winkler, Sooky

    2017-01-01

    The influence of an anodic oxide surface film on the nickel-aluminum reaction at the surface of aluminum brazing sheet has been investigated. Samples were anodized in a barrier-type solution and subsequently sputtered with nickel. Differential scanning calorimetry (DSC) and metallography were used as the main investigative techniques. The thickness of the anodic film was found to control the reaction between the aluminum substrate and nickel coating. Solid-state formation of nickel-aluminum intermetallic phases occurred readily when a relatively thin oxide film (13 to 25 nm) was present, whereas intermetallic formation was suppressed in the presence of thicker oxides ( 60 nm). At an intermediate oxide film thickness of 35 nm, the Al3Ni phase formed shortly after the initiation of melting in the aluminum substrate. Analysis of DSC traces showed that formation of nickel-aluminum intermetallic phases changed the melting characteristics of the aluminum substrate, and that the extent of this change can be used as an indirect measure of the amount of nickel incorporated into the intermetallic phases.

  17. The Effect of Anodic Oxide Films on the Nickel-Aluminum Reaction in Aluminum Braze Sheet

    NASA Astrophysics Data System (ADS)

    Tadgell, Colin A.; Wells, Mary A.; Corbin, Stephen F.; Colley, Leo; Cheadle, Brian; Winkler, Sooky

    2017-03-01

    The influence of an anodic oxide surface film on the nickel-aluminum reaction at the surface of aluminum brazing sheet has been investigated. Samples were anodized in a barrier-type solution and subsequently sputtered with nickel. Differential scanning calorimetry (DSC) and metallography were used as the main investigative techniques. The thickness of the anodic film was found to control the reaction between the aluminum substrate and nickel coating. Solid-state formation of nickel-aluminum intermetallic phases occurred readily when a relatively thin oxide film (13 to 25 nm) was present, whereas intermetallic formation was suppressed in the presence of thicker oxides ( 60 nm). At an intermediate oxide film thickness of 35 nm, the Al3Ni phase formed shortly after the initiation of melting in the aluminum substrate. Analysis of DSC traces showed that formation of nickel-aluminum intermetallic phases changed the melting characteristics of the aluminum substrate, and that the extent of this change can be used as an indirect measure of the amount of nickel incorporated into the intermetallic phases.

  18. Recent Developments in the Formability of Aluminum Alloys

    SciTech Connect

    Banabic, Dorel; Paraianu, Liana; Jurco, Paul; Cazacu, Oana

    2005-08-05

    The paper presents a few recent contributions brought by the authors in the field of the formability of aluminum alloys. A new concept for calculating Forming Limit Diagrams (FLD) using the finite element method is presented. The article presents a new strategy for calculating both branches of an FLD, using a Hutchinson - Neale model implemented in a finite element code. The simulations have been performed with Abaqus/Standard. The constitutive model has been implemented using a UMAT subroutine. The plastic anisotropy of the sheet metal is described by the Cazacu-Barlat and the BBC2003 yield criteria. The theoretical predictions have been compared with the results given by the classical Hutchinson - Neale method and also with experimental data for different aluminum alloys. The comparison proves the capability of the finite element method to predict the strain localization. A computer program used for interactive calculation and graphical representation of different Yield Loci and Forming Limit Diagrams has also been developed. The program is based on a Hutchinson-Neale model. Different yield criteria (Hill 1948, Barlat-Lian and BBC 2003) are implemented in this model. The program consists in three modules: a graphical interface for input, a module for the identification and visualization of the yield surfaces, and a module for calculating and visualizing the forming limit curves. A useful facility offered by the program is the possibility to perform the sensitivity analysis both for the yield surface and the forming limit curves. The numerical results can be compared with experimental data, using the import/export facilities included in the program.

  19. Friction Stir Welding of Aluminum and Titanium Alloys

    DTIC Science & Technology

    2007-11-02

    What is this? Jata/US Air Force Typical FSW Tools W-Re tool in collet- style tool holder. Used for welding steels and Ti alloys 3-piece self...Friction Stir Welding of Aluminum and Titanium alloys NATO Advanced Research Workshop Metallic Materials with High Structural Efficiency Kyiv...valid OMB control number. 1. REPORT DATE 18 MAR 2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Friction Stir Welding of Aluminum

  20. Brazing of Stainless Steel to Various Aluminum Alloys in Air

    NASA Astrophysics Data System (ADS)

    Liu, Shuying; Suzumura, Akio; Ikeshoji, Toshi-Taka; Yamazaki, Takahisa

    Brazing of a stainless steel to various aluminum alloys was carried out using an Al-Si filler metal and a fluoride-active flux in air. The brazeability was remarkably different by the aluminum alloys and the brazing conditions. It was considered that the differences were originated with the compositions of base metals and the filler metal, the solidus temperature and the partially melting behavior of the aluminum alloys, and the behavior of the surface oxide film layers of both base metals. On the other hand, the obstruction of brazeability was identified as the rapid reaction between the aluminum alloys and the brazing filler metal, which makes the molten brazing filler metal disappear at the joining interface before the wetting occurs to the stainless steel. Taking this phenomena into consideration, it was attempted to make previous wetting of the brazing filler to the stainless steel before brazing to the aluminum alloys. This method provided the successful brazed joints for the most combinations of the stainless steel and the aluminum alloys.

  1. An improved stress corrosion test medium for aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Coston, J. E.

    1981-01-01

    A laboratory test method that is only mildly corrosive to aluminum and discriminating for use in classifying the stress corrosion cracking resistance of aluminum alloys is presented along with the method used in evaluating the media selected for testing. The proposed medium is easier to prepare and less expensive than substitute ocean water.

  2. Cosmetic corrosion of painted aluminum and steel automotive body sheet: Results from outdoor and accelerated laboratory test methods

    SciTech Connect

    Moran, J.P.; Ziman, P.R.; Egbert, M.W.

    1995-11-01

    In recent years, increasing attention has been given to the need to develop an accelerated laboratory test method(s) for cosmetic corrosion of painted panels that realistically simulate in-service exposure. Much of that work has focused on steel substrates. The purpose of this research is to compare the corrosion performance of painted aluminum and steel sheet as determined om various laboratory methods and in-service exposure, and to develop a realistic accelerated test method for evaluation of the cosmetic corrosion of painted aluminum. Several aluminum sheet products from the 2xxx, 5xxx, and 6xxx alloy series have been tested. The steel substrates are similar to those used in other programs. The test methods chosen represent a cross-section of methods common to the automotive and aluminum industries for evaluation of painted sheet metal products. The results indicate that there is considerable difference in the relative correlation of various test methods to in-service exposure. In addition, there is considerable difference in the relative magnitudes and morphologies of corrosion, and occasionally in the relative rankings, as a function of test method. The influence of alloy composition and zinc phosphate coating weight are also discussed.

  3. A damage tolerance comparison of 7075-T6 aluminum alloy and IM7/977-2 carbon/epoxy

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Lance, David G.; Hodge, Andrew J.

    1991-01-01

    A comparison of low velocity impact damage between one of the strongest aluminum alloys, to a new, damage tolerant resin system as a matrix for high strength carbon fibers was examined in this study. The aluminum and composite materials were used as face sheets on a 0.13 g/cu cm aluminum honeycomb. Four levels of impact energy were used; 2.6 J, 5.3 J, 7.8 J and 9.9 J. The beams were compared for static strength and fatique life by use of the four-point bend flexure test. It was found that in the undamaged state the specific strength of the composite face sheets was about twice that of the aluminum face sheets. A sharp drop in strength was observed for the composite specimens impacted at the lowest (2.6J) energy level, but the overall specific strength was still higher than for the aluminum specimens. At all impact energy levels tested, the static specific strength of the composite face sheets were significantly higher than the aluminum face sheets. The fatigue life of the most severely damaged composite specimen was about 17 times greater than the undamaged aluminum specimens when cycled at 1 Hz between 20 percent and 85 percent of ultimate breaking load.

  4. Aluminum alloy anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Z. H.; Chen, Z. F.; Fu, Q. W.; Jiang, X. Y.

    2017-03-01

    Aluminum has larger theoretical capacity of 2235 mAh/g than that of graphite (372 mAh/g), but it has big disadvantages including shorter cycle life and higher irreversible capacity loss. Improving cycle performance can be obtained via alloying of aluminum. In this paper, two ternary aluminum alloy, Al7Cu2Fe and Al73Cu5Fe22 were prepared. The main phase of Al7Cu2Fe alloy was Al7Cu2Fe. The heat treatment increased the proportion of Al7Cu2Fe. The main phase of Al73Cu5Fe22 alloy was Al60Cu30Fe10. The heat treatment reduced the proportion of Al60Cu30Fe10. For two alloys, the heat treatment could increase discharge capacity compared with cast alloy. The discharge capacity was improved by 50%. The content of aluminum in alloys has little effect on improving cycle performance, and it has obvious influence on the phase structure of alloy with heat treatment.

  5. Corrosion protection of aluminum alloys in contact with other metals

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1969-01-01

    Study establishes the quality of chemical and galvanized protection afforded by anodized and aldozided coatings applied to test panels of various aluminum alloys. The test panels, placed in firm contact with panels of titanium alloys, were subjected to salt spray tests and visually examined for corrosion effect.

  6. Evaluation of 8090 and Weldalite-049 Aluminum-Lithium Alloys

    DTIC Science & Technology

    1992-09-01

    AD-A258 121 MTL TR 92-59 , ’"-AD EVALUATION OF 8090 AND WELDALITE-049 ALUMINUM -LITHIUM ALLOYS THOMAS M. HOLMES and ERNEST S. C. CHIN MATERIALS...EVALUATION OF 8090 AND WELDALITE-049 ALUMINUM -LITHIUM ALLOYS 6- PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 4. CONTRACT OR GRANT NUMBERt’) Thomas M...in &lack 20,. it dlihl-., im R.port) 1. SUPPLEMENTARY NOTES It. KEY WORDS (Contfnuoe on reverse side it nereaary and identity by black number) Aluminum

  7. Comparison of isothermal and cyclic oxidation behavior of twenty-five commercial sheet alloys at 1150 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1975-01-01

    Twenty-five commercial nickel-, iron-, and cobalt-base sheet alloys incorporating chromium or chromium and aluminum additions for oxidation resistance were tested at 1150 C in air for 100 hr in both isothermal and 1-hr cyclic furnace exposures. The alloys were evaluated by sample specific weight change, by type of scale formed, by amount and type of spall, and by sample thickness change and microstructure.-

  8. Mechanical Properties of High Strength Al-Mg Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Jae; Hong, Kyung-Eui; Kim, Young-Jig

    The aim of this research is to develop the high strength Al alloy sheet for the automotive body. For the fabrication Al-Mg alloy sheet, the composition of alloying elements was designed by the properties database and CALPHAD (Calculation Phase Diagram) approach which can predict the phases during solidification using thermodynamic database. Al-Mg alloys were designed using CALPHAD approach according to the high content of Mg with minor alloying elements. After phase predictions by CALPHAD, designed Al-Mg alloys were manufactured. Addition of Mg in Al melts were protected by dry air/Sulphur hexafluoride (SF6) mixture gas which can control the severe Mg ignition and oxidation. After rolling procedure of manufactured Al-Mg alloys, mechanical properties were examined with the variation of the heat treatment conditions.

  9. Micro and Nano Laser Pulses for Melting and Surface Alloying of Aluminum with Copper

    NASA Astrophysics Data System (ADS)

    Hamoudi, Walid K.; Ismail, Raid A.; Sultan, Fatima I.; Jaleel, Summayah

    2017-03-01

    In the present work, the use of microsecond and nanosecond laser pulses to alloy copper in aluminum is presented. In the first run, high purity (99.999%) copper thin film was thermally evaporated over (99.9%) purity, 300 μm aluminum sheet. Thereafter, surface alloying was performed using (1-3) 500 μs, (0.1-1.5) Joule Nd: YAG laser pulses; operating at 1060 nm wavelength. Hard homogeneous alloyed zone was obtained at depths between 60 and 110 μm below the surface. In the second run, 9 ns laser pulses from Q-switched Nd: YAG laser operating at 1060 nm was employed to melt/alloy Al-Cu sheets. The resulted alloyed depth, after using 20 laser pulses, was 199.22 μm for Al over Cu samples and 419.61 μm for Cu over Al samples. X-ray diffraction and fluorescence analysis revealed the formation of Cu2Al2, CuAl2 and δ- Al4Cu9 phases with percentage depended on laser energy and copper layer thicknesses.

  10. Micro and Nano Laser Pulses for Melting and Surface Alloying of Aluminum with Copper

    NASA Astrophysics Data System (ADS)

    Hamoudi, Walid K.; Ismail, Raid A.; Sultan, Fatima I.; Jaleel, Summayah

    2017-02-01

    In the present work, the use of microsecond and nanosecond laser pulses to alloy copper in aluminum is presented. In the first run, high purity (99.999%) copper thin film was thermally evaporated over (99.9%) purity, 300 μm aluminum sheet. Thereafter, surface alloying was performed using (1-3) 500 μs, (0.1-1.5) Joule Nd: YAG laser pulses; operating at 1060 nm wavelength. Hard homogeneous alloyed zone was obtained at depths between 60 and 110 μm below the surface. In the second run, 9 ns laser pulses from Q-switched Nd: YAG laser operating at 1060 nm was employed to melt/alloy Al-Cu sheets. The resulted alloyed depth, after using 20 laser pulses, was 199.22 μm for Al over Cu samples and 419.61 μm for Cu over Al samples. X-ray diffraction and fluorescence analysis revealed the formation of Cu2Al2, CuAl2 and δ- Al4Cu9 phases with percentage depended on laser energy and copper layer thicknesses.

  11. Fatigue Strengths of Aircraft Materials: Axial-Load Fatigue Tests on Edge-Notched Sheet Specimens of 2024-T3 and 7075-T6 Aluminum Alloys and of SAE 4130 Steel with Notch Radii of 0.004 and 0.070 inch

    NASA Technical Reports Server (NTRS)

    Grover, H. J.; Hyler, W. S.; Jackson, L. R.

    1959-01-01

    The present report gives results of axial-load fatigue tests on notched specimens of three sheet materials: 2024-T3 and 7075-T6 aluminum alloys and normalized SAE 4130 steel. Two edge-notched specimens were designed and tested, each having a theoretical stress-concentration factor K(sub t) = 4.0. The radii of the notches were 0.004 and 0.070 inch. Tests of these specimens were run at two levels of nominal mean stress: 0 and 20,000 psi. Results of these studies extended information previously reported on tests of specimens with varying notch severity. They afford data on the variation of fatigue-strength reduction with notch radius and on the potential usefulness of Neuber's technical stress-concentration factor K(sub n).

  12. Calcium metal as a scavenger for antimony from aluminum alloys

    SciTech Connect

    Bonsignore, P.V.; Daniels, E.J.; Wu, C.T.

    1994-10-04

    Previous work has shown that trace amounts of antimony (Sb) can affect the mechanical properties of strontium (Sr) modified aluminum castings. ANL has been investigating technology to remove or neutralize Sb to reduce its negative effect on the physical properties of those alloys. Review of past work on processing and recovery of scrap aluminum inferred that calcium (Ca) is an effective scavenger of Sb, bismuth, lead and cadmium. Following up on that lead, we have found that Ca is, indeed, effective for removing Sb from molten aluminum alloys although its effectiveness can be compromised by a wide range of processing conditions. A minimum ratio of about four to one, by weight, of Ca to Sb appears necessary to insure an effective scavenging of contained Sb.in 356 aluminum alloys.

  13. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    SciTech Connect

    Merton Flemings; srinath Viswanathan

    2001-05-15

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  14. Materials data handbook: Aluminum alloy 2014, 2nd edition

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A revised edition of the materials data handbook on the aluminum alloy 2014 is presented. The scope of the information presented includes physical and mechanical property data at cryogenic, ambient and elevated temperatures, supplemented with useful information in such areas as material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication and joining techniques. Design data are presented, as available, and these data are complemented with information on the typical behavior of the alloy.

  15. Excimer laser induced plasma for aluminum alloys surface carburizing

    NASA Astrophysics Data System (ADS)

    Fariaut, F.; Boulmer-Leborgne, C.; Le Menn, E.; Sauvage, T.; Andreazza-Vignolle, C.; Andreazza, P.; Langlade, C.

    2002-01-01

    Currently, while light alloys are useful for automotive industries, their weak wear behavior is a limiting factor. The excimer laser carburizing process reported here has been developed to enhance the mechanical and chemical properties of aluminum alloys. An excimer laser beam is focused onto the alloy surface in a cell containing 1 bar methane or/and propylene gas. A vapor plasma expands from the surface, the induced shock wave dissociates and ionizes the ambient gas. Carbon atoms diffuse into the plasma in contact with the irradiated surface. An aluminum carbide layer is created by carbon diffusion in the surface liquid layer during the recombination phase of the plasma.

  16. An investigation of plastic fracture in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Low, J. R., Jr.; Vanstone, R. H.; Merchant, R. H.

    1972-01-01

    The brittle fracture of many high strength alloys such as steel, titanium, and aluminum was shown to occur by a process called plastic fracture. According to this process microscopic voids form at impurity particles, then grow and coalesce to cause the final rupture. To further understand the role of impurities, four aluminum alloys were investigated: 2024-T851, 2124-T851, 7075-T7351 and 7079-T651. Fractography, quantitative metallography, and microprobe studies assessed the roles of various impurity particles relative to these alloys.

  17. Analysis of the flow property of aluminum alloy AA6016 based on the fracture morphology using the hydroforming technology

    NASA Astrophysics Data System (ADS)

    Lang, Lihui; Zhang, Quanda; Sun, Zhiying; Wang, Yao

    2017-09-01

    In this paper, the hydraulic bulging experiments were respectively carried out using AA6016-T4 aluminum alloy and AA6016-O aluminum alloy, and the deformation properties and fracture mechanism of aluminum alloy under the conditions of thermal and hydraulic were analyzed. Firstly, the aluminum alloy AA6016 was dealt with two kinds of heat treatment systems such as solid solution heat treatment adding natural ageing and full annealing, then the aluminum alloy such as AA6016-T4 and AA6016-O were obtained. In the same working environment, the two kinds of materials were used in the process of hydraulic bulging experiments, according to the observation and measurement of the deformation sizes of grid circles and material thicknesses near the fracture region, the flow properties and development trend of fracture defect of the materials were analyzed comprehensively from the perspective of qualitative analysis and quantitative analysis; Secondly, the two kinds of materials were sampled in different regions of the fracture area and the microstructure morphology of the fracture was observed by the scanning electron microscope (SEM). The influence laws of the heat treatment systems on the fracture defect of the aluminum alloy under the condition of the liquid pressure were studied preliminarily by observing the distribution characteristics of the fracture microstructure morphology of dimple. At the same time, the experimental research on the ordinary stamping forming process of AA6016-O was carried out and the influence law of different forming process on the fracture defect of the aluminum alloy material was studied by observing the distribution of the fracture microstructure morphology; Finally, the development process of the fracture defect of aluminum alloy sheet was described theoretically from the view of the stress state.

  18. Particulate and gaseous emissions when welding aluminum alloys.

    PubMed

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  19. Preparation of cast aluminum alloy-mica particle composites

    NASA Technical Reports Server (NTRS)

    Deonath, MR.; Bhat, R. T.; Rohatgi, P. K.

    1980-01-01

    A method for making aluminum-mica particle composites is presented in which mica particles are stirred in molten aluminum alloys followed by casting in permanent molds. Magnesium is added either as an alloying element or in the form of pieces to the surface of the alloy melts to disperse up to 3 wt% mica powders in the melts and to obtain high recoveries of mica in the castings. The mechanical properties of the aluminum alloy-mica composite decrease with increasing mica content; however, even at 2.2% it has a tensile strength of 14.22 kg/sq mm with 1.1% elongation, a compression strength of 42.61 kg/sq mm, and an impact strength of 0.30 kgm/sq cm. Cryogenic and self-lubricating bearing are mentioned applications.

  20. Property Criteria for Automotive Al-Mg-Si Sheet Alloys.

    PubMed

    Prillhofer, Ramona; Rank, Gunther; Berneder, Josef; Antrekowitsch, Helmut; Uggowitzer, Peter J; Pogatscher, Stefan

    2014-07-04

    In this study, property criteria for automotive Al-Mg-Si sheet alloys are outlined and investigated in the context of commercial alloys AA6016, AA6005A, AA6063 and AA6013. The parameters crucial to predicting forming behavior were determined by tensile tests, bending tests, cross-die tests, hole-expansion tests and forming limit curve analysis in the pre-aged temper after various storage periods following sheet production. Roping tests were performed to evaluate surface quality, for the deployment of these alloys as an outer panel material. Strength in service was also tested after a simulated paint bake cycle of 20 min at 185 °C, and the corrosion behavior was analyzed. The study showed that forming behavior is strongly dependent on the type of alloy and that it is influenced by the storage period after sheet production. Alloy AA6016 achieves the highest surface quality, and pre-ageing of alloy AA6013 facilitates superior strength in service. Corrosion behavior is good in AA6005A, AA6063 and AA6016, and only AA6013 shows a strong susceptibility to intergranular corrosion. The results are discussed below with respect to the chemical composition, microstructure and texture of the Al-Mg-Si alloys studied, and decision-making criteria for appropriate automotive sheet alloys for specific applications are presented.

  1. Property Criteria for Automotive Al-Mg-Si Sheet Alloys

    PubMed Central

    Prillhofer, Ramona; Rank, Gunther; Berneder, Josef; Antrekowitsch, Helmut; Uggowitzer, Peter J.; Pogatscher, Stefan

    2014-01-01

    In this study, property criteria for automotive Al-Mg-Si sheet alloys are outlined and investigated in the context of commercial alloys AA6016, AA6005A, AA6063 and AA6013. The parameters crucial to predicting forming behavior were determined by tensile tests, bending tests, cross-die tests, hole-expansion tests and forming limit curve analysis in the pre-aged temper after various storage periods following sheet production. Roping tests were performed to evaluate surface quality, for the deployment of these alloys as an outer panel material. Strength in service was also tested after a simulated paint bake cycle of 20 min at 185 °C, and the corrosion behavior was analyzed. The study showed that forming behavior is strongly dependent on the type of alloy and that it is influenced by the storage period after sheet production. Alloy AA6016 achieves the highest surface quality, and pre-ageing of alloy AA6013 facilitates superior strength in service. Corrosion behavior is good in AA6005A, AA6063 and AA6016, and only AA6013 shows a strong susceptibility to intergranular corrosion. The results are discussed below with respect to the chemical composition, microstructure and texture of the Al-Mg-Si alloys studied, and decision-making criteria for appropriate automotive sheet alloys for specific applications are presented. PMID:28788119

  2. Elevated temperature crack growth in aluminum alloys: Tensile deformation of 2618 and FVS0812 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Leng, Yang; Gangloff, Richard P.

    1990-01-01

    Understanding the damage tolerance of aluminum alloys at elevated temperatures is essential for safe applications of advanced materials. The objective of this project is to investigate the time dependent subcritical cracking behavior of powder metallurgy FVS0812 and ingot metallurgy 2618 aluminum alloys at elevated temperatures. The fracture mechanics approach was applied. Sidegrooved compact tension specimens were tested at 175, 250, and 316 C under constant load. Subcritical crack growth occurred in each alloy at applied stress intensity levels (K) of between about 14 and 25 MPa/m, well below K (sub IC). Measured load, crack opening displacement and displacement rate, and crack length and growth rate (da/dt) were analyzed with several continuum fracture parameters including, the C-integral, C (sub t), and K. Elevated temperature growth rate data suggest that K is a controlling parameter during time dependent cracking. For FVS0812, da/dt is highest at 175 C when rates are expressed as a function of K. While crack growth rate is not controlled by C (sub t) at 175 C, da/dt appears to better correlate with C (sub t) at higher temperatures. Creep brittle cracking at intermediate temperatures, and perhaps related to strain aging, is augmented by time dependent transient creep plasticity at higher temperatures. The C (sub t) analysis is, however, complicated by the necessity to measure small differences in the elastic crack growth and creep contributions to the crack opening displacement rate. A microstructural study indicates that 2618 and FVS0812 are likely to be creep brittle materials, consistent with the results obtained from the fracture mechanics study. Time dependent crack growth of 2618 at 175 C is characterized by mixed transgranular and intergranular fracture. Delamination along the ribbon powder particle boundaries occurs in FVS0812 at all temperatures. The fracture mode of FVS0812 changes with temperature. At 175 C, it is characterized as dimpled rupture

  3. Thermoelectrical power analysis of precipitation in 6013 aluminum alloy

    SciTech Connect

    Abdala, M.R.W.S.; Garcia de Blas, J.C. Acselrad, O.

    2008-03-15

    The 6013 aluminum alloy was first developed for application in the aircraft industry and, more recently, as a replacement option for the use of the 6061 alloy in the automotive industry. The present work describes the evolution of the process of formation and dissolution of different kinds of precipitates in 6013 aluminum alloy, subjected to different conditions of heat treatment, using for this purpose measurements of thermoelectrical power, Vickers microhardness and differential scanning calorimeter (DSC). Although in the last years many works have been published on the use of thermoelectrical power (TEP) measurements for the analysis of precipitation process in traditional alloys such as 6061, there is still little information related to 6013 alloy. The results obtained are compared with a previous characterization work on the same alloy using transmission electron microscopy. It was observed that TEP measurements are very sensitive to precipitation phenomena in this alloy, and it has been found that there is an inverse relation between TEP and Vickers microhardness values, which allowed proposing a precipitation sequence for 6013 aluminum alloy.

  4. Measurement and control of ice adhesion to aluminum 6061 alloy

    NASA Astrophysics Data System (ADS)

    Archer, Paul; Gupta, Vijay

    1998-10-01

    A new experimental strategy for measuring the tensile strength of ice coatings to structural surfaces is presented. In this experiment, a laser-induced compressive stress pulse travels through a 1 mm-thick substrate disc that has a layer of ice grown on its front surface. The compressive stress pulse reflects into a tensile wave from the free surface of the ice and pulls the iceinterface apart, given a sufficient amplitude. The interface strength was calculated by recording the free surface velocity of an Al substrate using a Doppler interferometer and calculating the stress at the interface using a finite-difference elastic wave mechanics simulation with the free surface velocity as an input. The test procedure was used to study ice adhesion on 6061 aluminum alloy sheets. It was found that the adhesion strength of ice to unpolished aluminum substrates was 274 MPa at -10°C. This value decreased with temperature, down to 179 MPa at -40°C. Interestingly, this decrement in the tensile strength could be directly related to the existence of a liquid-like layer that is known to exist on the surface of solid ice till -30°C. The interface strength was also shown to decrease by polishing the Al substrate surface or by adding thin polymer coatings on the unpolished Al substrate. The sensitivity of the technique to such microstructural changes in the interfacial region is indicative of the experiments ability to provide basic adhesion data, which in turn, can be used to solve the deicing problem from a fundamental standpoint. 1998 Elsevier Science Ltd.

  5. Analysis of peel strength of consisting of an aluminum sheet, anodic aluminum oxide and a copper foil laminate composite

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Won; Lee, Hyo-Soo; Jung, Seung-Boo

    2017-01-01

    Laminate composites consisting of an aluminum sheet, anodic aluminum oxide, and copper foil have been used as heat-spreader materials for high-power light-emitting diodes (LEDs). These composites are comparable to the conventional structure comprising an aluminum sheet, epoxy adhesives, and copper foil. The peel strength between the copper foil and anodic aluminum oxide should be more than 1.0 kgf/cm in order to be applied in high-power LED products. We investigated the effect of the anodic aluminum oxide morphology and heat-treatment conditions on the peel strength of the composites. We formed an anodic aluminum oxide layer on a 99.999% pure aluminum sheet using electrochemical anodization. A Ti/Cu seed layer was formed using the sputtering direct bonding copper process in order to form a copper circuit layer on the anodic aluminum oxide layer by electroplating. The developed heat spreader, composed of an aluminum layer, anodic aluminum oxide, and a copper circuit layer, showed peel strengths ranging from 1.05 to 3.45 kgf/cm, which is very suitable for high-power LED applications.

  6. Integral Hot Gas Pressure Forming of an AA2219 Aluminum Alloy Ellipsoidal Shell

    NASA Astrophysics Data System (ADS)

    Yuan, S. J.; Zhang, R.; Zhang, W. W.

    2017-02-01

    To overcome the poor plastic deformation performance of AA2219 aluminum alloy sheet and its weld seam at room temperature, an integral hot gas pressure forming (IHGPF) process for a combined welded ellipsoidal shell was proposed. A simulation of the IHGPF process was conducted to analyze the axis length variation and thickness distribution during the forming process of the combined welded ellipsoidal shell at elevated temperature. The results demonstrated that lengths of the short and long axes were 150 mm and 220 mm, respectively, and that maximum wall thinning occurred at the pole. Furthermore, an experiment was conducted using IHGPF, and the forming accuracy was measured by three-dimensional video technology. A sound ellipsoidal shell with final axis length ratio of 1.5 was obtained with a shell diameter accuracy of more than 99.3%. It was experimentally proven that an aluminum alloy ellipsoidal shell can be formed using the proposed IHGPF technology.

  7. Integral Hot Gas Pressure Forming of an AA2219 Aluminum Alloy Ellipsoidal Shell

    NASA Astrophysics Data System (ADS)

    Yuan, S. J.; Zhang, R.; Zhang, W. W.

    2017-04-01

    To overcome the poor plastic deformation performance of AA2219 aluminum alloy sheet and its weld seam at room temperature, an integral hot gas pressure forming (IHGPF) process for a combined welded ellipsoidal shell was proposed. A simulation of the IHGPF process was conducted to analyze the axis length variation and thickness distribution during the forming process of the combined welded ellipsoidal shell at elevated temperature. The results demonstrated that lengths of the short and long axes were 150 mm and 220 mm, respectively, and that maximum wall thinning occurred at the pole. Furthermore, an experiment was conducted using IHGPF, and the forming accuracy was measured by three-dimensional video technology. A sound ellipsoidal shell with final axis length ratio of 1.5 was obtained with a shell diameter accuracy of more than 99.3%. It was experimentally proven that an aluminum alloy ellipsoidal shell can be formed using the proposed IHGPF technology.

  8. Work hardening behavior in aluminum alloy 2090

    SciTech Connect

    Tseng, Carol

    1993-12-01

    An investigation into the work hardening behavior of an aluminum alloy 2090-T81 Al-3.05Cu-2.16Li-0.12Zr at various test temperatures, heat treatment conditions and microstructures was conducted. One microstructure consisted of unrecrystallized, highly textured grains, and the other microstructure was composed of recrystallized grains. Microstructural effects on work hardening were divided into two levels of contribution: the grain structure level, which consisted of the grain size and shape, subgrains and texture, and the microconsistent level, which included the precipitates and solutes. Two heat treatments were studied: the as-received, peak-aged condition, and the solution heat treated condition where the as-received plate was resolutionized. Observations of the deformed surface of both as-received grain structures at various prestrains indicated that there was no correlation between an increase in slip homogeneity and an increase in work hardening. The increase in out-of-plane grain rotation at lower temperatures was not primarily responsible for the increase in work hardening. In addition, the fully plastic deformation microstructure for the unrecrystallized microstructure appeared very inhomogeneous as the grains deformed in bands; there were also bands of grains that had very little to no deformation. From the work hardening plots it was found that an unrecrystallized, (110)<112> textured grain structure with a homogeneous distribution of subgrains produced the highest rate of work hardening between 300 K and 77 K. When the microconstituents are added to both grain structures, both the work hardening rate in the elastic-plastic and fully plastic regimes and the level of work hardening at which the elastic-plastic to fully plastic transition occurred were affected.

  9. Properties of largest fragment produced by hypervelocity impact of aluminum spheres with thin aluminum sheets

    NASA Technical Reports Server (NTRS)

    Piekutowski, Andrew J.

    1992-01-01

    Results are presented from hypervelocity impact tests in which 1.275 g spheres of 2017-T4 Al alloy were fired at normal incidence at eight thicknesses of 6061-T6 Al alloy sheets, with impact velocity of about 6.7 km/sec; additional data are presented for smaller and larger spheres than these, in the cases of other Al alloy impact bumpers. A large fragment of the projectile is observable at the center of the debris clouds generated upon impact. The velocity of these large fragments decreased continuously with increasing bumper thickness/projectile diameter ratio, from 99 percent to less than 80 percent of impact velocity; there is a linear increase in the size of the central projectile fragment with decreasing shock-induced stress in the projectile.

  10. Influence of Process Parameters on Laser Weld Characteristics in Aluminum Alloys

    DTIC Science & Technology

    1988-08-01

    1 1󈧚 , 4 4 2.1.2 Alloying Element Vaporization Alloying elements added to aluminum for improving the mechanical properties and corrosion...effects the properties of the base metal surrounding the weld zone called the heat affected zone (HAZ). In the non-heat treatable aluminum alloys in the...Hydrogen in Aluminum . Magnesium, Copper, and Their Alloys . Int. Metall. Reviews, Review 201, 20:166-184. 31. Hatch, J.E. 1984. Aluminum , Properties and

  11. Friction stir welding process to repair voids in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  12. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  13. Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured From Detailed Military Specifications

    DTIC Science & Technology

    2012-07-01

    elements was eventually designated 17S ( 2017 ) and is the progenitor of the 2 series of aluminum alloys . Alcoa obtained the rights to produce...Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured From Detailed Military Specifications by Kevin Doherty...International Conference on Aluminum Alloys (ICAA13), pp. 541–546, Pittsburgh, PA, 3–7 June 2012. Approved for public

  14. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  15. Improved thermal treatment of aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  16. Plastic Deformation Characteristics Of AZ31 Magnesium Alloy Sheets At Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Park, Jingee; Lee, Jongshin; You, Bongsun; Choi, Seogou; Kim, Youngsuk

    2007-05-01

    Using lightweight materials is the emerging need in order to reduce the vehicle's energy consumption and pollutant emissions. Being a lightweight material, magnesium alloys are increasingly employed in the fabrication of automotive and electronic parts. Presently, magnesium alloys used in automotive and electronic parts are mainly processed by die casting. The die casting technology allows the manufacturing of parts with complex geometry. However, the mechanical properties of these parts often do not meet the requirements concerning the mechanical properties (e.g. endurance strength and ductility). A promising alternative can be forming process. The parts manufactured by forming could have fine-grained structure without porosity and improved mechanical properties such as endurance strength and ductility. Because magnesium alloy has low formability resulted form its small slip system at room temperature it is usually formed at elevated temperature. Due to a rapid increase of usage of magnesium sheets in automotive and electronic industry it is necessary to assure database for sheet metal formability and plastic yielding properties in order to optimize its usage. Especially, plastic yielding criterion is a critical property to predict plastic deformation of sheet metal parts in optimizing process using CAE simulation. Von-Mises yield criterion generally well predicts plastic deformation of steel sheets and Hill'1979 yield criterion predicts plastic deformation of aluminum sheets. In this study, using biaxial tensile test machine yield loci of AZ31 magnesium alloy sheet were obtained at elevated temperature. The yield loci ensured experimentally were compared with the theoretical predictions based on the Von-Mises, Hill, Logan-Hosford, and Barlat model.

  17. Plastic Deformation Characteristics Of AZ31 Magnesium Alloy Sheets At Elevated Temperature

    SciTech Connect

    Park, Jingee; Lee, Jongshin; You, Bongsun; Choi, Seogou; Kim, Youngsuk

    2007-05-17

    Using lightweight materials is the emerging need in order to reduce the vehicle's energy consumption and pollutant emissions. Being a lightweight material, magnesium alloys are increasingly employed in the fabrication of automotive and electronic parts. Presently, magnesium alloys used in automotive and electronic parts are mainly processed by die casting. The die casting technology allows the manufacturing of parts with complex geometry. However, the mechanical properties of these parts often do not meet the requirements concerning the mechanical properties (e.g. endurance strength and ductility). A promising alternative can be forming process. The parts manufactured by forming could have fine-grained structure without porosity and improved mechanical properties such as endurance strength and ductility. Because magnesium alloy has low formability resulted form its small slip system at room temperature it is usually formed at elevated temperature. Due to a rapid increase of usage of magnesium sheets in automotive and electronic industry it is necessary to assure database for sheet metal formability and plastic yielding properties in order to optimize its usage. Especially, plastic yielding criterion is a critical property to predict plastic deformation of sheet metal parts in optimizing process using CAE simulation. Von-Mises yield criterion generally well predicts plastic deformation of steel sheets and Hill'1979 yield criterion predicts plastic deformation of aluminum sheets. In this study, using biaxial tensile test machine yield loci of AZ31 magnesium alloy sheet were obtained at elevated temperature. The yield loci ensured experimentally were compared with the theoretical predictions based on the Von-Mises, Hill, Logan-Hosford, and Barlat model.

  18. Thermodynamics of Titanium-Aluminum-Oxygen Alloys Studied

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Titanium-aluminum alloys are promising intermediate-temperature alloys for possible compressor applications in gas-turbine engines. These materials are based on the a2-Ti3Al + g-TiAl phases. The major issue with these materials is high oxygen solubility in a2-Ti3Al, and oxidation of unsaturated alloys generally leads to mixed non-protective TiO2+Al2O3 scales. From phase diagram studies, oxygen saturated a2-Ti3Al(O) is in equilibrium with Al2O3; however, oxygen dissolution has a detrimental effect on mechanical properties and cannot be accepted. To better understand the effect of oxygen dissolution, we examined the thermodynamics of titanium-aluminum-oxygen alloys.

  19. Phases in lanthanum-nickel-aluminum alloys. Part 2

    SciTech Connect

    Mosley, W.C.

    1992-08-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  20. Laser cutting of lightweight alloys sheets with 1μm laser wavelength

    NASA Astrophysics Data System (ADS)

    Scintilla, Leonardo Daniele; Tricarico, Luigi

    2013-02-01

    High power fiber laser sources, with a radiation wavelength equal to about 1 μm, offer a great potential in improving the productivity and quality of thin aluminum, magnesium and titanium alloys sheets cutting. This is due to their benefits that are of special interest for this application: power efficiency, beam guidance and beam quality. In this work, an overview regarding the phenomena that for different reasons affect the laser cutting of these materials was given. These phenomena include the formation of a heat affected zone, the chemical contamination, the change of corrosion resistance, the thermal reactivity, the effects of thermal conductivity, reflectivity and viscosity of molten material. The influence of processing parameters on 1 mm thick Al 1050, AZ31 and Ti6Al4V lightweight alloys were experimentally investigated and cutting performances in terms of cut quality, maximum processing speeds and severance energies were evaluated. The advantages of using 1 μm laser wavelength for thin sheets lightweight alloys cutting due to the good cut quality, high productivity and the easily delivery of the beam through the optical fiber, were demonstrated. Results showed that fiber lasers open up new solutions for cutting lightweight alloys for applications like coil sheet cutting, laser blanking, trimming and cutting-welding combination in tailor welded blanks applications.

  1. Microstructural Characterization of Aluminum-Lithium Alloys 1460 and 2195

    NASA Technical Reports Server (NTRS)

    Wang, Z. M.; Shenoy, R. N.

    1998-01-01

    Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) techniques were employed to characterize the precipitate distributions in lithium-containing aluminum alloys 1460 and 2195 in the T8 condition. TEM examinations revealed delta prime and T1 as the primary strengthening precipitates in alloys 1460 and 2195 respectively. TEM results showed a close similarity of the Russian alloy 1460 to the U.S. alloy 2090, which has a similar composition and heat treatment schedule. DSC analyses also indicate a comparable delta prime volume fraction. TEM study of a fractured tensile sample of alloy 1460 showed that delta prime precipitates are sheared by dislocations during plastic deformation and that intense stress fields arise at grain boundaries due to planar slip. Differences in fracture toughness of alloys 1460 and 2195 are rationalized on the basis of a literature review and observations from the present study.

  2. The effects of aluminum alloy compositions in DIMOX process

    SciTech Connect

    Kim, Chang Wook; Kim, Cheol Soo

    1996-12-31

    Al{sub 2}O{sub 3}-Al composites have been produced by the directed oxidation of binary and ternary aluminum alloys. The Mg, Si, Zn, Sn, Cu, Ni, Ca and Ce have been investigated as alloying elements. The oxidation amount of Al-1wt%Mg alloy was more than that of Al-3wt%Mg alloy. The ternary systems such as Al-Mg-(Si, Sn) alloys were fabricated in the form of porous composites with large amount of oxidation. The amount of oxidation in Al-Mg-(Cu, Ni) was relatively less than that in Al-Mg-(Si, Sn) with some micro pores. Al{sub 2}O{sub 3}-Al composite is always locally growing in Al-xMg-xZn alloys at 1200{degrees}C.

  3. Fundamental Studies on the Aluminum-Lithium-Beryllium Alloy System,

    DTIC Science & Technology

    1985-07-01

    in recognition of the overriding importance of low density in weight savings in aerospace structures ,is the development of low density and high...successful PM alloys have also been producedf’ jIn order to take further advantage of density decreases in aluminum alloys, it * is not possible simply to...and ductility. In the search for other elements that can * decrease density it is important to note that associated decreases in modulus * are not

  4. Effects of homogenization treatment on recrystallization behavior of 7150 aluminum sheet during post-rolling annealing

    SciTech Connect

    Guo, Zhanying; Zhao, Gang; Chen, X.-Grant

    2016-04-15

    The effects of two homogenization treatments applied to the direct chill (DC) cast billet on the recrystallization behavior in 7150 aluminum alloy during post-rolling annealing have been investigated using the electron backscatter diffraction (EBSD) technique. Following hot and cold rolling to the sheet, measured orientation maps, the recrystallization fraction and grain size, the misorientation angle and the subgrain size were used to characterize the recovery and recrystallization processes at different annealing temperatures. The results were compared between the conventional one-step homogenization and the new two-step homogenization, with the first step being pretreated at 250 °C. Al{sub 3}Zr dispersoids with higher densities and smaller sizes were obtained after the two-step homogenization, which strongly retarded subgrain/grain boundary mobility and inhibited recrystallization. Compared with the conventional one-step homogenized samples, a significantly lower recrystallized fraction and a smaller recrystallized grain size were obtained under all annealing conditions after cold rolling in the two-step homogenized samples. - Highlights: • Effects of two homogenization treatments on recrystallization in 7150 Al sheets • Quantitative study on the recrystallization evolution during post-rolling annealing • Al{sub 3}Zr dispersoids with higher densities and smaller sizes after two-step treatment • Higher recrystallization resistance of 7150 sheets with two-step homogenization.

  5. Metallurgical characterization of the fracture of several high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Bhandarkar, M. D.; Lisagor, W. B.

    1977-01-01

    The fracture behavior for structural aluminum alloys (2024, 6061, 7075, and 7178) was examined in selected heat treatments. The investigation included tensile, shear, and precracked notch-bend specimens fractured at ambient temperature under monotonic loading. Specimens were obtained from thin sheets and thick plates and were tested in longitudinal and transverse orientations at different strain rates. Microstructures of alloys were examined using the optical microscope and the scanning electron microscope with associated energy dispersive X ray chemical analysis. Several different types of second phase particles, some not reported by other investigators, were identified in the alloys. Fracture morphology was related to microstructural variables, test variables, and type of commercial product. Specimen orientation examined in the present investigation had little effect on fracture morphology. Test strain rate changes resulted in some change in shear fracture morphology, but not in fracture morphology of tensile specimens.

  6. Environment assisted degradation mechanisms in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.

  7. Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Soler, Lluís; Macanás, Jorge; Muñoz, Maria; Casado, Juan

    Production of hydrogen using aluminum and aluminum alloys with aqueous alkaline solutions is studied. This process is based on aluminum corrosion, consuming only water and aluminum which are cheaper raw materials than other compounds used for in situ hydrogen generation, such as chemical hydrides. In principle, this method does not consume alkali because the aluminate salts produced in the hydrogen generation undergo a decomposition reaction that regenerates the alkali. As a consequence, this process could be a feasible alternative for hydrogen production to supply fuel cells. Preliminary results showed that an increase of base concentration and working solution temperature produced an increase of hydrogen production rate using pure aluminum. Furthermore, an improvement of hydrogen production rates and yields was observed varying aluminum alloys composition and increasing their reactive surface, with interesting results for Al/Si and Al/Co alloys. The development of this idea could improve yields and reduce costs in power units based on fuel cells which use hydrides as raw material for hydrogen production.

  8. Constitutive modelling of aluminium alloy sheet at warm forming temperatures

    NASA Astrophysics Data System (ADS)

    Kurukuri, S.; Worswick, M. J.; Winkler, S.

    2016-08-01

    The formability of aluminium alloy sheet can be greatly improved by warm forming. However predicting constitutive behaviour under warm forming conditions is a challenge for aluminium alloys due to strong, coupled temperature- and rate-sensitivity. In this work, uniaxial tensile characterization of 0.5 mm thick fully annealed aluminium alloy brazing sheet, widely used in the fabrication of automotive heat exchanger components, is performed at various temperatures (25 to 250 °C) and strain rates (0.002 and 0.02 s-1). In order to capture the observed rate- and temperature-dependent work hardening behaviour, a phenomenological extended-Nadai model and the physically based (i) Bergstrom and (ii) Nes models are considered and compared. It is demonstrated that the Nes model is able to accurately describe the flow stress of AA3003 sheet at different temperatures, strain rates and instantaneous strain rate jumps.

  9. Materials data handbooks prepared for aluminum alloys 2014, 2219, and 5456, and stainless steel alloy 301

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Materials data handbooks summarize all presently known properties of commercially available structural aluminum alloys 2014, 2219, and 5456 and structural stainless steel alloy 301. The information includes physical and mechanical property data and design data presented in tables, illustrations, and text.

  10. On the Formation of Lightweight Nanocrystalline Aluminum Alloys by Electrodeposition

    NASA Astrophysics Data System (ADS)

    Hilty, Robert D.; Masur, Lawrence J.

    2017-08-01

    New nanocrystalline aluminum alloys have been fabricated by electrodeposition. These are thermodynamically stable alloys of Al-Mn and Al-Zr with grain sizes <100 nm. Al-Mn and Al-Zr alloys are characterized here showing high strength (up to 1350 MPa) and hardness (up to 450 HVN) while maintaining the specific gravity of Al. Smooth and dense deposits plated from ionic liquids, such as EMIM:Cl (1-Ethyl-3-methylimidazolium chloride), can develop to thicknesses of 1 mm or more.

  11. High Strength Aluminum Alloy For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  12. High Strength Aluminum Alloy For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  13. Current Technologies for the Removal of Iron from Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Damoah, Lucas N.

    In the current paper, the Fe-rich phases in and their detrimental effect on aluminum alloys are summarized. The existence of brittle platelet ß-Fe-rich phases lowers the mechanical properties of aluminum alloys. The methods to neutralize the detrimental effect of iron are discussed. The use of high cooling rate, solution heat treatment and addition of elements such as Mn, Cr, Be, Co, Mo, Ni, V, W, Cu, Sr, or the rare earth elements Y, Nd, La and Ce are reported to modify the platelet Fe-rich phases in aluminum alloys. The mechanism of the modification is briefly described. Technologies to remove iron from aluminum are extensively reviewed. The precipitation and removal of Fe-rich phases (sludge) are discussed. The dense phases can be removed by methods such as gravitational separation, electromagnetic separation, and centrifuge. Other methods include electrolysis, electro-slag refining, fractional solidification, and fluxing refining. The expensive three-layer cell electrolysis process is the most successful technique to remove iron from aluminum so far.

  14. Interpretation of aluminum-alloy weld radiography

    NASA Technical Reports Server (NTRS)

    Duren, P. C.; Risch, E. R.

    1971-01-01

    Report proposes radiographic terminology standardization which allows scientific interpretation of radiographic films to replace dependence on individual judgement and experience. Report includes over 50 photographic pages where radiographs of aluminum welds with defects are compared with prepared weld sections photomacrographs.

  15. Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets

    DTIC Science & Technology

    2015-06-01

    received AZ31B, a magnesium (Mg) alloy that contains approximately 3% aluminum and 1% zinc . In particular, we investigated the ability to roll AZ31B to...approximately 3% Al and 1% zinc . In particular, this effort will first investigate the ability to roll AZ31B to thicknesses of about 1.5 mm using

  16. Aluminum alloy material structure impact localization by using FBG sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiubin

    2014-12-01

    The aluminum alloy structure impact localization system by using fiber Bragg grating (FBG) sensors and impact localization algorithm was investigated. A four-FBG sensing network was established. And the power intensity demodulation method was initialized employing the narrow-band tunable laser. The wavelet transform was used to weaken the impact signal noise. And the impact signal time difference was extracted to build the time difference localization algorithm. At last, a fiber Bragg grating impact localization system was established and experimentally verified. The experimental results showed that in the aluminum alloy plate with the 500 mm*500 mm*2 mm test area, the maximum and average impact abscissa localization errors were 11 mm and 6.25 mm, and the maximum and average impact ordinate localization errors were 9 mm and 4.25 mm, respectively. The fiber Bragg grating sensors and demodulation system are feasible to realize the aviation aluminum alloy material structure impact localization. The research results provide a reliable method for the aluminum alloy material structure impact localization.

  17. Characteristics of aluminum alloy microplastic deformation in different structural states

    SciTech Connect

    Seregin, G.V.; Efimenko, L.L.; Leonov, M.V.

    1995-07-01

    The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.

  18. Study made of ductility limitations of aluminum-silicon alloys

    NASA Technical Reports Server (NTRS)

    Bailey, W. A.; Frederick, S. F.

    1967-01-01

    Study of the relation between microstructure and mechanical properties of aluminum-silicon alloys determines the cause of the variations in properties resulting from differences in solidification rate. It was found that variations in strength are a consequence of variations in ductility and that ductility is inversely proportional to dendrite cell size.

  19. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  20. Secondary Heating Under Quenching Cooling of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Tsukrov, S. L.; Ber, L. B.

    2017-07-01

    Variants of secondary heating of aluminum alloys are considered, i.e., under quenching of plates in a water tank or on a horizontal quenching unit with water jet cooling, under continuous quenching of strips, and under quenching of tubes in vertical furnaces. Recommendation are given for removal or substantial reduction of the intensity of secondary heating under industrial conditions.

  1. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  2. Tin soldering of aluminum and its alloys

    NASA Technical Reports Server (NTRS)

    Gallo, Gino

    1921-01-01

    A method is presented for soldering aluminum to other metals. The method adopted consists of a galvanic application to the surface of the light-metal parts to be soldered, of a layer of another metal, which, without reacting electrolytically on the aluminum, adheres strongly to the surface to which it is applied, and is, on the other hand, adapted to receive the soft solder. The metal found to meet the criteria best was iron.

  3. Numerical models for the prediction of failure for multilayer fusion Al-alloy sheets

    SciTech Connect

    Gorji, Maysam; Berisha, Bekim; Hora, Pavel; Timm, Jürgen

    2013-12-16

    Initiation and propagation of cracks in monolithic and multi-layer aluminum alloys, called “Fusion”, is investigated. 2D plane strain finite element simulations are performed to model deformation due to bending and to predict failure. For this purpose, fracture strains are measured based on microscopic pictures of Nakajima specimens. In addition to, micro-structure of materials is taken into account by introducing a random grain distribution over the sheet thickness as well as a random distribution of the measured yield curve. It is shown that the performed experiments and the introduced FE-Model are appropriate methods to highlight the advantages of the Fusion material, especially for bending processes.

  4. Springback study in aluminum alloys based on the Demeri Benchmark Test : influence of material model

    SciTech Connect

    Greze, R.; Laurent, H.; Manach, P. Y.

    2007-04-07

    Springback is a serious problem in sheet metal forming. Its origin lies in the elastic recovery of materials after a deep drawing operation. Springback modifies the final shape of the part when removed from the die after forming. This study deals with Springback in an Al5754-O aluminum alloy. An experimental test similar to the Demeri Benchmark Test has been developed. The experimentally measured Springback is compared to predicted Springback simulation using Abaqus software. Several material models are analyzed, all models using isotropic hardening of Voce type and plasticity criteria such as Von Mises and Hill48's yield criterion.

  5. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  6. Tensile and Compressive Tests of Magnesium Alloy J-1 Sheet

    DTIC Science & Technology

    1943-12-01

    Tensile and compressive properties of longitudinal and transverse specimens of magnesium alloy J-1 sheets, 0.032 and 0.12 in. thick, were tested. It was found that he tensile properties were above the Navy specification 47M2a for magnesium-base-alloy 8H. Longitudinal and transverse specimens were in close agreement in the tensile test . In the compressive yield strengths, longitudinal direction was much less

  7. The Effect of Alloy Additions on Superplasticity in Thermomechanically Processed High Magnesium Aluminum-Magnesium Alloys.

    DTIC Science & Technology

    1984-12-01

    AD-Ri55 142 THE EFFECT OF ALLOY ADDITIONS ON SUPERPLASTICITY IN I/2 THERMOMECHANICALLY PR-.(U) NAVAL POSTGRADUATE SCHOOL UNCLSSIIED MONTEREY CA R J...Ln Monterey, California DTr J U N 1985 * THESIS THE EFFECT OF ALLOY ADDITIONS ON SUPERPLASTICITY IN THERMOMECHANICALLY PROCESSED HIGH MAGNESIUM *0...ALUMINUM-MAGNESIUM ALLOYS >by 0 (Richard J. Self December 1984 C-31 Thesis Advisor: Terry McNelley Approved for public release; distribution is unlimited

  8. Development Program for Natural Aging Aluminum Casting Alloys

    SciTech Connect

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  9. Cryogenic mechanical properties of low density superplastic aluminum alloys

    SciTech Connect

    Verzasconi, S.L.

    1989-05-01

    Two alloy systems, mainly Al-Li-Cu and Al-Mg-Sc, were studied in this work. Both of these systems have been shown to be superplastically formable in the conditions chosen, and both provide a significant density reduction over a currently used aluminum cryogenic fuel tankage material, 2219. The Al-Mg-Sc alloy provides over 50 percent of the density reduction of 2090 over 2219. In addition to lower density, Al-Li alloys have a higher elastic modulus (stiffness) than conventional aerospace alloys. The main purpose of this work is to characterize the cryogenic strength and toughness of several Al-Cu-Li and Al-Mg-Sc alloys. In addition, the microstructures and fracture surfaces are characterized and related to these properties where possible. 43 refs.

  10. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  11. Aluminum(3)(scandium, zirconium) dispersoids in aluminum alloys: Coarsening and recrystallization control

    NASA Astrophysics Data System (ADS)

    Riddle, Yancy Willard

    2000-10-01

    With proper metallurgical techniques, the addition of scandium and/or zirconium to aluminum will form recrystallization inhibitors in wrought product called "dispersoids". Zirconium forms Al3Zr dispersoids with aluminum, which is currently the most potent dispersoid in commercial use. However, scandium forms Al3Sc dispersoids with aluminum, which have been shown to surpass the effectiveness of Al3Zr in some cases. Scandium is not currently a common addition to commercial Al alloys as little is known about its performance compared to Al-Zr. In this work, recrystallization and dispersoid coarsening are systematically studied as an effect of Sc and Zr content in Al. Comparison is made between the performance of wrought experimental Al alloys containing Al3Zr, Al3Sc, and Al3(Sc, Zr) dispersoids. Effectiveness of Al3Sc is limited to dispersoids less than 25nm radius, the point at which Al3Sc transforms from coherent to non-coherent. Alloys containing Al3(Sc, Zr) more effectively control recrystallization through combined volume fraction and thermal stability effects compared to alloys containing Al3Sc. Scandium shifts the recrystallization mechanism of A1 and Al-Zr alloys from nucleation-and-growth of new grains to boundary migration pinned by dispersoids. During annealing of cold rolled alloys, impinging boundaries dissociate coherent Al3Sc for which a disordering mechanism is proposed. As a practical measure, Sc and/or excess Zr are added to 7050 for comparison with the experimental alloys. The performance of modified 7050 alloys resembles the trends of the experimental alloys. In summary, the Al3(Sc, Zr) dispersoid is a more effective recrystallization inhibitor than any other dispersoid currently in use.

  12. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    SciTech Connect

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  13. Textures in Strip-Cast Aluminum Alloys: Their On-Line Monitoring and Quantitative Effects on Formability. Final Technical Report

    SciTech Connect

    Man, Chi-Sing

    2003-07-27

    Aluminum sheets produced by continuous casting (CC) provide energy and economic savings of at least 25 and 14 percent, respectively, over sheets made from conventional direct chill (DC) ingot casting and rolling. As a result of the much simpler production route in continuous casting, however, the formability of CC aluminum alloys is often somewhat inferior to that of their DC counterparts. The mechanical properties of CC alloys can be improved by controlling their microstructure through optimal thermomechanical processing. Suitable annealing is an important means to improve the formability of CC aluminum alloy sheets. Recrystallization of deformed grains occurs during annealing, and it changes the crystallographic texture of the aluminum sheet. Laboratory tests in this project showed that this texture change can be detected by either laser-ultrasound resonance spectroscopy or resonance EMAT (electromagnetic acoustic transducer) spectroscopy, and that monitoring this change allows the degree of recrystallization or the ''recrystallized fraction'' in an annealed sheet to be ascertained. Through a plant trial conducted in May 2002, this project further demonstrated that it is feasible to monitor the recrystallized state of a continuous-cast aluminum sheet in-situ on the production line by using a laser-ultrasound sensor. When used in conjunction with inline annealing, inline monitoring of the recrystallized fraction by laser-ultrasound resonance spectroscopy offers the possibility of feed-back control that helps optimize processing parameters (e.g., annealing temperature), detect production anomalies, ensure product quality, and further reduce production costs of continuous-cast aluminum alloys. Crystallographic texture strongly affects the mechanical anisotropy/formability of metallic sheets. Clarification of the quantitative relationship between texture and anisotropy/formability of an aluminum alloy will render monitoring and control of its texture during the sheet

  14. Grain size control and superplasticity in 6013-type aluminum alloys

    NASA Astrophysics Data System (ADS)

    Troeger, Lillianne Plaster Whitelock

    Aluminum alloys have been the material of choice for aircraft construction since the 1930's. Currently, the automotive industry is also showing an increasing interest in aluminum alloys as structural materials. 6xxx aluminum alloys possess a combination of strength and formability which makes them attractive to both industries. In addition, 6xxx alloys are highly weldable, corrosion resistant, and low in cost as compared with the 2xxx and 7xxx aluminum alloys. Superplastic forming (SPF) is a manufacturing process which exploits the phenomenon of superplasticity in which gas pressure is used to form complex-shaped parts in a single forming operation. This reduces part counts and the need for fasteners and connectors, resulting in reduced product weight. Reduced product/vehicle weight improves fuel economy. Most alloys must be specially processed for superplasticity. Much research effort has been directed at the development of thermomechanical processes for the grain refinement of aluminum alloys by static or dynamic recrystallization. to induce superplasticity. While large numbers of studies have been conducted on 2xxx, 5xxx, 7xxx, and 8xxx aluminum alloys, very few studies have been focused on the grain refinement of 6xxx aluminum alloys for superplasticity. The current research describes a new thermomechanical process for application to 6xxx aluminum alloys for grain refinement and superplasticity. The process is shown to successfully refine and induce superplasticity in an Al-Mg-Si-Cu alloy which falls within the compositional limits of both 6013 and 6111. The grain refinement is by particle-stimulated nucleation of recrystallization. The microstructural evolution during the thermomechanical processing is characterized in terms of precipitate size, shape, distribution and composition; texture; recrystallization; and grain size, shape, and thermal stability. The new process produces a statically-stable, weakly-textured, equiaxed grain structure with an average

  15. Microstructural and superplastic characteristics of friction stir processed aluminum alloys

    NASA Astrophysics Data System (ADS)

    Charit, Indrajit

    Friction stir processing (FSP) is an adapted version of friction stir welding (FSW), which was invented at The Welding Institute (TWI), 1991. It is a promising solid state processing tool for microstructural modification at localized scale. Dynamic recrystallization occurs during FSP resulting in fine grained microstructure. The main goal of this research was to establish microstructure/superplasticity relationships in FSP aluminum alloys. Different aluminum alloys (5083 Al, 2024 Al, and Al-8.9Zn-2.6Mg-0.09Sc) were friction stir processed for investigating the effect of alloy chemistry on resulting superplasticity. Tool rotation rate and traverse speeds were controlled as the prime FSP parameters to produce different microstructures. In another study, lap joints of 7475 Al plates were also studied to explore the possibility of developing FSW/superplastic forming route. Microstructures were evaluated using optical, scanning and transmission electron microscopy, orientation imaging microscopy and differential scanning calorimetry. Mechanical properties were evaluated using tensile testing. FSP 2024 Al (3.9 mum grain size) exhibited an optimum ductility of 525% at a strain rate of 10-2 s-1 and 430°C. Grain boundary sliding mechanism was found to be the dominant mode of deformation in this alloy. In 5083 Al alloy, it was found that changing the process parameters, grain sizes in the range of 3.5--8.5 mum grain size could be obtained. Material processed with colder processing parameters showed a decrease in ductility due to microstructural instability, and followed solute drag dislocation glide mechanism. On the other hand, materials processed with hotter parameter combinations showed mode of deformation related to grain boundary sliding mechanism. FSP of as-cast Al-Zn-Mg-Sc alloy resulted in ultrafine grains (0.68 mum) with attractive combination of high strain rate and low temperature superplasticity. This also demonstrated that superplastic microstructures could be

  16. In situ EBSD during tensile test of aluminum AA3003 sheet.

    PubMed

    Kahl, Sören; Peng, Ru Lin; Calmunger, Mattias; Olsson, Björn; Johansson, Sten

    2014-03-01

    Miniature tensile-test specimens of soft-annealed, weakly textured AA3003 aluminum sheet in 0.9 mm thickness were deformed until fracture inside a scanning electron microscope. Tensile strength measured by the miniature tensile test stage agreed well with the tensile strength by regular tensile testing. Strain over the microscope field of view was determined from changes in positions of constituent particles. Slip lines were visible in secondary electron images already at 0.3% strain; activity from secondary slip systems became apparent at 2% strain. Orientation rotation behavior of the tensile load axis with respect to the crystallographic axes agreed well with previously reported trends for other aluminum alloys. Start of the fracture and tensile crack propagation were documented in secondary electron images. The region of fracture nucleation included and was surrounded by many grains that possessed high Schmid factors at zero strain. Crystal lattice rotation angles in the grains surrounding the initial fracture zone were higher than average while rotations inside the initial fracture zone were lower than average for strains from zero to 31%. The orientation rotation behavior of the tensile load axes of the grains around the fracture zone deviated from the average behavior in this material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Quenching and partitioning response of carbon-manganese-silicon sheet steels containing nickel, molybdenum, aluminum and copper additions

    NASA Astrophysics Data System (ADS)

    Kahkonen, Joonas

    In order to produce passenger vehicles with improved fuel economy and increased passenger safety, car manufacturers are in need of steels with enhanced strength levels and good formability. Recently, promising combinations of strength and ductility have been reported for several, so-called third generation advanced high-strength steels (AHSS) and quenching and partitioning (Q&P) steels are increasingly being recognized as a promising third generation AHSS candidate. Early Q research used conventional TRIP steel chemistries and richer alloying strategies have been explored in more recent studies. However, systematic investigations of the effects of alloying elements on tensile properties and retained austenite fractions of Q&P steels are sparse. The objective of the present research was to investigate the alloying effects of carbon, manganese, molybdenum, aluminum, copper and nickel on tensile properties and microstructural evolution of Q&P heat treated sheet steels. Seven alloys were investigated with 0.3C-1.5Mn-1.5Si (wt pct) and 0.4C-1.5Mn-1.5Si alloys used to study carbon effects, a 0.3C-5Mn-1.6Si alloy to study manganese effects, 0.3C-3Mn-1.5Si-0.25Mo and 0.3C-3Mn-1.5Si-0.25Mo-0.85Al alloys to study molybdenum and aluminum effects and 0.2C-1.5Mn-1.3Si-1.5Cu and 0.2C-1.5Mn-1.3Si-1.5Cu-1.5Ni alloys to study copper and nickel effects. Increasing alloy carbon content was observed to mainly increase the ultimate tensile strength (UTS) up to 1865 MPa without significantly affecting total elongation (TE) levels. Increasing alloy carbon content also increased the resulting retained austenite (RA) fractions up to 22 vol pct. Measured maximum RA fractions were significantly lower than the predicted maximum RA levels in the 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys, likely resulting from transition carbide formation. Increasing alloy manganese content increased UTS, TE and RA levels, and decreased yield strength (YS) and austenite carbon content (Cgamma) levels

  18. A Model for Gas Microporosity in Aluminum and Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Felicelli, Sergio D.; Wang, Liang; Pita, Claudio M.; Escobar de Obaldia, Enrique

    2009-04-01

    A quantitative prediction of the amount of gas microporosity in aluminum and magnesium-alloy castings is performed with a continuum model of dendritic solidification. The distribution of the pore volume fraction and pore size is calculated from a set of conservation equations that solves the transport phenomena during solidification at the macroscale and the hydrogen diffusion into the pores at the microscale. A technique based on a pseudo-alloy solute that is transported by the melt is used to determine the potential sites of pore growth, subject to considerations of mechanical and thermodynamic equilibrium. The modeling results for aluminum alloy A356 are found to agree well with published studies. In view of the limited availability of experimental data for Mg-alloy gravity-poured castings, the formation of porosity in AZ91 is studied qualitatively, assuming that casting conditions are similar to A356. In particular, the minimum initial hydrogen content that leads to the formation of gas porosity was compared for both alloys. It is found that the initial hydrogen content necessary for forming porosity is much higher in AZ91 than in A356. This is attributed to significant differences in the solubility of the hydrogen in both alloys.

  19. DESIGN DATA STUDY FOR COATED COLUMBIUM ALLOYS

    DTIC Science & Technology

    ANTIOXIDANTS, * COATINGS , * NIOBIUM ALLOYS, *REFRACTORY COATINGS , *SILICON COATINGS , ALLOYS, ALUMINUM, DEFORMATION, ELASTIC PROPERTIES, HIGH...TEMPERATURE, OXIDATION, PLASTIC PROPERTIES, REENTRY VEHICLES, REFRACTORY MATERIALS, SHEETS, SILICIDES , VACUUM APPARATUS, VAPOR PLATING, ZIRCONIUM ALLOYS

  20. Nitrate reduction in water by aluminum alloys particles.

    PubMed

    Bao, Zunsheng; Hu, Qing; Qi, Weikang; Tang, Yang; Wang, Wei; Wan, Pingyu; Chao, Jingbo; Yang, Xiao Jin

    2017-07-01

    Nano zero-valent iron (NZVI) particles have been extensively investigated for nitrate reduction in water. However, the reduction by NZVI requires acidic pH conditions and the final product is exclusively ammonium, leading to secondary contamination. In addition, nanomaterials have potential threats to environment and the transport and storage of nanomaterials are of safety concerns. Aluminum, the most abundant metal element in the earth's crust, is able to reduce nitrate, but the passivation of aluminum limits its application. Here we report Al alloys (85% Al) with Fe, Cu or Si for aqueous nitrate reduction. The Al alloys particles of 0.85-0.08 mm were inactivate under ambient conditions and a simple treatment with warm water (45 °C) quickly activated the alloy particles for rapid reduction of nitrate. The Al-Fe alloy particles at a dosage of 5 g/L rapidly reduced 50 mg-N/L nitrate at a reaction rate constant (k) of 3.2 ± 0.1 (mg-N/L)(1.5)/min between pH 5-6 and at 4.0 ± 0.1 (mg-N/L)(1.5)/min between pH 9-11. Dopping Cu in the Al-Fe alloy enhanced the rates of reduction whereas dopping Si reduced the reactivity of the Al-Fe alloy. The Al alloys converted nitrate to 20% nitrogen and 80% ammonium. Al in the alloy particles provided electrons for the reduction and the intermetallic compounds in the alloys were likely to catalyze nitrate reduction to nitrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Technology of welding aluminum alloys-III

    NASA Technical Reports Server (NTRS)

    Harrison, J. R.; Kor, L. J.; Oleksiak, C. E.

    1978-01-01

    Control of porosity in weld beads was major objective in development of aluminum welding program. Porosity, most difficult defect to control, is caused by hydrogen gas unable to escape during solidification. Hard tooling allows hotter bead than free-fall tooling so hydrogen bubbles can boil out instead of forming pores. Welding position, moisture, and cleanliness are other important factors in control of porosity.

  2. Technology of welding aluminum alloys-I

    NASA Technical Reports Server (NTRS)

    Harrison, J. R.; Korb, L. J.; Oleksiak, C. E.

    1978-01-01

    Systems approach to high-quality aluminum welding uses square-butt joints, kept away from sharp contour changes. Intersecting welds are configured for T-type intersections rather than crossovers. Differences in panel thickness are accommodated with transition step areas where thickness increases or decreases within weld, but never at intersection.

  3. Hydrogen interactions in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Smith, S. W.; Scully, J. R.

    1991-01-01

    A program is described which seeks to develop an understanding of the effects of dissolved and trapped hydrogen on the mechanical properties of selected Al-Li-Cu-X alloys. A proposal is made to distinguish hydrogen (H2) induced EAC from aqueous dissolution controlled EAC, to correlate H2 induced EAC with mobile and trapped concentrations, and to identify significant trap sites and hydride phases (if any) through use of model alloys and phases. A literature review shows three experimental factors which have impeded progress in the area of H2 EAC for this class of alloys. These are as listed: (1) inter-subgranular fracture in Al-Li alloys when tested in the S-T orientation in air or vacuum make it difficult to readily detect H2 induced fracture based on straight forward changes in fractography; (2) the inherently low H2 diffusivity and solubility in Al alloys is further compounded by a native oxide which acts as a H2 permeation barrier; and (3) H2 effects are masked by dissolution assisted processes when mechanical testing is performed in aqueous solutions.

  4. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barrett, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloy was examined by cyclically oxidizing sodium sulfate coated specimens in still air at 900, 1000 and 1100 C. The compositions tested were within the ternary region: Ni; Ni-50 at.% Cr; and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. Corrosion isopleths were prepared from these equations. Compositional regions with the best hot corrosion resistance were identified.

  5. Hot corrosion resistance of nickel-chromium-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Barret, C. A.

    1977-01-01

    The hot corrosion resistance of nickel-chromium-aluminum alloys was examined by cyclically oxidizing sodium sulfate-coated specimens in still air at 900, 1000, and 1100 C. The compositions tested were within the ternary region: Ni, Ni-50 at.% Cr, and Ni-50 at.% Al. At each temperature the corrosion data were statistically fitted to a third order regression equation as a function of chromium and aluminum contents. From these equations corrosion isopleths were prepared. Compositional regions with the best hot corrosion resistance were identified.

  6. Approaches for mechanical joining of 7xxx series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Jäckel, M.; Grimm, T.; Landgrebe, D.

    2016-10-01

    This paper shows a numerical and experimental analysis of the different problems occurring during or after the conventional self-pierce riveting with semi-tubular and solid rivets of the high strength aluminum alloy EN AW-7021 T4. Furthermore this paper describes different pre-process methods by which the fracture in the high strength aluminum, caused by the self-pierce riveting processes, can be prevented and proper joining results are achieved. On this basis, the different approaches are compared regarding joint strength.

  7. Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  8. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  9. Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin

    Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.

  10. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  11. Friction and wear of titanium alloys and copper alloys sliding against titanium 6-percent-aluminum - 4-percent-vanadium alloy in air at 430 C

    NASA Technical Reports Server (NTRS)

    Wisander, D. W.

    1976-01-01

    Experiments were conducted to determine the friction and wear characteristics of aluminum bronzes and copper-tin, titanium-tin, and copper-silver alloys sliding against a titanium-6% aluminum-4% vanadium alloy (Ti-6Al-4V). Hemispherically tipped riders of aluminum bronze and the titanium and copper alloys were run against Ti-6Al-4V disks in air at 430 C. The sliding velocity was 13 cm/sec, and the load was 250 g. Results revealed that high tin content titanium and copper alloys underwent significantly less wear and galling than commonly used aluminum bronzes. Also friction force was less erratic than with the aluminum bronzes.

  12. Chromate Conversion Coating of Aluminum Alloys

    DTIC Science & Technology

    1975-07-10

    a sodium sulfate-nitric acid solution sometimes used to clean aluminum prior to spotwelding. Immersion times were varied in the chromate-sulfate...Good results were also obtained with sodium sulfate-nitric acid and an 8 minute treatment in one non-chromete proprietary solution. Average resis...molybdate or tungstate salts with the ferricyanide ion considered to be the most effective accelerator. Water for Bath Make-Up and Rinsing It is very

  13. Evaluation and control of environmental corrosion for aluminum and steel alloys

    NASA Technical Reports Server (NTRS)

    Franklin, D. B.

    1977-01-01

    Corrosion protection systems for aerospace application and the effects of surface treatments and methods of controlling stress corrosion are evaluated. Chromate pigmented systems were found to be most effective for aluminum alloys; zinc-rich coatings gave the greatest protection to steel alloys. Various steel and aluminum alloys are rated for stress corrosion resistance.

  14. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-Th-O2) sheet for space shuttle vehicles, part 1

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1971-01-01

    A dispersion-strengthened alloy, TD nickel chromium (TDNiCr) is being developed for use on the thermal protection system of the space shuttle at temperatures up to 1204 C(2200 F). Manufacturing processes were developed for the fabrication of sheet and foil to specifications. The addition of aluminum to the basic TDNiCr composition provides outstanding oxidation resistance up to 1260 C(2300 F); aluminum levels of 2 to 4% are considered optimum for space shuttle application.

  15. Statistical Analysis of Strength Data for an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Neergaard, Lynn; Malone, Tina; Gentz, Steven J. (Technical Monitor)

    2000-01-01

    Aerospace vehicles are produced in limited quantities that do not always allow development of MIL-HDBK-5 A-basis design allowables. One method of examining production and composition variations is to perform 100% lot acceptance testing for aerospace Aluminum (Al) alloys. This paper discusses statistical trends seen in strength data for one Al alloy. A four-step approach reduced the data to residuals, visualized residuals as a function of time, grouped data with quantified scatter, and conducted analysis of variance (ANOVA).

  16. Statistical Analysis of Strength Data for an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Neergaard, L.; Malone, T.

    2001-01-01

    Aerospace vehicles are produced in limited quantities that do not always allow development of MIL-HDBK-5 A-basis design allowables. One method of examining production and composition variations is to perform 100% lot acceptance testing for aerospace Aluminum (Al) alloys. This paper discusses statistical trends seen in strength data for one Al alloy. A four-step approach reduced the data to residuals, visualized residuals as a function of time, grouped data with quantified scatter, and conducted analysis of variance (ANOVA).

  17. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  18. Welding high-strength aluminum alloys at the Paton Institute

    SciTech Connect

    Kuchuk, Yatsenko, S.I.; Cherednichok, V.T.; Semenov, L.A. )

    1993-07-01

    The choice of the flash method for welding aluminum-alloy sections was governed first of all by the possibility of producing homogeneous-structure joints with the minimum amount of possible discontinuities and an insignificant metal strength loss in the welding zone. The aluminum alloy welding technology under consideration relies on the method of flash welding without using any protective atmospheres. The reason is first of all that a complex cross-sectional shape of workpieces being joined, their configuration and considerable overall dimensions make it difficult to use chambers of any type. Besides, conducted studies ascertained that in flash welding, in contrast to various fusion welding processes, the use of protective atmospheres or a vacuum is of little benefit. Here are the results of studying the specifics of thermal and electric processes in flashing, the physical features of weld joint formation, the basics of the welding technology, and the characteristics of the equipment.

  19. The analysis of aluminum alloy structure beams under static load

    NASA Astrophysics Data System (ADS)

    Ho, Minghsiung; Wang, Pinning; Yeh, Jungpeng

    2017-04-01

    The Aluminum alloy had been applications in many areas. In this study, the models with four type's cross-section were designed and analyzed. Analyses of the use of aluminum alloy materials are 5086-H32, 6061-T6, 7005-T6 and 7075-T6. The materials selected are based on the recommendations of the casting plant. The boundary conditions are set according to the actual conditions of use. Force and torsion are used to apple on models under different conditions. The results of stress and deformation are discussed. The stress results were shown that 40x80 model with hollow cross-section under two end fixed middle beam load had the highest stresses of 41.177 MPa nearby fixed end position. The beam model of 40x80 hollow cross-section under boundary condition of one end fixed and one end force load like a cantilever beam has the maximum deformation 1.587 mm.

  20. A Fundamental Study of Fatigue in Powder Metallurgy Aluminum Alloys.

    DTIC Science & Technology

    1981-08-01

    Rearick (20) have confirmed the beneficial effect of material flow during densification; endurance limits in rotating bend on P/M processed compositions...INTRODUCTION Recent studies on aluminum alloys have shown that lateral flow during consolidation, aimed at eliminating porosity and the fragmentation of surface...removed from each forging. Slices cut from the forgings were solution treated at a temperature of 488C (910*F) for two hours and water quenched. The

  1. Deformation behavior of submicrocrystalline aluminum alloys during dynamic loading

    NASA Astrophysics Data System (ADS)

    Brodova, I. G.; Petrova, A. N.; Razorenov, S. V.; Plekhov, O. P.; Shorokhov, E. V.

    2016-04-01

    The structure and the mechanical properties of aluminum V95 and AMts alloys with various grain sizes (from micron to submicron) are studied in a wide range of strain rates (from 10-3 to 105 s-1). Submicrocrystalline (200-600 nm) materials are formed by dynamic channel-angular pressing at a strain rate of 105 s-1 using a pulsed power source.

  2. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations;

    SciTech Connect

    Not Available

    2006-04-01

    DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

  3. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    SciTech Connect

    2006-04-01

    DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

  4. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube

    NASA Astrophysics Data System (ADS)

    Hong, Min-Sung; Park, In-Jun; Kim, Jung-Gu

    2017-07-01

    This study examined the alloying effect of Cu content on the localized corrosion properties of Al alloy in synthetic acid rain containing 200 ppm of Cl- ion. In aluminum alloy tubes, a small amount of Cu is contained as the additive to improve the mechanical strength or as the impurity. The Cu-containing intermetallic compound, Al2Cu can cause galvanic corrosion because it has more noble potential than Al matrix. Therefore aluminum tube could be penetrated by localized corrosion attack. The results were obtained from electrochemical test, scanning electron microscopy, and time of flight secondary ion mass spectrometry (ToF-SIMS) mapping. Severe localized corrosion was occurred on the Al-0.03 wt% Cu alloy. The negative effect of Cu on the pitting corrosion was attributed to the presence of the Al2Cu precipitates.

  5. Corrosion of Aluminum Alloys by IRFNA

    DTIC Science & Technology

    1990-02-24

    and electropolishing and anodising, have been studied. aNeither had a significant long term effect on the corrosion rate of 2014 alumninium alloy in... steel spatula. (iv) The cell was assembled and raw eghed, the charge of galled Acid being determined by difference. Two additional bottom-working...The anodiuing solution was 1swt% sulphuric acid And the conditions were 25oC, 1 Mwm, 12V. The anodic oxide film waS scaled in delonised water (30

  6. The Development of Aluminum-Lithium Alloys.

    DTIC Science & Technology

    1980-07-31

    Metallurgy Sander A. Levy, Director Department of Metallurgical Services and Ingot Casting Technology __j: Grant E. Spangle $, Gereral Director bd...of the Aqeinq Mechanism of the Alloy Al-Li," translated from Fiz. Metal Metalloved., V. 42, N. 3, 1976 , pp. 546-556. [8] B. Noble and G. E. Thompson...34 translated from Fiz. Metal Metalloved., 42, N. 5, 1976 , pp. 1021-1028. -159- [19] Z. A. Sviderskaya, E. S. Kadaner, N. I. Turkina, and V. I

  7. Modeling aluminum-lithium alloy welding characteristics

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1996-01-01

    The purpose of this project was to develop a finite element model of the heat-affected zone in the vicinity of a weld line on a plate in order to determine an accurate plastic strain history. The resulting plastic strain increments calculated by the finite element program were then to be used to calculate the measure of damage D. It was hoped to determine the effects of varying welding parameters, such as beam power, efficiency, and weld speed, and the effect of different material properties on the occurrence of microfissuring. The results were to be compared first to the previous analysis of Inconel 718, and then extended to aluminum 2195.

  8. Welding of aluminum alloy with high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Abe, Nobuyuki; Morikawa, Atsuhito; Tsukamoto, Masahiro; Maeda, Koichi; Namba, Keizo

    2003-06-01

    Characterized by high conversion efficiency, small size, light weight and a long lifetime, high power diode lasers are currently being developed for application to various types of metal fabrication, such as welding. In this report, a 4kW high power direct diode laser was used to weld aluminum alloys, which are the focus of increasing attention from the automobile industry because of their light weight, high formability and easy recyclability. The applicability of a direct diode laser to aluminum alloy bead-on plate, butt and lap-fillet welding was studied under various welding conditions. A sound bead without cracks was successfully obtained when 1 mm thick aluminum alloy was welded by bead-on welding at a speed of 12m/min. Moreover, the bead cross section was heat conduction welding type rather than the keyhole welding type of conventional laser welding. Investigation of the welding phenomena with a high-speed video camera showed no spattering or laser plasma, so there was no problem with laser plasma damaging the focusing lens despite the diode laser's short focusing distance.

  9. Two-Stage Superplastic Forming of a V-Shaped Aluminum Sheet into a Trough with Deep and Irregular Contour

    NASA Astrophysics Data System (ADS)

    Lan, Hsien-Chin; Fuh, Yiin-Kuen; Lee, Shyong; Chu, Chun-Lin; Chang, Tien-Chan

    2013-08-01

    A sheet metal trough of aluminum alloy is manufactured by a two-stage gas forming process at 500 °C. The product with sloped side walls is of ~1.2 m length and ~260 mm opening width, comprising two near-conical-shaped sinks at two ends. The depth of one sink apex is ~350 mm, which results in the depth/width ratio reaching 1.4. To form such a deep and irregular trough, a superplastic aluminum alloy 5083 initially bent into a V-shaped groove was prepared prior to the gas forming work. Within a single die, gas pressure is used to form the V-shaped blank into a preform die cavity prior to the pressure being reversed to form the sheet into the final component cavity. The preforming of the V blank creates a uniform length of line in order to improve the thickness profile of the final part. In this work, a preform has been designed to improve the forming of a complex component by providing a superior thickness profile as compared to a conventional single-stage forming cycle. However, a serious wrinkling situation was encountered, the cause of which has been analyzed using basic mechanics as well as numerical simulation.

  10. Prediction of low-cycle fatigue-life by acoustic emission—1: 2024-T3 aluminum alloy, and —2: 7075-T6 aluminum alloy

    SciTech Connect

    Baram, J.; Rosen, M.

    1981-01-01

    1: In this paper, low-cycle fatigue tests were conducted by tension-tension until rupture, on a 2024-T3 aluminum alloy sheet. Initial crack sizes and orientations in the fatigue specimens were found to be randomly distributed. Acoustic emission was continuously monitored during the tests. Every few hundred cycles, the acoustic signal having the highest peak-amplitude, was recorded as an extremal event for the elapsed period. This high peak-amplitude is related to a fast crack propagation rate through a phenomenological relationship. The extremal peak amplitudes are shown by an ordered statistics treatment, to be extremally distributed. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performed a posteriori based on results gained early in each fatigue test are in good agreement with actual fatigue lives. Finally, the amplitude distribution analysis of the acoustic signals emitted during cyclic stress appears to be a promising nondestructive method of predicting fatigue life. 2: In this paper, low cycle high stress fatigue tests were conducted by tension-tension on an Alclad 7075-T6 aluminum sheet alloy, until rupture. Initial crack sizes and orientations in the fatigue specimens were randomly distributed. Acoustic emission was continuously monitored during the tests. Extremal peak-amplitudes, equivalent to extremal crack-propagation rates, are shown to be extremally Weibull distributed. The prediction of the number of cycles left until failure is made possible, using an ordered statistics treatment and an experimental equipment parameter obtained in previous experiments (Part 1). The predicted life-times are in good agreement with the actual fatigue lives. Finally, the amplitude distribution analysis of the acoustic signals emitted during cyclic stress has been proven to be a feasible nondestructive method of predicting fatigue life.

  11. Development of a Brazing Alloy for the Mechanically Alloyed High Temperature Sheet Material INCOLOY Alloy MA 956.

    DTIC Science & Technology

    1981-09-01

    well established that joining these alloys by conventional fusion welding techniques has presented problems, especially in achieving good quality high...temperature joint properties, mainly because of agglomeration of the dispersoid in the weld bead. Brazing, diffusion bonding and transient liquid...produced mechanically alloyed iron based sheet material, INQ)LOY alloy MA956, has excellent high temperature strength and corrosion resistance and has

  12. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  13. Investigation of surface oxides on aluminum alloys by valence band photoemission

    NASA Astrophysics Data System (ADS)

    Claycomb, Gregory D.; Sherwood, Peter M. A.

    2002-07-01

    Core level and valence band x-ray photoelectron spectroscopy are used to study the chemical composition of the surface films on aluminum alloys. Certain alloying elements may preferentially migrate to the surface of an alloy, thereby altering the composition and consequently the chemistry of the surface. The behavior of a 6061 aluminum alloy is compared with that of pure aluminum. It is shown that the type of magnesium film formed at the alloy surface can be determined by comparing the valence band spectra of the aluminum alloy surface with that of known magnesium and aluminum compounds. The experimental valence band spectra of these compounds are supported by spectra generated from band structure calculations. The effect of boiling water on the surface film is discussed, with significant differences in surface chemistry being seen for the metal and the alloy. copyright 2002 American Vacuum Society.

  14. Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro

    DTIC Science & Technology

    2011-09-01

    Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro by John F. Chinella and Zhanli Guo...ARL-TR-5660 September 2011 Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro John F...Computational Thermodynamics Characterization of 7075, 7039, and 7020 Aluminum Alloys Using JMatPro 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  15. Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent

    DTIC Science & Technology

    2015-02-01

    Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent by Frank Kellogg, Clara Hofmeister...Ground, MD 21005-5069 ARL-TR-7208 February 2015 Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free...4. TITLE AND SUBTITLE Nanostructuring of Aluminum Alloy Powders by Cryogenic Attrition with Hydrogen-Free Process Control Agent 5a. CONTRACT

  16. Formability Analysis of Magnesium Alloy Sheet Bulging Using FE Simulation

    SciTech Connect

    Mac Donald, B. J.; Hunt, D.; Yoshihara, S.; Manabe, K.

    2007-05-17

    There is currently much focus on the application of magnesium alloys to automotive structural components. This has arisen due to the positive environmental aspects associated with use of magnesium alloys such as weight reduction and recycling potential. In recent years many researchers have focused on the application of various forming processes to magnesium alloys. Magnesium alloys would seem highly suitable for sheet forming due to high N and r values, however, in application their formability has been inferior to, for example, aluminium alloys. It has thus been concluded that, when dealing with magnesium alloys, it is difficult to predict formability based on material properties. In order to improve formability and forming accuracy when using Mg alloys it is necessary to build a database and inference system which could decide the optimal forming parameters for complex automotive components. Currently not enough data is available to build such a database due to the limited number of studies available in literature. In this study an experimental analysis of hemispherical bulge forming at elevated temperature was undertaken in order to evaluate formability and hence build a database for forming process design. A finite element model based on the experiment has been built and validated against the experimental results. A ductile failure criterion has been integrated with the FE model and is used to predict the onset of failure. This paper discusses the development and validation of the finite element model with the ductile failure criterion and presents results from the experimental tests and FE simulations.

  17. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  18. Diffusion bonding of Al7075 alloy to titanium aluminum vanadate alloy

    NASA Astrophysics Data System (ADS)

    Alhazaa, Abdulaziz Nasser

    The aluminum alloy (Al7075) and titanium alloy (Ti-6Al-4V) are used in a variety of applications in the aerospace industry. However, the high cost of Ti-6Al-4V alloy has been a major factor which has limited its use and therefore, the ability to join Al7075 alloy to Ti-6Al-4V alloy can provide a product that is less costly, but retains the high strength and light weight properties necessary for the transport industry. However, the large difference in the physical properties between these two alloys prevents the use of conventional joining techniques such as fusion welding to join these dissimilar alloys. Therefore, the diffusion bonding technique was used to join Al7075 alloy to Ti-6Al-4V alloy with the objective of minimizing microstructural changes of the two alloys during the bonding process. In this thesis, solid state and liquid phase bonding processes were undertaken. Solid state bonding was employed without interlayers and was successful at 510°C and 7 MPa. The bond interface showed an absence of the oxides due to the dissolution of oxygen into the titanium solution. Bonds made using copper interlayers at a temperature sufficient enough to form eutectic liquid formation between copper and aluminum were produced. The intermetallics theta(Al2Cu), S(Al2CuMg) and T(Al2Mg3Zn3) were identified at the aluminum interface while Cu3Ti2 intermetallic was identified at the titanium interface. Bonds made using tin based alloys interlayers and copper coatings were successful and gave the highest shear strength. The eutectic formation on the Al7075 alloy was responsible for joint formation at the aluminum interface while the formation of Sn3Ti5 intermetallic was responsible for the joint formation at titanium interface. The corrosion rate of the bonds decreased with increasing bonding time for joints made using the tin based interlayer in 3% NaCl solution. However, the presence of copper within the joint increased the corrosion rate of the bonds and this was attributed to

  19. Russian aluminum-lithium alloys for advanced reusable spacecraft

    NASA Astrophysics Data System (ADS)

    Charette, Ray O.; Leonard, Bruce G.; Bozich, William F.; Deamer, David A.

    1998-01-01

    Cryotanks that are cost-affordable, robust, fuel-compatible, and lighter weight than current aluminum design are needed to support next-generation launch system performance and operability goals. The Boeing (McDonnell Douglas Aerospace-MDA) and NASA's Delta Clipper-Experimental Program (DC-XA) flight demonstrator test bed vehicle provided the opportunity for technology transfer of Russia's extensive experience base with weight-efficient, highly weldable aluminum-lithium (Al-Li) alloys for cryogenic tank usage. As part of NASA's overall reusable launch vehicle (RLV) program to help provide technology and operations data for use in advanced RLVs, MDA contracted with the Russian Academy of Sciences (RAS/IMASH) for design, test, and delivery of 1460 Al-Li alloy liquid oxygen (LO2) cryotanks: one for development, one for ground tests, and one for DC-XA flight tests. This paper describes the development of Al-Li 1460 alloy for reusable LO2 tanks, including alloy composition tailoring, mechanical properties database, forming, welding, chemical milling, dissimilar metal joining, corrosion protection, completed tanks proof, and qualification testing. Mechanical properties of the parent and welded materials exceeded expectations, particularly the fracture toughness, which promise excellent reuse potential. The LO2 cryotank was successfully demonstrated in DC-XA flight tests.

  20. Activity and diffusion of metals in binary aluminum alloys

    SciTech Connect

    Jao, C. S.

    1980-12-01

    To determine the activity of zinc in Zn-Al alloys, the electromotive force (emf) of the cell: Zn/ZnCl/sub 2/-KC1 (eut)/Zn,Al was measured at temperatures between 569.5 K (296.5C) and 649.5 K (376.5C). The applicability of a two-suffix Margules equation was demonstrated, in good agreement with theoretical expectations. The diffusion coefficient of Zn in Al determined from a planar diffusion model for the experimental data was about 3 x 10/sup -10/ cm/sup 2//sec to 2 x 10/sup -9/ cm/sup 2//sec in the range of temperature studied. This is higher than that found in the literature. The most plausible reason appears to be the high alumina concentration in the working electrode because of partial oxidation. Oxidation of the alloying metals was the primary cause of poor alloying between calcium/or zinc and aluminum, thereby frustrating similar measurements at a Ca-Al/or Zn-Al alloy. The literature on the activity of calcium and zinc is aluminum is reviewed.

  1. Characteristics of laser surface melted aluminum alloys.

    PubMed

    Weinman, L S; Kim, C; Tucker, T R; Metzbower, E A

    1978-03-15

    Specimens of Al-Fe 1-4 w/o, 2024 and 6061 Al have been surface melted with a pulsed Nd-glass laser. A TEM and SEM study showed that the dendrite spacings were from 2500 A to 4000 A which corresponds to a cooling rate of over 10(6) degrees C/sec. Melt depths obtained were in the range of 30-100 microm. No significant surface vaporization was observed at energy densities up to 440 J/cm(2). Fracture surfaces of the commerical alloys demonstrated elongated porosity in the melt areas, probably due to internal hydrogen.

  2. Elevated temperature fracture of RS/PM aluminum alloy 8009

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Yang, Leng; Gangloff, Richard P.

    1991-01-01

    The fracture behavior of advanced powder metallurgy Al-Fe-V-Si alloy 8009 (previously called FVS0812) is being characterized under monotonic loads, as a function of temperature. Particular attention is focused on contributions to the fracture mechanism from the fine grained dispersoid strengthened microstructure, dissolved solute from rapid solidification, and the moist air environment. Time-dependent crack growth is characterized in advanced aluminum alloys at elevated temperatures with the fracture mechanics approach, and cracking mechanisms are examined with a metallurgical approach. Specific tasks were to obtain standard load crack growth experimental information from a refined testing system; to correlate crack growth kinetics with the j-integral and time dependent C(sub t)(t); and to investigate the intermediate temperature embrittlement of 8009 alloy in order to understand crack growth mechanisms.

  3. Microstructural issues in a friction-stir-welded aluminum alloy

    SciTech Connect

    Flores, O.V.; Kennedy, C.; Murr, L.E.; Brown, D.; Pappu, S.; Nowak, B.M.; McClure, J.C.

    1998-02-03

    Recent observations of microstructures associated with friction-stir welding (FSW) in a number of aluminum alloys have consistently demonstrated the actual weld zone to consist of a (dynamically) recrystallized grain structure resulting from the extreme, solid-state, plastic deformation characterizing the process. Because of solubilities associated with the various precipitates in 7075 and 6061 aluminum alloys, and the fact that the precipitates were either homogeneously distributed throughout both the original (unwelded) work-piece plates and the well zones (or formed varying densities of Widmanstaetten patterns within the original and recrystallized grains), it has been difficult to follow the stirring of stable, second-phase particles from the base metal (work-piece) into the weld zone. In the present investigation, a compositionally modified 1100 aluminum alloy (nominally 99.2% Al, 0.5% Fe, 0.15% Cu, 0.12% Si, 0.05 Mn, 0.04 Ti, balance in weight percent of Be and Mg), forming a stable microdendritic (second-phase), equiaxed, cell structure was friction-stir welded. These thermally stable, geometrically specific, precipitates in the base metal were compared with their disposition within the friction-stir-weld zone. In addition, as-cast plates of this alloy were cold-rolled 50% and friction-stir-welded in order to compare these two schedules (as-cast and 50% cold-rolled) in terms of residual hardness variations and related microstructural issues as well as the effect of prior deformation on the friction-stir welding process.

  4. Temperature Dependent Constitutive Modeling for Magnesium Alloy Sheet

    SciTech Connect

    Lee, Jong K.; Lee, June K.; Kim, Hyung S.; Kim, Heon Y.

    2010-06-15

    Magnesium alloys have been increasingly used in automotive and electronic industries because of their excellent strength to weight ratio and EMI shielding properties. However, magnesium alloys have low formability at room temperature due to their unique mechanical behavior (twinning and untwining), prompting for forming at an elevated temperature. In this study, a temperature dependent constitutive model for magnesium alloy (AZ31B) sheet is developed. A hardening law based on non linear kinematic hardening model is used to consider Bauschinger effect properly. Material parameters are determined from a series of uni-axial cyclic experiments (T-C-T or C-T-C) with the temperature ranging 150-250 deg. C. The influence of temperature on the constitutive equation is introduced by the material parameters assumed to be functions of temperature. Fitting process of the assumed model to measured data is presented and the results are compared.

  5. Mechanical properties of anodized coatings over molten aluminum alloy.

    PubMed

    Grillet, Anne M; Gorby, Allen D; Trujillo, Steven M; Grant, Richard P; Hodges, V Carter; Parson, Ted B; Grasser, Thomas W

    2008-01-01

    A method to measure interfacial mechanical properties at high temperatures and in a controlled atmosphere has been developed to study anodized aluminum surface coatings at temperatures where the interior aluminum alloy is molten. This is the first time that the coating strength has been studied under these conditions. We have investigated the effects of ambient atmosphere, temperature, and surface finish on coating strength for samples of aluminum alloy 7075. Surprisingly, the effective Young's modulus or strength of the coating when tested in air was twice as high as when samples were tested in an inert nitrogen or argon atmosphere. Additionally, the effective Young's modulus of the anodized coating increased with temperature in an air atmosphere but was independent of temperature in an inert atmosphere. The effect of surface finish was also examined. Sandblasting the surface prior to anodization was found to increase the strength of the anodized coating with the greatest enhancement noted for a nitrogen atmosphere. Machining marks were not found to significantly affect the strength.

  6. Controlled Quenching of Aluminum Alloys in Flexible Spray Fields

    NASA Astrophysics Data System (ADS)

    Rose, Andrea; Schuettenberg, Sven; Hornig, Nils; von Hehl, Axel; Fritsching, Udo

    During heat treatment of age hardenable aluminum alloys, the resulting mechanical properties are particularly influenced by the quenching process. To achieve the required strength, a high quenching rate after solution annealing is necessary, otherwise a homogeneous distribution of quenching intensity should be realized in order to avoid distortion. Controlled quenching within the heat treatment process of aluminum components can be realized by flexible spray fields. Suitable heat transfer conditions of the component are achievable by adjusted flexible flow fields (local and/or temporal) based on simulation of heat transfer by Computational Fluid Dynamics (CFD). By the use of gas-(air), spray-(water/air) or jet-(water) flow fields, it is possible to adapt the quenching intensity to the part geometry and/or to the load profile in order to influence the mechanical properties as well as the distortion after heat treatment. For this purpose, a flexible spray nozzle field was integrated into heat treatment process for age hardening of different wrought-, cast-, and spray-formed aluminum alloys.

  7. Aluminum rich alloys for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Choi, Go

    The recent environmental problem and depletion of natural power resources have intensified the search for clean and renewable energy which has become one of the major issues of the Twenty-first century. Furthermore, global demand for freshwater has been increasing, raising concerns for water insufficiency. The goal of this research is to seek and introduce a viable technology that could potentially solve both energy and water crises. It has been investigated that Al-Ga-In-Sn quaternary system alloys can split water and produce hydrogen and heat. This paper focuses on the aluminum-rich Al-Ga-In-Sn quaternary system alloys, exploring the mystery behind the mechanism. As the paper will show, this technology can be applied to both salt water and sea water, and is thus a potential solution for marine applications and desalination. However, it has been shown that the alloy reacts differently depending on the fabrication method and environmental conditions. Various experiments were conducted to understand this phenomenon. This paper discusses several different reactions caused by various cooling rates and compositions, which effectively changes the crystal structure of the alloy and its liquid phase. Characteristics of the liquid phase define the alloy and determine its applications.

  8. Laser welding technique for titanium alloy sheet

    SciTech Connect

    Gobbi, S.L.; Zhang, L.; Norris, J.; Zolotovsky, S.; Richter, K.H.

    1994-12-31

    In order to achieve reliable welds with minimal distortion for the fabrication of aerospace industrial components, several techniques were carried out on Ti6Al4V and Ti6Al2Sn4Zr2Mo sheets of 1.6 mm and 2 mm thickness using a CO{sub 2} and a Nd-YAG laser. Test 1: A satisfactory weld can be obtained by using a CO{sub 2} CW laser with a filler wire. Test 2: Before laser welding the edges were shaped with a special relief defined incorporated filler, which allows it to avoid the classical filler wire. Test 3: A cosmetic butt weld without filler, obtained by defocusing the CO{sub 2} CW laser beam, enables it to eliminate the undercut and result in a smooth surface. Test 4: High power pulsed Nd-YAG laser equipped with fiber optics and f5{prime} focus lens was employed, which produces the autogenous butt welds with full penetration and regular bead profile. The undercut and slump could be controlled by pulse energy, pulse duration, frequency, waveform and overlapping rate.

  9. Direct-soldering 6061 aluminum alloys with ultrasonic coating.

    PubMed

    Ding, Min; Zhang, Pei-lei; Zhang, Zhen-yu; Yao, Shun

    2010-02-01

    In this study, the authors applied furnace soldering with ultrasonic coating method to solder 6061 aluminum alloy and investigated the effects of both coating time and soldering temperature on its properties. The following results were obtained: firstly, the solder region mainly composed of four kinds of microstructure zones: rich Sn zone, rich-Pb zone, Sn-Pb eutectic phase and rich Al zone. Meanwhile, the microanalysis identified a continuous reaction product at the alumina-solder interface as a rich-Pb zone. Therefore, the joint strength changed with soldering time and soldering temperature. Secondly, the tensile data had significantly greater variability, with values ranging from 13.99MPa to 24.74MPa. The highest value was obtained for the samples coated with Sn-Pb-Zn alloy for 45s. Fractures occurred along the solder-alumina interface for the 6061 aluminum alloy with its surface including hybrid tough fracture of dimple and tear ridge. The interface could initially strip at the rich Bi zone with the effect of shear stress.

  10. Bearing Strengths of Some Wrought-aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  11. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  12. Textures, microstructures, anisotropy and formability of aluminum-manganese-magnesium and aluminum-magnesium alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jiantao

    In this dissertation work, the microstructure and texture evolution of continuous cast (CC) and direct chill (DC) cast Al-Mn-Mg (AA 3105 and AA 3015) and Al-Mg (AA 5052) alloys during cold rolling and annealing are systematically investigated. Macrotexture analyses were based on three-dimensional orientation distribution functions (ODFs) calculated from incomplete pole figures from X-ray diffraction by using arbitrarily defined cell (ADC) and series expansion methods. A new technique, electron backscatter diffraction (EBSD), was adopted for microtexture and mesotexture investigation. The anisotropy and formability of Al-Mn-Mg and Al-Mg alloys are correlated to the texture results. For aluminum alloys studied in this work, a stronger Cube orientation is observed in DC hot band than in CC hot band after complete recrystallization. alpha and beta fibers become well developed beyond 50% cold rolling in both CC and DC aluminum alloys. The highest intensity along the beta fiber (skeleton line) is located between the Copper and the S orientations in both materials after high cold rolling reductions. In both CC and DC aluminum alloys, a cell structure develops with the indication of increasing CSL Sigma1 boundaries during the early stages of cold rolling. There is no evidence of the development of twin boundaries (Sigma3, Sigma9, Sigma27a & 27b) in either CC or DC aluminum alloys when the cold rolling reductions are less than 40%. The R and Cube textures are dominant recrystallization texture components in CC and DC AA 5052 alloys. The volume fraction of the Cube component is increased by increasing cold rolling reduction and annealing temperature but not by increasing annealing time while the volume fraction of the R component is only increased by increasing cold rolling reduction. Stronger Cube and R orientations are found at the surface layer than at half-thickness layer of cold rolled hot bands after annealing. The Cube and P textures are dominant recrystallization

  13. Chromate-free talc chemical conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.; Drewien, C.A.; Stoner, G.E.

    1993-10-01

    We have found that aluminum alloys exhibit unusual passivity when exposed to alkaline Li-salt solutions. Observed passivity is due to the formation of a polycrystalline Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O film on the aluminum surface. This film is persistent in aggressive environments and provides a significant degree of corrosion protection. On this basis, we have developed a simple non-electrolytic method of forming corrosion resistant coatings in alkaline Li-salt solution. This process is procedurally similar to traditional conversion coating methods, offers desirable properties, and has a low toxic hazard. In this paper, coating methods, coating characterization, and coating properties are presented. Results from parallel test performed with a commercial chromate conversion coatings are presented for comparison.

  14. Fatigue damage study in aluminum-2024 T3 alloys

    NASA Technical Reports Server (NTRS)

    Ferguson, Milton W.

    1992-01-01

    The grain structure of aluminum 2024, a commonly used commercial alloy is investigated, and these findings are correlated with the fatigue property of the material. Samples of aluminum 2024 were polished and etched in different reagents. Optical micrographs (at 500X) of samples etched in Keller's reagent revealed grain boundaries as well as some particles present in the microstructure. Normal x-ray scans of samples etched for different intervals of time in Keller's reagent indicate no significant variations in diffraction peak positions; however, the width of the rocking curve increased with the time of etching. These results are consistent with the direct dependence of the width of the rocking curve on the range of grain orientation. Etching removes the preferred orientation layer of the sample produced by polishing; thereby, causing the width to increase.

  15. Chromate-free corrosion resistant conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.; Drewien, C.A.; Martinez, M.A.; Stoner, G.E.

    1995-03-01

    Inorganic polycrystalline hydrotalcite, Li{sub 2}[Al{sub 2}(OH){sub 6}]{sub 2}{center_dot}CO{sub 3}{center_dot}3H{sub 2}O, coatings can be formed on aluminum and aluminum alloys by exposure to alkaline lithium carbonate solutions. This process is conducted using methods similar to traditional chromate conversion coating procedures, but does not use or produce toxic chemicals. The coating provides anodic protection and delays the onset of pitting during anodic polarization. Cathodic reactions are also inhibited which may also contribute to corrosion protection. Recent studies have shown that corrosion resistance can be increased by sealing hydrotalcite coated surfaces to transition metal salt solutions including Ce(NO{sub 3}){sub 3}, KMnO{sub 4} and Na{sub 2}MoO{sub 4}. Results from these studies are also reported.

  16. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-ThO2) sheet for space shuttle vehicles, part 2

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1972-01-01

    Two dispersion strengthened nickel base alloy systems were developed for use at temperatures up to 1204 C(2200 F); TD nickel chromium (TDNiCr) and TD nickel chromium aluminum (TDNiCrA1). They are considered candidate materials for use on the thermal protection systems of the space shuttle and for long term use in aircraft gas turbine engine applications. Improved manufacturing processes were developed for the fabrication of TDNiCr sheet and foil to specifications. Sheet rolling process studies and extrusion studies were made on two aluminum containing alloys: Ni-16%Cr-3.5%A1-2%ThO2 and Ni-16%Cr-5.0%A12%ThO2. Over 1600 kg.(3500 lb.) of plate, sheet, foil, bar and extrusion products were supplied to NASA Centers for technology studies.

  17. Microstructure and Properties of Lap Joint Between Aluminum Alloy and Galvanized Steel by CMT

    NASA Astrophysics Data System (ADS)

    Niu, Song; Chen, Su; Dong, Honggang; Zhao, Dongsheng; Zhang, Xiaosheng; Guo, Xin; Wang, Guoqiang

    2016-05-01

    Lap joining of 1-mm-thick Novelist AC 170 PX aluminum alloy to 1.2-mm-thick ST06 Z galvanized steel sheets for automotive applications was conducted by cold metal transfer advanced welding process with ER4043 and ER4047 filler wires. Under the optimized welding parameters with ER4043 filler wire, the tensile shear strength of joint was 189 MPa, reaching 89% of the aluminum alloy base metal. Microstructure and elemental distribution were characterized by optical metalloscope and electron probe microanalysis. The lap joints with ER4043 filler wire had smaller wetting angle and longer bonded line length with better wettability than with ER4047 filler wire during welding with same parameters. The needle-like Al-Fe-Si intermetallic compounds (IMCs) were spalled into the weld and brought negative effect to the tensile strength of joints. With increasing welding current, the needle-like IMCs grew longer and spread further into the weld, which would deteriorate the tensile shear strength.

  18. Corrosion fatigue of 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  19. Effects of Machining on the Microstructure of Aluminum Alloy 7075

    NASA Astrophysics Data System (ADS)

    Tabei, A.; Liang, S. Y.; Garmestani, H.

    Experimental investigations show that depending on the parameters, aggressive machining of aluminum alloy 7075 can trigger several microstructural phenomena including recrystallization, grain growth and crystallographic texture modifications below the machined surface. Increasing the depth of cut will lead to a significant recrystallization and consequently grain refinement. On the other hand, increasing the feed rate will result into development of a unique crystallographic texture. The mechanical and thermal loads imposed to the material experiences by machining leads to such microstructural phenomena. Finite element analysis is used to determine these loads.

  20. Thermodynamics of iron-aluminum alloys at 1573 K

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Mehrotra, Gopal M.

    1993-01-01

    The activities of iron and aluminum were measured in Fe-Al alloys at 1573 K, using the ion-current-ratio technique in a high-temperature Knudsen cell mass spectrometer. The Fe-Al solutions exhibited negative deviations from ideality over the entire composition range. The activity coefficients gamma(Fe), and gamma(Al) are given by six following equations as a function of mole fraction, X(Fe), X(Al). The results show good agreement with those obtained from previous investigations at other temperatures by extrapolation of the activity data to 1573 K.

  1. Low-Distortion Quenching of Aluminum Alloys in Polymer Media

    NASA Astrophysics Data System (ADS)

    Senatorova, O. G.; Mikhailova, I. F.; Ivanov, A. L.; Mitasov, M. M.; Sidel'nikov, V. V.

    2016-03-01

    The cooling capacity of the Aqua-Quench 260 quenching medium with different concentrations of polyalkylene glycol (12, 15, 22 and 30%) is studied. Cooling curves and dependences of the cooling rate on the temperature of the polymer medium are plotted. The mechanical and corrosion properties of pilot pressings from the most widely used aluminum forging alloys V95pch, AK4-1ch, AK6ch and 1933 quenched in a solution of Aqua-Quench 260 with an additive of polyalkylene glycol are determined in comparison with quenching in hot and cold water.

  2. Mathematical Model of Dynamic Recrystallization of Aluminum Alloy 3003

    NASA Astrophysics Data System (ADS)

    Chen, Guiqing; Fu, Gaosheng; Yan, Wenduan; Cheng, Chaozeng; Zou, Zechang

    2013-07-01

    Aluminum alloy 3003 is studied after isothermal compression in a Gleeble-1500 machine at a rate of 0.01 - 10 sec - 1 in the temperature range of 300 - 500°C. The curves plotted in the coordinates "strain hardening rate - strain" are used to determine the critical strain ɛc and the static strain ɛs for dynamic recrystallization, and the curve of the dynamic recrystallization is plotted. A mathematical model describing the kinetics of the dynamic recrystallization as a function of the treatment parameters is suggested.

  3. Mechanism of Intergranular Penetration of Ga in an Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ding, Boxiong; Hoagland, Richard

    1998-03-01

    The intergranular penetration rates of gallium in 7050-T74 aluminum alloy were examined at temperatures from 25C to 180C under stress free condition. The results provide an estimate of activation energy of the penetration process. The penetration of Ga is observed to occur along the grain boundary and also spread over the surface, but much more slowly. Experiments were also performed at 23C involving solid Ga. These results together with mechanism controlling the intergranular penetration of Ga in Al will be discussed. This work was supported by DARPA.

  4. FRICTION STIR SPOT WELDING OF 6016 ALUMINUM ALLOY

    SciTech Connect

    Mishra, Rajiv S.; Webb, S.; Freeney, T. A.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.; Herling, Darrell R.

    2007-01-08

    Friction stir spot welding (FSSW) of 6016 aluminum alloy was evaluated with conventional pin tool and new off-center feature tools. The off-center feature tool provides significant control over the joint area. The tool rotation rate was varied between 1000 and 2500 rpm. Maximum failure strength was observed in the tool rotation range of 1200-1500 rpm. The results are interpreted in the context of material flow in the joint and influence of thermal input on microstructural changes. The off-center feature tool concept opens up new possibilities for plunge-type friction stir spot welding.

  5. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  6. Investigations on Laser Beam Welding of Different Dissimilar Joints of Steel and Aluminum Alloys for Automotive Lightweight Construction

    NASA Astrophysics Data System (ADS)

    Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan

    Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.

  7. Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    Distortion frequently occurs during machining of age hardening aluminum alloys due to residual stresses introduced during the quenching step in the heat treatment process. This report quantifies, compares, and discusses the effectiveness of several methods for minimizing residual stresses and machining distortion in aluminum alloys 7075 and 6061.

  8. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  9. Environmental Effects on Fatigue Crack Growth in 7075 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Bonakdar, A.; Wang, F.; Williams, J. J.; Chawla, N.

    2012-08-01

    The fatigue behavior of aluminum alloys is greatly influenced by the environmental conditions. In this article, fatigue crack growth rates were measured for 7075-T651 Al alloy under ultrahigh vacuum (UHV, ~10-10 Torr), dry air, and water vapor. Standard compact tension (CT) specimens were tested along the L-T orientation under various load ratios of 0.1, 0.5, and 0.8. Fracture surfaces and crack morphologies were studied using scanning electron microscopy and crack deflection analysis. The crack growth behavior under vacuum was affected by friction and possible rewelding of crack surfaces, causing an asymmetry in the crack growth behavior, from load shedding to constant load. The enhancement of crack growth at higher moisture levels was observed and is discussed in terms of moisture decreasing friction between the crack faces. The effect of crack deflection as a function of R ratio and environment is also presented.

  10. Process capability improvement through DMAIC for aluminum alloy wheel machining

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, P. Srinivasa; Babu, B. Surendra

    2017-07-01

    This paper first enlists the generic problems of alloy wheel machining and subsequently details on the process improvement of the identified critical-to-quality machining characteristic of A356 aluminum alloy wheel machining process. The causal factors are traced using the Ishikawa diagram and prioritization of corrective actions is done through process failure modes and effects analysis. Process monitoring charts are employed for improving the process capability index of the process, at the industrial benchmark of four sigma level, which is equal to the value of 1.33. The procedure adopted for improving the process capability levels is the define-measure-analyze-improve-control (DMAIC) approach. By following the DMAIC approach, the C p, C pk and C pm showed signs of improvement from an initial value of 0.66, -0.24 and 0.27, to a final value of 4.19, 3.24 and 1.41, respectively.

  11. Corrosive wear behavior of 2014 and 6061 aluminum alloy composites

    NASA Astrophysics Data System (ADS)

    Varma, S. K.; Andrews, S.; Vasquez, G.

    1999-02-01

    Alloys of 2014 and 6061 aluminum reinforced with 0.1 volume fraction of alumina particles (VFAP) were subjected to impact scratching during a corrosive wear process. The transient currents generated due to the impact were measured in the two composites as well as in their respective monoliths. The effect of solutionizing time on the transient currents was correlated to the near surface microstructures, scratch morphology, concentration of quenched-in vacancies, and changes in grain sizes. It was observed that the transient current values increase with an increase in solutionizing time, indicating that the corrosive wear behavior is not strongly affected by the grain boundaries. However, a combination of pitting and the galvanic corrosion may account for the typical corrosive wear behavior exhibited by the alloys and the composites of this study.

  12. Effect of Plastic Anisotropy on the Formability of Aluminum 6016-T4 Sheet Material

    NASA Astrophysics Data System (ADS)

    KIM, Young-Suk; YANG, Seung-Han

    2017-05-01

    Sheet metal formed of lightweight materials such as aluminum sheeting has received great attention related to the reduction of vehicle emissions. This paper evaluates the anisotropic yield locus using Kuwabara's biaxial tensile tester and stretches formability using Hecker's hemispherical punch stretching test for aluminum 6016-T4 sheet material. The anisotropic yield locus of the Al6016-T4 sheet measured is fitted well by the modified Drucker yield function. Moreover the best fitting to the experimental stress-strain curve from the tensile test was obtained by taking an appropriate hardening model. Analytical study to predict the stretch formability by using Hora's Modified Maximum Force Criterion (MMFC) was performed. The predicted forming limit curves (FLC) based on various yield functions were compared with the experiments and discussed.

  13. Metallurgical aspects in laser welding of steels and aluminum alloys

    SciTech Connect

    Kutsuna, Muneharu

    1996-12-31

    Rapid cooled microstructures, solid state transformation, hardness distribution, porosity formation, hot cracking and crack susceptibility are discussed as the metallurgical aspects in laser welding of carbon steels, stainless steels and aluminum alloys in the present paper. In the cases of CO{sub 2} and YAG laser welding, the thermal cycles during welding of carbon steels showed a rapid heating rate of 10{sup 5} K/s and a rapid cooling rate of 10{sup 4} K/s. The solid state transformations during the thermal cycle are different from that in steel welds by arc. The microstructure in heat affected zone consists of ferrite band or matrix and hard martensite colonies with high carbon. It seems a kind of composite materials. The hardness distribution of steel welds by laser is different from that of arc welds in which the location of maximum hardness is coarse grain zone. However, it is the center of fusion zone or near the base metal in laser welds of carbon steel. Even in ultra low carbon steel welds, the hardness of weld metal is higher than 200 Hv and the microstructure is bainitic ferrite and low carbon martensite which have a low cold crack susceptibility. In addition, two mechanisms of porosity formation in laser welding of aluminum alloys including A3003, A5052, A5083, A5182 and A6061 alloys were investigated using the fundamental knowledge and the solidification crack susceptibility in laser welding of A5052, A5083, A6061 and A7NO1 alloys were studied for the application of laser welding in industries.

  14. Development of Enriched Borated Aluminum Alloy for Basket Material of Cask for Spent Nuclear Fuel

    SciTech Connect

    Katsura Kajihara; Yasuhiro Aruga; Jun Shimojo; Hiroaki Taniuchi; Tsutomu Takeda; Masatosi Sasaki

    2002-07-01

    New enriched borated aluminum alloys manufactured by melting process are developed, which resulted in supplying structural basket materials for spent nuclear fuel packagings. In this process, the borated aluminum alloys were melted in a vacuum induction furnace at elevated temperature than that of ordinary aluminum melting processes. Boron dissolves into the matrix at the temperature of 1273 K or more, and fine aluminum diboride is precipitated and uniformly dispersed upon cooling rapidity. It is confirmed that boron is homogeneously dispersed with the fine particles of approximate 5 in average size in the product. Tensile strength and creep property at elevated temperature in 1 mass-%B 6061-T651 plate and 1 mass-%B 3004 extruded rectangular pipe as structural materials are examined. It is confirmed that the both of borated aluminum alloys have stable strength and creep properties that are similar to those of ordinary aluminum alloys. (authors)

  15. Intergranular corrosion of an aluminum-magnesium-silicon-copper alloy

    SciTech Connect

    Burleigh, T.D.; Ludwiczak, E.; Petri, R.A.

    1995-01-01

    The intergranular (intercrystalline) corrosion (IGC) of a heat-treated aluminum-magnesium-silicon-copper alloy was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM revealed that tall chimneys of corrosion product formed on the surface above the pits during oxygenated salt water immersion. It was postulated that pitting corrosion occurred first and that the corrosion chimneys maintained the acidic, chloride pit environment that subsequently caused IGC (preferential dissolution of the region adjacent to the grain boundaries). TEM foils of the same alloy were immersed in a model pit solution (dilute hydrochloric acid) and showed IGC identical to the corrosion attack seen in the bulk samples. Potentiodynamic polarization in the dilute HCl solution verified that pure Al corroded many times faster than the bulk alloy. These results indicated IGC of this alloy occurred because the depleted region adjacent to the grain boundaries corroded rapidly in acidic solutions. The presence of pits with corrosion chimneys, or some type of occluded cells, must have maintained the acidic environment, which caused IGC.

  16. Super High Strength Aluminum Alloy Processed by Mechanical Alloying and Hot Extrusion

    NASA Astrophysics Data System (ADS)

    Zheng, Ruixiao; Yang, Han; Wang, Zengjie; Wen, Shizhen; Liu, Tong; Ma, Chaoli

    Nanostructure strengthened aluminum alloy was prepared by powder metallurgic technology. The rapid solidification Al-Cu-Mg alloy powder was used in this study. To obtain nanostructure, the commercial powder was intensely milled under certain ball milling conditions. The milled powder was compacted first by cold isostatic pressing (CIP) at a compressive pressure of 300MPa, and then extruded at selected temperature for several times to obtain near full density material. Microstructure and mechanical properties of the extruded alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and mechanical tests. It is revealed that the compressive strength of extruded alloy is higher than 800MPa. The strengthening mechanism associated with the nanostructure is discussed.

  17. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    NASA Technical Reports Server (NTRS)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  18. Study of Plastic Deformation in Binary Aluminum Alloys by Internal-Friction Methods

    NASA Technical Reports Server (NTRS)

    Olson, E. C.; Maringer, R. E.; Marsh, L. L.; Manning, G. K.

    1959-01-01

    The damping capacity of several aluminum-copper alloys has been investigated during tensile elongation. This damping is shown to depend on strain rate, strain, temperature, alloy content, and heat treatment. A tentative hypothesis, based on the acceleration of solute atom diffusion by deformation-produced vacancies, is proposed to account for the observed behavior. Internal-friction maxima are observed in deformed aluminum and aluminum-copper alloys at -70 deg and -50 deg C. The peaks appear to be relatively insensitive to frequency and alloy content, but they disappear after annealing at temperatures nearing the recrystallization temperature.

  19. Asymmetric cryorolling for fabrication of nanostructural aluminum sheets

    PubMed Central

    YU, Hailiang; LU, Cheng; TIEU, Kiet; LIU, Xianghua; SUN, Yong; YU, Qingbo; KONG, Charlie

    2012-01-01

    Nanostructural Al 1050 sheets were produced using a novel method of asymmetric cryorolling under ratios of upper and down rolling velocities (RUDV) of 1.1, 1.2, 1.3, and 1.4. Sheets were rolled to about 0.17 mm from 1.5 mm. Both the strength and ductility of Al 1050 sheets increase with RUDVs. Tensile strength of Al sheets with the RUDV 1.4 is larger 22.3% of that for RUDV 1.1, which is 196 MPa. The TEM observations show the grain size is 360 nm when the RUDV is 1.1, and 211 nm for RUDV 1.4. PMID:23101028

  20. Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Sakai, S.; Kato, T.

    2010-06-15

    Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for a large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.

  1. Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mori, K.; Abe, Y.; Kato, T.; Sakai, S.

    2010-06-01

    Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for a large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.

  2. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    273 7906. J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Microstructural 791Investigation of Friction Stir Welded 7050 -T651 Aluminum , Acta 792Mater...REPORT Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...During Friction Stir Welding of AA5059 Aluminum Alloys Report Title ABSTRACT Workpiece material flow and stirring/mixing during the friction stir welding

  3. Microstructure Evolution and Mechanical Properties of Severely Plastically Deformed (SPD) Aluminum Alloys

    DTIC Science & Technology

    2007-05-31

    TITLE AND SUBTITLE 5a. CONTRACT NUMBER Microstructure Evolution and Mechanical Properties of Severely Plastically Deformed (SPD) Aluminum Alloys 5b...modeling study has been carried out to characterize the structure and mechanical properties of severely plastically deformed (SPD) aluminum and its...these routes is the expectation that since the fracture toughness of precipitation hardened aluminum alloys is known to be degraded by grain boundary

  4. Hip Consolidation of Aluminum-Rich Intermetallic Alloys and Their Composites

    DTIC Science & Technology

    1992-02-03

    AD-A251 429 Report No. NAWCADWAR-92003-60 HIP CONSOLIDATION OF ALUMINUM -RICH INTERMETALLIC ALLOYS AND THEIR COMPOSITES William E. Frazier, Ph.D. and...DATES COVERED 3 Februar 1992 Final 9/0 - 9/91 4. TITLE AND SUBTITLE S. FUNDING NUMBERS HIP CONSOLIDATION OF ALUMINUM -RICH INTERMETALLIC ALLOYS AND THEIR...crystallographic symmetry. This paper describes preliminary work directed towards utilizing HIP technology to consolidate aluminum -rich intermetallics

  5. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  6. Stress corrosion testing of a superplastically deformed aluminum-lithium alloy

    SciTech Connect

    Srinivasan, M.N.

    1998-05-01

    An investigation was conducted to study the stress corrosion cracking (SCC) tendency of a superplastically deformed aluminum-lithium-based alloy (AA X2094 [UNS A92094]) that had been received in a thermomechanically processed form suitable for dynamic recrystallization. Tensile specimens made from sheets of this material were superplastically deformed at a constant true strain rate of 2 {times} 10{sup {minus}4}/s and a temperature of {approximately}500 C. Specimens then were subjected to stress corrosion testing using the slow strain rate tensile testing (SSRT) technique at a constant initial strain rate of 2 {times} 10{sup {minus}6}/s. Effects of different superplastic deformation variables and stress corrosion testing conditions on the stress-strain relationship of the test specimens were studied.

  7. Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.

    1990-01-01

    Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.

  8. Development and Processing Improvement of Aerospace Aluminum Alloys-Development of AL-Cu-Mg-Ag Alloy (2139)

    NASA Technical Reports Server (NTRS)

    Cho, Alex; Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report supplement in presentation format describes a comprehensive multi-tasked contract study to continue the development of the silver bearing alloy now registered as aluminum alloy 2139 by the Aluminum Association. Two commercial scale ingots were processed into nominal plate gauges of two, four and six inches, and were extensively characterized in terms of metallurgical and crystallographic structure, and resulting mechanical properties. This report includes comparisons of the property combinations for this alloy and 2XXX and 7XXX alloys more widely used in high performance applications. Alloy 2139 shows dramatic improvement in all combinations of properties, moreover, the properties of this alloy are retained in all gauge thicknesses, contrary to typical reductions observed in thicker gauges of the other alloys in the comparison. The advancements achieved in this study are expected to result in rapid, widespread use of this alloy in a broad range of ground based, aircraft, and spacecraft applications.

  9. Structural Damage Prediction and Analysis for Hypervelocity Impact: Properties of Largest Fragment Produced by Hypervelocity Impact of Aluminum Spheres with Thin Aluminum Sheets

    NASA Technical Reports Server (NTRS)

    Piekutowski, Andrew J.

    1995-01-01

    Results of a series of hypervelocity impact tests are presented. In these tests, 1.275-g, 9.53-mm-diameter, 2017-T4 aluminum spheres were fired at normal incidence at eight thicknesses of 6061-T6 aluminum sheet. Bumper thickness to projectile diameter (t/D) ratio ranged from 0.026 to 0.424. Nominal impact velocity was 6.7 km/s. Results of five tests using 6.35, 9.53, and 12.70-mm-diameter aluminum spheres and other aluminum alloy bumpers are also given. A large chunky fragment of projectile was observed at the center of the debris clouds produced by the impacts. The equivalent diameter of this large fragment ranged from 5.5 mm for the lowest t/D ratio to a minimum of 0.6 mm for the case where maximum breakup of the projectile occurred (t/D approximately 0.2 to 0.3). When the t/D ratio was 0.42, numerous large flaky fragments were evenly distributed in the external bubble of bumper debris. Velocity of the large central fragments decreased continuously with increasing t/D ratio, ranging from about 99 percent to less than 80 percent of the impact velocity. The change in the velocity of small fragments spalling from the rear of the projectile was used to obtain a relationship showing a linear increase in the size of the central projectile fragment with decrease in the shock-induced stress in the projectile.

  10. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  11. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    NASA Technical Reports Server (NTRS)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  12. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  13. Laser shocking of 2024 and 7075 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Fairand, B. P.; Slater, J. E.

    1977-01-01

    The effect of laser generated stress waves on the microstructure, hardness, strength and stress corrosion resistance of 2024 and 7075 aluminum alloys was investigated. Pulsed CO2 and neodymium-glass lasers were used to determine the effect of wavelength and pulse duration on pressure generation and material property changes. No changes in material properties were observed with CO2 laser. The strength and hardness of 2024-T351 and the strength of 7075-T73 aluminum alloys were substantially improved by the stress wave environments generated with the neodymium-glass laser. The mechanical properties of 2024-T851 and 7075-T651 were unchanged by the laser treatment. The correlation of the laser shock data with published results of flyer plate experiments demonstrated that a threshold pressure needed to be exceeded before strengthening and hardening could occur. Peak pressures generated by the pulsed laser source were less than 7.0 GPa which was below the threshold pressure required to change the mechanical properties of 2024-T851 and 7075-T651. Corrosion studies indicated that laser shocking increased the resistance to local attack in 2024-T351 and 7075-T651.

  14. Processing and properties of low-aluminum alloy FAPY

    SciTech Connect

    Sikka, V.K.; Howell, C.R.; Hall, F.; Valykeo, J.

    1996-07-01

    This paper deals with the melting, processing, properties, and microstructure of three commercially melted heats of Fe-16 at. % Al alloy FAPY. All of the heats were air-induction melted (AIM), two at Hoskins Manufacturing Company (Hamburg, Michigan) and one at United Defense (Anniston, Alabama). One ingot from each of the heats was used for testing at the Oak Ridge National Laboratory. A 127-mm.-long section from each ingot was used for determining properties and microstructure in the as-cast, cast and hot-processed, and cold-rolled conditions. The fine-grained sheet showed 20% elongation at room temperature.

  15. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    PubMed

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa.

  16. Recycling of waste of aluminum foil into sheet materials

    SciTech Connect

    Katashinskii, V.P.; Vishnyakov, L.R.; Boiko, P.A.

    1995-07-01

    The principal method of recycling secondary metals, in particular aluminum, is remelting. However, remelting of aluminum swarf, and in particular of foil trimmings, is marked by low effectiveness because of extensive oxidation (in the processing of thin foil loss by oxidation amounts to 80%), low productivity of the metallurgical equipment on account of low volume-weight characteristics of foil trimmings compared with lumpy scrap metal, and high power requirements of metallurgical conversion. The shortcomings of the traditional technology can be eliminated by recycling foil trimmings by methods of powder metallurgy. This eliminates completely remelting and loss of metal by oxidation, simplifies the technological cycle, and reduces power requirements. We investigated the process of recycling aluminum foil marque A6 (GOST 21631-76) 14 and 30 {mu}m thick which is widely used in the food industry. The amount of waste occurring in its production may attain 15% of the annual output. In the initial state the waste of foil for food are trimmings of thin aluminum strip crushed into fragments of arbitrary shape whose maximal size in plan is 5-8 cm. To be processed by methods of powder metallurgy, such waste has to be converted into smaller fragments that fill well the cavity of the die when pressed in closed molds or the deformation zone in rolling or other methods of compaction in open tools.

  17. Thermal Decoating of Aerospace Aluminum Alloys for Aircraft Recycling

    NASA Astrophysics Data System (ADS)

    Muñiz Lerma, Jose Alberto; Jung, In-Ho; Brochu, Mathieu

    2016-06-01

    Recycling of aircraft aluminum alloys can be complex due to the presence of their corrosion protection coating that includes inorganic compounds containing Cr(VI). In this study, the characterization and thermal degradation behavior of the coating on aluminum substrates coming from an aircraft destined for recycling are presented. Elements such as Sr, Cr, Si, Ba, Ti, S, C, and O were found in three different layers by EDS elemental mapping corresponding to SrCrO4, Rutile-TiO2, SiO2, and BaSO4 with an overall particle size D 50 = 1.96 µm. The thermal degradation profile analyzed by TGA showed four different stages. The temperature of complete degradation at the fourth stage occurred at 753.15 K (480 °C) at lower heating rates. At higher heating rates and holding an isotherm at the same temperature, the residence time to fully decompose the aircraft coating has been estimated as 4.0 ± 0.2 minutes. The activation energy calculated by the Flynn-Wall-Ozawa and the modified Coats-Redfern methods for multiple fraction of decomposition showed a non-constant behavior indicating the complexity of the reaction. Finally, the concentration of Cr(VI) released to the environment during thermal decoating was obtained by UV-Vis spectroscopy. It was found that 2.6 ± 0.1 µg of Cr(VI)/mm2 of aluminum substrate could be released unless adequate particle controls are used.

  18. Characterization of tribological behaviour of graphitic aluminum matrix composites, grey cast iron, and aluminum silicon alloys

    NASA Astrophysics Data System (ADS)

    Riahi, Ahmad Reza

    In recent years a number of aluminum-silicon alloys and some graphitic aluminum matrix composites have been fabricated for potential tribological applications in the automotive industry, in particular for lightweight high efficiency internal combustion engines to replace conventional uses of cast iron. This study provides a systematic investigation for wear mechanisms in dry sliding of the graphitic aluminum-matrix composites (A356 Al-10%SiC-4%Gr and A356 Al-5%Al2O3-3%Gr) developed for cylinder liner applications. Two eutectic Al-Si alloys (modified with rare earth elements) developed for wear resistant engine blocks were also studied. The tribological behavior of grey cast iron (ASTM A30), which is a traditional material for engine components, was also investigated as reference. For graphitic aluminum matrix composites, a wear mapping approach has been adopted. Three main regimes: ultra mild, mild and severe wear regions were determined in the maps; additionally, a scuffing region was observed. In the ultra mild wear regime the wear resistance was primarily due to the hard particles supporting the load. It was shown that the onset of severe wear in graphitic composites occurred at considerably higher loads compared to A356 aluminum alloy and A356 Al-20% SiC composite. At the onset of severe wear, the surface temperatures and coefficient of friction of the graphitic composites was lower than that of A356 Al-20% SiC. At all testing conditions in the mild wear regime, a protective tribo-layer was formed, which by increasing the speed and load became more continuous, more compact, smoother, and harder. The tribo-layers were removed at the onset of severe wear. An experimental wear map of grey cast iron was constructed; it consisted of three wear regimes: ultra mild, mild and severe wear. In the ultra mild regime a compacted fine iron oxide powder formed on the contact. The onset of severe wear was started with local material transfer to the steel counterface, and

  19. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  20. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2016-12-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  1. Anisotropic effects on constitutive model parameters of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter S.; Joshi, Vasant S.

    2012-03-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. Model constants are determined from tension, compression or torsion stress-strain at low and high strain rates at different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloy. Johnson- Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulation go well beyond minor parameter tweaking and experimental results show drastically different behavior it becomes important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy quasi-static and high strain rate tensile tests were performed on specimens fabricated in the longitudinal "L", transverse "T", and thickness "TH" directions of 1' thick Al7075 Plate. While flow stress at a strain rate of ~1/s as well as ~1100/s in the thickness and transverse directions are lower than the longitudinal direction. The flow stress in the bar was comparable to flow stress in the longitudinal direction of the plate. Fracture strain data from notched tensile specimens fabricated in the L, T, and Thickness directions of 1' thick plate are used to derive fracture constants.

  2. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter; Joshi, Vasant

    2011-06-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.

  3. Modeling the Controlled Recrystallization of Particle-Containing Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Adam, Khaled; Root, Jameson M.; Long, Zhengdong; Field, David P.

    2017-01-01

    The recrystallized fraction for AA7050 during the solution heat treatment is highly dependent upon the history of deformation during thermomechanical processing. In this work, a state variable model was developed to predict the recrystallization volume fraction as a function of processing parameters. Particle stimulated nucleation (PSN) was observed as a dominant mechanism of recrystallization in AA7050. The mesoscale Monte Carlo Potts model was used to simulate the evolved microstructure during static recrystallization with the given recrystallization fraction determined already by the state variable model for AA7050 alloy. The spatial inhomogeneity of nucleation is obtained from the measurement of the actual second-phase particle distribution in the matrix identified using backscattered electron (BSE) imaging. The state variable model showed good fit with the experimental results, and the simulated microstructures were quantitatively comparable to the experimental results for the PSN recrystallized microstructure of 7050 aluminum alloy. It was also found that the volume fraction of recrystallization did not proceed as dictated by the Avrami equation in this alloy because of the presence of the growth inhibitors.

  4. Upgrading scrap automotive aluminum alloys with the impulse atomization and quench technique

    SciTech Connect

    Olsen, K.; Sterzik, G.; Henein, H.

    1995-12-31

    As aluminum alloy usage in automobiles grows, there are increasing demands on recycling processes and facilities to deal with mixed alloy automotive aluminum scrap. These processes and facilities strive to produce near virgin aluminum stock, which can be relatively costly and difficult. One alternative is to use physical processing methods to upgrade the scrap properties instead of chemically refining the scrap. The Impulse Atomization Process (IAP, patent pending) is a new process for making metallic and ceramic powders. It can produce fine homogeneous microstructures in scrap aluminum alloys due to high undercooling and rapid solidification. The particles have a very narrow size distribution and are in a convenient form for consolidation. This paper compares and contrasts the microstructural features of Impulse Atomized and quenched Impulse Atomized powders, for both AL6061 and a scrap aluminum alloy composition.

  5. Material Models for Simulation of Superplastic Mg Alloy Sheet Forming

    NASA Astrophysics Data System (ADS)

    Taleff, Eric M.; Hector, Louis G.; Verma, Ravi; Krajewski, Paul E.; Chang, Jung-Kuei

    2010-06-01

    Accurate prediction of strain fields and cycle times for fine-grained Mg alloy sheet forming at high temperatures (400-500 °C) is severely limited by a lack of accurate material constitutive models. This paper details an important first step toward addressing this issue by evaluating material constitutive models, developed from tensile data, for high-temperature plasticity of a fine-grained Mg AZ31 sheet material. The finite element method was used to simulate gas pressure bulge forming experiments at 450 °C using four constant gas pressures. The applicability of the material constitutive models to a balanced-biaxial stress state was evaluated through comparison of simulation results with bulge forming data. Simulations based upon a phenomenological material constitutive model developed using data from both tensile elongation and strain-rate-change experiments were found to be in favorable accord with experiments. These results provide new insights specific to the construction and use of material constitutive models for hot deformation of wrought, fine-grained Mg alloys.

  6. Overload and Underload Effects on the Fatigue Crack Growth Behavior of the 2024-T3 Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.

    1997-01-01

    Fatigue crack growth tests were conducted on 0.09 inch thick, 3.0 inch wide middle-crack tension specimens cut from sheets of 2024-T3 aluminum alloy. The tests were conducted using a load sequence that consisted of a single block of 2,500 cycles of constant amplitude loading followed by an overload/underload combination. The largest fatigue crack growth life occurred for the tests with the overload stress equal to 2 times the constant amplitude stress and the underload stress equal to the constant amplitude minimum stress. For the tests with compressive underloads, the fatigue crack growth life decreased with increasing compressive underload stress.

  7. Production of Magnesium and Aluminum-Magnesium Alloys from Recycled Secondary Aluminum Scrap Melts

    NASA Astrophysics Data System (ADS)

    Gesing, Adam J.; Das, Subodh K.; Loutfy, Raouf O.

    2016-02-01

    An experimental proof of concept was demonstrated for a patent-pending and trademark-pending RE12™ process for extracting a desired amount of Mg from recycled scrap secondary Al melts. Mg was extracted by electrorefining, producing a Mg product suitable as a Mg alloying hardener additive to primary-grade Al alloys. This efficient electrorefining process operates at high current efficiency, high Mg recovery and low energy consumption. The Mg electrorefining product can meet all the impurity specifications with subsequent melt treatment for removing alkali contaminants. All technical results obtained in the RE12™ project indicate that the electrorefining process for extraction of Mg from Al melt is technically feasible. A techno-economic analysis indicates high potential profitability for applications in Al foundry alloys as well as beverage—can and automotive—sheet alloys. The combination of technical feasibility and potential market profitability completes a successful proof of concept. This economical, environmentally-friendly and chlorine-free RE12™ process could be disruptive and transformational for the Mg production industry by enabling the recycling of 30,000 tonnes of primary-quality Mg annually.

  8. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  9. High-strength laser welding of aluminum-lithium scandium-doped alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Ivanova, M. Yu.

    2016-11-01

    The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.

  10. Fracture characteristics of structural aerospace alloys containing deep surface flaws. [aluminum-titanium alloys

    NASA Technical Reports Server (NTRS)

    Masters, J. N.; Bixler, W. D.; Finger, R. W.

    1973-01-01

    Conditions controlling the growth and fracture of deep surface flaws in aerospace alloys were investigated. Static fracture tests were performed on 7075-T651 and 2219-T87 aluminum, and 6Ai-4V STA titanium . Cyclic flaw growth tests were performed on the two latter alloys, and sustain load tests were performed on the titanium alloy. Both the cyclic and the sustain load tests were performed with and without a prior proof overload cycle to investigate possible growth retardation effects. Variables included in all test series were thickness, flaw depth-to-thickness ratio, and flaw shape. Results were analyzed and compared with previously developed data to determine the limits of applicability of available modified linear elastic fracture solutions.

  11. Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M; Truhan, John J.

    2009-01-01

    Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

  12. Micromechanical models of delamination in aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Messner, Mark Christian

    Aluminum lithium (Al-Li) alloys are lighter, stiffer, and tougher than conventional aerospace aluminum alloys. Replacing conventional aluminums with Al-Li could substantially decrease the weight and cost of aerospace structures. However, Al-Li alloys often fracture intergranularly via a mechanism called delamination cracking. While secondary delamination cracks can improve the effective toughness of a component, no current model accurately predicts the initiation and growth of intergranular cracks. Since simulations cannot incorporate delamination into a structural model, designers cannot quantify the effect of delamination cracking on a particular component. This uncertainty limits the application of Al-Li alloys. Previous experiments identify microstructural features linked to delamination. Fractography of failed surfaces indicates plastic void growth triggers intergranular failure. Furthermore, certain types of soft/stiff grain boundaries tend to localize void growth and nucleate delamination cracks. This dissertation develops a mechanism for the initiation of delamination on the microscale that accounts for these experimental observations. Microscale simulations of grain boundaries near a long primary crack explore the delamination mechanism on the mesoscale. In these simulations, a physically-based crystal plasticity (CP) model represents the constitutive response of individual grains. This CP model incorporates plastic voriticity correction terms into a standard objective stress rate integration, to accurately account for the kinematics of lattice deformation. The CP model implements slip system hardening with a modular approach to facilitate quick testing and calibration of different theories of hardening. The microscale models reveal soft/stiff grain boundaries develop elevated mean stress and plastic strain as a consequence of the mechanics of the interface. These elevated stresses and strain drive plastic void growth. The results indicate plastic void

  13. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  14. Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.

    1991-01-01

    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys.

  15. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2014-09-01

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  16. Selection of Aluminum Alloys for U.S. Army Vehicles Using Multi-Attribute Utility Analysis

    DTIC Science & Technology

    1989-01-01

    maker’s preferences, it was determined that a n aluminum alloy, 2519-T87 (conforming to MIL-A-46192) shows great promisse-for replacing the currently used...MTLTR89- AD-A204 018 AD SELECTION OF ALUMINUM ALLOYS FOR U.S. ARMY VEHICLES USING MULTI-ATTRIBUTE UTILITY ANALYSIS STEVEN A. GEDEON and CHARLES T...TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED SELECTION OF ALUMINUM ALLOYS FOR U.S. ARMY Final Report VEHICLES USING MULTI-ATTRIBUTE UTILITY

  17. The hydrogen diffusion in liquid aluminum alloys from ab initio molecular dynamics.

    PubMed

    Jakse, N; Pasturel, A

    2014-09-07

    We study the hydrogen diffusion in liquid aluminum alloys through extensive ab initio molecular dynamics simulations. At the microscopic scale, we show that the hydrogen motion is characterized by a broad distribution of spatial jumps that does not correspond to a Brownian motion. To determine the self-diffusion coefficient of hydrogen in liquid aluminum alloys, we use a generalized continuous time random walk model recently developed to describe the hydrogen diffusion in pure aluminum. In particular, we show that the model successfully accounts the effects of alloying elements on the hydrogen diffusion in agreement with experimental features.

  18. Butt weld of aluminum alloy plates 6063 and LY12 by laser beam

    NASA Astrophysics Data System (ADS)

    Xia, Jin'an; Cheng, Zhaogu; Xu, Guoliang; Li, Xianqin

    2000-02-01

    By means of a transverse flow 5 kW CO2 laser with low- order mode laser beam output, 1 - 4 mm thick aluminum alloy plates 6063 and LY12 were successfully butt welded. The result shows that the butt weldability and the weld quality of the aluminum alloy plates are mainly dependent on incident laser power density, laser beam defocused distance and shielding gas. The relationship between the weld quality of the aluminum alloy plates and the welding parameters is discussed. The macrostructure and microstructure of the welded seams are analyzed. The mechanical properties of the welded seams are discussed.

  19. FRICTION-STIR-LAP-WELDS OF AA6111 ALUMINUM ALLOY

    SciTech Connect

    Yadava, Manasij; Mishra, Rajiv S.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.

    2007-01-09

    Lap joints of 1 mm thick AA6111 aluminum sheets were made by friction stir welding, using robotic and conventional machines. Welds were made for advancing as well as retreating side loading. Thinning in welds was quantified. Lap shear test of welds was conducted in as-welded and paint-baked conditions. Conventional machine welds showed less thinning and better strength than robotic machine welds. Process forces in conventional machine welding were higher. Paint bake treatment improved the weld strength; but the improvement varied with process parameters. Advancing side loaded welds achieved higher strength than the retreating side loaded welds. Fracture location was found to occur on the loaded side of the weld and along the thinning defect.

  20. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  1. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  2. Evaluation of the StressWave Cold Working (SWCW) Process on High-Strength Aluminum Alloys for Aerospace

    DTIC Science & Technology

    2009-02-01

    Aluminum Alloys, Fatigue Life Enhancement, Short Transverse Cracking, 70S5 Aluminum , 7050 Aluminum , Spectrum Crack Growth, Compressive Residual...to better understand the mechanisms that produce cracks at holes in certain high- strength aluminum alloys (2297/2397-T87 and 7050 -T7451) when using...consisted of room temperature constant amplitude fatigue testing on open hole zero load transfer coupons made from 7085 and 7050 aluminum plate, in the

  3. Threshold for fatigue macrocrack propagation in some aluminum alloys

    NASA Astrophysics Data System (ADS)

    McKittrick, J.; Liaw, P. K.; Kwun, S. I.; Fine, M. E.

    1981-08-01

    Measurement of the threshold for fatigue macrocrack propagation, ΔKo, in a number of aluminum alloys has shown an increase with grain size and decrease with increase in strength as with steels. The results are not primarily due to environmental enhancement of fatigue crack growth because an even larger variation in ΔKo with microstructural change is noted at 77 K than at 300 K. In particular, ΔKo of high purity 2124-T4 increases much more on cooling from 300 to 77 K than does ΔKo of 2024-T4. It is suggested that ΔKo is determined by the stress necessary to operate a dislocation source near the crack tip. A Frank-Read type source is proposed for 2024-T4 with constituent particles acting as pinning points while double cross-slip, a thermally activated process, is proposed for the source in high purity 2124-T4.

  4. Mechanisms of pressure filtration of liquid aluminum alloys

    NASA Astrophysics Data System (ADS)

    Cao, X.

    2006-12-01

    The Prefil Footprinter, a portable pressure filtration instrument, is usually used to detect the quality of liquid aluminum alloys. However, no investigations have ever been done to calculate the cake resistance to date. Based on the identification and classification of flow behavior using the first derivative method for filtrate mass vs filtration time curves, conventional filtration equations are successfully employed to understand the filtration behaviors. From the analyses of the variations of cake resistance with filtration time, the filtration mechanisms are discussed in detail over the different filtration stages. During the steady stage, either incompressible or compressible cake mode is the main mechanism. At the initial and terminal transient stages, however, deep-bed filtration, complete straining, and solidification clogging may appear. Solid inclusions in liquid metal have significant influence on the cake structures and properties. Some important issues related to the heterogeneity of filter media and test methodology are highlighted in this work.

  5. Small-crack effects in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  6. Laser-initiated combustion studies of selected aluminum, copper, iron, and nickel alloys

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Clark, A. F.

    1981-01-01

    The results of combustion studies at atmospheric pressure on ten metal alloys are presented. The alloys studied were aluminum alloys 1100, 2219, 6061, and tensile-50; 304, 347 and 21-6-9 stainless steel; inconel 600; beryllium copper and a bronze. It was found that once ignition was achieved all alloys would generally burn to completion. The overall combustion process appears to obey a first order rate process. Preliminary conclusions are presented along with recommendations for future work.

  7. Factors Influencing Fracture Toughness and Other Properties of Aluminum- Lithium Alloys

    DTIC Science & Technology

    1979-06-14

    tramp elements sodium, potassium and sulfuir presumably segregated in the grain boundaries. Furthermore, the hydrogen content of the alloys was also shown...tion of these elements at grain boundaries is worth noting. Furthermore, the hydrogen content of the Al-Li and A1-Mg-Li alloys is significantly higher...than the hydrogen content of typical commerical high strength aluminum alloys. Fatigue Crack Growth (FCG) The FCG performance of the Al-Cu-Li alloy

  8. Structural states of the material of compacts and sheets made from an Al-Cu-Li alloy with silver

    NASA Astrophysics Data System (ADS)

    Shamrai, V. F.; Grushko, O. E.; Timofeev, V. N.; Lazarev, E. M.; Klochkova, Yu. Yu.; Gordeev, A. S.

    2009-06-01

    The structure of hot-rolled sheets of V-1469 alloy of the Al-Cu-Li system with silver is studied. The sheets are prepared from ingots 70 mm in diameter by the ingot-pressed strip-hot-rolled sheet scheme. The texture of the pressed strips is characterized by the set of orientations (Bs, S, Cu) typical of thin pressed strips of aluminum alloys. During subsequent hot rolling, the Bs orientation weakens and the Cu and S orientations become more intense. This behavior indicates that a change in the crystallite orientations in the material of the sheets is controlled by a β-skeleton line in the Euler rectangle. According to the data of electron microscopic study, the main contribution to hardening during aging is made by the T1 and Θ' phases and the role of δ'-phase precipitates is insignificant. No precipitates of the T2 phase are observed. The significant anisotropy of the yield stress in the 45°-direction with respect to the rolling direction is associated with T1 and Θ'-phase precipitates.

  9. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.

    PubMed

    Løvik, Amund N; Modaresi, Roja; Müller, Daniel B

    2014-04-15

    Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (vehicle-component-alloy-element model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements.

  10. High-temperature corrosion of iron-aluminum and iron-aluminum-yttrium alloys

    NASA Astrophysics Data System (ADS)

    Insoo, Kim

    The high-temperature corrosion behavior of Fe3Al alloy has been investigated by conducting two studies: (1) corrosion of Fe 3Al and Fe3Al-Y alloys in oxidizing atmosphere and (2) corrosion of Fe3Al in mixed chlorine/oxygen environments. In the first study, oxidation of the two alloys, Fe-14.3 wt% Al and Fe-14.1 wt% Al-0.3 wt% Y, was carried out in the temperature range of 800 to 1100°C to investigate the general oxidation behavior of Fe3Al and the effect of yttrium on the oxidation of Fe3Al in terms of oxidation kinetics, oxide scale adhesion and microstructure. At lower temperatures (<1000°C), the oxidation rate of the two alloys was nearly identical, and the parabolic rate constant obtained as a function of temperature was Kp = 5128 exp[--39500 (cal/mol)/RT] mg2/cm4 h. At higher temperatures, however, yttrium-added Fe3Al alloy exhibited lower oxidation rate and much more improved oxide adhesion. The lower oxidation rate observed in Fe3Al-Y alloy seems to be due to the followings: (1) a decrease in aluminum diffusion through alumina scale and (2) modification of the scale growth mechanism from simultaneous countercurrent diffusion of aluminum and oxygen to predominant inward diffusion of oxygen, which generates less growth stress and thus prevents the formation of fast diffusion paths such as microcracks. The adhesion improvement of alumina scale formed on the Fe3Al-Y was attributed to the modification of alumina growth mechanism by the addition of Y to the Fe3Al alloy. The change of growth mechanism leads to the formation of pegs, decrease of the oxide growth stress, and decrease of voids formation, which enhances the adhesion of alumina scale to the Fe3Al alloy. The second study has focused on the corrosion of Fe3Al in the temperature range of 600--800°C in Cl2-Ar gas mixtures containing traces of oxygen as an impurity. Weight gain was observed during the corrosion of Fe3Al at 600°C in 0.25% Cl2-Ar, which is due to the formation of Fe2O3, while continuous

  11. Fretting of Nickel-Chromium-Aluminum Alloys at Temperatures to 816 C

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    A series of four nickel-based alloys containing 10 percent and 20 percent chromium in combination with 2 percent and 5 percent aluminum were fretted in dry air at temperatures to 816 C. At all temperatures, the alloys showed far less fretting wear than did high-purity nickel. This was attributed to the formation of protective oxide films on the alloys, the result of the selective oxidation of the alloy constituents. Increasing the aluminum concentration reduced fretting wear at all temperatures. Increasing the chromium concentration from 10 percent to 20 percent resulted in decreased fretting wear at 23 and 540 C, but increased fretting wear at 650 and 816 C.

  12. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  13. Thermal cycling of silicon carbide whisker/aluminum alloy composite

    SciTech Connect

    Patterson, W.G.

    1988-01-01

    There are many aspects of the mechanical behavior of whisker reinforced alloys that are not well understood. The effects of thermal fatigue, for example, have been extensively studied for continuous-fiber composites but not for whisker composites. A model was developed here for thermal-fatigue damage in whisker-reinforced metal-matrix composites, taking into account both metallurgical transformations and thermal-stress damage. Also, thermal-cycling tests were performed on 2124-T6 aluminum alloy reinforced with a 15% volume fraction of SiC whiskers. The microstructure and mechanical properties of the composite were evaluate before and thermal cycling. Unlike metal-matrix composites with continuous fibers, the only thermal-stress damage sustained by SiC{sub w}/Al were changes in dimensions as large as 7.4%. There were no indications of matrix or fiber cracking, void formation, interfacial debonding, or concentrated plastic flow. Thermal-stress deformation appears to have been balanced by recovery and recrystallization. The effects of thermal cycling on composite strength were determined to be primarily due to overaging of matrix precipitates. The whiskers accelerated overaging, and may have increased the extent to which overaging could occur.

  14. Modeling of Microporosity Size Distribution in Aluminum Alloy A356

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Cockcroft, Steve; Zhu, Jindong; Reilly, Carl

    2011-12-01

    Porosity is one of the most common defects to degrade the mechanical properties of aluminum alloys. Prediction of pore size, therefore, is critical to optimize the quality of castings. Moreover, to the design engineer, knowledge of the inherent pore population in a casting is essential to avoid potential fatigue failure of the component. In this work, the size distribution of the porosity was modeled based on the assumptions that the hydrogen pores are nucleated heterogeneously and that the nucleation site distribution is a Gaussian function of hydrogen supersaturation in the melt. The pore growth is simulated as a hydrogen-diffusion-controlled process, which is driven by the hydrogen concentration gradient at the pore liquid interface. Directionally solidified A356 (Al-7Si-0.3Mg) alloy castings were used to evaluate the predictive capability of the proposed model. The cast pore volume fraction and size distributions were measured using X-ray microtomography (XMT). Comparison of the experimental and simulation results showed that good agreement could be obtained in terms of both porosity fraction and size distribution. The model can effectively evaluate the effect of hydrogen content, heterogeneous pore nucleation population, cooling conditions, and degassing time on microporosity formation.

  15. A Summary of Results of Various Investigations of the Mechanical Properties of Aluminum Alloys at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Hartmann, E C; Sharp, W H

    1942-01-01

    The available sources of data on the mechanical properties of aluminum alloys at low temperatures are listed and a summary of the material to be found in each source is given. There is included a discussion of the results of recent tests of aluminum alloys at low temperatures made at the Aluminum Research Laboratories.

  16. Microstructure of aluminum-iron alloys subjected to severe plastic deformation

    SciTech Connect

    Senkov, O.N.; Froes, F.H.; Stolyarov, V.V.; Valiev, R.Z.; Liu, J.

    1998-04-14

    The present paper describes detailed experiments on structure and phase characterization carried out on aluminum-iron alloys after intense torsion straining. The equilibrium solubility of iron in the aluminum lattice at room temperature has been reported to be 0.025 at.%. Alloying of aluminum with iron can increase the high-temperature strength due to a dispersion of second-phase particles. This effect can be enhanced by increasing the solid solubility extension of iron in the aluminum matrix and producing non-equilibrium phases by techniques such as RS, MA or even a laser treatment. In the present work, the severe plastic deformation approach has been used to extend the iron solubility in aluminum and to produce a nano-grained structure in several Al-Fe alloys.

  17. Minimum quantity lubrication machining of aluminum and magnesium alloys

    NASA Astrophysics Data System (ADS)

    Bhowmick, Sukanta

    2011-12-01

    The use of minimum quantity lubrication (MQL) machining, i.e. drilling and tapping of aluminum and magnesium alloys using very low quantities of cutting fluids was studied and the MQL machining performance was compared to dry and conventional flooded conditions. An experimental drilling station with an MQL system was built to measure torque and thrust force responses. Uncoated and diamond-like carbon (DLC) coated HSS drills were tested against 319 Al and AZ91 alloys using 10--50 ml/h of distilled water (H 2O-MQL) and a fatty acid based MQL agent (FA-MQL). The results indicated that H2O-MQL used in conjunction with non-hydrogenated DLC (NH-DLC) coatings reduced the average torque and thrust-force compared to dry cutting and achieved a performance comparable with conventional flooded drilling. At least 103 holes could be drilled using NH-DLC in H2O-MQL and uncoated HSS in FA-MQL in drilling of both 319 Al and AZ91. MQL drilling and tapping provided a stable machining performance, which was evident from the uniform torque and force patterns and also resulted in desirable hole surface, thread quality and chip segments. The maximum temperature generated in the workpiece during MQL machining was lower than that observed in dry drilling and tapping, and comparable to flooded conditions. The mechanical properties of the material adjacent to drilled holes, as evaluated through plastic strain and hardness measurements, revealed a notable softening in case of dry drilling, with magnesium alloys exhibiting a recrystallized grain zone, but not for MQL drilling. Softened aluminum and magnesium promoted adhesion to the tools resulted built-up edge formation and consequently high torques and thrust-forces were generated. NH-DLC coatings' low COF in H 2O-MQL against 319 Al (0.10) and AZ91 (0.12) compared to uncoated HSS (0.63 and 0.65) limited the temperature increase during NH-DLC in H2 O-MQL drilling and hence both torques and thrust forces were effectively reduced.

  18. The mechanism of stress-corrosion cracking in 7075 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Jacobs, A. J.

    1970-01-01

    Various aspects of stress-corrosion cracking in 7075 aluminum alloy are discussed. A model is proposed in which the continuous anodic path along which the metal is preferentially attacked consists of two phases which alternate as anodes.

  19. Cryogenic Fracture Toughness Evaluation of an Investment Cast Aluminum-Beryllium Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne; McGill, Preston

    2006-01-01

    This document is a viewgraph presentation that details the fracture toughness of Aluminum-Beryllium Alloy for use in structures at cryogenic temperatures. Graphs and charts are presented in the presentation

  20. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  1. Study to determine peening stress profile of rod peened aluminum structural alloys versus shot peened material

    NASA Technical Reports Server (NTRS)

    Rosas, R. E.; Calfin, B. G.

    1976-01-01

    The objective of this program was to determine the peening stress profiles of rod peened aluminum structural alloys versus shot peened material to define the effective depth of the compressed surface layer.

  2. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    DOEpatents

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  3. Study of Henna (Lawsonia inermis) as Natural Corrosion Inhibitor for Aluminum Alloy in Seawater

    NASA Astrophysics Data System (ADS)

    Nik, W. B. Wan; Zulkifli, F.; Sulaiman, O.; Samo, K. B.; Rosliza, R.

    2012-09-01

    Commercial henna (Lawsonia inermis) was investigated to inhibit the corrosion of aluminum alloy through immersion in seawater. The aluminum alloy (5083) was prepared in size of 25mm × 25mm × 3mm. The immersion test was conducted in seawater with different concentration of henna, 100ppm, 300ppm, 500ppm for duration of 60 days. Four characterizations were performed in this study which was weight loss study, Fourier Transform Infrared (FTIR), Electrochemical Impedance Spectroscopy (EIS) and adsorption isotherm. The results indicated that henna has major constituents of lawsone which contributed to the chemisorptions or adsorption process by forming an isolation layers on the aluminum alloy surface which follows the Langmuir adsorption isotherm. It was found that the protection layer attached on metal was not permanent and precipitation occurred as the time increases. The highest inhibition efficiency was found at 88% (500ppm). This research found that henna is an excellent natural inhibitor for aluminum alloy in seawater.

  4. Experimental investigation of anisotropy evolution of AZ31 magnesium alloy sheets under tensile loading

    SciTech Connect

    Tari, D. Ghaffari; Worswick, M. J.

    2011-05-04

    Increasing demand for lighter final products has created new opportunities for the application of new light weight materials. Due to high strength to density ratio and good magnetic resistance properties, magnesium alloys are good candidates to replace steel and aluminum for same application. However, limited numbers of active slip deformation mechanisms, result in a decreased formability at room temperature. Furthermore, wrought magnesium alloys have an initial crystallographic texture, remained from the prior rolling operations, which makes them highly anisotropic. In this paper, tensile tests are performed at room temperature and 200 deg. C at different strain rates and orientations relative to the rolling direction, including rolling, 30 deg., 45 deg., 60 deg. and transverse orientation. The strain rates adopted for these experiments varied from 0.001 to 1.0. The testing results show the effect of temperature on the strain rate sensitivity of AZ31 sheets. The extent of deformation is continuously recorded using two separate high temperature extensometers. The results of testing show an increase in the r-values with the plastic deformation. The strain rate sensitivity of AZ31 increased as the temperature was elevated. At higher strain rates the measured r-values are larger and the slope of its evolution with the plastic strain is steeper.

  5. Study of localized corrosion in aluminum alloys by the scanning reference electrode technique

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1995-01-01

    Localized corrosion in 2219-T87 aluminum (Al) alloy, 2195 aluminum-lithium (Al-Li) alloy, and welded 2195 Al-Li alloy (4043 filler) have been investigated using the relatively new scanning reference electrode technique (SRET). Anodic sites are more frequent and of greater strength in the 2195 Al-Li alloy than in the 2219-T87 Al alloy, indicating a greater tendency toward pitting for the latter. However, the overall corrosion rates are about the same for these two alloys, as determined using the polarization resistance technique. In the welded 2195 Al-Li alloy, the weld bean is entirely cathodic, with rather strongly anodic heat affected zones (HAZ) bordering both sides, indicating a high probability of corrosion in the HAZ parallel to the weld bead.

  6. Review and Study of Physics Driven Pitting Corrosion Modeling in 2024-T3 Aluminum Alloys (Postprint)

    DTIC Science & Technology

    2015-05-01

    AFRL-RX-WP-JA-2015-0218 REVIEW AND STUDY OF PHYSICS DRIVEN PITTING CORROSION MODELING IN 2024-T3 ALUMINUM ALLOYS (POSTPRINT) Lingyu...2014 – 1 April 2015 4. TITLE AND SUBTITLE REVIEW AND STUDY OF PHYSICS DRIVEN PITTING CORROSION MODELING IN 2024-T3 ALUMINUM ALLOYS (POSTPRINT) 5a...12.2086274. 14. ABSTRACT Material degradation due to corrosion and corrosion fatigue has been recognized to significantly affect the airworthiness of

  7. Effect of Chromate and Chromate-Free Organic Coatings on Corrosion Fatigue of an Aluminum Alloy

    DTIC Science & Technology

    2012-02-20

    the vicinity. Bentonite is hydrated alumino silicate clay primarily composed of the smectite class mineral montmorillonite [73]. The ideal formula for...used as inhibitors. It was studied also bentonite clay , which contains 99% of montmorillonite. The reason of choosing bentonite as aluminum alloy...natural bentonite , natural zeolite and Ca-ion exchanged and Zn-ion exchanged zeolites were studied as aluminum alloy corrosion inhibitors in organic

  8. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  9. Fretting Wear-Resistant, Micro-Arc Oxidation Coatings for Aluminum and Titanium Alloy Bearings (Preprint)

    DTIC Science & Technology

    2007-03-01

    AFRL-ML-WP-TP-2007-443 FRETTING WEAR-RESISTANT, MICRO-ARC OXIDATION COATINGS FOR ALUMINUM AND TITANIUM ALLOY BEARINGS (PREPRINT) K.J. Choppy...COATINGS FOR ALUMINUM AND TITANIUM ALLOY BEARINGS (PREPRINT) 5c. PROGRAM ELEMENT NUMBER 65502F 5d. PROJECT NUMBER 3005 5e. TASK NUMBER ML...PERFORMING ORGANIZATION Infoscitex Corporation 303 Bear Hill Road Waltham, MA 02451 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S

  10. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    PubMed Central

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-01-01

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation and minimum reduction in the thickness of the tube. PMID:28793629

  11. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.

    PubMed

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-23

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  12. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens.

    PubMed

    Tsujino, Jiromaru; Hidai, Kazuaki; Hasegawa, Atsushi; Kanai, Ryoichi; Matsuura, Hisanori; Matsushima, Kaoru; Ueoka, Tetsugi

    2002-05-01

    Welding characteristics of aluminum, aluminum alloy and stainless steel plate specimens of 6.0 mm thickness by a 15 kHz ultrasonic butt welding system were studied. There are no detailed welding condition data of these specimens although the joining of these materials are required due to anticorrosive and high strength characteristics for not only large specimens but small electronic parts especially. These specimens of 6.0 mm thickness were welded end to end using a 15 kHz ultrasonic butt welding equipment with a vibration source using eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction thyristor power amplifier. The stainless steel plate specimens electrolytically polished were joined with welding strength almost equal to the material strength under rather large vibration amplitude of 25 microm (peak-to-zero value), static pressure 70 MPa and welding time of 1.0-3.0 s. The hardness of stainless steel specimen adjacent to a welding surface increased about 20% by ultrasonic vibration.

  13. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  14. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  15. Laser fusing of HVOF thermal sprayed alloy 625 on nickel-aluminum bronze

    SciTech Connect

    Brenna, R.T.; Pugh, J.L.; Denney, P.E.

    1994-12-31

    A preliminary study has been conducted to determine the feasibility of laser fusing alloy 625 onto nickel-aluminum-bronze base metal. Laser fusing was performed by melting a pre-coated surface of alloy 625 that had been applied by the high velocity oxyfuel (HVOF) thermal spray process. The laser fusing was successful in producing a metallurigical bond between alloy 625 and the substrate. Minor modification to the heat-affected zone of the base metal was observed by microhardness measurements, and defect-free interfaces were produced between alloy 625 and nickel-aluminum-bronze by the process. The laser is a high energy density source that can be used for precise thermal processing of materials including surface modification. Laser fusing is the full or partial melting of a coating material that has been previously applied in some fashion to the substrate. Thermal spray coating of nickel-aluminum-bronze material with alloy 625 was conducted at the David Taylor Research Center. Nickel-aluminum-bronze specimens 2 x 3-in. by 1/2-in. thick were coated with alloy 25 utilizing the HVOF equipment. Coating thicknesses of approximately 0.014-in. (0.3 mm) were produced for subsequent laser fusing experiments. A preliminary study has been conducted to determine the feasibility of laser fusing a HVOF thermal sprayed alloy 625 coating onto nickel-aluminum-bronze base metal. Conclusions of this investigation were as follows: (1) Laser fusing was successful in producing a metallurgical bond between HVOF thermal sprayed alloy 625 and the nickel-aluminum-bronze. (2) Only minor microstructural modification to the heat-affected zone of the base metal ws observed by microhardness measurements. (3) Defect-free interfaces were produced between thermal sprayed alloy 625 and nickel-aluminum-bronze by laser fusing.

  16. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  17. Retort braze bonding of borsic/aluminum composite sheet to titanium

    NASA Technical Reports Server (NTRS)

    Webb, B. A.; Dolowy, J. F., Jr.

    1975-01-01

    Braze bonding studies between Borsic/aluminum composite and titanium sheet were conducted to establish acceptable brazing techniques and to assess potential joint efficiencies. Excellent braze joints were produced which exhibited joint strengths exceeding 117 MPa (17,000 psi) and which retained up to 2/3 of this strength at 589 K (600 F). Noticeable composite strength degradation resulting from the required high temperature braze cycle was found to be a problem.

  18. Numerical simulation of different pulse width of long pulsed laser on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Jin, Guangyong; Zhang, Wei; Chen, Gui-bo; Bi, Juan

    2015-03-01

    Established a physical model to simulate the melt ejection induced by long pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. This simulation is based on the interaction between single pulsed laser with different pulse width and different peak energy and aluminum alloy material. By comparing the theoretical simulation data and the actual test data, we discover that: the theoretical simulation curve is well consistent with the actual experimental curve, this two-dimensional model is with high reliability; when the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature at the center of aluminum alloy surface reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole appears on the surface of the target, an increment of the keyhole, the maximum temperature at the center of aluminum alloy surface gradually moves inwardly. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  19. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys

    SciTech Connect

    Chen, Y.C.; Feng, J.C.; Liu, H.J.

    2009-06-15

    Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys was characterized by transmission electron microscopy. In the weld nugget zone and the thermo-mechanically affected zone some metastable precipitates overaged to equilibrium phase while others solutionized into the aluminum solid solution. In the heat-affected zone the precipitates coarsened.

  20. Brazing process using'al-Si filler alloy reliably bonds aluminum parts

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Johnson, W. R.

    1966-01-01

    Brazing process employs an aluminum-silicon filler alloy for diffusion bonding of aluminum parts in a vacuum or inert gas atmosphere. This process is carried out at temperatures substantially below those required in conventional process and produces bonds of greater strength and reliability.

  1. Wear of aluminum and hypoeutectic aluminum-silicon alloys in boundary-lubricated pin-on disk sliding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Brainard, W. A.

    1979-01-01

    The friction and wear of pure aluminum and a number of hypoeutectic aluminum-silicon alloys (with 3 to 12 wt %Si) were studied with a pin-on-disk apparatus. The contacts were lubricated with mineral oil and sliding was in the boundary-lubrication regime at 2.6 cm/sec. Surfaces were analyzed with photomicrographs, scanning electron microscopy, X-ray dispersive analysis, and diamond pyramid hardness measurements. There were two wear regimes for the alloys - high and low - whereas pure aluminum exhibited a high wear rate throughout the test period. Wear rate decreased and the transition stress from high to low wear increased with increasing hardness. There was no correlation between friction coefficient and hardness. A least squares curve fit indicated a wear-rate dependence greater than the inverse first power of hardness. The lower wear rates of the alloys may be due to the composites of silicon platelets in aluminum resulting in increased hardness and thus impairing the shear of the aluminum.

  2. Corrosion resistance of aluminum-magnesium alloys in glacial acetic acid

    SciTech Connect

    Zaitseva, L.V.; Romaniv, V.I.

    1984-05-01

    Vessels for the storage and conveyance of glacial acetic acid are produced from ADO and AD1 aluminum, which are distinguished by corrosion resistance, weldability and workability in the hot and cold conditions but have low tensile strength. Aluminum-magnesium alloys are stronger materials close in corrosion resistance to technical purity aluminum. An investigation was made of the basic alloying components on the corrosion resistance of these alloys in glacial acetic acid. Both the base metal and the weld joints were tested. With an increase in temperature the corrosion rate of all of the tested materials increases by tens of times. The metals with higher magnesium content show more pitting damage. The relationship of the corrosion resistance of the alloys to magnesium content is confirmed by the similar intensity of failure of the joint metal of all of the investigated alloys and by electrochemical investigations. The data shows that AMg3 alloy is close to technically pure ADO aluminum. However, the susceptibility of even this material to local corrosion eliminates the possibility of the use of aluminum-magnesium alloys as reliable constructional materials in glacial acetic acid.

  3. Lightweight materials for automotive applications/topic 2: Wear resistant aluminum alloy

    SciTech Connect

    Viswanathan, S.

    1997-01-31

    The replacement of cast iron by aluminum alloys in automotive engine blocks and heads represents a significant weight reduction in automobiles. The primary hurdle to the widespread use of aluminum alloy engine blocks in the North American automobile industry was high cost. The lack of wear resistance in most aluminum alloys added to manufacturing cost, since expensive procedures such as the incorporation of cast iron liners or special coatings were needed to achieve the required wear properties. The project targeted the development of a wear resistant aluminum alloy, as well as tools and the knowledge-base required to design the casting process, to allow it to be cast economically into engine blocks without the use of a cast iron liner or special coating, thereby providing benefits to both the material and manufacturing aspects of the process. The project combined the alloy development, wear and microstructural characterization, and casting modeling capabilities of the laboratory with the partners extensive alloy and casting process development and manufacturing experience to develop a suitable wear resistant aluminum alloy and casting process.

  4. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys.

    PubMed

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-05-08

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg₂Al₃. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  5. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    PubMed Central

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-01-01

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research. PMID:28788646

  6. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  7. Diffusion Bonding and Characterization of a Dispersion Strengthened Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Cooke, Kavian Omar

    Aluminum metal matrix composites (Al-MMC's) containing silicon carbide or alumina particle reinforcements are used extensively in automotive and aircraft industries. The addition of a reinforcing phase has led to significant improvements in the mechanical properties of these alloys. However, despite substantial improvements in the properties, the lack of a reliable joining method has restricted their full potential. The differences in physical and metallurgical properties between the ceramic phase and the Al-MMC, prevents the successful application of the fusion welding processes, conventionally used for joining monolithic aluminum alloys. Therefore, alternative techniques that prevent microstructural changes in the base metal need to be developed. In this study, the transient liquid phase diffusion bonding and eutectic bonding of a particle reinforced Al 6061-MMC was investigated to identify a method that could control particle segregation within the joint and increase the final joint strength. The results showed that TLP bonding using Ni-foil was possible at 600°C for 10 minutes using a pressure of 0.01 MPa. However, characterization of the bond interface showed a wide particle segregated zone due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The presence of this particle segregated zone was shown to cause low joint strengths. In order to overcome these problems, TLP bonding was performed using electrodeposited coatings of Ni and Ni-Al 2O3 as a way of controlling the volume of eutectic liquid formed at the joint. Theoretical and experimental work showed that the use of thin coatings was successful in reducing the width of the segregated zone formed at the joint and this had the effect of increasing joint shear strength values. Furthermore, lower bonding temperature could also be used as a method of reducing particle segregation and therefore, a Cu-Sn interlayer was used to form a eutectic bond. The

  8. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    SciTech Connect

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi

    2015-01-15

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  9. A method for studying weld fusion boundary microstructure evolution in aluminum alloys

    SciTech Connect

    Kostrivas, A.; Lippold, J.C.

    2000-01-01

    Aluminum alloys may exhibit a variety of microstructures within the fusion zone adjacent to the fusion boundary. Under conventional weld solidification conditions, epitaxial nucleation occurs off grains in the heat-affected zone (HAZ) and solidification proceeds along preferred growth directions. In some aluminum alloys, such as those containing Li and Zr, a nondendritic equiaxed grain zone (EQZ) has been observed along the fusion boundary that does not nucleate epitaxially from the HAZ substrate. The EQZ has been the subject of considerable study because of its susceptibility to cracking during initial fabrication and repair. The motivation of this investigation was to develop a technique that would allow the nature and evolution of the fusion boundary to be studied under controlled thermal conditions. A melting technique was developed to simulate the fusion boundary of aluminum alloys using the Gleeble{reg{underscore}sign} thermal simulator. Using a steel sleeve to contain the aluminum, samples wee heated to incremental temperatures above the solidus temperature of a number of alloys. In Alloy 2195, a 4Cu-1Li alloy, an EQZ could be formed by heating in the temperature range approximately from 630--640 C. At temperatures above 640 C, solidification occurred by the normal epitaxial nucleation and growth mechanism. Fusion boundary behavior was also studied in Alloys 5454-H34, 6061-T6 and 2219-T8. Nucleation in these alloys was observed to be epitaxial. Details of the technique and its effectiveness for performing controlled melting experiments at incremental temperatures above the solidus are described.

  10. Exploratory Development for Design Data on Structural Aluminum Alloys in Representative Aircraft Environments

    DTIC Science & Technology

    1977-07-01

    Alloy," Final Report under Naval Air Systems Command Contract N00019-69- C-0292, January 1970. 6. D. J. Brownhill, C. F. Babilon , G. E. Nordmark and D. 0...34Further Development of Aluminum Alloy X7050," Final Report under Naval Air Systems Command Contract N00019- 71-C-0131, May 1972. 9. C. F. Babilon , R

  11. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H. W.; Farahmand, B.; Rioja, R.

    2003-01-01

    This viewgraph report presents an examination of the fracture toughness of aluminum-lithium alloy C458 for use in cryotank structures. Topics cover include: cryogenics, alloy composition, strengthing precipitates in C458, cryogenic fracture toughness improvements, design of experiments for measuring aging optimization of C458 plate and effects of aging of properties of C458 plate.

  12. Aging Optimization of Aluminum-Lithium Alloy C458 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H. W.; Farahmand, B.; Rioja, R.

    2003-01-01

    This viewgraph report presents an examination of the fracture toughness of aluminum-lithium alloy C458 for use in cryotank structures. Topics cover include: cryogenics, alloy composition, strengthing precipitates in C458, cryogenic fracture toughness improvements, design of experiments for measuring aging optimization of C458 plate and effects of aging of properties of C458 plate.

  13. Application of a Reduced Texture Methodology to Model the Plasticity of Anisotropic Extruded Aluminum Sheets

    NASA Astrophysics Data System (ADS)

    Luo, Meng; Rousselier, Gilles; Mohr, Dirk

    2011-08-01

    A recently developed Reduced Texture Methodology (RTM) featuring (i) a significantly reduced number of crystallographic orientations, (ii) a special experiment-based parameter calibration procedure, and (iii) reasonable computational time for industrial applications is adopted to model the anisotropic plastic behavior of a 2 mm-thick extruded aluminum 6260-T6 sheet. Firstly, the full-thickness sheet is modeled with twelve crystallographic orientations, and the model parameters are identified through an optimization procedure based on uniaxial tensile tests with seven different material orientations. The calibrated model describes well the stress-strain curves and Lankford ratios for all directions, while the optimized grain orientations are in good agreement with EBSD measurements. However, the EBSD results also reveal that the present sheet exhibits a strong heterogeneity through the thickness as far as crystallographic orientations and grain sizes are concerned. To account for this heterogeneity, eight grain orientations are selected out of the total twelve for the full-thickness sheet to model the 0.7 mm-thick central layer of the sheet based on the EBSD measurements. It is found that the reduced eight-grain model provides good predictions of the macroscopic responses in uniaxial tensile tests on reduced-thickness specimens, even without further calibration. A combined calibration is also performed to determine the final set of parameters which provide excellent modeling for both the full-thickness sheet (twelve-grain model) and its central layer (eight-grain model).

  14. Superhydrophobic aluminum alloy surfaces by a novel one-step process.

    PubMed

    Saleema, N; Sarkar, D K; Paynter, R W; Chen, X-G

    2010-09-01

    A simple one-step process has been developed to render aluminum alloy surfaces superhydrophobic by immersing the aluminum alloy substrates in a solution containing NaOH and fluoroalkyl-silane (FAS-17) molecules. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements have been performed to characterize the morphological features, chemical composition and superhydrophobicity of the surfaces. The resulting surfaces provided a water contact angle as high as ∼162° and a contact angle hysteresis as low as ∼4°. The study indicates that it is possible to fabricate superhydrophobic aluminum surfaces easily and effectively without involving the traditional two-step processes.

  15. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    SciTech Connect

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng Zhou, Zhi Ping

    2014-03-15

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  16. Explosion bonding: aluminum-magnesium alloys bonded to austenitic stainless steel

    SciTech Connect

    Patterson, R.A.

    1982-01-01

    The explosion bonding of 5000 series aluminum alloys to 300 series stainless steel alloys is summarized. The process technique involves a parallel gap arrangement with copper or aluminum bonding aids. Successful bonds have been achieved using either a single shot process for joining the trilayer clad or a sequential shot technique for each metal component. Bond success is monitored through a combined metallographic and tensile strength evaluation. Tensile properties are shown to be strongly dependent upon process parameters and the amount of intermetallic formation at the aluminum bond interface. Empirical data has been compared with experimental and destructive test results to determine the optimum procedures.

  17. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  18. On the growth of small fatigue cracks in aluminum-lithium alloy 2090

    SciTech Connect

    Venkatesward-Rao, K.T.; Yu, W.; Ritchie, R.O.

    1986-01-01

    It is the objective of this article to examine the behavior of small (2 to 1000 ..mu..m) fatigue cracks in a commercial Al-Li-Cu-Zr alloy, and to compare results with those determined on conventional long (greater than or equal to 20 mm) crack samples. The development of ultra-lightweight aluminum-lithium alloys has aroused much interest in the aerospace industry with the prospect of the design of aircraft with alloys of lower density and increased modulus. Moreover, although Li additions can cause low ductility and toughness properties, Al-Li-X alloys generally show far superior fatigue crack growth resistance to traditional aluminum alloys, such as 2124 and 7050. However, the latter observations are based exclusively on long (greater than or equal to 10 mm) crack studies; to date little information is available on the behavior of small fatigue cracks in these alloys.

  19. Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    Stir Welded 7050 -T651 Aluminum , Acta 903 Mater., 2003, 51, p 713–729 904 14. O. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction...REPORT Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys 14. ABSTRACT 16. SECURITY...is combined with the basic physical metallurgy of two wrought aluminum alloys to predict/assess their FSW behaviors. The two alloys selected are AA5083

  20. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    NASA Astrophysics Data System (ADS)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-08-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  1. Correlation between shear punch and tensile data for neutron-irradiated aluminum alloys

    SciTech Connect

    Hamilton, M.L.; Edwards, D.J.; Toloczko, M.B.

    1995-04-01

    This work was performed to determine whether shear punch and tensile data obtained on neutron irradiated aluminum alloys exhibited the same type of relationship as had been seen in other work and to assess the validity of extrapolating the results to proton-irradiated alloys. This work was also meant to be the first of a series of similar test matrices designed to determine whether the shear punch/tensile relationship varied or was the same for different alloy classes.

  2. Several braze filler metals for joining an oxide-dispersion-strengthened nickel-chromium-aluminum alloy

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.

    1975-01-01

    An evaluation was made of five braze filler metals for joining an aluminum-containing oxide dispersion-strengthened (ODS) alloy, TD-NiCrAl. All five braze filler metals evaluated are considered suitable for joining TD-NiCrAl in terms of wettability and flow. Also, the braze alloys appear to be tolerant of slight variations in brazing procedures since joints prepared by three sources using three of the braze filler metals exhibited similar brazing characteristics and essentially equivalent 1100 C stress-rupture properties in a brazed butt-joint configuration. Recommendations are provided for brazing the aluminum-containing ODS alloys.

  3. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  4. Accelerated Corrosion Testing of Graphite/Epoxy Composites and Aluminum Alloy Mechanically-Fastened Joints

    DTIC Science & Technology

    1985-06-20

    45/02/90)4/±,45/0)s and aluminum alloy plates ( 2124 -T851) were fabricated using either titanium (NAS1154V4) or A-286 CRES (HS 21140) fasteners. The... 2124 -T851, which is sup- posed to be a more corrosive resistant ahuminum alloy than the 2024 seri~es. Also the substructure was chromic acid anodized...AFWAL-TR-84--3115 ACCELERATED CORROSION TESTING OF GRAPHITE/EPOXY COMPOSITES AND ALUMINUM ALLOY MECHANICALLY-FASTENED JOINTS Rlk S. D. Thompson, SJB

  5. Synthesis and Properties of Elevated Temperature P/M Aluminum Alloys.

    DTIC Science & Technology

    1985-11-30

    7D-A±164 086 SYNTHESIS ND PROPERTIES OF ELEVTED TEMPERATRE PIN L/2ALUMINU" ALLOYS(U) NORTHMEST RN UNIV EVANSTON IL DEPT OF MATERIALS SCIENCE AND E...Subtitle) S. TYPE OF REPORT & PERIOD COVERED Final Report SYNTHESIS AND PROPERTIES OF ELEVATED 10/1/81 - 9/30/85 TEMPERATURE P/M ALUMINUM ALLOYS 6...v. --- -r .v ’AFOSR -rR, FINAL REPORT -. on SYNTHESIS AND PROPERTIES OF ELEVATED TEMPERATURE P/M ALUMINUM ALLOYS covering period 1 October

  6. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  7. Electrochemical test for predicting microbiologically influenced corrosion of aluminum and AA 7005 alloy

    SciTech Connect

    Ayllon, E.S. ); Rosales, B.M. )

    1994-08-01

    The susceptibility of pure aluminum (Al) and Aluminum Association (AA) 7005 alloy (UNS A97005) to pitting by microbiologically influenced corrosion (MIC) in an integral jet fuel tank was determined through polarization measurements. Usually, the most corrosive reported species is the fungus Hormonconis resinae. The effect of its proliferation on pure Al and AA 7005-T6 alloy was studied through anodic and cathodic potentiodynamic polarization. The type and relative amount of corrosion damage to the metal were determined. Morphology of the attack was analyzed by scanning electron microscopy (SEM). Distribution of the alloying elements was determined using energy dispersive x-ray analysis (EDXA).

  8. Microstructural Investigation of Friction-Stir-Welded 7005 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Xuesong; Lu, Yan; Zheng, Feiyan; Chen, Bin

    2015-11-01

    This paper is aimed to investigate the microstructure of 7005 aluminum sheets joined by friction-stir welding as well as their mechanical properties. Specimens with ten different sets of welding parameters were studied. Tensile test and fracture analysis determined that the joint of the best quality was obtained at the rotation speed of 1000 rpm matching with the travel speed of 200 mm/min, and the travel speed has more impact on the ultimate tensile strength. Optical microscope observation was applied to this high-quality specimen and gave evidence to explaining the formation of the onion ring structure. Electron back-scattered diffraction (EBSD) technique was employed to characterize the textures and revealed the evolution of microstructures during friction stir processing. The EBSD results showed that the grains maintain their original orientations at relatively low deformation while the orientations rotate under increasing strain. Accumulated rotation will turn the textures into mixed shear components, which finally results in grain refinement and contributes to the high quality of the joint.

  9. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  10. Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants

    NASA Astrophysics Data System (ADS)

    de Cicco, Michael P.; Turng, Lih-Sheng; Li, Xiaochun; Perepezko, John H.

    2011-08-01

    Different types of nanoparticles in aluminum (Al) alloy A356 nanocomposites were shown to catalyze nucleation of the primary Al phase. Nanoparticles of SiC β, TiC, Al2O3 α, and Al2O3 γ were added to and dispersed in the A356 matrix as nucleation catalysts using an ultrasonic mixing technique. Using the droplet emulsion technique (DET), undercoolings in the nanocomposites were shown to be significantly reduced compared to the reference A356. None of the nanocomposites had a population of highly undercooled droplets that were observed in the reference samples. Also, with the exception of the A356/Al2O3 α nanocomposite, all nanocomposites showed a reduction in undercooling necessary for the onset of primary Al nucleation. The observed nanocomposite undercoolings generally agreed with the undercooling necessary for free growth. The atomic structure of the particles showed an influence on nucleation potency as A356/Al2O3 γ nanocomposites had smaller undercoolings than A356/Al2O3 α nanocomposites. The nucleation catalysis illustrates the feasibility of, and basis for, grain refinement in metal matrix nanocomposites (MMNCs).

  11. Numerical simulation of high speed incremental forming of aluminum alloy

    NASA Astrophysics Data System (ADS)

    Giuseppina, Ambrogio; Teresa, Citrea; Luigino, Filice; Francesco, Gagliardi

    2013-12-01

    In this study, an innovative process is analyzed with the aim to satisfy the industrial requirements, such as process flexibility, differentiation and customizing of products, cost reduction, minimization of execution time, sustainable production, etc. The attention is focused on incremental forming process, nowadays used in different fields such as: rapid prototyping, medical sector, architectural industry, aerospace and marine, in the production of molds and dies. Incremental forming consists in deforming only a small region of the workspace through a punch driven by a NC machine. SPIF is the considered variant of the process, in which the punch gives local deformation without dies and molds; consequently, the final product geometry can be changed by the control of an actuator without requiring a set of different tools. The drawback of this process is its slowness. The aim of this study is to assess the IF feasibility at high speeds. An experimental campaign will be performed by a CNC lathe with high speed to test process feasibility and the influence on materials formability mainly on aluminum alloys. The first results show how the material presents the same performance than in conventional speed IF and, in some cases, better material behavior due to the temperature field. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process substantially confirming experimental evidence.

  12. Chemical conditions inside occluded regions on corroding aircraft aluminum alloys.

    PubMed

    Lewis, K S; Yuan, J; Kelly, R G

    1999-07-30

    Corrosion of aluminum alloy structures costs the US Air Force in the order of US$1 x 10(9) annually. Corrosion develops in areas of overlap such as aircraft lap-splice joints and under protective organic coatings. Capillary electrophoresis (CE) has been used to determine the local chemistries at these corrosion sites of solutions that were extracted using a microsampling system. Analysis of the local solution within lap-splice joints from aircraft has been performed in two ways: rehydration of corrosion products and direct microsampling. The solutions collected were analyzed with CE to quantitatively determine the species present during corrosion. The most common ions detected were Cl-, NO2-, NO3-, HCO3-, K+, Al3+, Ca2+, Na+ and Mg2+. Studies of the solution chemistry under local coating defects are required to understand coating failure and develop more durable coatings. A microsampling system and micro pH sensor were developed to extract solution from and measure pH in defects with diameters as small as 170 microns. Actively corroding defects contained high concentrations of Cl-, Al3+, Mg2+, Mn2+ and Cu2+ whereas only trace levels of Mg2+ were found in repassivated defects. The effects of these species on initiation and propagation of corrosion are discussed.

  13. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  14. Ultrasonic measurement of residual stress in shot peened aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lavrentyev, Anton I.; Veronesi, William A.

    2001-04-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing compressive residual stresses near their surfaces. The capability to non-destructively evaluate the near surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper addresses issues encountered in near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth inversely related to the excitation frequency, by making measurements at different frequencies, the method has the potential to provide the stress-depth profile. Experiments were conducted on aluminum specimens (alloy 7075-T7351) peened within the Almen peening intensity from 4A-16A. Several factors were found to contribute to the measured responses: surface roughness, near surface texture change, dislocation density increase and residual stress. In this paper, the contributions of residual stress, dislocation density and surface roughness to the overall effect are separately estimated. It is shown that the experimentally observed velocity change in shot peened samples is dominated by the effect of surface roughness while the role of residual stress is much smaller.

  15. Development of Low Cost, High Performance AlZn4.5Mg1 Alloy 7020

    DTIC Science & Technology

    2009-02-01

    Zn makes aluminum solid solutions of Cu-free 7XXX alloys more electrochemically active and susceptible to galvanic corrosion [21]. The highest level... Corrosion Behavior of Aluminum Alloys,” Aluminum Alloys Their Physical and Mechanical Properties, Vol. III, eds. E.A. Starke, Jr. and T.H. Sanders... Corrosion Susceptibility of Aluminum Alloy 7020 Welded Sheets,” Corrosion Science, Vol. 25, No. 11, pp. 999-1018 (1985). [28] Reboul, M.C. and J. Bouvaist

  16. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  17. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  18. M551 metals melting experiment. [space manufacturing of aluminum alloys, tantalum alloys, stainless steels

    NASA Technical Reports Server (NTRS)

    Li, C. H.; Busch, G.; Creter, C.

    1976-01-01

    The Metals Melting Skylab Experiment consisted of selectively melting, in sequence, three rotating discs made of aluminum alloy, stainless steel, and tantalum alloy. For comparison, three other discs of the same three materials were similarly melted or welded on the ground. The power source of the melting was an electron beam unit. Results are presented which support the concept that the major difference between ground base and Skylab samples (i.e., large elongated grains in ground base samples versus nearly equiaxed and equal sized grains in Skylab samples) can be explained on the basis of constitutional supercooling, and not on the basis of surface phenomena. Microstructural observations on the weld samples and present explanations for some of these observations are examined. In particular, ripples and their implications to weld solidification were studied. Evidence of pronounced copper segregation in the Skylab A1 weld samples, and the tantalum samples studied, indicates a weld microhardness (and hence strength) that is uniformly higher than the ground base results, which is in agreement with previous predictions. Photographs are shown of the microstructure of the various alloys.

  19. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    SciTech Connect

    Bochkareva, Anna Lunev, Aleksey; Barannikova, Svetlana; Gorbatenko, Vadim; Shlyakhova, Galina; Zuev, Lev

    2015-10-27

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined for the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.

  20. A mathematical model to predict the strength of aluminum alloys subjected to precipitation hardening

    SciTech Connect

    Qureshi, F.S.; Sheikh, A.K.; Rashid, M.

    1999-06-01

    A number of alloys, notably most of the aluminum alloys, can be heat treated by aging. This aging due to time-dependent precipitation hardening increases the strength and hardness as well as modifying other mechanical properties. Precipitation hardening has been a popular strengthening mechanism for many decades; therefore, extensive information is available in literature about the precipitation-hardening response of various series of aluminum alloys. The age-hardening response of these alloys is usually represented in graphical form as plotted between property changes and aging time for different temperatures. In designing a suitable precipitation-hardening strategy, one can refer to these graphs. However, for automatic control of aging furnaces, as well as for decision making regarding optimal selection of aging conditions (time/temperature combination), it is desirable to express these relationships in a formal mathematical structure. A mathematical model is developed in this article for widely used heat treatable aluminum alloys used in the extrusion industry. This model is a condensed representation of all {sigma} = f(T,t) curves in different series of aluminum alloys, and the parameters of this model characterize the various compositions of the alloys in the series.