Science.gov

Sample records for aluminum chloride solution

  1. Unilateral segmental hyperhidrosis. Response to 20% aluminum chloride solution and plastic wrap.

    PubMed

    Dworin, A; Sober, A J

    1978-05-01

    A young woman had unilateral dermatomal hyperhidrosis documented by a starch-iodine technique. Evaluation failed to reveal any associated causative conditions. She was treated with 20% aluminum chloride hexahydrate solution in absolute alcohol (Drysol) with a favorable response. With recurrent use, however, she developed miliaria following exertion. Aluminum chloride hexahydrate was shown to be an effective agent to treat this unusual condition, but miliaria with exertion secondary to its use may be a limiting factor. PMID:646401

  2. An XAFS study of nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; G Cheek; K Pandya; W OGrady

    2011-12-31

    Nickel chloride was studied with cyclic voltammetry and X-ray absorption spectroscopy in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Acidic melts display metal stripping peaks which are not observed in the basic melt. EXAFS analysis shows that the nickel is tetrahedrally coordinated with chloride ions in the basic solution. In the acidic solution the nickel is coordinated by six chloride ions that are also associated with aluminum ions.

  3. Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yan; Song, Ren-guo; Sun, Bin; Lu, Hai; Wang, Chao

    2016-07-01

    Potentiodynamic polarization tests and slow strain rate test (SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking (SCC) behavior of 7003 aluminum alloy (AA7003) in acid and alkaline chloride solutions under various applied potentials ( E a). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution (AD) at open-circuit potential (OCP) and is highly susceptible to hydrogen embrittlement (HE) at high negative E a in the solutions with pH levels of 4 and 11. The susceptibility increases with negative shift in the potential when E a is less than -1000 mV vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when E a is equal to -1000 mV vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.

  4. FT-Raman spectroscopic analysis of the most probable structures in aluminum chloride and tetrahydrofuran solutions

    NASA Astrophysics Data System (ADS)

    Alves, Carolina C.; Campos, Thiago B. C.; Alves, Wagner A.

    2012-11-01

    A study by concentration-dependent Raman spectroscopy is presented for solutions of AlCl3 in THF. The formation of small amounts of AlCl4- has been evidenced by the appearance of only one band at 348 cm-1 in the most diluted salt solution. Another band at 330 cm-1 starts rising with increasing salt concentration and it seems to belong to the [AlCl3(THF)3] complex. Indeed, this octahedral entity was confirmed by the quantitative analysis performed at the band envelope at 915 cm-1. At this region, additional bands at 927 and 858 cm-1 were observed and assigned to the C-C and C-O stretching modes, respectively, of THF molecules coordinated to the aluminum salt. Besides them, another band at 1042 cm-1 clearly reveals the existence of this population of molecules. Although neutral octahedral complexes seem to be the major species in more concentrated salt solutions, the Raman spectra show the presence of complex ions in whole studied concentration range.

  5. Pain and swelling after periapical surgery related to the hemostatic agent used: Anesthetic solution with vasoconstrictor or aluminum chloride

    PubMed Central

    Maestre-Ferrín, Laura; Peñarrocha-Oltra, David; Gay-Escoda, Cosme; von-Arx, Tomas; Peñarrocha-Diago, Miguel

    2012-01-01

    Objective: To assess pain and swelling in the first 7 days after periapical surgery and their relationship with the agent used for bleeding control. Study Design: A prospective study was conducted between October 2006 and March 2009. Patients subjected to root surgery, who completed the questionnaire and who consented to the postoperative instructions were included in the study. The subjects were divided into two groups according to the hemostatic agent used: A) gauze impregnated with anesthetic solution with vasoconstrictor; or B) aluminum chloride. The patients were administered a questionnaire, and were asked to record the severity of their pain and swelling on a plain horizontal visual analog scale (VAS). Data were recorded by the patients on the first 7 postoperative days. In addition, the patients were asked to record analgesic consumption. Results: A total of 76 questionnaires (34 in group A and 42 in group B) were taken to be correctly completed. Pain was reported to be most intense two hours after surgery. At this point 52.6% of the patients had no pain. Seventy-five percent of the patients consumed analgesics in the first 24 hours. There were no significant differences between the two groups in terms of the intensity of pain or in the consumption of analgesics. Swelling reached its maximum peak on the second day; at this point, 60.6% of the patients suffered mild or moderate swelling. The Expasyl™ group showed significantly greater swelling than the gauzes group. Conclusion: The type of hemostatic agent used did not influence either the degree of pain or the need for analgesia among the patients in this study. However, the patients belonging to the Expasyl™ group suffered greater swelling than the patients treated with gauzes impregnated with anesthetic solution with vasoconstrictor. Key words:Hemostasis, periradicular surgery, aluminum chloride, pain, swelling. PMID:22322510

  6. Corrosion behavior of aluminum-alumina composites in aerated 3.5 percent chloride solution

    NASA Astrophysics Data System (ADS)

    Acevedo Hurtado, Paul Omar

    Aluminum based metal matrix composites are finding many applications in engineering. Of these Al-Al2O3 composites appear to have promise in a number of defense applications because of their mechanical properties. However, their corrosion behavior remains suspect, especially in marine environments. While efforts are being made to improve the corrosion resistance of Al-Al2O3 composites, the mechanism of corrosion is not well known. In this study, the corrosion behavior of powder metallurgy processed Al-Cu alloy reinforced with 10, 15, 20 and 25 vol. % Al2O3 particles (XT 1129, XT 2009, XT 2048, XT 2031) was evaluated in aerated 3.5% NaCl solution using microstructural and electrochemical measurements. AA1100-O and AA2024T4 monolithic alloys were also studied for comparison purposes. The composites and unreinforced alloys were subjected to potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) testing. Addition of 25 vol. % Al2O 3 to the base alloys was found to increase its corrosion resistance considerably. Microstructural studies revealed the presence of intermetallic Al2Cu particles in these composites that appeared to play an important role in the observations. Pitting potential for these composites was near corrosion potential values, and repassivation potential was below the corresponding corrosion potential, indicating that these materials begin to corrode spontaneously as soon as they come in contact with the 3.5 % NaCl solution. EIS measurements indicate the occurrence of adsorption/diffusion phenomena at the interface of the composites which ultimately initiate localized or pitting corrosion. Polarization resistance values were extracted from the EIS data for all the materials tested. Electrically equivalent circuits are proposed to describe and substantiate the corrosive processes occurring in these Al-Al2O 3 composite materials.

  7. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  8. An XAFS Study of Tantalum Chloride in the Ionic Liquid 1-ethyl-3-methyl Imidazolium Chloride/ aluminum Chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Tantalum chloride was studied with extended X-ray absorption fine structure spectroscopy (XAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride ionic liquids (ILs). Anhydrous Ta2Cl10 is more soluble in the basic solution than in the acidic solution and the X-ray absorption data shows that the coordination shell of chlorides around the tantalum is larger in the basic solution. In the acidic solution, tantalum has five chlorides in its coordination shell while in the basic solution; the tantalum is coordinated by seven chlorides. This indicates that the Lewis acidity of the tantalum chloride causes the Ta to coordinate differently in the acidic and the basic solutions.

  9. A Green Alternative to Aluminum Chloride Alkylation of Xylene

    ERIC Educational Resources Information Center

    Sereda, Grigoriy A.; Rajpara, Vikul B.

    2007-01-01

    An acutely less toxic 2-bromobutane is used to develop a simple graphite-promoted procedure of alkylation of p-xylene. It is further demonstrated that aluminum chloride is not required, the need for aqueous workup is eliminated, waste solutions are not produced and the multiple use of the catalyst is allowed.

  10. The Structure of Nickel Chloride in the Ionic Liquid 1-Ethyl-3-methyl Imidazolium Chloride/Aluminum Chloride: X-ray Absorption Spectroscopy

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    The structure of anhydrous nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride and aluminum chloride has been investigated with extended X-ray absorption fine structure (EXAFS) in both Lewis acid and Lewis base solutions. The EXAFS data of NiCl{sub 2} {center_dot} 6H{sub 2}O crystals were also recorded and analyzed to demonstrate the difference file technique. The difference file technique is used to obtain the structural information for the very closely spaced coordination shells of chloride and oxygen in NiCl{sub 2} {center_dot} 6H{sub 2}O and they are found to agree very closely with the X-ray diffraction data. The difference file technique is then used to analyze the nickel chloride in the ionic liquid solutions. Even though anhydrous NiCl{sub 2} is more soluble in the basic solution than in the acidic solution, the EXAFS data show a single coordination of four chlorides in a tetrahedron around the nickel atom in the basic solution. In a weak acid solution, there are six chlorides in a single octahedral coordination shell around the nickel. However, in a strong acid solution, in addition to the octahedral chloride-coordination shell, there is a second coordination shell of eight aluminum atoms in the form of a simple cube.

  11. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  12. Aluminum Chloride Hexahydrate in a Salicylic Acid Gel

    PubMed Central

    Valins, Whitney

    2009-01-01

    Hyperhidrosis is a common dermatological condition that has a tremendous impact on the quality of life of affected patients. Aluminum chloride hexahydrate is considered first-line therapy for patients with mild-to-moderate hyperhidrosis. This treatment has been proven to be effective in the treatment of hyperhidrosis; however, its use has been limited by significant irritation. In many patients, the irritant dermatitis is so severe that, despite clinical efficacy, this therapy must be discontinued. There are many topical aluminum chloride therapies available. Observations from a busy hyperhidrosis practice revealed decreased irritation and increased efficacy with a novel therapy that combines 15% aluminum chloride hexahydrate with 2% salicylic acid in a gel base. This combination of 15% aluminum chloride hexahydrate with 2% salicylic acid offers patients who have failed aluminum chloride hexahydrate in the past excellent efficacy with minimal irritation. We report seven cases of patients with a history of severe irritation from aluminum chloride who maintained excellent results with this new topical without any significant irritation. PMID:20729946

  13. Structure of complexes between aluminum chloride and other chlorides, 2: Alkali-(chloroaluminates). Gaseous complexes

    NASA Technical Reports Server (NTRS)

    Hargittai, M.

    1980-01-01

    The structural chemistry of complexes between aluminum chloride and other metal chlorides is important both for practice and theory. Condensed-phase as well as vapor-phase complexes are of interest. Structural information on such complexes is reviewed. The first emphasis is given to the molten state because of its practical importance. Aluminum chloride forms volatile complexes with other metal chlorides and these vapor-phase complexes are dealt with in the second part. Finally, the variations in molecular shape and geometrical parameters are summarized.

  14. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOEpatents

    Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  15. Aluminum chloride and membrane potentials of barley root cells

    SciTech Connect

    Etherton, B.; Shane, M.

    1986-04-01

    Aluminum chloride at pH 4 hyperpolarizes the membrane potentials of barley root epidermal cells. The authors tested to see whether this hyperpolarization could be caused by an aluminum induced alteration of the permeability of the membrane to potassium or sodium ions by measuring the effect of .04 mM aluminum ions (the Ca/sup + +/ conc. was 0.1 mM) on the membrane potential changes induced by changing the potassium or sodium concentrations in the medium bathing the roots. Aluminum ions did not change the magnitude of potassium or sodium induced changes in membrane potentials but significantly altered the rates of potassium and sodium induced changes of the potential. The results indicate that aluminum ions did not change sodium or potassium ion permeabilities of barley root cells.

  16. An XAFS Study of Niobium chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Niobium chloride was studied with extended X-ray absorption fine structure spectroscopy (EXAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Although anhydrous Nb2Cl10 is more soluble in the basic melt than in the acidic melt, the EXAFS data shows that the coordination shell around the niobium does not change in the different ionic liquids. Both the acidic and basic melts show a coordination of five chlorides in the first shell. This indicates that in this series of ionic liquids, the Nb2Cl10 breaks up into two NbCl5 entities in both the acidic and the basic melts.

  17. 40 CFR 415.10 - Applicability; description of the aluminum chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aluminum chloride production subcategory. 415.10 Section 415.10 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Chloride Production Subcategory § 415.10 Applicability; description of the aluminum chloride production subcategory. The provisions of this subpart are applicable to discharges...

  18. 40 CFR 415.10 - Applicability; description of the aluminum chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aluminum chloride production subcategory. 415.10 Section 415.10 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Chloride Production Subcategory § 415.10 Applicability; description of the aluminum chloride production subcategory. The provisions of this subpart are applicable to discharges...

  19. 40 CFR 415.10 - Applicability; description of the aluminum chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aluminum chloride production subcategory. 415.10 Section 415.10 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Chloride Production Subcategory § 415.10 Applicability; description of the aluminum chloride production subcategory. The provisions of this subpart are applicable to discharges...

  20. 40 CFR 415.10 - Applicability; description of the aluminum chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aluminum chloride production subcategory. 415.10 Section 415.10 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Chloride Production Subcategory § 415.10 Applicability; description of the aluminum chloride production subcategory. The provisions of this subpart are applicable to discharges...

  1. 40 CFR 415.10 - Applicability; description of the aluminum chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aluminum chloride production subcategory. 415.10 Section 415.10 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Aluminum Chloride Production Subcategory § 415.10 Applicability; description of the aluminum chloride production subcategory. The provisions of this subpart are applicable to discharges...

  2. Influence of hemostatic agents upon the outcome of periapical surgery: Dressings with anesthetic and vasoconstrictor or aluminum chloride

    PubMed Central

    Peñarrocha-Diago, María; Maestre-Ferrín, Laura; Peñarrocha-Oltra, David; von Arx, Thomas

    2013-01-01

    Objective: To evaluate the effects of different hemostatic agents upon the outcome of periapical surgery. Design: A retrospective study was made of patients subjected to periapical surgery between 2006-2009 with the ultrasound technique and using MTA as retrograde filler material. We included patients with a minimum follow-up of 12 months, divided into two groups according to the hemostatic agent used: A) dressings impregnated in anesthetic solution with adrenalin; or B) aluminum chloride paste (Expasyl™). Radiological controls were made after 6 and 12 months, and on the last visit. The global evolution scale proposed by von Arx and Kurt (1999) was used to establish the outcome of periapical surgery. Results: A total of 96 patients (42 males and 54 females) with a mean age of 40.7 years were included. There were 50 patients in the aluminum chloride group and 46 patients in the anesthetic solution with vasoconstrictor group. No significant differences were observed between the two groups in terms of outcome after 12 months - the success rate being 58.6% and 61.7% in the anesthetic solution with vasoconstrictor and aluminum chloride groups, respectively (p>0.05). Conclusion: The outcome after 12 months of follow-up was better in the aluminum chloride group than in the anesthetic solution with vasoconstrictor group, though the difference was not significant. Key words:Aluminum chloride, bleeding control, hemostasis, periapical surgery, outcome. PMID:23229242

  3. XAFS Studies of Ni Ta and Nb Chlorides in the Ionic Liquid 1-Ethyl-3-Methyl Imidazolium Chloride / Aluminum Chloride

    SciTech Connect

    W OGrady; D Roeper; K Pandya; G Cheek

    2011-12-31

    The structures of anhydrous nickel, niobium, and tantalum chlorides have been investigated in situ in acidic and basic ionic liquids (ILs) of 1-methyl-3-ethylimidazolium chloride (EMIC)/AlCl{sub 3} with X-ray absorption spectroscopy (XAS). The coordination of NiCl{sub 2} changes from tetrahedral in basic solution to octahedral in acidic solution. The NiCl{sub 2} is a strong Lewis acid in that it can induce the AlCl{sub 3} to share its chlorides in the highly acidic IL, forming a structure with six near Cl{sup -} ions and eight further distant Al ions which share the chloride ions surrounding the Ni{sup 2+}. When Nb{sub 2}Cl{sub 10}, a dimer, is added to the acidic or basic solution, the dimer breaks apart and forms two species. In the acid solution, two trigonal bipyramids are formed with five equal chloride distances, while in the basic solution, a square pyramid with four chlorides forming a square base and one shorter axial chloride bond. Ta{sub 2}Cl{sub 10} is also a dimer and divides into half in the acidic solution and forms two trigonal bipyramids. In the basic solution, the dimer breaks apart but the species formed is sufficiently acidic that it attracts two additional chloride ions and forms a seven coordinated tantalum species.

  4. Chloride Analysis of RFSA Second Campaign Dissolver Solution

    SciTech Connect

    Holcomb, H.P.

    2001-05-17

    The dissolver solution from the second RFSA campaign was analyzed for chloride using the recently-developed turbidimetric method. Prior to chloride removal in head end, the solution contained 1625 ppm chloride. After chloride removal with Hg(I) and prior to feeding to solvent extraction, the solution contained only 75 ppm chloride. This report discusses those analysis results.

  5. Substituent effects on ferrocenes in aluminum chloride-butylpyridinium chloride molten-salt mixtures

    SciTech Connect

    Edgecombe, A.L.; Fowler, J.S.; Gibbard, H.F. ); Slocum, D.W. ); Phillips, J. )

    1990-02-01

    The visible absorption spectra and reduction potentials of 11 ferrocenes containing electron-withdrawing substituents were determined in an N-n-butylpyridinium chloride-aluminum chloride molten salt. When the substituent(s) on the cyclopentadienyl ring(s) of ferrocene were varied, the reduction potential was caused to range over 1.25 V, and the wavelength for maximum absorption of visible light was varied by nearly 200 nm. These changes are greater than have been observed for similar ferrocenes in other nonaqueous solvents. Evidence is presented for specific interactions of particular ferrocenes with the molten salt.

  6. Unusual coordination state of cobalt ions in zeolites modified by aluminum chloride.

    PubMed

    Shilina, M I; Vasilevskii, G Yu; Rostovshchikova, T N; Murzin, V Yu

    2015-08-01

    Co- and Al-modified zeolites (Al-Co-ZSM-5) were prepared by solid-state ion exchange with cobalt acetate or chloride, followed by AlCl3 immobilization from anhydrous toluene solution. Based on data from XRD, X-ray absorption (XANES/EXAFS), X-ray photoelectron spectroscopy and DRIFT spectral studies of adsorbed probe molecules (carbon monoxide, ethane), a new cobalt electronic state, bonded with surface aluminum atoms through oxygen and chlorine atoms, arises on the surface of Al-Co-ZSM-5. A new band at 2192 cm(-1) appears in the DRIFT spectrum, shifted to lower frequencies compared to CO complexes with isolated Co(2+) cations (2205 cm(-1)). Spectral data of the ethane adsorption (new strong bands in the range of 2740-2770 cm(-1)) prove the existence of specific centers of alkane activation on coordinately unsaturated cobalt cations, resulting in the interaction with aluminum chloride.

  7. Solid propellant exhausted aluminum oxide and hydrogen chloride - Environmental considerations

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Winstead, E. L.; Purgold, G. C.; Edahl, R. A.

    1993-01-01

    Measurements of gaseous hydrogen chloride (HCl) and particulate aluminum oxide (Al2O3) were made during penetrations of five Space Shuttle exhaust clouds and one static ground test firing of a shuttle booster. Instrumented aircraft were used to penetrate exhaust clouds and to measure and/or collect samples of exhaust for subsequent analyses. The focus was on the primary solid rocket motor exhaust products, HCl and Al2O3, from the Space Shuttle's solid boosters. Time-dependent behavior of HCl was determined for the exhaust clouds. Composition, morphology, surface chemistry, and particle size distributions were determined for the exhausted Al2O3. Results determined for the exhaust cloud from the static test firing were complicated by having large amounts of entrained alkaline ground debris (soil) in the lofted cloud. The entrained debris may have contributed to neutralization of in-cloud HCl.

  8. Hydrolysis of diethyl aluminum chloride on an inorganic filler surface

    SciTech Connect

    Gorelik, V.M.; Shesternina, L.A.; Emel'yanova, A.D.; Borisova, L.F.; Fushman, E.A.; Berner, V.S.; Korneev, N.N.

    1986-04-20

    There has been increased interest recently in the use of natural aluminosilicates as carriers of organometallic catalysts for the polymerization of alkenes. Polymerization in catalyst systems fixed on kaolin, tufa, etc., is aimed at obtaining highly filled polymers. Since complex organometallic catalysts are highly sensitive to proton donors, water in particular, aluminosilicate carriers are usually heat-treated before they come into contact with the catalyst's components. This paper reports an investigation of the interaction of organoaluminum compounds with the functional groups on a kaolin surface. They determined some quantitative characteristics of the hydrolysis reaction of diethyl aluminum chloride and suggest that organoaluminum compounds are also consumed in reactions with siloxane groups on the surface.

  9. TRANSITIONS IN ELECTROCHEMICAL NOISE DURING PITTING CORROSION OF ALUMINUM IN CHLORIDE ENVIRONMENTS.

    SciTech Connect

    SASAKI,K.; ISAACS,H.S.; LEVY,P.W.

    2001-09-02

    Aluminum, in a chloride containing solutions close to its pitting potential, shows vigorous fluctuations in current and potential. Measurements have been made of the freely corroding potential, and the currents between interconnected electrodes. It is shown that there is a transition in the behavior of the transients. The transition occurs when multiple active pits are present and electrochemical communication occurs between them. The major source of current and potential transients is the growth process in the active pits rather than meta-stable pitting at the passive surface.

  10. Chloride removal from recycled cooling water using ultra-high lime with aluminum process.

    PubMed

    Abdel-Wahab, Ahmed; Batchelor, Bill

    2002-01-01

    Chloride is a deleterious ionic species in cooling water systems because it promotes corrosion, and most of the scale and corrosion inhibitors are sensitive to chloride concentration in the water. Chloride can be removed from cooling water by precipitation as calcium chloroaluminate [Ca4Al2Cl2(OH)12]. A set of equilibrium experiments and one kinetic experiment were conducted to evaluate chloride removal using the ultra-high lime with aluminum (UHLA) process and to characterize the equilibrium conditions of calcium chloroaluminate precipitation. A total of 48 batch-equilibrium experiments were conducted on a 30 mM NaCl solution over a range of values for lime dose (0 to 200 mM) and sodium aluminate dose (0 to 100 mM). Experimental results showed that the UHLA process can remove chloride and that the formation of a calcium chloroaluminate solid phase is a reasonable mechanism that is able to adequately describe experimental results. An average value of the ion activity product of 10(-94.75) was obtained and can be used as an estimate of the solubility product for Ca4Al2Cl2(OH)12.

  11. Hydrolysis of ferric chloride in solution

    SciTech Connect

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.

  12. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Hyman, M.L.; Savolainen, J.E.

    1960-01-01

    A method is given for dissolving reactor fuel elements in which the uranium is associated with a relatively inert chromium-containing alloy such as stainless steel. An aqueous mixture of acids comprising 2 to 2.5 molar hydrochloric acid and 4 to 8 molar nitric acid is employed in dissolving the fuel element. In order io reduce corrosion in subsequent processing of the resulting solution, chloride values are removed from the solution by contacting it with concentrated nitric acid at an elevated temperature.

  13. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    PubMed

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits.

  14. The electrodeposition of cobalt, iron, antimony and their aluminum alloys from acidic aluminum chloride 1-methyl-3-ethylimidazolium chloride room-temperature molten salt

    NASA Astrophysics Data System (ADS)

    Mitchell, John Anthony

    The electrodeposition of cobalt, iron, antimony, and their aluminum alloys was investigated in the room-temperature molten salt, aluminum chloride-1-methyl-3-ethylimidazolium chloride (AlClsb3-MeEtimCl). Solutions of Co(II), Fe(II), and Sb(III) were prepared by controlled-potential coulometric anodization of the respective metal in Lewis acidic melt. The plating and stripping of these metals was investigated using cyclic voltammetry, rotating disk and rotating ring-disk electrode voltammetry, controlled potential coulometry, and potential step chronoamperometry. Bulk deposits of the pure and aluminum-alloyed metals were analyzed using scanning electron microscopy, energy dispersive x-ray spectroscopy, atomic absorption spectroscopy, and x-ray diffraction methods. The underpotential co-deposition of aluminum was observed during the electrodeposition of cobalt and iron; however, this phenomenon did not occur during the electrodeposition of antimony. The results of this investigation suggest that both a positive work function difference between the transition metal and aluminum and the mutual solubility of these components determine whether or not the co-deposition of aluminum takes place. Two electroanalytical techniques were developed for the analysis of co-deposited aluminum alloys: the first was based on anodic linear sweep voltammetry at a rotating-ring-disk electrode. The second was derived from the transition metal ion concentration changes observed during bulk deposition experiments. In the first technique, an alloy deposit was stripped from the disk electrode while the ring potential was held at a value where only one of the ions oxidized from the alloy could be reduced. In the second technique, the concentration of transition metal ions was monitored in an undivided cell with an anode made from the depositing metal. The co-deposition of aluminum was signalled by an increase in the transition metal ion concentration. The alloy composition data resulting from

  15. Effect of chlorides on solution corrosivity of methyldiethanolamine (MDEA) solutions

    SciTech Connect

    Rooney, P.C.; Bacon, T.R.; DuPart, M.S.; Willbanks, K.D.

    1997-08-01

    Solution corrosivity of MDEA/water solutions containing added HCl or NaCl have been measured by weight loss coupons at 250 F and by linear polarization resistance (LPR) at 208 F using carbon steel, 304SS, 316SS and 410SS. General corrosion as well as pitting or crevice corrosion tendencies were recorded for each species. Based on these results, recommendations are made for chlorides in MDEA that minimizes corrosion in gas treating operations.

  16. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride solution... solution must be lined with rubber, corrosion resistant plastic, or a material approved by the...

  17. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride solution... solution must be lined with rubber, corrosion resistant plastic, or a material approved by the...

  18. The electrowinning of copper from a cupric chloride solution

    NASA Astrophysics Data System (ADS)

    Lin, H. K.; Wu, X. J.; Rao, P. D.

    1991-08-01

    In this work, the Eh pCl diagram of the CuCl-H2O system was established, and the kinetics of copper dissolution in cupric chloride solution were studied with an emphasis on possible difficulties that may occur during copper electrowinning. The results were used to guide an investigation of copper electrowinning from cupric chloride solution.

  19. Special topical approach to the treatment of acne. Suppression of sweating with aluminum chloride in an anhydrous formulation.

    PubMed

    Hurley, H J; Shelley, W B

    1978-12-01

    A new topical approach to acne treatment--the use of aluminum chloride hexahydrate in anhydrous ethanol (ACAE)--was studied in 141 patients. Using sequential treatment schedules, paired comparison techniques, and various concentrations of ACAE, we established maximal efficacy with minimal local irritation for the 6.25% strength solution. Clinical efficacy and lack of toxicity of this formulation were confirmed by the additional clinical study of 65 patients. The antiperspirant and antibacterial actions of 6.25% ACAE solution were then verified on acne skin areas. It is postulated that the clinical improvement in acne that follows the topical use of ACAE results from one or both of these actions.

  20. Recovery of aluminum alum from waste anode-oxidizing solution

    SciTech Connect

    Lin, S.H.; Lo, M.C.

    1998-12-31

    Recovery of aluminum alum (aluminum ammonium sulfate) by crystallization from waste anode-oxidizing solution in the aluminum surface finishing industry was investigated in this study. Effects of various operating conditions including the mole ratio of ammonium hydroxide and aluminum ion, temperature and seed alum dosage on the aluminum alum formation, acid recovery and aluminum ion removal were examined. Both one- and two-step processes of crystallization were employed in synthesizing the aluminum alum and in the meantime in reducing the aluminum ion concentration in the waste anode-oxidizing solution. Based on the test results, optimum operating conditions were recommended for efficient operation of the crystallization process. The residual acid solution after crystallization was found suitable for reuse in the anode-oxidizing process.

  1. Interactions between chloride and sulfate or silica removals using an advanced lime-aluminum softening process.

    PubMed

    Abdel-Wahab, Ahmed; Batchelor, Bill

    2006-12-01

    An advanced softening process called the ultra-high lime with aluminum process (UHLA) was initiated in this research. The UHLA process has the ability to remove sulfate, silica, and chloride from waters such as recycled cooling water and desalination brines. Furthermore, it can remove other scale-forming materials, such as calcium, magnesium, carbonate, and phosphate. The purpose of this paper is to study the interactions among chloride, sulfate, and silica in the UHLA process. Results of equilibrium experiments indicated that sulfate is preferentially removed over chloride. Final chloride concentration increased with increasing initial sulfate concentration. However, initial chloride concentration was found to have negligible effect on final sulfate concentration. Silica was found to have only a small effect on chloride removal.

  2. Antimicrobial effects of an antiperspirant formulation containing aqueous aluminum chloride hexahydrate.

    PubMed

    Hölzle, E; Neubert, U

    1982-01-01

    To document deodorant efficacy the antimicrobial activity of a gelatinous antiperspirant formulation of aqueous aluminum chloride hexahydrate was investigated. In vitro assays demonstrated highly bactericidal activity on microorganisms comprising the resident axillary skin flora, including micrococcaceae and aerobic diphtheroid bacteria. Gram-negative bacteria and yeast were partially inhibited. In vivo experiments utilizing occlusive patches on forearm skin and bacterial sampling of the axilla showed pronounced bacteriostasis and persistence of aluminum chloride on the skin. Inhibition of microbial growth lasted more than 3 days after a single treatment of the axilla. Following repeated open applications to the volar aspect of the forearm, the skin remained virtually sterile for 3 days. PMID:7165341

  3. Spectrofluorimetric determination of thallium in silicate rocks with rhodamine b in the presence of aluminum chloride

    USGS Publications Warehouse

    Shnepfe, M.M.

    1975-01-01

    A sensitive spectrofluorimetric procedure with rhodamine B in the presence of aluminum chloride is given for determining submicrogram and microgram quantities of thallium in silicate rocks. Samples are decomposed with a mixture of hydrofluoric and nitric acids and then treated with hydrochloric acid. Thallium is extracted as its dithizonate with chloroform from an alkaline medium containing ascorbate, citrate, and cyanide and then back-extracted with dilute nitric acid. After destruction of the organic matter and treatment with bromine, hydrochloric acid, aluminum chloride, and rhodamine B, the {A table is presented}. ?? 1975.

  4. Interfacial tension between aluminum and chloride-fluoride melts

    SciTech Connect

    Silny, A.; Utigard, T.A.

    1996-11-01

    Scrap and recycled aluminum have to be remelted and refined before being made into useful new products. This often involves melting the aluminum under a molten salt cover in order to prevent oxidation and to enhance the coalescence and recovery of the molten metal. A technique was developed for the measurement of the interfacial tension between liquid metals and molten salts at elevated temperatures. The technique is based on the measurement of the capillary depression occurring when a capillary, which is moved vertically down through the molten salt layer, passes through the salt/metal interface. The depression is measured by simultaneous video recording of the immersion height of the alumina capillary and the position of a liquid meniscus in a horizontal tube connected to the alumina capillary. The interfacial tension was measured for (a) aluminum and an equimolar melt of NaCl + KCl with several salt additions at 1,000 K, (b) aluminum and NaCl + NaF at 1,123 K, and (c) aluminum and NaCl + KF at 1,123 K. It was found that the interfacial tension decreases with increasing amount of NaF, increases with the increasing amount of MgCl{sub 2} additions, remains unchanged with AlF{sub 3} additions, and slightly decreases with the addition of MgF{sub 2} and Na{sub 3}AlF{sub 6}.

  5. Electrolysis of dilute sodium chloride solution in a diaphragm cell

    SciTech Connect

    Kubasov, V.L.; Ivanter, I.A.; Druzhinin, E.A.; Vorob'eva, V.B.

    1986-02-10

    In some cases, as in the production of iodine and bromine, dilute solutions of sodium chloride remain unutilized. In view of the existence of large amounts of unutilized spent sodium chloride solutions and their harmful effect when discharged into the environment, it is desirable to develop a process for production of chlorine and alkali with high current efficiencies, satisfying industrial requirements, from dilute sodium chloride solutions. The authors have therefore studied electrolysis of solutions containing 160 and 180 kg/m/sup 3/ of sodium chloride, having pH of 11.0-11.5, close in composition to solutions from the Cheleken chemical factory. The chlorine and alkali current efficiencies and the compositions of the anolyte, catholyte, and anode gas were determined.

  6. Calcium chloride: a new solution for frozen coal

    SciTech Connect

    Boley, D.G.

    1984-01-01

    Proved in emergency situations as fast and economical, calcium chloride can be used in conjunction with other techniques for effective prevention of coal freezing. Calcium chloride solution depresses the freezing point, and should the temperature drop below this point, the ice that does form has a far lower compressive strength than ice normally exhibits.

  7. Iron, copper, and nickel behavior in buffered, neutral aluminum chloride:1-methyl-3-ethylimidazolium chloride molten salt

    SciTech Connect

    Pye, S.; Winnick, J.; Kohl, P.A.

    1997-06-01

    Iron, copper, and nickel electrodes were examined as possible metal/metal(II) chloride cathodes for the room temperature sodium/metal chloride battery in a molten salt composed of sodium chloride (NaCl), aluminum chloride (AlCl{sub 3}), and 1-methyl-3-ethylimidazolium chloride (MEIC). The iron electrode was investigated in basic, neutral-like, and acidic MEIC:AlCl{sub 3} melts. The solubility and the kinetics of the reduction of Fe(II) was a function of acidity. In the basic melt, the FeCl{sub 2} was soluble; however, its reduction was not observed due to slow kinetics. In the neutral-like and acidic melts, the quasi-reversible reduction of Fe(II) to Fe(0) was observed. The redox potential of copper was approximately 1 V more positive of iron; however, the oxidized copper was soluble in the neutral-like melt, making it unacceptable without a separator. The oxidized and reduced forms of nickel were insoluble and the redox potential was 2.5 V positive of Na/Na{sup +}. The nickel electrode supported a charge density of 3.5 mC/cm{sup 2} at room temperature, suggesting that a high-surface-area electrode would be needed in a practical device.

  8. Solution processed aluminum paper for flexible electronics.

    PubMed

    Lee, Hye Moon; Lee, Ha Beom; Jung, Dae Soo; Yun, Jung-Yeul; Ko, Seung Hwan; Park, Seung Bin

    2012-09-11

    As an alternative to vacuum deposition, preparation of highly conductive papers with aluminum (Al) features is successfully achieved by the solution process consisting of Al precursor ink (AlH(3){O(C(4)H(9))(2)}) and low temperature stamping process performed at 110 °C without any serious hydroxylation and oxidation problems. Al features formed on several kinds of paper substrates (calendar, magazine, and inkjet printing paper substrates) are less than ~60 nm thick, and their electrical conductivities were found to be as good as thermally evaporated Al film or even better (≤2 Ω/□). Strong adhesion of Al features to paper substrates and their excellent flexibility are also experimentally confirmed by TEM observation and mechanical tests, such as tape and bending tests. The solution processed Al features on paper substrates show different electrical and mechanical performance depending on the paper type, and inkjet printing paper is found to be the best substrate with high and stable electrical and mechanical properties. The Al conductive papers produced by the solution process may be applicable in disposal paper electronics.

  9. Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition

    DOE PAGES

    Barile, Christopher J.; Barile, Elizabeth C.; Zavadil, Kevin R.; Nuzzo, Ralph G.; Gewirth, Andrew A.

    2014-12-04

    We describe in this report the electrochemistry of Mg deposition and dissolution from the magnesium aluminum chloride complex (MACC). The results define the requirements for reversible Mg deposition and definitively establish that voltammetric cycling of the electrolyte significantly alters its composition and performance. Elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDS) results demonstrate that irreversible Mg and Al deposits form during early cycles. Electrospray ionization-mass spectrometry (ESI-MS) data show that inhibitory oligomers develop in THF-based solutions. These oligomers form via the well-established mechanism of a cationic ring-opening polymerization of THF during the initial synthesis of the MACC andmore » under resting conditions. In contrast, MACC solutions in 1,2-dimethoxyethane (DME), an acyclic solvent, do not evolve as dramatically at open circuit potential. Furthermore, we propose a mechanism describing how the conditioning process of the MACC in THF improves its performance by both tuning the Mg:Al stoichiometry and eliminating oligomers.« less

  10. Electrolytic conditioning of a magnesium aluminum chloride complex for reversible magnesium deposition

    SciTech Connect

    Barile, Christopher J.; Barile, Elizabeth C.; Zavadil, Kevin R.; Nuzzo, Ralph G.; Gewirth, Andrew A.

    2014-12-04

    We describe in this report the electrochemistry of Mg deposition and dissolution from the magnesium aluminum chloride complex (MACC). The results define the requirements for reversible Mg deposition and definitively establish that voltammetric cycling of the electrolyte significantly alters its composition and performance. Elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDS) results demonstrate that irreversible Mg and Al deposits form during early cycles. Electrospray ionization-mass spectrometry (ESI-MS) data show that inhibitory oligomers develop in THF-based solutions. These oligomers form via the well-established mechanism of a cationic ring-opening polymerization of THF during the initial synthesis of the MACC and under resting conditions. In contrast, MACC solutions in 1,2-dimethoxyethane (DME), an acyclic solvent, do not evolve as dramatically at open circuit potential. Furthermore, we propose a mechanism describing how the conditioning process of the MACC in THF improves its performance by both tuning the Mg:Al stoichiometry and eliminating oligomers.

  11. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    PubMed

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  12. Al(22)Cl(20).12L (L = THF, THP): the first polyhedral aluminum chlorides.

    PubMed

    Klemp, C; Bruns, M; Gauss, J; Häussermann, U; Stösser, G; van Wüllen, L; Jansen, M; Schnöckel, H

    2001-09-19

    Aluminum subhalides of the type Al(22)X(20).12L (X = Cl, Br; L = THF, THP) are the only known representatives of polyhedral aluminum subhalides and exhibit interesting multicenter bonding properties. Herein, we report on the synthesis and structural investigation of the first chlorides of this type. Additional investigations applying solid-state (27)Al NMR (MAS), XPS (of Al(4)Cp(4) and Al(22)X(20).12L), and quantum chemical calculations shed more light upon the structure of the molecules and possible Al modifications. PMID:11552817

  13. The ionic product of water in concentrated tetramethylammonium chloride solutions.

    PubMed

    Sipos, P; Bódi, I; May, P M; Hefter, G T

    1997-04-01

    The ionic product of water, pK(w) = - log[H(+)][OH(-)] has been determined in aqueous solutions of tetramethylammonium chloride over the concentration range of 0.1-5.5 M at 25 degrees C using high-precision glass electrode potentiometric titrations. pK(w) data relating to aqueous potassium and sodium chlorides at ionic strengths up to 5 M are markedly lower than the tetramethylammonium chloride results. These differences are almost certainly due to weak associations between potassium and (especially) sodium and hydroxide ions.

  14. SOLVENT EXTRACTION PROCESS FOR URANIUM FROM CHLORIDE SOLUTIONS

    DOEpatents

    Blake, C.A. Jr.; Brown, K.B.; Horner, D.E.

    1960-05-24

    An improvement was made in a uranium extraction process wherein the organic extractant is a phosphine oxide. An aqueous solution containing phosphate ions or sulfate ions together with uranium is provided with a source of chloride ions during the extraction step. The presence of the chloride ions enables a phosphine oxide to extract uranium in the presence of strong uranium- complexing ions such as phosphate or sulfate ions.

  15. Treatment of automotive wastewater by coagulation-flocculation using poly-aluminum chloride (PAC), ferric chloride (FeCl3) and aluminum sulfate (alum)

    NASA Astrophysics Data System (ADS)

    Bakar, Abdul Fattah Abu; Halim, Azhar Abdul

    2013-11-01

    A physicochemical treatment (coagulation-flocculation) was applied for automotive wastewater using poly-aluminum chloride (PAC), ferric chloride (FeCl3) and aluminum sulfate (alum) aided by anionic polyacrylamide as flocculant to determine the effectiveness of coagulation method for removal of COD, TSS and heavy metals (Fe, Ni and Zn). The results obtained proved that PAC was comparatively more efficient to FeCl3 and alum. At defined optimum experiment condition (coagulant dose: 70 mg/L, coagulant aid dose: 2 mg/L and pH 7), PAC showed 70% removal for (chemical oxygen demand) COD and 98% of (total suspended solid) TSS. For FeCl3 and alum, the maximum removal for COD were 64% and 54%, meanwhile TSS removal were 91% and 94%. Heavy metals removal using PAC also showed better results in which produced 98% of iron removal, 83% of zinc removal and 63% of nickel removal under optimum condition. The comparison revealed that the use of PAC aided by anionic polyacrylamide produced higher removal for COD, TSS and heavy metals compared to FeCl3 and alum for automotive wastewater treatment.

  16. Study of aluminum corrosion in aluminum solar heat collectors using aqueous glycol solution for heat transfer. Annual technical progress report, July 30, 1979-July 31, 1980

    SciTech Connect

    Wong, D.; Cocks, F.H.

    1980-08-01

    The effects of glycol aging at elevated temperatures over long periods of time were studied and the zinc powder protective technique was optimized. Glycols are known to gradually decompose into organic acids at high temperatures. These product species may be aggressive to aluminum in the long run. In addition, corrosion inhibitors may also breakdown due to continuous exposure to high temperatures. As for the zinc powder protective technique, efforts have been made to determine the optimal conditions under which aluminum solar collector panels can be protected most effectively and economically. Both uninhibited and inhibited ethylene as well as propyleneglycols have been aged at three different temperatures (100, 140, and 190/sup 0/C) for 6000 hours continuously. Aliquot samples were taken at 1000 hour intervals for pH measurement and chemical analysis. Results showed that in most cases solution pH dropped sharply during the first 1000 hours of exposure and gradually decreased at a slower pace as the aging process progressed. It was also noted that higher temperatures appeared to hasten this pH shift. The corrosiveness of these aged glycol solutions towards aluminum was determined based on laboratory corrosion tests. The critical pitting potential (E/sub p/) of aluminum in chloride-ion containing aqueous glycol solutions was determined. Its dependence on temperature, chloride-ion concentration, and glycol content was investigated in detail. E/sub p/ was found to become more negative with higher chloride-ion concentration, increasing temperature, and decreasing glycol content. (MHR)

  17. Effect of chloride incorporation on the crystallization of zirconium-barium-lanthanum-aluminum fluoride glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Smith, G. L.; Weinberg, M. C.

    1985-01-01

    One aspect of the influence of preparation procedure on the crystallization behavior of a zirconium-barium-lanthanum-aluminum fluoride glass was studied. The crystallization pattern of this glass may be affected by the chlorine concentration within it. In particular, when such glasses are heated at low temperatures, the alpha-Ba-Zr-F6 crystalline phase forms only in those glasses which contain chloride.

  18. SOLVENT-FREE TETRAHYDROPYRANYLATION (THP) OF ALCOHOLS AND PHENOLS AND THEIR REGENERATION BY CATALYTIC ALUMINUM CHLORIDE HEXAHYDRATE

    EPA Science Inventory

    Catalytic amount of aluminum chloride hexahydrate enables solvent-free tetrahydropyranylation (THP) of alcohols and phenols at moderate temperatures. A simple addition of methanol helps to regenerate the corresponding alcohols and phenols thus rendering these protection and depro...

  19. Molecular dynamics studies of lanthanum chloride solutions

    SciTech Connect

    Meier, W.; Bopp, Ph. ); Probst, M.M. ); Spohr, E. ); Lin, J.L. )

    1990-05-31

    Molecular dynamics studies are reported for LaCl{sub 3} solutions at two different concentrations and temperatures, and for isolated aqueous La{sup 3+} ions. Ion-water clusters La(H{sub 2}O){sub n}{sup 3+} with n = 61 and n = 100 and systems consisting of one ion and 100 or 200 water molecules in the usual periodic box, as well as solutions of 7 (4) cations and 21 (12) anions in 190 (200) water molecules, corresponding to 2 and 1.1 m solutions, respectively, were investigated. The 2 m solution was investigated at two different temperatures. The results for the static structure, with special emphasis on the hydration structure of the La{sup 3+} ion, are discussed in terms of radial distribution functions and resulting hydration numbers, and various other correlations. These results are compared with X-ray data and discussed in light of the hydration numbers observed for aqueous ions in general.

  20. REMOVAL OF CHLORIDE FROM ACIDIC SOLUTIONS USING NO2

    SciTech Connect

    Visser, A; Robert Pierce, R; James Laurinat, J

    2006-08-22

    Chloride (Cl{sup -}) salt processing in strong acids is used to recycle plutonium (Pu) from pyrochemical residues. The Savannah River National Laboratory (SRNL) is studying the potential application of nitrogen dioxide (NO{sub 2}) gas to effectively convert dissolved pyrochemical salt solutions to chloride-free solutions and improve recovery operations. An NO{sub 2} sparge has been shown to effectively remove Cl{sup -} from solutions containing 6-8 M acid (H{sup +}) and up to 5 M Cl{sup -}. Chloride removal occurs as a result of the competition of at least two reactions, one which is acid-dependent. Below 4 M H+, NO2 reacts with Cl- to produce nitrosyl chloride (ClNO). Between 6 M and 8 M H{sup +}, the reaction of hydrochloric acid (HCl) with nitric acid (HNO{sub 3}), facilitated by the presence of NO{sub 2}, strongly affects the rate of Cl{sup -} removal. The effect of heating the acidic Cl{sup -} salt solution without pre-heating the NO{sub 2} gas has minimal effect on Cl{sup -} removal rates when the contact times between NO{sub 2} and the salt solution are on the order of seconds.

  1. Aluminum compounds in calcium chloride extracts from podzolic soil and their possible sources

    NASA Astrophysics Data System (ADS)

    Tolpeshta, I. I.; Sokolova, T. A.

    2008-06-01

    Aluminum concentrations in organoaluminum complexes, mineral polymers, Al(H2O){6/3+}, Al(OH)(H2O){5/2+}, Al(OH)2(H2O){4/+}, AlH3SiO{4/2+}, and Al(OH)3(H2O){3/0} extracted with 0.001 M CaCl2 from the main genetic horizons of a podzolic soil on two-layered deposits were determined experimentally and calculated from thermodynamic equations. It was found that aluminum bound in organic complexes was predominant in extracts from the AE horizon, and mineral polymer aluminum compounds prevailed in extracts from the E and IIBD horizons. In the AE horizon, organoaluminum compounds were a major source of aluminum, which passed into solution predominantly by exchange reactions. In the E horizon, aluminum hydroxide interlayers in soil chlorites were the main source of aluminum, which passed into solution by dissolution reactions. In extracts from the IIBD horizon, aluminum was solubilized by the dissolution of aluminosilicates inherited from the parent rock.

  2. [Properties of benzethonium chloride in micellar solutions and the effect of added sodium chloride].

    PubMed

    Kopecký, F; Kopecká, B; Kaclík, P

    2006-07-01

    Aqueous solutions of the antimicrobially effective quaternary ammonium salt benzethonium chloride (hyamine 1622) were studied using UV spectrophotometry and partially conductometry. The spectra of micellar solutions of benzethonium chloride revealed a concentration-dependent bathochromic and hyperchromic shift of a weak UV absorption band in the region 250-300 nm. This served to elaborate the spectrophotometric determination of the critical micellar concentration (CMC) of benzethonium chloride and the concentration of free benzethonium cations in micellar solutions without an addition of NaCl and with a constant addition of NaCl 0.003, 0.1 and 0.15 mol/l. Premicellar associations were not observed and in NaCl-free solutions CMC 0.0028 mol/l was spectrophotometrically determined. An addition of NaCl resulted in an increased hyperchromic effect and strengthening of micellization, manifested by a more than ten-times decrease in the CMC as well as the concentration of free benzethonium cations in micellar solutions. The courses of the determined concentrations of free benzethonium cations in the solutions both without and with the presence of NaCl were quite similar; their maximal values were always just a little higher than the corresponding CMC and with a further growth of the total concentration of benzethonium chloride there was, on the other hand, a marked decrease in the concentration of its free cations in micellar solution. Possible effects of a decreased concentration of free benzethonium cations due to an added electrolyte on antimicrobial activity and formation of ionic pairs are discussed.

  3. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  4. Properties of a new liquid desiccant solution - Lithium chloride and calcium chloride mixture

    SciTech Connect

    Ertas, A.; Anderson, E.E.; Kiris, I. )

    1992-09-01

    Desiccants, broadly classified as solid and liquid desiccants, have the property of extracting and retaining moisture from air brought into contact with them. By using either type, moisture in the air is removed and the resulting dry air can be used for air-conditioning or drying purposes. Because of its properties, lithium chloride is the most stable liquid desiccant and has a large dehydration concentration (30% to 45%), but its cost is relatively high ($9.00-13.00 per kg). It is expected that lithium chloride will reduce the relative humidity to as low as 15%. Calcium chloride is the cheapest (45 cents per kg) and most readily available desiccant, but it has the disadvantage of being unstable depending on the air inlet conditions and the concentration of the desiccant in the solution. To stabilize calcium chloride and to decrease the high cost of lithium chloride, the two can be mixed in different weight combinations. The main objective of this research is to measure the physical properties of different combinations of this mixture such as density, viscosity, and vapor pressure which are necessary for analysis of heat and mass transfer in a packed tower desiccant-air contact system. The solubility of this new liquid desiccant under certain temperature-concentrations will also be studied.

  5. Hydration patterns and salting effects in sodium chloride solution.

    PubMed

    Li, Weifeng; Mu, Yuguang

    2011-10-01

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water.

  6. Inactivation of biological agents using neutral oxone-chloride solutions.

    PubMed

    Delcomyn, Carrie A; Bushway, Karen E; Henley, Michael V

    2006-04-15

    Bleach solutions containing the active ingredient hypochlorite (OCl-) serve as powerful biological disinfectants but are highly caustic and present a significant compatibility issue when applied to contaminated equipment or terrain. A neutral, bicarbonate-buffered aqueous solution of Oxone (2K2HSO5.KHSO4.K2SO4) and sodium chloride that rapidly generates hypochlorite and hypochlorous acid (HOCl) in situ was evaluated as a new alternative to bleach for the inactivation of biological agents. The solution produced a free chlorine (HOCl + OCl-) concentration of 3.3 g/L and achieved > or =5.8-log inactivation of spores of Bacillus atrophaeus, Bacillus thuringiensis, Aspergillus niger, and Escherichia coli vegetative cells in 1 min at 22 degrees C. Seawaterwas an effective substitute for solid sodium chloride and inactivated 5 to 8 logs of each organism in 10 min over temperatures ranging from -5 degrees C to 55 degrees C. Sporicidal effectiveness increased as free chlorine concentrations shifted from OCl- to HOCl. Neutrally buffered Oxone-chloride and Oxone-seawater solutions are mitigation alternatives for biologically contaminated equipment and environments that would otherwise be decontaminated using caustic bleach solutions.

  7. Inactivation of biological agents using neutral oxone-chloride solutions.

    PubMed

    Delcomyn, Carrie A; Bushway, Karen E; Henley, Michael V

    2006-04-15

    Bleach solutions containing the active ingredient hypochlorite (OCl-) serve as powerful biological disinfectants but are highly caustic and present a significant compatibility issue when applied to contaminated equipment or terrain. A neutral, bicarbonate-buffered aqueous solution of Oxone (2K2HSO5.KHSO4.K2SO4) and sodium chloride that rapidly generates hypochlorite and hypochlorous acid (HOCl) in situ was evaluated as a new alternative to bleach for the inactivation of biological agents. The solution produced a free chlorine (HOCl + OCl-) concentration of 3.3 g/L and achieved > or =5.8-log inactivation of spores of Bacillus atrophaeus, Bacillus thuringiensis, Aspergillus niger, and Escherichia coli vegetative cells in 1 min at 22 degrees C. Seawaterwas an effective substitute for solid sodium chloride and inactivated 5 to 8 logs of each organism in 10 min over temperatures ranging from -5 degrees C to 55 degrees C. Sporicidal effectiveness increased as free chlorine concentrations shifted from OCl- to HOCl. Neutrally buffered Oxone-chloride and Oxone-seawater solutions are mitigation alternatives for biologically contaminated equipment and environments that would otherwise be decontaminated using caustic bleach solutions. PMID:16683620

  8. Corrosion of commercially pure Al 99.5 in chloride solutions containing carbon dioxide, bicarbonate, and copper ions

    SciTech Connect

    Bjoergum, A.; Sigurdsson, H.; Nisancioglu, K.

    1995-07-01

    There has been a certain amount of interest recently in the use of aluminum alloys as an alternative material to steel for the processing and transmission of produced crude oil in the offshore oil industry. The corrosion behavior of aluminum in solutions containing chloride, carbon dioxide, bicarbonate, and copper ions at various concentrations and temperatures has been of frequent interest in connection with applications in direct contact with a corrosive aqueous phase, such as in natural waters and produced brines. Available information about the combined effects of these species on aluminum is conflicting. A more systematic study was undertaken using commercially pure aluminum (DIN Al 99.5 [AA 1050A]) as the test material. Corrosion tests performed in Cl{sup {minus}} solutions containing these species indicated that dissolved CO{sub 2}-HCO{sub 3}{sup {minus}} combinations giving a neutral solution pH resulted in low corrosion rates for aluminum. The added presence of small Cu{sup 2+} concentrations could have been detrimental but did not produce a synergistic effect. High temperatures in general caused increased corrosion rates, except near pH 9, where the cathodic intermetallic phases passivated. The observed corrosion behavior was explained in terms of cathodic polarization data for the aluminum matrix and the Al{sub 3}Fe intermetallic particles.

  9. Effects of organic solutes on chemical reactions of aluminum

    USGS Publications Warehouse

    Lind, Carol J.; Hem, John David

    1975-01-01

    Concentrations of organic matter in the general range of 1-10 milligrams per litre organic carbon are common in natural water, and many naturally occurrin7 organic compounds form aluminum complexes. The aluminum concentrations in near-neutral pH solutions may be 10-100 times higher than the values predicted from solubility data if formation of such organic complexes is ignored. The processes of polymerization of aluminum hydroxide and precipitation of gibbsite are inhibited by the presence of the organic flavone compound quercetin in concentrations as low as 10 x -5.3 mole per litre. Quercetin forms a complex, with a probable molar ratio of 1:2 aluminum to quercetin, that has a formation constant (f12) of about 10 12. A complex with a higher aluminum-quercetin ratio also was observed, but this material tends to evolve into a compound of low solubility that removes aluminum from solution. In the presence of both dissolved aluminum and aqueous silica, low concentrations of quercetin improved the yield of crystallized kaolinite and halloysite. Small amounts of well-shaped kaolinite and halloysite crystals were identified by electron microscopy in solutions with pH's in the range 6.5-8.5 after 155 days aging in one experimer t and 481 days aging in a repeated experiment. The bulk of the precipitated material was amorphous to X-rays, and crystalline material was too small a proportion of the total to give identifiable X-ray diffraction peaks. The precipitates had aluminum-silicon ratios near 1, and their solubility corresponded to that found by Hem, Roberson, Lind, and Polzer (1973) for similar aluminosilicate precipitated in the absence of organic solutes. The improved yield of crystalline material obtained in the presence of quercetin probably is the result of the influence of the organic compound on the aluminum hydroxide polymerization process. Natural water containing color imparted by organic material tends to be higher in aluminum than would be predicted by p

  10. Calcinosis cutis following contact with calcium chloride solution.

    PubMed

    Lim, Penny P L; Kossard, Steven; Stapleton, Karen

    2012-11-01

    Calcinosis cutis is the deposition of insoluble calcium in the cutaneous tissue. Calcinosis cutis can be classified as metastatic, dystrophic, idiopathic or exogenous. We report a 48-year-old white man who was dismantling a portable ice skating rink when calcium chloride solution from the pipes spilt onto his clothing. Several days later, he started to develop mildly pruritic erythematous papules, some studded with white deposits and some with umbilication over the exposed areas corresponding to the spillage of the calcium chloride solution. Histological features revealed interstitial fibrohistiocytic reaction with calcium-encrusted degenerated collagen bundles in the dermis which was further confirmed by von Kossa stain. He was commenced on topical corticosteroid cream twice daily and the lesions cleared completely between 6 to 10 weeks.

  11. Calcinosis cutis following contact with calcium chloride solution.

    PubMed

    Lim, Penny P L; Kossard, Steven; Stapleton, Karen

    2012-11-01

    Calcinosis cutis is the deposition of insoluble calcium in the cutaneous tissue. Calcinosis cutis can be classified as metastatic, dystrophic, idiopathic or exogenous. We report a 48-year-old white man who was dismantling a portable ice skating rink when calcium chloride solution from the pipes spilt onto his clothing. Several days later, he started to develop mildly pruritic erythematous papules, some studded with white deposits and some with umbilication over the exposed areas corresponding to the spillage of the calcium chloride solution. Histological features revealed interstitial fibrohistiocytic reaction with calcium-encrusted degenerated collagen bundles in the dermis which was further confirmed by von Kossa stain. He was commenced on topical corticosteroid cream twice daily and the lesions cleared completely between 6 to 10 weeks. PMID:23157788

  12. Multi-scale modelling of uranyl chloride solutions

    SciTech Connect

    Nguyen, Thanh-Nghi; Duvail, Magali Villard, Arnaud; Dufrêche, Jean-François; Molina, John Jairo; Guilbaud, Philippe

    2015-01-14

    Classical molecular dynamics simulations with explicit polarization have been successfully used to determine the structural and thermodynamic properties of binary aqueous solutions of uranyl chloride (UO{sub 2}Cl{sub 2}). Concentrated aqueous solutions of uranyl chloride have been studied to determine the hydration properties and the ion-ion interactions. The bond distances and the coordination number of the hydrated uranyl are in good agreement with available experimental data. Two stable positions of chloride in the second hydration shell of uranyl have been identified. The UO{sub 2}{sup 2+}-Cl{sup −} association constants have also been calculated using a multi-scale approach. First, the ion-ion potential averaged over the solvent configurations at infinite dilution (McMillan-Mayer potential) was calculated to establish the dissociation/association processes of UO{sub 2}{sup 2+}-Cl{sup −} ion pairs in aqueous solution. Then, the association constant was calculated from this potential. The value we obtained for the association constant is in good agreement with the experimental result (K{sub UO{sub 2Cl{sup +}}} = 1.48 l mol{sup −1}), but the resulting activity coefficient appears to be too low at molar concentration.

  13. Morphological analysis of pits formed on Al 2024-T3 in chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Silva, J. W. J.; Bustamante, A. G.; Codaro, E. N.; Nakazato, R. Z.; Hein, L. R. O.

    2004-09-01

    It has been used a new image analysis method, based on segmentation by shape parameters, for pits morphology examination from Al 2024 aluminum-copper alloy in chloride aqueous solution. Corrosion behavior of this alloys in naturally aerated 3.5% NaCl solution has been investigated through open circuit potential measurements. Afterwards, pits have been characterized by image analysis taking density and size measurements right from corroded surfaces. Morphological investigation has been conducted for profiles, cut orthogonally from mean surface planes, and observed through light microscopy. Image analysis data could demonstrate that pits are wider than deep, evoluting for conical, quasi-conical or irregular shapes. Most pits have presented a quasi-conical morphology, but the wider ones have evoluted to an irregular shape influenced by sub-surface microstructure. Image analysis based on shape segmentation could enhance the differences on morphological behavior.

  14. Protective effect of a calcium channel blocker "diltiazem" on aluminum chloride-induced dementia in mice.

    PubMed

    Rani, Anu; Neha; Sodhi, Rupinder K; Kaur, Amanpreet

    2015-11-01

    Many studies report that heavy metals such as aluminum are involved in amyloid beta aggregation and neurotoxicity. Further, high concentration of aluminum in the brain deregulates calcium signaling which contributes to synaptic dysfunction and halts neuronal communication which ultimately leads to the development of Alzheimer's disease. Recently, diltiazem, a calcium channel blocker clinically used in angina, is reported to decrease amyloid beta production by inhibiting calcium influx, decreasing inflammation and oxidative stress. However, the probable role of this drug in aluminum chloride (AlCl3)-induced experimental dementia is yet to be explored. Therefore, the present study is designed to investigate the effect of AlCl3-induced dementia in mice. Morris water maze test and elevated plus maze were utilized to evaluate learning and memory. Various biochemical estimations including brain acetylcholinesterase activity (AChE), brain total protein, thiobarbituric acid-reactive species (TBARS) level, reduced glutathione (GSH) level, nitrate/nitrite, and superoxide dismutase (SOD) were measured. AlCl3 significantly impaired learning and memory and increased brain AChE, brain total protein, TBARS, and nitrate/nitrite and decreased brain GSH or SOD. On the other hand, treatment with diltiazem significantly reversed AlCl3-induced behavioral and biochemical deficits. The present study indicates the beneficial role of diltiazem in AlCl3-induced dementia.

  15. Spectrofluorimetric determination of trace aluminum in diluted hemodialysis solutions

    NASA Astrophysics Data System (ADS)

    Gündüz, S. Beniz; Küçükkolbaşý, Semahat; Atakol, Orhan; Kýlýç, Esma

    2005-03-01

    In this study, a spectrofluorimetric method has been developed for the determination of aluminum based on the formation of an aluminum complex with N, N'-disalicylidene-1,3-diamino-2-hydroxypropane (DSAHP). The most suitable pH, solvent medium, complex formation time, Schiff base concentration and temperature were determined. The excitation and emission wavelengths were 270 and 437 nm, respectively, in which the DSAHP-Al complex gave the maximum flurescence intensity at pH 3.0 and 6.0 in 50% dioxan-50% water medium. Under these conditions, calibration curves were obtained in three different linear limits, and was found that aluminum could be detected within the concentration limit of 0-10.0 μM and the lowest detection limit being 0.27 ng ml -1. The stochiometry of the DSAHP-Al complex was also determined spectrofluorimetrically under optimal conditions and the molar ratio of DSAHP-Al was calculated as 2:1. Using the developed method, aluminum was detected in hemodialysis solutions, and the results obtained were similar and comparable with those obtained using the method described in the British Pharmacopoeia within 95% confidence limits. This method can be used successfully for the routine determination of aluminum because it is quick, requires less amount of reactives, is sensitive, reliable and reproducible.

  16. The use of synthetic hydrocalcite as a chloride-ion getter for a barrier aluminum anodization process

    SciTech Connect

    Panitz, J.K.G.; Sharp, D.J.

    1995-11-01

    Chloride ion contamination at parts per billion concentrations plaques electrochemists studying barrier anodic aluminum oxide film growth and anodic aluminum oxide capacitor manufacturers. Chloride ion contamination slows film growth and reduces film quality. We have demonstrated that synthetic hydrocalcite substantially reduces the detrimental effects of chloride ion contamination in an aqueous electrolyte commonly used to grow barrier anodic aluminum oxide. We have determined that problems arise if precautions are not taken when using synthetic hydrocalcite as a chloride-ion getter in an aqueous electrolyte. Synthetic hydrocalcite is somewhat hydrophobic. If this powder is added directly to an aqueous electrolyte, some powder disperses; some floats to the top of the bath and forms scum that locally impedes anodic film formation. Commercially available powder contains a wide range of particle sizes including submicrometer-sized particles that can escape through filters into the electrolyte and cause processing problems. These problems can be over come if (1) the getter is placed in filter bags, (2) a piece of filter paper is used to skim trace amounts of getter floating on the top of the bath, (3) dummy runs are performed to scavenge chloride-ion loaded getter micelles dispersed in the bath, and (4) substrates are rinsed with a strong stream of deionized water to remove trace amounts of powder after anodization.

  17. Effects of aluminum chloride on serum proteins, bilirubin, and hepatic trace elements in chickens.

    PubMed

    Wang, Ben; Zhu, Yanzhu; Zhang, Hongling; Liu, Liming; Li, Guojiang; Song, Yongli; Li, Yanfei

    2016-09-01

    The aim of this study was to reveal the effects of aluminum chloride (AlCl3) on the hepatic metabolism function and trace elements' distribution. Two hundred healthy male chickens (1 day old) were intraperitoneally administered with AlCl3 (0, 18.31, 27.47, and 36.62 mg kg(-1) day(-1) of Al(3+)) consecutively for 3 days. Then the chickens were allowed to rest for 1 day. The cycle lasted four days. The cycle was repeated 15 times (60 days). The contents of serum total protein (TP), albumin (ALB), total bilirubin (TBI), direct bilirubin (DBI), hepatic aluminum (Al), copper (Cu), iron (Fe), and zinc (Zn) were examined. The results showed that the contents of serum TP and ALB and hepatic Fe and Zn decreased and the contents of serum TBI and DBI and hepatic Al and Cu increased in the chickens with AlCl3 This indicates that chronic administration of AlCl3 impairs the hepatic metabolism function and disorders the hepatic trace elements' distribution. PMID:25896954

  18. Modeling of solute sorption by polyvinyl chloride plastic infusion bags.

    PubMed

    Jenke, D R

    1993-11-01

    Methods for estimating the equilibrium and time-dependent sorption of solutes by polymeric containers have been developed. The methods are specifically applied to the sorption of solutes by polyvinyl chloride (PVC) infusion bags. The methods correlate the partition coefficients and dissociation constant (when appropriate) of the solute, the physical dimensions of the container, and solution pH with single parameters that dictate the shape of the sorption profile. To determine the equilibrium sorption level for PVC containers, the fractional binding of a solute is correlated with its hexane-water and octanol-water partition coefficients. Calculations based on single partition coefficients are less effective in terms of mimicking the behavior of the PVC. To determine the sorption profile (fractional binding versus time), the partition coefficients are related to the fraction binding at a particular time through a single parameter referred to as the sorption number. Equilibrium fractional binding and sorption profiles for various drugs stored in PVC containers are generated with the models and agree well with reported behavior. The effect of pH on the sorption process is also examined.

  19. Form and stability of aluminum hydroxide complexes in dilute solution

    USGS Publications Warehouse

    Hem, John David; Roberson, Charles Elmer

    1967-01-01

    Laboratory studies of solutions 4.53 x 10 -4 to 4.5 x 10 -5 molal (12.2-1.2 ppm) in aluminum, in 0.01 molal sodium perchlorate, were conducted to obtain information as to the probable behavior of aluminum in natural water. When the solutions were brought to pH 7.5-9.5 and allowed to stand for 24 hours, a precipitate was obtained which was virtually amorphous as shown by X-rays, and which had a solubility equivalent to that of boehmite. This precipitate had a hydrolysis constant (*Ks4) of 1.93 x 10 -13a. When solutions were allowed to stead at this pH range for 10 days, their precipitates gave the X-ray pattern of bayerite (*Ks4 = 1.11 > (10- 4). These hydrolysis constants were obtained at 25?C. and corrected to zero ionic strength and are in close agreement with other published values. The predominant dissolved form in this pH range is Al(OH) -4. Below neutral pH (7.0) the dissolved aluminum species consist of octahedral units in which each aluminum ion is surrounded by six water molecules or hydroxide ions. Single units such as Al(OH2)6 + 3 and AlOH(OH2)5+2 are most abundant below pH 5.0, and where the molar ratio (r) of combined hydroxide to total dissolved aluminum is low. When r is greater than 1.0, polymerization of the octahedral units occurs. When r is between 2.0 and 3.0, solutions aged for 10 days or more contained colloidal particles between 0.10 and 0.45 ? in diameter. Particles whose diameters were greater than 0.10 ? were identified by X-ray diffraction as gibbsite. Particles smaller than 0.10 ? were also present and were shown by means of the electron microscope to have a hexagonal crystal pattern. Structured material consisting of sheets of coalesced six-membered rings of aluminum ions held together by double OH bridges has a distinctive kinetic behavior. This property was used to determine amounts of polymerized material in solutions having r between 1.0 and 3.0 after aging times ranging from a few hours to more than 4 months. Aging increased the

  20. Method for recovering aluminum fluoride from fluorine-containing aqueous aluminum nitrate solutions

    SciTech Connect

    Ishimi, H.; Shimauchi, H.; Tanaka, C.

    1983-02-22

    In a process for converting UF/sub 6/ into UO/sub 2/, the UF/sub 6/ is brought into contact with an aqueous aluminum nitrate solution. The resultant product is solvent extracted with tributyl phosphate to remove uranyl nitrate. The raffinate has a fluorine/aluminum (F/Al) weight ratio within the range of from about 0.5 to about a sufficient quantity of hydrofluoric acid is added to T raffinate to minimize the solubility of aluminum fluoride (AlF/sub 3/) therein and thereby maximize the precipitation potential of AlF/sub 3/. Generally this occurs when sufficient hydrofluoric acid has been added to cause the F/Al weight ratio to be within the range of from about 1.8 to about 2.2. As a result of this treatment, the raffinate is divided into an uranium-containing aqueous solution and an AlF/sub 3/ precipitate which contains substantially no uranium.

  1. Investigation of aluminum gate CMP in a novel alkaline solution

    NASA Astrophysics Data System (ADS)

    Cuiyue, Feng; Yuling, Liu; Ming, Sun; Wenqian, Zhang; Jin, Zhang; Shuai, Wang

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO2 abrasive) contains 1 wt.% H2O2,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H2O2, 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution.

  2. Effect of aluminum chloride and dietary phytase on relative ammonia losses from swine manure.

    PubMed

    Smith, D R; Moore, P A; Haggard, B E; Maxwells, C V; Daniel, T C; VanDevander, K; Davis, M E

    2004-02-01

    Ammonia (NH3) losses from swine manure contribute to odor problems, decrease animal productivity, and increase the risk of acid rain deposition. This study was conducted to determine whether aluminum chloride (AlCl3) or dietary manipulation with phytase could decrease relative NH3 losses from swine manure. Twenty-four pens of nursery pigs were used in two trials, and the pigs were fed normal or phytase-supplemented (500 IU/kg) diets. Aluminum chloride was added to manure pits (1.9 x 1.2 x 0.5 m) under each pen at 0, 0.25, 0.50, or 0.75% (vol:vol) of final manure volume. Manure pH and NH3 losses (measured by relative NH3 flux) were determined twice weekly. The addition of AlCl3 at 0.75% decreased (P < 0.05) manure pH from 7.48 to 6.69. Phytase decreased (P < 0.05) manure pH to 7.07 compared with 7.12 in the normal diet manure. Aluminum chloride administered at 0.75% without phytase reduced (P < 0.05) relative NH3 losses 52% for the entire 6-wk period. Relative NH3 losses were decreased (P < 0.05) from 109 mg of NH3/(m2 x h) in pens containing pigs fed the normal diet without AlCl3 to 81 mg of NH3/(m2 x h) in pens housing pigs administered the phytase diet, a 26% reduction. When the phytase diet and 0.75% AlCl3 additions were used in combination, relative NH3 losses were reduced (P < 0.05) by 60% compared with pens of pigs fed the control diet without AlCl3. Decreases in manure pH were likely responsible for the observed reduction in NH3 losses. Multiple regression was performed with relative rates of NH3 losses as the dependent variable and rate of AlCl3 addition, diet, and manure pH as independent variables. The model was tested using a stepwise regression (P < 0.001), and results indicated that the most important factors determining NH3 losses were manure pH and diet. However, the contribution of AlCl3 cannot be discounted. When manure pH was regressed against AlCl3 and dietary phytase, AlCl3 levels accounted for 64% of the variation in manure pH (P < 0

  3. Localized corrosion of candidate container materials in ferric chloride solutions

    SciTech Connect

    Fleming, D L; Lum, B Y; Roy, A K

    1998-10-01

    Localized corrosion behavior of candidate inner and outer container materials of currently-designed nuclear waste package was evaluated in aqueous solutions of various concentrations of ferric chloride (FeCl{sub 3}) at 30 C, 60 C and 90 C using the electrochemical cyclic potentiodynamic polarization (CPP) technique. Materials tested include A 5 16 carbon steel and high-performance alloys 825, G-3, G-30, C-4, 625. C-22, and Ti Gr-12. A 516 steel suffered from severe general and localized attack including pitting and crevice corrosion. High-nickel alloys 825 and G-3 also became susceptible to severe pitting and crevice corrosion. The extent of localized attack was less pronounced in alloys G-30 and C-4. Alloy 625 experienced severe surface degradation including general corrosion, crevice corrosion and intergranular attack. In contrast, only a slight crevice corrosion tendency was observed with nickel-base alloy C-22 in solutions containing higher concentrations of FeCl{sub 3} at 60 C and 90 C. Ti Gr-12 was immune to localized attack in all tested environments. The test solutions showed significant amount of precipitated particles during and after testing especially at higher temperatures.

  4. Study of aluminum corrosion in aluminum solar heat collectors using aqueous glycol solution for heat transfer. Semiannual technical progress report, July 30, 1979-January 31, 1980

    SciTech Connect

    Wong, D.; Cocks, F.H.; Giner, J.

    1980-02-01

    The present work is addressed primarily to the study of the effects of glycol aging at elevated temperatures (above 100/sup 0/C). Glycols are known to be susceptible to thermal decomposition producing new product species which may be aggressive to aluminum. In addition, the possible breakdown of corrosion inhibitors due to long term exposure to high temperature are also investigated. Both uninhibited and inhibited ethylene (as well as propylene) glycols have been aged at temperatures up to 190/sup 0/C for over 2000 h continuously to date. Aliquot samples of each glycol solution tested in this program were taken at 1000 and 2000 h of exposure for chemical analysis and pH measurement. Based on the data obtained so far, solution pH was found to decrease steadily with exposure time. The critical pitting potential of 1100 series aluminum in a 50 vol % aqueous ethylene glycol solution is reported as functions of both temperature and chloride ion concentration. This information is essential in the cathodic protection of pitting corrosion of aluminum.

  5. Effects of aluminum chloride on some trace elements and erythrocyte osmotic fragility in rats.

    PubMed

    Oztürk, Bahar; Ozdemir, Semra

    2015-12-01

    Aluminum (Al) is a nonessential, toxic element to which humans are constantly exposed as a result of an increase in industrialization and improving technology practices. The aim of the study was to investigate the effects of different durations and doses of Al exposure on serum and tissue element levels and erythrocyte osmotic fragility in rats. A total of 40 male Wistar Albino rats were divided into five groups: control, group I (3 weeks, 8 mg/kg), group II (6 weeks, 8 mg/kg), group III (3 weeks, 16 mg/kg), and group IV (6 weeks, 16 mg/kg). Al chloride (AlCl3) was injected intraperitoneally (i.p.) five times a week. At the end of the experimental period, levels of Al, iron (Fe), copper (Cu), and zinc (Zn) in serum, liver, and kidney tissues were measured using inductively coupled plasma optical emission spectrometry. Osmotic fragility was determined using a spectrophotometer. The results of the experiment indicate that Al induced a statistically significant increase in Al and Fe concentrations in liver and serum as well as in Cu in the kidney. The Fe concentration in serum and kidney tissues was significantly lower in all the groups. As a result of our study, it may be concluded that tissue Al accumulation may lead to an increase in osmotic fragility of erythrocytes and abnormal trace element levels. PMID:23625912

  6. Vibrational spectroscopic analysis of aluminum phthalocyanine chloride. experimental and DFT study

    NASA Astrophysics Data System (ADS)

    Soliman, I. M.; El-Nahass, M. M.; Eid, Kh. M.; Ammar, H. Y.

    2016-06-01

    In this work, we report a combined experimental and theoretical study of aluminum phthalocyanine chloride (AlPcCl). The FT-IR and Raman spectra of AlPcCl were recorded and analyzed. The density functional theory (DFT) computations have been performed at B3LYP/6-31g and B3LYP/6-311g to derive equilibrium geometry, vibrational wavenumbers, intensity and NLO properties. All the observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. The natural bond orbital (NBO) calculations were performed to study the atomic charge distribution of the investigated compound. The calculated results showed that dipole moment of the investigated compound was 4.68 Debye and HOMO-LUMO energy gap was 2.14 eV. The lowering of frontier orbital gap appears to be the cause of its enhanced charge transfer interaction.

  7. Effects of aluminum chloride on some trace elements and erythrocyte osmotic fragility in rats.

    PubMed

    Oztürk, Bahar; Ozdemir, Semra

    2015-12-01

    Aluminum (Al) is a nonessential, toxic element to which humans are constantly exposed as a result of an increase in industrialization and improving technology practices. The aim of the study was to investigate the effects of different durations and doses of Al exposure on serum and tissue element levels and erythrocyte osmotic fragility in rats. A total of 40 male Wistar Albino rats were divided into five groups: control, group I (3 weeks, 8 mg/kg), group II (6 weeks, 8 mg/kg), group III (3 weeks, 16 mg/kg), and group IV (6 weeks, 16 mg/kg). Al chloride (AlCl3) was injected intraperitoneally (i.p.) five times a week. At the end of the experimental period, levels of Al, iron (Fe), copper (Cu), and zinc (Zn) in serum, liver, and kidney tissues were measured using inductively coupled plasma optical emission spectrometry. Osmotic fragility was determined using a spectrophotometer. The results of the experiment indicate that Al induced a statistically significant increase in Al and Fe concentrations in liver and serum as well as in Cu in the kidney. The Fe concentration in serum and kidney tissues was significantly lower in all the groups. As a result of our study, it may be concluded that tissue Al accumulation may lead to an increase in osmotic fragility of erythrocytes and abnormal trace element levels.

  8. Protective effect of resveratrol against aluminum chloride induced nephrotoxicity in rats

    PubMed Central

    Dera, Hussain S. Al

    2016-01-01

    Objectives: To investigate the potential protective effect of resveratrol (RES) on aluminum chloride (AlCl3)-induced nephrotoxicity in rats. Methods: This experimental study was conducted from April to June 2015 at the Medical College of King Khalid University, Abha, Kingdom of Saudi Arabia. The experiments were performed on 24 male Wistar rats. The rats were randomly allocated into 4 groups; 1) group A: control rats received only normal saline, 2) group B: received RES dissolved in normal saline, 3) group C: model group and received AlCl3 dissolved in normal saline and 4) group D: RES treated group and received concomitant doses of RES+AlCl3. All treatments were administered for consecutive 40 days. After 40 days of treatments, kidney function tests, oxidative stress parameters and histopathological assay were evaluated. Results: all findings clearly showed significant deteriorations in kidney function and architectures after AlCl3 exposure. This was accompanied by increased renal oxidative stress and inflammation suggesting strong pro-oxidant activity of AlCl3 in spite of its non-redox status. Resveratrol co-treatment with AlCl3 to the rats showed significant improvement in all biochemical and histological parameters related to kidney function and structure. Conclusion: The findings of the current study showed that RES pre-administration to rats ameliorates renal damage and improves renal function in AlCl3 intoxicated rats in a mechanism related to its antioxidant potential. PMID:27052279

  9. Reaction of 1-chloro-1-methylcyclohexane with phenyl- and benzyl-trimethylsilanes in the presence of aluminum chloride

    SciTech Connect

    Bolestova, G.I.; Parnes, Z.N.; Vol'pin, M.E.

    1988-10-20

    In the reaction of 1-chloro-1-methylcyclohexane with phenyltrimethylsilane and benzyltrimethylsilane in the presence of aluminum chloride the chlorine atom is substituted by a phenyl or benzyl group with the formation of 1-methyl-1-phenyl- and 1-methyl-1-benzylcyclohexane, respectively. In the case of benzyltrimethylsilane the products from alkylation of the benzene ring of the benzyltrimethylsilane by the 1-methylcyclohexyl carbocation in the Friedel-Crafts reaction are formed in addition to 1-methyl-1-benzylcyclohexane.

  10. High fluorine water to wether sheep maintained in pens. Aluminum chloride as a possible alleviator of fluorosis.

    PubMed

    Said, A N; Slagsvold, P; Bergh, H; Laksesvela, B

    1977-01-01

    The experiment reported here, gave the following answers to the questions asked (see introduction): a. Water with 30 ppm F gave deleterious effects on wethers. A considerable difference was observed as compared to animals given about 1 ppm F in their water, see Table IV. b. The toxicity was slightly less from bore hole water containing 30 ppm F, as compared to Nairobi tap water with added fluorine to 30 ppm F. The difference in toxicity may be due to the very high content of minerals in the bore hole water, see Table I. c. More fluorine was excreted in faeces when aluminum chloride was added to the diet, as compared to animals which did not receive aluminum chloride. Aluminum chloride had no alleviating effect on fluorosis, but apparently decreased gut absorption of fluorine and also reduced fluorine retention in the bones, se Table VII. Under the conditions of this experiment, toxic levels of fluorine were considerable lower than the quoted safe levels in the literature.

  11. The Effect of Silver Chloride Formation on the Kinetics of Silver Dissolution in Chloride Solution

    PubMed Central

    Ha, Hung; Payer, Joe

    2011-01-01

    The precipitation and growth of AgCl on silver in physiological NaCl solution were investigated. AgCl was found to form at bottom of scratches on the surface which may be the less effective sites for diffusion or the favorable sites for heterogeneous nucleation. Patches of silver chloride expanded laterally on the substrate until a continuous film formed. The ionic transport path through this newly formed continuous film was via spaces between AgCl patches. As the film grew, the spaces between AgCl patches closed and ion transport was primarily via micro-channels running through AgCl patches. The decrease of AgCl layer conductivity during film growth were attributed to the clogging of micro-channels or decrease in charge carrier concentration inside the micro-channels. Under thin AgCl layer, i.e. on the order of a micrometer, the dissolution of silver substrate was under mixed activation-Ohmic control. Under thick AgCl layer, i.e. on the order of tens of micrometers, the dissolution of silver substrate was mediated by the Ohmic resistance of AgCl layer. PMID:21516171

  12. The Effect of Silver Chloride Formation on the Kinetics of Silver Dissolution in Chloride Solution.

    PubMed

    Ha, Hung; Payer, Joe

    2011-02-28

    The precipitation and growth of AgCl on silver in physiological NaCl solution were investigated. AgCl was found to form at bottom of scratches on the surface which may be the less effective sites for diffusion or the favorable sites for heterogeneous nucleation. Patches of silver chloride expanded laterally on the substrate until a continuous film formed. The ionic transport path through this newly formed continuous film was via spaces between AgCl patches. As the film grew, the spaces between AgCl patches closed and ion transport was primarily via micro-channels running through AgCl patches. The decrease of AgCl layer conductivity during film growth were attributed to the clogging of micro-channels or decrease in charge carrier concentration inside the micro-channels. Under thin AgCl layer, i.e. on the order of a micrometer, the dissolution of silver substrate was under mixed activation-Ohmic control. Under thick AgCl layer, i.e. on the order of tens of micrometers, the dissolution of silver substrate was mediated by the Ohmic resistance of AgCl layer.

  13. The influence of sulphates on chloride binding and pore solution chemistry

    SciTech Connect

    Xu, Y.

    1997-12-01

    Ordinary Portland cement (OPC) and OPC/ground granulated blast furnace slag (GGBS) 65% cements containing 2.0 to 9.0% sulphates derived from sodium sulphate and calcium sulphate were investigated in respect to their chloride binding properties and the concentrations of chloride and hydroxyl ions in the pore solutions. Chlorides derived from sodium and calcium chlorides were introduced at the time of mixing. The results indicate that calcium sulphate has a different effect on chloride binding and the pore solution chemistry than sodium sulphate. The slag cement has higher chloride binding capacities as a result of simple replacement for OPC, but at the same sulphate contents, the slag cement does not give the expected higher binding capacities, suggesting that the difference in sulphate content between the two cements may be the main reason for their different chloride binding behavior.

  14. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  15. Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal.

    PubMed

    Gao, Shanshan; Du, Maoan; Tian, Jiayu; Yang, Jianyu; Yang, Jixian; Ma, Fang; Nan, Jun

    2010-10-15

    Electro-coagulation-flotation (ECF) is one of the most promising technologies that offers an attractive alternative to conventional coagulation and flotation. In this study, the effectiveness and mechanisms of algae removal by ECF process using aluminum electrodes was investigated in the presence of Cl(-) ions. The results showed that the addition of Cl(-) ions (1.0, 3.0, 5.0 and 8.0 mM) had a promoting effect on the algae removal in terms of both the cell density and chlorophyll-a, which could be attributed to the following two reasons. Firstly, active chlorine could be generated in the ECF when Cl(-) ions were present. The electrochemically generated active chlorine was demonstrated to be effective for the inactivation of algae cells with the aid of the electric field in the ECF. Secondly, the Cl(-) ions in the algae solution could enhance the release of Al(3+) from the aluminum electrodes in the ECF. Through SEM-EDX analysis, pitting corrosion and alleviated formation of oxide film by Cl(-) ions were observed on the anode surface. When considering that Cl(-) ions are universally present in natural waters, the effects of Cl(-) on ECF process for algae removal are of great significance. PMID:20667652

  16. Effects of chloride ions on electro-coagulation-flotation process with aluminum electrodes for algae removal.

    PubMed

    Gao, Shanshan; Du, Maoan; Tian, Jiayu; Yang, Jianyu; Yang, Jixian; Ma, Fang; Nan, Jun

    2010-10-15

    Electro-coagulation-flotation (ECF) is one of the most promising technologies that offers an attractive alternative to conventional coagulation and flotation. In this study, the effectiveness and mechanisms of algae removal by ECF process using aluminum electrodes was investigated in the presence of Cl(-) ions. The results showed that the addition of Cl(-) ions (1.0, 3.0, 5.0 and 8.0 mM) had a promoting effect on the algae removal in terms of both the cell density and chlorophyll-a, which could be attributed to the following two reasons. Firstly, active chlorine could be generated in the ECF when Cl(-) ions were present. The electrochemically generated active chlorine was demonstrated to be effective for the inactivation of algae cells with the aid of the electric field in the ECF. Secondly, the Cl(-) ions in the algae solution could enhance the release of Al(3+) from the aluminum electrodes in the ECF. Through SEM-EDX analysis, pitting corrosion and alleviated formation of oxide film by Cl(-) ions were observed on the anode surface. When considering that Cl(-) ions are universally present in natural waters, the effects of Cl(-) on ECF process for algae removal are of great significance.

  17. [Dissolved aluminum and organic carbon in soil solution under six tree stands in Lushan forest ecosystems].

    PubMed

    Wang, Lianfeng; Pan, Genxing; Shi, Shengli; Zhang, Lehua; Huang, Mingxing

    2003-10-01

    Different depths of soils under 6 tree stands in Lushan Botany Garden were sampled and water-digested at room temperature. The dissolved aluminum and organic carbon were then determined by colorimetry, using 8-hydroxylquilin and TOC Analyzer, respectively. The results indicated that even derived from a naturally identical soil type, the test soils exhibited a diverse solution chemistry, regarding with the Al speciation. The soil solutions under Japanese cedar, giant arborvitae and tea had lower pH values and higher contents of soluble aluminum than those under Giant dogwood, azalea and bamboo. Under giant arborvitae, the lowest pH and the highest content of total soluble aluminum and monomeric aluminum were found in soil solution. There was a significant correlation between soluble aluminum and DOC, which tended to depress the accumulation of toxic monomeric aluminum. The 6 tree stands could be grouped into 2 categories of solution chemistry, according to aluminum mobilization.

  18. A potentiodynamic study of aluminum-lithium alloys in an aqueous sodium chloride environment

    NASA Technical Reports Server (NTRS)

    Tsao, C.-H. T.; Pizzo, P. P.

    1985-01-01

    The characteristics of the potentiodynamic curves for Al-Li alloys in 3.5 percent NaCl aqueous solution are explained and the electrochemical parameters of the potentiodynamic technique are correlated to observed pitting and intergranular cracking behavior. It is shown that the oxygen content of the sodium chloride electrolyte plays an important role in the electrochemical behavior of Al-Li alloys. The potentiodynamic behavior of the alloys is found to be insensitive to variation in compositional content and heat treatment, both of which affect the stress-corrosion behavior. Stringer oxide particle attack and random pitting are observed. It is shown that alternate-immersion exposure prior to potentiodynamic polarization may offer a means of assessing susceptibility to stress-corrosion cracking.

  19. Evaluation of aluminum indices to predict aluminum toxicity to plants grown in nutrient solutions

    SciTech Connect

    Alva, A.K.; Blamey, F.P.C.; Edwards, D.G.; Asher, C.J.

    1986-01-01

    Difficulty has been experienced in establishing a suitable aluminum (Al) index to predict Al toxicity to plants grown in nutrient solutions with a wide range of properties. In the present study, relationships were evaluated between root length and (i) concentration of total Al, (ii) concentration of monomeric Al, and (iii) the sum of the activities of monomeric Al species (..sigma..a/sub Al mono/) in solution. Results are reported for soybean (Glycine max (L.) Merr.), subterranean clover (Trifolium subterraneum L.), alfalfa (Medicago sativa L.), and sunflower (Helianthus annuus L.). Total Al concentration in solution, comprising polymeric and monomeric Al species, was a poor index of Al toxicity, confirming the hypothesis that only monomeric Al is toxic to root growth. In solutions with widely differing composition, the concentration of monomeric Al also proved unsatisfactory due to ionic strength effects on the activities of monomeric Al species. ..sigma..a/sub Al mono/ was the best index of Al toxicity, accounting for 72 to 92% of the variation in root length depending on the plant species. Root length was reduced by 50% at ..sigma..a/sub Al mono/ of 7-16 ..mu..M in soybean, 13 ..mu..M in subterranean clover and alfalfa, and 11 ..mu..M in sunflower.

  20. Solution-Derived, Chloride-Containing Minerals as a Waste Form for Alkali Chlorides

    SciTech Connect

    Riley, Brian J.; Crum, Jarrod V.; Matyas, Josef; McCloy, John S.; Lepry, William C.

    2012-10-01

    Sodalite [Na8(AlSiO4)6Cl2] and cancrinite [(Na,K)6Ca2Al6Si6O24Cl4] are environmentally stable, chloride-containing minerals and are a logical waste form option for the mixed alkali chloride salt waste stream that is generated from a proposed electrochemical separations process during nuclear fuel reprocessing. Due to the volatility of chloride salts at moderate temperatures, the ideal processing route for these salts is a low-temperature approach such as the sol-gel process. The sodalite structure can be easily synthesized by the sol-gel process; however, it is produced in the form of a fine powder with particle sizes on the order of 1–10 µm. Due to the small particle size, these powders require additional treatment to form a monolith. In this study, the sol-gel powders were pressed into pellets and fired to achieve > 90% of theoretical density. The cancrinite structure, identified as the best candidate mineral form in terms of waste loading capacity, was only produced on a limited basis following the sol-gel process and converted to sodalite upon firing. Here we discuss the sol-gel process specifics, chemical durability of select waste forms, and the steps taken to maximize chloride-containing phases, decrease chloride loss during pellet firing, and increase pellet densities.

  1. Copper extraction from chloride solutions with mixtures of solvating and chelating reagents

    SciTech Connect

    Borowiak-Resterna, A.; Szymanowski, J.

    2000-01-01

    Equimolar mixtures of N,N,N{prime},N{prime}-tetrahexylpyridine-3,5-dicarboxamide (L) with 2-hydroxy-5-t-octylbenzophenone oxime or 1-phenyldecane-1,3-dione (HB), were used to extract copper from chloride solutions of various concentration of chloride ions. Chloride ions were then scrubbed out with water or ammoniacal solutions and copper was transferred from the solvate CuCl{sub 2}L{sub 2} to chelate CuB{sub 2}. Both studied systems permit effective extraction of copper and removal of chloride ions from the organic phase. Some protonation of solvating reagent L occurs, however, when copper is stripped from the chelate with hydroxyoxime. This negative effect can be suppressed when 1-phenyldecane-1,3-dione is used as a chelating agent. The scrubbing of chloride ions must be then carried out with ammoniacal solutions to avoid simultaneous stripping of copper.

  2. Orthophosphate and metaphosphate ion removal from aqueous solution using alum and aluminum hydroxide.

    PubMed

    Georgantas, D A; Grigoropoulou, H P

    2007-11-01

    The removal of orthophosphates (10(-2) kg P m(-3)), condensed phosphates (10(-2) kg P m(-3)), and mixtures of both (5 x 10(-3) kg P m(-3) as orthophosphate and 5 x 10(-3) kg P m(-3) as metaphosphate) in aqueous solution is studied using alum and aluminum hydroxide. The effects of coagulant dose, pH, temperature, aging of aluminum hydroxide, and presence of different ions are investigated. On the basis of the experimental results, alum is much more efficient in phosphorus removal than aluminum hydroxide even if, in both cases, at the conditions studied, the active coagulant form is Al(OH)(3). The differences then could be due to the higher activity of the in situ formed hydroxide. Orthophosphates and metaphosphates seem to have similar behavior vs pH variation: maximum removal is achieved at pH values 5-6 in all cases. On the other hand, in the simultaneous presence of both P forms, orthophosphate and metaphosphate ions have different affinities for the surface sites of aluminum hydroxide, since for both alum and aluminum hydroxide, orthophosphates are preferentially removed compared to metaphosphates, due probably to orientation effects and the charge per P atom. The presence of sodium, potassium, magnesium, sulfate, chloride, and magnesium, at the concentrations studied and for a pH value of 6, does not influence P removal. Temperature variation, between 25 and 60 degrees C, does not affect alum efficiency but both P forms are increasingly removed with increasing temperature, probably due to polymer Al(OH)(3) breaking, producing new surfaces for adsorption. Aging decreases sorption capacity of Al(OH)(3), while crystallites of increasing size are formed. Finally adsorption of both P forms is best described by the Freundlich isotherm [[K(F)=(49.1-69.1) x 10(-3) (m(3)kg(-1))(1/N), 1/N: 0.14-0.19 for T=25-60 degrees C] and [ K(F)=(1.58-2.79) x 10(-3) (m(3)kg(-1))(1/N), 1/N: 2.17-2.47 for T=25-60 degrees C] for orthophosphate and metaphosphate, respectively.

  3. Effect of chlorides on reinforcing steel exposed to simulated concrete solutions

    SciTech Connect

    Kitowski, C.J.; Wheat, H.G.

    1997-03-01

    The behavior of steel in chloride-free and chloride-contaminated simulated concrete solutions was studied to observe the degradation of steel as a result of addition of chlorides. One of the simulated concrete solutions was a saturated calcium hydroxide (Ca[OH]{sub 2}) solution while the other was a solution made up of 0.6 M potassium hydroxide (KOH) + 0.2 M sodium hydroxide (NaOH) + 0.001 M Ca(OH){sub 2}. Corrosion behavior of the steel was studied electrochemically, and changes in the steel surfaces were studied using scanning electron microscopy (SEM) and Auger electron spectroscopy (AES). Behavior was compared to that of reinforced concrete cylinders subjected to alternating wetting and drying in 3.5% sodium chloride (NaCl) solutions.

  4. Process for producing gallium-containing solution from the aluminum smelting dust

    SciTech Connect

    Era, A.; Matsui, S.; Ikeda, H.

    1988-03-01

    A process is described for producing a gallium-containing solution from aluminum smelting dust comprising leaching aluminum smelting dust with a mineral acid selected from the group consisting of sulfuric acid, hydrochloric acid and nitric acid, and adding an oxidizing agent to the aluminum smelting dust at the time of leaching to preferentially leach and extract gallium from the aluminum smelting dust without extracting aluminum from the aluminum smelting dust. The oxidizing agent is selected from the group consisting of potassium permanganate, manganese dioxide, hydrogen peroxide, ozone, potassium chromate, potassium dichromate, ammonium persulfate, sodium hydrochlorite, sodium chlorite and sodium chlorate. The leached aluminum smelting dust is filtered to obtain a gallium-containing solution of dissolved gallium.

  5. Effect of chloride concentration on the pitting and repassivation potentials of reinforcing steel in alkaline solutions

    SciTech Connect

    Li, L.

    1999-11-01

    Reinforcing steel bars ({approximately}12mm diameter and 150mm long) were used in cyclic polarization tests in saturated Ca(OH){sub 2} solution and simulated concrete pore solution (SPS) with various levels of sodium chloride addition. Below a limiting chloride level ({approximately}O.004M [Cl{sup {minus}}] in Ca(OH){sub 2} solution and {approximately}0.4M [Cl{sup {minus}}] in SPS solution), steel was not found to undergo pitting corrosion even if it was polarized to the oxygen evolution potential ({approximately}O.6V/SCE). At higher NaCl addition, pitting corrosion could often be initiated but the pitting potential was non-deterministic to a great extent. In Ca(OH){sub 2} solution the average pitting potential was found to be strongly dependent on chloride concentration when [Cl{sup {minus}}]{ge}0.008M. In SPS solution, the average pitting potential was almost independent of the chloride concentration when [Cl{sup {minus}}]{ge}0.8M. The repassivation potential was found to be a strong function of the severity of corrosion attack that has occurred on the steel surface before repassivation, rather than a function of the chloride content of the bulk solution. The pitting tendency in chloride-containing SPS and Ca(OH){sub 2} solutions was interpreted on a statistical basis. The threshold thus determined good agreement with other values reported in the literature.

  6. Memory recuperative potential of rifampicin in aluminum chloride-induced dementia: role of pregnane X receptors.

    PubMed

    Kaur, P; Sodhi, R K

    2015-03-12

    The present study has been designed to investigate the potential of rifampicin [Pregnane X receptors (PXR) agonist] in experimental dementia. Aluminum chloride (AlCl3) [100mg/kg, p.o. for 42days] was administered to Wistar rats (n=6) to induce dementia. Morris water maze (MWM) test was used to assess learning and memory and rota rod test was used to assess locomotor activity of the animals. A battery of biochemical tests and histopathological evaluation using hematoxylin and eosin (H&E) and Congo Red stains were performed at the end of the study. AlCl3-treated rats demonstrated impaired cognition and locomotor activity on MWM apparatus and rota rod test, respectively. These animals exhibited a significant rise in acetylcholinesterase (AChE) activity (138±3.6), thiobarbituric acid reactive species (TBARS) level (15±1.6), nitrite (56±2.4) level and myeloperoxidase (MPO) activity (4.1±0.9) along with decline in reduced glutathione (GSH) level (22±1.3) in comparison to the control group (p<0.05). Further the H&E and Congo Red-stained cerebral cortex sections of AlCl3-treated rats indicated severe neutrophilic infiltration and amyloid deposition. Rifampicin-treated AlCl3-rats exhibited significant attenuation in memory deficits, biochemical parameters like AChE activity (33±1.4), TBARS level (4.1±1.0), nitrite level (64±2.6), MPO activity (3.6±1.0) and GSH level (53±2.4) along with improved histopathological alterations and locomotor activity when compared with AlCl3-treated rats (p<0.05). Combined administration of ketoconazole (a PXR antagonist) and rifampicin to AlCl3-treated animals reversed the rifampicin-induced protective effects. Therefore the results obtained from the study indicate a defensive role of rifampicin in memory dysfunction which may probably be due to its anti-cholinesterase, anti-oxidative, anti-inflammatory and amyloid lowering effects. Moreover the study speculates the potential of PXR in the pathophysiology of dementia which is subject

  7. Electrical conductivity of aqueous solutions of aluminum salts

    NASA Astrophysics Data System (ADS)

    Vila, J.; Rilo, E.; Segade, L.; Cabeza, O.; Varela, L. M.

    2005-03-01

    We present experimental measurements of the specific electrical conductivity (σ) in aqueous solutions of aluminum salts at different temperatures, covering all salt concentrations from saturation to infinite dilution. The salts employed were AlCl3 , AlBr3 , AlI3 , and Al(NO3)3 , which present a 1:3 relationship between the electrical charges of anion and cation. In addition, we have measured the density in all ranges of concentrations of the four aqueous electrolyte solutions at 298.15K . The measured densities show an almost linear behavior with concentration, and we have fitted it to a second order polynomial with very high degree of approximation. The measurement of the specific conductivity at constant temperature reveals the existence of maxima in the conductivity vs concentration curves at molar concentrations around 1.5M for the three halide solutions studied, and at approximately 2M for the nitrate. We present a theoretical foundation for the existence of these maxima, based on the classical Debye-Hückel-Onsager hydrodynamic mean-field framework for electrical transport and its high concentration extensions, and also a brief consideration of ionic frictional coefficients using mode-coupling theory. We also found that the calculated values of the equivalent conductance vary in an approximately linear way with the square root of the concentration at concentrations as high as those where the maximum of σ appears. Finally, and for completeness, we have measured the temperature dependence of the electrical conductivity at selected concentrations from 283to353K , and performed a fit to an exponential equation of the Vogel-Fulcher-Tamman type. The values of the calculated temperatures of null mobility of the four salts are reported.

  8. Formation of linear polyenes in poly(vinyl alcohol) films catalyzed by phosphotungstic acid, aluminum chloride, and hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Malyi, A. B.

    2016-07-01

    Formation of linear polyenes-(CH=CH)n-via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain ( n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10-12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.

  9. A diffusive anomaly of water in aqueous sodium chloride solutions at low temperatures.

    PubMed

    Kim, Jun Soo; Yethiraj, Arun

    2008-02-14

    Molecular dynamics simulations are presented for the self-diffusion coefficient of water in aqueous sodium chloride solutions. At temperatures above the freezing point of pure water, the self-diffusion coefficient is a monotonically decreasing function of salt concentration. Below the freezing point of pure water, however, the self-diffusion coefficient is a non-monotonic function of salt concentration, showing a maximum at approximately one molal salt. This suggests that sodium chloride, which is considered a structure-making salt at room temperature, becomes a structure-breaking salt at low temperatures. A qualitative understanding of this effect can be obtained by considering the effect of ions on the residence time of water molecules near other water molecules. A consideration of the freezing point depression of aqueous sodium chloride solutions suggests that the self-diffusion coefficient of water in supercooled sodium chloride solutions is always higher than that in pure (supercooled) water at the same temperature.

  10. Interactions of copper (II) chloride with sucrose, glucose, and fructose in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. C. F.; Esteso, M. A.; Lobo, V. M. M.; Valente, A. J. M.; Simões, S. M. N.; Sobral, A. J. F. N.; Burrows, H. D.

    2007-01-01

    The interaction between copper (II) chloride and the carbohydrates sucrose, glucose, and fructose has been studied in aqueous solutions at 298.15 and 310.15 K, using measurements of diffusion coefficients and electrical conductivity. Significant effects on the electrical conductivity were observed in the presence of these carbohydrates, suggesting interactions between them and copper chloride. Support for this came from diffusion coefficient measurements. These studies have been complemented by molecular mechanics calculations.

  11. Redox flow batteries based on supporting solutions containing chloride

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2015-09-01

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  12. Redox flow batteries based on supporting solutions containing chloride

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Xia, Guanguang

    2014-01-14

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  13. Redox flow batteries based on supporting solutions containing chloride

    SciTech Connect

    Li, Liyu; Kim, Soowhan; Yang, Zhenguo; Wang, Wei; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang

    2015-07-07

    Redox flow battery systems having a supporting solution that contains Cl.sup.- ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO.sub.4.sup.2- and Cl.sup.- ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V.sup.2+ and V.sup.3+ in a supporting solution and a catholyte having V.sup.4+ and V.sup.5+ in a supporting solution. The supporting solution can contain Cl.sup.- ions or a mixture of SO.sub.4.sup.2- and Cl.sup.- ions.

  14. Flocculation kinetics mechanism and floc formation prepared by poly aluminum chloride coupled with polyacrylamide for ship ballast water.

    PubMed

    Zhou, Zhimin; Liu, Sha; Jia, Linan

    2016-01-01

    The performance of flocculants prepared by poly aluminum chloride (PAC) and polyacrylamide (PAM) on treating ballast water collected at the Dalian new port area, the evaluation depending on the values of reaction parameters, and kinetics mechanism of flocculation were investigated in this study. Accordingly, the flocculants of 0.1 g·L(-1), prepared by mixing PAC of 10% with PAM of 2.0‰, enabled the removal rate of zooplankton and phytoplankton to reach 91% in ballast water at 20 °C. Based on flocculation kinetics mechanism analysis, the efficient vortex size during stirring should be larger than the floc particles, and gradient of fluctuating velocity provide the impetus for turbulence flocculation. The results of this study could be relevant to understanding particle-floc interactions during developmental flocculation, and during application of ballast water treatment.

  15. Flocculation kinetics mechanism and floc formation prepared by poly aluminum chloride coupled with polyacrylamide for ship ballast water.

    PubMed

    Zhou, Zhimin; Liu, Sha; Jia, Linan

    2016-01-01

    The performance of flocculants prepared by poly aluminum chloride (PAC) and polyacrylamide (PAM) on treating ballast water collected at the Dalian new port area, the evaluation depending on the values of reaction parameters, and kinetics mechanism of flocculation were investigated in this study. Accordingly, the flocculants of 0.1 g·L(-1), prepared by mixing PAC of 10% with PAM of 2.0‰, enabled the removal rate of zooplankton and phytoplankton to reach 91% in ballast water at 20 °C. Based on flocculation kinetics mechanism analysis, the efficient vortex size during stirring should be larger than the floc particles, and gradient of fluctuating velocity provide the impetus for turbulence flocculation. The results of this study could be relevant to understanding particle-floc interactions during developmental flocculation, and during application of ballast water treatment. PMID:27386983

  16. LOW TEMPERATURE PROCESS FOR THE REMOVAL AND RECOVERY OF CHLORIDES AND NITRATES FROM AQUEOUS NITRATE SOLUTIONS

    DOEpatents

    Savolainen, J.E.

    1963-01-29

    A method is described for reducing the chloride content of a solution derived from the dissolution of a stainless steel clad nuclear fuel element with an aqua regia dissolution medium. The solutlon is adjusted to a nitric acid concentration in the range 5 to 10 M and is countercurrently contacted at room temperature with a gaseous oxide of nitrogen selected from NO, NO/sub 2/, N/sub 2/ O/sub 3/, and N/sub 2/O/sub 4/. Chlo ride is recovered from the contacted solution as nitrosyl chloride. After reduction of the chloride content, the solution is then contacted with gaseous NO to reduce the nitric acid molarity to a desired level. (AEC)

  17. Effect of natural dissolved organic carbon on phosphate removal by ferric chloride and aluminum sulfate treatment of wetland waters

    NASA Astrophysics Data System (ADS)

    Qualls, Robert G.; Sherwood, Lindsay J.; Richardson, Curtis J.

    2009-09-01

    The use of wetlands for the removal of excess N and P has become widespread. Some sensitive P-limited ecosystems, however, may require additional reductions in the concentration of P entering the system. It has been proposed that the treatment of wetlands through addition of ferric chloride or aluminum sulfate can augment the natural P removal mechanisms. However, high concentrations of natural dissolved organic matter may interfere with the removal of P by metal addition. We evaluated the doses of ferric chloride and aluminum sulfate necessary to reduce total P concentrations below 0.32 μM (10 μg/L) in water from the Northern Everglades, and we determined the effect of various concentrations (21, 38, and 60 mg/L) of natural dissolved organic carbon (DOC) on the removal of PO4 and total P. High concentrations of natural DOC inhibited both the short-term removal of PO4 and the longer-term removal of total P from the water column. Similar results were observed using 15 μM citric acid in an experiment to determine whether citric acid could effectively mimic the inhibition of phosphorus removal associated with natural DOC. Stoichiometry of these experiments indicates that the mechanism of natural DOC interference was not complexation of the metal ions by the DOC; we hypothesize that it could be adsorption to the terminal hydroxyl groups on a polynuclear Fe or Al colloid, effectively blocking the adsorption sites from a phosphate molecule. Also, the ability of citric acid to mimic the inhibitory effects also suggests that the results of the study are broadly applicable to wetland and other waters with high natural organic acid concentrations.

  18. Leaching of diethylhexyl phthalate from polyvinyl chloride bags into intravenous cyclosporine solution

    SciTech Connect

    Venkataramanan, R.; Burckart, G.J.; Ptachcinski, R.J.; Blaha, R.; Logue, L.W.; Bahnson, A.; Giam, C.S.; Brady, J.E.

    1986-11-01

    The release of diethylhexyl phthalate (DEHP) from flexible polyvinyl chloride containers into intravenous cyclosporine solutions was studied. Intravenous cyclosporine solution or solutions containing the vehicle Cremophor EL and alcohol in dextrose were prepared in an all-glass system and stored in polyvinyl chloride (PVC) bags. Four samples were obtained at different time intervals, and DEHP content was analyzed by gas chromatography. The amount of DEHP that was leached into solutions stored in the PVC bags increased as storage time increased. By 48 hours, nearly 33 mg of DEHP had leached into the solution. Intravenous cyclosporine solutions should be prepared in glass containers to minimize patient exposure to DEHP. If plastic bags are used for preparing cyclosporine injections, the injections must be used immediately after preparation.

  19. Zinc chloride aqueous solution as a solvent for starch.

    PubMed

    Lin, Meiying; Shang, Xiaoqin; Liu, Peng; Xie, Fengwei; Chen, Xiaodong; Sun, Yongyi; Wan, Junyan

    2016-01-20

    It is important to obtain starch-based homogeneous systems for starch modification. Regarding this, an important key point is to find cheap, low-cost and low-toxicity solvents to allow complete dissolution of starch and its easy regeneration. This study reveals that a ZnCl2 aqueous solution is a good non-derivatizing solvent for starch at 50 °C, and can completely dissolve starch granules. The possible formation of a "zinc-starch complex" might account for the dissolution; and the degradation of starch, which was caused by the H(+) inZnCl2 aqueous solution, could not contribute to full dissolution. From polarized light microscopic observation combined with the solution turbidity results, it was found that the lowest ZnCl2 concentration for full dissolution was 29.6 wt.% at 50 °C, with the dissolving time being 4h. Using Fourier-transform infrared (FTIR), solid state (13)C nuclear magnetic resonance (NMR), and X-ray diffraction (XRD), it was revealed that ZnCl2 solution had no chemical reaction with starch glucosides, but only weakened starch hydrogen bonding and converted the crystalline regions to amorphous regions. In addition, as shown by intrinsic viscosity and thermogravimetric analysis (TGA), ZnCl2 solution caused degradation of starch macromolecules, which was more serious with a higher concentration of ZnCl2 solution.

  20. Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions

    PubMed Central

    Gao, Xiaojian; Zhang, Jian; Yang, Yingzi; Deng, Hongwei

    2010-01-01

    One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M), and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments. PMID:22163467

  1. Nucleation and growth of zinc from chloride concentrated solutions

    SciTech Connect

    Trejo, G.; Ortega B, R.; Meas V, Y.; Ozil, P.; Chainet, E.; Nguyen, B.

    1998-12-01

    The electrodeposition of metals is a complex phenomenon influenced by a number of factors that modify the rates of nucleation and growth and determine the properties of the deposits. In this work the authors study the influence of the zinc chloride (ZnCl{sub 2}) concentration on the zinc nucleation process on glassy carbon, in a KCl electrolyte under conditions close to those employed in commercial acid deposition baths for zinc. The electrochemical study was performed using cyclic voltammetry and potentiostatic current-time transients. The charge-transfer coefficient and the formal potential for ZnCl{sub 2} reduction were evaluated from cyclic voltammetry experiments. The nucleation process was analyzed by comparing the transients obtained with the known dimensionless (i/i{sub m}){sup 2} vs. t/t{sub m} response for instantaneous or progressive nucleation. The results show that the nucleation process and the number density of sites are dependent on ZnCl{sub 2} concentration. Scanning electron microscopy analysis of the deposits shows that the deposits are homogeneous and compact although a change in the morphology is observed as a function of ZnCl{sub 2} concentration. Evaluation of the corrosion resistance reveals the influence of the nucleation process on the subsequent corrosion resistance of the zinc deposits.

  2. Role of propolis (bee glue) in improving histopathological changes of the kidney of rat treated with aluminum chloride.

    PubMed

    El-Kenawy, Ayman El-meghawry; Hussein Osman, Hosam Eldin; Daghestani, Maha Hasan

    2014-09-01

    Humans are frequently exposed to aluminum from various food additives, therapeutic treatments and the environment, and it can be potentially toxic. This study is aimed to elucidate the protective effects of propolis against aluminum chloride (AlCl3 )-induced histopathological and immunohistochemical changes in kidney tissues of rats. Sixty Wistar Albino male rats (average weight 250-300 g) were divided into three equal groups. The first served as a negative control. The second received AlCl₃ (34 mg/kg bw, 1/ 25 LD 50). The third were administered AlCl₃ (34 mg/kg bw, 1/ 25 LD 50) plus propolis (50 mg/kg bw). Doses were given once daily via a gavage for 8 weeks every day. The results showed that shrunken glomeruli, intraglomerular congestion, loss of apical microvilli, degeneration of mitochondria and widened rough endoplasmic reticulum were also observed in the Proximal Convoluted Tubules of these animals. Treatment with propolis ameliorated the harmful effects of AlCl₃ ; this was also proved histopathologically by the noticeable improvement in the renal tissues. There were also significant variations in the expressed of ki-67 and p53 proteins. It can be concluded that propolis may be promising as a natural therapeutic agent in AlCl₃ -induced renal toxicity and oxidative stress in rat kidneys.

  3. Nanopore detection of DNA molecules in magnesium chloride solutions.

    PubMed

    Zhang, Yin; Liu, Lei; Sha, Jingjie; Ni, Zhonghua; Yi, Hong; Chen, Yunfei

    2013-01-01

    High translocation speed of a DNA strand through a nanopore is a major bottleneck for nanopore detection of DNA molecules. Here, we choose MgCl2 electrolyte as salt solution to control DNA mobility. Experimental results demonstrate that the duration time for straight state translocation events in 1 M MgCl2 solution is about 1.3 ms which is about three times longer than that for the same DNA in 1 M KCl solution. This is because Mg(2+) ions can effectively reduce the surface charge density of the negative DNA strands and then lead to the decrease of the DNA electrophoretic speed. It is also found that the Mg(2+) ions can induce the DNA molecules binding together and reduce the probability of straight DNA translocation events. The nanopore with small diameter can break off the bound DNA strands and increase the occurrence probability of straight DNA translocation events.

  4. Solute rejection by porous glass membranes. I - Hyperfiltration of sodium chloride and urea feed solutions.

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wydeven, T.; Leban, M. I.

    1971-01-01

    Hyperfiltration of sodium chloride and urea was studied with porous glass membranes in closed-end capillary form, to determine the effect of pressure, temperature, and concentration variations, and lifetime rejection and flux characteristics. Rejection data for sodium chloride were consistent with the functioning of the porous glass as a low-capacity ion-exchange membrane.

  5. Rheology and viscosity scaling of gelatin/1-allyl-3-methylimidazolium chloride solution

    NASA Astrophysics Data System (ADS)

    Qiao, Congde; Li, Tianduo; Zhang, Ling; Yang, Xiaodeng; Xu, Jing

    2014-05-01

    Gelatin/1-allyl-3-methylimidazolium chloride solutions are prepared by using the ionic liquid 1-allyl-3-methylimidazolium chloride as solvent. The rheological properties of the gelatin solutions have been investigated by steady shear and oscillatory shear measurements. In the steady shear measurements, the gelatin solutions with high concentration show a shear-thinning flow behavior at high shear rates, while another shear thinning region can be found in the dilute gelatin solutions at low shear rates. The overlap concentration of gelatin in [amim]Cl is 1.0 wt% and the entanglement concentration is a factor of 4 larger (4.0 wt%). The high intrinsic viscosity (295 mL/g) indicates that the gelatin chains dispersed freely in the ionic liquid and no aggregation phenomenon occurs in dilute gelatin solution. The frequency dependences of modulus changed obviously with an increase in gelatin concentration. The empirical time-temperature superposition principle holds true at the experimental temperatures.

  6. Aluminum-induced changes in properties and fouling propensity of DOM solutions revealed by UV-vis absorbance spectral parameters.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2016-04-15

    The integration of pre-coagulation with ultrafiltration (UF) is expected to not only reduce membrane fouling but also improve natural organic matter (NOM) removal. However, it is difficult to determine the proper coagulant dosage for different water qualities. The objective of this study was to probe the potential of UV-vis spectroscopic analysis to reveal the coagulant-induced changes in the fouling potentials of dissolved organic matter (DOM) and to determine the optimal coagulant dosage. The Zeta potentials (ZPs) and average particle size of the four DOM solutions (Aldrich humic acid (AHA), AHA-sodium alginate (SA), AHA-bovine serum albumin (BSA) and AHA-dextran (DEX)) coagulated with aluminum chloride (AlCl3) were measured. Results showed that increasing the aluminum coagulant dosage induced the aggregation of DOM. Meanwhile, the addition of aluminum coagulant resulted in an increase in DSlope(325-375) (the slope of the log-transformed absorbance spectra from 325 to 375 nm) and a decrease in S(275-295) (the slope of the log-transformed absorption coefficient from 275 to 295 nm) and SR (the ratio of Slope(275-295) and Slope(350-400)). The variations of these spectral parameters (i.e., DSlope(325-375), S(275-295) and SR) correlated well with the aluminum-caused changes in ZPs and average particle size. This implies that spectral parameters have the potential to indicate DOM aggregation. In addition, good correlations of spectral parameters and membrane fouling behaviors (i.e., unified membrane fouling index (UMFI)) suggest that the changes in DSlope(325-375), S(275-295) and SR were indicative of the aluminum-caused alterations of fouling potentials of all DOM solutions. Interestingly, the optimal dosage of aluminum (40 μM for AHA, AHA-BSA, and AHA-DEX) was obtained based on the relation between spectral parameters and fouling behaviors. Overall, the spectroscopic analysis, particularly for the utilization of spectral parameters, provided a convenient approach

  7. Aluminum-induced changes in properties and fouling propensity of DOM solutions revealed by UV-vis absorbance spectral parameters.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2016-04-15

    The integration of pre-coagulation with ultrafiltration (UF) is expected to not only reduce membrane fouling but also improve natural organic matter (NOM) removal. However, it is difficult to determine the proper coagulant dosage for different water qualities. The objective of this study was to probe the potential of UV-vis spectroscopic analysis to reveal the coagulant-induced changes in the fouling potentials of dissolved organic matter (DOM) and to determine the optimal coagulant dosage. The Zeta potentials (ZPs) and average particle size of the four DOM solutions (Aldrich humic acid (AHA), AHA-sodium alginate (SA), AHA-bovine serum albumin (BSA) and AHA-dextran (DEX)) coagulated with aluminum chloride (AlCl3) were measured. Results showed that increasing the aluminum coagulant dosage induced the aggregation of DOM. Meanwhile, the addition of aluminum coagulant resulted in an increase in DSlope(325-375) (the slope of the log-transformed absorbance spectra from 325 to 375 nm) and a decrease in S(275-295) (the slope of the log-transformed absorption coefficient from 275 to 295 nm) and SR (the ratio of Slope(275-295) and Slope(350-400)). The variations of these spectral parameters (i.e., DSlope(325-375), S(275-295) and SR) correlated well with the aluminum-caused changes in ZPs and average particle size. This implies that spectral parameters have the potential to indicate DOM aggregation. In addition, good correlations of spectral parameters and membrane fouling behaviors (i.e., unified membrane fouling index (UMFI)) suggest that the changes in DSlope(325-375), S(275-295) and SR were indicative of the aluminum-caused alterations of fouling potentials of all DOM solutions. Interestingly, the optimal dosage of aluminum (40 μM for AHA, AHA-BSA, and AHA-DEX) was obtained based on the relation between spectral parameters and fouling behaviors. Overall, the spectroscopic analysis, particularly for the utilization of spectral parameters, provided a convenient approach

  8. Stability of Melphalan in 0.9% Sodium Chloride Solutions Prepared in Polyvinyl Chloride Bags for Intravenous Injection.

    PubMed

    Desmaris, Romain-Pacôme; Mercier, Lionel; Paci, Angelo

    2015-09-01

    Melphalan is an alkylating agent frequently used in an intravenous formulation to treat hematologic malignancies and solid tumors in both adults and children. According to the manufacturer, melphalan is stable in sterile 0.9% sodium chloride for 90 min at room temperature (RT). Several authors have studied the stability of different concentrations of melphalan; however, most were not adapted to the current manufacturing process applied in pharmaceutical centralized units. This study was conducted to determine the stability of melphalan in 0.9% sodium chloride solutions at concentrations used for intravenous injection in practice. Melphalan is commonly prepared in diluted solutions ranging from 2 to 4 mg/ml for the treatment of adult patients and at lower concentrations (down to 0.5 mg/ml) for pediatric use. Accordingly, these were the three concentrations chosen for this study. Melphalan concentrations were measured with high-performance thin-layer chromatography (HPTLC). At RT, admixtures prepared at 4 mg/ml were stable for up to 8 h without protection from light; however, at lower concentrations, such as 0.5 and 2 mg/ml, stability did not exceed 2 h. When refrigerated, melphalan was stable for 24 h at 2 mg/ml; however, at 0.5 and 4 mg/ml, the drug was not stable. Melphalan solutions present with limited stability at 0.5, 2, and 4 mg/ml and are not adapted for delayed administration in pharmaceutical centralized units. However, at 4 mg/ml and at RT, a stability of 8 h is very interesting in practice and allows sufficient time for preparation, pharmaceutical control, transport, and administration.

  9. Electrochemical Evaluation of Stainless Steels in Acidified Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; MacDowell, L. G.; Vinje, R. D.

    2004-01-01

    This paper presents the results of an investigation in which several 300-series stainless steels (SS): AISI S30403 SS (UNS S30403), AISI 316L SS (UNS S31603), and AISI 317L SS (LINS S31703), as well as highly-alloyed: SS 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C (UNS S44735), were evaluated using DC electrochemical techniques in three different electrolyte solutions. The solutions consisted of neutral 3.55% NaCl, 3.55% NaCl in 0.1N HCl, and 3.55% NaCl in 1.0N HCl. These solutions were chosen to simulate environments that are less, similar, and more aggressive, respectively, than the conditions at the Space Shuttle launch pads. The electrochemical test results were compared to atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the subject alloys. The electrochemical measurements for the six alloys indicated that the higher-alloyed SS 254-SMO, AL29-4C, and AL-6XN exhibited significantly higher resistance to localized corrosion than the 300-series SS. There was a correlation between the corrosion performance of the alloys during a two-year atmospheric exposure and the corrosion rates calculated from electrochemical (polarization resistance) measurements.

  10. Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Tong-Fang; Hu, Yu-Feng; Deng, Zhen-Bo; Li, Xiong; Zhu, Li-Jie; Wang, Yue; Lv, Long-Feng; Wang, Tie-Ning; Lou, Zhi-Dong; Hou, Yan-Bing; Teng, Feng

    2016-08-01

    The sodium chloride methanol solution process is conducted on the conventional poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) polymer bulk heterojunction solar cells. The device exhibits a power conversion efficiency of up to 3.36%, 18% higher than that of the device without the solution process. The measurements of the active layer by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) indicate a slight phase separation in the vertical direction and a sodium chloride distributed island-like interface between the active layer and the cathode. The capacitance–voltage (C–V) and impedance spectroscopy measurements prove that the sodium chloride methanol process can reduce the electron injection barrier and improve the interfacial contact of polymer solar cells. Therefore, this one-step solution process not only optimizes the phase separation in the active layers but also forms a cathode buffer layer, which can enhance the generation, transport, and collection of photogenerated charge carriers in the device simultaneously. This work indicates that the inexpensive and non-toxic sodium chloride methanol solution process is an efficient one-step method for the low cost manufacturing of polymer solar cells. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009) and the National Natural Science Foundation of China (Grant Nos. 61274063, 61377028, 61475014, and 61475017).

  11. Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Tong-Fang; Hu, Yu-Feng; Deng, Zhen-Bo; Li, Xiong; Zhu, Li-Jie; Wang, Yue; Lv, Long-Feng; Wang, Tie-Ning; Lou, Zhi-Dong; Hou, Yan-Bing; Teng, Feng

    2016-08-01

    The sodium chloride methanol solution process is conducted on the conventional poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) polymer bulk heterojunction solar cells. The device exhibits a power conversion efficiency of up to 3.36%, 18% higher than that of the device without the solution process. The measurements of the active layer by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) indicate a slight phase separation in the vertical direction and a sodium chloride distributed island-like interface between the active layer and the cathode. The capacitance-voltage (C-V) and impedance spectroscopy measurements prove that the sodium chloride methanol process can reduce the electron injection barrier and improve the interfacial contact of polymer solar cells. Therefore, this one-step solution process not only optimizes the phase separation in the active layers but also forms a cathode buffer layer, which can enhance the generation, transport, and collection of photogenerated charge carriers in the device simultaneously. This work indicates that the inexpensive and non-toxic sodium chloride methanol solution process is an efficient one-step method for the low cost manufacturing of polymer solar cells. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009) and the National Natural Science Foundation of China (Grant Nos. 61274063, 61377028, 61475014, and 61475017).

  12. Raman spectroscopic study of sodium chloride water solutions

    NASA Astrophysics Data System (ADS)

    Furić, K.; Ciglenečki, I.; Ćosović, B.

    2000-09-01

    The Raman spectra of NaCl water solutions have been studied in the concentration range between 0 and 3.3 M using a difference technique. The temperature dependence of the spectral profiles observed for the O-H stretching in the high frequency region (between 2500 and 4000 cm -1) was also investigated in the narrow interval around a room temperature. Although the considered bandshape is not of a simple kind, the measured Id/ I0 ratio plotted versus NaCl concentration and temperature fits a straight line in both diagrams very satisfactorily. The linear dependence of Id/ I0 versus NaCl molarity was checked in the study of natural seawater samples for which discrepancies were found. These deviations were attributed to other organic and inorganic dissolved components in the seawater.

  13. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  14. Recycling of aluminum and caustic soda solution from waste effluents generated during the cleaning of the extruder matrixes of the aluminum industry.

    PubMed

    Tansens, Pieter; Rodal, Alberto T; Machado, Carina M M; Soares, Helena M V M

    2011-03-15

    Anodising industries use a concentrated caustic soda solution to remove aluminum from extruder matrixes. This procedure produces very alkaline effluents containing high amounts of aluminum. The work reported here was focussed on recycling aluminum, as aluminum hydroxide, from these effluents and regenerating an alkaline sodium hydroxide solution. Briefly, the method comprises a dilution step (necessary for reducing the viscosity of the effluent and allowing the subsequent filtration) followed by a filtration to eliminate a substantial amount of the insoluble iron. Then, sulphuric acid was added to neutralize the waste solution down to pH 12 and induce aluminum precipitation. The purity of the aluminum salt was improved after washing the precipitate with deionised water. The characterization of the solid recovered, performed by thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction, indicated characteristics typical of bayerite. The proposal method allowed recovering 82% of the aluminum present in the wastewater with high purity (99.5%). Additionally, a sufficiently concentrated caustic soda solution was also recovered, which can be reused in the anodising industries. This procedure can be easily implemented and ensures economy by recycling reagents (concentrated caustic soda solution) and by recovering commercial by-products (aluminum hydroxide), while avoiding environmental pollution.

  15. Transmittance of distilled water and sodium-chloride-water solutions

    SciTech Connect

    Kanayama, K.; Baba, H.

    1988-05-01

    The spectral transmittance of pure water and salt water solutions of various concentrations, which are important for the thermal calculation of a solar pond, is measured experimentally for specimen thickness of 1 to 100 mm by means of an autorecording spectro-radiometer inside an air-conditioned room. On the basis of the measured spectral transmittance, the total transmittance of pure and salty waters to 3 m of water depth is calculated as a ratio of the total radiation energy over all wavelengths arriving at any depth from the water surface of the solar pond to the solar radiation incident upon the water surface with various air masses. According to Nielsens' four-partition method, the effective absorption coefficient is calculated for each wavelength band. Lastly, the transmission properties obtained for pure water, i.e., spectral and total transmittances, absorption wavelength band, and effective absorption coefficient, are compared with past results, and those for salty water with various concentrations are compiled as basic data for the use of solar energy by a solar pond.

  16. Stepwise aggregation of dimethyl-di-n-octylammonium chloride in aqueous solutions: from dimers to vesicles.

    PubMed

    Leclercq, Loïc; Nardello-Rataj, Véronique; Turmine, Mireille; Azaroual, Nathalie; Aubry, Jean-Marie

    2010-02-01

    The self-aggregation of dimethyl-di-n-octylammonium chloride, in diluted aqueous solutions, was studied with various experimental and theoretical techniques: zetametry, conductimetry, dimethyl-di-n-octylammonium and chloride-selective electrodes, tensiometry, NMR spectroscopy ((1)H and DOSY), and molecular modeling (PM3 and molecular dynamic). The combination of the data obtained by these techniques led us to propose a stepwise aggregation process with increasing concentration: dimers (0.2-10 mM), bilayers (10-30 mM), and finally vesicles (>30 mM).

  17. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  18. Chemical and physical compatibility of an intravenous solution of epinephrine with calcium chloride.

    PubMed

    Weeks, Phillip A; Teng, Yang; Wu, Lei; Sun, Mary; Yang, Zhen; Chow, Diana S-L

    2014-01-01

    An infusion of epinephrine combined with calcium chloride has been used historically as an intravenous inotropic solution to support critically ill heart failure patients with severe cardiogenic shock. There is no reliable data on the stability of this solution beyond three hours. This study was conducted to evaluate the chemical and physical compatibility of epinephrine (0.032 mg/mL) combined with calcium chloride (4 mg/mL) in a solution for intravenous administration up to 26 hours at room temperature. The chemical stability of epinephrine was monitored by measuring epinephrine concentrations using high-performance liquid chromatography. The physical compatibility of the mixture was determined by measuring spectrophotometric absorbance between 400 to 700 nm. Absorbance greater than 0.010 AU was considered an indicator of the presence of precipitation. The results showed epinephrine with calcium chloride was stable together in normal saline up to 26 hours at room temperature, irrespective of exposure to light. The absorbance of epinephrine throughout the study was less than 0.010 AU, indicating no significant precipitation. Conclusions indicate that epinephrine (0.032 mg/mL) combined with calcium chloride (4 mg/mL) in normal saline at room temperature is acceptably stable up to 26 hours for intravenous administration.

  19. Effect of aging on aluminum hydroxide complexes in dilute aqueous solutions

    USGS Publications Warehouse

    Smith, Ross Wilbert; Hem, John David

    1972-01-01

    Aqueous aluminum solutions containing 4?10 -5 mole/liter aluminum and a constant total ionic strength of 10 -2, but with varying ratios of hydroxide to aluminum (OH:Al), were prepared. Progress of these solutions toward equilibrium conditions over aging periods of as much as 2 years was studied by determining the composition and pH of the solutions at various time intervals. The solutions, after mixing, were supersaturated with respect to both crystalline and amorphous forms of aluminum oxides and aluminum hydroxides. The compositions of the solutions were determined by use of a timed colorimetric analytical procedure which allowed the estimation of three separate forms of aluminum that have been designated Al a, Al b, and Al c. Form Al a appeared to be composed of monomeric species such as Al(H20)6+3, Al(OH)(H20)5+2, Al(OH)2(H20)4 +I and Al(OH)4-. Form Al b was polynuclear material containing perhaps 20-400 aluminum atoms per structure. It appeared to be a metastable material. Form Al c was composed of relatively large, microcrystalline, clearly solid AI(OH)3 particles. For each OH :Al ratio, the concentration of Al a remained constant with aging time, Al b decreased, and Al c increased. It appeared that Al b particles were increasing in size and ultimately were converted to Al c particles. After a few weeks' aging, Al c particles had the structure of gibbsite. In all solutions, equilibrium was only very slowly achieved, and the time required depended on the OH:Al ratio and how rapidly the solution was initially prepared (mixing time). Lower ratios caused a slower approach to equilibrium; sometimes equilibrium was not achieved even after several years' aging. The more slowly base was initially added (to obtain the proper OH:Al ratio), the more slowly was equilibrium approached. Ultimate equilibrium values of dissolved aluminum concentration and pH were consistent with known thermodynamic data on monomeric aluminum species. From data determined during the aging

  20. Mixed solutions of silver cation and chloride anion in acetonitrile: voltammetric and EQCM study.

    PubMed

    Skompska, Magdalena; Vorotyntsev, Mikhail A; Rajchowska, Aleksandra; Levin, Oleg V

    2010-09-21

    Electrochemical behavior of Pt and Au electrodes in acetonitrile solutions at different concentration ratios of Cl(-) and Ag(+) ions was studied by cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM). The composition of the mixed silver chloride solutions, i.e. the amount of each component of the system (solid AgCl and solute species: Ag(+), Cl(-), AgCl(2)(-)), is governed by the solubility product of AgCl and the stability constant of AgCl(2)(-)complex and depends strongly on the ratio of the total concentrations of chloride and silver ions. In this work we analyze in detail the influence of the Cl(-)/Ag(+) concentration ratio on the value of equilibrium electrode potential and the shape of cyclic voltammograms. We explain the complicated shapes of the experimental curves observed at different concentration ranges, propose the mechanisms of the processes occurring at the electrode and substantiate them by EQCM data.

  1. Behavior of antimony(III) during copper electrowinning in chloride solutions

    SciTech Connect

    Lin, H.K.; Wu, X.

    1996-04-01

    Contamination of cathodic copper by Sb during electrowinning in chloride solutions is a surface phenomenon. A digitized scanning electron microscopy (SEM) micrograph indicates that the Sb is concentrated on the surface /of the cathode. Energy-dispersive X-ray (EDX) analysis reveals that the Sb-containing layer is a complex salt of Cu, Sb, Cl, and O. Electrochemical measurements show that the adsorption of Sb or Cu species decreases with the increase of acidity of the solution when the solution contains antimony chloride or cuprous chloride. The adsorption increases with the increase of the acidity when the solution contains both Sb and Cu. The discharge of cuprous ions in the adsorbed complex salt releases antimonious ions and then forms a new layer of the complex salt with cuprous ions from the solution. This newly formed complex salt is readsorbed on the surface of the cathode. Thus, Sb concentrates on the surface of the cathode instead of being evenly distributed throughout the copper product. This suggested mechanism also explains the fact that the presence of Sb in the electrolyte enhances the electrodeposition of Cu.

  2. Crevice Corrosion Susceptibility of Alloy 22 in Fluoride and Chloride Containing Solutions

    SciTech Connect

    Day, S D; Rebak, R B

    2004-11-22

    Alloy 22 (N06022) is highly resistant to crevice corrosion in pure chloride (Cl{sup -}) solutions. Little research has been conducted to explore the resistance of this alloy to other halides such as fluoride (F{sup -}) and bromide (Br{sup -}). Even less information is available exploring the behavior of localized corrosion for Alloy 22 in mixtures of the halide ions. Standard electrochemical tests such as polarization resistance and cyclic potentiodynamic polarization (CPP), were conducted to explore the resistance to corrosion of Alloy 22 in deaerated aqueous solutions of 1 M NaCl, 1 M NaF and 0.5 M NaCl + 0.5 M NaF solutions at 60 C and 90 C. Results show that the general corrosion rate was the lowest in the mixed halide solution and the highest in the pure chloride solution. Alloy 22 was not susceptible to localized corrosion in the pure fluoride solution. In 1 M NaCl solution, Alloy 22 was susceptible to crevice corrosion at 90 C. In the mixed halide solution Alloy 22 was susceptible to crevice corrosion both at 60 C and 90 C.

  3. Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat.

    PubMed

    Cao, Zheng; Yang, Xu; Zhang, Haiyang; Wang, Haoran; Huang, Wanyue; Xu, Feibo; Zhuang, Cuicui; Wang, Xiaoguang; Li, Yanfei

    2016-05-01

    Aluminum (Al) is present in the daily life of humans, and the incidence of Al contamination increased in recent years. Long-term excessive Al intake induces neuroinflammation and cognition impairment. Neuroinflammation alter density of dendritic spine, which, in turn, influence cognition function. However, it is unknown whether increased neuroinflammation is associated with altered density of dendritic spine in Al-treated rats. In the present study, AlCl3 was orally administrated to rat at 50, 150 and 450 mg/kg for 90d. We examined the effects of AlCl3 on the cognition function, density of dendritic spine in hippocampus of CA1 and DG region and the mRNA levels of IL-1β, IL-6, TNF-α, MHC II, CX3CL1 and BNDF in developing rat. These results showed exposure to AlCl3 lead to increased mRNA levels of IL-1β, IL-6, TNF-α and MCH II, decreased mRNA levels of CX3CL1 and BDNF, decreased density of dendritic spine and impaired learning and memory in developing rat. Our results suggest AlCl3 can induce neuroinflammation that may result in loss of spine, and thereby leads to learning and memory deficits. PMID:26946116

  4. Electrochemical Behavior of Nano-grained Pure Copper in Dilute Alkaline Solution with Chloride Ion Trace

    NASA Astrophysics Data System (ADS)

    Fattah-Alhosseini, Arash; Imantalab, Omid; Attarzadeh, Farid Reza

    2016-10-01

    Effect of nano-grained structure on the interface behavior of pure copper in 0.01M KOH solution with chloride ion trace is investigated by various electrochemical techniques. Nano-grained structure was achieved by accumulative roll bonding (ARB) technique. Before any electrochemical measurements, microstructure was evaluated by means of optical microscopy and transmission electron microscopy (TEM). TEM observations showed that nano-grains (with an average size of below 100 nm) appeared after eight passes of ARB. Polarization curves revealed that increasing chloride ion concentration leads to a decrease in the corrosion and pitting potentials of both annealed and nano-grained pure copper samples. Electrochemical impedance spectroscopy revealed that chloride ion trace lowers passive film resistance and charge-transfer resistance in both annealed and nano-grained samples. Mott-Schottky analysis showed that the surface films formed on annealed and nano-grained samples in KOH solution with and without NaCl addition are of p-type semiconducting behavior. Moreover, this analysis showed that the acceptor density increases by increasing chloride ion concentration.

  5. Electrochemical Behavior of Nano-grained Pure Copper in Dilute Alkaline Solution with Chloride Ion Trace

    NASA Astrophysics Data System (ADS)

    Fattah-Alhosseini, Arash; Imantalab, Omid; Attarzadeh, Farid Reza

    2016-08-01

    Effect of nano-grained structure on the interface behavior of pure copper in 0.01M KOH solution with chloride ion trace is investigated by various electrochemical techniques. Nano-grained structure was achieved by accumulative roll bonding (ARB) technique. Before any electrochemical measurements, microstructure was evaluated by means of optical microscopy and transmission electron microscopy (TEM). TEM observations showed that nano-grains (with an average size of below 100 nm) appeared after eight passes of ARB. Polarization curves revealed that increasing chloride ion concentration leads to a decrease in the corrosion and pitting potentials of both annealed and nano-grained pure copper samples. Electrochemical impedance spectroscopy revealed that chloride ion trace lowers passive film resistance and charge-transfer resistance in both annealed and nano-grained samples. Mott-Schottky analysis showed that the surface films formed on annealed and nano-grained samples in KOH solution with and without NaCl addition are of p-type semiconducting behavior. Moreover, this analysis showed that the acceptor density increases by increasing chloride ion concentration.

  6. Effects of three additives on the removal of perfluorooctane sulfonate (PFOS) by coagulation using ferric chloride or aluminum sulfate.

    PubMed

    Kishimoto, Naoyuki; Kobayashi, Masanori

    2016-01-01

    Perfluorooctanesulfonic acid and its salts (PFOS) are emerging contaminants with long half-lives in water and human bodies. Accordingly, PFOS removal from water streams is required for controlling the PFOS pollution. To provide a simple PFOS separation technology, effects of three additives, powdered activated carbon (PAC), gelatin, and cetyltrimethylammonium bromide (CTAB), on the PFOS removal by coagulation with ferric chloride or aluminum sulfate were investigated in this study. As a result, coagulation with PAC or CTAB addition was effective in the PFOS removal, though the conventional coagulation and coagulation with gelatin addition were ineffective. A PFOS removal efficiency of over 90% was observed for the CTAB dose of over 1.6 μM (0.58 mg/L) and for the PAC dose of over 40 mg/L, and that of over 95% was achieved by the CTAB dose of over 2.4 μM (0.87 mg/L), when the initial PFOS concentration was 1.84 μM. The positive effect of CTAB would be caused by micelle formation, which was enhanced by both the association of hydrophobic tails and the electrostatic attraction of hydrophilic heads of PFOS and CTAB. Thus, a linear cationic surfactant of CTAB was concluded to be an effective additive for the PFOS removal by coagulation.

  7. Photodynamic inactivation of planktonic cultures and biofilms of Candida albicans mediated by aluminum-chloride-phthalocyanine entrapped in nanoemulsions.

    PubMed

    Ribeiro, Ana Paula Dias; Andrade, Mariana Carvalho; da Silva, Julhiany de Fátima; Jorge, Janaina Habib; Primo, Fernando Lucas; Tedesco, Antonio Cláudio; Pavarina, Ana Cláudia

    2013-01-01

    New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum-chloride-phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate Candida albicans planktonic cultures and biofilm compared with free ClAlPc. Fungal suspensions were treated with different delivery systems containing ClAlPc and light emitting diode. For planktonic suspensions, colonies were counted and cell metabolism was evaluated by XTT assay. Flow cytometry evaluated cell membrane damage. For biofilms, the metabolic activity was evaluated by XTT and ClAlPc distribution through biofilms was analyzed by confocal laser scanning microscopy (CLSM). Fungal viability was dependent on the delivery system, superficial charge and light dose. Free ClAlPc caused photokilling of the yeast when combined with 100 J cm(-2). Cationic NE-ClAlPc reduced significantly both colony counts and cell metabolism (P < 0.05). In addition, cationic NE-ClAlPc and free ClAlPc caused significant damage to the cell membrane (P < 0.05). For the biofilms, cationic NE-ClAlPc reduced cell metabolism by 70%. Anionic NE-ClAlPc did not present antifungal activity. CLSM showed different accumulation on biofilms between the delivery systems. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. PMID:22774873

  8. Effects of three additives on the removal of perfluorooctane sulfonate (PFOS) by coagulation using ferric chloride or aluminum sulfate.

    PubMed

    Kishimoto, Naoyuki; Kobayashi, Masanori

    2016-01-01

    Perfluorooctanesulfonic acid and its salts (PFOS) are emerging contaminants with long half-lives in water and human bodies. Accordingly, PFOS removal from water streams is required for controlling the PFOS pollution. To provide a simple PFOS separation technology, effects of three additives, powdered activated carbon (PAC), gelatin, and cetyltrimethylammonium bromide (CTAB), on the PFOS removal by coagulation with ferric chloride or aluminum sulfate were investigated in this study. As a result, coagulation with PAC or CTAB addition was effective in the PFOS removal, though the conventional coagulation and coagulation with gelatin addition were ineffective. A PFOS removal efficiency of over 90% was observed for the CTAB dose of over 1.6 μM (0.58 mg/L) and for the PAC dose of over 40 mg/L, and that of over 95% was achieved by the CTAB dose of over 2.4 μM (0.87 mg/L), when the initial PFOS concentration was 1.84 μM. The positive effect of CTAB would be caused by micelle formation, which was enhanced by both the association of hydrophobic tails and the electrostatic attraction of hydrophilic heads of PFOS and CTAB. Thus, a linear cationic surfactant of CTAB was concluded to be an effective additive for the PFOS removal by coagulation. PMID:27332843

  9. Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix.

    PubMed

    Gupta, Vinod K; Jain, Ajay K; Maheshwari, Gaurav

    2007-06-15

    Al(3+) selective sensor has been fabricated from poly(vinyl chloride) (PVC) matrix membranes containing neutral carrier morin as ionophore. Best performance was exhibited by the membrane having composition as morin:PVC:sodium tetraphenyl borate:tri-n-butylphosphate in the ratio 5:150:5:150 (w/w, mg). This membrane worked well over a wide activity range of 5.0x10(-7) to 1.0x10(-1)M of Al(3+) with a Nernstian slope of 19.7+/-0.1mV/decade of Al(3+) activity and a limit of detection 3.2x10(-7)M. The response time of the sensor is approximately 5s and membrane could be used over a period of 2 months with good reproducibility. The proposed sensor works well over a pH range (3.5-5.0) and demonstrates good discriminating power over a number of mono-, di- and trivalent cations. The sensor can also be used in partially non-aqueous media having up to 20% (v/v) methanol, ethanol or acetone content with no significant change in the value of slope or working activity range. The sensor has also been used in the potentiometric titration of Al(3+) with EDTA and for its determination in zinc plating mud and red mud.

  10. Dendrite-Free Aluminum Electrodeposition from AlCl3-1-Ethyl-3-Methyl-Imidazolium Chloride Ionic Liquid Electrolytes

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Reddy, Ramana G.

    2012-06-01

    A novel, dendrite-free electrorefining of aluminum scrap alloys (A360) was investigated by using a low-temperature AlCl3-1-ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte on copper/aluminum cathodes. The bulk electrodeposition of aluminum was carried out at a fixed voltage of 1.5 V, temperatures 323 K to 383 K (50 °C to 110 °C), stirring rate (0 to 120 rpm), concentration (molar ratio AlCl3:EMIC = 1.25 to 2.0), and electrode surface modification (modified/unmodified). The study investigated the effect of electrode surface modification, cathode materials, temperature, stirring rate, electrolyte concentration, and deposition time on the deposit morphology of aluminum, cathode current density, and their role in production of dendrite-free aluminum deposit, which is essential for decreasing the production cost. The deposits were characterized using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was shown that electrode surface modification, cathode overpotential, and stirring rate play an important role in dendrite-free deposit. Modified electrodes and stirring (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential ( η_{{crt}} ≈ - 0.53V ) for dendrite formation. Pure aluminum (>99 pct) was deposited for all experiments with a current efficiency of 84 to 99 pct and energy consumption of 4.51 to 5.32 kWh/kg Al.

  11. Desorption of CO2 from low concentration monoethanolamine solutions using calcium chloride and ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kosuke; Okawa, Hirokazu; Fujiwara, Tatsuo; Kato, Takahiro; Sugawara, Katsuyasu

    2015-07-01

    We developed an effective method for desorbing CO2 from low-concentration (0.2 mol/l) monoethanolamine (MEA) solutions using calcium chloride (CaCl2) and ultrasound irradiation at 25 °C. The proportion of CO2 desorbed from the MEA solution was calculated from the amount of CaCO3 generated and the amount of CO2 emitted. The proportion of CO2 desorbed from the MEA solution was much higher when CaCl2 was added than when CaCl2 was not added. We also characterized the CaCO3 that was generated when the solution was treated with ultrasound irradiation and when the solution was stirred. The CaCO3 particles produced were more homogeneous and smaller when ultrasound irradiation was applied than when the solution was stirred.

  12. Spectroscopic analysis of aluminum chloride phthalocyanine in binary water/ethanol systems for the design of a new drug delivery system for photodynamic therapy cancer treatment

    NASA Astrophysics Data System (ADS)

    Jayme, Cristiano Ceron; Calori, Italo Rodrigo; Tedesco, Antonio Claudio

    2016-01-01

    This study evaluated the behavior of aluminum chloride phthalocyanine in a binary water/ethanol mixture using electronic absorption spectroscopy and static and time-resolved fluorescence spectroscopy. The electronic absorption spectra, resonance light scattering and fluorescence quenching of aluminum chloride phthalocyanine in water/ethanol mixtures were studied at several concentrations. The electronic absorption spectra and fluorescence quenching changed significantly at approximately 50% water (v/v). Below 50% water, the dimerization constant values were negative (- 2609.2 M- 1 and - 506.5 M- 1 at 30% and 40% of water, respectively), indicating that the formation of aggregates under these conditions is not favored. However, at 50% water, the dimerization constant value was estimated to be 559.7 M- 1, which indicates the presence of dimers. Above 60% water, the aggregation process was responsible for the balance between large complexes (such as trimers, tetramers or oligomers) formed in the medium under these conditions. The appearance of new absorption bands at 387 nm and 802 nm and their bathochromic shift relative to the monomer bands suggested that some J-type aggregates form. These results are relevant to understanding the behavior and use of aluminum chloride phthalocyanine in the design of new drug delivery systems for clinical application in photodynamic therapy as a new approach to treat skin cancer.

  13. Spectroscopic analysis of aluminum chloride phthalocyanine in binary water/ethanol systems for the design of a new drug delivery system for photodynamic therapy cancer treatment.

    PubMed

    Jayme, Cristiano Ceron; Calori, Italo Rodrigo; Tedesco, Antonio Claudio

    2016-01-15

    This study evaluated the behavior of aluminum chloride phthalocyanine in a binary water/ethanol mixture using electronic absorption spectroscopy and static and time-resolved fluorescence spectroscopy. The electronic absorption spectra, resonance light scattering and fluorescence quenching of aluminum chloride phthalocyanine in water/ethanol mixtures were studied at several concentrations. The electronic absorption spectra and fluorescence quenching changed significantly at approximately 50% water (v/v). Below 50% water, the dimerization constant values were negative (-2609.2 M(-1) and -506.5 M(-1) at 30% and 40% of water, respectively), indicating that the formation of aggregates under these conditions is not favored. However, at 50% water, the dimerization constant value was estimated to be 559.7 M(-1), which indicates the presence of dimers. Above 60% water, the aggregation process was responsible for the balance between large complexes (such as trimers, tetramers or oligomers) formed in the medium under these conditions. The appearance of new absorption bands at 387 nm and 802 nm and their bathochromic shift relative to the monomer bands suggested that some J-type aggregates form. These results are relevant to understanding the behavior and use of aluminum chloride phthalocyanine in the design of new drug delivery systems for clinical application in photodynamic therapy as a new approach to treat skin cancer.

  14. Concentrations of aluminum in gut tissue of crayfish (Procambarus clarkii), purged in sodium chloride

    SciTech Connect

    Madigosky, S.R.; Alvarez-Hernandez, X.; Glass, J.

    1992-10-01

    Recent concern over the release of Al in the environment has prompted researchers and health officials to assess its effects on biological systems. Aluminum, despite being the most abundant metal in earth`s lithosphere, is normally complexed in soil and is therefore unavailable for biological assimilation. The recent advent of acid rain, however, has prompted Al release due to mobilization from surrounding sediments into the environment. This is of particular concern in aquatic environments because organisms in aquatic food chains can access and concentrate sublethal levels of Al in their tissues relatively quickly. The ingestion of affected organisms by humans may therefore pose a potential health risk. One such organism, is known to concentrate metals in a variety of tissues. In northern Louisiana, many people trap or fish for crayfish in lowland areas which lie adjacent to highways and secondary roadways. Water, soil, and crayfish from these areas are known to contain high levels of Al. Some tissues known to concentrate Al (muscle, hepatopancreas and intestine tissue and contents) are those which humans commonly consume. The ingestion of these tissues may therefore expose humans to elevated Al levels. Many people who eat crayfish often purge them in dilute concentrations (1-2%) of NaCl to rid them of contaminants and make them more palatable. We are aware of no literature which corroborates the claim that purging removes contaminating metals. The objectives of this study were to (1) document the amount of Al found in water, soil, and gut tissue of crayfish (P. clarkii) collected from a roadside wetland site; (2) determine the affect of NaCl purging on the release of Al in P. clarkii and (3) assess the differences in Al levels found between stomach tissue, stomach tissue contents, intestine tissue, and intestine contents in P. clarkii. 12 refs., 3 figs., 1 tab.

  15. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  16. Primary stage of the reaction between ozone and chloride ions in aqueous solution: Can chloride ion oxidation by ozone proceed via electron transfer mechanism?

    NASA Astrophysics Data System (ADS)

    Levanov, A. V.; Antipenko, E. E.; Lunin, V. V.

    2012-04-01

    It is found that chloride-ion oxidation by ozone via electron transfer mechanism does not occur due to its extremely high endoergicity and negligibly low rate. It is concluded that all processes supposedly associated with this reaction, particularly ozone decomposition in sodium chloride solution initiated by Cl· atoms, do not take place either. It is shown that experimental data on the products and kinetic regularities of the interaction of O3 with Cl- contradict the assumption that the electron transfer reaction is its primary stage. In fact, chloride-ion oxidation by ozone proceeds via the mechanism of oxygen atom transfer. It is noted that in order to estimate the possibility of using an ozonated physiological saline in medicine, the formation of chloride-ion oxidation products and ozonation byproducts must be taken into account.

  17. Occurrence of aluminum in chloride cells of Perla marginata (Plecoptera) after exposure to low pH and elevated aluminum concentration

    SciTech Connect

    Guerold, F.; Giamberini, L.; Pihan, J.C.; Tourmann, J.L.; Kaufmann, R.

    1995-04-01

    As a consequence of acid depositions on poorly buffered catchments underlain by hard rocks, aluminum is mobilized and transported from terrestrial systems to the aquatic environment. Loss of fishes has been related to low pH and elevated aluminum concentrations in surface waters which present a low ionic content especially during acid stress such as snowmelt and heavy rainfalls. Among the causes of fish population decline in acid waters, aluminum is considered a toxic cofactor. Different studies have clearly shown that aluminum is accumulated in different organs such as kidneys, liver and gills. Research on fish has demonstrated that aluminum may be toxic, but the toxicity is markedly influenced by the pH, organic compounds and calcium content of the water. Field surveys have shown clearly that macroinvertebrates are also affected by surface-water acidification. However, little is know about the possible effects of aluminum on aquatic invertebrates and, particularly, on aquatic insects exposed to acidic conditions. Hall et al. have shown that the whole-body concentration of aluminum decreases in blackflies and mayflies transplated from neutral water to acid water. Similar results have been reported for Daphnia and chironomid. On the contrary, Ormerod et al. demonstrated the absence of relationship between water pH and insect aluminum concentrations. When aluminum occurs in aquatic insects, it has been shown that it is primarily adsorbed on the external surface and/or accumulates in gut contents. To our knowledge, the subcellular location as well as the toxicity of aluminum to acid-sensitive aquatic insects remains unclear and existing hypotheses are often based on research on fish. In this content the purpose of this study was to investigate the presence of aluminum at a subcellular level in the acid-sensitive species of stonefly, Perla marginata, after exposure to low pH and elevated aluminum concentrations. 18 refs., 1 fig., 1 tab.

  18. Pitting of steam-generator tubing alloys in solutions containing thiosulfate and sulfate or chloride.

    PubMed

    Zhang, William; Carcea, Anatolie G; Newman, Roger C

    2015-01-01

    The pitting of nuclear steam generator tubing alloys 600, 690 and 800 was studied at 60 °C using dilute thiosulfate solutions containing excess sulfate or (for Alloy 600) chloride. A potentiostatic scratch method was used. In sulfate solutions, all alloys pitted at low potentials, reflecting their lack of protective Mo. The alloys demonstrated the most severe pitting at a sulfate : thiosulfate concentration ratio of ∼40. Alloy 600 pitted worst at a chloride : thiosulfate ratio of ∼2000. The results are interpreted through the mutual electromigration of differently charged anions into a pit nucleus, and differences in the major alloy component. PMID:25898311

  19. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  20. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end. PMID:26077317

  1. Corrosion Behavior of Alloy 22 in Oxalic Acid and Sodium Chloride Solutions

    SciTech Connect

    Day, S D; Whalen, M T; King, K J; Hust, G A; Wong, L L; Estill, J C; Rebak, R B

    2003-06-24

    Nickel based Alloy 22 (NO6022) is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in oxalic acid solution and to compare its behavior to sodium chloride (NaCl) solutions. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion rate of Alloy 22 in oxalic acid solutions increased rapidly as the temperature and the acid concentration increased. Extrapolation studies show that even at a concentration of 10{sup -4}M oxalic acid, the corrosion rate of Alloy 22 would be higher in oxalic acid than in 1 M NaCl solution. Alloy 22 was not susceptible to localized corrosion in oxalic acid solutions. Cyclic polarization tests in 1 M NaCl showed that Alloy 22 was susceptible to crevice corrosion at 90 C but was not susceptible at 60 C.

  2. Effect of human blood addition on dendritic growth of cupric chloride crystals in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Shirasaka, Ryukoh; Ogawa, Tomoya; Takakuwa, Yuichi; Furiya, Kei; Tanaka, Akemi; Kogure, Mitsuko; Obata, Hiroshi

    1994-09-01

    An extremely small amount of 0.2% or less (volume ratio) of human blood influences the dendritic growth of cupric chloride crystals in an aqueous solution, with some researchers claiming that the growth depends upon any disease the blood donor might be carrying. This is a very surprising phenomenon. Dendrites grown in a blood-added CuCl 2 ⋯ 2H 2O solution were classified into groups of blue and green by color; all the dendrites grown in an aqueous solution without blood were a single color: blue. A very clear difference between the blue and green dendrites was obtained by thermo-gravimetry/differential thermal analysis, because of positional and numerical difference of water molecules in the cupric chloride crystals. Many tiny granules were observed on facets of the dendrites grown in the blood-added aqueous solutions. Surfaces of the dendrites were surveyed by an electron probe X-ray micro-analyzer and by an X-ray photo-electron spectroscope, and chemical shifts of copper, chlorine, nitrogen, carbon and oxygen signals were found on those dendrites grown in blood-added CuCl 2 ⋯ 2H 2O solutions. This evidence suggests that components of blood including amino acid, peptide and/or protein or some composition of them were chemisorbed on the dendrite surfaces.

  3. Removal of sodium and chloride ions from aqueous solutions using fique fibers (Furcraea spp.).

    PubMed

    Agudelo, Nikolay; Hinestroza, Juan P; Husserl, Johana

    2016-01-01

    Fique fibers obtained from the leaves of Furcraea spp., a highly abundant plant in the mountains of South America, may offer an alternative as biosorbents in desalination processes as they exhibit high removal capacities (13.26 meq/g for chloride ions and 15.52 meq/g for sodium ions) up to four times higher than exchange capacities commonly observed in synthetic resins. The ion removal capacity of the fibers was also found to be a function of the pH of the solution with the maximum removal of ions obtained at pH 8. Unlike most commercial ion exchange resins, our results suggest that fique fibers allow simultaneous removal of chloride and sodium ions.

  4. Superiority of experts over novices in trueness and precision of concentration estimation of sodium chloride solutions.

    PubMed

    Masuda, Tomohiro; Wada, Yuji; Okamoto, Masako; Kyutoku, Yasushi; Yamaguchi, Yui; Kimura, Atsushi; Kobayakawa, Tatsu; Kawai, Takayuki; Dan, Ippeita; Hayakawa, Fumiyo

    2013-03-01

    Several studies have reported that experts outperform novices in specific domains. However, the superiority of experts in accuracy, taking both trueness and precision into consideration, has not yet been explored. Here, we examined differences between expert and novice performances by evaluating the accuracy of their estimations of physical concentrations of sodium chloride in solutions while employing a visual analog scale. In Experiment 1, 14 experts and 13 novices tasted 6 concentrations of the solutions until they had learned their intensities. Subsequently, they repeatedly rated the concentration of 3 other solutions in random order. Although we did not find a difference between the performances of the 2 groups in trueness (difference between rating and correct concentration), the precision (consistency of ratings for each participant) of experts was higher than that of novices. In Experiment 2, 13 experts who had participated in Experiment 1 and 10 experts and 12 novices who had not participated in Experiment 1 rated the salt concentration in sodium chloride/sucrose mixtures in the same way as in Experiment 1. Both trueness and precision of performance were higher in both expert groups than in the novice group. By introducing precision and trueness parameters, we succeeded in quantifying the estimations of experts and novices in rating the concentration of solutions, revealing experts' superiority even for a task they had not been trained for.

  5. Statics of uranium adsorption from chloride-fluoride solutions by aminocarboxylic polyampholytes

    SciTech Connect

    Pakholkov, V.S.; Denisova, L.A.; Rychkov, V.N.

    1988-03-01

    The adsorption of uranium from UO/sub 2/Cl/sub 2/ solutions containing HCl, NH/sub 4/Cl, and HF using polyampholytes ANCB-1, ANCB-7, and ANCB-10, which were synthesized from the corresponding anion-exchange resins AN-31, AV-16D, and AN-61, has been investigated under static conditions. For pure chloride solutions, in a moderate HCl (or NH/sub 4/Cl) concentration range, adsorption occurs via a cation exchange mechanism. Anionic exchange is the main adsorption process for chloride-fluoride solutions containing HCl concentrations up to 2 M. These conclusions have been verified by IR spectroscopic data. The experimental results obtained for mixed chloride-fluoride solutions can be approximated using the following regression equations: (A/sub (0-3)/ = -0.83 + 0.13C/sub HF/ + 0.18C/sub HCl/ + 40.7C/sub U/ + 0.22C/sub HF/ x C/sub HCl/ - 10C/sub HCl/ x C/sub U/ + 30C/sub HF/ x C/sub U/ - 20C/sub HF/ x C/sub HCl/ x C/sub U/ (for the concentration range of HCl from 0 to 3.0 M); and A/sub (3-6)/ = -0.81 + 0.135C/sub HCl/ + 22C/sub U/ (for the HCl concentration range from 3.0 to 6.0 M). The variable A in these equations stands for the adsorptivity in mmole U/g.

  6. Kinetic and spectrophotometric investigation of the diels-alder reaction between maleic anhydride derivatives and substituted anthracenes in the presence of gallium and aluminum chlorides

    SciTech Connect

    Kiselev, V.D.; Konovalov, A.I.; Shakirov, I.M.

    1986-10-01

    A comparison was made of the kinetic data for the normal Diels-Alder reaction of para-substituted N-arylmaleimides and substituted maleic anhydrides with meso-substituted anthracenes and of the reaction catalyzed by gallium and aluminum chlorides. The largely constant effects of gallium chloride (10/sup 4/) and aluminum chloride (10/sup 5/) in the acceleration of the reactions between the various pairs were demonstrated. The energies of charge transfer in the complexes between hexamethylbenzene and the dienophiles in the presence and absence of Lewis acids were determined by spectrophotometry. A significant decrease (to 1.2 eV) of the charge-transfer energy was found in the ..pi.., ..pi..-complexes and was attributed to the stabilization of the LUMO of the dienophile. From analysis of the obtained data it was concluded that the observed catalytic effect in the presence of Lewis acids can be explained by the approach of the frontier orbital levels and by a favorable change in the coefficients at the atomic orbitals responsible for the reaction.

  7. Adsorption and chemical reaction of gaseous mixtures of hydrogen chloride and water on aluminum oxide and application to solid-propellant rocket exhaust clouds

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Pellett, G. L.

    1978-01-01

    Hydrogen chloride (HCl) and aluminum oxide (Al2O3) are major exhaust products of solid rocket motors (SRM). Samples of calcination-produced alumina were exposed to continuously flowing mixtures of gaseous HCl/H2O in nitrogen. Transient sorption rates, as well as maximum sorptive capacities, were found to be largely controlled by specific surface area for samples of alpha, theta, and gamma alumina. Sorption rates for small samples were characterized linearly with an empirical relationship that accounted for specific area and logarithmic time. Chemisorption occurred on all aluminas studied and appeared to form from the sorption of about a 2/5 HCl-to-H2O mole ratio. The chemisorbed phase was predominantly water soluble, yielding chloride/aluminum III ion mole ratios of about 3.3/1 suggestive of dissolved surface chlorides and/or oxychlorides. Isopiestic experiments in hydrochloric acid indicated that dissolution of alumina led to an increase in water-vapor pressure. Dissolution in aqueous SRM acid aerosol droplets, therefore, might be expected to promote evaporation.

  8. Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc

    DOE PAGES

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2016-01-11

    Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determinedmore » by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. Zn was determined to interdiffuse the fastest, followed by Mg and Al. Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.« less

  9. Effect of calcium chloride solution immersion on surface hardness of restorative glass ionomer cements.

    PubMed

    Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Uo, Motohiro

    2013-01-01

    The objective of this study was to evaluate the effect of the concentration of calcium chloride (CaCl2) solution on the surface hardness of restorative glass ionomer cements (GICs). Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were immersed in several concentrations of CaCl2 solution for 1 day and 1 week. The immersed specimen surfaces were evaluated using microhardness testing, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Immersion in a higher concentration of CaCl2 solution produced a greater increase in the surface hardness. No crystalline substance was observed on the immersed surface. Calcium ions were selectively absorbed in the matrix of the GIC surface after immersion. They reacted with the non-reacted carboxylic acid groups remaining in the cement matrix. These reactions were considered to cause an increase in the surface hardness of the GICs.

  10. Low-frequency dynamics of aqueous alkali chloride solutions as probed by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Kann, Z. R.; Skinner, J. L.

    2016-06-01

    Terahertz (far infrared) spectroscopy provides a useful tool for probing both ionic motions in solution and the effect of ionic solutes on the dynamics of the solvent. In this study, we calculate terahertz spectra of aqueous alkali chloride solutions using classical but novel (the water model includes three-body interactions, the ion parameterization is non-standard, and the dipole surface is polarizable) molecular dynamics simulations. The calculated spectra compare reasonably well to experimental spectra. Decomposition of the calculated spectra is used to gain a deeper understanding of the physical phenomena underlying the spectra and the connection to, for instance, the vibrational density of states for the ions. The decomposed results are also used to explain many of the cation-dependent trends observed in the experimental spectra.

  11. Low-frequency dynamics of aqueous alkali chloride solutions as probed by terahertz spectroscopy.

    PubMed

    Kann, Z R; Skinner, J L

    2016-06-21

    Terahertz (far infrared) spectroscopy provides a useful tool for probing both ionic motions in solution and the effect of ionic solutes on the dynamics of the solvent. In this study, we calculate terahertz spectra of aqueous alkali chloride solutions using classical but novel (the water model includes three-body interactions, the ion parameterization is non-standard, and the dipole surface is polarizable) molecular dynamics simulations. The calculated spectra compare reasonably well to experimental spectra. Decomposition of the calculated spectra is used to gain a deeper understanding of the physical phenomena underlying the spectra and the connection to, for instance, the vibrational density of states for the ions. The decomposed results are also used to explain many of the cation-dependent trends observed in the experimental spectra. PMID:27334173

  12. Theoretical analysis of XANES for aqueous aluminum salt solutions

    NASA Astrophysics Data System (ADS)

    Matsuo, Shuji; Shirozu, Kaori; Tateishi, Yuichi; Wakita, Hisanobu; Yokoyama, Takushi

    In order to understand the coordination behavior of Al(III) ions in hydrosphere, discrete variational X[alpha] molecular orbital calculations were performed to analyze Al K-edge XANES spectra for the aqueous solutions of Al(NO3)3·9H2O and Al-EDTA (EDTA = ethylenediaminetetraacetate) complex. As to Al(NO3)3·9H2O, the hydrate structure was presumed to be rather an asymmetric hexahydrated structure than an high-symmetric structure. As to Al-EDTA, the 5-fold coordinated Al-EDTA was concluded to be the coexistence of the pyramidal and trigonal bipyramidal structures in proportion of 4 to 6.

  13. Hydrophobic collapse of foldamer capsules drives picomolar-level chloride binding in aqueous acetonitrile solutions.

    PubMed

    Hua, Yuran; Liu, Yun; Chen, Chun-Hsing; Flood, Amar H

    2013-09-25

    Aqueous media are competitive environments in which to perform host-guest chemistry, particularly when the guest is highly charged. While hydrophobic binding is a recognized approach to this challenge in which apolar pockets can be designed to recognize apolar guests in water, complementary strategies are required for hydrophilic anions like chloride. Here, we present evidence of such an alternative mechanism, used everyday by proteins yet rare for artificial receptors, wherein hydrophobic interactions are shown to be responsible for organizing and stabilizing an aryl-triazole foldamer to help extract hydrophilic chloride ions from increasingly aqueous solutions. Therein, a double-helical complex gains stability upon burial of ∼80% of the π surfaces that simultaneously creates a potent, solvent-excluding microenvironment for hydrogen bonding. The chloride's overall affinity to the duplex is substantial in 25% water v/v in acetonitrile (log β2 = 12.6), and it remains strong (log β2 = 13.0) as the water content is increased to 50%. With the rise in predictable designs of abiological foldamers, this water-assisted strategy can, in principle, be utilized for binding other hydrophilic guests.

  14. Development of anodes for aluminum/air batteries: Solution phase inhibition of corrosion: Final report

    SciTech Connect

    Macdonald, D.D.; English, C.; Urquidi-Macdonald, M.

    1989-03-01

    Solution-phase inhibition is a promising strategy for controlling the corrosion of the aluminum fuel in alkaline aluminum/air batteries. Development of effective inhibitors would permit the use of scrap aluminum as fuel and thereby significantly improve the economics of the battery, because the cost of the fuel would have been partly or wholly defrayed by its previous use. In this study, we explored the discharge characteristics of aluminum in inhibited and uninhibited 4 M KOH at 50/degree/C and compared the performance of the fuel with that for two leading alloy fuels that had been evaluated in our previous work, Alloy BDW (Al-1Mg-0.1In-0.2Mn) and Alloy 21 (Al-0.2Ga-0.1In-0.1Tl). The inhibitors employed in this study, SnO/sub 3//sup 2/minus//, In(OH)/sub 3/, Ga(OH)/sub 4//sup /minus//, MnO/sub 4//sup 2/minus//, and binary combinations thereof, are either alloying elements of Alloys BDW and 21 or have been investigated previously. We found that potassium manganate and Na/sub 2/SnO/sub 3/ + In(OH)/sub 3/ are effective inhibitor systems. Particularly at high discharge rates, but at low discharge rates only manganate offers a significant advantage in coulombic efficiency over the uninhibited solution. Alloy BDW exhibits a very low open circuit (standby) corrosion rate, but its coulombic efficiency under discharge, as determined by delineating the particle anodic and cathodic reactions, was found to be no better than that of aluminum in the same uninhibited solution. Alloy 21 was found to exhibit a comparable performance to Alloy BDW under open circuit conditions and a much higher coulombic efficiency at low discharge rates, but the performance of this alloy under high discharge rate conditions was not determined. Alloy 21 has the significant disadvantage that it contains thallium. 36 refs., 14 figs., 2 tabs.

  15. Comparison of Sodium Chloride Tablets-Induced, Sodium Chloride Solution-Induced, and Glycerol-Induced Hyperhydration on Fluid Balance Responses in Healthy Men.

    PubMed

    Savoie, Félix A; Asselin, Audrey; Goulet, Eric D B

    2016-10-01

    Savoie, FA, Asselin, A, and Goulet, EDB. Comparison of sodium chloride tablets-induced, sodium chloride solution-induced, and glycerol-induced hyperhydration on fluid balance responses in healthy men. J Strength Cond Res 30(10): 2880-2891, 2016-Sodium chloride solution-induced hyperhydration (NaCl-SolIH) is a powerful strategy to increase body water before exercise. However, NaCl-SolIH is associated with an unpleasant salty taste, potentially dissuading some athletes from using it and coaches from recommending it. Therefore, we evaluated the hyperhydrating potential of sodium chloride tablets-induced hyperhydration (NaCl-TabIH), which bypasses the palatability issue of NaCl-SolIH without sacrificing sodium chloride content, and compared it to NaCl-SolIH and glycerol-induced hyperhydration (GIH). Sixteen healthy males (age: 21 ± 2 years; fat-free mass (FFM): 65 ± 6 kg) underwent three, 3-hour long passive hyperhydration protocols during which they drank, over the first 60 minutes, 30-ml·kg FFM of an artificially sweetened solution. During NaCl-TabIH, participants swallowed 7.5, 1 g each, sodium chloride tablets with every liter of solution. During NaCl-SolIH, an equal quantity of sodium chloride tablets was dissolved in each liter of solution. With GIH, the glycerol concentration was 46.7 g·L. Urine production, fluid retention, hemoglobin, hematocrit, plasma volume, and perceptual variables were monitored throughout the trials. Total fluid intake was 1948 ± 182 ml. After 3 hour, there were no significant differences among treatments for hemoglobin, hematocrit, and plasma volume changes. Fluid retention was significantly greater with NaCl-SolIH (1150 ± 287 ml) than NaCl-TabIH (905 ± 340 ml) or GIH (800 ± 211 ml), with no difference between NaCl-TabIH and GIH. No differences were found among treatments for perceptual variables. NaCl-TabIH and GIH are equally effective, but inferior than NaCl-SolIH. NaCl-TabIH represents an alternative to hyperhydration induced

  16. Comparison of Sodium Chloride Tablets-Induced, Sodium Chloride Solution-Induced, and Glycerol-Induced Hyperhydration on Fluid Balance Responses in Healthy Men.

    PubMed

    Savoie, Félix A; Asselin, Audrey; Goulet, Eric D B

    2016-10-01

    Savoie, FA, Asselin, A, and Goulet, EDB. Comparison of sodium chloride tablets-induced, sodium chloride solution-induced, and glycerol-induced hyperhydration on fluid balance responses in healthy men. J Strength Cond Res 30(10): 2880-2891, 2016-Sodium chloride solution-induced hyperhydration (NaCl-SolIH) is a powerful strategy to increase body water before exercise. However, NaCl-SolIH is associated with an unpleasant salty taste, potentially dissuading some athletes from using it and coaches from recommending it. Therefore, we evaluated the hyperhydrating potential of sodium chloride tablets-induced hyperhydration (NaCl-TabIH), which bypasses the palatability issue of NaCl-SolIH without sacrificing sodium chloride content, and compared it to NaCl-SolIH and glycerol-induced hyperhydration (GIH). Sixteen healthy males (age: 21 ± 2 years; fat-free mass (FFM): 65 ± 6 kg) underwent three, 3-hour long passive hyperhydration protocols during which they drank, over the first 60 minutes, 30-ml·kg FFM of an artificially sweetened solution. During NaCl-TabIH, participants swallowed 7.5, 1 g each, sodium chloride tablets with every liter of solution. During NaCl-SolIH, an equal quantity of sodium chloride tablets was dissolved in each liter of solution. With GIH, the glycerol concentration was 46.7 g·L. Urine production, fluid retention, hemoglobin, hematocrit, plasma volume, and perceptual variables were monitored throughout the trials. Total fluid intake was 1948 ± 182 ml. After 3 hour, there were no significant differences among treatments for hemoglobin, hematocrit, and plasma volume changes. Fluid retention was significantly greater with NaCl-SolIH (1150 ± 287 ml) than NaCl-TabIH (905 ± 340 ml) or GIH (800 ± 211 ml), with no difference between NaCl-TabIH and GIH. No differences were found among treatments for perceptual variables. NaCl-TabIH and GIH are equally effective, but inferior than NaCl-SolIH. NaCl-TabIH represents an alternative to hyperhydration induced

  17. Direct deposition of highly conductive aluminum thin film on substrate by solution-dipping process.

    PubMed

    Lee, Hye Moon; Choi, Si-Young; Jung, Areum

    2013-06-12

    A solution-dipping process consisting of 2 steps, including (i) a catalytic treatment of the substrate and (ii) an immersion of the catalytically treated substrate into an aluminum precursor solution of AlH3{O(C4H9)2}, is suggested for the low-cost and simple preparation of aluminum thin film. This process can be applied to electric devices in the way of not only various film geometry including large area (□ 100 mm (W) × 100 mm (L)) or patterned structure but also the diverse substrate selectivity including rigid or flexible substrate. More interestingly, preparations of aluminum film in this study can be unprecedentedly accomplished at room temperature with the help of chemical catalyst to decompose AlH3{O(C4H9)2} into Al, 1.5H2, and O(C4H9)2. Beyond the previously reported processes, the prepared Al films via solution-dipping process are comparable or even superior to Ag, Au, and Al films prepared by other solution processes and furthermore are found to be excellent in mechanical durability against external deformation. PMID:23716504

  18. Corrosion inhibitors in concrete. Part II: Effect on chloride threshold values for corrosion of steel in synthetic pore solutions

    SciTech Connect

    Mammoliti, L.; Hansson, C.M.; Hope, B.B.

    1999-10-01

    The effectiveness of four commercially available corrosion inhibitors for use in cement-based materials was assessed in synthetic concrete pore solution containing chlorides. The effect of the surface topography of the sample and the composition of the pore solution was also assessed. Although in a parallel study the inhibitors were observed to delay the onset of corrosion, in these tests in pore solution they were found to be ineffective in increasing the chloride threshold value of reinforcing steel exposed to chlorides and had little influence on the progression of corrosion once initiated. This suggests that chemical reactions within the cement phase are responsible for the observed results. Metallographically polished samples proved the most resistant to corrosion regardless of electrolyte composition and samples with all surface finishes exhibited lower resistance in solutions containing only calcium hydroxide than in the higher pH synthetic concrete pore solutions.

  19. Process for producing gallium-containing solution from aluminum smelting dust

    SciTech Connect

    Ikeda, H.; Matsui, S.; Era, A.

    1988-02-16

    A process for producing a gallium-containing solution from aluminum smelting dust is described comprising mixing aluminum smelting dust with 5 to 50% by weight of an alkaline flux selected from the group consisting of sodium carbonate, sodium hydroxide, potassium carbonate, potassium hydroxide and mixtures thereof, heating the mixture to a temperature sufficient to roast the mixture without fusing the mixture, leaching the roasted mixture at a temperature of 80/sup 0/C. to 100/sup 0/C. with a mineral acid selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid and mixtures thereof to preferentially solubilize gallium from other material in the roasted mixture, and filtering the leached mixture to separate the solubilized gallium solution therefrom.

  20. Aluminum compounds in soil solutions and their migration in podzolic soils on two-layered deposits

    NASA Astrophysics Data System (ADS)

    Tolpeshta, I. I.; Sokolova, T. A.

    2009-01-01

    The fractional composition of aluminum compounds was studied in soil solutions obtained using vacuum lysimeters from loamy podzolic soils on two-layered deposits. The concentration of aluminum was estimated in brooks and a river draining the area with a predominance of these soils. In soil solutions, the concentration of aluminum was experimentally determined in the following compounds: (1) organic and inorganic monomers, (2) stable complexes with HAs and FAs together with polymers, and (3) the most stable complexes with HAs and FAs together with fine-crystalline and colloidal compounds. The total Al concentration in soil solutions from forest litter was 0.111-0.175 mmol/l and decreased with depth to 0.05 mmol/l and lower in solutions from the IIBD horizons. More than 90% of the Al in the solutions was bound into complexes with organic ligands. Some amount of Al in solution could occur in aluminosilicate sols. The translocation of Al complexes from the litter through the AE horizon to the podzolic horizon was accompanied by an increase in the ratio between the Al concentration in fraction 2 and the C concentration in the solution. The concentrations of Altot in the surface waters varied in the range from 0.015 to 0.030 mmol/l. Most of the Al came to the surface waters from the litter and AE horizons and partially from the podzolic horizon due to the lateral runoff along the waterproof IIBD horizon. Approximate calculations showed that the recent annual removal of Al from the AE and E horizons with the lateral runoff was 7 to 560 mg (3-21 mmol) from 1 m2.

  1. The stability of aqueous nickel(II) chloride complexes in hydrothermal solutions: Results of UV-Visible spectroscopic experiments

    NASA Astrophysics Data System (ADS)

    Liu, Weihua; Migdisov, Artas; Williams-Jones, Anthony

    2012-10-01

    Knowledge of the thermodynamic properties of aqueous nickel chloride complexes is important for understanding and quantitatively evaluating nickel transport in hydrothermal systems. In this paper, UV-Visible spectroscopic measurements are reported for dissolved nickel in perchlorate, triflic acid and sodium chloride solutions at temperatures up to 250 °C and 100 bar. The observed molar absorbance of Ni2+ in both perchlorate and triflic acid solutions is similar, and the absorbance peak migrates toward lower energy (red-shift) with increasing temperature. The spectra of nickel chloride solutions show a systematic red-shift with increasing temperature and/or chloride concentration. This allowed identification of the nickel chloride species as NiCl+, NiCl2(aq) and NiCl3-, and determination of their formation constants. Based on the experimental data reported in this paper and those of previous experimental studies, formation constants for these nickel chloride complexes have been calculated for temperatures up to 700 °C and pressures up to 2000 bar. The solubility of millerite (NiS) and pentlandite (Ni4.5Fe4.5S8) calculated using these constants shows that nickel dissolves in significantly higher concentrations in hydrothermal solutions than previously estimated. However, the solubility is considerably lower than for corresponding cobalt sulphide minerals. This may explain why hydrothermal nickel deposits are encountered so much less frequently than hydrothermal deposits of cobalt.

  2. Equilibrium dialysis and ultrafiltration investigations of perchlorate removal from aqueous solution using poly(diallyldimethylammonium) chloride.

    PubMed

    Roach, Jim D; Tush, Daniel

    2008-02-01

    Use of perchlorate salts in military activities and the aerospace industry is widespread. These salts are highly water-soluble and are, to a large extent, kinetically inert as aqueous species. As a groundwater contaminant, perchlorate is now being detected in an increasing number of locations and is believed to interfere with the uptake of iodide by the thyroid, which can result in decreased hormone production. The United States Environmental Protection Agency (US EPA) has established a reference dose for perchlorate of 0.0007 mg/kg/day, which translates to a drinking water equivalent level of 24.5 ppb. This study investigated the application of polyelectrolyte-enhanced ultrafiltration (PEUF) for the selective removal of perchlorate from aqueous solution through equilibrium dialysis and ultrafiltration experiments. Using poly(diallyldimethylammonium) chloride, the effectiveness and efficiency of PEUF in the removal of perchlorate from other aqueous solution components was investigated by testing parameters such as polyelectrolyte concentration, pH, and ionic strength. Removal of perchlorate from synthetic groundwater initially containing 10.3 ppm perchlorate and also containing chloride, sulfate, and carbonate was also examined. Perchlorate separations of greater than 95% were achieved, even in the presence of 10-fold excesses of competing ions. PMID:17915279

  3. Molecular dynamics studies on the thermodynamics of supercooled sodium chloride aqueous solution at different concentrations.

    PubMed

    Corradini, D; Gallo, P; Rovere, M

    2010-07-21

    In this paper we compare recent results obtained by means of molecular dynamics computer simulations on the thermodynamics of TIP4P bulk water and on solutions of sodium chloride in TIP4P water. The concentrations studied are c = 0.67, 1.36 and 2.10 mol kg( - 1). The results are checked against change of water-salt potential and size effects. The systems are studied in a wide range of temperatures, going from ambient temperature to the supercooled region. Analysis of simulated state points, performed on the isochores and on the isotherm plane, allowed the determination of the limit of mechanical stability and of the temperature of maximum density lines. While the presence of ions in the system does not affect the limit of mechanical stability with respect to the bulk, it causes the temperature of the maximum density line to shift to lower pressure and temperature upon increasing concentration. The occurrence of minima in the trend of potential energy as a function of density and the inflections in the low temperature isotherms suggest the presence of liquid-liquid coexistence for bulk water and for the sodium chloride solutions at all concentrations studied.

  4. MICRURGICAL STUDIES IN CELL PHYSIOLOGY : II. THE ACTION OF THE CHLORIDES OF LEAD, MERCURY, COPPER, IRON, AND ALUMINUM ON THE PROTOPLASM OF AMOEBA PROTEUS.

    PubMed

    Reznikoff, P

    1926-09-20

    I. Plasmalemma. 1. The order of toxicity of the salts used in these experiments on the surface membrane of a cell, taking as a criterion viability of amebae immersed in solutions for 1 day, is HgCl(2), FeCl(3)> AlCl(3)> CuCl(2)> PbCl(2)> FeCl(2). Using viability for 5 days as a criterion, the order of toxicity is PbCl(2)> CuCl(2)> HgCl(2)> AlCl(3)> FeCl(3)> FeCl(2). 2. The rate of toxicity is in the order FeCl(3)> HgCl(2)> AlCl(3)> FeCl(2)> CuCl(2)> PbCl(2). 3. The ability of amebae to recover from a marked tear of the plasmalemma in the solutions of the salts occurred in the following order: AlCl(3)> PbCl(2)> FeCl(2)> CuCl(2)> FeCl(3)> HgCl(2). II. Internal Protoplasm. 4. The relative toxicity of the salts on the internal protoplasm, judged by the recovery of the amebae from large injections and the range over which these salts can cause coagulation of the internal protoplasm, is in the following order: PbCl(2)> CuCl(2)> FeCl(3)> HgCl(2)> FeCl(2)> AlCl(3). 5. AlCl(3) in concentrations between M/32 and M/250 causes a marked temporary enlargement of the contractile vacuole. FeCl(2), FeCl(3), and CuCl(3) produce a slight enlargement of the vacuole. 6. PbCl(2), in concentrations used in these experiments, appears to form a different type of combination with the internal protoplasm than do the other salts. III. Permeability. 7. Using the similarity in appearance of the internal protoplasm after injection and after immersion to indicate that the surface is permeable to a substance in which the ameba is immersed, it is concluded that AlCl(3) can easily penetrate the intact plasmalemma. CuCl(2) also seems to have some penetrating power. None of the other salts studied give visible internal evidence of penetrability into the ameba. IV. Toxicity. 8. The toxic action of the chlorides of the heavy metals used in these experiments, and of aluminum, is exerted principally upon the surface of the cell and is due not only to the action of the metal cation but also to acid which

  5. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    NASA Astrophysics Data System (ADS)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  6. Anticorrosive Solution of 6201 Aluminum Alloy used in STEG Company's Overhead Transmission Lines

    NASA Astrophysics Data System (ADS)

    Rhaiem, E.; Bouraoui, T.; Elhalouani, F.

    2010-11-01

    Nowadays, aluminum alloys are widely used as conductor in power electrical transmission lines mainly due to their good physicochemical and mechanical properties as well as their financial profitability. Nonetheless, aluminium alloys conductors, which normally fulfil standard requirements, can fail under severe service conditions in relationship with environmental factors such as humidity, industrial pollution or marine salts present in the atmosphere. In this case, an anticorrosive solution must be considered for an optimal use. This study reports the result of electrochemical polarization and scanning electron microscopy (SEM) on the corrosion inhibition of AA 6201 aluminum alloys exploited in High Electric conductors, using zincating deposition as inhibition. The electrochemical measurements of aluminum alloys after Zn coating of aluminum and varied immersion in 0.5M NaCl and in 0.5M NaCl + 0.1M Na2SO4 give a significant decrease in the corrosion current densities (icorr.), and an increase in corrosion potential (Ecorr). The thin film on the specimens has been proven by morphology study using SEM.

  7. ¹H NMR diffusion studies of water self-diffusion in supercooled aqueous sodium chloride solutions.

    PubMed

    Garbacz, Piotr; Price, William S

    2014-05-01

    The physical properties of aqueous sodium chloride solutions have been studied theoretically, but so far no experimental diffusion data have been obtained under supercooled conditions. Here the results of (1)H NMR translational diffusion measurements of water in sodium chloride solutions in the temperature range 230 to 300 K and sodium chloride concentrations up to 4.2 mol/kg are presented. It was found that the diffusion data were well-described by the Vogel-Tamman-Fulcher relationship with concentration-dependent parameters D0, B, and T0. The results indicate that under supercooled conditions the influence of sodium chloride on water diffusion is much smaller than predicted by molecular dynamics simulations.

  8. Ionic surfactant aggregates in saline solutions: sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl(2)).

    PubMed

    Sammalkorpi, Maria; Karttunen, Mikko; Haataja, Mikko

    2009-04-30

    The properties of sodium dodecyl sulfate (SDS) aggregates in saline solutions of excess sodium chloride (NaCl) or calcium chloride (CaCl(2)) ions were studied through extensive molecular dynamics simulations with explicit solvent. We find that the ionic strength of the solution affects not only the aggregate size of the resulting anionic micelles but also their structure. Specifically, the presence of CaCl(2) induces more compact and densely packed micelles with a significant reduction in gauche defects in the SDS hydrocarbon chains in comparison with NaCl. Furthermore, we observe significantly more stable salt bridges between the charged SDS head groups mediated by Ca(2+) than Na(+). The presence of these salt bridges helps stabilize the more densely packed micelles.

  9. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  10. Alcohol solutions of triphenyl-tetrazolium chloride as high-dose radiochromic dosimeters

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Wojnárovits, L.; El-assy, N. B.; Afeefy, H. Y.; Al-Sheikhly, M.; Walker, M. L.; McLaughlin, W. L.

    1995-09-01

    The radiolytic reduction of colorless tetrazolium salts in aqueous solution to the highly colored formazan dye is a well-known acid-forming radiation chemical reaction. Radiochromic thin films and three-dimensional hydrocolloid gels have been used for imaging and mapping absorbed dose distributions. The high solubility of 2,3,5-triphenyl-tetrazolium chloride (TTC) in alcohols provides a useful liquid dosimeter (45 mM TTC in aerated ethanol) and shows a linear response of absorbance increase (λmax = 480 nm) with dose over the range 1-16 kGy. The linear molar absorption coefficient (ɛm) for the formazan at the absorption peak is 1.5 × 103 m2 mol-1, and the radiation chemical yield for the above solution is G (formazan) = 0.014 μmol J-1. The irradiation temperature coefficient is about 0.8 percent per degree Celsius rise in temperature over the temperature range 0-30 °C but is much larger between 30° and 60 °C. The unirradiated and irradiated solutions are stable over at least five days storage at normal laboratory temperature in the dark, but when stored in daylight at elevated temperature, the unirradiated solution in sealed amber glass ampoules undergoes slow photolytic dye formation, and the irradiated solution experiences initial fading and subsequent reversal (photochromism) when exposed to direct sunlight.

  11. Rheological Behaviors of Polyacrylonitrile/1-Butyl-3-Methylimidazolium Chloride Concentrated Solutions

    PubMed Central

    Liu, Weiwei; Cheng, Lingyan; Zhang, Hongyan; Zhang, Yumei; Wang, Huaping; Yu, Mingfang

    2007-01-01

    One of the room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was chosen to prepare the concentrated solutions of Polyacrylonitrile (PAN). The rheological behaviors of the solutions were measured with rotational rheometry under different conditions, including temperatures, concentration, and molecular weight of PAN. The solutions exhibited shear-thinning behaviors, similar to that of PAN/DMF solutions. The viscosities decreased with the increasing of shear rates. However, the viscosity decreased sharply at high shear rates when the concentration was up to 16wt%. The dependence of the viscosity on temperature was analyzed through the determination of the apparent activation energy. Unusually, the viscosity of solutions of higher concentration is lower than that of lower concentration. Similarly, the viscosity of low molecular weight PAN was higher than high molecular weight PAN at high shear rates. The dynamic rheological measurement indicates the loss modulus is much higher than storage modulus. The trend of complex viscosity is similar with the result of static rheological measurement. The interaction between PAN and ionic liquid [BMIM]Cl was discussed.

  12. Structure simulations for the 0.22 and 1 molar aqueous dimethylammonium chloride solutions.

    PubMed

    Nagy, Peter I

    2012-01-14

    Monte Carlo simulations have been performed for characterizing the 0.22 and 1 molar aqueous dimethylammonium chloride solutions at p = 1 atm and T = 310 K. On the basis of potential of mean force curves for the two systems with increasing concentrations, the N···N separations of about 8.7 and 7.5 Å correspond to a vague and a more pronounced minimum, respectively. Nitrogen separations at the minima are considerably smaller than those what the cations would take if the solutes comprised uniform local solute density on a microscale. The derived N by N coordination numbers predict non-negligible cation association and concomitant inhomogeneity for the studied systems. The calculated N···N distance distribution in the molar solution indicates that about 12% of the N···N separations are shorter than 8.5 Å compared with R(N···N) = 11.84 Å corresponding to the closest distance in a uniform cation local density. Despite a global minimum of -1.79 ± 0.63 kcal mol(-1) at N···Cl separation of 3.24 Å, obtained from the pmf for the 0.22 molar model, the N by Cl coordination number is only 0.14 in the first coordination shell, suggesting frequent disruption of an N-H(+)···Cl(+) hydrogen bond in a relatively dilute solution. The expression for the chemical potential of a solute includes a concentration-dependent activity coefficient, whose varying values are expected to reflect the different degrees of solute association in the 0.2-1 molar range. Theoretical follow-up of the changes in the activity coefficient values is difficult, thus calculation of the K(c) equilibrium constant has been proposed by considering 1 molar solutions as the standard state.

  13. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  14. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  15. Impact of aluminum chloride on process performance and microbial community structure of granular sludge in an upflow anaerobic sludge blanket reactor for natural rubber processing wastewater treatment.

    PubMed

    Thanh, Nguyen Thi; Watari, Takahiro; Thao, Tran Phuong; Hatamoto, Masashi; Tanikawa, Daisuke; Syutsubo, Kazuaki; Fukuda, Masao; Tan, Nguyen Minh; Anh, To Kim; Yamaguchi, Takashi; Huong, Nguyen Lan

    2016-01-01

    In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m(-3)·day(-1), it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L(-1) and the OLR range was increased up to 5.32 kg-COD·m(-3)·day(-1), the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation.

  16. Impact of aluminum chloride on process performance and microbial community structure of granular sludge in an upflow anaerobic sludge blanket reactor for natural rubber processing wastewater treatment.

    PubMed

    Thanh, Nguyen Thi; Watari, Takahiro; Thao, Tran Phuong; Hatamoto, Masashi; Tanikawa, Daisuke; Syutsubo, Kazuaki; Fukuda, Masao; Tan, Nguyen Minh; Anh, To Kim; Yamaguchi, Takashi; Huong, Nguyen Lan

    2016-01-01

    In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m(-3)·day(-1), it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L(-1) and the OLR range was increased up to 5.32 kg-COD·m(-3)·day(-1), the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation. PMID:27438256

  17. [The influence of an isotonic solution containing benzalkonium chloride and a hypertonic seawater solution on the function of ciliary epithelium from the nasal cavity in vitro].

    PubMed

    Laberko, E L; Bogomil'sky, M R; Soldatsky, Yu L; Pogosova, I E

    2016-01-01

    The objective of the present study was to evaluate the influence of an isotonic saline solution containing benzalconium chloride and of a hypertonic seawater solution on the function of ciliary epithelium in the nasal cavity in vitro. To this effect, we investigated the cytological material obtained from 35 children presenting with adenoid tissue hypertrophy. The tissue samples were taken from the nasal cavity by the standard method. A cellular biopsy obtained from each patient was distributed between three tubes that contained isotonic saline solution supplemented by benzalconium chloride (0.1 mg/ml), a hypertonic seawater solution, and a standard physiological saline solution. It was shown that the number of the viable cells in both isotonic solutions was statistically comparable and significantly higher than in the hypertonic solution (p<0.05). The ciliary beat frequency of the cells embedded in the two isotonic solutions was not significantly different but considerably exceeded that in the hypertonic seawater solution (p<0.05). Thus, the present study has demonstrated the absence of the ciliotoxic influence of isotonic saline solution containing benzalconium chloride at a concentration of 0.1 mg/ml and the strong ciliotoxic effect of the hypertonic seawater solution. This finding gives reason to recommend isotonic solutions for the regular application whereas hypertonic solutions can be prescribed only during infectious and/or inflammatory ENT diseases. PMID:27213656

  18. [The influence of an isotonic solution containing benzalkonium chloride and a hypertonic seawater solution on the function of ciliary epithelium from the nasal cavity in vitro].

    PubMed

    Laberko, E L; Bogomil'sky, M R; Soldatsky, Yu L; Pogosova, I E

    2016-01-01

    The objective of the present study was to evaluate the influence of an isotonic saline solution containing benzalconium chloride and of a hypertonic seawater solution on the function of ciliary epithelium in the nasal cavity in vitro. To this effect, we investigated the cytological material obtained from 35 children presenting with adenoid tissue hypertrophy. The tissue samples were taken from the nasal cavity by the standard method. A cellular biopsy obtained from each patient was distributed between three tubes that contained isotonic saline solution supplemented by benzalconium chloride (0.1 mg/ml), a hypertonic seawater solution, and a standard physiological saline solution. It was shown that the number of the viable cells in both isotonic solutions was statistically comparable and significantly higher than in the hypertonic solution (p<0.05). The ciliary beat frequency of the cells embedded in the two isotonic solutions was not significantly different but considerably exceeded that in the hypertonic seawater solution (p<0.05). Thus, the present study has demonstrated the absence of the ciliotoxic influence of isotonic saline solution containing benzalconium chloride at a concentration of 0.1 mg/ml and the strong ciliotoxic effect of the hypertonic seawater solution. This finding gives reason to recommend isotonic solutions for the regular application whereas hypertonic solutions can be prescribed only during infectious and/or inflammatory ENT diseases.

  19. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOEpatents

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  20. Reentrant condensation of lysozyme: Implications for studying dynamics of lysozyme in aqueous solutions of lithium chloride

    SciTech Connect

    Mamontov, Eugene; O'Neill, Hugh Michael

    2014-01-01

    Recent studies have outlined the use of eutectic solution of lithium chloride in water to study microscopic dynamics of lysozyme in an aqueous solvent that is remarkably similar to pure water in many respects, yet allows experiments over a wide temperature range without the solvent crystallization. The eutectic point in (H2O)R(LiCl) system corresponds to R 7.3, and it is of interest to investigate whether less concentrated aqueous solutions of LiCl could be employed in low-temperature studies of a solvated protein. We have investigated a range of concentrations of lysozyme and LiCl in aqueous solutions to identify systems that do not show phase separation and avoid solvent crystallization on cooling down. Compared to the lysozyme concentration in solution, the concentration of LiCl in the aqueous solvent plays the major role in determining systems suitable for low-temperature studies. We have observed interesting and rich phase behavior reminiscent of reentrant condensation of proteins.

  1. Reentrant condensation of lysozyme: Implications for studying dynamics of lysozyme in aqueous solutions of lithium chloride.

    PubMed

    Mamontov, Eugene; O'Neill, Hugh

    2014-06-01

    Recent studies have outlined the use of eutectic solutions of lithium chloride in water to study microscopic dynamics of lysozyme in an aqueous solvent that is remarkably similar to pure water in many respects, yet allows experiments over a wide temperature range without solvent crystallization. The eutectic point in a (H2O)R(LiCl) system corresponds to R ≈ 7.3, and it is of interest to investigate whether less-concentrated aqueous solutions of LiCl could be used in low-temperature studies of a solvated protein. We have investigated a range of concentrations of lysozyme and LiCl in aqueous solutions to identify systems that do not show phase separation and avoid solvent crystallization on cooling down. Compared to the lysozyme concentration in solution, the concentration of LiCl in the aqueous solvent plays the major role in determining systems suitable for low-temperature studies. We have observed interesting and rich phase behavior reminiscent of reentrant condensation of proteins. PMID:26819974

  2. Sorption of uranium(VI) ions from hydrochloric acid and ammonium chloride solutions by anion exchangers

    SciTech Connect

    Pakholkov, V.S.; Denisova, L.A.; Rychkov, V.N.; Kurnosenko, N.A.

    1988-01-01

    The sorption of macroscopic quantities of uranium from solutions of UO/sub 2/Cl/sub 2/ containing HCl and NH/sub 4/Cl in concentrations from 0.0 to 6.0 M by the AV-17 x 8, AV-16G, EDE-10P, AN-31, AN-2F, AN22, and AN-251 anion exchangers has been investigated under static conditions. The sorption isotherms are described by an equation similar to Freundlich's equation: K/sub d/ = K tilde x C/sub eq/sup 1/z/ or log K/sub d/ = log K tilde + 1/z x log C/sub eq/. Equations describing the dependence of the sorbability (or K/sub d/) on the equilibrium concentration of uranium in the solution have been obtained with the aid of the least-squares method. Conclusions regarding the chemistry of the exchange of uranium ions on anion exchangers in chloride solutions have been drawn on the basis of the UV spectra of the original solutions and the IR spectra of the ion exchangers obtained in this work, as well as the established general laws governing sorption.

  3. Cyclic stress effect on stress corrosion cracking of duplex stainless steel in chloride and caustic solutions

    NASA Astrophysics Data System (ADS)

    Yang, Di

    Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain

  4. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    SciTech Connect

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  5. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    PubMed

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

  6. Equilibriums between Cu, Fe, and Zn sulfides and oxides in chloride solution: A thermodynamic study

    NASA Astrophysics Data System (ADS)

    Strel'Tsova, N. I.

    2009-10-01

    The results of thermodynamic modeling of equilibriums between Cu, Fe, and Zn sulfides and oxides pertaining to the Cu-Fe-Zn-S-O2 system in water and aqueous chloride solution are presented. The system comprises solid phases of constant composition: pyrite, pyrrhotite, hematite, magnetite, wüstite, γ-iron, chalcocite, covellite, cuprite, native copper, chalcopyrite, and bornite, as well as more than 100 ions, complexes, and molecules in an aqueous solution. The GIBBS program with the UNITHERM thermodynamic dataset used in calculations allows numerical analysis of phase assemblages in a dry system and in equilibrium with an aqueous solution. How the temperature, pressure, and the composition of the solution in the system opened for oxygen and sulfur affects the composition of phase assemblages was considered in temperature and pressure ranges of 50-350 C and 100-1000 bar, respectively. Decrease in temperature leads to a shift in stability fields of the studied phases toward the region of elevated oxygen and sulfur partial pressures. Variation of temperature is an important factor affecting precipitation of ore minerals, primarily, Cu- and Zn-bearing. The calculation results are presented in tables and diagrams. Each point in the (log m_{S_{tot} } - log f_{O_2 } ) diagram is characterized by a single possible assemblage of phases equilibrated with a solution of the given composition within the considered temperature and pressure range. Since the composition of the mineral assemblage is controlled by physicochemical conditions at the moment of mineral formation, comparison of the calculation results with mineral assemblages at ore deposits makes it possible to estimate the parameters of ore deposition at the early stage of investigation, including oxygen and sulfur activity and, occasionally, the composition and salinity of the solution. These parameters control the formation of such assemblages.

  7. Generalized chloride mass balance: Forward and inverse solutions for one-dimensional tracer convection under transient flux

    SciTech Connect

    Ginn, T.R.; Murphy, E.M.

    1996-12-01

    Forward and inverse solutions are provided for analysis of inert tracer profiles resulting from one-dimensional convective transport under fluxes which vary with time and space separately. The developments are displayed as an extension of conventional chloride mass balance (CMB) techniques to account for transient as well as space-dependent water fluxes. The conventional chloride mass balance has been used over two decades to estimate recharge over large time scales in arid environments. In this mass balance approach, the chloride concentration in the pore water, originating from atmospheric fallout, is inversely proportional to the flux of water through the sediments. The CMB method is especially applicable to arid and semi-arid regions where evapotranspirative enrichment of the pore water produces a distinct chloride profile in the unsaturated zone. The solutions presented allow incorporation of transient fluxes and boundary conditions in CMB analysis, and allow analysis of tracer profile data which is not constant with depth below extraction zone in terms of a rational water transport model. A closed-form inverse solution is derived which shows uniqueness of model parameter and boundary condition (including paleoprecipitation) estimation, for the specified flow model. Recent expressions of the conventional chloride mass balance technique are derived from the general model presented here; the conventional CMB is shown to be fully compatible with this transient flow model and it requires the steady-state assumption on chloride mass deposition only (and not on water fluxes or boundary conditions). The solutions and results are demonstrated on chloride profile data from west central New Mexico.

  8. Structural changes in axillary eccrine glands following long-term treatment with aluminium chloride hexahydrate solution.

    PubMed

    Hölzle, E; Braun-Falco, O

    1984-04-01

    Axillary skin biopsies from fifteen patients with axillary hyperhidrosis who had received long-term treatment with aqueous aluminium chloride solution were examined histologically. The apocrine glands were normal, but the eccrine glands showed conspicuous morphological changes of varying severity. These included vacuolization of the secretory epithelium, dilatation of eccrine acini with atrophy of secretory cells, and accumulation of PAS-positive, diastase-resistant material in the dilated lumen of the secretory coils. The histological changes correlated in most patients with decreased secretion of sweat. We conclude that long-term blockage of the distal acrosyringium due to aluminium salts may lead to functional and structural degeneration of the eccrine acini. PMID:6712884

  9. A method of calculating quartz solubilities in aqueous sodium chloride solutions

    USGS Publications Warehouse

    Fournier, R.O.

    1983-01-01

    The aqueous silica species that form when quartz dissolves in water or saline solutions are hydrated. Therefore, the amount of quartz that will dissolve at a given temperature is influenced by the prevailing activity of water. Using a standard state in which there are 1,000 g of water (55.51 moles) per 1,000 cm3 of solution allows activity of water in a NaCl solution at high temperature to be closely approximated by the effective density of water, pe, in that solution, i.e. the product of the density of the NaCl solution times the weight fraction of water in the solution, corrected for the amount of water strongly bound to aqueous silica and Na+ as water of hydration. Generally, the hydration of water correction is negligible. The solubility of quartz in pure water is well known over a large temperature-pressure range. An empirical formula expresses that solubility in terms of temperature and density of water and thus takes care of activity coefficient and pressure-effect terms. Solubilities of quartz in NaCl solutions can be calculated by using that equation and substituting pe, for the density of pure water. Calculated and experimentally determined quartz solubilities in NaCl solutions show excellent agreement when the experiments were carried out in non-reactive platinum, gold, or gold plus titanium containers. Reactive metal containers generally yield dissolved silica concentrations higher than calculated, probably because of the formation of metal chlorides plus NaOH and H2. In the absence of NaOH there appears to be no detectable silica complexing in NaCl solutions, and the variation in quartz solubility with NaCl concentration at constant temperature can be accounted for entirely by variations in the activity of water. The average hydration number per molecule of dissolved SiO2 in liquid water and NaCl solutions decreases from about 2.4 at 200??C to about 2.1 at 350??C. This suggests that H4SiO4 may be the dominant aqueous silica species at 350??C, but other

  10. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    SciTech Connect

    Bialy, Agata; Blanchard, Didier; Vegge, Tejs; Quaade, Ulrich J.

    2015-01-15

    Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba{sub x}Sr{sub (1−x)}Cl{sub 2} mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH{sub 3}){sub 8}Cl{sub 2}. - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl{sub 2} in SrCl{sub 2} yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures.

  11. Formation of aqueous solutions on Mars via deliquescence of chloride-perchlorate binary mixtures

    NASA Astrophysics Data System (ADS)

    Gough, R. V.; Chevrier, V. F.; Tolbert, M. A.

    2014-05-01

    Perchlorate salts, known to exist on Mars, can readily absorb water vapor and deliquesce into aqueous solutions even at low temperatures. The multiple soluble ionic species, such as chloride salts, present in the Martian subsurface may affect this deliquescence. Here we study the deliquescence (solid to aqueous transition) and efflorescence (aqueous to solid transition) of three perchlorate/chloride mixtures: KClO4/KCl at 253 K, NaClO4/NaCl at 243 and 253 K, and Mg(ClO4)2/MgCl2 at 243 and 253 K. A Raman microscope with an environmental cell was used to monitor the phase transitions of internally mixed ClO-4/Cl- particles as a function of the perchlorate mole fraction. The eutonic relative humidity (where deliquescence begins to occur regardless of ClO-4 mole fraction), deliquescence relative humidity (DRH, where complete deliquescence occurs), and efflorescence relative humidity (ERH) were measured for several perchlorate mole ratios for each cation system. At the temperatures studied, the eutonic relative humidity was measured to be 28% RH for Mg(ClO4)2/MgCl2 mixtures, 38% RH for NaClO4/NaCl mixtures, and 82% RH for KClO4/KCl mixtures. The DRH depends on the perchlorate mole ratio, but is below the DRH of the least deliquescent (highest DRH) pure salt. When humidity is lowered around an aqueous salt mixture, we find that efflorescence occurs at an RH below the DRH due to the kinetic inhibition of crystallization. The ERH values of the salt solutions were as low as 5% RH for Mg(ClO4)2/MgCl2 mixtures, as low as 13% RH for NaClO4/NaCl mixtures, and as low as 66% RH for KClO4/KCl mixtures. The low eutonic RH values for the Na+ and Mg2+ perchlorate/chloride mixtures are important: wherever Mg(ClO4)2 and MgCl2 or NaClO4 and NaCl coexist at the temperatures studied, mixtures will contain a stable aqueous phase above 28 or 38% RH, respectively, regardless of the perchlorate mole fraction. This liquid water may persist until 5 or 13% RH, respectively.

  12. The interaction of polycrystalline copper films with dilute aqueous solutions of cupric chloride

    NASA Astrophysics Data System (ADS)

    Walsh, Lois Harper

    1989-10-01

    In the electronics industry, thin films of copper deposited on substrates are used as electrically conductive paths to interconnect semiconductor devices and other computer components. The dissolution of copper in a dilute aqueous cupric chloride solution was studied to achieve an understanding of the role microstructure plays in the dissolution process. A multi-technique approach was taken using combinations of solution chemistry, computer modeling, and microstructural characterization techniques to analyze as-received samples and to monitor the dissolution process. This latter approach allowed reaction rates and activation energies to be calculated from speciation concentrations derived from computer modeling of known thermochemical reactions. In conjunction with the solution analysis, surface techniques were used to analyze the concentration distribution of the various elements after sample exposure to the etchant. The etching characteristics of the polycrystalline thin copper films are dependent on the film's microstructure. A procedure is suggested that will aid future researchers in the correlation of microstructure and dissolution characteristics of different copper samples prior to mass production of metallization for microelectronic circuits.

  13. A study of the electrochemical behavior in tungsten and caustic solutions and platinum/iridium in chloride solutions, informal report

    SciTech Connect

    Vitus, C.M.; Isaacs, H.S.; Schroeder, V.

    1994-11-22

    Platinum/iridium and tungsten wires were electronically etched in chloride and caustic solution, respectively, to produce tips with high aspect ratio. A direct relationship between the meniscus and the aspect ratio of etched tips was established. Scanning electron micrographs indicated that higher aspect ratios were obtained by changing the geometry of the meniscus during the etch either by an increase in the applied a.c. voltage or with the addition of a nonpolar layer above the electrolytic solution during the etching process. Above the breakdown voltage, two possible mechanisms appeared to control the etching process by expediting chemical dissolution: cavitation and sparking. Cavitation caused erosion due to the force of evolved gases against the electrode and sparking attacked the surface by vaporizing the metal. Sparking commenced on both wires near 24V. This voltage corresponded to a minimum in the plot of total etch time versus voltage. From light emission studies, sparking on Pt/Ir was associated with the ionization of Pt, Ir, Ca, and Cl. A compositional analysis of insoluble black particles produced during a.c. and d.c. etching of Pt/Ir revealed Pt and Ir as the major constituents of the product. The sparking process was shown to have a potential use in micromachining.

  14. Electrochemiluminescence of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution.

    PubMed

    Muegge, Brian D; Brooks, Sean; Richter, Mark M

    2003-03-01

    The electrochemiluminescence (ECL) of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution is reported. ECL is generated by complexing aluminum ions with the chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQS) to form Al(HQS)3, followed by oxidation in the presence of tri-n-propylamine (TPrA). The ECL intensity peaks a potential corresponding to oxidation of both TPrA and Al(HQS)3, and the ECL emission spectrum (lambda(max) = 499 nm) matches the photoluminescence emission spectrum, indicating that the emission is from a Al(HQS)3* excited state. ECL efficiencies (phi(ecl), photons generated per redox event) of 0.002 using Ru(bpy)3(2+) (phi(ecl) = 1) as relative standard. Conditions for ECL emission were optimized and used to generate a calibration curve that was linear over the 7 x 10(-6)-4 x 10(-4) M (5-281 mg/L (ppm)) range with a theoretical limit of detection of 1 ppm. The ECL of several metal ions other than aluminum with HQS and effects on Al(HQS)3 ECL were also examined.

  15. The stability of calcium chloride ion pairs in aqueous solutions at temperatures between 100 and 360 degree C

    SciTech Connect

    Williams-Jones, A.E. ); Seward, T.M. )

    1989-02-01

    The speciation of calcium in chloride solutions has been investigated between 100 and 360{degree}C by measuring the solubility of AgCl in HCl-CaCl{sub 2} solutions in which chloride varies from 0.3 to 3.0 m and calcium is maintained constant at 0.1 m. Cumulative equilibrium formation constants of calcium chloride ion pairs were evaluated using a non-liner least squares procedure. Association constants of calcium chloride ion pairs from the data at 100{degree}C. However, at 150{degree}C the cumulative formation constants for CaCl{sup +} and CaCl{sup 0}{sub 2} are 0.85 and 1.73, respectively. The stability field for CaCl{sup +} decreases with increasing temperature, whereas that for CaCl{sup 0}{sub 2} increases sharply and at 360{degree}C K{sub 2} is 4.95 {center dot} 10{sup 4}. Higher order calcium chloride ion pairs either do not form or have stability fields too small to be detected by the methods used in this study. The neutral aqueous calcium chloride ion pair CaCl{sup 0}{sub 2} contributes significantly to calcium speciation in intermediate to high salinity hydrothermal solutions: at 250{degree}C, 50 mol percent of the calcium in a 1 m HCl solution occurs as CaCl{sup 0}{sub 2}. The effect of this ion pairing is to increase the pH stability limits and solubilities of calcium-bearing minerals in such solutions.

  16. Removal of Aluminum from Leaching Solution of Lepidolite by Adding Ammonium

    NASA Astrophysics Data System (ADS)

    Li, Huan; Kuang, Ge; Hu, Song; Guo, Hui; Jin, Ran; Vekariya, Rohit L.

    2016-08-01

    Lepidolite is a kind of low-grade lithium ore (3.5-4.0% Li2O) which contains more than 22% Al2O3 and 8% K2O. Removal and utilization of the Al and K will be very important for the economic extraction of lithium from this ore. In this paper, a novel method is proposed to remove Al from the leaching solution of lepidolite by adding ammonium from (NH4)2SO4. The results indicate that adding NH4 + could remove more aluminum and have a smaller loss of lithium in comparison to adding K+ for removing aluminum in the leaching solution. The Al removal reached up to 80.44% at (K+ + NH4 +)/Al3+ molar ratio of 0.95, while the amount of Li+ (99.84%) still remained in the leaching solution. In addition, the phase equilibrium in the quaternary K2SO4-Al2(SO4)3-(NH4)2SO4-H2O system at 278.2 K was investigated to support the above conclusion. The results verify that the addition of ammonium could remove more Al3+ by easily forming potassium alum (KAl(SO4)2·12H2O) and ammonium alum (NH4Al(SO4)2·12H2O).

  17. Removal of Aluminum from Leaching Solution of Lepidolite by Adding Ammonium

    NASA Astrophysics Data System (ADS)

    Li, Huan; Kuang, Ge; Hu, Song; Guo, Hui; Jin, Ran; Vekariya, Rohit L.

    2016-10-01

    Lepidolite is a kind of low-grade lithium ore (3.5-4.0% Li2O) which contains more than 22% Al2O3 and 8% K2O. Removal and utilization of the Al and K will be very important for the economic extraction of lithium from this ore. In this paper, a novel method is proposed to remove Al from the leaching solution of lepidolite by adding ammonium from (NH4)2SO4. The results indicate that adding NH4 + could remove more aluminum and have a smaller loss of lithium in comparison to adding K+ for removing aluminum in the leaching solution. The Al removal reached up to 80.44% at (K+ + NH4 +)/Al3+ molar ratio of 0.95, while the amount of Li+ (99.84%) still remained in the leaching solution. In addition, the phase equilibrium in the quaternary K2SO4-Al2(SO4)3-(NH4)2SO4-H2O system at 278.2 K was investigated to support the above conclusion. The results verify that the addition of ammonium could remove more Al3+ by easily forming potassium alum (KAl(SO4)2·12H2O) and ammonium alum (NH4Al(SO4)2·12H2O).

  18. Extraction of diethylhexylphthalate from total nutrient solution-containing polyvinyl chloride bags.

    PubMed

    Mazur, H I; Stennett, D J; Egging, P K

    1989-01-01

    Total nutrient solution (TNS) is a new method for delivering total parenteral nutrition (TPN) by admixing dextrose, amino acids, and lipids in a single container. Recommendations are to use nonpolyvinyl chloride (PVC) containers for admixture of these solutions. PVC is a hard, brittle, and inflexible substance, and plasticizers, predominantly diethylhexylphthalate (DEHP), are added to impart flexibility. DEHP is a lipid soluble suspected carcinogen, hepatotoxin, and teratogen which has been shown to leach from PVC products containing lipophilic admixtures. The purpose of this study was to quantitate the amount of DEHP which leaches from PVC bags containing TNS. Six study groups, which contained three formulas stored at 25 degrees C +/- 2 degrees C and 4 degrees C +/- 1 degree C, were assayed for DEHP at time 0, 12, 24, 48 and 72 hr, 1 wk, and 3 wk using high-performance liquid chromatography. The control group contained an amino acid source, a carbohydrate source, and standard electrolytes, and the other groups contained a 10% lipid source or a 20% lipid source in addition to the constituents of the control group. Lipid-containing groups demonstrated detectable levels of DEHP at 48 hr, and DEHP content increased in these groups throughout the 21-day study. DEHP concentrations were lower in lipid-containing groups stored at 4 degrees C than comparable groups stored at 25 degrees C.

  19. Peptide-based biocoatings for corrosion protection of stainless steel biomaterial in a chloride solution.

    PubMed

    Muruve, Noah G G; Cheng, Y Frank; Feng, Yuanchao; Liu, Tao; Muruve, Daniel A; Hassett, Daniel J; Irvin, Randall T

    2016-11-01

    In this work, PEGylated D-amino acid K122-4 peptide (D-K122-4-PEG), derived from the type IV pilin of Pseudomonas aeruginosa, coated on 304 stainless steel was investigated for its corrosion resistant properties in a sodium chloride solution by various electrochemical measurements, surface characterization and molecular dynamics simulation. As a comparison, stainless steel electrodes coated with non-PEGylated D-amino acid retroinverso peptide (RI-K122-4) and D-amino acid K122-4 peptide (D-K122-4) were used as control variables during electrochemical tests. It was found that the D-K122-4-PEG coating is able to protect the stainless steel from corrosion in the solution. The RI-K122-4 coating shows corrosion resistant property and should be investigated further, while the D-K122-4 peptide coating, in contrast, shows little to no effect on corrosion. The morphological characterizations support the corrosion resistance of D-K122-4-PEG on stainless steel. The adsorption of D-K122-4 molecules occurs preferentially on Fe2O3, rather than Cr2O3, present on the stainless steel surface.

  20. Peptide-based biocoatings for corrosion protection of stainless steel biomaterial in a chloride solution.

    PubMed

    Muruve, Noah G G; Cheng, Y Frank; Feng, Yuanchao; Liu, Tao; Muruve, Daniel A; Hassett, Daniel J; Irvin, Randall T

    2016-11-01

    In this work, PEGylated D-amino acid K122-4 peptide (D-K122-4-PEG), derived from the type IV pilin of Pseudomonas aeruginosa, coated on 304 stainless steel was investigated for its corrosion resistant properties in a sodium chloride solution by various electrochemical measurements, surface characterization and molecular dynamics simulation. As a comparison, stainless steel electrodes coated with non-PEGylated D-amino acid retroinverso peptide (RI-K122-4) and D-amino acid K122-4 peptide (D-K122-4) were used as control variables during electrochemical tests. It was found that the D-K122-4-PEG coating is able to protect the stainless steel from corrosion in the solution. The RI-K122-4 coating shows corrosion resistant property and should be investigated further, while the D-K122-4 peptide coating, in contrast, shows little to no effect on corrosion. The morphological characterizations support the corrosion resistance of D-K122-4-PEG on stainless steel. The adsorption of D-K122-4 molecules occurs preferentially on Fe2O3, rather than Cr2O3, present on the stainless steel surface. PMID:27524070

  1. Analysis of antibacterial efficacy of plasma-treated sodium chloride solutions

    NASA Astrophysics Data System (ADS)

    Hänsch, Mareike A. C.; Mann, Miriam; Weltmann, Klaus-Dieter; von Woedtke, Thomas

    2015-11-01

    In this study, the change of chemical composition of sodium chloride solutions (NaCl, 0.85%) induced by non-thermal atmospheric pressure plasma (APP) treatment and subsequent effects on bacteria (Escherichia coli) are investigated. Besides acidification caused by APP, hydrogen peroxide (H2O2), nitrite (\\text{NO}2- ), and nitrate (\\text{NO}3- ) are generated as stable end-products of various chemical reactions in APP-treated liquids. Inactivation kinetics and reduction factors were recorded for E. coli (K12). Almost identical antimicrobial effects were observed with both direct APP exposure to bacteria suspension and exposure of APP-treated liquids to bacteria (indirect treatment). Consequently, main bactericidal effects are caused by chemical reactions which are mediated via the liquid phase. Moreover, APP-treated liquids have shown long-term activity (30 min) that possibly correlates with the ratio of \\text{NO}2- /H2O2. Therefore, \\text{NO}2- and H2O2 are identified as key agents for antimicrobial short- and long-term effects, respectively. The antimicrobial stability observed is strongly dependent on the used treatment regime and correlates additionally with the altered chemical composition of APP-treated liquids. Besides these effects, it was also shown that bacteria do not acquire resistance to such APP-treated solutions.

  2. NEUTRALIZATIONS OF HIGH ALUMINUM LOW URANIUM USED NUCLEAR FUEL SOLUTIONS CONTAINING GADOLINIUM AS A NEUTRON POISON

    SciTech Connect

    Taylor-Pashow, K.

    2011-06-08

    H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS) high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected

  3. Specific features of the optical properties of potassium-aluminum borate glasses with copper chloride nanocrystals at high temperatures

    NASA Astrophysics Data System (ADS)

    Shirshnev, P. S.; Babkina, A. N.; Tsekhomskii, V. A.; Nikonorov, N. V.

    2015-09-01

    It is shown that heating of potassium-aluminum borate glasses with CuCl nanocrystals above 80°C leads to the disappearance of exciton absorption peaks, whereas cooling below 50°C gives rise to these peaks. These effects are related, respectively, to the melting of nanocrystals and crystallization of nanophase.

  4. Extraction of copper(II) from acid chloride solutions by N-dodecyl- and N,N-dihexylpyridinecarboxamides

    SciTech Connect

    Borowiak-Resterna, A.

    1999-01-01

    N-dodecyl- and N,N-dihexylpyridinecarboxamides with amide group at 2, 3 or 4 position were synthesized. Model individual amides were used to recover copper(II) from chloride solutions at constant water activity and constant total concentration of dissolved species in aqueous solution. It was found, that pyridine-2-carboxamide forms with copper complexes (CuCl{sub 2}){sub x}(Ext){sub 2}. Remaining amides form with copper complexes CuCl{sub 2}(Ext){sub 2}. Monoalkylamides are not suitable for extraction because they and their complexes are slightly soluble in the hydrocarbon diluents. N,N-dialkylpyridinecarboxamides and their copper complexes are sufficiently soluble in the hydrocarbon phase to carry out extraction. However, they are strong extractants and extract efficiently copper already from dilute chloride solutions ([Cl{sup {minus}}] = 0.1 M). They extract also significant amounts of copper from concentrated (3--4 M) nitrate solutions.

  5. Catalytic destruction of perchlorate in ferric chloride and hydrochloric acid solution with control of temperature, pressure and chemical reagents

    DOEpatents

    Gu, Baohua; Cole, David R.; Brown, Gilbert M.

    2004-10-05

    A method is described to decompose perchlorate in a FeCl.sub.3 /HCl aqueous solution such as would be used to regenerate an anion exchange resin used to remove perchlorate. The solution is mixed with a reducing agent, preferably an organic alcohol and/or ferrous chloride, and can be heated to accelerate the decomposition of perchlorate. Lower temperatures may be employed if a catalyst is added.

  6. Conformational structure and energetics of 2-methylphenyl(2'-methoxyphenyl)iodonium chloride: evidence for solution clusters.

    PubMed

    Lee, Yong-Sok; Hodoscek, Milan; Chun, Joong-Hyun; Pike, Victor W

    2010-09-10

    Diaryliodonium salts allow the efficient incorporation of cyclotron-produced [(18)F]fluoride ions into electron-rich and electron-deficient arenes to provide potential radiotracers for molecular imaging in vivo with positron emission tomography (PET). This process (ArI(+)Ar'+(18)F(-)→Ar(18)F+Ar'I) is still not well understood mechanistically. To better understand this and similar reactions, it would be valuable to understand the structures of diaryliodonium salts in organic media, where the reactions are typically conducted. In this endeavor, the X-ray structure of a representative iodonium salt, 2-methylphenyl(2'-methoxyphenyl)iodonium chloride (1), was determined. Our X-ray structure analysis showed 1 to have the conformational M-P dimer as the unit cell with hypervalent iodine as a stereogenic center in each conformer. With the ab initio replica path method we constructed the inversion path between the two enantiomers of 1, thereby revealing two additional pairs of enantiomers that are likely to undergo fast interconversion in solution. Also LC-MS of 1 showed the presence of dimeric and tetrameric anion-bridged clusters in weak organic solution. This observation is consistent with the energetics of 1, both as monomeric and dimeric forms in MeCN, calculated at the B3LYP/DGDZVP level. These evidences of the existence of dimeric and higher order clusters of 1 in solution are relevant to achieve a deeper general understanding of the mechanism and outcome of reactions of diaryliodonium salts in organic media with nucleophiles, such as the [(18)F]fluoride ion.

  7. Stress corrosion cracking and life prediction evaluation of austenitic stainless steels in calcium chloride solution

    SciTech Connect

    Leinonen, H.

    1996-05-01

    The stress corrosion cracking (SCC) susceptibility of austenitic stainless steels (SS) in calcium chloride solutions was studied using a constant-load method. Initiation and propagation of stress corrosion cracks were examined using fractography. The distribution of cracks was classified. A physical cracking was introduced, and creep deformation measurements were performed. The steady-state strain rate obtained from the corrosion elongation curve (elongation-vs-time curve) showed a linear function of time to failure (t{sub f}). This implied that {var_epsilon}{sub ss} can be applied as a parameter for prediction of t{sub f}. Furthermore, {var_epsilon}{sub ss} below which no failure occurs within a laboratory time scale was estimated. Based on results obtained, the critical values of stress below which no SCC occurred were evaluated. Based upon creep measurements in a noncorrosive environment, the influence of environment on {var_epsilon}{sub ss} was more than fivefold. Cracking characteristics were divided into three categories according to the crack initiation distribution. Transgranular cracking predominated at relatively low {sigma} and {var_epsilon}{sub ss}.

  8. Lithium chloride ionic association in dilute aqueous solution: a constrained molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhang, Zhigang; Duan, Zhenhao

    2004-02-01

    Constrained molecular dynamics simulations were carried out to investigate the lithium chloride ionic associations in dilute aqueous solutions over a wide temperature range. Solvent mediated potentials of mean force have been carefully calculated at different thermodynamic conditions. Two intermediate states of ionic association can be well identified with an energy barrier from the oscillatory free energy profile. Clear pictures for the microscopic association structures are presented with a remarkable feature of strong hydration effect of lithium ion and the bridging role of its hydrating complex. Experimental association constants have been reasonably reproduced and a general trend of the increasing ionic association at high temperatures and low densities was observed. Additional simulations with different numbers of water molecules have been performed to check the possible artifacts introducing from periodic and finite size effects and confirm the reliability of our simulation results. Marginal differences of the simulated curves are believed to result from the significant compensation and canceling effect between the bare ionic forces and solvent induced mean force. Finally we confirmed the importance of accurate descriptions of dielectric properties of solvent in the ionic association study.

  9. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2016-06-01

    In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate

  10. Solution Equilibria between Aluminum(III) Ion and L-histidine or L-tyrosine

    PubMed Central

    Jelic, Ratomir; Dzajevic, Dragana; Cvijovic, Mirjana

    2002-01-01

    Toxic effects due to high aluminum body loads were observed in a number of conditions following ingestion of Al-containing antacids. Bio-availability of aluminum depends not only on the solubility of the ingested salt but also on the physico-chemical properties of the soluble Al complexes formed in body fluids. Amino acids may, upon interaction with Al-salts, form absorbable Al-complexes. Hence, complex formation equilibria between Al3+ and either, L- histidine or L-tyrosine were studied by glass electrode potentiometric (0.1 mol/L LiCl ionic medium, 298 K), proton NMR and uv spectrophotometric measurements. Non linear least squares treatment of the potentiometric data indicates that in the concentration ranges: 0.5≤CA1≤2.0 ; 1.0≤CHis≤10.0; 2.5≤PH≤6.5, in Al3+ + His solutions, the following complexes (with log overall stability constants given in parenthesis) are formed: Al(HHis)3+(12.21±0.08); Al(His)2+, (7.25±0.08); and Al(HHis)His2+, (20.3±0.1). In Al3+ + Tyr solutions in the concentration range 1.0≤CTyr≤3.0 mmol/L and ligand to metal concentration ratio from 2:1 to 3:1, in the pH interval from 3.0 to 6.5 the formation of the following complexes was detected: Al(HTyr)2+, (12.72±0.09); Al(Tyr)2+, (10.16±0.03) and Al(OH)2Tyr , (2.70±0.05). Proton NMR data indicate that in Al(His)2+ complex histidine acts as a monodentate ligand but its bidentate coordination is possible with carboxylate oxygen and imidazole 1-nitrogen as donors. In Al(HTyr)3+ complex tyrosine is a monodentate ligand with carboxylate oxygen as donor. The mechanism of the formation of complexes in solution is discussed as well as their possible role in aluminum toxicity. PMID:18476000

  11. Anodic behavior of aluminum current collector in LiTFSI solutions with different solvent compositions

    NASA Astrophysics Data System (ADS)

    Morita, Masayuki; Shibata, Takuo; Yoshimoto, Nobuko; Ishikawa, Masashi

    The anodic behavior of aluminum (Al) current collector of Li-ion batteries has been investigated in organic electrolyte solutions containing lithium bis[trifluoromethylsulfonyl]imide (Li(CF 3SO 2) 2N: LiTFSI) with different compositions of solvents. The Al anode was subjected to anodic corrosion in the LiTFSI solution, but the degree of the corrosion depended on the solvent composition. The surface of Al pre-treated by mechanical polishing has suffered serious corrosion in the mixed solvent solution of ethylene carbonate (EC) and dimethyl carbonate (DMC), whereas the Al surface pre-treated by electro-polishing was relatively stable in the mixed solvent of γ-butyrolactone (GBL) and DMC. The results of electrochemical quartz crystal microbalance (EQCM) experiments showed that the mass change of the Al surface during the potential cycling in GBL + DMC was much different from that in the EC + DMC solution. Scanning electron microscope (SEM) observation proved that the corrosion pits evolved on the electro-polished Al surface after potential cycling, but GBL resulted in a smaller amount of the corrosion product on the Al surface.

  12. Aluminum Exposure in Neonatal Patients Using the Least Contaminated Parenteral Nutrition Solution Products

    PubMed Central

    Poole, Robert L.; Pieroni, Kevin P.; Gaskari, Shabnam; Dixon, Tessa; Kerner, John A.

    2012-01-01

    Aluminum (Al) is a contaminant in all parenteral nutrition (PN) solution component products. Manufacturers currently label these products with the maximum Al content at the time of expiry. We recently published data to establish the actual measured concentration of Al in PN solution products prior to being compounded in the clinical setting [1]. The investigation assessed quantitative Al content of all available products used in the formulation of PN solutions. The objective of this study was to assess the Al exposure in neonatal patients using the least contaminated PN solutions and determine if it is possible to meet the FDA “safe limit” of less than 5 μg/kg/day of Al. The measured concentrations from our previous study were analyzed and the least contaminated products were identified. These concentrations were entered into our PN software and the least possible Al exposure was determined. A significant decrease (41%–44%) in the Al exposure in neonatal patients can be achieved using the least contaminated products, but the FDA “safe limit” of less than 5 μg/kg/day of Al was not met. However, minimizing the Al exposure may decrease the likelihood of developing Al toxicity from PN. PMID:23201834

  13. Study of the uptake by duckweed of aluminum, copper, and lead from aqueous solution

    SciTech Connect

    Mo, S.C.; Choi, D.S.; Robinson, J.W.

    1988-01-01

    THE UPTAKE OF AL/sup 3 +/, CU/sup 2 +/, AND PB/sup 2 +/ FROM AQUEOUS SOLUTION BY DUCKWEED HAS BEEN OBSERVED AT PH 4.0, 4.5, AND 5.0. THE RESULTS SHOWED THAT THE UPTAKE OF PB/sup 2 +/ WAS MUCH FASTER THAN AL/sup 3 +/ AND CU/sup 2 +/. THE UPTAKE OF CU/sup 2 +/ WAS SUPPRESSED BY THE PRESENCE OF PB/sup 2 +/ AND AL/sup 3 +/. THE PROPORTION OF METAL UPTAKE (PMUT) BY DUCKWEED WAS DEPENDENT ON THE METAL CONCENTRATION IN THE SOLUTION WHEN ONLY ONE KIND OF METAL ION WAS PRESENT. IT WAS DECREASED BY INCREASING CONCENTRATIONS OF OTHER METALS IN MIXTURES OF SOLUTIONS. THE METAL UPTAKE BY THE DUCKWEED WAS ALWAYS LESS THAN THE LOSS OF METAL CONTENT IN THE RELEVANT SOLUTION. THIS FACT IMPLIED THAT THE PROCESS OF THE UPTAKE OF METAL IONS BY THE DUCKWEED MAY INVOLVE TWO STAGES. IN THE FIRST, THE METAL IS ABSORBED BUT THEN LATER IT IS ADSORBED BY THE DUCKWEED. THE ALUMINUM ION WAS FOUND TO BE MORE TOXIC THAN THE COPPER ION AT LOWER PH AND HIGHER CONCENTRATION, BUT THE SITUATION IS REVERSED AT HIGHER PH. A POSSIBLE EXPLANATION OF TOXICITY OF CU/sup 2 +/ AND AL/sup 3 +/ IN CHLOROPHYLL WAS REPLACED BY THE CU/sup 2 +/ OR AL/sup 3 +/. THIS MAY LEAD THE CHLOROPHYLL TO LOSE ITS NORMAL ACTIVITY AND KILL THE DUCKWEED.

  14. Generation of Chloride Active Defects at the Aluminum Oxide Surface for the Study of Localized Corrosion Initiation

    SciTech Connect

    Barbour, J.C.; Missert, N.; Son, K.-A; Wall, F.D.; Zavadil, K.R.

    1998-12-07

    The generation of surface defects on electron cyclotron resonance (ECR) plasma derived aluminum oxide films has been studied. We find that Cl active O vacancies can be generated using electron and ion irradiation yielding surface concentrations of 3 xl 013 to 1X1014 sites"cm-2. These values correspond to surface defect concentrations of 3 to 10% when compared to ordered, crystalline u-alumina. The vacancies appear to be responsible for increased surface O concentrations when immersed in water. Anodic polarization of irradiated films yields a decrease in the stable pitting potential which correlates with electron dose.

  15. Aqueous Solutions of the Ionic Liquid 1-butyl-3-methylimidazolium Chloride Denature Proteins

    SciTech Connect

    Baker, Gary A; Heller, William T

    2009-01-01

    As we advance our understanding, ionic liquids (ILs) are finding ever broader scope within the chemical sciences including, most recently, pharmaceutical, enzymatic, and bioanalytical applications. With examples of enzymatic activity reported in both neat ILs and in IL/water mixtures, enzymes are frequently assumed to adopt a quasi-native conformation, even if little work has been carried out to date toward characterizing the conformation, dynamics, active-site perturbation, cooperativity of unfolding transitions, free energy of stabilization, or aggregation/oligomerization state of enzymes in the presence of an IL solvent component. In this study, human serum albumin and equine heart cytochrome c were characterized in aqueous solutions of the fully water-miscible IL 1-butyl-3-methylimidazolium chloride, [bmim]Cl, by small-angle neutron and X-ray scattering. At [bmim]Cl concentrations up to 25 vol.%, these two proteins were found to largely retain their higher-order structures whereas both proteins become highly denatured at the highest IL concentration studied here (i.e., 50 vol.% [bmim]Cl). The response of these proteins to [bmim]Cl is analogous to their behavior in the widely studied denaturants guanidine hydrochloride and urea which similarly lead to random coil conformations at excessive molar concentrations. Interestingly, human serum albumin dimerizes in response to [bmim]Cl, whereas cytochrome c remains predominantly in monomeric form. These results have important implications for enzymatic studies in aqueous IL media, as they suggest a facile pathway through which biocatalytic activity can be altered in these nascent and potentially green electrolyte systems.

  16. Structure and corrosive wear resistance of plasma-nitrided alloy steels in 3% sodium chloride solutions

    SciTech Connect

    Lee, C.K.; Shih, H.C. . Dept. of Materials Science and Engineering)

    1994-11-01

    Type 304 stainless steel (SS), type 410 SS, and type 4140 low-alloy steel were plasma nitrided in a commercial furnace at 560 C for 50 h. Microstructure and the composition of the nitrided layer were analyzed. The resistance to corrosive wear was evaluated by a tribotest in which the specimen was held under potentiostatic control at anodic and cathodic potentials in 3% sodium chloride solution (pH 6.8). Electrochemical polarization measurements were made, and the surface morphology and composition after corrosive wear were examined. Wear rates at cathodic potentials were very low, but significant weight losses were observed as the applied potentials were increased anodically. The coefficient of friction varied in a fashion similar to the wear rate. For the untreated alloys, the magnitude of the wear rate and coefficient of friction decreased as follows: type 4140 alloy > type 41 SS > type 304 SS. For the plasma-nitrided alloys, the ranking was: type 304 SS > type 410 SS. type 4140 alloy. Plasma nitriding was shown to be beneficial to the corrosive wear resistance of type 4140 alloy, but an adverse effect was obtained for types 304 and 410 SS. These findings could be interpreted in terms of the electrochemical polarization characteristics of a static specimen and were strongly related to the subtleties of the nitrided microstructures. The stable chromium nitride (CrN) segregated in the [gamma]-iron (type 304 SS) and [alpha]-Fe (type 41 SS) matrices and resulted in a pitting and spalling type of corrosive wear mechanism. The phases [epsilon]-(Fe, Cr)[sub 2-3]N and [gamma]-(Fe, Cr)[sub 4]N enriched in the surface layer of nitrided type 4140 alloy provided excellent corrosive wear resistance.

  17. Corrosion Mitigation of Copper in Acidic Chloride Pickling Solutions by 2-Amino-5-ethyl-1,3,4-thiadiazole

    NASA Astrophysics Data System (ADS)

    Sherif, El-Sayed M.

    2010-08-01

    Corrosion of copper in acidic chloride pickling solutions of 0.5 M HCl and its mitigation by 2-amino-5-ethyl-1,3,4-thiadiazole (AETDA) have been investigated using potentiodynamic polarization, chronoamperometry, electrochemical impedance spectroscopy (EIS), and weight-loss measurements. The study was also complemented by scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and UV-Visible absorption spectroscopy investigations. The presence of AETDA and the increase of its concentration in the chloride solutions greatly decreased the corrosion rate and increased the surface and polarization resistances of copper as indicated by the electrochemical measurements. Weight-loss data also indicated that AETDA decreases the dissolution of copper coupons in the studied chloride solution. SEM/EDX investigations showed that AETDA molecules are strongly adsorbed onto copper surface. The UV-Visible absorption spectra confirmed that AETDA molecules suppress the corrosion of copper via their interactions with the copper surface via their adsorption then formation of AETDA-Cu complex.

  18. Effect of Organic Acid Additions on the General and Localized Corrosion Susceptibility of Alloy 22 in Chloride Solutions

    SciTech Connect

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Ilevbare, G O; Rebak, R B

    2007-08-28

    Electrochemical studies such as cyclic potentiodynamic polarization (CPP) and electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 (N06022) in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. All the tested material was wrought Mill Annealed (MA). Tests were also performed in NaCl solutions containing weak organic acids such as oxalic, acetic, citric and picric. Results show that the corrosion rate of Alloy 22 was significantly higher in solutions containing oxalic acid than in solutions of pure NaCl at the same pH. Citric and picric acids showed a slightly higher corrosion rate, and acetic acid maintained the corrosion rate of pure chloride solutions at the same pH. Organic acids revealed to be weak inhibitors for crevice corrosion. Higher concentration ratios, compared to nitrate ions, were needed to completely inhibit crevice corrosion in chloride solutions. Results are discussed considering acid dissociation constants, buffer capacity and complex formation constants of the different weak acids.

  19. Optical Properties of Sodium Chloride Solution Within the Spectral Range from 300 to 2500 nm at Room Temperature.

    PubMed

    Li, Xingcan; Liu, Linhua; Zhao, Junming; Tan, Jianyu

    2015-05-01

    The optical properties of sodium chloride (NaCl) solution were experimentally determined by double optical pathlength transmission method in the spectral range from 300 to 2500 nm at the NaCl concentration range from 0 to 360 g/L. The results show that the refractive index of NaCl solution increases with NaCl concentrations and correlates nonlinearly with the concentration of NaCl solution. The absorption index of NaCl solution increases with NaCl concentrations in the visible spectral range of 300-700 nm, but varies little in the near-infrared spectral range of 700-2500 nm at room temperature. For the sake of applications, the fitted formulae of the refractive index and absorption index of NaCl solution as a function of wavelength and NaCl concentration are presented.

  20. The interaction of aluminum with silicic acid in dilute solution and its biological relevance

    SciTech Connect

    Chappell, J.S.; Birchall, J.D. )

    1988-09-01

    The affinity of silicic acid, Si(OH){sub 4}, for aluminum is a unique one in chemistry, owing to ionic size, charge, and coordination geometry of the species involved. The chemistry of aluminosilicates generally has been concerned with the solid state (minerals such as clays, feldspars and zeolites), and relatively little attention has been given to the species which exist in solution since aluminosilicates are highly insoluble near neutral pH. However, under dilute conditions the kinetics of colloid formation can be quite slow and the soluble precursors to a solid phase may be reasonably metastable. When equilibrium is approached, the solubility levels are typically 0.05-0.28 {mu}mol/L Al and 18-210 {mu}mol/L Si. These soluble species are usually regarded as simple hydroxyaluminum ions and silicic acid, although it remains arguable as to whether these species may be associated with each other. The formation of a stable soluble specie would allow for molecular aluminosilicates to exist at below saturation levels. So at concentrations above saturation stable aluminosilicates do form (as a part of an insoluble phase), and they may possibly exist at below saturation (as a stable soluble specie). This interaction is then relevant to biology, where human plasma levels (0.06-0.54 {mu}mol/L Al, 14-39 {mu}mol/L Si) (6,7) fall among saturation values. There is a growing concern over the toxic effects of aluminum, but its chemistry with silicic acid has not been addressed. This chemistry is the topic of this study.

  1. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites.

    PubMed

    Yan, Liang-guo; Xu, Yuan-yuan; Yu, Hai-qin; Xin, Xiao-dong; Wei, Qin; Du, Bin

    2010-07-15

    Phosphorus removal is important for the control of eutrophication, and adsorption is an efficient treatment process. In this study, three modified inorganic-bentonites: hydroxy-aluminum pillared bentonite (Al-Bent), hydroxy-iron pillared bentonite (Fe-Bent), and mixed hydroxy-iron-aluminum pillared bentonite (Fe-Al-Bent), were prepared and characterized, and their phosphate adsorption capabilities were evaluated in batch experiments. The results showed a significant increase of interlayer spacing, BET surface area and total pore volume which were all beneficial to phosphate adsorption. Phosphate adsorption capacity followed the order: Al-Bent>Fe-Bent>Fe-Al-Bent. The adsorption rate of phosphate on the adsorbents fits pseudo-second-order kinetic models (R(2)=1.00, 0.99, 1.00, respectively). The Freundlich and Langmuir models both described the adsorption isotherm data well. Thermodynamic studies illustrated that the adsorption process was endothermic and spontaneous in nature. Finally, phosphate adsorption on the inorganic pillared bentonites significantly raised the pH, indicating an anion/OH(-) exchange reaction.

  2. Removal of trivalent chromium from aqueous solution using aluminum oxide hydroxide.

    PubMed

    Bedemo, Agaje; Chandravanshi, Bhagwan Singh; Zewge, Feleke

    2016-01-01

    Water is second most essential for human being. Contamination of water makes it unsuitable for human consumption. Chromium ion is released to water bodies from various industries having high toxicity which affects the biota life in these waters. In this study aluminum oxide hydroxide was tested for its efficiency to remove trivalent chromium from aqueous solutions through batch mode experiments. Chromium concentrations in aqueous solutions and tannery waste water before and after adsorption experiments were determined using flame atomic absorption spectrometry. The effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(III) were studied. The study revealed that more than 99 % removal of Cr(III) was achieved over wide range of initial pH (3-10). The optimum conditions for the removal of Cr(III) were found to be at pH 4-6 with 40 g/L adsorbent dose at 60 min of contact time. The adsorption capacity was assessed using Langmuir and Freundlich isotherms. The equilibrium data at varying adsorbent dose obeyed the two isotherms. The adsorbent was found to be efficient for the removal of Cr(III) from tannery waste effluent. PMID:27547663

  3. Solute-Derived Thermal Stabilization of Nano-sized Grains in Melt-Spun Aluminum

    NASA Astrophysics Data System (ADS)

    Baker, A. H.; Sanders, P. G.; Lass, E. A.; Kapoor, Deepak; Kampe, S. L.

    2016-08-01

    Thermal stabilization of nanograined metallic microstructures (or nanostructures) can be difficult due to the large driving force for growth that arises from the inherently significant boundary area. Kinetic approaches for stabilization of the nanostructure effective at low homologous temperatures often fail at higher homologous temperatures. Alternatively, thermodynamic approaches for thermal stabilization may offer higher temperature stability. In this research, modest alloying of aluminum with solute (1 pct by mole Sc, Yb, or Sr) was examined as a means to thermodynamically stabilize a bulk nanostructure at elevated temperatures. Following 1-hour annealing treatments at 673 K (400 °C) (0.72 Tm), 773 K (500 °C) (0.83 Tm), and 873 K (600 °C) (0.94 Tm), the alloys remain nanocrystalline (<100 nm) as measured by Warren-Averbach Fourier analysis of X-ray diffraction peaks and direct observation of TEM dark-field micrographs, with the efficacy of stabilization: Sr ≈ Yb > Sc. The disappearance of intermetallic phases in the Sr- and Yb-containing alloys in the X-ray diffraction spectra is observed to occur coincident with the stabilization after annealing, suggesting that precipitates dissolve and the boundaries are enriched with solute.

  4. Aluminum Chloride Induces Osteoblasts Apoptosis via Disrupting Calcium Homeostasis and Activating Ca(2+)/CaMKII Signal Pathway.

    PubMed

    Cao, Zheng; Liu, Dawei; Zhang, Qiuyue; Sun, Xudong; Li, Yanfei

    2016-02-01

    Aluminum promotes osteoblast (OB) apoptosis. Apoptosis is induced by the disordered calcium homeostasis. Therefore, to investigate the relationship between Al-induced OB apoptosis and calcium homeostasis, calvarium OBs from neonatal rats (3-4 days) were cultured and exposed to 0.048-mg/mL Al(3+) or 0.048-mg/mL Al(3+) combined with 5 μM BAPTA-AM (OBs were pretreated with 5 μM BAPTA-AM for 1 h, then added 0.048 mg/mL Al(3+)), respectively. Then OB apoptosis rate, intracellular calcium ions concentration ([Ca(2+)]i), mRNA expression level of calmodulin (CaM), and protein expression levels of CaM and p-CaMKII in OBs were examined. The result showed that AlCl3 increased OB apoptosis rate, and [Ca(2+)]i and p-CaMKII expression levels and decreased CaM expression levels, whereas BAPTA-AM relieved the effects. These results proved that AlCl3 induced OB apoptosis by disrupting the intracellular Ca(2+) homeostasis and activating the Ca(2+)/CaMKII signal pathway. Our findings can provide new insights for revealing the apoptosis mechanism of OBs exposed to AlCl3.

  5. Effect of benzalkonium chloride-free latanoprost ophthalmic solution on ocular surface in patients with glaucoma

    PubMed Central

    Walimbe, Tejaswini; Chelerkar, Vidya; Bhagat, Purvi; Joshi, Abhijeet; Raut, Atul

    2016-01-01

    Introduction Benzalkonium chloride (BAK), included as a preservative in many topical treatments for glaucoma, induces significant toxicity and alters tear breakup time (TBUT). BAK-containing latanoprost, an ester prodrug of prostaglandin F2α, can cause ocular adverse events (AEs) associated with BAK. The purpose of this study was to evaluate the efficacy and safety of BAK-free latanoprost. Patients and methods A prospective, open-label, single-arm, multicenter, 8-week study in patients with primary open-angle glaucoma or ocular hypertension taking BAK-containing latanoprost for ≥12 months was performed. Patients were switched to BAK-free latanoprost ophthalmic solution 0.005% administered once daily, and eyes were assessed after 28 and 56 days. Primary efficacy and safety variables were TBUT and treatment-emergent AEs, respectively. Results At day 56, 40 eyes were evaluable. Mean TBUT increased significantly from baseline (3.67±1.60 seconds) to 5.03±2.64 and 6.06±3.39 seconds after 28 and 56 days of treatment with BAK-free latanoprost (P<0.0001). Ocular Surface Disease Index© (OSDI©) score also decreased significantly to 12.06±13.40 and 7.06±10.75 at 28 and 56 days, respectively, versus baseline (18.09±18.61, P<0.0001). In addition, inferior corneal staining score decreased significantly to 0.53 from baseline (0.85, P=0.0033). A reduction in conjunctival hyperemia and intraocular pressure was observed at both time points. No treatment-related serious AEs were evident and 12 (26.08%) treatment-emergent AEs occurred in seven patients, with eye pain and irritation being the most frequent. No clinically significant changes in vital signs or slit lamp examinations were observed. Conclusion Results indicate that switching from BAK-containing latanoprost to BAK-free latanoprost resulted in significant improvements in TBUT, OSDI© score, and inferior corneal staining score, and measurable reductions in conjunctival hyperemia score. Furthermore, BAK

  6. Analysis of the corrosion of carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    SciTech Connect

    Diercks, D.R.; Kassner, T.F.

    1988-04-01

    An analysis of literature data on the corrosion of carbon steels in anoxic brines and acid chloride solutions was performed, and the results were used to assess the expected life of high-level nuclear waste package containers in a salt repository environment. The corrosion rate of carbon steels in moderately acidic aqueous chloride environments obeys an Arrhenius dependence on temperature and a (pH{sub 2}){sup {minus}1/2} dependence on hydrogen partial pressure. The cathodic reduction of water to produce hydrogen is the rate-controlling step in the corrosion process. An expression for the corrosion rate incorporating these two dependencies was used to estimate the corrosion life of several proposed waste package configurations. 42 refs., 11 figs., 2 tabs.

  7. Effects of temperature and pressure on stress corrosion cracking behavior of 310S stainless steel in chloride solution

    NASA Astrophysics Data System (ADS)

    Zhong, Yunpan; Zhou, Cheng; Chen, Songying; Wang, Ruiyan

    2016-06-01

    310S is an austenitic stainless steel for high temperature applications, having strong resistance of oxidation, hydrogen embrittlement and corrosion. Stress corrosion cracking(SCC) is the main corrosion failure mode for 310S stainless steel. Past researched about SCC of 310S primarily focus on the corrosion mechanism and influence of temperature and corrosive media, but few studies concern the combined influence of temperature, pressure and chloride. For a better understanding of temperature and pressure's effects on SCC of 310S stainless steel, prepared samples are investigated via slow strain rate tensile test(SSRT) in different temperature and pressure in NACE A solution. The result shows that the SCC sensibility indexes of 310S stainless steel increase with the rise of temperature and reach maximum at 10MPa and 160°C, increasing by 22.3% compared with that at 10 MPa and 80 °C. Instead, the sensibility decreases with the pressure up. Besides, the fractures begin to transform from the ductile fracture to the brittle fracture with the increase of temperature. 310S stainless steel has an obvious tendency of stress corrosion at 10MPa and 160°C and the fracture surface exists cleavage steps, river patterns and some local secondary cracks, having obvious brittle fracture characteristics. The SCC cracks initiate from inclusions and tiny pits in the matrix and propagate into the matrix along the cross section gradually until rupture. In particular, the oxygen and chloride play an important role on the SCC of 310S stainless steel in NACE A solution. The chloride damages passivating film, causing pitting corrosion, concentrating in the cracks and accelerated SSC ultimately. The research reveals the combined influence of temperature, pressure and chloride on the SCC of 310S, which can be a guide to the application of 310S stainless steel in super-heater tube.

  8. Infrared optical constants of crystalline sodium chloride dihydrate: application to study the crystallization of aqueous sodium chloride solution droplets at low temperatures.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Schnaiter, Martin

    2012-08-23

    Complex refractive indices of sodium chloride dihydrate, NaCl·2H(2)O, have been retrieved in the 6000-800 cm(-1) wavenumber regime from the infrared extinction spectra of crystallized aqueous NaCl solution droplets. The data set is valid in the temperature range from 235 to 216 K and was inferred from crystallization experiments with airborne particles performed in the large coolable aerosol and cloud chamber AIDA at the Karlsruhe Institute of Technology. The retrieval concept was based on the Kramers-Kronig relationship for a complex function of the optical constants n and k whose imaginary part is proportional to the optical depth of a small particle absorption spectrum in the Rayleigh approximation. The appropriate proportionality factor was inferred from a fitting algorithm applied to the extinction spectra of about 1 μm sized particles, which, apart from absorption, also featured a pronounced scattering contribution. NaCl·2H(2)O is the thermodynamically stable crystalline solid in the sodium chloride-water system below the peritectic at 273.3 K; above 273.3 K, the anhydrous NaCl is more stable. In contrast to anhydrous NaCl crystals, the dihydrate particles reveal prominent absorption signatures at mid-infrared wavelengths due to the hydration water molecules. Formation of NaCl·2H(2)O was only detected at temperatures clearly below the peritectic and was first evidenced in a crystallization experiment conducted at 235 K. We have employed the retrieved refractive indices of NaCl·2H(2)O to quantify the temperature dependent partitioning between anhydrous and dihydrate NaCl particles upon crystallization of aqueous NaCl solution droplets. It was found that the temperature range from 235 to 216 K represents the transition regime where the composition of the crystallized particle ensemble changes from almost only NaCl to almost only NaCl·2H(2)O particles. Compared to the findings on the NaCl/NaCl·2H(2)O partitioning from a recent study conducted with micron

  9. Infrared optical constants of crystalline sodium chloride dihydrate: application to study the crystallization of aqueous sodium chloride solution droplets at low temperatures.

    PubMed

    Wagner, Robert; Möhler, Ottmar; Schnaiter, Martin

    2012-08-23

    Complex refractive indices of sodium chloride dihydrate, NaCl·2H(2)O, have been retrieved in the 6000-800 cm(-1) wavenumber regime from the infrared extinction spectra of crystallized aqueous NaCl solution droplets. The data set is valid in the temperature range from 235 to 216 K and was inferred from crystallization experiments with airborne particles performed in the large coolable aerosol and cloud chamber AIDA at the Karlsruhe Institute of Technology. The retrieval concept was based on the Kramers-Kronig relationship for a complex function of the optical constants n and k whose imaginary part is proportional to the optical depth of a small particle absorption spectrum in the Rayleigh approximation. The appropriate proportionality factor was inferred from a fitting algorithm applied to the extinction spectra of about 1 μm sized particles, which, apart from absorption, also featured a pronounced scattering contribution. NaCl·2H(2)O is the thermodynamically stable crystalline solid in the sodium chloride-water system below the peritectic at 273.3 K; above 273.3 K, the anhydrous NaCl is more stable. In contrast to anhydrous NaCl crystals, the dihydrate particles reveal prominent absorption signatures at mid-infrared wavelengths due to the hydration water molecules. Formation of NaCl·2H(2)O was only detected at temperatures clearly below the peritectic and was first evidenced in a crystallization experiment conducted at 235 K. We have employed the retrieved refractive indices of NaCl·2H(2)O to quantify the temperature dependent partitioning between anhydrous and dihydrate NaCl particles upon crystallization of aqueous NaCl solution droplets. It was found that the temperature range from 235 to 216 K represents the transition regime where the composition of the crystallized particle ensemble changes from almost only NaCl to almost only NaCl·2H(2)O particles. Compared to the findings on the NaCl/NaCl·2H(2)O partitioning from a recent study conducted with micron

  10. High efficient removal of fluoride from aqueous solution by a novel hydroxyl aluminum oxalate adsorbent.

    PubMed

    Wu, Shibiao; Zhang, Kaisheng; He, Junyong; Cai, Xingguo; Chen, Kai; Li, Yulian; Sun, Bai; Kong, Lingtao; Liu, Jinhuai

    2016-02-15

    A novel adsorbent, hydroxyl aluminum oxalate (HAO), for the high efficient removal of fluoride from aqueous solution was successfully synthesized. The adsorbent was characterized and its performance in fluoride (F(-)) removal was evaluated for the first time. Kinetic data reveal that the F(-) adsorption is rapid in the beginning followed by a slower adsorption process; 75.9% adsorption can be achieved within 1min and only 16% additional removal occurred in the following 239min. The F(-) adsorption kinetics was well described by the pseudo second-order kinetic model. The calculated adsorption capacity of this adsorbent for F(-) by Langmuir model was 400mgg(-1) at pH 6.5, which is one of the highest capabilities of today's materials. The thermodynamic parameters calculated from the temperature-dependent isotherms indicate that the adsorption reaction of F(-) on the HAO is a spontaneous process. The FT-IR spectra of HAO before and after adsorbing F(-) show adsorption mechanism should be hydroxyl and oxalate interchange with F(-). PMID:26624529

  11. Structural, dynamic, and transport properties of concentrated aqueous sodium chloride solutions under an external static electric field.

    PubMed

    Ren, Gan; Shi, Rui; Wang, Yanting

    2014-04-24

    In the absence of an external electric field, it has already been known that ion clusters are formed instantaneously in moderately concentrated ionic solutions. In this work, we use molecular dynamics (MD) simulations to investigate the changes of structural, dynamic, and transport properties in a sodium chloride solution under an external electric field from the ion cluster perspective. Our MD simulation results indicate that, with a strong external electric field E (≥0.1 V/nm) applied, ion clusters become smaller and less net charged, and the structures and dynamics as well as transport properties of the ion solution become anisotropic. The influence of the cluster structure and shell structure to transport properties was analyzed and the Einstein relation was found invalid in this system.

  12. Development of a Combined Solution Formulation of Atropine Sulfate and Obidoxime Chloride for Autoinjector and Evaluation of Its Stability

    PubMed Central

    Ettehadi, Hossein Ali; Ghalandari, Rouhollah; Shafaati, Alireza; Foroutan, Seyed Mohsen

    2013-01-01

    Atropine (AT) and oximes, alone or in combination, have been proven greatly valuable therapeutics in the treatment of organophosphates intoxications. An injectable mixture of AT and obidoxime (OB) was formulated for the administration by automatic self-injector. The aqueous single dose solution contained 275 mg obidoxime chloride and 2.5 mg atropine sulfate per 1 mL (220 mg and 2 mg per 0.8 effective dose, respectively). The final solution was sterilized by filtration through a 0.22 μm pore size filter. This more concentrated solution allowed to use a smaller size and lighter weight cartridge. Quality control tests, including assay of the two major compounds were performed separately, using reversed-phase HPLC methods. Besides, the stability test was carried out according to ICH guideline for the accelerated test. The obtained results showed that the proposed formulation is stable over a period of 2 years after preparation. PMID:24250669

  13. Analysis of corrosion data for carbon steels in simulated salt repository brines and acid chloride solutions at high temperatures

    SciTech Connect

    Diercks, D.R.; Hull, A.B.; Kassner, T.F.

    1988-03-01

    Carbon steel is currently the leading candidate material for fabrication of a container for isolation of high level nuclear waste in a salt repository. Since brine entrapped in the bedded salt can migrate to the container by several transport processes, corrosion is an important consideration in the long-term performance of the waste package. A detailed literature search was performed to compile relevant corrosion data for carbon steels in anoxic acid chloride solutions, and simulated salt repository brines at temperatures between approx. 20 and 400/sup 0/C. The hydrolysis of Mg/sup 2 +/ ions in simulated repository brines containing high magnesium concentrations causes acidification at temperatures above 25/sup 0/C, which, in turn, influences the protective nature of the magnetite corrosion product layer on carbon steel. The corrosion data for the steels were analyzed, and an analytical model for general corrosion was developed to calculate the amount of penetration (i.e., wall thinning) as a function of time, temperature, and the pressure of corrosion product hydrogen than can build up during exposure in a closed system (e.g., a sealed capsule). Both the temperature and pressure dependence of the corrosion rate of steels in anoxic acid chloride solutions indicate that the rate-controlling partial reaction is the cathodic reduction of water to form hydrogen. Variations in the composition and microstructure of the steels or the concentration of the ionic species in the chloride solutions (provided that they do not change the pH significantly) do not appear to strongly influence the corrosion rate.

  14. A statistical assessment of the quantitative uptake of vinyl chloride monomer from aqueous solution.

    PubMed

    Withey, J R; Collins, B T

    1976-11-01

    The presence of vinyl chloride monomer (VCM) in foodstuffs and its demonstrated carcinogenic potential when administered by the oral route has raised questions concerning the quantitative estimation of the safety of the use of food packaging fabricated from rigid polyvinyl chloride. A statistical model, which was tested by curve-fitting data obtained from an oral uptake study, has been demonstrated to be of predictive value. Ninety-five percent condifence limits were also calculated, and the data from this study were compared with those from a previous gas phase exposure study. It was concluded that if the total daily liquid intake contained 20 ppm of VCM then the area generated under the blood level-time curve, for rats, would be equivalent to an inhalation exposure of about 2 ppm for 24 hr.

  15. Molecular dynamics study on the growth of structure I methane hydrate in aqueous solution of sodium chloride.

    PubMed

    Tung, Yen-Tien; Chen, Li-Jen; Chen, Yan-Ping; Lin, Shiang-Tai

    2012-12-01

    The structure, thermodynamic, and kinetic properties of methane hydrates formed from the aqueous solution of sodium chloride are investigated based on molecular dynamics simulations. A three-phase molecular model consisting of a slab of methane hydrate phase, a slab of liquid water containing sodium chloride, and a gas phase of methane molecules is used. The decrease in the three-phase coexisting temperatures (by 2-3 K) at different pressures (10-100 MPa) for aqueous NaCl solutions (about 2 mol %) confirms the thermodynamic inhibition of NaCl. The growth rate of methane hydrates in NaCl solution is found to be half to one-third of that in pure water. The kinetic inhibition of NaCl is found to be a result of the reduced water repelling at the growing interface due to the strong hydration of ions. Individual ions or NaCl ion pairs can replace water molecules to participate in the formation of the cage structures. The distortion of water cages due to the presence of ions may result in a reduced fraction of occupation of methane in the cage cavities. Our results provide useful insights into the mechanism of growth of methane hydrates in seawater and the desalination.

  16. Effect of divalent ions on electroosmotic transport in a sodium chloride aqueous solution confined in an amorphous silica nanochannel

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; Zambrano, Harvey; Cevheri, Necmettin; Yoda, Minami; Computational Micro-; Nanofluidics Lab Team; The Fluids, Optical; Interfacial Diagnostics Lab Team

    2012-11-01

    A critical enabling technology for the next generation of nanoscale devices, such as nanoscale ``lab on a chip'' systems, is controlling electroosmotic flow (EOF) in nanochannels. In this work, we control EOF in an aqueous sodium chloride (NaCl) solution confined in a silica nanochannel by systematically adding different amounts of divalent ions. Multivalent ions have a different affinity for the silica surface and different hydration characteristics in comparison to monovalent ions. Therefore by adding Mg++ and Ca++ to the sodium chloride solution, the electroosmotic velocity and the structure of the electrical double layer will be modified. The effects of adding Mg++ and Ca++ will be compared using non-equilibrium molecular dynamics simulations of the EOF at different electric fields of a NaCl solution in a silica nanochannel with different fractions of Ca++ and Mg++ ions. In general, the wall zeta-potential magnitude, and hence the EOF velocity, decreases as the Ca++ or Mg++ concentration increases. The system responds linearly with electric field. We will compare the computational results with the experimental data of Cevheri and Yoda (2012). This work is supported by Army Research Office (ARO) grant number W911NF1010290.

  17. Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin

    NASA Astrophysics Data System (ADS)

    Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.

    2016-01-01

    This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.

  18. Comparison of Electrochemical Methods to Determine Crevice Corrosion Repassivation Potential of Alloy 22 in Chloride Solutions

    SciTech Connect

    K. Evans; A. Yilmaz; S. Day; L. Wong; J. Estill

    2004-08-23

    Alloy 22 (N06022) is a nickel-based alloy highly resistant to corrosion. In some aggressive conditions of high chloride concentration, temperature and applied potential, Alloy 22 may suffer crevice corrosion, a form of localized corrosion. There are several electrochemical methods that can be used to determine localized corrosion in metallic alloys. One of the most popular for rapid screening is the cyclic potentiodynamic polarization (CPP). This work compares the repassivation potentials obtained using CPP to related repassivation potential values obtained using the Tsujikawa-Hisamatsu Electrochemical (THE) method and the potentiostatic (POT) method. Studied variables included temperature and chloride concentration. The temperature was varied from 30 C and 120 C and the chloride concentration was varied between 0.0005 M to 4 M. Results show that similar repassivation potentials were obtained for Alloy 22 using CPP and THE methods. Generally, under more aggressive conditions, the repassivation potentials were more conservative using the CPP method. POT tests confirmed the validity of the repassivation potential as a threshold below which localized corrosion does not nucleate. The mode of attack in the tested specimens varied depending if the test method was CPP or THE; however, the repassivation potential remained the same.

  19. TOPICAL 0.03% ATROPINE VS. 15% ALUMINUM CHLORIDE IN TREATING MULTIPLE ECCRINE HIDROCYSTOMAS: A RANDOMIZED SINGLE BLIND CONTROLLED STUDY

    PubMed Central

    Amirhoushang, Ehsani; Mostafa, Mirshams Shashahani; Maryam, Akhyani; Pardis, Noormohamadpour; Pedram, Noormohamadpour

    2010-01-01

    Background: Multiple eccrine hidrocystomas pose a significant treatment challenge due to their facial location and tendency to scar after traditional surgical and other destructive modalities. Aims: To compare two frequently used non-destructive therapeutic modalities. Materials and Methods: Thirty patients with multiple eccrine hidrocystomas were enrolled in the study. They used topical 0.03% Atropine cream and 15% AlCl3 solution on left and right sides of their face randomly for 4 weeks. All the patients were visited before commencing the therapy as well as two and four weeks later by a dermatologist, blinded to the drugs and the number of lesions. Results: Twenty nine patients (25 females, four males) completed the study. The mean reduction in the number of lesions was significantly higher with Atropine cream in comparison with AlCl3 solution, 10.2±7.4 vs. 6.2±5.3 (P < 0.05). There were no recurrences after three months follow-up in both groups. Conclusion: It seems that both Atropine and AlCl3 are useful therapies in eccrine hidrocytomas but the former might be more effective. We think that other randomized clinical trials with larger sample sizes are needed. PMID:20418978

  20. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.

    PubMed

    Li, Jianmei; Jiang, Zhicheng; Hu, Libin; Hu, Changwei

    2014-09-01

    Increased energy consumption and environmental concerns have driven efforts to produce chemicals from renewable biomass with high selectivity. Here, the selective conversion of cellulose in corncob residue, a process waste from the production of xylose, to levulinic acid was carried out using AlCl3 as catalyst and NaCl as promoter by a hydrothermal method at relatively low temperature. A levulinic acid yield of 46.8 mol% was obtained, and the total selectivity to levulinic acid with formic acid was beyond 90%. NaCl selectively promoted the dissolution of cellulose from corncob residue, and significantly improved the yield and selectivity to levulinic acid by inhibiting lactic acid formation in the subsequent dehydration process. Owing to the salt effect of NaCl, the obtained levulinic acid could be efficiently extracted to tetrahydrofuran from aqueous solution. The aqueous solution with AlCl3 and NaCl could be recycled 4 times. Because of the limited conversion of lignin, this process allows for the production of levulinic acid with high selectivity directly from corncob residue in a simple separation process.

  1. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.

    PubMed

    Li, Jianmei; Jiang, Zhicheng; Hu, Libin; Hu, Changwei

    2014-09-01

    Increased energy consumption and environmental concerns have driven efforts to produce chemicals from renewable biomass with high selectivity. Here, the selective conversion of cellulose in corncob residue, a process waste from the production of xylose, to levulinic acid was carried out using AlCl3 as catalyst and NaCl as promoter by a hydrothermal method at relatively low temperature. A levulinic acid yield of 46.8 mol% was obtained, and the total selectivity to levulinic acid with formic acid was beyond 90%. NaCl selectively promoted the dissolution of cellulose from corncob residue, and significantly improved the yield and selectivity to levulinic acid by inhibiting lactic acid formation in the subsequent dehydration process. Owing to the salt effect of NaCl, the obtained levulinic acid could be efficiently extracted to tetrahydrofuran from aqueous solution. The aqueous solution with AlCl3 and NaCl could be recycled 4 times. Because of the limited conversion of lignin, this process allows for the production of levulinic acid with high selectivity directly from corncob residue in a simple separation process. PMID:25045141

  2. Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions

    PubMed Central

    Dabeka, Robert; Fouquet, Andre; Belisle, Stephane; Turcotte, Stephane

    2011-01-01

    Lead (Pb), cadmium (Cd) and aluminum (Al) were determined in 437 individual samples of infant formulae, oral electrolytes and 5% glucose solutions available in Canada. In the electrolytes, Cd and Pb concentrations were all below 0.01 and 0.041 ng g−1, respectively. In the 5% glucose solutions, Pb and Cd levels averaged 0.01 and 0.09 ng g−1, respectively. Reported on an as-consumed basis, Pb levels in milk- and soya-based formulae averaged 0.90 and 1.45 ng g−1, respectively, while Cd levels averaged 0.23 and 1.18 ng g−1, respectively Average Al levels on an as-consumed basis were 440 ng g−1 (range 10–3400 ng g−1) in milk-based formulae and 730 ng g−1 (range 230–1100 ng g−1) in soy-based formulae. Al concentrations increased in the following order: plain formula < low-iron formula < iron-supplemented formula < casein hydrolysate formula ≈ premature formula ≤ soy formula. For example, in the powdered formulae, average Al concentrations were 18 ng g−1 for plain milk-based, 37 ng g−1 for low-iron, 128 ng g−1 for iron supplemented, 462 ng g−1 for lactose-free, 518 ng g−1 for hypoallergenic and 619 ng g−1 for soy-based formula. Al concentrations, as-consumed, increased with decreasing levels of concentration: powder < concentrated liquid < ready-to-use. Formulae stored in glass bottles contained between 100 and 300 ng g−1 more Al than the same formulae stored in cans. The source of the increased Al did not appear to be the glass itself, because most electrolytes and glucose solutions, also stored in glass, contained less than 8 ng g−1 Al. Corresponding differences in Pb and Cd levels were not observed. Al concentrations varied substantially among manufacturers; however, all manufacturers were able to produce plain milk-based formulae containing less than 50 ng g−1 Al, i.e. within the range of Al concentrations found in human milk. Next to soya-based and hypoallergenic formulae, premature formulae contained among the highest

  3. Effects of solution conditions and surface chemistry on the adsorption of three recombinant botulinum neurotoxin antigens to aluminum salt adjuvants.

    PubMed

    Vessely, Christina; Estey, Tia; Randolph, Theodore W; Henderson, Ian; Nayar, Rajiv; Carpenter, John F

    2007-09-01

    Botulinum neurotoxin (BoNT) is a biological warfare threat. Protein antigens have been developed against the seven major BoNT serotypes for the development of a recombinant protein vaccine. This study is an evaluation of adsorption profiles for three of the recombinant protein antigens to aluminum salt adjuvants in the development of a trivalent vaccine against BoNT. Adsorption profiles were obtained over a range of protein concentrations. The results document that charge-charge interactions dominate the adsorption of antigen to adjuvant. Optimal conditions for adsorption were determined. However, potency studies and solution stability studies indicated the necessity of using aluminum hydroxide adjuvant at low pH. To improve the adsorption profiles to AlOH adjuvant, phosphate ions were introduced into the adsorption buffers. The resulting change in the adjuvant chemistry led to an improvement of adsorption of the BoNT antigens to aluminum hydroxide adjuvant while maintaining potency. Competitive adsorption profiles were also determined, and showed changes in maximum adsorption from mixed solutions compared to adsorption from individual protein solutions. The adsorption profiles for each protein varied due to differences in adsorption mechanism and affinity for the adjuvant surface. These results emphasize the importance of evaluating competitive adsorption in the development of multivalent vaccine products. PMID:17518359

  4. Effect of pore water velocities and solute input methods on chloride transport in the undisturbed soil columns of Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, BeiBei; Wang, QuanJiu

    2016-04-01

    Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.

  5. Aluminum in magnesium silicate perovskite: Formation, structure, and energetics of magnesium-rich defect solid solutions

    NASA Astrophysics Data System (ADS)

    Navrotsky, Alexandra; Schoenitz, Mirko; Kojitani, Hiroshi; Xu, Hongwu; Zhang, Jianzhong; Weidner, Donald J.; Jeanloz, Raymond

    2003-07-01

    MgSiO3-rich perovskite is expected to dominate Earth's lower mantle (pressures >25 GPa) with iron and aluminum as significant substituents. The incorporation of trivalent ions, M3+, may occur by two competing mechanisms: MgA + SiB = MA + MB and SiB = AlB + 0.5 (vacancy)O. Phase synthesis studies show that both substitutions do occur and the nonstoichiometric or defect substitution is prevalent along the MgSiO3-MgAlO2.5 join. Lattice parameters associated with the first substitution (stoichiometric) show more rapid increases with increasing Al content than those for the second substitution (nonstoichiometric), consistent with the differences in size of substituting ions. Oxide melt solution calorimetry has been used to compare the energetics of both substitutions. The stoichiometric substitution, represented by the reaction 0.95 MgSiO3 (perovskite) + 0.05 Al2O3 (corundum) = Mg0.95Al0.10Si0.95O3 (perovskite), has an enthalpy of -0.8 ± 2.2 kJ/mol. The nonstoichiometric reaction, 0.90 MgSiO3 (perovskite) + 0.10 MgO (rocksalt) + 0.05 Al2O3 (corundum) = MgSi0.9Al0.1O2.95 (perovskite) has a small positive enthalpy of 8.5 ± 4.6 kJ/mol. Configurational T ΔS terms play a role in both substitutions. The defect substitution is not prohibitive in enthalpy, entropy, or volume, is favored in perovskite coexisting with magnesiowüstite and may significantly affect the elasticity, rheology, and water retention of silicate perovskite in Earth.

  6. Recovery of gallium from aluminum industry residues

    SciTech Connect

    Carvalho, M.S.; Neto, K.C.M.; Nobrega, A.W.; Medeiros, J.A.

    2000-01-01

    A procedure is proposed to recover gallium from flue dust aluminum residues produced in plants by using solid-phase extraction with a commercial polyether-type polyurethane foam (PUF). Gallium can be separated from high concentrations of aluminum, iron, nickel, titanium, vanadium, copper, zinc, sulfate, fluoride, and chloride by extraction with PUF from 3 M sulfuric acid and 3 M sodium chloride concentration medium with at least a 92% efficiency. Gallium backextraction was fast and quantitative with ethanol solution. In all recovery steps commercial-grade reagents could be used, including tap water. The recovered gallium was precipitated with sodium hydroxide solution, purified by dissolution and precipitation, calcinated, and the final oxide was 98.6% pure.

  7. Human body frequency modulation by 0.9% sodium chloride solutions: a new paradigm and perspective for human health.

    PubMed

    Sudan, B J

    2000-08-01

    This case study demonstrates that the normal human body frequency, which can be disturbed by electromagnetic influences of the environment, can be modulated by 0.9% sodium chloride solutions (physiological saline) and that occurrence of allergic reactions have subsequently been suppressed as a result of this modulation. The use of distilled water as control showed no effect on occurrence of allergic reactions. Further observations on the growth of various plants in a greenhouse exposed to various geomagnetic fields support the previous observations on humans. The neutralization of electromagnetic influences on humans using 0.9% sodium chloride solution or by enclosure of plants within a copper wire Faraday cage resulting in a normal and uniform growth of plants as compared with disturbed and irregular growth in unenclosed controls, is demonstrated. These original observations propose a new strategy to suppress or prevent allergic reactions and possibly other effects observed in various human pathologies in relation to a disturbance of human body frequencies. It is hypothesized that the double helix structure of desoxyribonucleic acid (DNA) could be modified by environmental electromagnetic fields and that disresonance between the two chains of DNA could lead to the expression of specific pathology. PMID:10904434

  8. Slow dynamics of water molecules in an aqueous solution of lithium chloride probed by neutron spin-echo.

    PubMed

    Mamontov, E; Ohl, M

    2013-07-14

    Aqueous solutions of lithium chloride are uniquely similar to pure water in the parameters such as glass transition temperature, Tg, yet they could be supercooled without freezing down to below 200 K even in the bulk state. This provides advantageous opportunity to study low-temperature dynamics of water molecules in water-like environment in the bulk rather than nano-confined state. Using high-resolution neutron spin-echo data, we argue that the critical temperature, Tc, which is also common between lithium chloride aqueous solutions and pure water, is associated with the split of a secondary relaxation from the main structural relaxation on cooling down. Our results do not allow distinguishing between a well-defined separate secondary relaxation process and the "excess wing" scenario, in which the temperature dependence of the secondary relaxation follows the main relaxation. Importantly, however, in either of these scenarios the secondary relaxation is associated with density-density fluctuations, measurable in a neutron scattering experiment. Neutron scattering could be the only experimental technique with the capability of providing information on the spatial characteristics of the secondary relaxation through the dependence of the signal on the scattering momentum transfer. We propose a simple method for such analysis. PMID:23689686

  9. The role of macrocyclic compounds in the extraction and possible separation of platinum and rhodium from chloride solutions

    NASA Astrophysics Data System (ADS)

    Jyothi, Rajesh Kumar; Lee, Jin-Young

    2016-06-01

    Macrocyclic compounds (crown ethers), specifically 18-crown-6 (18-C-6), benzo-15-crown-5 (B-15-C-5), di-benzo-18-crown-6 (DB-18-C-6) and di-cyclohexano-18-crown-6 (DC-18C-6), are used as extractants as well as synergists with amine-group extractants. Platinum and rhodium belong to platinum-group metals (PGMs) and have very similar ionic radii and similar properties. The separation of PGMs is most useful for the preparation of functional materials. Macrocyclic compounds are tested for platinum and rhodium separation and are found to achieve marginal separation. Amines (used as extractants) are paired with macrocyclic compounds (used as synergists), and the separation factor between platinum and rhodium is increased with synergistic enhancement from a chloride solution. The present study discusses extraction chemistry, separation factors and the synergy between platinum and rhodium from chloride solutions. To ensure accurate data, the aqueous samples in this study are analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES).

  10. The role of macrocyclic compounds in the extraction and possible separation of platinum and rhodium from chloride solutions

    PubMed Central

    Jyothi, Rajesh Kumar; Lee, Jin-Young

    2016-01-01

    Macrocyclic compounds (crown ethers), specifically 18-crown-6 (18-C-6), benzo-15-crown-5 (B-15-C-5), di-benzo-18-crown-6 (DB-18-C-6) and di-cyclohexano-18-crown-6 (DC-18C-6), are used as extractants as well as synergists with amine-group extractants. Platinum and rhodium belong to platinum-group metals (PGMs) and have very similar ionic radii and similar properties. The separation of PGMs is most useful for the preparation of functional materials. Macrocyclic compounds are tested for platinum and rhodium separation and are found to achieve marginal separation. Amines (used as extractants) are paired with macrocyclic compounds (used as synergists), and the separation factor between platinum and rhodium is increased with synergistic enhancement from a chloride solution. The present study discusses extraction chemistry, separation factors and the synergy between platinum and rhodium from chloride solutions. To ensure accurate data, the aqueous samples in this study are analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES). PMID:27283394

  11. Synthesis of TiO(2) (Anatase) by Sol-Gel Process Performed in Metal Chlorides Saturated Aqueous Solutions.

    PubMed

    de Farias, Robson Fernandes

    2001-07-15

    Titania powders were synthesized by a sol-gel process using titanium tetrabutoxide as a precursor. The syntheses were performed in water or in saturated aqueous solutions of KCl, CaCl(2), NiCl(2), CoCl(2), and MnCl(2). It is demonstrated, by X-ray diffraction patterns of the synthesized powders that the samples obtained in saturated aqueous solutions of metal chlorides are crystalline (anatase phase) with some minor amount of brookite phase, whereas the sample synthesized in water is amorphous in nature. Thus, it is shown that the anatase phase can be obtained independently on any previous or further treatment of the synthesized powder, such as hydrothermal or heat treatment, providing a new, simple, quick, and inexpensive route to synthesize anatase powders. Copyright 2001 Academic Press.

  12. Ion-exchange extraction of platinum(II,IV) from chloride solutions in the presence of iron(III)

    NASA Astrophysics Data System (ADS)

    Kononova, O. N.; Duba, E. V.; Karplyakova, N. S.; Krylov, A. S.

    2015-08-01

    The sorption concentration of platinum(II,IV) in the presence of iron(III) is studied on new samples of domestically produced ionites of the CYBBER brand. In comparing the sorption and kinetic properties of the new ionites to those of sorbents of the Purolite brand studied earlier, the higher effectiveness of the former is demonstrated via the extraction of platinum(II,IV) ions from strongly and weakly acidic chloride solutions. It is found that the sorbed platinum ions can be completely separated from iron(III) ions through separate elution using 0.01-0.001 M HCl (iron ions) and a thiourea solution (80 g/L) in 0.3 M H2SO4 (platinum ions).

  13. A Fiber-Optic Sensor Using an Aqueous Solution of Sodium Chloride to Measure Temperature and Water Level Simultaneously

    PubMed Central

    Yoo, Wook Jae; Sim, Hyeok In; Shin, Sang Hun; Jang, Kyoung Won; Cho, Seunghyun; Moon, Joo Hyun; Lee, Bongsoo

    2014-01-01

    A fiber-optic sensor system using a multiplexed array of sensing probes based on an aqueous solution of sodium chloride (NaCl solution) and an optical time-domain reflectometer (OTDR) for simultaneous measurement of temperature and water level is proposed. By changing the temperature, the refractive index of the NaCl solution is varied and Fresnel reflection arising at the interface between the distal end of optical fiber and the NaCl solution is then also changed. We measured the modified optical power of the light reflected from the sensing probe using a portable OTDR device and also obtained the relationship between the temperature of water and the optical power. In this study, the water level was simply determined by measuring the signal difference of the optical power due to the temperature difference of individual sensing probes placed inside and outside of the water. In conclusion, we demonstrate that the temperature and water level can be obtained simultaneously by measuring optical powers of light reflected from sensing probes based on the NaCl solution. It is anticipated that the proposed fiber-optic sensor system makes it possible to remotely monitor the real-time change of temperature and water level of the spent fuel pool during a loss of power accident. PMID:25310471

  14. Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid

    SciTech Connect

    Dabbs, Daniel M.; Ramachandran, Usha; Lu, Sang; Liu, Jun; Wang, Li Q.; Aksay, Ilhan A.

    2005-12-06

    Citric acid has been shown to act as an agent for increasing the solubility of aluminum oxyhydroxides in aqueous solutions of high (>2.47 mol/mol) hydroxide-to-aluminum ratios. Conversely, citric acid also colloidally stabilizes particles in aqueous suspensions of aluminum-containing particles. Solutions of aluminum chloride, with and without citric acid added, were titrated with NaO(aq). The presence and size of particles were determined using quasi-elastic light scattering. In solutions that contained no citric acid, particles formed instantaneously when NaOH(aq) was added but these were observed to rapidly diminish in size, disappearing at OH/Al ratios below 2.5 mol/mol. When the OH/Al ratio was raised beyond 2.5 by addingmoreNaOH(aq), suspensions of colloidally stable particles formed. Large polycations containing 13 aluminum atoms were detected by 27Al solution NMR in citric-acid-free solutions with OH/Al ratios slightly lower than 2.5. In comparison, adding citric acid to solutions of aluminum chloride inhibited the formation of large aluminum-containing polycations. The absence of the polycations prevents or retards the subsequent formation of particles, indicating that the polycations, when present, act as seeds to the formation of new particles. Particles did not form in solutions with a citric acid/aluminum ratio of 0.8 until sufficient NaOH(aq) was added to raise the OH/Al ratio to 3.29. By comparison, lower amounts of citric acid did not prevent particles from forming but did retard the rate of growth.

  15. Slow strain rate fracture of high-strength steel at controlled electrochemical potentials in ammonium chloride, potassium chloride, and ammonium nitrate solutions

    SciTech Connect

    Nguyen, D.T.; Nichols, D.E.; Daniels, R.D.

    1992-08-15

    Slow strain rate testing has been undertaken to determine the effects of individual chemical species on the fracture process of high-strength 4340 steel. Test environments included potassium chloride, ammonium nitrate, and ammonium chloride at concentrations from 0.001 to 1.0 mole por liter at ambient temperature. Tests were performed at cathodic and anodic controlled potentials, as well as at the open-circuit potential, to delineate the stress corrosion cracking range.

  16. Assessing the effectiveness of 30% sodium chloride aqueous solution for the preservation of fixed anatomical specimens: a 5-year follow-up study

    PubMed Central

    de Oliveira, Fabrício Singaretti

    2014-01-01

    Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde. PMID:24762210

  17. Assessing the effectiveness of 30% sodium chloride aqueous solution for the preservation of fixed anatomical specimens: a 5-year follow-up study.

    PubMed

    de Oliveira, Fabrício Singaretti

    2014-07-01

    Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7 days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5 years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde.

  18. Viscosities of the ternary solution dimethyl sulfoxide/water/sodium chloride at subzero temperatures and their application in cryopreservation.

    PubMed

    Zhang, Shaozhi; Yu, Xiaoyi; Chen, Zhaojie; Chen, Guangming

    2013-04-01

    Vitrification is considered as the most promising method for long-term storage of tissues and organs. An effective way to reduce the accompanied cryoprotectant (CPA) toxicity, during CPA addition/removal, is to operate at low temperatures. The permeation process of CPA into/out of biomaterials is affected by the viscosity of CPA solution, especially at low temperatures. The objective of the present study is to measure the viscosity of the ternary solution, dimethyl sulfoxide (Me2SO)/water/sodium chloride (NaCl), at low temperatures and in a wide range of concentrations. A rotary viscometer coupled with a low temperature thermostat bath was used. The measurement was carried out at temperatures from -10 to -50°C. The highest mass fraction of Me2SO was 75% (w/w) and the lowest mass fraction of Me2SO was the value that kept the solution unfrozen at the measurement temperature. The concentration of NaCl was kept as a constant [0.85% (w/w), the normal salt content of extracellular fluids]. The Williams-Landel-Ferry (WLF) model was employed to fit the obtained viscosity data. As an example, the effect of solution viscosity on modeling the permeation of Me2SO into articular cartilage was qualitatively analyzed.

  19. Analysis of electrochemical noise for Type 410 stainless steel in chloride solutions

    SciTech Connect

    Kelly, R.G.; Inman, M.E.; Hudson, J.L.

    1996-12-31

    The electrochemical noise resulting from the corrosion of Type 410 stainless steel under open circuit conditions in solutions of widely different corrosivity has been examined. Parameters derived from electrochemical noise measurements and conventional electrochemical measurements were correlated with one another and with post-test examination on the specimens. Both the noise resistance and the polarization resistance increased with decreases in solution corrosivity. In all of the solutions studied, the noise resistance was found to be consistently higher than the polarization resistance. In solutions in which pitting occurred, the open circuit potential of the electrode versus a true reference electrode was more sensitive to the transition to stable pitting than was the pitting index.

  20. Reduction of mercury from mackerel fillet using combined solution of cysteine, EDTA, and sodium chloride.

    PubMed

    Hajeb, P; Jinap, S

    2012-06-13

    An acidic solution containing mercury chelating agents to eliminate mercury in raw fish (mackerel) fillet was developed. The solution contained hydrochloric acid, sodium hydroxide, cysteine, EDTA, and NaCl. The optimum conditions for mercury reduction were achieved using response surface methodology (RSM) at cysteine concentration of 1.25%, EDTA of 275 mg/L, NaCl of 0.5%, pH of 3.75, and exposure time of 18 min. The optimized conditions produced a solution which can remove up to 91% mercury from raw fish fillet. Cysteine and EDTA were identified as potential chelating agents with the greatest potential for use. The solution can be employed in fish industries to reduce mercury in highly contaminated fish.

  1. Corrosion Behavior of Alloy 22 in Chloride Solutions Containing Organic Acids

    SciTech Connect

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Rebak, R B

    2005-11-04

    Alloy 22 (N06022) is a nickel based alloy containing alloying elements such as chromium, molybdenum and tungsten. It is highly corrosion resistant both under reducing and under oxidizing conditions. Electrochemical studies such as electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. Tests were also carried out in NaCl solutions containing oxalic acid or acetic acid. It is shown that the corrosion rate of Alloy 22 was higher in a solution containing oxalic acid than in a solution of the same pH acidified with HCl. Acetic acid was not corrosive to Alloy 22. The corrosivity of oxalic acid was attributed to its capacity to form stable complex species with metallic cations from Alloy 22.

  2. X-ray characterization of an organic inorganic solution grown crystal: case of 2-amino-5-nitropyridinium chloride

    NASA Astrophysics Data System (ADS)

    Horiuchi, N.; Lefaucheux, F.; Ibanez, A.; Lorut, F.; Baruchel, J.

    2004-02-01

    The crystallline quality of 2-amino-5-nitropyridinium chloride gorwn in solution was examined by X-ray topography. Strong white beam coming from synchrotron was irradiated to an as-grown crystal to avoid an absorption of X-ray. Topographs were taken in transmission geometry (Laue setup). The image obtained by the reflections 3¯ 0 3 , 601, 6 1 2¯ and 1 7 0 planes showed fine grey contrast in nearly the whole section. Inclusions and strained growth sector boundaries were clearly observed in these images. These defects disappeared far from the seed in the direction of c-axis. The whole section of the reflection 1 7 0 was full of fine lines along c-axis with white and black contrast. It was found that a dendritic growth leaded to the formation of whiskers slightly misoriented along c-axis.

  3. Blue-Green Color Tunable Solution Processable Organolead Chloride-Bromide Mixed Halide Perovskites for Optoelectronic Applications.

    PubMed

    Sadhanala, Aditya; Ahmad, Shahab; Zhao, Baodan; Giesbrecht, Nadja; Pearce, Phoebe M; Deschler, Felix; Hoye, Robert L Z; Gödel, Karl C; Bein, Thomas; Docampo, Pablo; Dutton, Siân E; De Volder, Michael F L; Friend, Richard H

    2015-09-01

    Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425-570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1-x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sharp band edges and a clean bandgap, with a single optically active phase. These chloride-bromide perovskites can potentially be used in optoelectronic devices like solar cells and light emitting diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs with narrow emission full width at half maxima (FWHM) and low turn on voltages using thin-films of these perovskite materials, including a blue CH3NH3PbCl3 perovskite LED with a narrow emission FWHM of 5 nm.

  4. Blue-Green Color Tunable Solution Processable Organolead Chloride-Bromide Mixed Halide Perovskites for Optoelectronic Applications.

    PubMed

    Sadhanala, Aditya; Ahmad, Shahab; Zhao, Baodan; Giesbrecht, Nadja; Pearce, Phoebe M; Deschler, Felix; Hoye, Robert L Z; Gödel, Karl C; Bein, Thomas; Docampo, Pablo; Dutton, Siân E; De Volder, Michael F L; Friend, Richard H

    2015-09-01

    Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425-570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1-x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sharp band edges and a clean bandgap, with a single optically active phase. These chloride-bromide perovskites can potentially be used in optoelectronic devices like solar cells and light emitting diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs with narrow emission full width at half maxima (FWHM) and low turn on voltages using thin-films of these perovskite materials, including a blue CH3NH3PbCl3 perovskite LED with a narrow emission FWHM of 5 nm. PMID:26236949

  5. The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions.

    PubMed

    Alguacil, Francisco José; López-Delgado, Aurora; Alonso, Manuel; Sastre, Ana Maria

    2004-11-01

    The behaviour of the phosphine oxides Cyanex 921 and Cyanex 923 in the facilitated transport of chromium (VI) from chloride solutions is described. Transport is studied as a function of several variables such as stirring speeds of the aqueous phases, membrane phase diluent, hydrochloric acid concentration in the source phase and chromium and carrier concentrations. The separation of chromium (VI) from other metals presented in the source phase as well as the behaviour of phosphine oxides with respect to other neutral organophosphorous derivatives (tri-n-butylphosphate (TBP) and dibutyl butylphosphonate (DBBP)) are also investigated. Moreover, by using hydrazine sulphate in the receiving phase, Cr(VI) is immediately reduced to the less toxic Cr(III).

  6. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  7. Corrosion of iron, aluminum and copper-base alloys in glycols under simulated solar collector conditions

    SciTech Connect

    Beavers, J.A.; Diegle, R.B.

    1981-10-01

    The corrosion behavior of iron, aluminum and copperbase alloys was studied in uninhibited glycol solutions under conditions that simulate those found in non-concentrating solar collectors. It was found that only Type 444 stainless steel exhibited adequate corrosion resistance; there was no evidence of pitting, crevice corrosion, or galvanic attack, and general corrosion rates were low. The general corrosion rate of CDA 122 copper was high (greater than 200 ..mu..m/y) under some test conditions, but copper was resistant to pitting and crevice attack. General corrosion rates of the aluminum alloys (1100, 3003 and 6061) were low, but these alloys were susceptible to pitting and crevice attack. The propensity for pitting was greatest in the presence of chlorides but it also was severe in the absence of chlorides following long exposures. The onset of pitting of the aluminum alloys in chloride-free solutions was attributed to degradation of the glycols.

  8. Investigation of the mechanism of microplasma impact on iron and aluminum load using solutions of organic substances

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Voyno, D. A.

    2015-04-01

    The paper reports on the study of mechanism of electroeffects on iron and aluminum and pellets with using solutions of organic substances. Methylene blue solution, furacilin and eosin were used. It is observed the reactions of the pulse at the time and after switching off the voltage source. It is shown that there are two developing process in the conditions studied. The first process depends on material of electrodes and pulse parameters. The second process occurs spontaneously and it is determined by the redox reaction and sorption processes. The products of electrode erosion and active particles react in the redox reactions. Active particles are formed in solution by the action of pulsed electric discharge in water. The highest efficiency of the process was demonstrated on an iron pellets.

  9. Removal of fluoride ions from drinking water and fluoride solutions by aluminum modified iron oxides in a column system.

    PubMed

    García-Sánchez, J J; Solache-Ríos, M; Martínez-Miranda, V; Solís Morelos, C

    2013-10-01

    The purpose of this work was to evaluate the potential of aluminum modified iron oxides, in a continuous flow for removal of fluoride ions from aqueous solutions and drinking water. The breakthrough curves obtained for fluoride ions adsorption from aqueous solutions and drinking water were fitted to Thomas, Bohart-Adams, and bed depth service time model (BDST). Adsorption capacities at the breakthroughs, Thomas model constant, kinetic constant and the saturation concentration were determined. The results show that in general, the adsorption efficiency decreases as the bed depth increases, and this behavior shows that the adsorption is controlled by the mass transport resistance. The adsorption capacity for fluoride ions by CP-Al is higher for fluoride aqueous solutions than drinking water.

  10. Study on Corrosion Performance of Cu-Te-Se Alloys in a 3.5% Sodium Chloride Solution

    NASA Astrophysics Data System (ADS)

    Jiao, Lin; Li, Meng; Zeng, Tao; Zhu, Dachuan

    2015-11-01

    Samples of Cu-Te-Se alloys, previously aged or treated as a solid solution, were immersed in 3.5% (mass fraction) sodium chloride solution to investigate their corrosion resistance at room temperature by determining their corrosive weight loss. The morphologies of the precipitated phase and surface products following immersion were observed by scanning electron microscope. In addition, energy-dispersive spectroscopic analysis was used to determine the elemental constituents of precipitated phase and corroded surface of the alloy samples. The phase composition was measured by x-ray diffraction, and the electrochemical polarization behavior of the samples was determined using an electrochemical workstation. The experimental results revealed that the alloy samples appeared to corrode uniformly, which was accompanied by a small amount of localized corrosion. There was the possibility that localized corrosion could increase following aging treatment. The addition of a small amount of tellurium and selenium to the alloy appeared to retard oxygen adsorption on the copper in the alloy, which has ameliorated the alloy corrosion due to the similar physical and chemical properties of oxygen. In comparison to the solid solution state, the corrosion resistance of the alloy appeared to decline slightly following aging treatment.

  11. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride.

    PubMed

    Costa, Cristiane N; Teixeira, Viviane G; Delpech, Marcia C; Souza, Josefa Virginia S; Costa, Marcos A S

    2015-11-20

    A viscometric study was carried out at 25°C to assess the physical-chemical behavior in solution and the mean viscometric molar mass (M¯v) of chitosan solutions with different deacetylation degrees, in two solvent mixtures: medium 1-acetic acid 0.3mol/L and sodium acetate 0.2mol/L; and medium 2-acetic acid 0.1mol/L and sodium chloride 0.2mol/L. Different equations were employed, by graphical extrapolation, to calculate the intrinsic viscosities [η] and the viscometric constants, to reveal the solvent's quality: Huggins (H), Kraemer (K) and Schulz-Blaschke (SB). For single-point determination, the equations used were SB, Solomon-Ciuta (SC) and Deb-Chanterjee (DC), resulting in a faster form of analysis. The values of ̄M¯v were calculated by applying the equation of Mark-Houwink-Sakurada. The SB and SC equations were most suitable for single-point determination of [η] and ̄M¯v and the Schulz-Blachke constant (kSB), equal to 0.28, already utilized for various systems, can also be employed to analyze chitosan solutions under the conditions studied.

  12. Petrographic evidence of calcium oxychloride formation in mortars exposed to magnesium chloride solution

    SciTech Connect

    Sutter, Lawrence . E-mail: cee@mtu.edu; Peterson, Karl . E-mail: cee@mtu.edu; Touton, Sayward . E-mail: cee@mtu.edu; Van Dam, Tom . E-mail: cee@mtu.edu; Johnston, Dan . E-mail: Dan.Johnston@state.sd.us

    2006-08-15

    Many researchers have reported chemical interactions between CaCl{sub 2} and MgCl{sub 2} solutions and hardened Portland cement paste. One potentially destructive phase reported in the literature is calcium oxychloride (3CaO.CaCl{sub 2}.15H{sub 2}O). In the past, limited numbers of researchers have reported identification of this phase by X-ray diffraction. In this work, petrographic evidence of oxychloride formation is presented based on optical microscopy, scanning electron microscopy and microanalysis. This evidence indicates that calcium oxychloride does form in mortars exposed to MgCl{sub 2} solutions.

  13. Cooling and Freezing Behaviors of Aqueous Sodium Chloride Solution in a Closed Rectangular Container

    NASA Astrophysics Data System (ADS)

    Narumi, Akira; Kashiwagi, Takao; Nakane, Ichirou

    This paper investigates cooling and freezing behaviors of NaCl aqueous solution in a rectangular container equipped with horizontal partitions of micro porous film in order to determine the mechanisms of heat and mass transfer through cell wall for the purpose of freezing food. For comparison, experiments were performed using partitions of copper plate, no partition, and water. These processes were visualized and measured using real-time laser holographic interferometry. It was found that there was very little difference in the cooling process due to partitions, but that there were significant differences in freezing process when NaCl aqueous solution is used.

  14. Alloy 22 Localized Corrosion Susceptibility In Aqueous Solutions Of Chloride And Nitrate Salts Of Sodium And Potassium At 110 - 150?C

    SciTech Connect

    Felker, S; Hailey, P D; Lian, T; Staggs, K J; Gdowski, G E

    2006-01-17

    Alloy 22 (a nickel-chromium-molybdenum-tungsten alloy) is being investigated for use as the outer barrier of waste containers for a high-level nuclear waste repository in the thick unsaturated zone at Yucca Mountain, Nevada. Experiments were conducted to assess crevice corrosion of Alloy 22 in de-aerated aqueous solutions of chloride and nitrate salts of potassium and sodium in the temperature range 110-150 C (some limited testing was also conducted at 90 C). Electrochemical tests were run in neutral salt solutions without acid addition and others were run in salt solutions with an initial hydrogen ion concentration of 10{sup -4} molal. The Alloy 22 specimens were weld prism specimens and de-aeration was performed with nitrogen gas. No evidence of crevice corrosion was observed in the range 125-150 C. In the 120 to 160 C temperature range, the anionic concentration of stable aqueous solutions is dominated by nitrate relative to chloride. At nominally 120 C, the minimum nitrate to chloride ratio is about 4.5, and it increases to about 22 at nominally 155 C. The absence of localized corrosion susceptibility in these solutions is attributed to the known inhibiting effect of the nitrate anion. At 110 C, aqueous solutions can have dissolved chloride in excess of nitrate. Localized corrosion was observed at nitrate to chloride ratios up to 1.0, the highest ratio tested. The extent of localized corrosion was confined to the crevice region of the samples, and was limited for nitrate to chloride ratios greater than or equal to 0.3. Aqueous solution chemistry studies indicate that nitrate to chloride ratios of less than 0.5 are possible for temperatures up to nominally 116 C. However, the exact upper temperature limit is unknown and no electrochemical testing was done at these temperatures. Limited comparison between 8 m Cl aqueous solutions of Na + K on the one hand and Ca on the other indicated similar electrochemical E{sub crit} values and similar morphology of attack

  15. Long-term cement-corrosion in chloride-rich solutions - a thermodynamic interpretation

    NASA Astrophysics Data System (ADS)

    Bube, C.; Metz, V.; Schild, D.; Bohnert, E.; Kienzler, B.

    2012-04-01

    Nuclear waste disposal relies on safe enclosure of radionuclides over long time-scales. Most experiments on interactions of radionuclides with barrier materials are running for several months, in some cases up to a few years. Very few experiments are available that confirm the results on longer time-scales and reassure that equilibrium conditions will be approached on the long term. This communication presents the latest results of full-scale cement corrosion experiments doped with uranium, which have been conducted for up to 22 years. Cemented waste simulates of 200L size were doped with Unat and exposed to MgCl2-rich or NaCl-saturated brine in the Asse salt mine (T = 28 ± 1 ° C). Solution composition and pH were monitored regularly. Some of the experiments were terminated in order to sample and analyze the solid phases. A geochemical code with a Pitzer database for high ionic strength systems is used to calculate the aqueous and solid phases expected at equilibrium conditions. In order to evaluate the thermodynamic database for the cementitious system, calculated solid phases and solution compositions were additionally compared to results of laboratory experiments on cement corrosion in MgCl2-rich solutions with mass to volume ratios (m/V) between 0.025 and 1.0. Solid and solution composition of the laboratory experiments after ~3 years agree well with results predicted from the thermodynamic calculations. With increasing m/V, transformation of the initial MgCl2-rich solutions into CaCl2-rich solutions is observed. This exchange reaction of Mg from the solution against Ca in the cement leads to a pHm (-log[H+]) increase up to 12 (from initial values around 9). Major solid phases found by analytical methods are also obtained in the calculations (e.g. gypsum, calcite, hydrotalcite / friedel's salt, brucite). Discrepancies are caused by various amorphous phases, which cannot be represented in the database. In the full-scale experiments (with m/V around 2.7), a

  16. [Preparation of HPLC test solutions for organic impurities in aluminum lakes of food red no. 40 (allura red AC) and food yellow no. 5 (sunset yellow FCF)].

    PubMed

    Tsuji, S; Umino, Y; Amakura, Y; Tonogai, Y

    2001-12-01

    The HPLC determination of organic impurities in Food Red No. 40 aluminum lakes (R-40Als) as directed by Japan's Specifications and Standards for Food Additives, 7th Ed. (JSFA-VII), has problems, such as reproducibility and low recovery. ICP analyses suggested that the problem was caused by the aluminum in the test solution. In the improved method for preparation of the test solution, aluminum was precipitated as a hydroxide gel by boiling with 1% aqueous ammonia. After centrifugation, the supernatant was used for the HPLC analysis of the organic impurities in the lakes. Recoveries of organic impurities were more than 85% from R-40Al spiked at the 0.1 and 1.0% levels of R-40. The proposed method was also adapted for Food Yellow No. 5 aluminum lakes.

  17. Thermophysical properties of sodium nitrate and sodium chloride solutions and their effects on fluid flow in unsaturated media

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    2001-10-01

    Understanding movement of saline sodium nitrate (NaNO{sub 3}) waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). The purpose of this study is to contribute a basic understanding of effects of the thermophysical behavior of NaNO{sub 3} solutions on fluid flow in unsaturated media. We first present mathematical expressions for the dependence of density, viscosity, solubility and vapor pressure of NaNO{sub 3} solutions on both salt concentration and temperature, which were determined by fitting from published measured data. Because the previous studies of thermophysical behavior of sodium chloride (NaCl) solutions can provide a basis for those of NaNO{sub 3} solutions, we also present a comparison of thermophysical properties of both salt solutions. We have implemented the functional thermophysical properties of NaNO{sub 3} solutions into a new TOUGH2 equation-of-state module EWASG-NaNO{sub 3}, which is modified from a previous TOUGH2 equation-of-state module EWASG for NaCl. Using the simulation tool, we have investigated effects of the thermophysical properties on fluid flow in unsaturated media. The effect of density and viscosity of saline solutions has been long recognized. Here we focus our attention on the effect of vapor pressure lowering due to salinity. We present simulations of a one-dimensional problem to study this salinity-driven fluid flow. A number of simulations were performed using different values of thermal conductivity, permeability, and temperature, to illustrate conditions and parameters controlling these processes. Results indicate that heat conduction plays a very important role in this salinity-driven vapor diffusion by maintaining a nearly constant temperature. The smaller the permeability, the more water is transferred into the saline environment. Effects of permeability on water flow are also complicated by effects of capillary

  18. [Adsorption Characteristics of Nitrate and Phosphate from Aqueous Solution on Zirconium-Hexadecyltrimethylammonium Chloride Modified Activated Carbon].

    PubMed

    Zheng, Wen-jing; Lin, Jian-wei; Zhan, Yan-hui; Wang, Hong

    2015-06-01

    A novel adsorbent material, i.e., zirconium-cationic surfactant modified activated carbon (ZrSMAC) was prepared by loading zirconium hydroxide and hexadecyltrimethylammonium chloride (CTAC) on activated carbon, and was used as an adsorbent for nitrate and phosphate removal from aqueous solution. The adsorption characteristics of nitrate and phosphate on ZrSMAC from aqueous solution were investigated in batch mode. Results showed that the ZrSMAC was effective for nitrate and phosphate removal from aqueous solution. The pseudo-second-order kinetic model fitted both the nitrate and phosphate kinetic experimental data well. The equilibrium isotherm data of nitrate adsorption onto the ZrSMAC were well fitted to the Langmuir, Dubinin-Radushkevich (D-R) and Freundlich isotherm models. The equilibrium isotherm data of phosphate adsorption onto the ZrSMAC could be described by the Langmuir and,D- R isotherm models. According to the Langmuir isotherm model, the maximum nitrate and phosphate adsorption capacities for the ZrSMAC were 7.58 mg x g(-1) and 10.9 mg x g(-1), respectively. High pH value was unfavorable for nitrate and phosphate adsorption onto the ZrSMAC. The presence of Cl-, HCO3- and SO4(2-) in solution reduced the nitrate and phosphate adsorption capacities for the ZrSMAC. The nitrate adsorption capacity for the ZrSMAC was reduced by the presence of coexisting phosphate in solution, and the phosphate adsorption capacity for the ZrSMAC was also reduced by the presence of coexisting nitrate in solution. About 90% of nitrate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaCl solution, and about 78% of phosphate adsorbed on the ZrSMAC could be desorbed in 1 mol x L(-1) NaOH solution. The adsorption mechanism of nitrate on the ZrSMAC included the anion exchange interactions and electrostatic attraction, and the adsorption mechanism of phosphate on the ZrSMAC included the ligand exchange interaction, electrostatic attraction and anion exchange interaction.

  19. Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution.

    PubMed

    Miki, Takahiro; Chairaksa-Fujimoto, Romchat; Maruyama, Katsuya; Nagasaka, Tetsuya

    2016-01-25

    Zinc in Electric Arc Furnace dust or EAF dust mainly exists as ZnFe2O4 and ZnO. While ZnO can be simply dissolved into either an acidic or alkaline solution, it is difficult to dissolve ZnFe2O4. In our previous work, we introduced a process called "CaO treatment", a preliminary pyrometallurgical process designed to transform the ZnFe2O4 in the EAF dust into ZnO and Ca2Fe2O5. The halogens and others heavy metals were favorably vaporized during CaO treatment with no essential evaporation loss of zinc and iron, leaving CaO treated dust which consisted mainly of ZnO and Ca2Fe2O5 and no problematic ZnFe2O4 compound. In this work, the selective leaching of zinc over iron and calcium in the CaO treated dust was investigated using an NH4Cl solution. The effects of temperature, reaction time and NH4Cl concentration on dissolution behavior were examined. While most of the zinc in the CaO treated dust was extracted after 2 h at 70 °C with 2 M NH4Cl, only about 20% of calcium was leached in NH4Cl solution. However, the iron did not dissolve and remained as Ca2Fe2O5 in residue. It was confirmed that zinc can be effectively recovered using NH4Cl solution.

  20. Saturated sodium chloride solution under an external static electric field: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ren, Gan; Wang, Yan-Ting

    2015-12-01

    The behavior of saturated aqueous NaCl solutions under a constant external electric field (E) was studied by molecular dynamics (MD) simulation. Our dynamic MD simulations indicated that the irreversible nucleation process towards crystallization is accelerated by a moderate E but retarded or even prohibited under a stronger E, which can be understood by the competition between self-diffusion and drift motion. The former increases with E, thereby accelerating the nucleation process, whereas the latter pulls oppositely charged ions apart under a stronger E, thereby decelerating nucleation. Additionally, our steady-state MD simulations indicated that a first-order phase transition occurs in saturated solutions at a certain threshold Ec. The magnitude of Ec increases with concentration because larger clusters form more easily when the solution is more concentrated and require a stronger E to dissociate. Project supported by the National Basic Research Program of China (Grant No. 2013CB932804) and the National Natural Science Foundation of China (Grant Nos. 91227115, 11274319, and 11421063).

  1. Comparisons of fixation of heat, radiation, and heat plus radiation damage by anisotonic sodium chloride solutions

    SciTech Connect

    Raaphorst, G.P.; Azzam, E.I.

    1982-06-01

    Heat treatment at temperatures greater than 40 degrees C synergistically enhanced damage produced by ionizing radiation. Researchers experiments indicated that radiation damage in exponentially growing Chinese hamster cells could be fixed in a dose-dependent manner by postirradiation treatment with both hypertonic and hypotonic NaCl solutions. At a 1,000-rad dose level, survival could be depressed by a factor of about 260. For various treatments at either 42 or 45 degrees C, exposure after heating to anisotonic solutions did not result in the fixation of heat damage. When cells were heated at 45 degrees C for 5 minutes and irradiated with 500 rad before or after heating or given 500 rad without heating and then exposed to 0.05 M NaCl solutions for 120 minutes, survival was reduced by factors of 875, 667, and 12, respectively. For heat treatments at lower temperatures, such as 41.5 or 42 degrees C, less damage fixation for the combined treatments was observed. The data indicated that heat and radiation damage were different and damage from the combined treatments was not the same for low- and high-treatment temperatures.

  2. Radiation effect on poly(vinylbenzyltrimethylammonium chloride) in aqueous solution: pulse radiolysis and steady-state study.

    PubMed

    Kumar, Virendra; Bhardwaj, Yatendra K; Sabharwal, Sunil; Mohan, Hari

    2004-06-01

    Poly(vinylbenzyltrimethylammonium chloride) (PVBT) has been synthesized by radiation-induced polymerization of Vinylbenzyltrimethylammonium chloride (VBT). The viscosity average molecular weight of synthesized polymer was estimated to be approximately 10(5) by viscosity measurements. The radiation-induced affects on PVBT have been investigated by steady-state and pulse radiolysis (PR) techniques. The reactions of primary radicals (*)OH, e(aq)(-), and H(*) generated by the radiolysis of water with PVBT were studied. The reactions of some other species such as N(3)(*), Cl(2)(*-), Br(2)(*-), SO(4)(*-), and CO(2)(*-) with PVBT were also investigated. The results indicate that the reactivity of these species toward PVBT is lower then that with the monomer VBT. The rate constants for the reactions of OH radical and H atom with PVBT were evaluated both by competition kinetics and by direct observation of the buildup of transient species. The difference in the rate constant values evaluated by the two methods indicated that (*)OH and H(*) react with PVBT to give more than one species. It was observed that the OH radical and H atom react with PVBT in different manners. Near neutral pH, the OH radicals react to form an adduct and to generate a radical by abstracting methylenic H atom. The H atom, however, also abstracts the H atom from the PVBT backbone. The rate constant value for the reaction of hydrated electron with PVBT was found to be 3.1 currency 10(9) dm(3) mol(-1) s(-1). Steady-state irradiation studies of the aqueous PVBT solution indicated that PVBT predominantly undergoes cross-linking on irradiation. Cross-linking is a function of dose rate, concentration, and ambient of irradiation. At concentrations < 2%, only intramolecular cross-linking takes place, whereas beyond this concentration, the intermolecular cross-linking of polymer chains takes place to form a soft gel. The gel dose (D(gel)) is a function of the ambient of irradiation.

  3. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-01

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  4. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    SciTech Connect

    Solehudin, Agus; Nurdin, Isdiriayani

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  5. Modulating the structure and properties of poly(sodium 4-styrenesulfonate)/poly(diallyldimethylammonium chloride) multilayers with concentrated salt solutions.

    PubMed

    Han, Lulu; Mao, Zhengwei; Wuliyasu, He; Wu, Jindan; Gong, Xiao; Yang, Yuguang; Gao, Changyou

    2012-01-10

    Poly(sodium 4-styrenesulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) multilayers were treated with 1-5 M NaCl solutions, resulting in continuous changes in the physicochemical properties of the multilayers. Significant mass loss was observed when the salt concentration was higher than 2 M and reached as high as 72% in a 5 M NaCl solution. The disassembly occurred initially in the superficial layers and then developed in the bulk multilayers. For the multilayers with PDADMAC as the outmost layer, the molar ratio of PSS/PDADMAC was increased and the surface chemistry was changed from PDADMAC domination below 2 M NaCl to PSS domination above 3 M NaCl. Owing to the higher concentrations of uncompensated for polyelectrolytes at both lower and higher salt concentrations, the swelling ratio of the multilayers was decreased until reaching 3 M NaCl and then was increased significantly again. The salt-treated PSS/PDADMAC thin films are expected to show different behaviors in terms of the physical adsorption of various functional substances, cell adhesion and proliferation, and chemical reaction activity.

  6. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    NASA Astrophysics Data System (ADS)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  7. Uranium (VI) ion exchange on nitrogen-phosphorus-containing polyampholytes in chloride-fluoride solutions

    SciTech Connect

    Pakholkov, V.S.; Denisova, L.A.; Richkov, V.A.; Roshchepkina, L.I.

    1988-09-01

    The adsorption of uranium form UO/sub 2/Cl/sub 2/ solutions containing HCl, NH/sub 4/Cl, and HF has been studied using polyampholyte resins ANKF-1, ANKF-2, and ANKF-3D. The effects of HCl, NH/sub 4/Cl, and HF over broad concentration ranges on uranium adsorption have also been investigated. Based on adsorption data and the results of elemental analysis and IR spectroscopy conclusions have been drawn concerning the composition of adsorbed ions and their binding forms with functional groups. A mathematical model to describe the adsorption process has been proposed.

  8. Corrosion Fatigue Behavior of 316LN SS in Acidified Sodium Chloride Solution at Applied Potential

    NASA Astrophysics Data System (ADS)

    Poonguzhali, A.; Pujar, M. G.; Mallika, C.; Mudali, U. Kamachi

    2015-05-01

    The influence of acidified 1 M NaCl solution by addition of 2 ml/L of HCl on the cyclic plastic deformation of AISI Type 316LN SS containing 0.07 wt.% and 0.22 wt.% N was investigated as a function of the applied potentials. The corrosion fatigue (CF) behavior of stainless steel (SS) was explained vis-a-vis the dislocation behavior, the propensity to form microcracks, and the evolution of the current transients based on the studies carried out at both room-temperature and boiling conditions. CF experiments were conducted using round tensile specimens at a stress ratio of 0.5 and a frequency of 0.1 Hz. Two different kinds of damage mechanisms were observed (I) the damage mechanism in the stable-passive state was correlated with the localization of the anodic dissolution due to a depassivation-repassivation process, whereas (II) the cyclic stress induced pitting corrosion in the metastable pitting state, which resulted in formation of microcracks. The study of the microcracking process and its evolution is a key to the physical mechanism by which the fatigue life of stainless steels would be affected in an aqueous corrosive solution under the applied potential.

  9. A comparative study on the electrochemical corrosion behavior of iron and X-65 steel in 4.0 wt % sodium chloride solution after different exposure intervals.

    PubMed

    Sherif, El-Sayed M

    2014-07-09

    In this work, the results obtained from studying the anodic dissolution of pure iron and API X-65 5L pipeline steel after 40 min and 12 h exposure period in 4.0 wt % NaCl solutions at room temperature were reported. Potential-time, electrochemical impedance spectroscopy, potentiodynamic polarization, and chronoamperometric current-time at constant potential techniques were employed. It has been found that the iron electrode corrodes in the chloride test solutions faster than the API X-65 5L steel does under the same conditions. Increasing the exposure period for the electrodes from 40 min to 12 h showed a significant reduction in the corrosion parameters for both iron and steel in the 4.0 wt % NaCl solution. Results together confirmed clearly that the X-65 steel is superior to iron against corrosion in sodium chloride solutions.

  10. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  11. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  12. Corrosion Behavior of Stainless Steels in Neutral and Acidified Sodium Chloride Solutions by Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolady, M. R.; Vinje, R. D.

    2004-01-01

    The objective of this work was to evaluate the corrosion performance of three alloys by Electrochemical Impedance Spectroscopy (EIS) and to compare the results with those obtained during a two-year atmospheric exposure study.' Three alloys: AL6XN (UNS N08367), 254SM0 (UNS S32154), and 304L (UNS S30403) were included in the study. 304L was included as a control. The alloys were tested in three electrolyte solutions which consisted of neutral 3.55% NaC1, 3.55% NaC1 in 0.lN HC1, and 3.55% NaC1 in 1.ON HC1. These conditions were expected to be less severe, similar, and more severe respectively than the conditions at NASA's Kennedy Space Center launch pads.

  13. Separation of mercury from aqueous mercuric chloride solutions by onion skins

    SciTech Connect

    Asai, S.; Konishi, Y.; Tomisaki, H.; Nakanishi, M.

    1986-01-01

    The separation of mercury from aqueous HgCl/sub 2/ solutions by onion skins (outermost coat) was studied both experimentally and theoretically. The distribution equilibria were measured by the batchwise method. The experimental results revealed that onion skin is a useful material for separating mercury from aqueous systems. The distribution data obtained at 25/sup 0/C were analyzed by using the theory based on the law of mass action. The separation of dissolved mercury by onion skins was found to be a process accompanied by an ion-exchange reaction of the cationic complex HgCl/sup +/ and an adsorption of the neutral complex HgCl/sub 2/. The equilibrium constants of the ion-exchange and adsorption processes at 25/sup 0/C and the mercury-binding capacity of onion skins were determined. Further, it was found that the distribution equilibrium of mercury is comparatively insensitive to temperature.

  14. Volume change effect on the salt-finger stability of directionally solidifying ammonium chloride solution

    NASA Astrophysics Data System (ADS)

    Lee, Y. C.; Chen, Falin

    1995-09-01

    The effect of the volume change due to phase transformation on the stability of salt-finger convection of directionally solidifying NH 4Cl aqueous solution cooling from below is investigated. The basic flow, induced by the volume change, not only changes the morphology and the depth of the dendritic mushy layer, but also influences the stability of salt-finger convection. A new mathematical model is proposed, which differs from the previous one mainly on the dynamical condition at the melt/mush interface. This difference not only leads to a less stable state, but can also be crucial to the dynamical behavior of the oscillatory instability mode since the convection cells of this mode are coupled viscously through the interface. In the discussion, special emphasis is placed on the volume change effect on the instability mode competition, which may be influential to the stability characteristics of the subsequent plume convection.

  15. Small volume resuscitation with hypertonic sodium chloride solution in cattle undergoing surgical correction of abomasal volvulus.

    PubMed

    Sickinger, M; Doll, K; Roloff, N C; Halekoh, U

    2014-09-01

    A randomized clinical trial was conducted to compare the efficacy of rapid intravenous (IV) infusion of a 7.2% hypertonic saline solution with that of continuous application of an isotonic solution in stabilizing the circulation of cows with abomasal volvulus. Cattle treated with hypertonic saline had a significantly greater reduction in volume deficit within the first 10 min of therapy than cows treated with isotonic saline (from 5.9 ± 4.8 to 2.1 ± 4.4 L/100 kg vs. 7.0 ± 4.5 to 4.9 ± 3.8 L/100 kg, respectively). The central venous pressure (CVP) of the cows given the hypertonic saline rose within the first 10 min of therapy from 7.3 ± 3.5 to 10.8 ± 3.4 cm H2O, while the CVP of the cattle treated with isotonic saline did not increase significantly during this time. Sixty minutes after the start of the infusion, the CVP of the isotonic group was still significantly lower than that of the hypertonic group (9.5 ± 2.1 vs. 10.3 ± 3.3 cm H2O, respectively). Within the first 60 min, the base excess decreased from 5.5 ± 6.9 to 4.7 ± 6.2 mmol/L in the hypertonic group whereas it increased from 5.6 ± 5.7 to 6.8 ± 5.4 mmol/L in the isotonic group. These results suggest that for cows with abomasal volvulus, IV therapy with hypertonic saline may improve the haemodynamic and circulatory situation considerably faster and more effectively than continuous infusion with isotonic saline.

  16. Environmentally Assisted Cracking of Alloy 7050-T7451 Exposed to Aqueous Chloride Solutions

    NASA Astrophysics Data System (ADS)

    Braun, Reinhold

    2016-03-01

    The stress corrosion cracking (SCC) behavior of 7050-T7451 plate material was investigated in short-transverse direction performing constant load and constant extension rate tests. Smooth and notched tensile specimens were permanently immersed in substitute ocean water and in an aqueous solution of 0.6 M NaCl + 0.06 M (NH4)2SO4. Alloy 7050-T7451 exhibited high SCC resistance in both synthetic environments. However, conducting cyclic loading tests, environment-induced cracking was observed. Applying a sawtooth waveform, notched tensile specimens were strained under constant load amplitude conditions at constant displacement rates ranging from 2 × 10-6 to 2 × 10-4 mms-1. The stress ratio R = σ min/ σ max was 0.1 with maximum stresses of 300 and 400 MPa. When cyclically loaded in substitute ocean water, notched specimens failed predominantly by transgranular environment-induced cracking. Striations were observed on the cleavage-like facets. The number of cycles-to-failure decreased with decreasing displacement rate. A slope of 0.5 was obtained by fitting the logarithmic plot of number of cycles-to-failure vs nominal loading frequency, indicating a hydrogen embrittlement mechanism controlled by diffusion.

  17. Adsorption of uranium (VI) from mixed chloride-fluoride solutions by anion-exchange resins

    SciTech Connect

    Pakholkov, V.S.; Denisova, L.A.; Rychkov, V.N.; Kurnosenko, N.A.

    1988-03-01

    Experimental data are reported and discussed concerning the adsorption of uranium from 0.025 M solutions of UO/sub 2/Cl/sub 2/, containing HCl, HF, and NH/sub 4/Cl over a wide concentration range, using anion-exchange resins of varying basicities. UV and IR spectroscopic studies were conducted in order to clarify the chemical mechanism of uranium adsorption. Adsorption isotherms for all of the ion-exchange resins studied are convex in shape and can be described by the following equations: log K/sub d/ = a + b (-log C/sub e/), and log A = a + (b + 1) log C/sub e/, where A is the adsorptivity in mmole U/g; K/sub d/ is the distribution coefficient in mg/liter; and C/sub e/ is the equilibrium concentration of U in mmole/ml. General mathematical models have been obtained to describe the adsorption process; these consist of a system of regression equations derived from the results of a complete 2/sup 3/ factorial study.

  18. Aluminum-doped ceria-zirconia solid solutions with enhanced thermal stability and high oxygen storage capacity

    PubMed Central

    2012-01-01

    A facile solvothermal method to synthesize aluminum-doped ceria-zirconia (Ce0.5Zr0.5-xAlxO2-x/2, x = 0.1 to 0.4) solid solutions was carried out using Ce(NH4)2(NO3)6, Zr(NO3)3·2H2O Al(NO3)3·9H2O, and NH4OH as the starting materials at 200°C for 24 h. The obtained solid solutions from the solvothermal reaction were calcined at 1,000°C for 20 h in air atmosphere to evaluate the thermal stability. The synthesized Ce0.5Zr0.3Al0.2O1.9 particle was characterized for the oxygen storage capacity (OSC) in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy, and the Brunauer-Emmet-Teller (BET) technique were employed. The OSC values of all samples were measured at 600°C using thermogravimetric-differential thermal analysis. Ce0.5Zr0.3Al0.2O1.9 solid solutions calcined at 1,000°C for 20 h with a BET surface area of 18 m2 g−1 exhibited a considerably high OSC of 427 μmol-O g−1 and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO2 and Ce0.5Zr0.5O2. The incorporation of aluminum ion in the lattice of ceria-based catalyst greatly enhanced the thermal stability and OSC. PMID:23025588

  19. NMR sequential assignments and solution structure of chlorotoxin, a small scorpion toxin that blocks chloride channels.

    PubMed

    Lippens, G; Najib, J; Wodak, S J; Tartar, A

    1995-01-10

    The solution structure of chlorotoxin, a small toxin purified from the venom of the Leiurus quinquestriatus scorpion, has been determined using 2D 1H NMR spectroscopy. Analysis of the NMR data shows that the structure consists of a small three-stranded antiparallel beta-sheet packed against an alpha-helix, thereby adopting the same fold as charybdotoxin and other members of the short scorpion toxin family [Arseniev et al. (1984) FEBS Lett. 165, 57-62; Martins et al. (1990) FEBS Lett. 260, 249-253; Bontems et al. (1991) Science 254, 1521-1523]. Three disulfide bonds of chlorotoxin (Cys5-Cys28, Cys16-Cys33, and Cys20-Cys35), cross-linking the alpha-helix to the beta-sheet, follow the common pattern found in the other short scorpion toxins. The fourth disulfide bridge (Cys2-Cys19) links the small N-terminal beta strand to the rest of the molecule, in contrast to charybdotoxin where this disulfide bridge is absent and the first strand interacts with the rest of the molecule by several contacts between hydrophobic residues. Another structural difference between chlorotoxin and charybdotoxin is observed at the level of the alpha-beta turn. This difference is accompanied by a change in the electrostatic potential surface, which is largely positive at the level of this turn in chlorotoxin, whereas no such positive potential surface can be found at the same position in charybdotoxin. In the latter protein, the positive surface is formed by different charged residues situated on the solvent-exposed site of the C-terminal beta-sheet.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Corrosion Behavior of Ultra-fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, A.; Gashti, S. O.

    2015-09-01

    Accumulative roll bonding (ARB) has been used as a severe plastic deformation process for the industrial production of ultra-fine grained (UFG) and nano-crystalline sheets with excellent mechanical properties. In the present study, the effect of the ARB process on the corrosion behavior of UFG and nano-crystalline 1050 aluminum alloy in a buffer borate solution (pH 5.5) has been investigated. The result of microhardness tests revealed that microhardness values increase with an increasing number of ARB cycles. A sharp increase in microhardness is seen after three ARB cycles, whereas moderate additional increases are observed afterward for up to nine cycles. Also, the XRD results showed that the mean crystallite size decreased to about 91 nm after nine cycles. The potentiodynamic plots show that as a result of ARB, the corrosion behavior of the UFG and nano-crystalline specimens improves, compared to the annealed 1050 aluminum alloy. Moreover, electrochemical impedance spectroscopy measurements showed that the polarization resistance increases with an increasing number of ARB cycles.

  1. Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs.

    PubMed

    Branquinho, Rita; Salgueiro, Daniela; Santos, Lídia; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2014-11-26

    Solution processing has been recently considered as an option when trying to reduce the costs associated with deposition under vacuum. In this context, most of the research efforts have been centered in the development of the semiconductors processes nevertheless the development of the most suitable dielectrics for oxide based transistors is as relevant as the semiconductor layer itself. In this work we explore the solution combustion synthesis and report on a completely new and green route for the preparation of amorphous aluminum oxide thin films; introducing water as solvent. Optimized dielectric layers were obtained for a water based precursor solution with 0.1 M concentration and demonstrated high capacitance, 625 nF cm(-2) at 10 kHz, and a permittivity of 7.1. These thin films were successfully applied as gate dielectric in solution processed gallium-zinc-tin oxide (GZTO) thin film transistors (TFTs) yielding good electrical performance such as subthreshold slope of about 0.3 V dec(-1) and mobility above 1.3 cm2 V(-1) s(-1). PMID:25354332

  2. Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes.

    PubMed

    Marcionilio, Suzana M L de Oliveira; Alves, Gisele M; E Silva, Rachel B Góes; Marques, Pablo J Lima; Maia, Poliana D; Neto, Brenno A D; Linares, José J

    2016-10-01

    This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 (-)) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl(-) led to the formation of oxychlorinated anions (mostly ClO3 (-) and ClO4 (-)) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.

  3. An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions.

    PubMed

    Liu, Yang; Gu, Ping; Jia, Lin; Zhang, Guanghui

    2016-01-25

    Cuprous chloride (CuCl) was examined as a precipitant to remove iodide (I(-)) from aqueous solutions. The effects of the dosage of CuCl, reaction time, initial concentrations of I(-) and bicarbonate (HCO3(-)) on I(-) removal were investigated. The results showed that the optimized removal efficiency of I(-) reached approximately 95.8% when the dosage was 150 mg/L, the initial I(-) concentration ranged from 5 to 40 mg/L and the reaction time was 15 min. The removal efficiency decreased from 95.8% to 76.0% with the addition of HCO3(-) at a concentration in the range of 0-107 mg/L. Furthermore, the dissociation of CuCl, the disproportionation reaction of Cu(+), the precipitation of cuprous iodide (CuI) and cuprous oxide (Cu2O), and the formations of copper sulfide (CuxS, 1≤x<2) were identified as the primary reactions using the PHREEQC software and the measurements of water quality parameters under various conditions. X-rays photoelectron spectroscopy (XPS) analysis was performed before and after the reaction, helping to elucidate the reaction mechanism. This study can provide a promising method to address radioactive I(-) pollution in water. PMID:26448493

  4. An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions.

    PubMed

    Liu, Yang; Gu, Ping; Jia, Lin; Zhang, Guanghui

    2016-01-25

    Cuprous chloride (CuCl) was examined as a precipitant to remove iodide (I(-)) from aqueous solutions. The effects of the dosage of CuCl, reaction time, initial concentrations of I(-) and bicarbonate (HCO3(-)) on I(-) removal were investigated. The results showed that the optimized removal efficiency of I(-) reached approximately 95.8% when the dosage was 150 mg/L, the initial I(-) concentration ranged from 5 to 40 mg/L and the reaction time was 15 min. The removal efficiency decreased from 95.8% to 76.0% with the addition of HCO3(-) at a concentration in the range of 0-107 mg/L. Furthermore, the dissociation of CuCl, the disproportionation reaction of Cu(+), the precipitation of cuprous iodide (CuI) and cuprous oxide (Cu2O), and the formations of copper sulfide (CuxS, 1≤x<2) were identified as the primary reactions using the PHREEQC software and the measurements of water quality parameters under various conditions. X-rays photoelectron spectroscopy (XPS) analysis was performed before and after the reaction, helping to elucidate the reaction mechanism. This study can provide a promising method to address radioactive I(-) pollution in water.

  5. Bioactivity of porous titanium with hydrogen peroxide solution with or without tantalum chloride treatment at a low temperature.

    PubMed

    Zhao, Chaoyong; Liang, Kailu; Tan, Jing; Xiang, Zhou; Fan, Hongsong; Zhang, Xingdong

    2013-04-01

    In this study, porous titanium was treated by a hydrogen peroxide solution with (HT) or without (HO) tantalum chloride at a low temperature to endow its bioactivity. The microstructure, film stability and in vitro and in vivo bioactivity of HT-treated and HO-treated porous titanium were investigated, and the non-treated one was used as control. After HT treatment, a well-crystallized titania nanoparticle film consisting of anatase phase with good film stability was formed on the surface of porous titanium, and the tantalum element appeared in the film, while the HO-treated porous titanium surface showed a dual structure with well-aligned nanorods as an outer layer and condensed nanoparticles as an inner layer consisting of a mixture of well-crystallized anatase and rutile phases. In vitro bioactivity assessment showed that both HT- and HO-treated porous titanium possessed high apatite-forming ability. More importantly, after implantation in the dorsal muscles of dogs, the HT- and HO-treated implants induced ectopic bone formation in its inner pores after 5 months, while the non-treated one did not. The present study showed that HT-treated porous titanium possessed good film stability and bioactivity to be used as bone repair materials in clinic under load-bearing conditions.

  6. A new dioxime corrosion inhibitor for the protection and conservation of copper: synthesis, characterization and evaluation in acidic chloride solution

    NASA Astrophysics Data System (ADS)

    Abu-Baker, Ahmad N.; Al-Qudah, Mahmoud A.

    2016-08-01

    This study aimed to investigate a new dioxime compound as a corrosion inhibitor for copper. The compound (4,6-dihydroxy benzene-1,3-dicarbaldehyde dioxime) was synthesized and characterized by nuclear magnetic resonance spectroscopy. Electrochemical impedance spectroscopy and potentiodynamic polarization measurements were used to compare the dioxime compound with benzotriazole for their effectiveness as corrosion inhibitors for copper in 0.1 M HCl solution. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to investigate the bonding mechanisms and morphological changes of the two inhibitors on the copper surface. The electrochemical techniques showed that the new dioxime compound was more effective than benzotriazole in inhibiting copper corrosion in the acidic chloride medium. The FTIR and SEM results indicated that the dioxime compound was able to coordinate with copper ions and formed a protective film on the copper surface. It was concluded that the new dioxime compound proved effectiveness to be used as a corrosion inhibitor for the protection and conservation of copper.

  7. Effects of solution pH and synthetic method on destabilization process of polytitanium-silicate-chloride.

    PubMed

    Huang, Xin; Gao, Baoyu; Sun, Yangyang; Yue, Qinyan; Wang, Yan; Li, Qian

    2016-07-01

    Effect of solution pH on coagulation performance and flock properties of a novel inorganic polymer coagulant-polytitanium-silicate-chloride (PTSC) in humic acid-kaolin water treatment was investigated in this work. PTSC was synthesized by two approaches: composite and co-complexion, denoted as PTSCm and PTSCc respectively. The effect of the synthetic method was also considered. Results indicated that turbidity and DOM removal were improved by addition of polysilicic acid, especially under acidic condition. PTSCc achieved slightly better DOM removal than that of PTSCm. Flocks formed under acidic condition was smaller than those form under alkaline condition. In addition, flocks formed by PTSCc were larger than PTSCm flocks. Results also indicated that flock strength and recovery ability was slightly improved by the addition of PSiA. Moreover, under acidic condition, PTSC flocks had larger fractal dimension with more compact structure, especially for PTSCm flocks. In contrast, they were looser compared with PTC flock, especially for PTSCm flocks under neutral and alkaline conditions. PMID:26994354

  8. Removal of malachite green dye from aqueous solution using mesoporous silica synthesized from 1-octyl-3-methylimidazolium chloride ionic liquid

    NASA Astrophysics Data System (ADS)

    Ekka, Basanti; Nayak, Soumitra Ranjan; Dash, Priyabrat; Patel, Raj Kishore

    2016-04-01

    In this research, mesoporous silica was synthesized via a modified sol-gel route using 1-octyl-3-methylimidazolium chloride and was employed to remove malachite green (MG) dye from aqueous solution. Subsequently, this material was characterized and identified by different techniques such as Fourier transform infrared spectroscopy (FT-IR), N2 adsorption-desorption method, scanning electron microscopy (SEM), and thermosgravimetric analysis (TGA). Unique properties such as high surface area and pore diameter, in addition to highly reactive atoms and presence of various functional groups make the mesoporous silica possible for efficient removal of malachite green (MG). In batch experimental set-up, optimum conditions for quantitative removal of MG by mesoporous silica was attained by varying different variables such as adsorbent dosage, initial dye concentration, contact time, and pH. Optimum values were set as pH of 8.0, 0.5 g of adsorbent at contact time of 120 min. The adsorption of MG follows the pseudo-second-order rate equation. Equilibrium data fitted well with the Freundlich model at all amount of adsorbent, while maximum adsorption capacity was 5.981 mg g-1 for 0.5 g mesoporous silica synthesized in IL.

  9. Chloride as tracer of solute transport in the aquifer-aquitard system in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Kuang, Xingxing; Jiao, Jiu Jimmy; Wang, Ya

    2016-08-01

    A 1D numerical model is constructed to investigate the impact of sedimentation and sea level changes on transport of Cl- in the aquifer-aquitard system in the Pearl River Delta (PRD), China. The model simulates the evolution of the vertical Cl- concentration profiles during the Holocene. Sedimentation is modeled as a moving boundary problem. Chloride concentration profiles are reconstructed for nine boreholes, covering a wide area of the PRD, from northwest to southeast. Satisfactory agreement is obtained between simulated and measured Cl- concentration profiles. Diffusion solely is adequate to reproduce the vertical Cl- concentration profiles, which indicates that diffusion is the regionally dominant vertical transport mechanism across the aquitards in the PRD. The estimated effective diffusion coefficients of the aquitards range from 2.0 × 10-11 to 2.0 × 10-10 m2/s. The effective diffusion coefficients of the aquifers range from 3.0 × 10-11 to 4.0 × 10-10 m2/s. Advective transport tends to underestimate Cl- concentrations in the aquitard and overestimate Cl- concentrations in the basal aquifer. The results of this study will help understand the mechanisms of solute transport in the PRD and other deltas with similar geological and hydrogeological characteristics.

  10. Re-passivation Potential of Alloy 22 in Chloride plus Nitrate Solutions using the Potentiodynamic-Galvano-static-Potentiostatic Method

    SciTech Connect

    Evans, Kenneth J.; Rebak, Raul B.

    2007-07-01

    In general, the susceptibility of Alloy 22 to suffer crevice corrosion is measured using the Cyclic Potentiodynamic Polarization (CPP) technique. This is a fast technique that gives rather accurate and reproducible values of re-passivation potential (ER1) in most cases. In the fringes of susceptibility, when the environment is not highly aggressive, the values of re-passivation potential using the CPP technique may not be highly reproducible, especially because the technique is fast. To circumvent this, the re-passivation potential of Alloy 22 was measured using a slower method that combines Potentiodynamic-Galvano-static-Potentiostatic steps (called here the Tsujikawa-Hisamatsu Electrochemical or THE method). The THE method applies the charge to the specimen in a more controlled way, which may give more reproducible re-passivation potential values, especially when the environment is not aggressive. The values of re-passivation potential of Alloy 22 in sodium chloride plus potassium nitrate solutions were measured using the THE and CPP methods. Results show that both methods yield similar values of re-passivation potential, especially under aggressive conditions. (authors)

  11. Parenteral drug products containing aluminum as an ingredient or a contaminant: Response to Food and Drug Administration notice of intent and request for information. ASCN/A. S. P. E. N. Working Group on Standards for Aluminum Content of Parenteral Nutrition Solutions

    SciTech Connect

    Not Available

    1991-03-01

    Aluminum remains a significant contaminant of total parenteral nutrition (TPN) solutions and may be elevated in bone, urine, and plasma of infants receiving TPN. Aluminum accumulation in tissues of uremic patients and adult TPN patients has been associated with low-turnover bone disease. Furthermore, aluminum has also been linked with encephalopathy and anemia in uremic patients and with hepatic cholestasis in experimental animals. Because of the toxic effects of aluminum, the Food and Drug Administration (FDA) recently published a notice of intent to set an upper limit of 25 micrograms/L for aluminum in large-volume parenterals and to require manufacturers of small-volume parenterals, such as calcium and phosphate salts, to measure aluminum content and note this content on the package label. The ASCN/A.S.P.E.N. Working Group on Standards for Aluminum Content of Parenteral Nutrition Solutions supports these intentions and further urges the FDA to require that cumulative aluminum intake in terms of safe, unsafe, and toxic quantities of aluminum per kilogram be made known to physicians and pharmacists preparing the TPN solutions, to ensure that manufacturers use appropriate control procedures in aluminum measurements, and to employ a standard unit of aluminum measurement.

  12. Effects of HNO3 concentration on the pit morphologies of aluminum foil etched in HNO3-HCl and HNO3-H2SO4-HCl solutions

    NASA Astrophysics Data System (ADS)

    Yi, Quan-xiu; He, Ye-dong; Peng, Ning; Song, Hong-zhou; Yang, Xiao-fei; Cai, Xiao-yu

    2016-01-01

    In this work, the effects of HNO3 concentration on the pit morphologies of high-cubic-texture aluminum foil etched in HNO3-HCl and HNO3-H2SO4-HCl solutions were investigated. When the aluminum foil was etched in HNO3-HCl solutions, the morphologies of pits transformed from irregular tunnels to typical tunnels (as inverted pyramids) and shallow cuboids as the HNO3 concentration in the etchant solution was increased. However, as the HCl concentration in the etchant solution was increased, the morphologies of pits transformed from shallow cuboids to typical tunnels (as inverted pyramids) and irregular tunnels. When the aluminum foil was etched in n N HNO3-(7.2- n) N H2SO4-0.8 N HCl solutions, the morphologies of the pits transformed from typical tunnels (i.e., the number of sub-tunnels formed on the main tunnels increased) to irregular tunnels (corrugated tunnels and polyline tunnels) as the HNO3 concentration in the etchant solution was increased. These effects are attributed primarily to corrosion on the (100) and (010) faces of pits being accelerated and to the (001) faces being prone to passivation to different degrees when various concentrations of HNO3 are added to the etchant solutions.

  13. Ion-pair formation in aqueous strontium chloride and strontium hydroxide solutions under hydrothermal conditions by AC conductivity measurements.

    PubMed

    Arcis, H; Zimmerman, G H; Tremaine, P R

    2014-09-01

    Frequency-dependent electrical conductivities of solutions of aqueous strontium hydroxide and strontium chloride have been measured from T = 295 K to T = 625 K at p = 20 MPa, over a very wide range of ionic strength (3 × 10(-5) to 0.2 mol kg(-1)), using a high-precision flow AC conductivity instrument. Experimental values for the concentration-dependent equivalent conductivity, Λ, of the two electrolytes were fitted with the Turq-Blum-Bernard-Kunz ("TBBK") ionic conductivity model, to determine ionic association constants, K(A,m). The TBBK fits yielded statistically significant formation constants for the species SrOH(+) and SrCl(+) at all temperatures, and for Sr(OH)2(0) and SrCl2(0) at temperatures above 446 K. The first and second stepwise association constants for the ion pairs followed the order K(A1)(SrOH(+)) > K(A1)(SrCl(+)) > K(A2)[Sr(OH)2(0)] > K(A2)[SrCl2(0)], consistent with long-range solvent polarization effects associated with the lower static dielectric constant and high compressibility of water at elevated temperatures. The stepwise association constants to form SrCl(+) agree with previously reported values for CaCl(+) to within the combined experimental error at high temperatures and, at temperatures below ∼375 K, the values of log10 KA1 for strontium are lower than those for calcium by up to ∼0.3-0.4 units. The association constants for the species SrOH(+) and Sr(OH)2(0) are the first accurate values to be reported for hydroxide ion pairs with any divalent cation under these conditions.

  14. Structure and Stability of Long Rod-like Dodecyltrimethylammonium Chloride Micelles in Solutions of Hydroxybenzoates: A Molecular Dynamics Simulation Study.

    PubMed

    Gujt, Jure; Bešter-Rogač, Marija; Spohr, Eckhard

    2016-08-16

    The relative position of the hydroxylic and carboxylic groups in the isomeric hydroxybenzoate (HB) anions is experimentally known to have a large impact on the thermodynamics of micellization of cationic surfactants, such as dodecyltrimethylammonium chloride (DTAC), and on the structure of the resulting micelles. To understand the effect of the different isomers on the molecular level, we employed atomistic molecular dynamics simulations to study systems containing infinitely long cylindrical DTAC micelles in aqueous solutions of the sodium salts of all three isomers of HB at a temperature and a pressure of 298.15 K and 1 atm. In all studied systems, the number of DTAC unimers is identical to the number of HB anions. At this concentration, the initially cylindrical micelles remain stable, irrespective of the nature of the isomer, whereas micelles rapidly disintegrated in the absence of HB anions. The HB isomers decrease the line density of unimers along the micellar axis and its concomitant thickness in the order o-HB > m-HB > p-HB. It is further observed that o-HB anions penetrate more deeply into the micellar core, induce a more ordered internal structure of the micelle, and are oriented more strongly than the other two isomers. In addition, the ortho isomer shows two different preferential orientations with respect to the radial direction of the cylindrical micelle; it can either be incorporated almost completely into the micelle or it can be attached through hydrogen bonding to one of those o-HB anions that are already incorporated into the micelle, and thus stick out of the micellar surface. PMID:27442259

  15. Concentration dependence of ionic conductance measured with ion-selective sub-micro pipette probes in aqueous sodium and potassium chloride solutions

    NASA Astrophysics Data System (ADS)

    Son, J. W.; Takami, T.; Lee, J.-K.; Kawai, T.; Park, B. H.

    2011-07-01

    Selective ionic currents in aqueous sodium and potassium chloride solutions with concentrations from 0.01 M to 1.0 M were measured using sub-micro pipette probes in which a poly(vinyl chloride) film containing crown ethers selectively filtered sodium or potassium ions. The selective ionic currents were monitored with a sub-picoampere current measurement system developed from the techniques of TΩ-gap impedance scanning tunneling microscopy. The ionic currents increased with the concentration of the corresponding solution, and thus these sub-micro pipette probes can be applied to detect local ionic concentration of a specific ion in living cells with ionic concentration higher than 0.1 M.

  16. CO sub 2 induced inhibition of the localized corrosion of aluminum, Al-0. 5% Cu, and Al-2% Cu in dilute HF solution

    SciTech Connect

    Scully, J.R. . Dept. of Materials Science); Peebles, D.E. )

    1991-01-01

    This study presents work on corrosion of aluminum, Al-.5% Cu, and Al-2% Cu. Electrochemical tests were performed in dilute HF solutions both with and without CO{sub 2} sparging. It is suggested that CO{sub 2} or its reaction products interact with the passive film so that exposure of Cu in the oxide-solution interface is minimized. CO{sub 2} is investigated as a corrosion inhibitor. 4 refs. (JDL)

  17. Universal charge quenching and stability of proteins in 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride ionic liquid solutions.

    PubMed

    Rawat, Kamla; Bohidar, H B

    2012-09-13

    This study reports pH dependent stability of protein dispersions of five common proteins, bovine serum albumin (BSA), human serum albumin (HSA), immunoglobulin (IgG), β-lactoglobulin (β-Lg), and gelatin-B (Gel-B), all having isoelectric pH, pI ≈ 5, in room temperature ionic liquid solutions of 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride (concentration 0-0.2% w/v). Molecular hydrophobicity index, (H-index = hydrophobicity/hydrophilicity) of these molecules spanned the range 0.43-0.87. Electrophoretic characteristics, surface tension data and hydrodynamic size information revealed that IL solutions provide dispersion stability owing to specific protein-IL binding which did not alter their pI values though their surface charge was considerably screened. Change in maximum (ζ(max)) and minimum (ζ(min)) zeta potential values observed at pH ~3 (maximum protonated state) and pH ~8 (maximum deprotonated state) could be described universally as function of IL concentration, c as Δζ(x) = [1 - exp(-ac)] where Δζ(x) is either |(ζ(max) - ζ(w))|/ζ(w) or |(ζ(min) - ζ(w))|/ζ(w), and ζ(w) is the corresponding value in water. Tensiometry data showed two major stages of protein-IL interactions: (i) for c < cmc of IL, the IL molecules selectively bind with imidazolium cation through electrostatic forces forming protein-IL (complex) and (ii) for c> cmc free IL-aggregates begin to form. Similarly, we can define Δγ(x) as either |(γ(max) - γ(w))|/γ(w) at pH 3 or |(γ(min) - γ(w))|/γ(w) at pH 8. Both Δζ(x) and Δγ(x) showed linear dependence with c, Δγ(min, max) (or Δζ(min, max)) = (1 - K(γ) (or K(ζ)) H-index), where the slopes K(ζ) and K(γ) defined intermolecular interactions. Hydrodynamic radii data revealed protein stabilization, circular dichroism spectra implied retention of secondary structures, and Raman spectra confirmed a marginal increase in water structure. Results concluded that selective binding of IL molecules to protein surface in

  18. Universal charge quenching and stability of proteins in 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride ionic liquid solutions.

    PubMed

    Rawat, Kamla; Bohidar, H B

    2012-09-13

    This study reports pH dependent stability of protein dispersions of five common proteins, bovine serum albumin (BSA), human serum albumin (HSA), immunoglobulin (IgG), β-lactoglobulin (β-Lg), and gelatin-B (Gel-B), all having isoelectric pH, pI ≈ 5, in room temperature ionic liquid solutions of 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride (concentration 0-0.2% w/v). Molecular hydrophobicity index, (H-index = hydrophobicity/hydrophilicity) of these molecules spanned the range 0.43-0.87. Electrophoretic characteristics, surface tension data and hydrodynamic size information revealed that IL solutions provide dispersion stability owing to specific protein-IL binding which did not alter their pI values though their surface charge was considerably screened. Change in maximum (ζ(max)) and minimum (ζ(min)) zeta potential values observed at pH ~3 (maximum protonated state) and pH ~8 (maximum deprotonated state) could be described universally as function of IL concentration, c as Δζ(x) = [1 - exp(-ac)] where Δζ(x) is either |(ζ(max) - ζ(w))|/ζ(w) or |(ζ(min) - ζ(w))|/ζ(w), and ζ(w) is the corresponding value in water. Tensiometry data showed two major stages of protein-IL interactions: (i) for c < cmc of IL, the IL molecules selectively bind with imidazolium cation through electrostatic forces forming protein-IL (complex) and (ii) for c> cmc free IL-aggregates begin to form. Similarly, we can define Δγ(x) as either |(γ(max) - γ(w))|/γ(w) at pH 3 or |(γ(min) - γ(w))|/γ(w) at pH 8. Both Δζ(x) and Δγ(x) showed linear dependence with c, Δγ(min, max) (or Δζ(min, max)) = (1 - K(γ) (or K(ζ)) H-index), where the slopes K(ζ) and K(γ) defined intermolecular interactions. Hydrodynamic radii data revealed protein stabilization, circular dichroism spectra implied retention of secondary structures, and Raman spectra confirmed a marginal increase in water structure. Results concluded that selective binding of IL molecules to protein surface in

  19. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J.

    PubMed

    Shen, Shaobo; Pan, Tonglin; Liu, Xinqiang; Yuan, Lei; Wang, Jinchao; Zhang, Yongjian; Guo, Zhanchen

    2010-07-15

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K(d)) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q(max) based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 degrees C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process.

  20. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J.

    PubMed

    Shen, Shaobo; Pan, Tonglin; Liu, Xinqiang; Yuan, Lei; Wang, Jinchao; Zhang, Yongjian; Guo, Zhanchen

    2010-07-15

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K(d)) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q(max) based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 degrees C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process. PMID:20346581

  1. Treatment of Basic Red 29 dye solution using iron-aluminum electrode pairs by electrocoagulation and electro-Fenton methods.

    PubMed

    Yavuz, Yusuf; Shahbazi, Reza; Koparal, A Savaş; Öğütveren, Ulker Bakır

    2014-01-01

    The aim of this study is the treatment of Basic Red 29 (BR29) dye solution using hybrid iron-aluminum electrodes by electrocoagulation and electro-Fenton methods. The effect of current density, initial pH, supporting electrolyte, H₂O₂, and initial dye concentration on dye removal efficiency was investigated, and the best experimental conditions were obtained. Time-coarse variation of UV-Vis spectra and toxicity and chemical oxygen demand (COD) removal were also examined at the best experimental conditions. Both systems were found very successful for the removal of BR29 dye. The removal efficiency of >95% for BR29 dye solution was reached easily in a short time. At the best experimental conditions, for the initial BR29 concentration of 100 mg/L, >95% BR29 dye and 71.43% COD removal were obtained after 20 and 40 min of electrolysis, respectively. Additionally, toxicity results for electro-Fenton treatment of 100 mg/L BR29 were also very promising. According to the results obtained, although electro-Fenton is more effective, both systems can be used successfully to treat textile wastewater including dyes.

  2. Coagulation behavior and floc properties of compound bioflocculant-polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment.

    PubMed

    Huang, Xin; Sun, Shenglei; Gao, Baoyu; Yue, Qinyan; Wang, Yan; Li, Qian

    2015-04-01

    This study was intended to compare coagulation behavior and floc properties of two dual-coagulants polyaluminum chloride-compound bioflocculant (PAC-CBF) (PAC dose first) and compound bioflocculant-polyaluminum chloride (CBF-PAC) (CBF dose first) with those of PAC alone in low temperature drinking water treatment. Results showed that dual-coagulants could improve DOC removal efficiency from 30% up to 34%. Moreover, CBF contributed to the increase of floc size and growth rate, especially those of PAC-CBF were almost twice bigger than those of PAC. However, dual-coagulants formed looser and weaker flocs with lower breakage factors in which fractal dimension of PAC-CBF flocs was low which indicates a looser floc structure. The floc recovery ability was in the following order: PAC-CBF>PAC alone>CBF-PAC. The flocculation mechanism of PAC was charge neutralization and enmeshment, meanwhile the negatively charged CBF added absorption and bridging effect.

  3. Chemical behavior of aluminum and phosphorus during dissolution of glass fibers in physiological saline solutions.

    PubMed Central

    Baillif, P; Touray, J C

    1994-01-01

    The dissolution of textile glass fibers of four different compositions has been investigated at 37 degrees C. In these glasses, which are isolation type, the P2O5 contents scatter between 0 and 2 wt% and Al2O3 from 0.12 to 3.4 wt%. Both static (30-mg fibers; 250-ml solution) and dynamic (50-mg fibers; 40 ml/day flow rate) conditions with or without bubbling of a gas mixture (95:5, N2-CO2) have been used. Two physiological solutions, one proposed by Kanapilly and the other by Scholtze, were used. After each run (1, 3, 7, 14, and sometimes 30, 62 days) the solutions were analyzed for B and Si by inductively coupled plasma (ICP), the weight losses were determined, and the residual solid were observed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Static runs give a better agreement between measured and calculated weight losses from solution analyses than dynamic experiments. SEM examinations indicate diameter reduction and formation of a hydrated Si-rich layer. Sometimes hollow tubes, suggesting the detachment of these layers, are observed. XPS and energy dispersive X-ray (EDX) analysis indicate the formation of a veneer of calcium phosphate for the most rapidly dissolving glass. In other cases an Al increase is observed at the solid solution interface. Whatever experimental conditions are used, the relative dissolution rates of the four glasses are identical. The kinetics may be modeled with variable dissolution rates from initial high values to final low ones. The latter reflect the very low solubility of the residual product. Images Figure 2. a Figure 2. b Figure 7. a Figure 7. b PMID:7882961

  4. Liquid-liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions using tri-iso-octylamine.

    PubMed

    Lee, Jin-Young; Rajesh Kumar, J; Kim, Joon-Soo; Park, Hyung-Kyu; Yoon, Ho-Sung

    2009-08-30

    Liquid-liquid extraction/separation of platinum(IV) and rhodium(III) from acidic chloride solutions was carried out using tri-iso-octylamine (Alamine 308) as an extractant diluted in kerosene. The percentage extraction of platinum(IV) and rhodium(III) increased with increase in acid concentration up to 8 mol L(-1). However, at 10 mol L(-1) HCl concentration, the extraction behavior was reversed, indicating the solvation type mechanism during extraction. The quantitative extraction of approximately 98% platinum(IV) and 36% rhodium(III) was achieved with 0.01 mol L(-1) Alamine 308. The highest separation factor (S.F.=184.7) of platinum(IV) and rhodium(III) was achieved with 0.01 mol L(-1) Alamine 308 at 1.0 mol L(-1) of hydrochloric acid concentration. Alkaline metal salts like sodium chloride, sodium nitrate, sodium thiocyanate, lithium chloride, lithium nitrate, potassium chloride and potassium thiocyanate used for the salting-out effect. LiCl proved as best salt for the extraction of platinum(IV). Temperature effect demonstrates that the extraction process is exothermic. Hydrochloric acid and thiourea mixture proved to be better stripping reagents when compared with other mineral acids and bases. PMID:19285802

  5. Silicon nitride-aluminum oxide solid solution (SiAION) formation and densification by pressure sintering

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.; Sanders, W. A.; Fiyalko, J. L.

    1975-01-01

    Stirred-ball-mill-blended Si3N4 and Al2O3 powders were pressure sintered in order to investigate the mechanism of solid solution formation and densification in the Si3N4-Al2O3 system. Powder blends with Si3N4:Al2O3 mole ratios of 4:1, 3:2, and 2:3 were pressure sintered at 27.6-MN/sq m pressure at temperatures to 17000 C (3090 F). The compaction behavior of the powder blends during pressure sintering was determined by observing the density of the powder compact as a function of temperature and time starting from room temperature. This information, combined with the results of X-ray diffraction and metallographic analyses regarding solutioning and phase transformation phenomena in the Si3N4-Al2O3 system, was used to describe the densification behavior.

  6. The effects of ternary alloying additions on solute-drag creep in aluminum-magnesium alloys

    NASA Astrophysics Data System (ADS)

    Qiao, Jun

    Effects of ternary additions of Zn, Fe, and Cu on solute-drag creep and ductility in Al-Mg alloys are studied. The materials studied are, in wt. pct. Al-2Mg-5Zn, Al-3Mg-5Zn, Al-4Mg-5Zn, Al-3Mg-0.11Fe, Al-3Mg-0.27Fe, Al-3Mg-0.40Fe, Al-3Mg-0.50Cu, Al-3Mg-1.02Cu, Al-3Mg-1.52Cu, and Al-3Mg-2.15Cu. Experimental data show that ternary Zn additions do not have an adverse effect on solute-drag creep in Al-Mg alloys, but increase the sensitivity of stress exponent, n, to Mg content. Transitions to power-law breakdown in the Al-xMg-5Zn materials are discussed. Ternary Fe and Cu additions increases n during solute-drag creep. Ductilities of over 100% are consistently achieved in the Al-xMg-5Zn and Al-3Mg-xFe materials. Age hardenability during natural aging and simulated paint-bake cycle are studied for the Al-xMg-5Zn Chid Al-3Mg-xCu materials. Zn creates a significant paint-bake response, while the effect of Cu is small for a simulated paint-bake cycle.

  7. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  8. Seasonal change in the level and the chemical forms of aluminum in soil solution under a Japanese cedar forest.

    PubMed

    Umemura, Tomonari; Usami, Yosuke; Aizawa, Sho-ichi; Tsunoda, Kin-ichi; Satake, Ken-ichi

    2003-12-30

    The level of dissolved aluminum and its chemical forms in soil solutions consecutively collected by a porous cup vacuum sampler were monitored over a period from January 2001 to December 2001 at a Japanese cedar (Cryptomeria japonica) forestry area susceptible to acid deposition to characterize current soil dynamics and to evaluate potential tree damages. Distinction and characterization of Al species with differential toxicities were performed by two complementary speciation techniques; cation-exchange HPLC with fluorometric detection using 8-hydroxyquinoline-5-sulfonic acid (HQS) and size-fractionation/inductively coupled plasma atomic emission spectrometry (ICP-AES). The concentrations of free Al (mainly Al3+ and Al(OH)2+) and inert Al (existing as the complexed and/or colloidal forms) ranged between 0-150 microM and 10-50 microM, respectively. The concentrations of inert Al were mostly below 40 microM during an annual cycle and showed no marked seasonal variation, while free Al concentrations showed a clear tendency to increase in the spring and summer seasons (in the period from April to August) probably due to the enhanced activity of microbial nitrification and the resultant soil acidification. Major cations and anions were also regularly determined and their seasonal changes were correlated with that of the dissolved Al concentration. Correlations between total Al (mainly existing as free Al) and the related species (and environmental conditions) were as follows: Al and Mg (R=0.96, P<0.01), Al and Ca (R=0.97, P<0.01), Al and NO3- (R=0.68, P<0.01), Al and temperature (R=0.68, P<0.01), Al and solution pH (R=-0.61, P<0.01), solution pH and NO3- (R=-0.65, P<0.01).

  9. Sorption of Ponceau 4R anionic dye from aqueous solutions on aluminum oxide and polyurethane foam

    NASA Astrophysics Data System (ADS)

    Tikhomirova, T. I.; Ramazanova, G. R.; Apyari, V. V.

    2014-12-01

    The sorption of Ponceau 4R (E-124) anionic dye on polyurethane foam based on ethers and γ-Al2O3 from aqueous solutions is studied. It is established that sorption is highest in the range of 0.5 M HCl, pH 2 on polyurethane foam and 0.2 M HCl, pH 6.5 on γ-Al2O3. Under optimum conditions, the degrees of recovery on polyurethane foam and γ-Al2O3 are 20-30 and 70-85%, respectively. A possible scheme of interactions between the dye and the surfaces of sorbents is proposed.

  10. [Bladder irrigation with aluminum solution for the control of massive hematuria].

    PubMed

    Octavio Castillo, A; Buizza, C

    1989-03-01

    The massive bladder hemorrhage is a serious condition which implies important difficulties of treatment. Nine cases are presented: the continuous intravesical irrigation with 1% alluminium potassium sulphate in sterile distilled water was used, using continuous intravesical lavage with a double channel catheter. The haematuria was caused by radiation cystitis in 7 patients, vesical tumors in 2 patients. In every case there was a complete control of the hemorrhage in 12-72 hours with few immediate side effects, controlled in most cases with antispasmodics. This solution is economical, easy to prepare, simple to use and effective in the treatment of severe bladder hemorrhage. PMID:2523567

  11. An empirical equation with tables of smoothed solubilities of methane in water and aqueous sodium chloride solutions up to 25 weight percent, 360 degrees C, and 138 MPa

    USGS Publications Warehouse

    Haas, John L.

    1978-01-01

    The total pressure for the system H2O-CH 4 is given by p(total) = P(H2O,t) + exp10[log x(CH 4) - a - b x(CH4)], where P(H2O,t) is the vapor pressure of H2O liquid at the temperature t (?C) and x(CH 4) is the molal concentration of methane in the solution. The terms a and b are functions of temperature only. Where the total pressure and temperature are known, the concentration of methane, x(CH4), is found by iteration. The concentration of methane in a sodium chloride brine, y(CH4), is estimated using the function log y(CH4) = log x(CH4) - A I, where A is the salting out constant and I is the ionic strength. For sodium chloride solutions, the ionic strength is equal to the molality of the salt. The equations are valid to 360?C, 138 MPa, and 25 weight percent sodium chloride.

  12. Visualization of diffusion of the drug solution during aluminum potassium tannic acid injection therapy: a pilot study.

    PubMed

    Yamamoto, Yutaka; Miwa, Mitsuharu

    2013-06-01

    Sclerotherapy with aluminum potassium tannic acid (ALTA), which was approved in Japan for the treatment of internal hemorrhoids in July 2004 (Takano et al., Int J Colorectal Dis 21:44-51, 2006), has been widely accepted because of its effectiveness and low invasiveness. More than 200,000 patients have received ALTA injection therapy. ALTA is injected directly into 4 points of an internal hemorrhoid (4-step injection) to induce sclerosis and remission of the hemorrhoids, and consequently, resolution of symptoms such as prolapse and bleeding. The precision of the 4-step injection is considered to be a crucial determinant of the success of this therapy and the risk of complications. However, sufficient evidence has not yet been obtained concerning the diffusion and distribution of the injected drug. A pilot study visualized the real-time diffusion/distribution of the drug solution following the 4-step injection, using the ICG (indocyanine green) fluorescence technique, and an infrared camera (Photodynamic EYE; PDE, Hamamatsu Photonics K.K.).

  13. NMR spectra and potentiometry studies of aluminum(III) binding with coenzyme NAD+ in acidic aqueous solutions.

    PubMed

    Yang, Xiaodi; Bi, Shuping; Yang, Xiaoliang; Yang, Li; Hu, Jun; Liu, Jian; Yang, Zhengbiao

    2003-06-01

    Complexation and conformational studies of coenzyme NAD+ with aluminum were conducted in acidic aqueous solutions (pH 2-5) by means of potentiometry as well as multinuclear (1H, 13C, 31P, 27Al) and two-dimensional (1H, 1H-NOESY) NMR spectroscopy. These led to the following results: (1) Al could coordinate with NAD+ through the following binding sites: N7' of adenine and pyrophosphate free oxygen (O(A)1, O(N)1,O(A)2) to form various mononuclear 1:1 (AlLH23+, AlLH2+) and 2:1 (AlL2-) species, and dinuclear 2:2 (Al2L22+) species. (2) The conformations of NAD+ and Al-NAD+ depended on the solvents and different species in the complexes. The results suggest the occurrence of an Al-linked complexation, which causes structural changes at the primary recognition sites and secondary conformational alterations for coenzymes. This finding will help us to understand role of Al in biological enzyme reaction systems.

  14. Synthesis of nesquehonite by reaction of gaseous CO2 with Mg chloride solution: its potential role in the sequestration of carbon dioxide.

    PubMed

    Ferrini, Vincenzo; De Vito, Caterina; Mignardi, Silvano

    2009-09-15

    In this paper is reported a novel method to synthesize nesquehonite, MgCO(3) x 3H(2)O, via reaction of a flux of CO(2) with Mg chloride solution at 20+/-2 degrees C. The reaction rate is rapid, with carbonate deposition almost complete in about 10 min. The full characterization of the product of synthesis has been performed to investigate its potential role as a "CO(2)-sequestering medium" and a means of disposing Mg-rich wastewater. We investigated the nesquehonite synthesized using SEM, XRD, FTIR and thermal analysis. The thermodynamic and chemical stability of this low-temperature hydrated carbonate of Mg and its possible transformation products make our method a promising complementary solution to other methods of CO(2) sequestration. Carbonation via magnesium chloride aqueous solutions at standard conditions represents a simple and permanent method of trapping CO(2). It could be applied at point sources of CO(2) emission and could involve rejected brine from desalination plants and other saline aqueous wastes (i.e., "produced water"). The likelihood of using the resulting nesquehonite and the by-products of the process in a large number of applications makes our method an even more attractive solution.

  15. A Solution NMR Investigation into the Early Events of Amelogenin Nanosphere Self-Assembly Initiated with Sodium Chloride or Calcium Chloride

    SciTech Connect

    Buchko, Garry W.; Tarasevich, Barbara J.; Bekhazi, Jacky G.; Snead, Malcolm L.; Shaw, Wendy J.

    2008-12-08

    Using solution-state NMR spectroscopy, new insights into the early intermolecular interactions stabilizing amelogenin supramolecular assembly and the potential role of calcium ions have been discovered. Two-dimensional 1H-15N spectra were recorded for 15N-labeled amelogenin as a function of increasing Ca2+ concentration starting from monomeric conditions. Evidence for protein-protein interactions were observed between residues E18 and E40 in the N-terminus. At higher Ca2+ concentrations there was concurrent involvement of residues in both the N- (Y12-Q56) and the C-terminus (Q144-T171). Neither specific residues nor their stepwise interaction have previously been identified in the initial stages of nanosphere assembly.

  16. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Influence of solute cloud and precipitates on spatiotemporal characteristics of Portevin-Le Chatelier effect in A2024 aluminum alloys

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zhang, Qing-Chuan; Cao, Peng-Tao

    2009-08-01

    In this paper, solute concentration and precipitate content in A2024 aluminum alloy are adjusted by solution treatment (ST) at different temperatures and tensile experiments on these treated specimens are carried out. It is found that the temperature of solution treatment (ST temperature) has a remarkable influence on the amplitude of the serrated flow and the propagation characteristics of shear bands. These results are due to the effects of solute atoms and precipitates on dynamic strain aging (DSA). When ST temperature is higher than 300 °C, solute concentration is relatively high and solute cloud is a key factor of DSA. When ST temperature is lower than 300 °C, precipitate content is relatively high and the mechanism of DSA is determined by precipitates.

  17. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  18. Adsorption of Pd(II) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J.

    PubMed

    Shen, Shaobo; Pan, Tonglin; Liu, Xinqiang; Yuan, Lei; Zhang, Yongjian; Wang, Jinchao; Guo, Zhanchen

    2010-05-01

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Pd(II) contained in the chloride solution obtained from the dry chlorination process, thermodynamic and kinetics studies for adsorption of Pd(II) complexes from the chloride solutions on anionic exchange resin Diaion WA21J were carried out. It was found that Pd, Pt, Rh, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The isothermal adsorption of Pd(II) was found to fit Freundlich, Langmuir and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The adsorption of Pd(II) on the resin was favorable according to the values of 1/n and R(L) from Freundlich and Langmuir adsorption isotherms, respectively. The maximum monolayer adsorption capacities Q(max) based on Langmuir adsorption isotherms were 5.70, 4.84 and 4.05 mg/g and the corresponding value X(m) based on Dubinin-Kaganer-Radushkevich were 5.55, 4.69 and 4.01 mg/g at temperatures 18 degrees C, 28 degrees C and 40 degrees C, respectively. The apparent adsorption energies (E(ad)) based on Dubinin-Kaganer-Radushkevich isotherm were -15.43, -16.22 and -23.57 kJ/mol for the temperatures 18 degrees C, 28 degrees C and 40 degrees C, respectively. Chemical adsorption was a main mechanism involved in the adsorption process. Pd(II) adsorption on the resin could be accelerated by increasing the adsorption temperature. The adsorption of Pd(II) from the chloride solution on the resin underwent pseudo-first order kinetic process and the apparent adsorption activation energy E(a) was 15.0 kJ/mol. The intra-particle diffusion was a main rate controlling step in the Pd(II) adsorption process under the adsorption conditions.

  19. Energetic Insight into the Formation of Solids from Aluminum Polyoxocations.

    PubMed

    Reusser, Dana; Casey, William H; Navrotsky, Alexandra

    2015-08-01

    The ε-Keggin [AlO4Al12(OH)24(H2O)12](7+) ion (AlAl12(7+)) is a metastable precursor in the formation of aluminum oxyhydroxide solids. It also serves as a useful model for the chemistry of aluminous mineral surfaces. Herein we calculate the enthalpies of formation for this aqueous ion and its heterometal-substituted forms, GaAl12(7+) and GeAl12(8+), using solution calorimetry. Rather than measuring the enthalpies of the MAl12(7/8+) ions directly from solution hydrolysis, we measured the metathesis reaction of the crystallized forms with barium chloride creating an aqueous aluminum solution monospecific in MAl12(7/8+). Then, the contributions to the heat of formation from the crystallized forms were subtracted using referenced states. When comparing the aqueous AlAl12(7+) ion to solid aluminum (oxy)-hydroxide phases, we found that this ion lies closer in energy to solid phases than to aqueous aluminum monomers, thus explaining its role as a precursor to amorphous aluminum hydroxide phases. PMID:26129924

  20. The inhibitive mechanisms of nitrite and molybdate anions on initiation and propagation of pitting corrosion for mild steel in chloride solution

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zuo, Yu

    2015-10-01

    The inhibitive mechanism of NO2- and MoO42- on the initiation and propagation of pitting corrosion for mild steel in chloride solution was studied with electrochemical methods and X-ray photoelectron spectroscopy (XPS). In 0.1 M NaCl solution both the addition of 0.2 M NaNO2 and 0.2 M Na2MoO4 effectively promoted passivation of mild steel. The passive film on the steel surface formed in NaCl + NO2- solution was composed of mainly γ-Fe2O3, and the film formed in NaCl + MoO42- solution was composed of two components: one is Fe2(MoO4)3 and the other is an oxide composed of Fe and O. The film formed in NaNO2 solution has lower oxygen vacancies and larger impedance than the film formed in Na2MoO4 solution. NO2- shows better inhibition to the initiation of pitting corrosion than MoO42-, which is attributed to its strong oxidability that results in the formation of a stable γ-Fe2O3 film. However, in NaNO2 solution, once a pit forms, it is more difficult to get repassivated than the situation in Na2MoO4 solution. The main reason is due to that in a propagating pit MoO42- anions result in increased solution pH value, but conversely NO2- anions lead to a decreased solution pH value within a pit.

  1. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    DOEpatents

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  2. Volumetric and acoustic properties of D-mannitol in aqueous sodium or magnesium chloride solutions over temperature range of 293.15-313.15K.

    PubMed

    Warmińska, Dorota

    2012-02-15

    Apparent molar volumes and apparent molar compressibilities for d-mannitol in (1, 5 and 10) % aqueous sodium or magnesium chloride have been determined from solution density measurements at T=(293.15, 298.15, 303.15, 308.15, 310.15, and 313.15)K and sound velocity measurements at T=(293.15 and 310.15)K as a function of the concentration of sugar alcohol. The limiting apparent molar volumes and limiting apparent molar compressibilities have been obtained from the Masson equation. The corresponding transfer parameters and expansion coefficients were also estimated. These parameters have been discussed in terms of d-mannitol-cosolute (NaCl or MgCl(2)) interactions in aqueous solutions and thus used to understand the mixing effects due to these interactions.

  3. Scanning proximal microscopy study of the thin layers of silicon carbide-aluminum nitride solid solution manufactured by fast sublimation epitaxy

    NASA Astrophysics Data System (ADS)

    Dallaeva, D.; Korostylev, E.; Bilalov, B.; Tománek, P.

    2013-04-01

    The objective of the study is a growth of SiC/(SiC)1-x(AlN)x structures by fast sublimation epitaxy of the polycrystalline source of (SiC)1-x(AlN)x and their characterisation by proximal scanning electron microscopy and atomic force microscopy. For that purpose optimal conditions of sublimation process have been defined. Manufactured structures could be used as substrates for wide-band-gap semiconductor devices on the basis of nitrides, including gallium nitride, aluminum nitride and their alloys, as well as for the production of transistors with high mobility of electrons and also for creation of blue and ultraviolet light emitters (light-emitted diodes and laser diodes). The result of analysis shows that increasing of the growth temperature up to 2300 K allows carry out sublimation epitaxy of thin layers of aluminum nitride and its solid solution.

  4. X-ray photoelectron spectroscopy surface analysis of aluminum ion stress in barley roots. [Hordeum vulgare

    SciTech Connect

    Millard, M.M.; Foy, C.D.; Coradetti, C.A.; Reinsel, M.D. )

    1990-06-01

    X-ray photoelectron spectroscopy (XPS) has been used to analyze root surface changes when Dayton barley (Hordeum vulgare) (Al tolerant) and Kearney barley (Al sensitive) seedlings were grown in nutrient solution in the presence and absence of 37.0 micromolar Al. The electron spectra from root surfaces contained strong lines in order of decreasing intensity from organic forms of carbon, oxygen, and nitrogen and weak lines due to inorganic elements in the form of anions and cations on the surface. The surface composition of root tips from Kearney was C, 65.6%; 0, 26.8%; N, 4.4% and tips from Dayton was C, 72.7%; O, 23.6%; N, 1.9%, grown in the absence of aluminum. Electron lines characteristic of nitrate, potassium, chloride, phosphate were also present in the spectra from those roots. Dayton roots grown in the presence of 37.0 micromolar aluminum contained 2.1% aluminum while Kearney contained 1.3% aluminum. The ratio of aluminum to phosphate was close to 1.0. Dayton roots usually contained twice as much aluminum phosphate in the surface region as Kearney. Dayton may be less susceptible to Al toxic effects by accumulation of aluminum phosphate on the root surface which then acts as a barrier to the transport of aluminum into the interior of the roots.

  5. Integral equation theory for the electrode-electrolyte interface with the central force water model. Results for an aqueous solution of sodium chloride

    NASA Astrophysics Data System (ADS)

    Vossen, M.; Forstmann, F.

    1995-12-01

    The structure of an aqueous solution of sodium chloride at a planar surface is investigated by integral equation techniques. With the central force water model the aqueous electrolyte is modelled as a mixture of sodium and chloride ions, and partially charged hydrogen and oxygen atoms interacting via effective spherically symmetric pair potentials. The correlation functions obtained from the Ornstein-Zernike equation with reference hypernetted chain closure give a good description of the bulk structure (e.g., hydrogen bonded water network, solvation shell). With the bulk information and the Wertheim-Lovett-Mou-Buff equation we have calculated the density profiles at the uncharged and charged surfaces. The rather rigid ice-like water structure found previously at the neutral surface strongly repels the ions. Steric interactions between the ions of different sizes and the ice-like water structure dominate the ionic distribution near the surface. This model electrolyte also responds differently to opposite charges on the surface. We found the asymmetry in the differential capacitance curve determined entirely by the response of the interfacial water structure.

  6. The solubility of quartz in aqueous sodium chloride solution at 350°C and 180 to 500 bars

    USGS Publications Warehouse

    Fournier, Robert O.; Rosenbauer, Robert J.; Bischoff, James L.

    1982-01-01

    The solubility of quartz in 2, 3, and 4 molal NaCl was measured at 350°C and pressures ranging from 180 to 500 bars. The molal solubility in each of the salt solutions is greater than that in pure water throughout the measured pressure range, with the ratio of solubility in NaCl solution to solubility in pure water decreasing as pressure is increased. The measured solubilities are significantly higher than solubilities calculated using a simple model in which the water activity in NaCl solutions decreases either in proportion to decreasing vapor pressure of the solution as salinity is increased or in proportion to decreasing mole fraction of water in the solvent.

  7. The investigation of cerium as a cathodic inhibitor for aluminum-copper alloys

    SciTech Connect

    Aldykewicz, A.J. Jr.; Isaacs, H.S.; Davenport, A.J.

    1995-10-01

    In situ current density mapping, scanning electron microscopy , and energy dispersive spectroscopy were used to study the effects of cerium as a corrosion inhibitor for an aluminum copper alloy (Al 2024-T4) in chloride containing solutions. It was found that cerium inhibits corrosion of this alloy by reducing the rate of the cathodic reaction. This was due to the carried out on an aluminum/copper galvanic couple, which was used to simulate the electrochemical behavior of the copper containing intermetallics, showed that corrosion inhibition was associated with the formation of a Ce-rich film over the copper in agreement with that observed for the alloy.

  8. Phonon spectroscopy of the low-energy excitations in the solid solutions of yttrium–rare-earth metal–aluminum garnets

    SciTech Connect

    Khazanov, E. N. Taranov, A. V.; Shevchenko, E. V.; Charnaya, E. V.

    2015-07-15

    The transport characteristics of thermal-frequency phonons and the specific heat of a series of single crystals of yttrium–rare-earth metal–aluminum garnet solid solutions are studied at the helium temperatures. It is found that the existence of low-energy levels of various origins, which are responsible for an increase in the specific heat, retards phonon transport by one–three orders of magnitude. The temperature dependences of specific heat and the kinetic characteristics of phonons have a similar character.

  9. Comparison of the release behaviors of di (2-ethylhexyl) phthalate and tri(2-ethylhexyl) trimellitate from the polyvinyl-chloride infusion set into pharmaceutical solutions.

    PubMed

    Zhang, Hong; Yang, Fengmin; Shen, Gang; Yang, Yueyang; Tang, Yalin

    2015-05-01

    Polyvinyl-chloride (PVC) with plasticizers of di(2-ethylhexyl) phthalate (DEHP) and tris(2-ethyl- hexyl) trimellitate (TOTM) is widely used in medical and paramedical appliances. However, such plasticizers can leach from PVC products into contact solutions. The aim of this study is to investigate the release behaviors of DEHP and TOTM from the PVC intravenous infusion set into various pharmaceutical solutions under the simulated clinical conditions, such as the lipophilic substances (paclitaxel) , parenteral nutrition (fat emulsion injection) , acid and alkali pharmaceutical solution (levofloxacin hydrochloride injection, pH 3.0-5.0 and furosemide, pH 8.0-9.0). A simple and rapid high-performance liquid chromatographic method with UV detection (HPLC-UV) for the determination of DEHP or TOTM released from PVC medical devices into the above intravenous preparations was developed. The cumulative amounts of DEHP or TOTM released in 24 h were in the same following order: paclitaxel > fat emulsion injection levofloxacin hydrochloride > furosemide solution. From a comparison of the cumulative amounts of released DEHP and TOTM from the above solutions, we found that the cumulative amount of TOTM is far less than that of DEHP, under the same conditions. The cumulative amount of the DEHP released in 24 h in the paclitaxel solution was 21. 14 mg, while under the same conditions, the cumulative amount of TOTM was only 0. 078 mg. The cumulative amount of DEHP is assumed to be about 270 times that of the released TOTM. Thus TOTM could be a superior alternative to DEHP for use in medical devices because of its potential lower leachability.

  10. Laboratory studies of the low-temperature deliquescence of calcium chloride salts: Relevance to aqueous solutions on Mars and in the Antarctic Dry Valleys

    NASA Astrophysics Data System (ADS)

    Gough, R. V.; Chevrier, V.; Tolbert, M. A.

    2013-12-01

    There is significant interest in the possible existence of liquid water on current Mars. This water would likely exist as a brine in order to be stable on Mars today. It has been proposed that soil salts could form aqueous solutions through either the melting of ice by low-eutectic salts, or by the deliquescence of hygroscopic salts present in the Martian soil. The focus thus far has largely been on perchlorate species, which can melt ice at temperatures as low as 206 K and can deliquesce at relative humidity values as low as 38% RH. A Mars-relevant salt that has been neglected thus far is calcium chloride (CaCl2). Calcium has been reported to be an abundant cation at the Phoenix landing site and Mars Science Laboratory instruments have recently identified calcium as well. Simulations suggest subsurface CaCl2 is an ideal candidate to produce brines with seasonality consistent with observed recurring slope lineae (RSL) (Chevrier et al., 2012). Finally, the only terrestrial site where RSL-like features have been observed (near Don Juan Pond in the Antarctic Dry Valleys) contains abundant CaCl2. These seasonal slope streaks are thought to form when CaCl2 in the soil deliquesces due to contact with atmospheric water vapor (Dickson et al., 2013). It is important to understand how this CaCl2 interacts with water vapor at low temperatures relevant to Mars and the Martian analog sites. Here we use a Raman microscope and environmental cell to monitor the low-temperature (223 - 273 K) deliquescence (solid to aqueous phase transition) and efflorescence (aqueous to solid phase transition) of three hydration states of CaCl2 (dihydrate, tetrahydrate, hexahydrate). We have found that the deliquescence relative humidity (DRH) increases with increasing hydration state, which is an expected result. Average DRH values over the temperature range studied are 20.0 × 2.6% RH for the dihydrate, 31.8 × 6.3% RH for the tetrahydrate and 60.7 × 1.6% RH for the hexahydrate. Once the aqueous

  11. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Effect of Electrochemical Treatment in a Lithium Chloride Solution on Field Emission from Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Li, Chun; Yuan, Guang; Gu, Chang-Zhi

    2009-08-01

    Carbon nanotubes (CNTs) are electrochemically treated in a lithium chloride solution at a concentration 0.1 mol/L. The field emission properties of the CNTs are investigated at different temperatures before and after the electrochemical treatment. After treatment, the turn-on voltage to produce field emission current of 10 μA decreases from 4.2 kV to 2.7 kV and the field emission current increases distinctly, but the stability falls off. Based on the Fowler-Nordheim plot, the values of the work function for the CNTs are calculated, which reveals that work function decreases after the electrochemical treatment. These results are attributed to the decrease of the work function of the carbon nanotubes.

  12. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  13. Chloride Test

    MedlinePlus

    ... Addison disease, or increased salt intake. If both chloride and sodium levels are high in a person on a ... anything else I should know? Drugs that affect sodium blood levels will also cause changes in chloride. In addition, swallowing large amounts of baking soda ...

  14. Thermogravimetric Thin Aqueous Film Corrosion Studies of Alloy 22; Calcium Chloride Solutions at 150C and Atmospheric Pressure

    SciTech Connect

    Hailey, P; Gdoowski, G

    2002-11-12

    The extent of reaction of alloy-22 with limited amounts of aqueous calcium chloride (CaCl{sub 2}) was investigated. Alloy-22 is a highly corrosion-resistant nickel-chromium-molybdenum-tungsten alloy. Specimens were polished to a mirror finish prior to aerosol salt deposition. An aqueous film was formed by deliquescence of deposited CaCl{sub 2} at 150 C and 22.5% relative humidity (RH). The reactant gas was a continuous flow of purified humidified laboratory air. The reaction progress as a function of time was continuously measured in-situ by a micro-balance. An initial weight gain due to deliquescence of the CaCl{sub 2} was observed. A steady weight loss was observed over the next 72 hours, after which no further weight change was observed. During this weight loss, white precipitates formed and the specimen's surface became visibly dry. The precipitate crystals were identified as Ca(OH){sub 2} by post-test Raman spectroscopy; however, energy dispersive X-ray spectroscopy indicated that there was a significant amount of chlorine contained in them.

  15. Electrical Transport and Grain Growth in Solution-Cast, Chloride-Terminated Cadmium Selenide Nanocrystal Thin Films

    PubMed Central

    2015-01-01

    We report the evolution of electrical transport and grain size during the sintering of thin films spin-cast from soluble phosphine and amine-bound, chloride-terminated cadmium selenide nanocrystals. Sintering of the nanocrystals occurs in three distinct stages as the annealing temperature is increased: (1) reversible desorption of the organic ligands (≤150 °C), (2) irreversible particle fusion (200–300 °C), and (3) ripening of the grains to >5 nm domains (>200 °C). Grain growth occurs at 200 °C in films with 8 atom % Cl–, while films with 3 atom % Cl– resist growth until 300 °C. Fused nanocrystalline thin films (grain size = 4.5–5.5 nm) on thermally grown silicon dioxide gate dielectrics produce field-effect transistors with electron mobilities as high as 25 cm2/(Vs) and on/off ratios of 105 with less than 0.5 V hysteresis in threshold voltage without the addition of indium. PMID:24960255

  16. Mechanism and toxicity research of benzalkonium chloride oxidation in aqueous solution by H2O2/Fe(2+) process.

    PubMed

    Zhang, Qian; Xia, Yu-Feng; Hong, Jun-Ming

    2016-09-01

    As widely used disinfectants, the pollution caused by benzalkonium chloride (BAC) has attracted a lot of attention in recent years. Since it is not suitable for biodegradation, BAC was degraded firstly by Fenton advanced oxidation technologies (AOTs) in this research to enhance the biodegradability of the pollutions. The result revealed that the optimal molar ratio of H2O2/Fe(2+) for BAC degradation was 10:1, and the COD removal rate was 32 %. To clarify the pathway of degradation, the technique of GC-MS was implemented herein to identify intermediates and the toxicity of those BAC intermediates were also novelty tested through microbial fuel cells (MFC). The findings indicated that ten transformation products including benzyl dimethyl amine and dodecane were formed during the H2O2/Fe(2+) processes, which means the degradation pathway of BAC was initiated both on the hydrophobic (alkyl chain) and hydrophilic (benzyl and ammonium moiety) region of the surfactant. The toxicity of BAC before and after treated by Fenton process was monitored through MFC system. The electricity generation was improved 337 % after BAC was treated by H2O2/Fe(2+) oxidation processes which indicated that the toxicity of those intermediates were much lower than BAC. The mechanism and toxicity research in this paper could provide the in-depth understanding to the pathway of BAC degradation and proved the possibility of AOTs for the pretreatment of a biodegradation process. PMID:27250091

  17. Hydrazino-methoxy-1,3,5-triazine Derivatives' Excellent Corrosion Organic Inhibitors of Steel in Acidic Chloride Solution.

    PubMed

    El-Faham, Ayman; Osman, Sameh M; Al-Lohedan, Hamad A; El-Mahdy, Gamal A

    2016-06-01

    The corrosion inhibition performance of 2-hydrazino-4,6-dimethoxy-1,3,5-tirazine (DMeHT), 2,4-dihydrazino-6-methoxy-1,3,5-triaizine (DHMeT), and 2,4,6-tridydrazino-1,3,5-triaizne (TH₃) on steel corrosion in acidic media was examined using electrochemical techniques. The results showed 2,4-Ddihydrazino-6-methoxy-1,3,5-triaizine (DHMeT) gave the best corrosion protection performance among the other hydrazino derivatives even at a low concentration of 25 ppm (95%). The number of hydrazino groups play an important role in the corrosion inhibition, where the two hydrazine groups increased the electrostatic interactions between the protonated tested compounds, the negatively charged steel surface resulted from the adsorption of the chloride anions, and the presence of the methoxy group made the compound more reliable for formation of film protection on the surface of steel through the lone pair of oxygen atoms. Electrochemical Impedance Spectroscopy (EIS) measurements suggested that the corrosion process of steel in presence of the hydrazino-s-triazine derivatives (TH₃, DMeHT and DHMeT) were being controlled by the charge transfer reaction. Polarization curves indicated that the examined TH₃, DMeHT and DHMeT behaved as mixed type inhibitors.

  18. An experimental study of zinc chloride speciation from 300 to 600 °C and 0.5 to 2.0 kbar in buffered hydrothermal solutions

    USGS Publications Warehouse

    Cygan, G.L.; Hemley, J.J.; d'Angelo, W. M.

    1994-01-01

    The solubility of sphalerite (ZnS) was measured in KCl-HCl-H2O solutions at 300-600??C and 0.5-2.0 kbar. The silicate assemblage K-feldspar-muscovite (or andalusite)-quartz was used to buffer the solution to acid conditions, resulting in the total solubility reaction 2K+ + KAl2AlSi3O10(OH)2 + 6SiO2 + ZnS + nCl- = ZnCln(2-n) + 3KAlSi3O8 + H2S. (muscovite) (quartz) (sphalerite) (K-feldspar) A computer retrieval technique was used to derive average chloride ligand numbers for chlorozinc species at 0.25-2.0 molal total chloride. This technique mathematically solves for the average ligand number using a series of pertinent chemical relations at P and T. Mono- and di-chlorozinc species were found to predominate throughout the pressure-temperature-composition range investigated. The logarithms of the first and second dissociation constants for ZnCl20 were evaluated over the P-T range; for example, at 1 kbar, the values -0.41 and -1.42 were computed for the logarithm of the first dissociation constant, while -7.62 and -10.57 were computed for the logarithm of the second dissociation constant, for 400 and 500??C, respectively. Results are compared to past studies conducted at subcritical conditions and differ in that we find no evidence for more highly coordinated chloro-zinc species except possibly for ZnCl3- at 600??C, 1 and 2 kbar. Our results are consistent with electrostatic theory, which favors lower charged to neutral molecules in low dielectric-constant media. ?? 1994.

  19. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    PubMed

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples. PMID:16457175

  20. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    PubMed

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.

  1. Time exposure studies on stress corrosion cracking of aluminum 2014-T6, 2219-T87, 2014-T651, 7075-T651, and titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Terrell, J.

    1973-01-01

    The effect of a constant applied stress in crack initiation of aluminum 2014-T6, 2219-T87, 2014-T651, 7075-T651 and titanium 6Al-4V has been investigated. Aluminum c-ring specimens (1-inch diameter) and u-band titanium samples were exposed continuously to a 3.5% NaCl solution (pH 7) and organic fluids of ethyl, methyl, and iso-propyl alcohol (reagent purity), and demineralized distilled water. Corrosive action was observed to begin during the first and second day of constant exposure as evidenced by accumulation of hydrogen bubbles on the surface of stressed aluminum samples. However, titanium stressed specimens showed no reactions to its environment. Results of this investigation seems to suggest that aluminum 2014-T6, aluminum 7075-T651 and aluminum 2014-T651 are susceptible to stress corrosion cracking in chloride solution (NaCl), while aluminum 2219-T87 seem to resist stress corrosion cracking in sodium chloride at three levels of stress (25%, 50%, and 75% Y.S.). In organic fluids of methyl, ethyl, and iso-propyl alcohol, 2014-T6 and 7075-T651 did not fail by SCC; but 2014-T651 was susceptible to SCC in methly alcohol, but resistant in ethyl alcohol, iso-propyl alcohol and demineralized distilled water.

  2. XAFS measurements on zinc chloride aqueous solutions from ambient to supercritical conditions using the diamond anvil cell

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    1999-01-01

    The structure and bonding properties of metal complexes in subcritical and supercritical fluids are still largely unknown. Conventional high pressure and temperature cell designs impose considerable limitations on the pressure, temperature, and concentration of metal salts required for measurements on solutions under supercritical conditions. In this study, we demonstrate the first application of the diamond anvil cell, specially designed for x-ray absorption studies of first-row transition metal ions in supercritical fluids. Zn K-edge XAFS spectra were measured from aqueous solutions of 1-2m ZnCl2 and up to 6m NaCl, at temperatures ranging from 25-660 ??C and pressures up to 800 MPa. Our results indicate that the ZnCl42- complex is predominant in the 1m ZnCl2/6m NaCl solution, while ZnCl2(H2O)2 is similarly predominant in the 2m ZnCl2 solution, at all temperatures and pressures. The Zn-Cl bond length of both types of chlorozinc(II) complexes was found to decrease at a rate of about 0.01 A??/100 ??C.

  3. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  4. Electrochemical behavior and corrosion resistance of Ti-15Mo alloy in naturally-aerated solutions, containing chloride and fluoride ions.

    PubMed

    Rodrigues, A V; Oliveira, N T C; dos Santos, M L; Guastaldi, A C

    2015-01-01

    The electrochemical behavior and corrosion resistance of Ti-15Mo alloy to applications as biomaterials in solutions 0.15 mol L(-1) Ringer, 0.15 mol L(-1) Ringer plus 0.036 mol L(-1) NaF and 0.036 mol L(-1) NaF (containing 1,500 ppm of fluoride ions, F(-)) were investigated using open-circuit potential, cyclic voltammetry, and electrochemical impedance spectroscopy techniques, X-ray photoelectron spectroscopy and scanning electron microscope. Corrosion resistance and electrochemical stability of the Ti-15Mo alloy decreased in solutions containing F(-) ions. In all cases, there were formation and growth of TiO2 and MoO3 (a protector film), not being observed pitting corrosion, which might enable Ti-15Mo alloys to be used as biomedical implant, at least in the studied conditions, since the electrochemical stability and corrosion resistance of the passive films formed are necessary conditions for osseointegration.

  5. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  6. Removal of coagulant aluminum from water treatment residuals by acid.

    PubMed

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed.

  7. The effect of the electrochemical chloride extraction treatment on steel-reinforced mortar. Part II: Microstructural characterization

    SciTech Connect

    Marcotte, T.D.; Hansson, C.M.; Hope, B.B.

    1999-10-01

    A study has been made of the changes in cement composition and microstructures resulting from electrochemical chloride extraction applied to mortar samples in which the chlorides were added with the mixing water, ingressed by ponding with an NaCl solution, or both. After exposure for 1 year, specimens with and without chlorides were subjected to an electrochemical chloride extraction treatment. Microstructural analyses of fracture surfaces through the steel/mortar interface revealed a significant alteration of the cementitious phases. In untreated samples, calcium-silicon-rich phases consistent with Types I and II calcium silicate hydrate were observed. After the extraction treatment, these phases were not detectable and instead, sodium-rich, iron-rich, and calcium-aluminum-rich phases were observed.

  8. Effect of the cation model on the equilibrium structure of poly-L-glutamate in aqueous sodium chloride solution.

    PubMed

    Marchand, Gabriel; Soetens, Jean-Christophe; Jacquemin, Denis; Bopp, Philippe A

    2015-12-14

    We demonstrate that different sets of Lennard-Jones parameters proposed for the Na(+) ion, in conjunction with the empirical combining rules routinely used in simulation packages, can lead to essentially different equilibrium structures for a deprotonated poly-L-glutamic acid molecule (poly-L-glutamate) dissolved in a 0.3M aqueous NaCl solution. It is, however, difficult to discriminate a priori between these model potentials; when investigating the structure of the Na(+)-solvation shell in bulk NaCl solution, all parameter sets lead to radial distribution functions and solvation numbers in broad agreement with the available experimental data. We do not find any such dependency of the equilibrium structure on the parameters associated with the Cl(-) ion. This work does not aim at recommending a particular set of parameters for any particular purpose. Instead, it stresses the model dependence of simulation results for complex systems such as biomolecules in solution and thus the difficulties if simulations are to be used for unbiased predictions, or to discriminate between contradictory experiments. However, this opens the possibility of validating a model specifically in view of analyzing experimental data believed to be reliable.

  9. Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: a genetic analysis.

    PubMed

    Bachmanov, A A; Reed, D R; Tordoff, M G; Price, R A; Beauchamp, G K

    1996-11-01

    Mice of the 129/J (129) and C57BL/6ByJ (B6) strains and their reciprocal F1 and F2 hybrids were offered solutions of ethanol, sucrose, citric acid, quinine hydrochloride, and NaCl in two-bottle choice tests. Consistent with earlier work, the B6 mice drank more ethanol, sucrose, citric acid, and quinine hydrochloride solution and less NaCl solution than did 129 mice. Analyses of each generation's means and distributions showed that intakes of ethanol, quinine, sucrose, and NaCl were influenced by a few genes. The mode of inheritance was additive in the case of ethanol and quinine, for sucrose the genotype of the 129 strain was recessive, and for NaCl it was dominant. Citric acid intake appeared to be influenced by many genes with small effects, with the 129 genotype dominant. Correlations of sucrose consumption with ethanol and citric acid consumption were found among mice of the F2 generation, and the genetically determined component of these correlations was stronger than the component related to environmental factors. The genetically determined correlation between sucrose and ethanol intakes is consistent with the hypothesis that the higher ethanol intake by B6 mice depends, in part, on higher hedonic attractiveness of its sweet taste component.

  10. Effect of the cation model on the equilibrium structure of poly-L-glutamate in aqueous sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Marchand, Gabriel; Soetens, Jean-Christophe; Jacquemin, Denis; Bopp, Philippe A.

    2015-12-01

    We demonstrate that different sets of Lennard-Jones parameters proposed for the Na+ ion, in conjunction with the empirical combining rules routinely used in simulation packages, can lead to essentially different equilibrium structures for a deprotonated poly-L-glutamic acid molecule (poly-L-glutamate) dissolved in a 0.3M aqueous NaCl solution. It is, however, difficult to discriminate a priori between these model potentials; when investigating the structure of the Na+-solvation shell in bulk NaCl solution, all parameter sets lead to radial distribution functions and solvation numbers in broad agreement with the available experimental data. We do not find any such dependency of the equilibrium structure on the parameters associated with the Cl- ion. This work does not aim at recommending a particular set of parameters for any particular purpose. Instead, it stresses the model dependence of simulation results for complex systems such as biomolecules in solution and thus the difficulties if simulations are to be used for unbiased predictions, or to discriminate between contradictory experiments. However, this opens the possibility of validating a model specifically in view of analyzing experimental data believed to be reliable.

  11. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors

    NASA Astrophysics Data System (ADS)

    Zhou, Biner; Wang, Yishan; Zuo, Yu

    2015-12-01

    The evolution of the corrosion process of AA 2024-T3 in 0.58 g L-1 NaCl solution (pH 10) with sodium dodecylbenzenesulfonate (SDBS) and lanthanum chloride inhibitors was studied with electrochemical and surface analysis methods. With the addition of the compounded LaCl3 and SDBS inhibitors, in the early stage the polarization behavior of AA 2024-T3 changed from active corrosion to passivation, and both the general corrosion and pitting corrosion were inhibited. However, with the immersion time extended, the passive behavior gradually disappeared and pitting happened at the Cu-rich phases. After 24 h immersion, the compounded inhibitors still showed good inhibition for general corrosion, but the polarization curve again presented the characteristic similar to active polarization. The compounded inhibitors also inhibited the pitting corrosion to some extent. The acting mechanism of the inhibitors SDBS and La3Cl on the corrosion process of AA 2024-T3 in the test solution was discussed.

  12. Method of manufacturing aluminum sulfate from flue gas

    SciTech Connect

    Hauser, H.

    1981-10-20

    A continuous process for removing sulfur dioxide from flue gas is described. Sodium aluminate solution is reacted with sulfur dioxide to form sodium sulfite and aluminum hydroxy sulfite. These are separated and the aluminum hydroxy sulfite oxidized to aluminum sulfate.

  13. A high-salinity solution with calcium chloride enables RNase-free, easy plasmid isolation within 55 minutes.

    PubMed

    Sasagawa, Noboru; Koebis, Michinori; Yonemura, Yoji; Mitsuhashi, Hiroaki; Ishiura, Shoichi

    2013-12-01

    We dramatically improved a plasmid-isolation protocol based on the popular alkaline-sodium dodecyl sulfate plasmid isolation method. Our modified method provides significant time and cost savings. We used a modified solution during the neutralization step, which allowed us to skip several subsequent handling steps, saving a great amount of time. The plasmids purified by this method were of high quality, and the optical density ratio 260 and 280 was approximately 1.8. Plasmid DNA isolated by our method was of sufficient quality to perform subsequent restriction enzyme cuts and other downstream experiments, including budding yeast transformation, cultured cell transfection, and Caenorhabditis elegans injection experiments.

  14. Vinyl chloride and polyvinyl chloride.

    PubMed

    Lewis, R

    1999-01-01

    Polyvinyl chloride (PVC) is an important plastic resin for construction, pipe and tubing, siding, and other uses. Exposures to vinyl chloride monomer during the early years of production resulted in an important sentinel health event: the recognition of an excess of a rare liver cancer, hepatic angiosarcoma, at facilities throughout the world. Several other syndromes, including acro-osteolysis, also have been associated with PVC, but less clearly with vinyl chloride. Extensive research ranging from large-scale epidemiologic studies to biomarker research into molecular mechanisms continues to provide valuable insight into the pathogenesis of occupational cancer.

  15. Effect of Microstructure on the Electrochemical Behavior of Ti-10 Mass% Mn Alloys in High Chloride Solution

    NASA Astrophysics Data System (ADS)

    Nishimura, Toshiyasu

    2016-02-01

    The effect of microstructure on the corrosion of heat-treated Ti-10 mass% Mn alloys was investigated by electrochemical impedance spectroscopy (EIS) in 10% NaCl solution of pH 0.5 at 97 °C. Sample of solution heat treatment (ST) had a single β phase, and samples subjected to the aging heat treatment at 600 °C had α phase precipitation in β phases. The EIS measurements showed that the corrosion resistance of the aging heat-treated samples showed lower values than ST sample, however, much higher values than pure Ti. Thus, Mn was effective to increase the corrosion resistance of Ti alloys. Laser micrographs of heat-treated samples indicated that α phase was selectively corroded and made the pit after the corrosion test. The transmission electron microscope (TEM)-energy dispersive x-ray spectrometry (EDXS) analyses showed that the Mn content was 9 mass% in the β phase and 0.7 mass% in α phase. Hence, it was understood that less-Mn α phase was selectively corroded in the corrosion test. However, as compared with pure Ti, the aging heat-treated samples showed much higher resistance against the corrosion by the 0.7 mass% Mn in α phase. Finally, it was concluded that it was possible to keep the high corrosion resistance for heat-treated Ti-10 mass% Mn alloy by controlling the microstructure of α phase.

  16. Adsorption equilibria between liposome membrane formed of phosphatidylcholine and aqueous sodium chloride solution as a function of pH.

    PubMed

    Kotyńska, J; Figaszewski, Z A

    2005-12-30

    The effect has been studied of the adsorption of ions (H(+), Na(+), OH(-), Cl(-)) which are present in solution upon the electric charge of the liposome membrane formed of phosphatidylcholine (PC). The surface charge density of the membrane was determined as a function of pH and electrolyte concentration from electrophoretic mobility measurements. The measurements were carried out by the laser-Doppler microelectrophoresis method. A four-equilibria model has been proposed to describe the phenomena occurring on the membrane surface. The equilibria in which the adsorption of other ions on the liposome membrane surface was involved were assumed to exist beside the equilibria in which the H(+) and OH(-) ions were engaged. The idea was confirmed by mathematical calculations. Association constants of the liposome membrane surface with ions of solution (K(AH), K(ANa), K(BOH), K(BCl)) were determined. The proposed model has been proved to be correct by comparing the resulting theoretic charge variation curves of the lecithin membrane with the experimental data.

  17. Effect of sodium chloride on solute-solvent interactions in aqueous polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-12-18

    Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215M NaCl and 0.5M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215M NaCl system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive. PMID:26615710

  18. Effect of sodium chloride on solute-solvent interactions in aqueous polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-12-18

    Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215M NaCl and 0.5M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215M NaCl system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive.

  19. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  20. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  1. A new electrochemical noise technique for monitoring the localized corrosion of 304 stainless steel in chloride-containing solutions

    SciTech Connect

    Benish, M.L.; Sikora, J.; Shaw, B.; Sikora, E.; Yaffe, M.; Krebs, A.; Martinchek, G.

    1998-12-31

    A new electrochemical noise technique was developed to investigate metastable pitting by applying a bias potential between two nominally identical working electrodes. The current flowing between the biased working electrodes was measured with a zero resistance ammeter. Potential was measured between one working electrode and a reference electrode. These tests were conducted using 304 stainless steel working electrodes in a 0.5 M NaCl + borate buffer solution. A bias potential of 150 to 200 mV was used to localize the anodic and cathodic reactions to their respective electrodes. The noise signal was significantly affected by conditioning the electrodes at open circuit. When the electrodes were conditioned for several days, the breakdown potential increased, and the frequency and magnitude of the current transients increased. However, when the conditioning time was increased to a month, all metastable pitting transients disappeared, indicating an enhanced passive film.

  2. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  3. Aluminum-ferricyanide battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-29

    A battery capable of producing high current densities with high charge capacity is described which includes an aluminum anode, a ferricyanide electrolyte and a second electrode capable of reducing ferricyanide electrolyte which is either dissolved in an alkaline solution or alkaline seawater solution. The performance of the battery is enhanced by high temperature and high electrolyte flow rates.

  4. Effect of bicarbonate ion additives on pitting corrosion of type 316L stainless steel in aqueous 0.5 M sodium chloride solution

    SciTech Connect

    Park, J.J.; Pyun, S.I.; Lee, W.J.; Kim, H.P.

    1999-04-01

    The effect of bicarbonate ions (HCO{sub 3}{sup {minus}}) on pitting corrosion of type 316L stainless steel (SS, UNS S3 1603) was investigated in aqueous 0.5 M sodium chloride (NaCl) solution using potentiodynamic polarization, the abrading electrode technique, alternating current (AC) impedance spectroscopy combined with x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Addition of HCO{sub 3}{sup {minus}} ions to NaCl solutions extended the passive potential region in width and, at the same time, raised the pitting potential in value on the potentiodynamic polarization curve. Potentiostatic current transients obtained from the moment just after interrupting the abrading action showed the repassivation rate of propagating pits increased and that the pit growth rate decreased with increasing HCO{sub 3}{sup {minus}} ion concentration. Over the whole applied potential, the oxide film resistance was higher in the presence of HCO{sub 3}{sup {minus}} ions. The pit number density decreased with increasing HCO{sub 3}{sup {minus}} ion concentration. Moreover, addition of HCO{sub 3}{sup {minus}} ions to NaCl solutions retarded lateral pit growth, while promoting downward pit growth from the surface. The bare surface of the specimen repassivated preferentially along the pit mouth and walls, compared to the pit bottom, as a result of formation of a surface film with a high content of protective mixed ferrous-chromous carbonate ([Fe,Cr]CO{sub 3}) that formed from preferential adsorption of HCO{sub 3}{sup {minus}} ions.

  5. Moessbauer spectroscopy study on the corrosion resistance of plasma nitrided ASTM F138 stainless steel in chloride solution

    SciTech Connect

    Souza, S.D. de; Olzon-Dionysio, M.; Basso, R.L.O.; Souza, S. de

    2010-10-15

    Plasma nitriding of ASTM F138 stainless steel samples has been carried out using dc glow discharge under 80% H{sub 2}-20% N{sub 2} gas mixture, at 673 K, and 2, 4, and 7 h time intervals, in order to investigate the influence of treatment time on the microstructure and the corrosion resistance properties. The samples were characterized by scanning electron microscopy, glancing angle X-ray diffraction and conversion electron Moessbauer spectroscopy, besides electrochemical tests in NaCl aerated solution. A modified layer of about 6 {mu}m was observed for all the nitrided samples, independent of nitriding time. The X-ray diffraction analysis shows broad {gamma}{sub N} phase peaks, signifying a great degree of nitrogen supersaturation. Besides {gamma}{sub N,} the Moessbauer spectroscopy results indicated the occurrence of {gamma}' and {epsilon} phases, as well as some other less important phases. Corrosion measurements demonstrate that the plasma nitriding time affects the corrosion resistance and the best performance is reached at 4 h treatment. It seems that the {epsilon}/{gamma}' fraction ratio plays an important role on the resistance corrosion. Additionally, the Moessbauer spectroscopy was decisive in this study, since it was able to identify and quantify the iron phases that influence the corrosion resistance of plasma nitrided ASTM F138 samples.

  6. Lipid-protein globules of avian egg yolk. Isolation and properties of globules stable in concentrated sodium chloride solution.

    PubMed

    Vadehra, D V; Bain, J M; Burley, R W

    1977-09-15

    A new type of globular particle, the 'insoluble yolk globule', was isolated from the egg yolk of three avian species (hen, duck, and emu) by centrifugation or gel-filtration chromatography. These globules are stable in NaCl and urea solutions at concentrations that dissolve or disrupt other constituents of yolk, The isolated globules are about 1% of the dry yolk of hen's and duck's eggs but about 8% emu's-egg yolk. Most of these globules are less than 2 micrometer in diameter. Electron micrographs of sections show a preponderance of globules in the range 0.125-0.25 micrometer, each with a thick shell surrounding a feature-less anterior. Globules with the same appearance were seen in sections of unfractionated yolk. Two kinds of larger particles were also observed: (i) particles with a distinct outer membrane and a vesiculated interior; (ii) featureless spheres, possibly of lipid. The insoluble yolk globules comprise protein (8-11% by dry wt.), phospholipid (31-35% total lipid), triacylglycerols (49-53%), cholesterol (8%) and cholesteryl esters (2-3%); the variations being among species. The phospholipid is accessible to phospholipase C. The isolated protein is heterogeneous and resembles the apoprotein from the yolk low-density lipoprotein.

  7. Balanced versus chloride-rich solutions for fluid resuscitation in brain-injured patients: a randomised double-blind pilot study

    PubMed Central

    2013-01-01

    Introduction We sought to investigate whether the use of balanced solutions reduces the incidence of hyperchloraemic acidosis without increasing the risk for intracranial hypertension in patients with severe brain injury. Methods We conducted a single-centre, two-arm, randomised, double-blind, pilot controlled trial in Nantes, France. Patients with severe traumatic brain injury (Glasgow Coma Scale score ≤8) or subarachnoid haemorrhage (World Federation of Neurosurgical Society grade III or higher) who were mechanically ventilated were randomised within the first 12 hours after brain injury to receive either isotonic balanced solutions (crystalloid and hydroxyethyl starch; balanced group) or isotonic sodium chloride solutions (crystalloid and hydroxyethyl starch; saline group) for 48 hours. The primary endpoint was the occurrence of hyperchloraemic metabolic acidosis within 48 hours. Results Forty-two patients were included, of whom one patient in each group was excluded (one consent withdrawn and one use of forbidden therapy). Nineteen patients (95%) in the saline group and thirteen (65%) in the balanced group presented with hyperchloraemic acidosis within the first 48 hours (hazard ratio = 0.28, 95% confidence interval [CI] = 0.11 to 0.70; P = 0.006). In the saline group, pH (P = .004) and strong ion deficit (P = 0.047) were lower and chloraemia was higher (P = 0.002) than in the balanced group. Intracranial pressure was not different between the study groups (mean difference 4 mmHg [-1;8]; P = 0.088). Seven patients (35%) in the saline group and eight (40%) in the balanced group developed intracranial hypertension (P = 0.744). Three patients (14%) in the saline group and five (25%) in the balanced group died (P = 0.387). Conclusions This study provides evidence that balanced solutions reduce the incidence of hyperchloraemic acidosis in brain-injured patients compared to saline solutions. Even if the study was not powered sufficiently for this endpoint

  8. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  9. Wetting characteristics of the anodic aluminum oxide template and fabrication of cracks using ultraviolet curable resin solution

    NASA Astrophysics Data System (ADS)

    Sung Yoon, Jae; Phuong, NguyenThi; Hwan Kim, Jeong; Choi, Doo-Sun; Whang, Kyung-hyun; Yoo, Yeong-eun

    2014-03-01

    We have investigated the wetting characteristics of the anodic aluminum oxide (AAO) template with ultraviolet curable polymer resin. The wettability of the template depends on the pore size on the surface, where it is improved with smaller pores and vice versa. Plasma treatment on the surface of the template is used to improve the wettability and the adhesion of the cured polymer to the template. And we also introduce the cracks on the polymer layer for possible application as nano-sized cavities. The resin within the pore is cleaved during the curing process so that cavities or cracks could be made which are much smaller than the original pores of the AAO template.

  10. Effec of high-temperature decomposition of the solid solution on the low-cycle fatigue resistance of semifinished products made of aluminum alloy 1163

    SciTech Connect

    Teleshov, V.V.; Kuzginov, V.I.; Golovleva, A.P.

    1995-11-01

    The surface of anodized parts made of 1163T aluminum alloy that are produced by mechanical treatment of large pressed or rolled semifinished products exhibits dark regions. These regions have a higher electrical conductivity {gamma} than the rest of the anodized surface, colored light-yellow. Some authors explain the appearance of the dark stains by high-temperature decomposition of the solid solution, which is initiated by secondary heating of these surface regions due to the heat of surrounding volumes in random interruptions of the cooling process. The aim of the present work is to refine the dependence of {gamma}on the endurance in tests for low-cycle fatigue of specimens from semifinished products made of 1163 alloy in order to establish the intensity of the decrease of the endurance and the admissible increase of {gamma} in the region of dark stains.

  11. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

    PubMed Central

    Perito, Brunella; Giorgetti, Emilia; Marsili, Paolo

    2016-01-01

    Summary Silver nanoparticles (AgNPs) have increasingly gained importance as antibacterial agents with applications in several fields due to their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL) permits the preparation of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more suitable for biomedical applications than those prepared with common, wet chemical preparation techniques. To date, only a few investigations into the antimicrobial effect of AgNPs produced by PLAL have been performed. These have mainly been performed by ablation in water with nanosecond pulse widths. We previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by “activating” the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could also be affected by other parameters linked to the ablation conditions, such as the pulse width. The antibacterial activity of AgNPs was evaluated for NPs obtained either by nanosecond (ns) or picosecond (ps) PLAL using a 1064 nm ablation wavelength, in pure water or in LiCl aqueous solution, with Escherichia coli and Bacillus subtilis as references for Gram-negative and Gram-positive bacteria, respectively. In all cases, AgNPs with an average diameter less than 10 nm were obtained, which has been shown in previous works to be the most effective size for bactericidal activity. The measured zeta-potential values were very negative, indicating excellent long-term colloidal stability. Antibacterial activity was observed against both microorganisms for the four AgNP formulations, but the ps-ablated nanoparticles were shown to more effectively inhibit the growth of both microorganisms. Moreover, LiCl modified AgNPs were the most effective, showing minimum inhibitory concentration (MIC) values in a

  12. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution.

    PubMed

    Perito, Brunella; Giorgetti, Emilia; Marsili, Paolo; Muniz-Miranda, Maurizio

    2016-01-01

    Silver nanoparticles (AgNPs) have increasingly gained importance as antibacterial agents with applications in several fields due to their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL) permits the preparation of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more suitable for biomedical applications than those prepared with common, wet chemical preparation techniques. To date, only a few investigations into the antimicrobial effect of AgNPs produced by PLAL have been performed. These have mainly been performed by ablation in water with nanosecond pulse widths. We previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by "activating" the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could also be affected by other parameters linked to the ablation conditions, such as the pulse width. The antibacterial activity of AgNPs was evaluated for NPs obtained either by nanosecond (ns) or picosecond (ps) PLAL using a 1064 nm ablation wavelength, in pure water or in LiCl aqueous solution, with Escherichia coli and Bacillus subtilis as references for Gram-negative and Gram-positive bacteria, respectively. In all cases, AgNPs with an average diameter less than 10 nm were obtained, which has been shown in previous works to be the most effective size for bactericidal activity. The measured zeta-potential values were very negative, indicating excellent long-term colloidal stability. Antibacterial activity was observed against both microorganisms for the four AgNP formulations, but the ps-ablated nanoparticles were shown to more effectively inhibit the growth of both microorganisms. Moreover, LiCl modified AgNPs were the most effective, showing minimum inhibitory concentration (MIC) values in a restricted

  13. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution.

    PubMed

    Perito, Brunella; Giorgetti, Emilia; Marsili, Paolo; Muniz-Miranda, Maurizio

    2016-01-01

    Silver nanoparticles (AgNPs) have increasingly gained importance as antibacterial agents with applications in several fields due to their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL) permits the preparation of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more suitable for biomedical applications than those prepared with common, wet chemical preparation techniques. To date, only a few investigations into the antimicrobial effect of AgNPs produced by PLAL have been performed. These have mainly been performed by ablation in water with nanosecond pulse widths. We previously observed a strong surface-enhanced Raman scattering (SERS) signal from such AgNPs by "activating" the NP surface by the addition of a small quantity of LiCl to the colloid. Such surface effects could also influence the antimicrobial activity of the NPs. Their activity, on the other hand, could also be affected by other parameters linked to the ablation conditions, such as the pulse width. The antibacterial activity of AgNPs was evaluated for NPs obtained either by nanosecond (ns) or picosecond (ps) PLAL using a 1064 nm ablation wavelength, in pure water or in LiCl aqueous solution, with Escherichia coli and Bacillus subtilis as references for Gram-negative and Gram-positive bacteria, respectively. In all cases, AgNPs with an average diameter less than 10 nm were obtained, which has been shown in previous works to be the most effective size for bactericidal activity. The measured zeta-potential values were very negative, indicating excellent long-term colloidal stability. Antibacterial activity was observed against both microorganisms for the four AgNP formulations, but the ps-ablated nanoparticles were shown to more effectively inhibit the growth of both microorganisms. Moreover, LiCl modified AgNPs were the most effective, showing minimum inhibitory concentration (MIC) values in a restricted

  14. Hydrolysis of insoluble cellulose to glucose catalyzed by cellulase-containing liposomes in an aqueous solution of 1-butyl-3-methylimidazolium chloride.

    PubMed

    Yoshimoto, Makoto; Tanimura, Kazuhiko; Tokunaga, Kazuki; Kamimura, Akio

    2013-01-01

    The liposome containing cellulase from Trichoderma viride was prepared under the condition that an appreciable amount of cellulase was incorporated in lipid membranes. The liposomal cellulase and free enzyme were examined in their hydrolytic activities to insoluble cellulose powder CC31 in the acetate buffer solution (pH 4.8) of 15 w/w% [Bmim][Cl] (1-butyl-3-methylimidazolium chloride). The mean diameter and size distribution of cellulase-containing liposome were practically unchanged under the above condition. The free cellulase was deactivated more rapidly than the liposomal cellulase in catalyzing the hydrolysis of 2.0 g/l CC31 at 45°C in the presence of [Bmim][Cl] for 48 h. The activities of liposomal and free cellulase to cellobiose as soluble substrate were less susceptible to [Bmim][Cl] than their cellulolytic activities to CC31, meaning that β-glucosidase is relatively stable among the three enzyme components of cellulase. The rate of glucose production could be appreciably improved by the pretreatment of CC31 with [Bmim][Cl] alone at 120°C for 30 min followed by the liposomal cellulase-catalyzed hydrolysis of the substrate at 45°C at the [Bmim][Cl] concentration of 15 w/w%. PMID:23813807

  15. First-principles study on stability of transition metal solutes in aluminum by analyzing the underlying forces

    SciTech Connect

    Liu, Wei; Xu, Yichun; Li, Xiangyan; Wu, Xuebang Liu, C. S.; Liang, Yunfeng; Wang, Zhiguang

    2015-05-07

    Although there have been some investigations on behaviors of solutes in metals under strain, the underlying mechanism of how strain changes the stability of a solute is still unknown. To gain such knowledge, first-principles calculations are performed on substitution energy of transition metal solutes in fcc Al host under rhombohedral strain (RS). Our results show that under RS, substitution energy decreases linearly with the increase of outermost d radius r{sub d} of the solute due to Pauli repulsion. The screened Coulomb interaction increases or decreases the substitution energy of a solute on condition that its Pauling electronegativity scale ϕ{sub P} is less or greater than that of Al under RS. This paper verifies a linear relation of substitution energy change versus r{sub d} and ϕ{sub P} under RS, which might be instructive for composition design of long life alloys serving in high stress condition.

  16. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-01

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials. PMID:26999998

  17. [Sodium chloride 0.9%: nephrotoxic crystalloid?].

    PubMed

    Dombre, Vincent; De Seigneux, Sophie; Schiffer, Eduardo

    2016-02-01

    Sodium chloride 0.9%, often incorrectly called physiological saline, contains higher concentration of chloride compared to plasma. It is known that the administration of sodium chloride 0.9% can cause hyperchloremic metabolic acidosis in a reproducible manner. The elevated chloride concentration in 0.9% NaCl solution can also adversely affect renal perfusion. This effect is thought to be induced by hyperchloremia that causes renal artery vasoconstriction. For these reasons, the use of 0.9% NaCl solution is raising attention and some would advocate the use of a more "physiological" solution, such as balanced solutions that contain a level of chloride closer to that of plasma. Few prospective, randomized, controlled trials are available today and most were done in a perioperative setting. Some studies suggest that the chloride excess in 0.9% NaCl solution could have clinical consequences; however, this remains to be established by quality randomized controlled trials.

  18. Selective adsorption of Pt ions from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J.

    PubMed

    Shen, Shaobo; Guishen, Liang; Pan, Tonglin; He, JunZhang; Guo, Zhanchen

    2011-12-15

    Thermodynamic and kinetics studies for adsorption of Pt ions complexes from the chloride solutions obtained by leaching chlorinated spent automotive catalysts on anionic exchange resin Diaion WA21J were carried out. It was found that only Si, Pt, Rh and Pd from the solution were selectively adsorbed on the resin Diaion WA21J more strongly. The adsorption equilibrium time for Pt ions was about 20 h. The isothermal adsorption of Pt ions was found to fit Langmuir, Freundlich and DKR models. The maximum monolayer adsorption capacities Q(max) and X(m) of Pt ions on the resin based on Langmuir and DKR model were 4.85, 5.36 and 5.69 mg/g as well as 5.01, 5.63 and 5.98 mg/g for temperatures 18°C, 28°C and 40°C, respectively. The apparent adsorption energy E(ad) based on DKR model were -11.79, -11.04 and -11.04 kJ/mol for the temperatures 18°C, 28°C and 40°C, respectively. Ion exchange was the mechanism involved in the adsorption process. The adsorption of Pt ions on the resin underwent pseudo-first-order kinetic process, and the apparent adsorption activation energy E(a,1) was 12.6 kJ/mol. The intraparticle diffusion of Pt ions was a main rate-controlling step in most of time of adsorption process.

  19. Influence of the anions on the N-cationic benzethonium salts in the solid state and solution: Chloride, bromide, hydroxide and citrate hydrates

    NASA Astrophysics Data System (ADS)

    Paradies, Henrich H.; Reichelt, Hendrik

    2016-06-01

    The crystal structures of the hydrated cationic surfactant benzethonium (Bzth) chloride, bromide, hydroxide, and citrate have been determined by X-ray diffraction analysis and compared with their structures in solution well above their critical micelle concentration. The differences in the nature of the various anions of the four Bzth-X materials lead to unique anion environments and 3-D molecular arrangements. The water molecule in the monoclinic Bzth-Cl or Bzth-Br forms is hydrogen bonded to the halides and particularly to the hydrogens of the methoxy groups of the Bzth moiety notwithstanding the weak Brønsted acidity of the methoxy hydrogens. The citrate strongly interacts with the hydrogens of the methoxy group forming an embedded anionic spherical cluster of a radius of 2.6 Å. The Bzth-OH crystallizes in a hexagonal lattice with two water molecules and reveals free water molecules forming hydrogen bonded channels through the Bzth-OH crystal along the c-axis. The distances between the cationic nitrogen and the halides are 4.04 Å and 4.20 Å, significantly longer than expected for typical van der Waals distances of 3.30 Å. The structures show weakly interacting, alternating apolar and polar layers, which run parallel to the crystallographic a-b planes or a-c planes. The Bzth-X salts were also examined in aqueous solution containing 20% (v/v) ethanol and 1.0 % (v/v) glycerol well above their critical micelle concentration by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The [1,1,1] planes for the Bzth Cl or Br, the [0,0,2] and [1,1,0] planes for the Bzth-citrate, the [2,-1,0] planes and the [0,0,1] planes for the Bzth-OH found in the crystalline phase were also present in the solution phase, accordingly, the preservation of these phases are a strong indication of periodicity in the solution phase.

  20. Effect of magnesium chloride (2:1 electrolyte) on the aqueous solution behavior of some saccharides over the temperature range of 288.15-318.15 K: a volumetric approach.

    PubMed

    Banipal, Parampaul K; Hundal, Amanpreet K Chahal nee; Banipal, Tarlok S

    2010-10-13

    Infinite-dilution standard partial molar volumes, V(2)(0), for various mono-, di-, and trisaccharides, and their derivatives (methyl glycosides) at molalities ranging from 0.04 to 0.12 mol kg(-1) in aqueous solutions of magnesium chloride of 0.5, 1.0, 2.0, and 3.0 mol kg(-1), have been evaluated over a range of temperatures from 288.15 to 318.15 K by density measurements employing a vibrating-tube densimeter. These data have been utilized to determine the corresponding standard partial molar volumes of transfer, Δ(t)V(2)(0), of saccharides and methyl glycosides from water to aqueous magnesium chloride solutions. The Δ(t)V(2)(0) values have been found to be positive, and their magnitudes increase with an increasing concentration of magnesium chloride in all cases. Partial molar expansion coefficients, (∂V(2)(0)/∂T)(P) and second derivatives thereof, (∂(2)V(2)(0)/∂T(2))(P) have been estimated. The magnitude of V(2)(0) values increases with an increase in temperature, indicating that hydration effects in solutions are strongly sensitive to temperature. Pair and higher order volumetric interaction coefficients (V(AB), V(ABB)) have also been obtained from Δ(t)V(2)(0) values by using the McMillan-Mayer theory. The various parameters have been discussed in terms of the solute (saccharide or methyl glycoside)-co-solute (magnesium chloride) interactions and are thus used to understand the mixing effects due to these interactions. These results have been compared with those earlier reported in the presence of electrolytes. An attempt is made to interpret the volumetric properties data in terms of the stereochemistry of the solutes.

  1. Preparation and characterization of porous granular ceramic containing dispersed aluminum and iron oxides as adsorbents for fluoride removal from aqueous solution.

    PubMed

    Chen, Nan; Zhang, Zhenya; Feng, Chuanping; Zhu, Dirui; Yang, Yingnan; Sugiura, Norio

    2011-02-15

    Porous granular ceramic adsorbents containing dispersed aluminum and iron oxides were synthesized by impregnating with salt solutions followed by precipitation at 600°C. In the present work detailed studies were carried out to investigate the effect of contact time, adsorbent dose, initial solution pH and co-existing anions. Characterization studies on the adsorbent by SEM, XRD, EDS, and BET analysis were carried out to clarify the adsorption mechanism. The adsorbents were sphere in shape, 2-3mm in particle size, highly porous and showed specific surface area of 50.69 sq m/g. The fluoride adsorption capacity of prepared adsorbent was 1.79 mg/g, and the maximum fluoride removal was obtained at pH 6. Both the Langmuir and Freundlich isotherm models were found to represent the measured adsorption data well. The experimental data were well explained with pseudo-second-order kinetic model. Results from this study demonstrated potential utility of Al/Fe dispersed in porous granular ceramics that could be developed into a viable technology for fluoride removal from aqueous solution.

  2. Time exposure studies on stress corrosion cracking of aluminum 2014-T6, aluminum 7075-T651, and titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Terrell, J.

    1972-01-01

    The effect of a constant applied stress in crack initiation of aluminum 2014-T6, 7075-T651 and titanium 6A1-4V has been investigated. Aluminum c-ring specimens (1-inch diameter) and u-band titanium samples were exposed continuously to a 3.5% NaCl solution (pH 6) and organic fluids of ethyl, methyl, and iso-propyl alcohol (reagent purity). Corrosive action was observed to begin during the first and second day of constant exposure as evidenced by accumulation of hydrogen bubbles on the surface of stressed aluminum samples. However, a similar observation was not noted for titanium stressed specimens. Results of this investigation seems to suggest that aluminum 2014-T6, aluminum 7075-T651 are susceptible to stress corrosion cracking in chloride solution (NaCl); while they (both alloys) seem to resist stress corrosion cracking in methyl alcohol, ethyl alcohol, iso-propyl alcohol, and demineralized distilled water. Titanium 6A1-4V showed some evidence of susceptibility to SCC in methanol, while no such susceptibility was exhibited in ethanol, iso-propyl alcohol and demineralized distilled water.

  3. Mepiquat chloride

    Integrated Risk Information System (IRIS)

    Mepiquat chloride ; CASRN 24307 - 26 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  4. Methyl chloride

    Integrated Risk Information System (IRIS)

    Methyl chloride ; CASRN 74 - 87 - 3 ( 07 / 17 / 2001 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  5. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  6. Benzyl chloride

    Integrated Risk Information System (IRIS)

    Benzyl chloride ; CASRN 100 - 44 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  7. Vinyl chloride

    Integrated Risk Information System (IRIS)

    Vinyl chloride ; CASRN 75 - 01 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  8. Acetyl chloride

    Integrated Risk Information System (IRIS)

    Acetyl chloride ; CASRN 75 - 36 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  9. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  10. Allyl chloride

    Integrated Risk Information System (IRIS)

    Allyl chloride ; CASRN 107 - 05 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  11. Electrical and Surface Morphology of Polyvinylchloride Composites Filled with Aluminum Powder

    NASA Astrophysics Data System (ADS)

    Singh, Dolly; Kishore, Sangeeta; Singh, N. L.

    2011-07-01

    In this work, the electrical and surface morphology of polyvinyl chloride (PVC) composites filled with different concentration of aluminum powder varying from 0 to 40 wt.% have been prepared by solution costing method. The electrical conductivity of these composites were investigated in the frequency range 100 Hz-10 MHz at room temperature. The conductivity of the composites system exhibited a strong frequency dependence particularly in the vicinity of percolation threshold (20 wt.%). It was observed that the electrical conductivity gradually increased with filler concentration and frequency and explained in terms of hopping conduction mechanism. The electrical conductivity of the composites obeys universal power law (i.e. σ = Afn), where, n is power exponent. The scanning electron microscope (SEM) micrographs indicate the agglomeration of aluminum particles dispersed within the PVC at the higher aluminum concentration, yielding a conductive path through the composites. It is also corroborated with electrical conductivity result.

  12. EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51

    SciTech Connect

    Pike, J

    2008-09-04

    loss from a quiescent tank; and an evaluation of the aluminum dissolution rate model and actual dissolution rate. LTAD was successfully completed in Tank 51 with minimal waste tank changes. The following general conclusions may be drawn about the LTAD process: (1) Dissolution at about 60 C for 46 days dissolved 64% of the aluminum from the sludge slurry. (2) The aluminum-laden leach solution decanted to Tank 11 can be blended with a wide variety of supernates without risk of precipitating the dissolved aluminum based on thermodynamic chemical equilibrium models. (3) Uranium and plutonium leached into solution without corresponding leaching of iron or metal other than aluminum, but the total mass leached was a small fraction of the total uranium and plutonium in the sludge. (4) The concentration of uranium and plutonium in the leach solution was indistinguishable from other tank farm supernates, thus, the leach solutions can be managed relative to the risk of criticality like any other supernate. (5) A small amount of mercury leached into solution from the sludge causing the liquid phase concentration to increase 6 to 10 fold, which is consistent with the 4 to 14 fold increase observed during the 1982 aluminum dissolution demonstration. (6) Chromium did not dissolve during LTAD. (7) Chloride concentration increased in the liquid phase during LTAD due to chloride contamination in the 50% sodium hydroxide solution. (8) The rate of heat loss from Tank 51 at temperatures above 45 C appeared linear and predictable at 8E+7 cal/hr. (9) The rate of heat transfer from Tank 51 did not follow a simplified bulk heat transfer model. (10) Prediction of the aluminum dissolution rate was prone to error due to a lack of active specific surface area data of sludge particles. (11) The higher than expected dissolution rate during LTAD was likely due to smaller than expected particle sizes of most of the sludge particles. While evaluating the LTAD process, the dissolved salt solution from

  13. Metal chloride cathode for a battery

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Bankston, C. Perry (Inventor)

    1991-01-01

    A method of fabricating a rechargeable battery is disclosed which includes a positive electrode which contains a chloride of a selected metal when the electrode is in its active state. The improvement comprises fabricating the positive electrode by: providing a porous matrix composed of a metal; providing a solution of the chloride of the selected metal; and impregnating the matrix with the chloride from the solution.

  14. Recycling of aluminum salt cake

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Karvelas, D.E.

    1991-12-01

    The secondary aluminum industry generates more than 110 {times} 10{sup 3} tons of salt-cake waste every year. This waste stream contains about 3--5% aluminum, 15--30% aluminum oxide, 30--40% sodium chloride, and 20--30% potassium chloride. As much as 50% of the content of this waste is combined salt (sodium and potassium chlorides). Salt-cake waste is currently disposed of in conventional landfills. In addition, over 50 {times} 10{sup 3} tons of black dross that is not economical to reprocess a rotary furnace for aluminum recovery ends up in landfills. The composition of the dross is similar to that of salt cake, except that it contains higher concentrations of aluminum (up to 20%) and correspondingly lower amounts of salts. Because of the high solubility of the salts in water, these residues, when put in landfills, represent a potential source of pollution to surface-water and groundwater supplies. The increasing number of environmental regulations on the generation and disposal of industrial wastes are likely to restrict the disposal of these salt-containing wastes in conventional landfills. Processes exist that employ the dissolution and recovery of the salts from the waste stream. These wet-processing methods are economical only when the aluminum concentration in that waste exceeds about 10%. Argonne National Laboratory (ANL) conducted a study in which existing technologies were reviewed and new concepts that are potentially more cost-effective than existing processes were developed and evaluated. These include freeze crystallization, solvent/antisolvent extraction, common-ion effect, high-pressure/high-temperature process, and capillary-effect systems. This paper presents some of the technical and economic results of the aforementioned ANL study.

  15. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  16. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  17. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) is an important part of cholinergic nerves where it participates in termination of neurotransmission. AChE can be inhibited by e.g. some Alzheimer disease drugs, nerve agents, and secondary metabolites. In this work, metal salts aluminum chloride, calcium chloride, cupric chloride, ferric chloride, potassium chloride, magnesium chloride and sodium chloride were tested for their ability to inhibit AChE. Standard Ellman assay based on human recombinant AChE was done and inhibition was measured using Dixon plot. No inhibition was proved for sodium, potassium and magnesium ions. However, aluminum, cupric, ferric and calcium ions were able to inhibit AChE via noncompetitive mechanism of inhibition. Though the inhibition is much weaker when compared to e.g. drugs with noncompetitive mechanism of action, biological relevance of the findings can be anticipated. PMID:24473150

  18. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    DOEpatents

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  19. pH-Dependent retention changes during membrane filtration of aluminum-coagulated solutions and the effect of precentrifugation.

    PubMed

    Bérubé, Denis; Dorea, Caetano

    2013-03-19

    During jar tests on alum-based drinking water treatment, dissolved Al determinations on solutions coagulated at pH ≥ 6.5 were not reproducible. These determinations were performed by inductively coupled plasma mass spectrometry after syringe filtration (0.45 μm polyethersulfone membrane). In order to better define these anomalies, the filtrates were collected in sequential fractions of 7.5 mL. At coagulation pHs of 6.5 and 7.0, retention changes were demonstrated by large filtrate concentration reductions at all temperatures tested (0.1, 5.0, and 17.0 °C). In all cases, the concentrations converged to levels <50 μg/L within the fourth sequential fraction. In comparison, no retention change was observed for jar tests conducted at the same temperatures but in the low range of the minimum solubility domain, at pHs 5.5 and 6.0. The retention changes were also eliminated by precentrifugation (7000 g for 45 min; pH 6.5-7.2). At weaker precentrifugation conditions, as well as by varying membrane surface area or membrane fouling, the filtrate concentrations behaved according to a barrier buildup at the membrane-solution interface by unsettled flocculation residuals. The influence of flocculation time and temperature emphasized the importance of reaction rates, which could be enhanced at the interface by concentration polarization effects. These phenomena have implications on analytical protocols and on filtration in full-scale treatment.

  20. Corrosion behavior of aluminum-lithium alloys

    SciTech Connect

    Garrard, W.N. )

    1994-03-01

    Corrosion behavior of three aluminum-lithium (Al-Li) alloys was investigated in aerated 0.5 M sodium sulfate (Na[sub 2]SO[sub 4]), deaerated 3.5% sodium chloride (NaCl), and aerated 3.5% NaCl. Corrosion behavior of the Aluminum Association (AA) alloys 2090-T8E41 (UNS A92090, sheet), AA 8090-T851 (UNS A98090, sheet), and AA 8090-T82551 (UNS A98090, bar) was compared to behavior of the conventional AA 7075-T6 (UNS A97075, sheet). Uniform corrosion was the predominant form of attack in aerated Na[sub 2]SO[sub 4] and deaerated NaCl, although some localized attack resulted from corrosion of intermetallics on specimen surfaces. Pitting was the main form of attack in aerated NaCl. In all three media, the sheet materials corroded at a similar rate, but the bar form of AA 8090 corroded at a lower rate. Pretreatment of the alloys by immersion in a cerium (Ce) solution inhibited pitting in aerated NaCl but only for a short period.

  1. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions.

    PubMed

    Rawat, Kamla; Aswal, V K; Bohidar, H B

    2012-12-27

    Study of kinetics of complex coacervation occurring in aqueous 1-octyl-3-methylimidazolium chloride ionic liquid solution of low charge density polypeptide (gelatin A) and 200 base pair DNA, and thermally activated coacervate into anisotropic gel transition, is reported here. Associative interaction between DNA and gelatin A (GA) having charge ratio (DNA:GA = 16:1) and persistence length ratio (5:1) was studied at fixed DNA (0.005% (w/v)) and varying GA concentration (C(GA) = 0-0.25% (w/v)). The interaction profile was found to be strongly hierarchical and revealed three distinct binding regions: (i) Region I showed DNA-condensation (primary binding) for C(GA) < 0.10% (w/v), the DNA ζ potential decrease from -80 to -5 mV (95%) (partial charge neutralization), and a size decrease by ≈60%. (ii) Region II (0.10 < C(GA) < 0.15% (w/v)) indicated secondary binding, a 4-fold turbidity increase, a ζ potential decrease from -5 to 0 mV (complete charge neutralization), which resulted in the appearance of soluble complexes and initiation of coacervation. (iii) Region III (0.15 < C(GA) < 0.25% (w/v)) revealed growth of insoluble complexes followed by precipitation. The hydration of coacervate was found to be protein concentration specific in Raman studies. The binding profile of DNA-GA complex with IL concentration revealed optimum IL concentration (=0.05% (w/v)) was required to maximize the interactions. Small angle neutron scattering (SANS) data of coacervates gave static structure factor profiles, I(q) versus wave vector q, that were remarkably similar and invariant of protein concentration. This data could be split into two distinct regions: (i) for 0.0173 < q < 0.0353 Å(-1), I(q) ~ q(-α) with α = 1.35-1.67, and (ii) for 0.0353 < q < 0.35 Å(-1), I(q) = I(0)/(1 + q(2)ξ(2)). The correlation length found was ξ = 2 ± 0.1 nm independent of protein concentration. The viscoelastic length (≈8 nm) was found to have value close to the persistence length of the protein

  2. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, V.K.; McKamey, C.G.

    1993-08-24

    A wrought and annealed iron-aluminum alloy is described consisting essentially of 8 to 9.5% aluminum, an effective amount of chromium sufficient to promote resistance to aqueous corrosion of the alloy, and an alloying constituent selected from the group of elements consisting of an effective amount of molybdenum sufficient to promote solution hardening of the alloy and resistance of the alloy to pitting when exposed to solutions containing chloride, up to about 0.05% carbon with up to about 0.5% of a carbide former which combines with the carbon to form carbides for controlling grain growth at elevated temperatures, and mixtures thereof, and the balance iron, wherein said alloy has a single disordered [alpha] phase crystal structure, is substantially non-susceptible to hydrogen embrittlement, and has a room-temperature ductility of greater than 20%.

  3. Study of crevice-galvanic corrosion of aluminum

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Loess, R. E.; Mori, S.

    1967-01-01

    Corrosion effects of aluminum-copper and aluminum-nickel couples in oxygenated distilled water, and aluminum alloys in oxygenated copper sulfate solution were studied. One of each of the couples had a water tight seal, and showed no substantial corrosion, and of the unsealed couples, only the aluminum-copper developed corrosion.

  4. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  5. Solute-derived thermal stability of nanocrystalline aluminum and processing factor influence on the formation of Al6Mn quasicrystals in melt-spinning

    NASA Astrophysics Data System (ADS)

    Baker, Andrew H.

    Thermal stability of nanograined metals can be difficult to attain due to the large driving force for grain growth that arises from the significant boundary area constituted by the nanostructure. Kinetic approaches for stabilization of the nanostructure effective at low homologous temperatures often fail at higher homologous temperatures. Thermodynamic approaches for thermal stabilization may offer higher temperature stability. In this research, modest alloying of aluminum with solute (1 at.% Sc, Yb, or Sr) was examined as a means to thermodynamically stabilize a bulk nanostructure at elevated temperatures. After using melt-spinning and ball-milling to create an extended solid-solution and nanostructure with average grain size on the order of 30-45 nm, 1 h annealing treatments at 673 K (0.72 Tm) , 773 K (0.83 Tm) , and 873 K (0.94 Tm) were applied. The alloys remain nanocrystalline (<100 nm) as measured by Warren-Averbach Fourier analysis of x-ray diffraction peaks and direct observation of TEM dark field micrographs, with the efficacy of stabilization: Sr>Yb>Sc. Disappearance of intermetallic phases in the Sr and Yb alloys in the x-ray diffraction spectra are observed to occur coincident with the stabilization after annealing, suggesting that precipitates dissolve and the boundaries are enriched with solute. Melt-spinning has also been shown to be an effective process to produce a class of ordered, but non-periodic crystals called quasicrystals. However, many of the factors related to the creation of the quasicrystals through melt-spinning are not optimized for specific chemistries and alloy systems. In a related but separate aspect of this research, melt-spinning was utilized to create metastable quasicrystalline Al6Mn in an alpha-Al matrix through rapid solidification of Al-8Mn (by mol) and Al-10Mn (by mol) alloys. Wheel speed of the melt-spinning wheel and orifice diameter of the tube reservoir were varied to determine their effect on the resulting volume

  6. 21 CFR 184.1426 - Magnesium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium chloride. 184.1426 Section 184.1426 Food... GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS Reg. No. 7786-30-3) is a... prepared by dissolving magnesium oxide, hydroxide, or carbonate in aqueous hydrochloric acid solution...

  7. Recovery of aluminum from composite propellants

    NASA Technical Reports Server (NTRS)

    Shaw, G. C. (Inventor)

    1980-01-01

    Aluminum was recovered from solid rocket propellant containing a small amount of oxidizer by depolymerizing and dissolving propellant binders (containing functional or hydrolyzable groups in a solution of sodium methoxide) in an alcohol solvent optionally containing an aliphatic or aromatic hydrocarbon co-solvent. The solution was filtered to recover substantially all the aluminum in active form.

  8. An alternate to chromate conversion coatings for the corrosion protection of aluminum 2024-T3

    NASA Astrophysics Data System (ADS)

    Guo, Ruiguang

    Corrosion of high-strength aluminum alloys used for airspace application is an expensive and serious problem. The most significant environmental factor contributing to the corrosion of these alloys is water condensed from humid air and contaminated with soluble chloride salts. The Al 2024 series used for aircraft are particularly susceptible to corrosion in aqueous chloride solutions due to alloying constituents such as copper and other impurities. Chromates are efficient inhibitors of corrosion of aluminum in near neutral aqueous environments containing aggressive anions such as chlorides. Usually, aluminum alloys are initially protected by chromate conversion coatings. Additional polymer coatings are sometimes added during exposure to corrosive atmospheres such as marine environments. Although chromate coatings are widely used, they require the use of noxious solutions, so they have always presented effluent disposal problems. There are health and safety concerns over the use of chromates due to their toxicity and carcinogenic nature and, as a consequence, the environmental and health risks associated with the use of such coatings will be restricted in the future. It was these health and safety concerns that led to the development of alternative non-toxic coating processes with comparable adhesion properties and corrosion protection. A variety of process technologies are under development and are vying for acceptance in industrial markets. As an alternate conversion coating, a new titanate conversion coating was systematically researched and developed. Research concentrated on producing passive surfaces from a simple titanate solution using an immersion process. The corrosion resistance of the treated surface has been evaluated using simple, rapid electrochemical techniques as well as a more long-term salt spray test. Passivation by titanate conversion treatment exhibits many similarities to chromate conversion treatment. Based on this study of corrosion

  9. Co(II)-chloride and -bromide complexes in aqueous solutions up to 5 m NaX and 90 degree C: Spectrophotometric study and geological implications

    SciTech Connect

    Pan, Pujing; Susak, N.J. )

    1989-02-01

    Absorption spectra of Co(II)-chloride and bromide complexes have been taken in the UV-visible-NIR region, at temperatures from 25 to 90{degree}C. The octahedral absorption bands have been resolved into components by fitting to Gaussian distribution functions, and the resolved bands have been assigned to ligand-field transitions using Tanabe-Sugano diagrams. The ligand-field-splitting energies, 10 Dq, were obtained for both chloro- and bromo-cobaltous complexes. These data were then used to estimate the average chloro-ligation number at each temperature and the chloride concentrations. It is possible to factor total dissolved cobalt in a fluid into two terms, a free cobalt term and an enhancement term due to chloride complexation. Investigation of each of the terms shows that under typical, low-temperature hydrothermal conditions, several ppm cobalt can be dissolved in natural fluids, provided that a sufficient source of cobalt is present. For major cobalt mineralization to occur, environmental conditions which produce a high free cobalt term and very high salinities are required, in addition to a sufficient source of cobalt.

  10. Reduction of porosity in aluminum weldments

    NASA Technical Reports Server (NTRS)

    Lee, W. S.

    1972-01-01

    Method is described for elimination of porosity of aluminum weldments by replacing polyvinyl chloride tubing (used to connect welder to gas source, and is permeable to moisture at high humidity) with copper tubing. In addition liquid argon gas is used at weld stations.

  11. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  12. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE PAGES

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  13. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  14. Aluminum industry applications for OTEC

    SciTech Connect

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  15. Aluminum permanganate battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-30

    A battery is provided comprising an aluminum anode, an aqueous solution of permanganate as the cathodic species and a second electrode capable of reducing permanganate. Such a battery system is characterized by its high energy density and low polarization losses when operating at high temperatures in a strong caustic electrolyte, i.e., high concentration of hydroxyl ions. A variety of anode and electrocatalyst materials are suitable for the efficient oxidation-reduction process and are elucidated.

  16. Bioavailability and intestinal absorption of aluminum in rats: effects of aluminum compounds and some dietary constituents.

    PubMed

    Cunat, L; Lanhers, M C; Joyeux, M; Burnel, D

    2000-07-01

    In the present investigation, the deposition of aluminum in intestinal fragment and the appearance in blood were studied in a perfused rat intestine in situ for 1 h with several aluminum forms (16 mM). We observed that aluminum absorption was positively correlated with the theoretic affinity of aluminum and the functional groups of the chelating agent. The absorption of aluminum after ingestion of organic compounds is more important than after ingestion of mineral compounds, with the following order: Al citrate > Al tartrate, Al gluconate, Al lactate > Al glutamate, Al chloride, Al sulfate, Al nitrate. Absorption depends on the nature of the ligands associated with the Al3+ ion in the gastrointestinal fluid. The higher the aluminum retention in intestinal fragment, the lower the absorption and appearance in blood. However, the higher aluminum concentration is always in the jejunal fragment because of the influence of pH variation on this fragment. Another objective of the present study was to determine the influence of several parameters on aluminum citrate absorption: with or without 0.1 mmol dinitrophenol/L, with aluminum concentration from 3.2, 16, 32, and 48, to 64 mmol/L, media containing 0, 3, or 6 mmol Ca/L, with or without phosphorus or glucose. It is concluded that aluminum is absorbed from the gastrointestinal tract by (1) a paracellular energy independent and nonsaturable route, mainly used for high aluminum concentration, which is modified by extracellular calcium, and (2) a transcellular and saturable route, the aluminum level was not modified with enhancement of aluminum quantity in intestinal lumen. This pathway can be similar with calcium transfer through the intestine and is energy dependent because of a decrease of aluminum absorption that follows the removal of glucose and phosphorus.

  17. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  18. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  19. Studies of removal of platinum(IV) ion microquantities from the model solutions of aluminium, copper, iron, nickel and zinc chloride macroquantities on the anion exchanger Duolite S 37.

    PubMed

    Hubicki, Z; Wójcik, G

    2006-08-25

    Platinum has been widely applied in catalytic industry and the recovery of noble metals from industrial wastes becomes an economic issue. The laboratory studies of platinum(IV) microquantities removal from 1M aluminium, copper, iron, nickel and zinc chloride solutions in 0.1M hydrochloric acid solutions on the anion exchanger Duolite S 37 of the functional secondary and tertiary amine groups were carried out. For this anion exchanger the fraction extracted values (%E, Pt(IV)) as well as the sorption isotherms were determined depending on the kind of aqueous phase and phase contact time. Moreover, the bed and weight distribution coefficients as well as working and total ion-exchange capacities were calculated from the platinum(IV) breakthrough curves. Kinetic parameters were determined. PMID:16469435

  20. Making Positive Electrodes For Sodium/Metal Chloride Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Bankston, C. Perry

    1992-01-01

    High coulombic yields provided by sodium/metal chloride battery in which cathode formed by impregnating sintered nickel plaque with saturated solution of nickel chloride. Charge/discharge cycling of nickel chloride electrode results in very little loss of capacity. Used in spacecraft, electric land vehicles, and other applications in which high-energy-density power systems required.

  1. Mesoporous aluminum phosphite

    SciTech Connect

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-08-15

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S{sup +}I{sup -} surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  2. Interfacial preferential dissolution on silicon carbide particulate/aluminum composites

    SciTech Connect

    Yao, H.Y.; Zhu, R.Z.

    1998-07-01

    Previous studies on corrosion of discontinuously reinforced aluminum alloy composites have assumed that the role of the reinforcement-matrix interface is merely as a preferable site for pitting. In this work, the interfacial preferential dissolution (IPD) occurring on silicon carbide particulate/aluminum (SiC{sub p}/Al) composites in a medium of aqueous sodium chloride (NaCl) solution was studied. IPD was quite distinct from pitting. IPD occurred on the composites with either a pure aluminum matrix or an aluminum alloy Al 2024 (UNS A92024) matrix, whether they were fabricated by a cast process or by a powder metallurgy process. In the light of elastoplastic mechanics, the width of the plastically deformed zone around SiC particles (created by the contraction misfit between SiC particles and the matrix during quenching) was deduced to be 0.5 D, where D is the diameter of the SiC particles. This was in agreement with the measured width of the IPD region (0.3 D to 0.4 D). It was concluded that IPD was caused by the poor integrity of the surface oxide film upon the plastically deformed zone near the interface and was independent of the chemical, metallurgical, and galvanic coupling factors around the interface, if any. A copper-deposition experiment indicated this poor integrity. IPD caused increased dissolution at SiC clusters and uniform corrosion for the composites with high SiC content. Moreover, IPD and pitting suppressed each other by a means of cathodic protection.

  3. Effects of postexsanguination vascular infusion of cattle with a solution of saccharides, sodium chloride, phosphates, and vitamins C, E, or C+E on meat display-color stability.

    PubMed

    Yancey, E J; Hunt, M C; Dikeman, M E; Addis, P B; Katsanidis, E

    2001-10-01

    Grain-finished, high-percentage Charolais steers (n = 36) were selected for uniformity. Immediately after jugular vein exsanguination, 27 steers were infused at 10% of live weight via the carotid artery with a solution developed by MPSC, Inc. (St. Paul, MN) consisting of 98.52% water, 0.97% saccharides, 0.23% sodium chloride, and 0.28% phosphate blend plus either 500 ppm vitamin C (MPSC+C; n = 9), 500 ppm vitamin E (MPSC+E; n = 9), or 500 ppm vitamin C + 500 ppm vitamin E (MPSC+C+E; n = 9). Uninfused controls (CON) were exsanguinated conventionally. Carcasses were fabricated at 48 h postmortem. Longissimus thoracis (LT), psoas major (PM), and semimembranosus (SM) muscles were removed, vacuum-packaged, and stored at 2 degrees C until 14 d postmortem. Then, steaks 2.54 cm thick were sliced from the three muscles, placed on foam trays, and overwrapped with polyvinyl chloride film. Ground beef (GB) was formulated from the quadriceps femoris to contain 20% fat, mounded into 0.45-kg portions, placed on styrofoam trays, and wrapped with polyvinyl chloride film. Steaks were visually evaluated for uniformity and initial color on display d 0. Instrumental color measurements of L*, a*, b* and trained sensory panel color evaluations were obtained daily for 4 d (PM and GB) or 5 d (LT and SM) of display. No display time x treatment interaction existed for L*, a*, or b* values. The LT from CON cattle had more uniform color (P < 0.05) and was more cherry red than that from all infused cattle on d 0. Visual scores indicated that GB from MPSC+E cattle was more red (P < 0.05) than that from MPSC+C infused cattle throughout display, and GB from MPSC+E cattle was more red (P < 0.05) than that from CON cattle for the last 3 d of display. The vascular infusion solutions generally did not improve color or display-color stability of steaks, but the infusion solution with vitamin E did improve display-color stability of GB.

  4. Chloride in diet

    MedlinePlus

    ... found in table salt or sea salt as sodium chloride. It is also found in many vegetables. Foods ... Nutrition Board. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academy Press, Washington, DC: 2005. ...

  5. CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  6. Disparities in voltage-sensor charge and electromotility imply slow chloride-driven state transitions in the solute carrier SLC26a5.

    PubMed

    Song, Lei; Santos-Sacchi, Joseph

    2013-03-01

    Outer hair cells (OHCs) drive cochlear amplification that enhances our ability to detect and discriminate sounds. The motor protein, prestin, which evolved from the SLC26 anion transporter family, underlies the OHC's voltage-dependent mechanical activity (eM). Here we report on simultaneous measures of prestin's voltage-sensor charge movement (nonlinear capacitance, NLC) and eM that evidence disparities in their voltage dependence and magnitude as a function of intracellular chloride, challenging decades' old dogma that NLC reports on eM steady-state behavior. A very simple kinetic model, possessing fast anion-binding transitions and fast voltage-dependent transitions, coupled together by a much slower transition recapitulates these disparities and other biophysical observations on the OHC. The intermediary slow transition probably relates to the transporter legacy of prestin, and this intermediary gateway, which shuttles anion-bound molecules into the voltage-enabled pool of motors, provides molecular delays that present as phase lags between membrane voltage and eM. Such phase lags may help to effectively inject energy at the appropriate moment to enhance basilar membrane motion. PMID:23431177

  7. Influence of sorption processes on aluminum determinations in acidic waters

    SciTech Connect

    Goenaga, X.; Bryant, R.; Williams, D.J.A.

    1987-11-15

    Progressive removal of particles from freshwater samples by filtration using various pore diameter polycarbonate capillary membranes (0.4, 0.1, 0.05, and 0.015 ..mu..m) caused a reduction in the levels of labile aluminum (0-23%), as detected with pyrocatechol violet (PCV), in the filtrates. Removal of aluminum adsorbed onto suspended solids and aluminum losses through adsorption onto the membranes are thought to be responsible for these observations. Losses of aluminum during filtration of freshwater samples were evaluated by filtration of particle-free synthetic solutions and found to be <10%. Experiments with a sample of Na-illite showed that aluminum adsorbed thereon is partially labile and detectable with PCV in synthetic and natural solutions. It appears that for freshwater samples with high solid surface to aluminum ratios, a significant fraction of the experimentally determined monomeric or inorganic monomeric aluminum may actually be adsorbed aluminum.

  8. Determination of the heat capacities of Lithium/BCX (bromide chloride in thionyl chloride) batteries

    NASA Technical Reports Server (NTRS)

    Kubow, Stephen A.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    1989-01-01

    Heat capacities of twelve different Lithium/BCX (BrCl in thionyl chloride) batteries in sizes AA, C, D, and DD were determined. Procedures and measurement results are reported. The procedure allowed simple, reproducible, and precise determinations of heat capacities of industrially important Lithium/BCX cells, without interfering with performance of the cells. Use of aluminum standards allowed the accuracy of the measurements to be maintained. The measured heat capacities were within 5 percent of calculated heat capacity values.

  9. Advanced intermediate temperature sodium copper chloride battery

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ping; Liu, Xiao-Min; Zhang, Yi-Wei; Yang, Hui; Shen, Xiao-Dong

    2014-12-01

    Sodium metal chloride batteries, also called as ZEBRA batteries, possess many merits such as low cost, high energy density and high safety, but their high operation temperature (270-350 °C) may cause several issues and limit their applications. Therefore, decreasing the operation temperature is of great importance in order to broaden their usage. Using a room temperature ionic liquid (RTIL) catholyte composed of sodium chloride buffered 1-ethyl-3-methylimidazolium chloride-aluminum chloride and a dense β″-aluminates solid electrolyte film with 500 micron thickness, we report an intermediate temperature sodium copper chloride battery which can be operated at only 150 °C, therefore alleviating the corrosion issues, improving the material compatibilities and reducing the operating complexities associated with the conventional ZEBRA batteries. The RTIL presents a high ionic conductivity (0.247 S cm-1) at 150 °C and a wide electrochemical window (-2.6 to 2.18 vs. Al3+/Al). With the discharge plateau at 2.64 V toward sodium and the specific capacity of 285 mAh g-1, this intermediate temperature battery exhibits an energy density (750 mWh g-1) comparable to the conventional ZEBRA batteries (728-785 mWh g-1) and superior to commercialized Li-ion batteries (550-680 mWh g-1), making it very attractive for renewable energy integration and other grid related applications.

  10. Diluting ferric carboxymaltose in sodium chloride infusion solution (0.9% w/v) in polypropylene bottles and bags: effects on chemical stability

    PubMed Central

    Philipp, Erik; Braitsch, Michaela; Bichsel, Tobias; Mühlebach, Stefan

    2016-01-01

    Objectives This study was designed to assess the physicochemical stability of colloidal ferric carboxymaltose solution (Ferinject) when diluted and stored in polypropylene (PP) bottles and bags for infusion. Methods Two batches of ferric carboxymaltose solution (Ferinject) were diluted (500 mg, 200 mg and 100 mg iron in 100 mL saline) in PP bottles or bags under aseptic conditions. The diluted solutions were stored at 30°C and 75%±5% relative humidity (rH) for 72 h, and samples were withdrawn aseptically at preparation and after 24 h, 48 h and 72 h. Multiple parameters were used to test stability-related measures (pH, total iron and iron (II) content, molecular weight range determination, microbial contamination and particles count ≥10 μm). Results Overall, Ferinject diluted in 0.9% (w/v) NaCl solution and stored in PP bottles and bags was stable within the specifications for the complex and the acceptability limits set for all assays. In both containers, total iron content remained stable, within 10% of the theoretical iron content, and levels of iron (II) remained far below the threshold of acceptability. All preparations were free from sediments, particle numbers were acceptable and there was no microbial contamination. The molecular weight distribution and polydispersity index were also acceptable. Conclusions Under the tested experimental conditions, colloidal ferric carboxymaltose solution (Ferinject) diluted in saline in PP infusion bottles or bags demonstrated physical and chemical stability for up to 72 h at 30°C and 75% rH. Because of the lack of additional clinical data, when using ferric carboxymaltose, physicians/pharmacists should refer to the dilution and storing recommendations given in the product's summary of product characteristics. PMID:26835007

  11. Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant.

    PubMed

    Almubaddal, F; Alrumaihi, K; Ajbar, A

    2009-01-15

    This paper presents results of an experimental study of coagulation/flocculation process of wastewater generated from a polyvinyl chloride (PVC) plant. The wastewater contains fine chlorine-based solid materials (i.e. latex). Experiments were carried out using a model wastewater which is chemically identical to the actual plant but is more consistent. Inorganic ions (Al2(SO4)3, FeCl3 and CaCl2) and a water soluble commercial polyelectrolyte (PE) were added to the wastewater sample. Coagulation efficiency was determined by measuring both the turbidity of the supernatants and the relative settlement of the flocs in the jar test. It was found that aluminum and ferric ions were more efficient than calcium ions as coagulants. The addition of polyelectrolyte was found to improve substantially the coagulation/flocculation process. It was found that the (Al2(SO4)3) combined with the polyelectrolyte at certain pH and agitation speed gave the best results compared to calcium chloride or ferric chloride when combined with the same concentration of polyelectrolyte. Only 0.0375g of a solution of (0.5% Al2(SO4)3) was required to coagulate the model wastewater. Ferric chloride (2.5% FeCl3) combined with the polyelectrolyte, on the other hand, required 0.1g while the optimum turbidity is almost the same. As for calcium chloride (2.5% CaCl2) it was found to be the least effective. The coagulation/flocculation process was found to be dependent on both pH and the agitation speed.

  12. Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant.

    PubMed

    Almubaddal, F; Alrumaihi, K; Ajbar, A

    2009-01-15

    This paper presents results of an experimental study of coagulation/flocculation process of wastewater generated from a polyvinyl chloride (PVC) plant. The wastewater contains fine chlorine-based solid materials (i.e. latex). Experiments were carried out using a model wastewater which is chemically identical to the actual plant but is more consistent. Inorganic ions (Al2(SO4)3, FeCl3 and CaCl2) and a water soluble commercial polyelectrolyte (PE) were added to the wastewater sample. Coagulation efficiency was determined by measuring both the turbidity of the supernatants and the relative settlement of the flocs in the jar test. It was found that aluminum and ferric ions were more efficient than calcium ions as coagulants. The addition of polyelectrolyte was found to improve substantially the coagulation/flocculation process. It was found that the (Al2(SO4)3) combined with the polyelectrolyte at certain pH and agitation speed gave the best results compared to calcium chloride or ferric chloride when combined with the same concentration of polyelectrolyte. Only 0.0375g of a solution of (0.5% Al2(SO4)3) was required to coagulate the model wastewater. Ferric chloride (2.5% FeCl3) combined with the polyelectrolyte, on the other hand, required 0.1g while the optimum turbidity is almost the same. As for calcium chloride (2.5% CaCl2) it was found to be the least effective. The coagulation/flocculation process was found to be dependent on both pH and the agitation speed. PMID:18471966

  13. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    NASA Astrophysics Data System (ADS)

    Leadbetter, Kirt C.

    Aluminum plating is of considerable technical and economic interest because it provides an eco-friendly substitute for cadmium coatings used on many military systems. However, cadmium has been determined to be a significant environmental safety and occupational health (ESOH) hazard because of its toxicity and carcinogenic nature. Furthermore, the cost of treating and disposing of generated wastes, which often contain cyanide, is costly and is becoming prohibitive in the face of increasingly stringent regulatory standards. The non-toxic alternative aluminum is equivalent or superior in performance to cadmium. In addition, it could serve to provide an alternative to hexavalent chromium coatings used on military systems for similar reasons to that of cadmium. Aluminum is a beneficial alternative in that it demonstrates self-healing corrosion resistance in the form of a tightly-bound, impervious oxide layer. A successfully plated layer would be serviceable over a wider temperature range, 925 °F for aluminum compared to 450 oF for cadmium. In addition, an aluminum layer can be anodized to make it non-conducting and colorable. In consideration of the plating process, aluminum cannot be deposited from aqueous solutions because of its reduction potential. Therefore, nonaqueous electrolytes are required for deposition. Currently, aluminum can be electrodeposited in nonaqueous processes that use hazardous chemicals such as toluene and pyrophoric aluminum alkyls. Electrodeposition from ionic liquids provides the potential for a safer method that could be easily scaled up for industrial application. The plating process could be performed at a lower temperature and higher current density than other commercially available aluminum electrodeposition processes; thus a reduced process cost could be possible. The current ionic liquid based electrolytes are more expensive; however production on a larger scale and a long electrolyte lifetime are associated with a reduction in price

  14. Effect of persistence length on binding of DNA to polyions and overcharging of their intermolecular complexes in aqueous and in 1-methyl-3-octyl imidazolium chloride ionic liquid solutions.

    PubMed

    Rawat, Kamla; Pathak, Jyotsana; Bohidar, H B

    2013-08-01

    The effect of persistence length on the intermolecular binding of DNA (200 bp, persistence length l(p) = 50 nm, polyanion) with three proteins, gelatin B (GB) (l(p) = 2 nm, polyampholyte chain), bovine serum albumin (BSA) (l(p) = 7 nm, polyampholyte colloid), gelatin A (GA) (l(p) = 10 nm, polyampholyte chain), and a polysaccharide chitosan (l(p) = 17 nm, polycation), was investigated in aqueous and in 1-methyl-3-octyl imidazolium chloride ionic liquid ([C8mim][Cl]) solutions. In DNA-GB and DNA-BSA solutions complexation primarily arises from surface patch binding whereas DNA-chitosan and DNA-GA binding was predominantly governed by electrostatic forces. These occurred at well defined pH values: (i) at pHc associative interactions ensued and soluble complexes were formed, (ii) at pHΦ soluble complexes coalesced to give rise to liquid-liquid phase separation (coacervation) and (iii) at pH(prep) formation of large insoluble complexes drove the solution towards liquid-solid phase separation. A universal phase diagram encapsulating the aforesaid interactions can be made using the persistence length of polyion as an independent variable. DNA formed overcharged intermolecular complexes with all these polyions when the polyion concentration was more than the concentration required to produce charge neutralized complexes (disproportionate binding). In IL solutions maximum binding occurred when 0.075 < [IL] < 0.10% (w/v) and the effect of overcharging was substantially screened. The extent of overcharge was a monotonous increasing function of the polyion persistence length. Results clearly revealed that DNA-polyion binding was hierarchical in polyion concentration and persistence length. Overcharging of the DNA-polyion complex was found to be ubiquitous for the polyions used in the present study.

  15. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  16. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  17. Surface composition of solid-rocket exhausted aluminum oxide particles

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Winstead, Edward L.; Key, Lawrence E.

    1989-01-01

    Particulate samples of aluminum oxide were collected on Teflon filters from the exhaust plume of the Space Shuttle (STS-61A, October 30, 1985) over the altitude interval 4.6-7.6 km immediately after launch. These particles were analyzed using SEM, energy-dispersive X-ray analysis, electron spectroscopy for chemical analysis, X-ray fluorescent spectroscopy, and conventional wet-chemical techniques. The samples were 0.6-1.0 percent surface-chlorided (chlorided meaning predominantly aluminum chlorides and oxychlorides, possibly including other adsorbed forms of chloride) by weight. This level of chloriding is about one-third of the amount determined previously from laboratory-prepared alumina and surface site samples of solid-rocket-produced alumina (SRPA) after both had been exposed to moist HCl vapor at temperatures down to ambient. This level is equivalent to previous laboratory results with samples exposed to moist HCl at temperatures above the boiling point of water. It is suggested that the present lower chloriding levels, determined for samples from a 'dry' Shuttle exhaust cloud, underscore the importance of a liquid water/hydrochloric acid phase in governing the extent of surface chloriding of SRPA. The reduced chloriding is not trivial with respect to potential physical/chemical modification of the SRPA particle surfaces and their corresponding interaction with the atmosphere.

  18. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOEpatents

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  19. Pitting corrosion resistance of nickel-titanium rotary instruments with different surface treatments in seventeen percent ethylenediaminetetraacetic Acid and sodium chloride solutions.

    PubMed

    Bonaccorso, Antonio; Tripi, Teresa Roberta; Rondelli, Gianni; Condorelli, Guglielmo Guido; Cantatore, Giuseppe; Schäfer, Edgar

    2008-02-01

    This study evaluated the pitting corrosion resistance of nickel-titanium (NiTi) rotary instruments with different surface treatments in 17% ethylenediaminetetraacetic acid (EDTA) and NaCl solutions. Electropolished RaCe instruments were allocated to group A, non-electropolished RaCe instruments to group B, and physical vapor deposition (PVD)-coated Alpha files to group C (10 instruments per group). Electrochemical measurements were carried out by using a potentiostat for galvanic current measurements. On the basis of electrochemical tests, no localized corrosion problems are to be expected in EDTA. In NaCl, pitting potential occurred at higher values for the electropolished and PVD instruments, indicating an increased corrosion resistance. There appears to be a risk of corrosion for NiTi instruments without surface treatments in contact with NaCl. NiTi files with PVD and electropolishing surface treatments showed an increase corrosion resistance.

  20. Hydroxyethyl cellulose as efficient organic inhibitor of zinc-carbon battery corrosion in ammonium chloride solution: Electrochemical and surface morphology studies

    NASA Astrophysics Data System (ADS)

    Deyab, M. A.

    2015-04-01

    Hydroxyethyl cellulose (HEC) has been investigated as corrosion inhibitor for zinc-carbon battery by polarization and electrochemical impedance spectroscopy (EIS) measurements. The obtained results show that the maximum inhibition efficiency by HEC in 26% NH4Cl solution at 300 ppm and 298 K is 92.07%. Tafel polarization studies reveal that HEC acts as an efficient mixed inhibitor. The corrosion rate is suppressed by the adsorption of HEC on the zinc surface. HEC adsorption obeys the Langmuir isotherm and the thermodynamic parameters Kads and Δ Gadso have been also calculated and discussed. Both physisorption and chemisorption may occur on the zinc surface. Surface characterization investigation using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) is used to ascertain the nature of the protective film.

  1. Predicting galvanic corrosion rates for SiC monofilament/magnesium metal-matrix composites in chloride, sulfate, and nitrate solutions

    SciTech Connect

    Hihara, L.H.; Kondepudi, P.K.

    1993-12-31

    The galvanic-corrosion behavior of SiC monofilament (MF) coupled to pure Mg and ZE41A Mg alloy was studied using the potentiodynamic polarization technique in concert with the mixed-potential theory. Local-corrosion penetration rates of pure Mg and ZE41A Mg were approximately equal to 1 cm/y in deaerated and oxygenated 3.15 wt % NaCl, 0.5 M Na{sub 2}SO{sub 4}, and 0.5 M NaNO{sub 3} (with the exception of pure Mg in the NaCl solution where the local-corrosion rate was approximately 6 to 7 cm/y). Galvanic corrosion between Mg and SiC MFs was under cathodic control. Galvanic-corrosion penetration rates varied from 0.046 to 7.3 cm/y depending on whether solutions were oxygenated and whether the cross section or circumferential surface of the SiC MFs was exposed. Generally, there were no strong correlations between galvanic-corrosion rates and type of electrolyte. The effect of NaF on galvanic-corrosion rates between pure Mg and SiC MF (cross section exposed) was investigated to explore the possibility of inhibiting galvanic corrosion. NaF (in a 5-g/L concentration) was very effective in reducing galvanic corrosion rates in deaerated 0.5 M Na{sub 2}SO{sub 4} and 0.5 M NaNO{sub 3}, and modestly effective in oxygenated 0.5 M Na{sub 2}SO{sub 4} and 0.5 M NaNO{sub 3}. NaF was relatively ineffective in 3.15 wt % NaCl.

  2. Conducting polymers and corrosion: Part 2 -- Polyaniline on aluminum alloys

    SciTech Connect

    Tallman, D.E.; Pae, Y.; Bierwagen, G.P.

    2000-04-01

    The electrochemical behavior of conducting polyaniline coatings on various aluminum alloys subjected to immersion in dilute Harrison solution (0.35% ammonium sulfate [(NH{sub 4}){sub 2}SO{sub 4}], 0.05% sodium chloride [NaCl]) was studied. Electrochemical impedance spectroscopy revealed that the charge-transfer resistance (R{sub ct}) of polyaniline-coated alloys increased as a function of immersion time. Polyaniline-coated platinum did not exhibit a significant increase in impedance under similar conditions, indicating that an active metal in contact with the polyaniline is required for the observed increase in R{sub ct}. A similar pattern of increasing R{sub ct} was observed for Alodine (Product A)-treated Al 7075T-6 (UNS A97075) alloys. Mean current and mean potential values obtained from electrochemical noise measurements also suggest a substantial electrochemical interaction between the polyaniline and the aluminum alloy during the early stages of immersion. Polarization experiments and open-circuit potential measurements revealed an ennobling of aluminum alloys to higher potential in the presence of polyaniline coatings. The corrosion protection afforded by a polyaniline/epoxy two-coat system on Al 2024T-3 (UNS A92024) alloy also was evaluated using impedance spectroscopy and compared with that for a single coat of epoxy on untreated and Product A-treated Al2024T-3 alloy. The Product A treatment and the polyaniline coating were found to increase the lifetime of the epoxy topcoat, although these two-coating systems exhibited rather different variations in low-frequency impedance with immersion time. A mechanism consistent with these observations was suggested.

  3. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    PubMed

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7.

  4. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    PubMed

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. PMID:27090705

  5. Is sodium chloride worth its salt?

    PubMed

    McIntosh, Euan; Andrews, Peter J

    2013-06-11

    The choice of fluid for resuscitation of the brain-injured patient remains controversial, and the 'ideal' resuscitation fluid has yet to be identified. Large volumes of hypotonic solutions must be avoided because of the risk of cerebral swelling and intracranial hypertension. Traditionally, 0.9% sodium chloride has been used in patients at risk of intracranial hypertension, but there is increasing recognition that 0.9% saline is not without its problems. Roquilly and colleagues show a reduction in the development of hyperchloremic acidosis in brain-injured patients given 'balanced' solutions for maintenance and resuscitation compared with 0.9% sodium chloride. In this commentary, we explore the idea that we should move away from 0.9% sodium chloride in favor of a more 'physiological' solution.

  6. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    PubMed

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing. PMID:25723068

  7. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    PubMed

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing.

  8. Factors effecting aluminum speciation in drinking water by laboratory research.

    PubMed

    Wang, Wendong; Yang, Hongwei; Wang, Xiaochang; Jiang, Jing; Zhu, Wanpeng

    2010-01-01

    Effects of aluminum on water distribution system and human health mainly attribute to its speciation in drinking water. Laboratory experiments were performed to investigate factors that may influence aluminum speciation in water supply system. The concentration of soluble aluminum and its transformation among other aluminum species were mainly controlled by kinetics processes of related reactions. Total aluminum concentration had a notable effect on the concentrations of mononuclear and soluble aluminum in the first 4 day; then its effect became weak. At pH above 7.50, both fluoride and orthophosphate had little effect on aluminum speciation; while, when the solution pH was below 7.50, the concentrations of mononuclear and soluble aluminum were proportional to the concentration of fluoride and inversely proportional to the concentration of orthophosphate. Both mononuclear and polynuclear silicic acids could complex with mononuclear aluminum by forming soluble aluminosilicates. In addition, the adding sequence of orthophosphate and aluminum into drinking water would also affect the distribution of aluminum species in the first 4 day. In order to minimize aluminum bioavailability in drinking water, it was suggested that orthophosphate should be added prior to coagulant process, and that the concentrations of fluoride and silicic acids should be controlled below 2.0 and 25 mg/L, respectively, prior to the treatment. The solution pH in coagulation and filtration processes should be controlled in the range of 6.50-7.50.

  9. Aluminum Target Dissolution in Support of the Pu-238 Program

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W; Felker, Leslie Kevin; Mattus, Catherine H

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  10. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration.

    PubMed

    Kiura, Hiromasa; Sano, Kouichi; Morimatsu, Shinichi; Nakano, Takashi; Morita, Chizuko; Yamaguchi, Masaki; Maeda, Toyoyuki; Katsuoka, Yoji

    2002-05-01

    Electrolyzed strong acid water (ESW) containing free chlorine at various concentrations is becoming to be available in clinical settings as a disinfectant. ESW is prepared by electrolysis of a NaCl solution, and has a corrosive activity against medical instruments. Although lower concentrations of NaCl and free chlorine are desired to eliminate corrosion, the germicidal effect of ESW with low NaCl and free-chlorine concentrations (ESW-L) has not been fully clarified. In this study, we demonstrated that ESW-L possesses bactericidal activity against Mycobacteria and spores of Bacillus subtilis. The effect was slightly weaker than that of ESW containing higher NaCl and free-chlorine concentrations (ESW-H), but acceptable as a disinfectant. To clarify the mechanism of the bactericidal activity, we investigated ESW-L-treated Pseudomonas aeruginosa by transmission electron microscopy, a bacterial enzyme assay and restriction fragment length polymorphism pattern (RFLP) assay. Since the bacterium, whose growth was completely inhibited by ESW-L, revealed the inactivation of cytoplasmic enzyme, blebs and breaks in its outer membrane and remained complete RFLP of DNA, damage of the outer membrane and inactivation of cytoplasmic enzyme are the important determinants of the bactericidal activity.

  11. Arene solutions of gallium chloride Part 3: A quantum chemical evaluation of structural models derived from X-ray scattering and vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Bengtsson-Kloo, Lars; Ulvenlund, Stefan

    1997-10-01

    Experimental results from X-ray scattering vibrational spectroscopy of solutions of GaCl 3 and mixed-valence salts Ga(Ga nCl 3 n+1 ) in benzene and mesitylene are rationalized using applied theoretical calculations at Hartree-Fock and 2nd-order Møller-Plesset levels. The interaction between the aromatic molecules and Ga(III) is strongly suggested to be of 1π type. Benzene is indicated to form a mono-bridged Ga 2Cl 6(C 6H 6) complex, whereas the stronger donor mesitylene seems to also form monomeric GaCl 3(C 9H 12) complexes in equilibrium with the mono-bridged, Ga 2Cl 6-mesitylene dimer complex. Ga 2Cl 7- is shown to have a preferred bent configuration with a GaClGa angle about 120°. However, the potential surface is found to be very flat and weak interactions or packing effects in solid compounds are very likely to influence its conformation.

  12. Structure of Hydronium (H3O+)/Chloride (Cl-) Contact Ion Pairs in Aqueous Hydrochloric Acid Solution: A Zundel-like Local Configuration

    SciTech Connect

    Fulton, John L.; Balasubramanian, Mahalingam

    2010-09-15

    Details of the H3O+ and H2O structure in the first solvation shell about Cl- in aqueous HCl solutions are reported from x-ray absorption fine structure (XAFS) measurements. Results show increasing degrees of contact ion pairing between Cl- and H3O+ as the HCl concentration increases from 6.0 m, 10.0 m and finally 16.1 m HCl (concentrated acid). At the highest acid concentration there are on average, approximately 1.6 H3O+ ions and 4.2 H2O’s in the first shell about Cl-. The structure of the Cl-/H3O+ contact ion pair is distinctly different than that of the H2O structure about Cl-. The Cl-O bond length (2.98Å) for Cl-/H3O+ is approximately 0.16 Å shorter than the Cl-/H2O bond. The bridging proton resides at an intermediate position between Cl and O at 1.60 Å from the Cl- and approximately 1.37 Å from the O of the H3O+. The bridging-proton structure of this contact ion pair, [Cl-H-OH2], is similar to structure of the water Zundel ion, [H2O-H-OH2]+. In both cases there is a shortened Cl-O or O-O bond and the intervening proton bond distances are substantially longer than for the covalent bonds of either HCl or H2O. The results further our understanding of the interaction H3O+ with Cl- that is of interest to fundamental physical chemistry and that has consequences in biochemical, geochemical and atmospheric processes.

  13. Crystal structure of 4-carbamoylpyridinium chloride.

    PubMed

    Fellows, Simon M; Prior, Timothy J

    2016-04-01

    The hydro-chloride salt of isonicotinamide, C6H7N2O(+)·Cl(-), has been synthesized from a dilute solution of hydro-chloric acid in aceto-nitrile. The compound displays monoclinic symmetry (space group C2/c) at 150 K, similar to the related hydro-chloride salt of nicotinamide. The asymmetric unit contains one protonated isonicotinamide mol-ecule and a chloride anion. An array of hydrogen-bonding inter-actions, including a peculiar bifurcated pyridinium-chloride inter-action, results in linear chains running almost perpendicularly in the [150] and [1-50] directions within the structure. A description of the hydrogen-bonding network and comparison with similar compounds are presented. PMID:27375858

  14. Crystal structure of 4-carbamoylpyridinium chloride

    PubMed Central

    Fellows, Simon M.; Prior, Timothy J.

    2016-01-01

    The hydro­chloride salt of isonicotinamide, C6H7N2O+·Cl−, has been synthesized from a dilute solution of hydro­chloric acid in aceto­nitrile. The compound displays monoclinic symmetry (space group C2/c) at 150 K, similar to the related hydro­chloride salt of nicotinamide. The asymmetric unit contains one protonated isonicotinamide mol­ecule and a chloride anion. An array of hydrogen-bonding inter­actions, including a peculiar bifurcated pyridinium–chloride inter­action, results in linear chains running almost perpendicularly in the [150] and [1-50] directions within the structure. A description of the hydrogen-bonding network and comparison with similar compounds are presented. PMID:27375858

  15. Technological, Economic, and Environmental Optimization of Aluminum Recycling

    NASA Astrophysics Data System (ADS)

    Ioana, Adrian; Semenescu, Augustin

    2013-08-01

    The four strategic directions (referring to the entire life cycle of aluminum) are as follows: production, primary use, recycling, and reuse. Thus, in this work, the following are analyzed and optimized: reducing greenhouse gas emissions from aluminum production, increasing energy efficiency in aluminum production, maximizing used-product collection, recycling, and reusing. According to the energetic balance at the gaseous environment level, the conductive transfer model is also analyzed through the finished elements method. Several principles of modeling and optimization are presented and analyzed: the principle of analogy, the principle of concepts, and the principle of hierarchization. Based on these principles, an original diagram model is designed together with the corresponding logic diagram. This article also presents and analyzes the main benefits of aluminum recycling and reuse. Recycling and reuse of aluminum have the main advantage that it requires only about 5% of energy consumed to produce it from bauxite. The aluminum recycling and production process causes the emission of pollutants such as dioxides and furans, hydrogen chloride, and particulate matter. To control these emissions, aluminum recyclers are required to comply with the National Emission Standards for Hazardous Air Pollutants for Secondary Aluminum Production. The results of technological, economic, and ecological optimization of aluminum recycling are based on the criteria function's evaluation in the modeling system.

  16. Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines

    SciTech Connect

    Rebak, R B; Ilevbare, G O; Carranza, R M

    2007-08-11

    A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions.

  17. Phosphonium chloride for thermal storage

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Development of systems for storage of thermal energy is discussed. Application of phosphonium chloride for heat storage through reversible dissociation is described. Chemical, physical, and thermodynamic properties of phosphonium chloride are analyzed and dangers in using phosphonium chloride are explained.

  18. Aluminum anodization in a basic ambient temperature molten salt

    SciTech Connect

    Carlin, R.T.; Osteryoung, R.A. . Dept. of Chemistry)

    1989-05-01

    The authors describe aluminum anodization studied in the basic AlCl/sub 3/:1-methyl-3-ethylimidazolium chloride (ImCl) ambient temperature molten salt (AlCl/sub 3/:ImCl molar ratio ..e..1.0). The anodization process was studied as a function of chloride anion concentration. Two different anodization processes are observed with onset potentials of approximately -1.1 and 0V. The more cathodic anodization involves formation of the tetrachloroaluminate anion and exhibits a limiting current controlled by diffusion of chloride to the electrode surface. The number of chlorides required for each Al anodized was determined to be 4.6 +- 0.4. The more anodic anodization shows no diffusion control. A value for the diffusion coefficient of chloride was obtained which is lower than previously reported; the difference involves using an n value of 1, rather than 2/3. No reduction of the tetrachloroaluminate anion was observed even at elevated temperatures.

  19. Aluminum in Pediatric Parenteral Nutrition Products: Measured Versus Labeled Content

    PubMed Central

    Poole, Robert L.; Pieroni, Kevin P.; Gaskari, Shabnam; Dixon, Tessa K.; Park, KT; Kerner, John A.

    2011-01-01

    OBJECTIVE Aluminum is a contaminant in all parenteral nutrition solutions. Manufacturers currently label these products with the maximum aluminum content at the time of expiry, but there are no published data to establish the actual measured concentration of aluminum in parenteral nutrition solution products prior to being compounded in the clinical setting. This investigation assessed quantitative aluminum content of products commonly used in the formulation of parenteral nutrition solutions. The objective of this study is to determine the best products to be used when compounding parenteral nutrition solutions (i.e., those with the least amount of aluminum contamination). METHODS All products available in the United States from all manufacturers used in the production of parenteral nutrition solutions were identified and collected. Three lots were collected for each identified product. Samples were quantitatively analyzed by Mayo Laboratories. These measured concentrations were then compared to the manufacturers' labeled concentration. RESULTS Large lot-to-lot and manufacturer-to-manufacturer differences were noted for all products. Measured aluminum concentrations were less than manufacturer-labeled values for all products. CONCLUSIONS The actual aluminum concentrations of all the parenteral nutrition solutions were significantly less than the aluminum content based on manufacturers' labels. These findings indicate that 1) the manufacturers should label their products with actual aluminum content at the time of product release rather than at the time of expiry, 2) that there are manufacturers whose products provide significantly less aluminum contamination than others, and 3) pharmacists can select products with the lowest amounts of aluminum contamination and reduce the aluminum exposure in their patients. PMID:22477831

  20. Fluorinated Alkoxide-Based Magnesium-Ion Battery Electrolytes that Demonstrate Li-Ion-Battery-Like High Anodic Stability and Solution Conductivity.

    PubMed

    Crowe, Adam J; Stringham, Kyle K; Bartlett, Bart M

    2016-09-01

    Based on DFT predictions, a series of highly soluble fluorinated alkoxide-based electrolytes were prepared, examined electrochemically, and reversibly cycled. The alcohols react with ethylmagnesium chloride to generate a fluoroalkoxy-magnesium chloride intermediate, which subsequently reacts with aluminum chloride to generate the electrolyte. Solutions starting from a 1,1,1,3,3,3-hexafluoro-2-methylpropan-2-ol precursor exhibit high anodic stability, 3.2 V vs Mg(2+/0), and a record 3.5 mS/cm solution conductivity. Excellent galvanostatic cycling and capacity retention (94%) is observed with more than 300 h of cycle time while employing the standard Chevrel phase-Mo6S8 cathode material.