Science.gov

Sample records for aluminum extrusion die

  1. Finite Element Analysis and Die Design of Non-specific Engineering Structure of Aluminum Alloy during Extrusion

    SciTech Connect

    Chen, D.-C.; Lu, Y.-Y.

    2010-06-15

    Aluminum extension applies to industrial structure, light load, framework rolls and conveyer system platform. Many factors must be controlled in processing the non-specific engineering structure (hollow shape) of the aluminum alloy during extrusion, to obtain the required plastic strain and desired tolerance values. The major factors include the forming angle of the die and temperature of billet and various materials. This paper employs rigid-plastic finite element (FE) DEFORM 3D software to investigate the plastic deformation behavior of an aluminum alloy (A6061, A5052, A3003) workpiece during extrusion for the engineering structure of the aluminum alloy. This work analyzes effective strain, effective stress, damage and die radius load distribution of the billet under various conditions. The analytical results confirm the suitability of the current finite element software for the non-specific engineering structure of aluminum alloy extrusion.

  2. An optimizing process of profiled cross-sectional aluminum alloy porthole die extrusion using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhou, Fujian; Li, Feng; Shi, Liansheng; Jiang, Hongwei

    2016-03-01

    The porthole die extrusion process of profiled cross-section hollow aluminum alloy is influenced by numerous factors, which brings inconvenience to the process design. In this paper, 7075 aluminum alloy is taken as an example, the fitting model of the ultimate load is analyzed by variance and regression analysis using response surface method (RSM). The influences of extrusion speed, friction factor and initial temperature on the change of extruded ultimate load are investigated systematically, and the important influence factors (initial temperature > friction factor > extrusion speed) to the load are determined eventually. By comparison, the error between the ultimate load model obtained after fitting and the calculated value is only 2.4%, further verifying the reliability of this model. The optimal objective is to minimize the ultimate load, then the optimum technological parameters are obtained by optimizing the process, where the initial temperature, the extrusion speed and the friction factor are 430∘C, 2.28mm/s and 0.31, respectively. The results provide a theoretical basis for the scientific design of the porthole die extrusion process of profiled cross-section hollow aluminum alloy.

  3. Extrusion die and method

    DOEpatents

    Lipp, G. Daniel

    1994-04-26

    A method and die apparatus for manufacturing a honeycomb body of rhombic cell cross-section by extrusion through an extrusion die of triangular cell discharge slot configuration, the die incorporating feedholes at selected slot intersections only, such that slot segments communicating directly with the feedholes discharge web material and slot segments not so connected do not discharge web material, whereby a rhombic cell cross-section in the extruded body is provided.

  4. Extrusion die and method

    DOEpatents

    Lipp, G. Daniel

    1994-05-03

    A method and die apparatus for manufacturing a honeycomb body of triangular cell cross-section and high cell density, the die having a combination of (i) feedholes feeding slot intersections and (ii) feedholes feeding slot segments not supplied from slot intersections, whereby a reduction in feedhole count is achieved while still retaining good extrusion efficiency and extrudate uniformity.

  5. Guide for extrusion dies eliminates straightening operation

    NASA Technical Reports Server (NTRS)

    Gyorgak, C. A.; Hoover, R. J.

    1964-01-01

    To prevent distortion of extruded metal, a guidance assembly is aligned with the die. As the metal emerges from the extrusion dies, it passes directly into the receiver and straightening tube system, and the completed extrusion is withdrawn.

  6. 75 FR 80527 - Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... COMMISSION Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION... retarded, by reason of subsidized and less-than-fair-value imports from China of aluminum extrusions... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination...

  7. Numerical simulation of aluminum extrusion processes

    NASA Astrophysics Data System (ADS)

    Hughes, T. J.; Muller, A.

    1995-04-01

    This presentation describes a research program directed towards the development of automated design procedures for aluminum extrusion technology. The objective is to eliminate costly trial and error by being able to simultaneously design the product, die, billet, and process (e.g.. extrusion temperatures and speeds, uniformizing metal flow, etc.), within constraints of feasibility, and satisfying objectives including, but not limited to, optimizing shape, surface finish, and properties of the product, processing costs, time to market, and full utilization of capabilities. The approach is based on the development of efficient and effective analysis of the whole processing system employing newly developed finite element solution technologies for complex, multi region, multiphysical behavior. Generalizations of these methodologies to include Arbitrary Lagrangian-Eulerian (ALE) mesh descriptions for nonlinear, elastic viscoplastic mechanical constitution equations will allow the faithful modeling of the metal flow within the die system and the accurate attainment of final shape upon exit. Automatic meshing and adaptive remeshing will insure efficient and accurate simulation of the entire forming process. New element technologies facilitating the use of general meshing procedures for difficult metal-forming processes involving a variety of kinematical constraints, such as incompressibility, contact, etc., are utilized. Feature based design methodologies, parametric modeling, and knowledge-based engineering techniques will constitute the fundamental methodologies for representing designs, managing the hierarchy of analysis models, performing model reduction and feature removal, and effectively utilizing design knowledge.

  8. 75 FR 34482 - Certain Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... COMMISSION Certain Aluminum Extrusions From China Determinations On the basis of the record \\1\\ developed in... reason of imports from China of certain aluminum extrusions, provided for in subheadings 7604.21, 7604.29... Commerce by the Aluminum Extrusions Fair Trade Committee \\2\\ and the United Steel, Paper and...

  9. 76 FR 29007 - Certain Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... COMMISSION Certain Aluminum Extrusions From China Determinations On the basis of the record \\1\\ developed in... certain aluminum extrusions from ] China other than finished heat sinks, provided for in subheadings 7604... by Aluminum Extrusions Fair Trade Committee and the United Steel, Paper and Forestry,...

  10. Historical review of die drool phenomenon during plastics extrusion

    NASA Astrophysics Data System (ADS)

    Musil, Jan; Zatloukal, Martin

    2013-04-01

    Die drool phenomenon is defined as unwanted spontaneous accumulation of extruded polymer melt on open faces of extrusion die during extrusion process. Such accumulated material builds up on the die exit and frequently or continually sticks onto the extruded product and thus damages it. Since die drool appears, extrusion process must be shut down and die exit must be manually cleaned which is time and money consuming. Although die drool is complex phenomenon and its formation mechanism is not fully understood yet, variety of proposed explanations of its formation mechanism and also many ways to its elimination can be found in open literature. Our review presents in historical order breakthrough works in the field of die drool research, shows many ways to suppress it, introduces methods for its quantitative evaluation and composition analysis and summarizes theories of die drool formation mechanism which can be helpful for extrusion experts.

  11. High cycle fatigue of AA6082 and AA6063 aluminum extrusions

    NASA Astrophysics Data System (ADS)

    Nanninga, Nicholas E.

    The high cycle fatigue behavior of hollow extruded AA6082 and AA6063 aluminum extrusions has been studied. Hollow extruded aluminum profiles can be processed into intricate shapes, and may be suitable replacements for fatigue critical automotive applications requiring reduced weight. There are several features inherent in hollow aluminum extrusions, such as seam welds, charge welds, microstructural variations and die lines. The effects of such extrusion variables on high cycle fatigue properties were studied by taking specimens from an actual car bumper extrusion. It appears that extrusion die lines create large anisotropy differences in fatigue properties, while welds themselves have little effect on fatigue lives. Removal of die lines greatly increased fatigue properties of AA6082 specimens taken transverse to the extrusion direction. Without die lines, anisotropy in fatigue properties between AA6082 specimens taken longitudinal and transverse to the extrusion direction, was significantly reduced, and properties associated with the orientation of the microstructure appears to be isotropic. A fibrous microstructure for AA6082 specimens showed great improvements in fatigue behavior. The effects of elevated temperatures and exposure of specimens to NaCl solutions was also studied. Exposure to the salt solution greatly reduced the fatigue lives of specimens, while elevated temperatures showed more moderate reductions in fatigue lives.

  12. Physical Simulation Method for the Investigation of Weld Seam Formation During the Extrusion of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Nguyen, Duc-Thien; Zhou, Jie

    2016-12-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of great importance to understand the formation of weld seams inside the welding chamber during extrusion, as affected by extrusion process variables and die design. Previously developed physical simulation methods could not fully reproduce the thermomechanical conditions inside the welding chamber of porthole die. In this research, a novel physical simulation method for the investigation of weld seam formation during extrusion was developed. With a tailor-designed tooling set mounted on a universal testing machine, the effects of temperature, speed, and strain on the weld seam quality of the 6063 alloy were investigated. The strains inside the welding chamber were found to be of paramount importance for the bonding of metal streams, accompanied by microstructural changes, i.e., recovery or recrystallization, depending on the local deformation condition. The method was shown to be able to provide guidelines for the design of porthole dies and choice of extrusion process variables, thereby reducing the scrap rate of aluminum extrusion operation.

  13. 75 FR 34982 - Aluminum Extrusions from the People's Republic of China: Notice of Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... International Trade Administration Aluminum Extrusions from the People's Republic of China: Notice of... countervailing duty investigation of aluminum extrusions from the People's Republic of China. See Aluminum..., Benada Aluminum of Florida, Inc., William L. Bonnell Company, Inc., Frontier Aluminum Corporation,...

  14. 75 FR 73041 - Aluminum Extrusions From the People's Republic of China: Postponement of Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Postponement of... Commerce (``Department'') initiated the antidumping duty investigation of aluminum extrusions from the... antidumping duty investigation is currently due on January 10, 2011. \\1\\ See Aluminum Extrusions from...

  15. Method and Apparatus for Die Forming Metal Sheets and Extrusions.

    DTIC Science & Technology

    of a variety of die blocks for introducing a variety of angled joggles in the metal sheets and extrusions. Relatively low melting temperature material is used for the castings. Keywords: Patents; Aircraft parts. (kt)

  16. Analysis of Material Flow in Screw Extrusion of Aluminum

    SciTech Connect

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-06-15

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  17. Method and apparatus for die forming metal sheets and extrusions

    NASA Astrophysics Data System (ADS)

    Darter, John L.

    1986-06-01

    The invention comprises an apparatus for die forming metal sheets and extrusions which utilizes die blocks of low melting temperature metallic material. The die blocks are formed in an adjustable mold which comprises a mold box, a pivotable dam within the mold box and blocking means for locking the pivotable dam member in a desired angular position. Once a desired die block angle is ascertained for a particular joggle, the pivotable member of the mold box is adjusted to produce the desired angle in the die casting made in the mold box.

  18. 75 FR 57441 - Aluminum Extrusions From the People's Republic of China: Alignment of Final Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Alignment of Final...) is aligning the final determination in the countervailing duty investigation of aluminum extrusions... 20, 2010, the Department initiated the countervailing and antidumping duty investigations on...

  19. 76 FR 30650 - Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... forms, produced by an extrusion process, made from aluminum alloys having metallic elements corresponding to the alloy series designations published by The Aluminum Association commencing with the numbers... subject merchandise made from aluminum alloy with an Aluminum Association series designation...

  20. 78 FR 34649 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Preliminary Results...) is conducting an administrative review of the countervailing duty (CVD) order on aluminum extrusions... Aluminum Co., Ltd. (Alnan Aluminum), Alnan Aluminum Foil Co., Ltd. (Alnan Foil), Alnan (Shanglin)...

  1. 78 FR 67116 - Aluminum Extrusions From the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Foshan City Nanhai Hongjia Aluminum Alloy Co. Foshan Guancheng Aluminum Co., Ltd Foshan Jinlan Aluminum... International Trade Administration Aluminum Extrusions From the People's Republic of China: Notice of Partial... on aluminum extrusions from the People's Republic of China (PRC).\\1\\ Pursuant to requests...

  2. 75 FR 51243 - Aluminum Extrusions from the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... International Trade Administration Aluminum Extrusions from the People's Republic of China: Postponement of... antidumping duty investigation on Aluminum Extrusions from the People's Republic of China.\\1\\ The notice of... later than September 7, 2010. \\1\\ See Aluminum Extrusions from the People's Republic of...

  3. Die swell as an objective in the design of polymer extrusion dies

    NASA Astrophysics Data System (ADS)

    Siegbert, Roland; Behr, Marek; Elgeti, Stefanie

    2016-10-01

    This paper focuses on developing a suitable objective function for the inverse form of profile extrusion die design. First, the problem is motivated by introducing the extrusion die design process. After describing how Computer Aided Engineering enhances the traditional design process, a set of applicable objective functions is introduced. The main criteria for identifying the most suitable are computational applicability, robustness and smoothness of the functional. After discussing the results of several simulations, an objective function is proposed for the implementation in an existing optimization framework utilizing parameter-based optimization.

  4. Optimization of an Extrusion Die for Polymer Flow

    NASA Astrophysics Data System (ADS)

    Ridene, Y. Chahbani; Graebling, D.; Boujelbene, M.

    2011-01-01

    In this work, we used the CFD software PolyFlow to optimize the extrusion process of polystyrene flow. In this process, the flow of the molten polymer through the die can be viewed as a critical step for the material in terms of shear rate, self heating by viscous dissipation and temperature reached. The simulation is focused on the flow and heat transfer in the die to obtain a uniform velocity profile and a uniform temperature profile. The rheological behavior of polymer melt was described by the nonlinear Giesekus model. The dependence of the viscosity has also to be taken into account for a correct description of the flow. The design of the die has been validated by our numerical simulation.

  5. Computer-Aided Design and Manufacturing for Extrusion of Aluminum, Titanium, and Steel Structural Parts (Phase I)

    DTIC Science & Technology

    1976-03-01

    Indirect Extrusion of Aluminum Alloys without a Lubricant 1-4 1-2. Relation Between Extrusion Rate and Flow Stress for Various Aluminum Alloy...RELATION BETWEEN EXTRUSION RATE AND FLOW STRESS FOR VARIOUS ALUMINUM ALLOYS*** 1-6 By far, the greater proportion of all Aluminum extrusions consists of...for extrusion, can cause ruptures on the surface of the extrusion, and even local melting in the extru- ded material. To overcome this problem

  6. Method of extruding and packaging a thin sample of reactive material, including forming the extrusion die

    DOEpatents

    Lewandowski, E.F.; Peterson, L.L.

    1981-11-30

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon, or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  7. Method of extruding and packaging a thin sample of reactive material including forming the extrusion die

    DOEpatents

    Lewandowski, Edward F.; Peterson, Leroy L.

    1985-01-01

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  8. 77 FR 65671 - Aluminum Extrusions From the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Notice of Partial... administrative review of the countervailing duty order on aluminum extrusions from the People's Republic of China...); on September 9, 2012, Foshan City Nanhai Hongjia Aluminum Alloy Co., Ltd. (Hongjia) and...

  9. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  10. 78 FR 34986 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Preliminary Results... (``the Department'') is conducting an administrative review of the antidumping duty order on aluminum... respondents: Kromet International, Inc. (``Kromet''); and a single entity comprised of Guang Ya...

  11. Computer simulation of combination extrusion of ENAW1050A aluminum

    NASA Astrophysics Data System (ADS)

    Thomas, P.

    2017-02-01

    Computer simulation of the combination extrusion process for ENAW-1050A aluminum alloy is presented. The tests were carried out for three values of relative strain in forward direction ε1: 0.77, 0.69 and 0.59. For each value of relative strain ε1, three different values of strain in backward direction, ε2, were taken: 0.41, 0.52, 0.64. The effect of the relative strain degree on the development and values of the punch force was determined. It was demonstrated that the punch force increases with the increasing degree of relative strain in both forward and backward directions.

  12. Modeling and numerical simulation of multiflux die in the multilayer co-extrusion process

    NASA Astrophysics Data System (ADS)

    Mun, Jun Ho; Kim, Ju Hyeon; Mun, Sang Ho; Kim, See Jo

    2017-02-01

    It is of great importance to understand the stretching and folding mechanism in the multiflux co-extrusion die to get uniform multilayer distribution at the end of die lip in the multilayer co-extrusion processes. In this work, to understand the mechanism of the layer distribution, modeling and numerical simulation were carried out for three-dimensional flow analysis in the multilayer co-extrusion die. The multilayer flow fields were numerically visualized and analyzed on the arbitrary cross-section of the multiflux die. In addition, numerical results for the multiflux die characteristics were obtained for non-Newtonian fluids in terms of power-law index for the cross model, which will be useful for the optimal design of screw and die, simultaneously, in the multilayer co-extrusion process.

  13. 78 FR 67115 - Aluminum Extrusions From the People's Republic of China: Intent To Rescind 2012 Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Aluminum Extrusions From the People's Republic of China: Intent To Rescind... countervailing duty (CVD) order on aluminum extrusions from the People's Republic of China (PRC) for the...

  14. 76 FR 323 - Aluminum Extrusions From the People's Republic of China: Notice of Amended Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... which are shapes and forms, produced by an extrusion process, made from aluminum alloys having metallic elements corresponding to the alloy series designations published by The Aluminum Association commencing...). Specifically, the subject merchandise made from aluminum alloy with an Aluminum Association series...

  15. 76 FR 20627 - Aluminum Extrusions From the People's Republic of China: Notice of Correction to the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Notice of Correction... percent to 29 separate-rate companies. \\1\\ See Aluminum Extrusions from the People's Republic of China... proceeding, is appropriate. \\2\\ See Aluminum Extrusions From the People's Republic of China:...

  16. 77 FR 74466 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... International Trade Administration Aluminum Extrusions From the People's Republic of China: Notice of Court... recalculated the all others subsidy rate in the countervailing duty (CVD) investigation of aluminum extrusions... its Final Determination. \\1\\ See Aluminum Extrusions From the People's Republic of China:...

  17. Parametric Optimization of Simulated Extrusion of Square to Square Section Through Linear Converging Die

    NASA Astrophysics Data System (ADS)

    Mohapatra, S. K.; Maity, K. P.

    2016-02-01

    The effect of various process parameters for determining extrusion load has been studied for square to square extrusion of Al-6061 alloy, a most used aluminium alloy series in forming industries. Parameters like operating temperature, friction condition, ram velocity, extrusion ratio and die length have been chosen as an input variable for the above study. Twenty five combinations of parameters were set for the investigation by considering aforementioned five parameters in five levels. The simulations have been carried out by Deform-3D software for predicting maximum load requirement for the complete extrusion process. Effective stress and strain distribution across the billet has been checked. Operating temperature, extrusion ratio, friction factor, ram velocity and die length have the significant effect in decreasing order on the maximum load requirement.

  18. 76 FR 18524 - Aluminum Extrusions From the People's Republic of China: Final Determination of Sales at Less...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... procedures, including the examination of relevant accounting and production records, as appropriate, as well... extrusions which are shapes and forms, produced by an extrusion process, made from aluminum alloys having... scope also excludes aluminum alloy sheet or plates produced by other than the extrusion process, such...

  19. Fabrication of Porous Aluminum Using Gases Intrinsically Contained in Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Utsunomiya, Takao

    2009-06-01

    Closed-cell porous aluminum was fabricated using gases intrinsically contained in aluminum alloy die castings without using a blowing agent. By incorporating the friction stir processing technique, porous aluminum with a porosity of more than 50 pct was successfully obtained at a holding temperature of 923 to 948 K and a holding time of 10 minutes. This proposed die-casting route has high potential for fabricating porous aluminum at a low cost by a higher productivity process.

  20. An Improved Modeling of Friction for Extrusion Simulations

    SciTech Connect

    Karadogan, Celalettin; Tong, Longchang; Hora, Pavel

    2007-04-07

    Realistic representation of friction is important in extrusion simulations. Purposefully designed multi-hole die aluminum extrusion experiments showed that the conventional friction models, like the Coulomb and the shear friction models, are deficient to represent the boundary phenomena that occur during aluminum extrusion. Based on the observations, phenomenological and implementational improvements are made in the friction modeling.

  1. Microstructures and properties of aluminum die casting alloys

    SciTech Connect

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  2. Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies

    SciTech Connect

    Hwang, Yeong-Maw; Huang, Tze-Hui; Alexandrov, Sergei; Naimark, Oleg Borisovich; Jeng, Yeau-Ren

    2013-12-16

    This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments with a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15°, gradient micro-structures of the grain size decreasing gradually from 17 μm at the center to 4 μm at the edge of product were achieved.

  3. The thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The effects of welding, five selected surface coatings, and stress relieving on the thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies were studied using eleven thermal fatigue specimens. Stress relieving was conducted after each 5,000 cycle interval at 1050 F for three hours. Four thermal fatigue specimens were welded with H-13 or maraging steel welding rods at ambient and elevated temperatures and subsequently, subjected to different post-weld heat treatments. Crack patterns were examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. The results indicate that a significant improvement in thermal fatigue resistance over the control was obtained from the stress-relieving treatment. Small improvements were obtained from the H-13 welded specimens and from a salt bath nitrogen and carbon-surface treatment. The other surface treatments and welded specimens either did not affect or had a detrimental influence on the thermal fatigue properties of the H-13 die steel.

  4. Numerical Modeling of Frictional Stress in the Contact Zone of Direct Extrusion of Aluminum Alloys under Starved Lubrication

    NASA Astrophysics Data System (ADS)

    Tomar, P.; Pandey, R. K.; Nath, Y.

    2013-11-01

    The objective of this article is to investigate numerically frictional stress in the contact zone at the die/billet interface in the direct extrusion of aluminum alloys considering starved lubricated conditions. In the modeling, both the inlet and work zones have been investigated by coupled solution of the governing equations. The influences of the billet material's strain hardening and its heating due to the plastic deformation are accounted for in the numerical computation. The frictional shear stress at the die/billet interface is computed using three different lubricating oils. Numerical results have been presented herein for the various operating parameters viz. starvation factor ( ψ = 0.2-0.6), lubricants' viscosities ( η 0 = 0.05 Pa s-0.2 Pa s), semi die angle ( β = 10°-20°), and material parameter ( G = 0.56-2.25). It has been observed that the frictional stress increases with an increase in the severity of the lubricant's starvation for the given values of semi-die angle, extrusion speed, and material parameter.

  5. A new dual-plate slipometer for measuring slip between molten polymers and extrusion die materials.

    PubMed

    Schmalzer, A M; Giacomin, A J

    2014-04-01

    In this work, we study the slip behaviors common to plastics die extrusion metals or platings using a new instrument called a dual-plate slipometer. By dual-plate, we mean that whereas the stationary plate incorporates a local shear stress transducer, the moving plate does not. The stationary plate and transducer are made of one stainless steel, but the moving plate is made from, or plated with, different extrusion die materials under study. This new instrument allows slip velocity to be measured without having to build a new shear stress transducer from each extrusion metal or plating under study. We explore the effect of extrusion die composition and die metal surface morphology on the slip properties of polyolefins using a sliding plate rheometer. In this work, we studied the slip behaviors of polyolefins on four common plastics die extrusion metals or platings, without having to build a new shear stress transducer from each. Specifically, our new method replaces the moving plate; with each of the four die metals or platings under study without changing the stainless steel material of the shear stress transducer and its stationary plate. Our experiments include high-density polyethylene, low-density polyethylene, and polypropylene (PP) on four different die metals or platings. We use steady simple shear to obtain shear stress versus nominal shear rate for different gaps, from which we can then deduce the slip velocity using the Mooney analysis. We then fit four slip models to our experimental measurements, and we find the Hatzikiriakos hyperbolic sine model to be accurate, even for the measured inflections in the slip velocity as a function of shear stress curves. Our analysis includes detailed characterization of the die metal plating surfaces, including measurements of the composition of the sliding plates by energy dispersive spectroscopy, surface energy by contact angle goniometry, and surface roughness by both white light interference and stylus

  6. 75 FR 54302 - Aluminum Extrusions From the People's Republic of China: Preliminary Affirmative Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ...The Department of Commerce (the Department) preliminarily determines that countervailable subsidies are being provided to producers and exporters of aluminum extrusions from the People's Republic of China (the PRC). For information on the estimated subsidy rates, see the ``Suspension of Liquidation'' section of this...

  7. Energy absorption in aluminum extrusions for a spaceframe chassis

    SciTech Connect

    Logan, R.W.; Perfect, S.A.; Parkinson, R.D.

    1994-09-19

    This work describes the design, finite-element analysis, and verifications performed by LLNL and Kaiser Aluminum for the prototype design of the CALSTART Running Chassis purpose-built electric vehicle. Component level studies, along with our previous experimental and finite-element works, provided the confidence to study the crashworthiness of a complete aluminum spaceframe. Effects of rail geometry, size, and thickness were studied in order to achieve a controlled crush of the front end structure. These included the performance of the spaceframe itself, and the additive effects of the powertrain cradle and powertrain (motor/controller in this case) as well as suspension. Various design iterations for frontal impact at moderate and high speed are explored.

  8. Lubricating oils for cold forward extrusion of aluminum

    SciTech Connect

    Komatsuzaki, S.; Uematsu, T.

    1995-08-01

    In cold metal-forming applications, where processing is carried out continuously at high speeds, the die temperature rises due to accumulation of heat generated by friction and deformation. This heat leads to lubricant film breakdown and, subsequently, to seizure between the die and the workpiece. Actual process conditions were taken into consideration in evaluating antiseizure properties of lubricants by their maximum workable die temperature (MWT), where workpieces were formed without seizure. MWTs of lubricating oils were as follows: mineral oils: 100{degrees}-120{degrees}C; poly-{alpha}-olefin oils: 160{degrees}-170{degrees}C; polybutene oil: 150{degrees}C; ester oils: 90{degrees}C. MWTs of mineral oils or poly-{alpha}-olefins could be enhanced to around 300{degrees}C by combining them with phosphorous extreme pressure (EP) agents. An ordinary chemical conversion film, the lubricating film formed on the workpiece surface prior to working, was examined for reference. This film had an MWT of over 360{degrees}C. In addition to good antiseizure properties than lubricating oils, it had an unavoidable drawback of a color change to dark gray. With lubricating oils, the products had good luster, as long as seizure did not occur. However, in the case of oils containing phosphorus EP agents, surface degradation was recognized when the die temperature was over 250{degrees}C due to the reaction between the EP agent and the workpieces. 13 refs., 11 figs., 3 tabs.

  9. Thermal and Kinetic Modelling of Elastomer Flow—Application to an Extrusion Die

    NASA Astrophysics Data System (ADS)

    Launay, J.; Allanic, N.; Mousseau, P.; Deterre, R.

    2011-05-01

    This paper reports and discusses the thermal and kinetic behaviour of elastomer flow inside an extrusion die. The reaction progress through the runner was modeled by using a particle tracking technique. The aim is to analyze viscous dissipation phenomena to control scorch arisen, improve the rubber compound curing homogeneity and reduce the heating time in the mould using the progress of the induction time. The heat and momentum equations were solved in three dimensions with Ansys Polyflow. A particle tracking technique was set up to calculate the reaction progress. Several simulations were performed to highlight the influence of process parameters and geometry modifications on the rubber compound thermal and cure homogeneity.

  10. Co-extrusion of Discontinuously, Non-centric Steel-reinforced Aluminum

    SciTech Connect

    Foydl, A.; Haase, M.; Khalifa, N. Ben; Tekkaya, A. E.

    2011-05-04

    The process of manufacturing discontinuously non-centric steel reinforced aluminum by means of co-extrusion has been examined. By this process semi-finished reinforced profiles can be fabricated for further treatment through forging techniques. Therefore, steel reinforcement elements consisting of E295GC were inserted into conventional aluminum billets and co-extruded into two different solid profiles; a rectangle one by an extrusion ratio of 10.1:1 and a round one by 4.8:1. The used aluminum alloy is EN AW-6060. The billet temperature as well as the ram speed were varied to investigate their influence on the position of the reinforcement elements inside the strand. The measurement was done by a video measurement system, called Optomess A250, after milling off the strand. The distances between the elements in longitudinal direction were nearly constant, apart from the rear part of the strand. The same was observed for the distance of the steel elements to the profile edge. This due to the inhomogeneous material flow in the transverse weld, related to the billet-to-billet extrusion. The rotation of the reinforcement elements occurs because the elements flow nearby the shear zone. Further, micrographs were made to investigate the embedding situation and the grain size distribution. The embedding of the reinforcement elements were good in the solid round profile, but in the rectangle profile were found some kind of air pocket. The grain size of the aluminum alloy close to the steel elements is much smaller than in the other parts of the solid round profile.

  11. Estimation Of Rheological Law By Inverse Method From Flow And Temperature Measurements With An Extrusion Die

    NASA Astrophysics Data System (ADS)

    Pujos, Cyril; Regnier, Nicolas; Mousseau, Pierre; Defaye, Guy; Jarny, Yvon

    2007-05-01

    Simulation quality is determined by the knowledge of the parameters of the model. Yet the rheological models for polymer are often not very accurate, since the viscosity measurements are made under approximations as homogeneous temperature and empirical corrections as Bagley one. Furthermore rheological behaviors are often traduced by mathematical laws as the Cross or the Carreau-Yasuda ones, whose parameters are fitted from viscosity values, obtained with corrected experimental data, and not appropriate for each polymer. To correct these defaults, a table-like rheological model is proposed. This choice makes easier the estimation of model parameters, since each parameter has the same order of magnitude. As the mathematical shape of the model is not imposed, the estimation process is appropriate for each polymer. The proposed method consists in minimizing the quadratic norm of the difference between calculated variables and measured data. In this study an extrusion die is simulated, in order to provide us temperature along the extrusion channel, pressure and flow references. These data allow to characterize thermal transfers and flow phenomena, in which the viscosity is implied. Furthermore the different natures of data allow to estimate viscosity for a large range of shear rates. The estimated rheological model improves the agreement between measurements and simulation: for numerical cases, the error on the flow becomes less than 0.1% for non-Newtonian rheology. This method couples measurements and simulation, constitutes a very accurate mean of rheology determination, and allows to improve the prediction abilities of the model.

  12. An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process

    PubMed Central

    Eslami, P.; Taheri, A. Karimi

    2011-01-01

    A new method for production of bimetallic rods, utilizing the equal channel angular extrusion (ECAE) process has been introduced before by previous researchers, but no attempt has been made to assess the effect of different temperatures and holding times in order to achieve a diffusional bond between the mating surfaces. In present research copper sheathed aluminum rods have been ECAEed at room temperature and subsequently held at a constant ECAE pressure, at different temperatures and holding times to produce a diffusional bond between the copper sheath and the aluminum core. The bonding quality of the joints was examined by shear strength test and a sound bonding interface was achieved. Based on the results, a bonding temperature of 200 °C and holding time of 60–80 min yielded the highest shear strength value. PMID:21760654

  13. Effect of extrusion ratio on paraffinic mineral oil lubricant in cold forward extrusion

    NASA Astrophysics Data System (ADS)

    Hafis, S. M.; Ridzuan, M. J. M.; Imaduddin Helmi, W. N.; Syahrullail, S.

    2012-06-01

    A finite element (FE) analysis is made for steady-state two-dimensional forward extrusion with three different extrusion ratio values. Predicting extrusion force of aluminum billet extruded with palm oil lubricant will definitely be helpful in deciding the right extrusion ratio. Hence, the finite element method was applied to investigate the influence of extrusion ratio on palm oil lubricant. The extrusion ratios evaluated were 1.5, 2, and 3. The reference of the study was in accordance to the experiment results of 0.1 mg paraffinic mineral oil grade 95 (Pr95) with kinematic viscosity of 90.12 mm2/s at 40 °C for the extrusion ratio of 3. The result was found to be reliable once the FE model was validated by the established work. The extrusion force for each extrusion ratio was described and evaluated. The FE analysis also accounts for plasticity material flow and equivalent plastic strains in the deformation region. The analysis agreed that the extrusion ratio of 1.5 reduced the extrusion force compared to the extrusion ratio of 2 and 3. This was confirmed by the plotted equivalent plastic strain deformation which shows that the high value of equivalent plastic strain near the extrusion die surface was decreased. As a result, the extrusion force becomes greater with the increasing of extrusion ratio.

  14. An experimental study on the effect of die geometry on swell and sag in the parison extrusion stage

    NASA Astrophysics Data System (ADS)

    Pecora, L.; Diraddo, R. W.

    1993-01-01

    Extrusion blow molding is the process of choice for production of many hollow parts. The process involves extrusion of a molten parison and inflation of the parison into the final part, whereupon the part is cooled and ejected. The ability to predict parison behavior is important as the parison dimensions govern the shape and thickness distribution of the final product. The effect of die geometry on parison swell and sag was studied in experiments employing three diverging dies of 3.5 cm diameter. Three mandrel angles were studied, being 25, 30, and 40 deg from the vertical. For each die angle, six gaps ranging from 0.3 to 2.0 mm were studied. The material used was a blow molding high density polyethylene grade. Preliminary results were obtained showing that the sag increases and the swell decreases as the die gap is increased. Swell was found to increase as die angle increased. The parison swell depends directly on the shear and extensional components in the die. The extensional component has a stronger effect than shear for a given level of stress.

  15. Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures.

    PubMed

    Kwon, Hansang; Kawasaki, Akira

    2009-11-01

    The combined processes of spark plasma sintering and hot extrusion were used to fabricate a multi-walled carbon nanotube (MWCNT) reinforced aluminum (Al) matrix composite. The structural defects of carbon nanotubes (CNT) at various sintering temperatures were investigated by Raman spectroscopy. A small amount of Al liquid phase was generated and it reacted with disordered CNTs, even during the solid-state spark plasma sintering process. The influence of Al carbides generated by the reaction between Al and disordered CNTs is discussed from a microstructural viewpoint and in relation to tensile strength. We conclude that structurally controlled CNTs could potentially be attractive for metal matrix applications, and could significantly improve the mechanical properties of AI-CNT composites.

  16. Development and application of constitutive equation for the hot extrusion of 7A04 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yanhong; Cui, Zhenshan; Guo, Cheng

    2013-05-01

    The high-temperature deformation behavior of 7A04 aluminum alloy was investigated by hot compression tests in the temperature range of 300 - 450° and the strain rate range of 0.01-10 s-1. The true stress - true strain curves show that the stress level decreases with increasing temperature and decreasing strain rate. A modified JC model was developed by means of fitting the experimental data and optimizing the material constants. Then, based on the established constitutive equation of 7A04, the hot extrusion process of fuze shell was analyzed using DEFORM-3D and the flow law of metal was obtained. Finally, the validity of this research results was proved by practice, which provides some references for engineering application.

  17. DESIGN MECHANICAL PROPERTIES, FRACTURE TOUGHNESS, FATIGUE PROPERTIES, EXFOLIATION AND STRESS-CORROSION RESISTANCE OF 7050 SHEET, PLATE, HAND FORGINGS, DIE FORGINGS AND EXTRUSIONS

    DTIC Science & Technology

    1975-07-01

    Cracking, of Stress- Relieved Stretched Aluminum Alloy Extrusions", Technical Report AFML-TR-68-34, Fabruary 1968. 11. D. J. Brownhill, C. F. Babilon , 0. E...Rates of Stress-Relieved Aluminum Alloy Hand Forgings", Technical Report AFML-TR-70-10, February 1970. 12. C. F. Babilon , R. H. Wygonik, G. E

  18. A new possibility of melt cooling in extrusion dies to prevent sagging-effects in thick-walled pipes

    NASA Astrophysics Data System (ADS)

    te Heesen, O.; Wortberg, J.

    2014-05-01

    One challenge in the extrusion process of thick-walled pipes is the cooling of the product. Besides the output of the extruder, the line speed is also limited by the efficiency of the cooling line. The cooling time increases according to the wall thickness of the pipe under otherwise equal process conditions. State of the art is the cooling of the outer surface in water tanks or spray-cool-tanks. In addition to that, it is possible to cool the inner surface by air that is sucked through the pipe. Despite these technologies it is problematic to cool down thick walled-products with the right speed. Especially thick-walled pipes show problems by cooling the layers in the middle of the wall. On the one hand an intensive cooling of the outer and inner surface of the pipe entail the formation of shrink holes in the middle of the pipe wall. On the other hand without a quick cooling the melt flow in circumferential direction because of the gravity takes place (sagging-effect). Because of this reason in the presented paper new possibilities of melt cooling in extrusion dies to prevent sagging-effects are given. An aimed cooling of the inbound melt layers inside the extrusion die could prevent the effect of melt flow in circumferential direction after the extrusion die, allows the specification of a specific temperature profile over the radius of the pipe wall and helps to reduce the melt temperature for rising mass throughputs and screw driving speeds of the extruder. It is also thinkable to influence the crystallization process and thereby the mechanical properties of the end-product by an aimed cooling of the inner pipe layers.

  19. Validation of a systematic approach to modeling spray quenching of aluminum alloy extrusions, composites, and continuous castings

    SciTech Connect

    Hall, D.D.; Mudawar, I.; Morgan, R.E.; Ehlers, S.L.

    1997-02-01

    Optimal cooling of aluminum alloys following the high-temperature extrusion process suppresses precipitation of intermetallic compounds and results in a part capable of possessing maximum strength and hardness after the subsequent age-hardening process. Rapid quenching suppresses precipitation but can lad to large spatial temperature gradients in complex-shaped parts, causing distortion, cracking, high residual stress, and/or nonuniform mechanical properties. Conversely, slow cooling significantly reduces or eliminates these undesirable conditions but allows considerable precipitation, resulting in low strength, soft spots, and/or low corrosion resistance. This study presents a systematic method of locating and operating multiple spray nozzles for any shaped extrusion such that uniform, rapid cooling and superior mechanical and metallurgical properties are achieved. New correlations, offering increased accuracy and less computational time, were formulated for the high-temperature boiling regimes which have a critical influence on final mechanical properties. The quench factor technique related predicted thermal history to metallurgical transformations occurring within the extrusion to predict hardness distribution. The validity of this unique approach was demonstrated by comparing model predictions to the temperature response (and hardness after artificial aging) of an L-shaped Al2024-T6 extrusion to quenches with multiple, overlapping water sprays. The validation study reported herein concludes by exploring the possibility of applying quenching technology to improving the properties of extruded metal-matrix composites such as SiC{sub p}/Al6061 and cast alloys.

  20. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    SciTech Connect

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain the largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).

  1. Validation of a systematic approach to modeling spray quenching of aluminum alloy extrusions, composites, and continuous castings

    SciTech Connect

    Hall, D.; Mudawar, I.; Morgan, R.E.; Ehlers, S.L.

    1996-12-31

    Optimal cooling of aluminum alloys following the high temperature extrusion process suppresses precipitation of intermetallic compounds and results in a part capable of possessing maximum strength and hardness after the subsequent age-hardening process. Rapid quenching suppresses precipitation but can lead to large spatial temperature gradients in complex-shaped parts causing distortion, cracking, high residual stress, and/or nonuniform mechanical properties. Conversely, slow cooling significantly reduces or eliminates these undesirable conditions but allows considerable precipitation resulting in low strength, soft spots, and/or low corrosion resistance. This study presents a systematic method of locating and operating multiple spray nozzles for any shaped extrusion such that uniform, rapid cooling and superior mechanical and metallurgical properties are achieved. A spray nozzle database was compiled by measuring the distribution of spray hydrodynamic parameters (volumetric spray flux, mean drop diameter, and mean drop velocity) throughout the spray field of various industrial nozzles. Spray heat transfer correlations, which link the local spray hydrodynamic parameters to the heat transfer rate in each of the boiling regimes experienced by the surface, defined the spatially nonuniform boundary conditions in a numerical model of the quenching process which also accounted for interference between adjacent spray fields. The quench factor technique relates, predicted thermal history to metallurgical transformations occurring within the extrusion to predict hardness distribution. The validity of this unique approach was demonstrated by comparing model predictions to the temperature response (and hardness after artificial aging) of an L-shaped Al 2024-T6 extrusion to quenches with multiple, overlapping water sprays.

  2. Textured NdFeB HDDR magnets produced by die-upsetting and backward extrusion

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Kirchner, A.; Grünberger, W.; Hinz, D.; Nagel, H.; Thompson, P.; Chapman, J. N.; Müller, K. H.; Schultz, L.; Harris, I. R.

    1998-04-01

    The hydrogenation disproportionation desorption recombination (HDDR) process was applied to produce isotropic, submicron 0022-3727/31/7/009/img6 powder in 500 g batches in a specially designed HDDR reactor. The hot pressing characteristics of the material were determined and it was shown that the material has an excellent stability against grain growth. The coercivity of 1000-1080 0022-3727/31/7/009/img7 is almost constant over a hot pressing temperature range of 700-0022-3727/31/7/009/img8, making the material highly suitable for subsequent hot deformation. Die-upset HDDR magnets were prepared in order to study the basic deformation behaviour. A remanence of 1.13 T in the axial direction and a coercivity of 0022-3727/31/7/009/img9 were achieved. Similar properties were obtained for the backward extruded magnets produced at 0022-3727/31/7/009/img10 and only a small decrease in alignment along the axial direction of the ring was found. Grain sizes were very uniform and on the submicron scale. Platelet-shaped grains were observed in the die-upset magnets. The formation of interaction domains, along the axial and radial directions for the die-upset and backward extruded magnets respectively, were established by high-resolution Kerr microscopy. The high degree of texture in the hot deformed HDDR magnets was also confirmed by Lorentz microscopy revealing continuous equispaced domains extending over the entire thinned sample with only small directional variations.

  3. REFRACTORY DIE FOR EXTRUDING URANIUM

    DOEpatents

    Creutz, E.C.

    1959-08-11

    A die is presented for the extrusion of metals, said die being formed of a refractory complex oxide having the composition M/sub n/O/sub m/R/sub x/O/sub y/ where M is magnesium, zinc, manganese, or iron, R is aluminum, chromic chromium, ferric iron, or manganic manganese, and m, n, x, and y are whole numbers. Specific examples are spinel, magnesium aluminate, magnetite, magnesioferrite, chromite, and franklinite.

  4. Laser beam welding of aluminum die casting with reduced pore formation

    SciTech Connect

    Rehbein, D.H.; Decker, I.; Wohlfahrt, H.

    1994-12-31

    Laser beam welding is already well treated within the laboratory, but there is still a minor industrial application because of the lack of reliability of the process due to violent fluctuations of the plasma formation above and melt flow turbulence around the welding key-hole. An even greater challenge is the welding of die cast aluminum since the high hydrogen content dissolved within the material during the casting process is responsible for a strong pore formation of the weld and a rather unsteady welding process. During the last 10 years, intensive research work has been executed by the research institute of the authors in order to increase the weldability of die-case aluminum by optimization of the casting process. The casting process has been optimized in such a way that as few gases as possible can penetrate into the castings. The porosity of the welds has been reduced to a level comparable to that of high-quality joints of wrought material. The weld quality achieved by electron beam welding is excellent. The range of possible welding speeds and the necessary laser power depending on the wall thickness and the chosen optical arrangement are quantified. Die casting of aluminum is a manufacturing operation of high productivity. However, it s not suited for production of hollow structures. A combination with a highly productive welding technique such as laser beam welding is now available, and one may expect it to be of reasonable economic benefit in the future.

  5. Carbon nanofiber reinforced aluminum matrix composite fabricated by combined process of spark plasma sintering and hot extrusion.

    PubMed

    Kwon, Hansang; Kurita, Hiroki; Leparoux, Marc; Kawasaki, Akira

    2011-05-01

    Spark plasma sintering and hot extrusion processes have been employed for fabricating carbon nanofiber (CNF)-aluminum (Al) matrix bulk materials. The Al powder and the CNFs were mixed in a mixing medium of natural rubber. The CNFs were well dispersed onto the Al particles. After removal of the natural rubber, the Al-CNF mixture powders were highly densified. From the microstructural viewpoint, the composite materials were observed by optical, field-emission scanning electron, and high-resolution transmission electron microscopies. The CNFs were found to be located on every grain boundary and aligned with the extrusion direction of the Al-CNF bulk materials. Some Al carbides (Al4C3) were also observed at the surface of the CNFs. This carbide was created by a reaction between the Al and the disordered CNF. The CNFs and the formation of Al4C3 play an important role in the enhancement of the mechanical properties of the Al-CNF bulk material. The CNFs can also be used for engineering reinforcement of other matrix materials such as ceramics, polymers and more complex matrices.

  6. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    SciTech Connect

    Alihosseini, H.; Faraji, G.; Dizaji, A.F.; Dehghani, K.

    2012-06-15

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones: (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.

  7. Thermal fatigue behavior of H-13 die steel for aluminum die casting with various ion sputtered coatings

    NASA Technical Reports Server (NTRS)

    Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    Sputtered coatings of Mo, W, Pt, Ag, Au, Co, Cr, Ni, Ag + Cu, Mo + Pt, Si3N4, A1N, Cr3C2, Ta5Si3, and ZrO2 were applied to a 2-inch-square, 7-inch-long thermal fatigue test specimen which was then internally water cooled and alternately immersed in molten aluminum and cooled in air. After 15,000 cycles the thermal fatigue cracks at the specimen corners were measured. Results indicate that a significant improvement in thermal fatigue resistance was obtained with platinum, molybdenum, and tungsten coatings. Metallographic examination indicates that the improvement in thermal fatigue resistance resulted from protection of the surface of the die steel from oxidation. The high yield strength and ductility of molybdenum and tungsten contributed to the better thermal fatigue resistance.

  8. Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion

    SciTech Connect

    Flores-Campos, R.; Estrada-Guel, I.; Miki-Yoshida, M.; Martinez-Sanchez, R.; Herrera-Ramirez, J.M.

    2012-01-15

    Nanostructured composites of 7075 aluminum alloy and carbon coated silver nanoparticles were produced by mechanical milling and indirect hot extrusion. The milling products were obtained in a high energy SPEX ball mill, and then were compacted by uniaxial load and pressure-less sintered under argon atmosphere. Finally, the sintered product was hot extruded. Carbon coated silver nanoparticles were well distributed in the matrix of the extruded material. Tensile tests were carried out to corroborate the hypothesis that second phase particles, well dispersed in the matrix, improve the strength of the material. High resolution transmission electron microscopy was employed to locate and make sure that the silver nanoparticles were homogeneously and finely dispersed. Highlights: Black-Right-Pointing-Pointer 7075 Al nanostructured composites can be produced by mechanical milling. Black-Right-Pointing-Pointer Carbon coated silver nanoparticles are well dispersed into aluminum matrix. Black-Right-Pointing-Pointer Ductile Ag-C NP's improve the mechanical properties of the 7075 Al-alloy. Black-Right-Pointing-Pointer Ag-C NP's content has an important effect in the particle and crystallite size. Black-Right-Pointing-Pointer Ag-C NP's keep their morphology after milling and conformation processes.

  9. Mechanical Property Data on P/M Aluminum X7091-T7E69 Extrusion.

    DTIC Science & Technology

    1982-10-01

    block number) Powder-Metallurgy Notched Fatigue 7091-T7E69 Fracture Extrusion Fatigue Crack Growth Alyinum Stress Corrosion 20. AT RACT (Continue an...fatigue crack growth, and stress corrosion cracking. For notched fatigue investigations, stress concentration factors as high as 10 were examined...sensitivity to stress corrosion cracking under such conditions. UNCLASSIFIED SAZCu~rI1 V C.. Alit FC kVI0% 00~i u* £2(’hu Oee £e PREFACE This interim

  10. Improved design and durability of aluminum die casting horizontal shot sleeves

    NASA Astrophysics Data System (ADS)

    Birceanu, Sebastian

    The design and performance of shot sleeves is critical in meeting the engineering requirements of aluminum die cast parts. Improvement in shot sleeve materials have a major impact on dimensional stability, reproducibility and quality of the product. This investigation was undertaken in order to improve the life of aluminum die casting horizontal shot sleeves. Preliminary pin tests were run to evaluate the soldering, wash-out and thermal fatigue behavior of commercially available materials and coatings. An experimental rig was designed and constructed for shot sleeve configuration evaluation. Fabrication and testing of experimental shot sleeves was based upon preliminary results and manufacturing costs. Three shot sleeve designs and materials were compared to a reference nitrided H13 sleeve. Nitrided H13 is the preferred material for aluminum die casting shot sleeves because of wear resistance, strength and relative good soldering and wash-out resistance. The study was directed towards damage evaluation on the area under the pouring hole. This area is the most susceptible to damage because of high temperatures and impingement of molten aluminum. The results of this study showed that tungsten and molybdenum had the least amount of soldering and wash-out damage, and the best thermal fatigue resistance. Low solubility in molten aluminum and stability of intermetallic layers are main factors that determine the soldering and wash-out behavior. Thermal conductivity and thermal expansion coefficient directly influence thermal fatigue behavior. TiAlN nanolayered coating was chosen as the material with the best damage resistance among several commercial PVD coatings, because of relatively large thickness and simple deposition conditions. The results show that molybdenum thermal sprayed coating provided the best protection against damage under the pouring hole. Improved bonding is however required for life extension of the coating. TiAlN PVD coating applied on H13 nitrided

  11. Influences of die channel angles on microstructures and wear behaviors of AZ61 wrought magnesium alloy fabricated by extrusion-shear process

    NASA Astrophysics Data System (ADS)

    Hu, Hong-J.; Sun, Z.; Ou, Z.-W.

    2016-12-01

    Extrusion-shear (ES) process for magnesium alloy is a newly developed plastic deformation process, and ES process combines direct extrusion and two steps of ECAE (equal channel angular extrusion). To investigate the effects of the die channel angles on the microstructures and wear behaviors of AZ61 wrought magnesium alloy, the samples used in this study were fabricated by ES process with different die channel angles (120° and 135°). The microstructures of the samples were characterized by optical microscopy (OM), X-ray diffraction (XRD) and (SEM). The cumulative strains in the ES process were predicted by approaches of numerical simulation and theoretical calculation. To characterize the wear resistance of the samples, pin-on-disk tests under dry sliding conditions with various normal loads and reciprocating frequencies were conducted. To define the wear mechanisms of AZ61 magnesium alloy, the worn surfaces after wear tests were analyzed by SEM and energy-dispersive X-ray spectrometer (EDS). Based on the results obtained, die channel angles have significant influences on the grain refinements and wear behaviors of the samples. Decreasing channel angles of the ES die will not only refine the microstructures of magnesium alloys effectively and improve their harnesses, but also improve their wear resistance as decreasing channel angles results in higher friction coefficients and wear rates. With the increase in applied loads and frequencies, wear mechanisms change from mild wear (adhesion, abrasion and oxidation) to severe wear (delamination, plastic deformation and melting). In summary, the wear resistance of ES-processed AZ61 magnesium alloy could be improved by decreasing channel angles of ES dies.

  12. 75 FR 69403 - Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ...\\ In the Initiation Notice, the Department notified parties of the application process by which.... The process requires exporters and producers to submit a separate-rate status application (``SRA'') \\4... process, made from aluminum alloys having metallic elements corresponding to the alloy series...

  13. Characterization of pores in high pressure die cast aluminum using active thermography and computed tomography

    NASA Astrophysics Data System (ADS)

    Maierhofer, Christiane; Myrach, Philipp; Röllig, Mathias; Jonietz, Florian; Illerhaus, Bernhard; Meinel, Dietmar; Richter, Uwe; Miksche, Ronald

    2016-02-01

    Larger high pressure die castings (HPDC) and decreasing wall thicknesses are raising the issue of casting defects like pores in aluminum structures. Properties of components are often strongly influenced by inner porosity. As these products are being established more and more in lightweight construction (e.g. automotive and other transport areas), non-destructive testing methods, which can be applied fast and on-site, are required for quality assurance. In this contribution, the application of active thermography for the direct detection of larger pores is demonstrated. The analysis of limits and accuracy of the method are completed by numerical simulation and the method is validated using computed tomography.

  14. 75 FR 22109 - Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... designations are representative of aluminum alloys for casting: 208.0, 295.0, 308.0, 355.0, C355.0, 356.0, A356... the major alloying element, with manganese accounting for not more than 3.0 percent of total materials... magnesium accounting for at least 0.1 percent but not more than 2.0 percent of total materials by......

  15. 77 FR 54900 - Aluminum Extrusions From the People's Republic of China: Final Results of Changed Circumstances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... aluminum alloys for casting: 208.0, 295.0, 308.0, 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0..., with manganese accounting for not more than 3.0 percent of total materials by weight. The subject... least 0.1 percent but not more than 2.0 percent of total materials by weight,......

  16. 77 FR 39683 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... aluminum alloys for casting: 208.0, 295.0, 308.0, 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0... manganese accounting for not more than 3.0 percent of total materials by weight. The subject merchandise is... least 0.1 percent but not more than 2.0 percent of total materials......

  17. 76 FR 18521 - Aluminum Extrusions From the People's Republic of China: Final Affirmative Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... designations are representative of aluminum alloys for casting: 208.0, 295.0, 308.0, 355.0, C355.0, 356.0, A356... not more than 3.0 percent of total materials by weight. The subject merchandise is made from an... magnesium and silicon as the major alloying elements, with magnesium accounting for at least 0.1 percent...

  18. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  19. Parameters Controlling Dimensional Accuracy of Aluminum Extrusions Formed in Stretch Bending

    NASA Astrophysics Data System (ADS)

    Baringbing, Henry Ako; Welo, Torgeir

    2007-04-01

    For stretch formed components used in the automotive industry, such as bumper beams, it is of primary importance to control parameters affecting dimensional accuracy. The variations in geometry and mechanical properties induced in extrusion and stretch forming lead to subsequent dimensional inaccuracy of the final product. In this work, tensile and compression samples were taken at three different positions along AA7108W extruded profiles in order to determine material parameters for a constitutive model particularly suited for strong texture materials. In addition, geometry were measured and analyzed statistically in order to study its impact on local cross sectional distortions (sagging) and springback in stretch bending of a bumper beam. These full scale experiments were combined with analytical and numerical simulations to quantify the impact of each basic parameter on product quality. It is concluded that this methodology provides a means to systematically control the product quality by focusing on reducing the acceptance limits of the main parameters controlling basic mechanisms in stretch forming. Despite the assumptions and simplifications made in order to make the analytical expressions solvable, the approach has proven its capability in establishing accurate closed-form expressions including the main influential parameters.

  20. Development of lightweight aluminum compression panels reinforced by boron-epoxy infiltrated extrusions

    NASA Technical Reports Server (NTRS)

    Roy, P. A.; Mcelman, J. A.; Henshaw, J.

    1973-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiencies afforded by the selective reinforcement of conventional aluminum compression panels with unidirectional boron epoxy composite materials. A unique approach for selective reinforcement was utilized called boron/epoxy infiltration. This technique uses extruded metal sections with preformed hollow voids into which unidirectional boron filaments are drawn and subsequently infiltrated with resin to form an integral part. Simplified analytical models were developed to investigate the behavior of stiffener webs with reinforced flanges. Theoretical results are presented demonstrating the effects of transverse shear, of the reinforcement, flange eccentricity and torsional stiffness in such construction. A series of 55 tests were conducted on boron-infiltrated rods and extruded structural sections.

  1. Food extrusion.

    PubMed

    Harper, J M

    1978-01-01

    Extrusion processing has become an important food process in the manufacture of pasta, ready-to-eat cereals, snacks, pet foods, and textured vegetable protein (TVP). An extruder consists of tightly fitting screw rotating within a stationary barrel. Preground and conditioned ingredients enter the screw where they are conveyed, mixed, and heated by a variety of processes. The product exits the extruder through a die where it usually puffs and changes texture from the release of steam and normal forces. Mathematical models for extruder flow and torque have been found useful in describing exclusion operations. Scale-up can be facilitated by the application of these models. A variety of food extruder designs have developed. The differences and similarity of design are discussed. Pertinent literature on the extrusion of cereal/snack products, full-fat soy, TVP, pet foods (dry and semi-moist), pasta, and beverage or other food bases are discussed. In many of these applications, the extruder is a high temperature, short time process which minimizes losses in vitamins and amino acids. Color, flavor, and product shape and texture are also affected by the extrusion process. Extrusion has been widely applied in the production of nutritious foods. Emphasis is placed on the use of extrusion to denature antinutritional factors and the improvement of protein quality and digestibility.

  2. Experimental Damage Criterion for Static and Fatigue Life Assessment of Commercial Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo

    2017-03-01

    Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.

  3. Extrusion of AlSi/SiCp composite alloys in the semi-solid state

    SciTech Connect

    Laplante, S.; Ajersch, F.; Legros, N.

    1995-10-01

    Semi-solid A356 alloys with 15 vol % SiC particles (10--15{micro}m) were extruded through cylindrical dies of variable dimension in order to evaluate the resistance to extrusion of these composites. The samples were first prepared by isothermal mixing in the semi-solid state for controlled periods of time and shear rates in order to obtain 20, 30 and 40 vol% primary fraction of the alloy ({alpha}-aluminum) generating a consistent globular-agglomerated structure. The quenched samples were introduced into the die chamber of a computer controlled extrusion press where the temperature was again raised to the semi-solid state and then extruded at a constant rate. Extrusions were carried out to evaluate the effect of extrusion rate, die length and diameter and variable solid fraction. All examples exhibited a sharp rise in extrusion force, and then reaching a plateau for the duration of the extrusion. Die entrance resistance was found to be the predominant force measured. Analysis of sections of the extruded material showed that the primary phase particles are deformed axially along the extrusion direction resulting in a non-isotropic structure with increased tensile strength and ductility.

  4. Aluminum Alloy 7050 Extrusions.

    DTIC Science & Technology

    1977-03-01

    standard deviations suggest that future problems in meeting these limits will be minimal. Impurity contents ranged from 0.08 to 0.13% Fe and 0.04 to...Front Rear fe . C, V.S., E. C, Y.S., S. No. Ratio 32 •F hr* 6 8 % I ACS 36.1 36.9 ksi 88.0 n.d. % I ACS 35.8 36.3 ksi 437686-6 775...o & <^ CD (D GD 0Ü r- CT^ o4 o^ m m o 04 f*! oi ^ *T in r-4 <J^ •* O GO vO ON oo CD ao r^ r* >-» O- f*> OD »O «H ^ r

  5. Numerical and experimental investigations on an extrusion process for a newly developed ultra-high-carbon lightweight steel for the automotive industry

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Yarcu, D.; Kazhai, M.

    2017-02-01

    In this study the material flow of a newly developed ultra-high-carbon lightweight steel (uhc-steel) with a high amount of aluminum was investigated in an extrusion process. Cylinder compression tests were performed for material characterization and frictional behaviour was determined by using ring compression tests. Numerical simulations were carried to determine the optimal die geometry as well as to calculate the process loads and dominated stresses in the die occurring during the process. Based on the numerical results, an extrusion process was designed and implemented. Experiments showed that the uhc-steel can be formed by extrusion however it is associated with a high wear rate.

  6. Mechanical Properties of Carbon Fiber-Reinforced Aluminum Manufactured by High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Kachold, Franziska; Singer, Robert

    2016-08-01

    Carbon fiber reinforced aluminum was produced by a specially adapted high-pressure die casting process. The MMC has a fiber volume fraction of 27%. Complete infiltration was achieved by preheating the bidirectional, PAN-based carbon fiber body with IR-emitters to temperatures of around 750 °C. The degradation of the fibers, due to attack of atmospheric oxygen at temperatures above 600 °C, was limited by heating them in argon-rich atmosphere. Additionally, the optimization of heating time and temperature prevented fiber degradation. Only the strength of the outer fibers is reduced by 40% at the most. The fibers in core of fiber body are nearly undamaged. In spite of successful manufacturing, the tensile strength of the MMC is below strength of the matrix material. Also unidirectional MMCs with a fiber volume fraction of 8% produced under the same conditions, lack of the reinforcing effect. Two main reasons for the unsatisfactory mechanical properties were identified: First, the fiber-free matrix, which covers the reinforced core, prevents effective load transfer from the matrix to the fibers. And second, the residual stresses in the fiber-free zones are as high as 100 MPa. This causes premature failure in the matrix. From this, it follows that the local reinforcement of an actual part is limited. The stress distribution caused by residual stresses and by loading needs to be known. In this way, the reinforcing phase can be placed and aligned accordingly. Otherwise delamination and premature failure might occur.

  7. Process Modeling of Low-Pressure Die Casting of Aluminum Alloy Automotive Wheels

    NASA Astrophysics Data System (ADS)

    Reilly, C.; Duan, J.; Yao, L.; Maijer, D. M.; Cockcroft, S. L.

    2013-09-01

    Although on initial inspection, the aluminum alloy automotive wheel seems to be a relatively simple component to cast based on its shape, further insight reveals that this is not the case. Automotive wheels are in a select group of cast components that have strict specifications for both mechanical and aesthetic characteristics due to their important structural requirements and their visibility on a vehicle. The modern aluminum alloy automotive wheel continues to experience tightened tolerances relating to defects to improve mechanical performance and/or the physical appearance. Automotive aluminum alloy wheels are assessed against three main criteria: wheel cosmetics, mechanical performance, and air tightness. Failure to achieve the required standards in any one of these categories will lead to the wheel either requiring costly repair or being rejected and remelted. Manufacturers are becoming more reliant on computational process modeling as a design tool for the wheel casting process. This article discusses and details examples of the use of computational process modeling as a predictive tool to optimize the casting process from the standpoint of defect minimization with the emphasis on those defects that lead to failure of aluminum automotive wheels, namely, macroporosity, microporosity, and oxide films. The current state of applied computational process modeling and its limitations with regard to wheel casting are discussed.

  8. A Processing Map for Hot Deformation of an Ultrafine-Grained Aluminum-Magnesium-Silicon Alloy Prepared by Mechanical Milling and Hot Extrusion

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hamed; Rahbar Niazi, Masoud; Simchi, Abdolreza

    2015-12-01

    Uniaxial compression test at different temperatures [573 K to 723 K (300 °C to 450 °C)] and strain rates (0.01 to 1 s-1) was employed to study the hot deformation behavior of an ultrafine-grained (UFG) Al6063 alloy prepared by the powder metallurgy route. The UFG alloy with an average grain size of ~0.3 µm was prepared by mechanical milling of a gas-atomized aluminum alloy powder for 20 hours followed by hot powder extrusion at 723 K (450 °C). To elaborate the effect of grain size, the aluminum alloy powder was extruded without mechanical milling to attain a coarse-grained (CG) structure with an average grain size of about 2.2 µm. By employing the dynamic materials model, processing maps for the hot deformation of the UFG and CG Al alloy were constructed. For investigation of microstructural evolutions and deformation instability occurring upon hot working, optical microscopy, scanning electron microscopy coupled with electron backscattered diffraction and transmission electron microscopy were utilized. It is shown that the grain refinement increases the deformation flow stress while reducing the strain hardening and power dissipation efficiency during the deformation process at the elevated temperatures. Restoration mechanisms, including dynamic recovery and recrystallization are demonstrated to control microstructural evolutions and thus the deformation behavior. Coarsening of the grain structure in the UFG alloy is illustrated, particularly when the deformation is performed at high temperatures and low strain rates. The manifestations of instability are observed in the form of cracking and void formation.

  9. Influence of Sludge Particles on the Tensile Properties of Die-Cast Secondary Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ferraro, Stefano; Timelli, Giulio

    2015-04-01

    The effects of sludge intermetallic particles on the mechanical properties of a secondary AlSi9Cu3(Fe) die-casting alloy have been studied. Different alloys have been produced by systematically varying the Fe, Mn, and Cr contents within the composition tolerance limits of the standard EN AC-46000 alloy. The microstructure shows primary α-Al x (Fe,Mn,Cr) y Si z sludge particles, with polyhedral and star-like morphologies, although the presence of primary β-Al5FeSi phase is also observed at the highest Fe:Mn ratio. The volume fraction of primary compounds increases as the Fe, Mn, and Cr contents increase and this can be accurately predicts from the Sludge Factor by a linear relationship. The sludge amount seems to not influence the size and the content of porosity in the die-cast material. Furthermore, the sludge factor is not a reliable parameter to describe the mechanical properties of the die-cast AlSi9Cu3(Fe) alloy, because this value does not consider the mutual interaction between the elements. In the analyzed range of composition, the design of experiment methodology and the analysis of variance have been used in order to develop a semi-empirical model that accurately predicts the mechanical properties of the die-cast AlSi9Cu3(Fe) alloys as function of Fe, Mn, and Cr concentrations.

  10. Tensile Properties of Nano AL2O3 Particulate-Reinforced Aluminum Matrix Composites by Mechanical Alloying and Hot Extrusion

    NASA Astrophysics Data System (ADS)

    Mehdinia, M.; Jenabali Jahromi, S. A.

    The powder of the micro Al and variant volume fractions of nano Al2O3 were milled by a high energy planetary ball-mill. By milling, a homogenous distribution of nano Al2O3 particles in the metal matrix were developed. Then the milled powder was cold compressed and sintered at 545°C for one hr. The mold and the sintered sample hold in a furnace until the temperature reached 545°C. Then the hot 27mm diameter sample was extruded to 6mm diameter. From the extruded specimens, tensile, hardness and microstructure of the prepared specimens were determined. By these tests the effect of milling time, the percent of nano-particles and the microstructure were evaluated. The hardness and tensile behaviors of aluminum matrix composites reinforced with nano Al2O3 particulate have been found to increase remarkably with the volume fraction of the reinforcement.

  11. Characterization of the Microstructure, Fracture, and Mechanical Properties of Aluminum Alloys 7085-O and 7175-T7452 Hollow Cylinder Extrusions

    NASA Astrophysics Data System (ADS)

    Benoit, Samuel G.; Chalivendra, Vijaya B.; Rice, Matthew A.; Doleski, Robert F.

    2016-09-01

    Microstructural, tensile, and fracture characterizations of cylindrically forged forms of aluminum alloys AA7085-O and AA7175-T7452 were performed. Mechanical and fracture properties were investigated along radial, circumferential, and longitudinal directions to determine directional dependency. American Society for Testing and Materials (ASTM) test methods (ASTM E8-04 and ASTM E1820) were employed for both the tensile and fracture characterizations, respectively. The tensile and fracture properties were related to microstructure in each direction. The strength, elongation at break, and ultimate tensile strength of AA7085-O were higher than those of AA7175-T7452. AA7175-T7452 alloy failed in a brittle manner during fracture studies. AA7085-O outperformed AA7175-T7452 on fracture energy in all of the orientations studied. Smaller grain sizes on the planes normal to circumferential and longitudinal directions showed improvement in both elongation at break and fracture energy values compared to those of radial direction. Scanning electron microscopy images demonstrated cleavage fracture in AA7175-T7452 and transgranular fracture in AA7085-O.

  12. An evaluation of direct pressure sensors for monitoring the aluminum die casting process

    SciTech Connect

    Zhang, X.

    1997-12-31

    This study was conducted as part of the US Department of Energy (DOE) sponsored project Die Cavity Instrumentation. One objective of that project was to evaluate thermal, pressure, and gas flow process monitoring sensors in or near the die cavity as a means of securing improved process monitoring and control and better resultant part quality. The objectives of this thesis are to (1) evaluate a direct cavity pressure sensor in a controlled production campaign at the GM Casting Advanced Development Center (CADC) at Bedford, Indiana; and (2) develop correlations between sensor responses and product quality in terms of the casting weight, volume, and density. A direct quartz-based pressure sensor developed and marked by Kistler Instrument Corp. was acquired for evaluating as an in-cavity liquid metal pressure sensor. This pressure sensor is designed for use up to 700 C and 2,000 bars (29,000 psi). It has a pressure overload capacity up to 2,500 bars (36,250 psi).

  13. Providing plastic zone extrusion

    DOEpatents

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.; Yu, Zhenzhen

    2017-04-11

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  14. GRAPHITE EXTRUSIONS

    DOEpatents

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  15. Modelling highly deformable metal extrusion using SPH

    NASA Astrophysics Data System (ADS)

    Prakash, Mahesh; Cleary, Paul W.

    2015-05-01

    Computational modelling is often used to reduce trial extrusions through accurate defect prediction. Traditionally, metal extrusion is modelled using mesh based finite element methods. However, large plastic deformations can lead to heavy re-meshing and numerical diffusion. Here we use the mesh-less smoothed particle hydrodynamics method since it allows simulation of large deformations without re-meshing and the tracking of history dependent properties such as plastic strain making it suitable for defect prediction. The variation in plastic strain and deformation for aluminium alloy in a cylindrical 3D geometry with extrusion ratio and die angle is evaluated. The extrusion process is found to have three distinct phases consisting of an initial sharp rise in extrusion force, a steady phase requiring constant force and terminating in a sharp decline in force as metal is completely extruded. Deformation and plastic strain increased significantly with extrusion ratio but only moderately with die angle. Extrusion force increased by 150 % as the extrusion ratio increased from 2:1 to 4:1 but had only a marginal change with die angle. A low strain zone in the centre of the extruded product was found to be a function of extrusion ratio but was persistent and did not vary with die angle. Simulation of a complex 3D building industry component showed large variations in plastic strain along the length of the product at two scales. These were due to change in metal behaviour as extrusion progressed from phase 1 to phase 2. A stagnation zone at the back of the die was predicted that could lead to the "funnel" or "pipe" defect.

  16. Ideal-viscoplastic extrusion model

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.; Gottlieb, J. J.

    An approximate one-dimensional analysis is presented for the extrusion of incompressible ideal-viscoplastic material through converging axisymmetric dies. The extrusion model incorporates the fundamental effects of inertia, plastic deformation, strain-rate behavior, and surface friction by employing the constitutive relations for a Bingham-type body to describe the stress-strain-rate behavior of the extrudite, an appropriate quasi-steady localy-spherical kinematically-admissible velocity field to represent the actual flowfield, and a combination Coulomb and constant-shear-factor laws to estimate the frictional forces along the die surface. Comparisons of the predictions of the theory to experimental data and finite-element computations demonstrate that it is a useful and economical tool for predicting many extrusion processes.

  17. Sputtered protective coatings for die casting dies

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    This investigation determined whether selected ion beam sputtered coatings on H-13 die steel would have the potential of improving the thermal fatigue behavior of the steel used as a die in aluminum die casting. The coatings were selected to test candidate insulators and metals capable of providing protection of the die surface. The studies indicate that 1 micrometer thick W and Pt coatings reduced the thermal fatigue more than any other coating tested and are candidates to be used on a die surface to increase die life.

  18. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOEpatents

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  19. Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes

    SciTech Connect

    Hwang, Yeong-Maw; Huang, Song-Jeng; Huang, Yu-San

    2011-05-04

    Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

  20. Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes

    NASA Astrophysics Data System (ADS)

    Hwang, Yeong-Maw; Huang, Song-Jeng; Huang, Yu-San

    2011-05-01

    Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

  1. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies...

  2. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies...

  3. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies...

  4. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies to discharges...

  5. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies to discharges...

  6. Die Soldering in Aluminium Die Casting

    SciTech Connect

    Han, Q.; Kenik, E.A.; Viswanathan, S.

    2000-03-15

    Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-rich phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.

  7. Optimizing the seamless tube extrusion process using the finite element method

    NASA Astrophysics Data System (ADS)

    Li, Feng; Li, Li; Wang, Xiang; Ma, Xu Liang

    2010-03-01

    In order to reveal the mechanism of extrusion forming for large-scale aluminum alloy seamless pipe, in this research the rigid-viscous plastic finite element method was used to analyze the effect of the technological parameters of the aluminum alloy pipe extrusion process, consistent with the use requirements.

  8. Melting, casting, and alpha-phase extrusion of the uranium-2. 4 weight percent niobium alloy

    SciTech Connect

    Anderson, R C; Beck, D E; Kollie, T G; Zorinsky, E J; Jones, J M

    1981-10-01

    The experimental details of the melting, casting, homogenization, and alpha-phase extrusion process used to fabricate the uranium-2.4 wt % niobium alloy into 46-mm-diameter rods is described. Extrusion defects that were detected by an ultrasonic technique were eliminated by proper choice of extrusion parameters; namely, reduction ratio, ram speed, die angle, and billet preheat temperature.

  9. Extrusion of complex preforms for microstructured optical fibers.

    PubMed

    Ebendorff-Heidepriem, Heike; Monro, Tanya M

    2007-11-12

    We report a significant advance in preform extrusion and die design, which has allowed for the first time the fabrication of complex structured preforms using soft glass and polymer billets. Structural preform distortions are minimized by adjustment of the material flow within the die. The low propagation loss of an extruded complex bismuth glass fiber demonstrates the potential of this advanced extrusion technique for the fabrication of novel soft glass and polymer microstructured fiber designs.

  10. Neurobehavioral testing of subjects exposed residentially to groundwater contaminated from an aluminum die-casting plant and local referents

    SciTech Connect

    Kilburn, K.H.; Warshaw, R.H. )

    1993-08-01

    Residents adjoining a die-casting plant had excessive headaches, numbness of hands and feet, dizziness, blurred vision, staggering, sweating, abnormal heart rhythm, and depression, which led to measurements of neurobehavioral performance, affective status, and the frequency of symptoms. They had all been exposed via well water and proximity to the plant to volatile organic chemicals (VOC) and to polychlorinated biphenyls (PCBs). The 117 exposed women and men and 46 unexposed referents were studied together for simple and choice visual reaction time, body sway speed, blink reflex latency, color discrimination, Culture Fair (a nonverbal nonarithmetic intelligence test), recall of stories, figures, and numbers, cognitive and psychomotor control (slotted pegboard and trail making A and B), long-term memory, profile of mood states (POMS), and scores and frequencies of 34 symptoms. Choice reaction time, sway speed, and blink latency were impaired in both sexes of the exposed group and trail making B was impaired in exposed women. The POMS scores and frequencies of 30 of 34 symptoms were elevated in both sexes, compared to referents. Recall, long-term memory, psychomotor speed, and other cognitive function tests were reduced in exposed subjects and in the referents as compared to national referents. Neurophysiological impairment, and cognitive and psychomotor dysfunction and affective disorders, especially depression and excessive frequency of symptoms, were associated with the use of wells contaminated with VOCs, TCE and PCBs.

  11. Tubing extrusion made easier, Part II.

    PubMed

    Ferrandino, Mike

    2004-11-01

    An increased understanding of the primary elements will lead to greater control of the extrusion process. In the ongoing quest to produce tubing with consistent properties. Part II of this two-part article makes recommendations on best practice in barrel and screw design, compression ratios and dies.

  12. Paste mechanics for fine extrusion

    NASA Astrophysics Data System (ADS)

    Hurysz, Kevin Michael

    Lightweight metallic honeycomb structures having low density and high strength are potentially useful materials in a wide variety of applications. These materials can be employed as replacements for bearing and support structures, for impact and sound absorption, for thermal management, and in multifunctional capacities where the benefits of both metallic character and low density are required. Extrusion of these architectures represents a novel and economical alternative to conventional honeycomb fabrication. Extrusion is a material forming process that allows the shaping of cohesive plastic body into a linear form having constant cross section. The plastic body is a paste; well mixed material composed of solids, liquids, and processing aids. Control of paste rheology and optimization of flow and die variables are necessary to the extrusion of articles having complex geometry. By extruding paste compositions of raw material powders, mixed in the appropriate proportion to produce alloy materials upon reduction, lightweight ceramic honeycomb can be formed. The green ceramic honeycomb is then reduced to alloy in a controlled atmosphere heat treatment. In this investigation, high quality, green extruded honeycomb structures were fabricated. The model equations used to describe high viscosity suspension behavior were applied to paste formulations to predict properties. To accomplish the goals of this research, it was necessary to consider: (1) Raw material characterization, ensuring consistency between batches and allowing prediction of paste behavior; (2) Mechanics of the fluid phase and the paste, using capillary rheometry to determine paste properties; (3) Characteristics of the fluid phase and the paste, including methods to estimate and experimentally determine maximum solids content and the hydrodynamic constant; (4) Model development, applying the equations that describe high viscosity suspensions to pastes, allowing prediction of extrusion variables over a wide

  13. Extrusion cooking: Legume pulses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion is used commercially to produce high value breakfast and snack foods based on cereals such as wheat or corn. However, this processing method is not being commercially used for legume pulses seeds due to the perception that they do not expand well in extrusion. Extrusion cooking of pulses (...

  14. Graphite/Thermoplastic-Pultrusion Die

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Frye, Mark W.; Johnson, Gary S.; Stanfield, Clarence E.

    1990-01-01

    Attachment to extruder produces thermoplastic-impregnated graphite tape. Consists of profile die, fiber/resin collimator, and crosshead die body. Die designed to be attached to commercially available extrusion machine capable of extruding high-performance thermoplastics. Simple attachment to commercial extruder enables developers of composites to begin experimenting with large numbers of proprietary resins, fibers, and hybrid composite structures. With device, almost any possible fiber/resin combination fabricated.

  15. Epithelial cell extrusion: Pathways and pathologies.

    PubMed

    Gudipaty, Swapna Aravind; Rosenblatt, Jody

    2016-05-19

    To remove dying or unwanted cells from an epithelium while preserving the barrier function of the layer, epithelia use a unique process called cell extrusion. To extrude, the cell fated to die emits the lipid Sphingosine 1 Phosphate (S1P), which binds the G-protein-coupled receptor Sphingosine 1 Phosphate receptor 2 (S1P2) in the neighboring cells that activates Rho-mediated contraction of an actomyosin ring circumferentially and basally. This contraction acts to squeeze the cell out apically while drawing together neighboring cells and preventing any gaps to the epithelial barrier. Epithelia can extrude out cells targeted to die by apoptotic stimuli to repair the barrier in the face of death or extrude live cells to promote cell death when epithelial cells become too crowded. Indeed, because epithelial cells naturally turn over by cell death and division at some of the highest rates in the body, epithelia depend on crowding-induced live cell extrusion to preserve constant cell numbers. If extrusion is defective, epithelial cells rapidly lose contact inhibition and form masses. Additionally, because epithelia act as the first line of defense in innate immunity, preservation of this barrier is critical for preventing pathogens from invading the body. Given its role in controlling constant cell numbers and maintaining barrier function, a number of different pathologies can result when extrusion is disrupted. Here, we review mechanisms and signaling pathways that control epithelial extrusion and discuss how defects in these mechanisms can lead to multiple diseases. We also discuss tactics pathogens have devised to hijack the extrusion process to infect and colonize epithelia.

  16. Effect of equal channel angular extrusion on Al-6063 bending fatigue characteristics

    NASA Astrophysics Data System (ADS)

    Nemati, J.; Majzoobi, G. H.; Sulaiman, S.; Baharudin, B. T. H. T.; Azmah Hanim, M. A.

    2015-04-01

    The purpose of this investigation was to refine the grains of annealed 6063 aluminum alloy and to improve its yield stress and ultimate strength. This was accomplished via the equal channel angular extrusion (ECAE) process at a temperature of 200°C using route A, with a constant ram speed of 30 mm/min through a die angle of 90° between the die channels for as many as 6 passes. The experiments were conducted on an Avery universal testing machine. The results showed that the grain diameter decreased from 45 μm to 2.8 μm after 6 extrusion passes. The results also indicated that the major improvement in fatigue resistance occurred after the first pass. The subsequent passes improved the fatigue life but at a considerably lower rate. A maximum increase of 1100% in the case of low applied stresses and an approximately 2200% increase in fatigue resistance in the case of high applied stresses were observed after 5 passes. The improvement of fatigue resistance is presumed to be due to (1) a reduction in the size and the number of Si crystals with increasing number of ECAE passes, (2) the aggregation of Cu during the ECAE process, (3) the formation and growth of CuAl2 grains, and (4) grain refinement of the Al-6063 alloy during the ECAE process.

  17. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta.

    PubMed

    Wang, Li; Duan, Wei; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2016-08-01

    This research investigated the effects of extrusion temperature and screw speed on the extrusion system parameters and the qualities of brown rice pasta. The die pressure and motor torque value reached a maximum at 90°C but decreased when the screw speed increased from 80 to 120rpm. The extrusion temperature and screw speed also significantly affected the cooking quality and textural properties of brown rice pasta. The pasta produced at an extrusion temperature of 120°C and screw speed of 120rpm had the best quality with a cooking loss, hardness and adhesiveness of 6.7%, 2387.2g and -7.0g⋅s, respectively, similar to those of pasta made from gluten-free flour. The results indicated that brown rice can be used to produce gluten-free pasta with improved nutrition.

  18. Experimental and numerical investigation of ram extrusion of bread dough

    NASA Astrophysics Data System (ADS)

    Mohammed, M. A. P.; Wanigasooriya, L.; Charalambides, M. N.

    2016-10-01

    An experimental and numerical study on ram extrusion of bread dough was conducted. A laboratory ram extrusion rig was designed and manufactured, where dies with different angles and exit radii were employed. Rate dependent behaviour was observed from tests conducted at different extrusion speeds, and higher extrusion pressure was reported for dies with decreasing exit radius. A finite element simulation of extrusion was performed using the adaptive meshing technique in Abaqus. Simulations using a frictionless contact between the billet and die wall showed that the model underestimates the response at high entry angles. On the other hand, when the coefficient of friction value was set to 0.09 as measured from friction experiments, the dough response was overestimated, i.e. the model extrusion pressure was much higher than the experimentally measured values. When a critical shear stress limit, τmax, was used, the accuracy of the model predictions improved. The results showed that higher die angles require higher τmax values for the model and the experiments to agree.

  19. Extrusion of aluminium alloys

    SciTech Connect

    Sheppard, T.

    1999-01-01

    In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process. The contents include: continuum principles; metallurgical features affecting the extrusion of Al-alloys; extrusion processing; homogenization and extrusion conditions for specific alloys; processing of 6XXX alloys; plant utilization; Appendix A: specification of AA alloys and DIN equivalents; Appendix B: chemical compositions; and Appendix C: typical properties.

  20. Some studies on hot extrusion of rapidly solidified Mg alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Surendra

    2006-02-01

    Rapidly solidified magnesium alloys show great potential for application in automotive and aerospace industries. In this study, Mg-Al-Zn alloys (AZ91) were rapidly solidified by a melt-spinning process to form ribbons. Pulverized ribbons were cold-compacted and then hot-extruded to form rods. During extrusion, a specially designed die with constant strain rate profile was used and found to be advantageous. By properly establishing the complete process, extruded rods of rapidly solidified AZ91 alloys exhibiting good combination of room temperature strength and ductility were produced. Microstructural investigations were carried out on melt-spun ribbons and extruded rods. Effects of extrusion die shape, extrusion ratio, and extrusion temperature on mechanical properties of the extruded rods were also investigated.

  1. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    DOEpatents

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  2. Equal Channel Angular Extrusion of AA 6063 Using Conventional Direct Extrusion Press

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Hsien; Lin, Hsin-Chih

    2015-11-01

    In the present work, an extrusion-equal channel angular extrusion (Ex-ECAE) process composed of two processes, extrusion and ECAE, is developed. The Ex-ECAE die contains three segments and is used directly in the conventional direct extrusion press to refine the microstructure, specifically the coarse grain layer (CGL) on the surface of the extrudate. The first segment in the die is designed to perform the normal extrusion process and the second and third segments to perform the process of ECAE. The study reveals that the CGL can be eliminated (refined) completely at the macroscale. At the microscale, the original grain is subdivided into subgrain, which contains many smaller cells. The results can be explained by the grain subdivision mechanism. The textures of the Ex-ECAE sample at various segments are measured using EBSD (Electron Backscatter Diffraction). The results reveal that the first segment of the Ex-ECAE sample has a perfect fiber texture which consists of a mixture of strong <001> and weak <111> fiber components. The texture of the second segment is a mixture of strong (1 1 0) [1 -2 1] and weak (0 1 1) [2 -1 0] fiber components. However, the main component of the second segment is a typical texture of the "alloy" or "brass" type. Finally, the texture of the extrudate (the third segment) is reversed to an incomplete fiber texture which consists of strong (0 0 1) [-1 -1 0] and weak (1 1 1) [1 -1 0].

  3. VIEW OF THE INSTALLATION OF AN EXTRUSION PRESS IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE INSTALLATION OF AN EXTRUSION PRESS IN THE HIGH BAY AREA OF BUILDING 865. THE EXTRUSION PRESS WAS USED TO PRODUCE CYLINDRICAL BARS, HOLLOW TUBES, AND SHAPES WITH IRREGULAR CROSS-SECTIONS BY FORCING PREHEATED METAL THROUGH A DIE ORIFICE UNDER HIGH PRESSURE. (5/22/70) - Rocky Flats Plant, Metal Research & Development Laboratory, South of Central Avenue at south end of terminus of Ninth Avenue, Golden, Jefferson County, CO

  4. Effects of Purity Level on the Mechanical Properties of 7000-Series Aluminums

    DTIC Science & Technology

    1980-10-01

    grorh rate properties were not affected in a systematic manner. Stress corrosion cracking tests showed there does not appear to be a corrosion problem...Aluminum Extrusions 30 26 Stress Corrosion Test Results for 7XXX-T7351i Aluminum Extrusions 31 ix AFWAL-TR-80-4079 SECTION I INTRODUCTION Aluminum... STRESS CORROSION CRACKING Stress corrosion cracking test results for the seven extrusions are presented in Table 26. It can be observed that most of the

  5. A new method to maintain lubricant layer in extrusion process

    NASA Astrophysics Data System (ADS)

    Norhayati, A.; Wira, J. Y.; Zin, H. M.; Syahrullail, S.

    2012-06-01

    The present research concerns on the study of the effects of micro-pits arrays formed on the taper die surface. The micro-pits are diamond in shape. The evaluation of micro-pits was carried out by cold forward plane strain extrusion experiments. The experimental results were compared with the results obtained from the plane strain extrusion experimental works with taper die without micro-pits. The lubricant used in this experimental works is additive free paraffinic mineral oil. The experimental results are focusing on the extrusion load, billet surface roughness and grid pattern observation. From the result, the existence of the micro-pits influenced the extrusion load. At the same time, the micro-pits array affected the work piece surface roughness after the extrusion process. The lubricant viscosity also manipulates the quality of work piece after the experiments. From this works, we could conclude that the micro-pits formed on the taper die would create different frictional constraint compared to those without the micro-pits.

  6. Finite Element Analysis of Extrusion of Multifilamentary Superconductor Precursor

    SciTech Connect

    Peng, X.; Sumption, M.D.; Collings, E.W.

    2004-06-28

    The extrusion of multifilamentary superconductor precursor billets has been modeled using finite element analysis. The billet configuration was 6 around 1, with the subelement consisting of Nb rods, and the outer can or sleeve was Cu. Two general cases were investigated, those in which the re-stack rods were initially; (i) round, and (ii) hexed. A thermo-mechanical, elasto-plastic, finite-element method was used to analyze the extrusion process. In this 3D FEM model, the initial state of the billet was assumed to be absent of bonding. A typical die angle (2{alpha}=45 deg.) and a series of extrusion ratios were selected to perform the simulation and the corresponding stress and strain distributions of the two billet variants processed were compared. Based on the stress and deformation created at the rod/rod and rod/sleeve interfaces, the bonding conditions generated through the extrusion were investigated.

  7. Extrusion of compound refractive x-ray lenses.

    SciTech Connect

    Young, K.; Khounsary, A.; Experimental Facilities Division; IIT

    2004-01-01

    Compound refractive lenses (CRLs) are arrays of lenses designed to focus x-rays. The advantage of a focused x-ray beam is improvement in imaging resolution for applications such as microscopy and tomography. CRLs are desirable due to their simple designs and ease in implementation and alignment. One method of fabricating CRLs is extrusion. Extrusion can be employed to produce, for example, aluminum CRLs for high-energy applications because many aluminum products are produced in this manner. Multiple lenses can be extruded in an array in a single run. This method is relatively cost effective compared to others methods of fabricating CRLs. Two generations of extruded aluminum CRLs have been manufactured to date with lens wall thicknesses of 200 and 100 {micro}m, respectively. The first-generation CRL yielded focusing and established the potential to produce high gain if reduced wall thicknesses could be achieved. Testing of the second generation is reported here.

  8. The effect of gas assisted length on polymer melt extrusion based on the gas-assisted extrusion technique

    NASA Astrophysics Data System (ADS)

    Wan, B.; Ren, Z.; Liu, G. D.; Huang, X. Y.

    2017-02-01

    In this study, the gas-assisted technique was used into the process of polymer melt extrusion to overcome the extrudate swell problem. The gas length is an important factors in the gas-assisted extrusion technique. To ascertain the mechanism of the gas-assisted extrusion technique, and to determine the optimal gas length, the effect of gas length on the extrudate swell ratio of melt was numerically investigated. In finite element numerical simulation, PTT constitutive model and full slip boundary condition were used to achieve the gas-assisted mode. Compared with the traditional no gas-assisted extrusion, numerical results showed that the extrudate swell problem was well eliminated by the gas-assisted method. Moreover, the extrudate swell of melt decreased with the increasing of the gas length because the pressure and shear stress of melt were greatly decreased. Moreover, the flow velocity of melt is uniform at the die outlet.

  9. Finite element simulation of extrusion of optical fiber preforms: Effects of wall slip

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi Feng; Zhang, Yilei

    2016-03-01

    Extrusion has been successfully used to fabricate optical fiber preforms, especially microstructured ones. Although simplified mathematical model has been used to calculate the extrusion pressure or speed, more frequently die design and extrusion process optimization depend on trial and error, which is especially true for complex die and preform design. This paper employs the finite element method (FEM) to simulate the billet extrusion process to investigate the relationship between the extruding pressure, the billet viscosity, the wall slip condition and the extruding speed for extrusion of rod preforms. The slipping wall boundary condition is taken into account of the finite element model, and the simulated extruding pressure agrees with the one experimental value reported preciously. Then the dependence of the extruding speed on the extruding pressure, billet viscosity and the slip speed is systematically simulated. Simulated data is fitted to a second order polynomial model to describe their relationship, and the terms of the model are reduced from nine to five by using a statistical method while maintaining the fitting accuracy. The FEM simulation and the fitted model provide a convenient and dependable way to calculate the extrusion pressure, speed or other process parameters, which could be used to guide experimental design for future preform extrusion. Furthermore, the same simulation could be used to optimize die design and extrusion process to improve quality of extruded preforms.

  10. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  11. Control of Extrusion

    NASA Astrophysics Data System (ADS)

    Zhuromskii, V. M.

    2016-03-01

    The principle and engineering of a system for automatic control of the tension of the thread and the productivity of the process of extrusion of polyacrylonitrile fibers have been presented. The control system is based on the use of functional features of a modern frequency controlled electric drive.

  12. Thermoplastic Extrusion for Ceramic Bodies

    NASA Astrophysics Data System (ADS)

    Clemens, Frank

    Originally for the extrusion of ceramic bricks and tiles, clay and water were used to endow ceramic particle mixtures with sufficient plastic behaviour to permit practical shaping of the ceramic bodies. High-performance ceramics, however, often require the elimination of clay from extrusion formulations because the chemistry of the clay is incompatible with that of the desired ceramic materials. Therefore organic materials are frequently used in ceramic extrusion to provide plastic flow. Not only plastic behaviour is important for the extrusion of ceramic bodies. There are many other characteristics that can be tailored by the suitable addition of organics in a ceramic extrusion paste, or feedstock.

  13. Residence time modeling of hot melt extrusion processes.

    PubMed

    Reitz, Elena; Podhaisky, Helmut; Ely, David; Thommes, Markus

    2013-11-01

    The hot melt extrusion process is a widespread technique to mix viscous melts. The residence time of material in the process frequently determines the product properties. An experimental setup and a corresponding mathematical model were developed to evaluate residence time and residence time distribution in twin screw extrusion processes. The extrusion process was modeled as the convolution of a mass transport process described by a Gaussian probability function, and a mixing process represented by an exponential function. The residence time of the extrusion process was determined by introducing a tracer at the extruder inlet and measuring the tracer concentration at the die. These concentrations were fitted to the residence time model, and an adequate correlation was found. Different parameters were derived to characterize the extrusion process including the dead time, the apparent mixing volume, and a transport related axial mixing. A 2(3) design of experiments was performed to evaluate the effect of powder feed rate, screw speed, and melt viscosity of the material on the residence time. All three parameters affect the residence time of material in the extruder. In conclusion, a residence time model was developed to interpret experimental data and to get insights into the hot melt extrusion process.

  14. Simultaneous Effect of Plunger Motion Profile, Pressure, and Temperature on the Quality of High-Pressure Die-Cast Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Fiorese, Elena; Bonollo, Franco

    2016-12-01

    High-pressure die casting has been used widely to manufacture a large variety of products with high dimensional accuracy and productivity. Although this process has a considerably lower cycle time than the other metal forming processes, it is not yet optimized, due to the complexity of the process and the number of parameters to be controlled. Hence, the identification of the parameters affecting quality of castings is the current challenge toward efficient and effective production. In their previous work, the authors proposed and validated some novel kinematic parameters of the plunger, which explain and forecast both the static mechanical properties and the internal quality of castings. The present work extends such an approach by including two other meaningful parameters, which describe the effect of upset pressure and temperature on the final outcome. These parameters are here formulated and have been validated by means of a statistically significant sample manufactured with different plunger motion profiles, upset pressures, and temperatures of the melt and die. The quality of the castings was assessed through static mechanical properties and density measurements. As further proof, internal defects were analyzed on the fracture surfaces of some meaningful castings.

  15. The effect of grain size on dynamic tensile extrusion behaviour

    NASA Astrophysics Data System (ADS)

    Park, Leeju; Kim, Hack Jun; Kim, Seok Bong

    2015-09-01

    Dynamic tensile extrusion (DTE) tests were conducted on coarse grained and ultrafine grained (UFG) OFHC Cu, Interstitial free (IF) Steel, and pure Ta. Equal channel angular pressing (ECAP) of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm) to the conical extrusion die at a speed of ˜500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and compared with each other. The DTE fragmentation behavior of CG and UFG was numerically simulated by the LS-DYNA FEM code.

  16. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  17. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  18. Properties and water sorption characteristics of spaghetti prepared using various dies.

    PubMed

    Yoshino, Masashi; Ogawa, Takenobu; Adachi, Shuji

    2013-04-01

    Spaghetti was prepared using dies made of different materials. The surface was observed using digital and optical microscopes, and was rougher for the spaghettis prepared using the Teflon, polypropylene, polycarbonate, aluminum, and bronze dies in this order. The extrusion velocity when passing through the die was faster, the bulk density was higher, and the rupture strength was greater for the spaghetti having the smoother surface. The die material did not affect the gelatinization temperature. The water sorption curves in boiling water containing 0.5% (w/v) sodium chloride were also observed. The curves were expressed by an equation of the hyperbolic type except for the early stage of sorption in order to estimate the equilibrium amount of water sorbed based on the bone-dry sample. The momentarily-sorbed amount of water, which is a hypothetical quantity to characterize the initial water intake, was estimated by fitting the experimental points within 60 s. The amount was higher for the spaghetti having the rougher surface.

  19. Dynamic-tensile-extrusion of polyurea

    NASA Astrophysics Data System (ADS)

    Furmanski, Jevan; Cady, Carl; Rae, Philip; Trujillo, Carl P.; Gray, George Thompson, III; Brown, Eric

    2012-03-01

    Polyurea was investigated under Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading where spherical projectiles were propelled at 440 to 509 ms-1 through a conical extrusion die with an area reduction of 87%. Momentum of the leading edge imposes a rapid tensile deformation on the extruded jet of material. Polyurea is an elastomer with outstanding high-rate tensile performance of interest in the shock regime. Previous Dyn-Ten-Ext work on semi-crystalline fluoropolymers (PTFE, PCTFE) elucidated irregular deformation and profuse stochastic-based damage and failure mechanisms, but with limited insight into damage inception or progression in those polymers. The polyurea behaved very differently; the polymer first extruded a jet of apparently intact material, which then broke down via void coalescence, followed by fibrillation and tearing of the material. Most of the material in the jet elastically retracted back into the die, and only a few unique fragments were formed. The surface texture of all failed surfaces was found to be tortuous and covered with drawn hair-like filaments, implying a considerable amount of energy was absorbed during damage progression.

  20. Dynamic-Tensile-Extrusion of Polyurea

    NASA Astrophysics Data System (ADS)

    Furmanski, Jevan; Cady, Carl; Rae, Philip; Trujillo, Carl; Gray, G. T., III; Brown, Eric

    2011-06-01

    Polyurea was investigated under Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading where spherical projectiles were propelled at 440-509 m/s through an extrusion die with an area reduction of 87%. Momentum of the leading edge imposes a rapid tensile deformation on the extruding material. Polyurea is an elastomer with outstanding high-rate tensile performance of interest in the shock regime. Previous Dyn-Ten-Ext work on semi-crystalline polymers (PTFE, PCTFE) resulted in small-scale fragmentation of the polymer, and did not provide clear information on the evolution of tensile damage in those materials. The polyurea behaved very differently; the polymer first extruded a jet of apparently intact material, which then broke down via void formation and coalescence, followed by fibrillation and tearing of the material. Most of the material in the jet elastically retracted back into the die, and only a few fragments of torn material were liberated from the sample. The surface texture of all failed surfaces was rough indicating a considerable amount of energy was absorbed by sub-critical failure mechanisms. It is interesting to note that while damage nucleation appeared pervasive in the extruded jet, the samples were nevertheless recovered largely intact, with limited fragmentation.

  1. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia.

    PubMed

    Eisenhoffer, George T; Loftus, Patrick D; Yoshigi, Masaaki; Otsuna, Hideo; Chien, Chi-Bin; Morcos, Paul A; Rosenblatt, Jody

    2012-04-15

    For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.

  2. Development of extrusion molded Nd-Fe-B magnets

    SciTech Connect

    Sakata, M.; Ikuma, K. ); Watanabe, R.; Iwasa, T.; Miyadera, H.; McAloon, K.

    1993-01-01

    A new manufacturing process for extrusion molded magnets, composed of isotropic Nd-Fe-B powder and Nylon-12, has been developed. This newly developed extrusion molding process has several interesting features. First, the extruded product contains 72% by volume magnetic powder and yields a (BH)[sub max] of 8.0 MGO[sub e]. Second, through the addition of an anti-oxidant, the viscosity of the magnetic powder-nylon compound remains almost constant during molding. Third, by means of a specially cooled outlet, which is separated from the heated die by a thermal insulator, an optimized temperature profile is obtained which yields uniformly smooth extrusion molded magnets. Both long thin-walled magnets and small arc-shaped (kawala) magnets are easily molded by this new process.

  3. Cryomilled Aluminum Stabilized by Diamondoid Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maung, Khinlay

    Nanocrystalline aluminum powder with an average grain size of 22nm was prepared via cryomilling. Hot Isostatic Pressing was used to consolidate the powder followed by hot extrusion to homogenize the consolidated material. The high homologous temperature processes tend to increase the average grain diameter beyond the nanoscle classification, which is less than 100 nm. Diamantane was added during cryomilling to enhance the thermal stability in nanocrystalline aluminum. The thermal stability test data show that aluminum reinforced with 1 wt% diamantane exhibit two to three fold better thermal stability than non-reinforced aluminum when annealed at 773K (0.84 Tm) for ten hours. A similar trend is shown for the samples consolidated at 693K. This finding is explained through Burke's model for grain growth in materials containing secondary particles to inhibit grain boundary motion. The mechanical properties of cryomilled aluminum stabilized by 0.5 wt% and 1 wt% diamantane particles are compared with cryomilled commercial purity (CP) aluminum with no diamantane after high strain rate deformation (trap extrusion). The grain size of cryomilled CP aluminum is 0.6 to 1.2 times larger than the samples containing diamantane. In contrast to Hall-petch predictions, cryomilled aluminum with diamantane has relatively lower flow stress while demonstrating a 2.7-3.7 time higher ductility compared to cryomilled CP aluminum. Possible reasons for this behavior are suggested in mechnical property section. A combination of higher temperature and pressure resulted in formation of Aluminum tris (Al(C9H6NO)3) precipitates from diamantane in the cryomilled aluminum matrix. The precipitates were formed during trap extrusion process but only seen in samples containing 1 wt% diamantane and HIP'ed at 521°C. Therefore, the HIP'ng temperature plays an important role in formation of these precipitates.

  4. LINER FOR EXTRUSION BILLET CONTAINERS

    DTIC Science & Technology

    Rokide-process alumina and zirconia coatings and a Udimet 700 superalloy liner were evaluated by extrusion of 3 1/2-in. billets of Inconel 713C...One coating did with stand extrusion at 3450 F without apparent wear. The Udimet 700 liner did not show wear at 2000 F, but did react with the TZM

  5. High-temperature ''hydrostatic'' extrusion

    NASA Technical Reports Server (NTRS)

    Hunt, J. G.; Rice, R. W.

    1970-01-01

    Quasi-fluids permit hydrostatic extrusion of solid materials. The use of sodium chloride, calcium fluoride, or glasses as quasi-fluids reduces handling, corrosion, and sealing problems, these materials successfully extrude steel, molybdenum, ceramics, calcium carbonate, and calcium oxide. This technique also permits fluid-to-fluid extrusion.

  6. SPHERICAL DIE

    DOEpatents

    Livingston, J.P.

    1959-01-27

    A die is presented for pressing powdered materials into a hemispherical shape of uniforin density and wall thickness comprising a fcmale and male die element held in a stationary spaced relation with the space being equivalent to the wall thickness and defining the hemispherical shape, a pressing ring linearly moveable along the male die element, an inlet to fill the space with powdered materials, a guiding system for moving the pressing ring along the male die element so as to press the powdered material and a heating system for heating the male element so that the powdered material is heated while being pressed.

  7. Numerical investigation of the effect of friction conditions to increase die life

    NASA Astrophysics Data System (ADS)

    Mutlu, M. O.; Guleryuz, C. G.; Parlar, Z.

    2017-02-01

    The standard die materials in aluminium extrusion offer good mechanical properties like high tempering resistance, high strength and ductility. On the other hand, they struggle with the problem of sliding wear. As a result, there is a growing interest in using surface treatment techniques to increase the wear resistance of extrusion dies. In this study, it is aimed to observe the effects of the different friction conditions on material flow and contact pressure in extrusion process. These friction conditions can be obtained with the application of a variety of surface treatment. In this way, it is expected to decrease the friction force on the die bearing area and to increase the homogeneity of the material flow which will result in the increase of the quality of the extrudate as well as the improvement of the process economically by extending die life. For this purpose, an extrusion process is simulated with a finite element software. A die made of 1.2344 hot work tool steel-commonly used die material for aluminium extrusion process- has been modelled and Al 1100 alloy used as billet material. Various friction factor values defined on the die surface under the same process parameters and effects of changing frictional conditions on the die and the extrusion process have been discussed.

  8. Criterion for the prevention of core fracture during extrusion of bimetal rods

    SciTech Connect

    Avitzur, B.; Wu, R.; Talbert, S.; Chou, Y.T.

    1980-09-01

    Based on the upper-bound theorem in limit analysis, a theoretical model for core fracture in bimetal rods during extrusion has been developed and a fracture criterion established. The variables affecting core fracture are: reduction in area (r%), die geometry, friction (m), relative size of the core and relative strength of the core. Within the wide range of possible combinations of these process variables, only a small range permits extrusion without fracture. With suitable modifications the present analysis can be extended to develop criteria for sleeve fracture during extrusion and for both core and sleeve fracture during drawing.

  9. Clinical biochemistry of aluminum

    SciTech Connect

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  10. Computer modeling of wear in extrusion and forging of automotive exhaust valves

    NASA Astrophysics Data System (ADS)

    Tulsyan, R.; Shivpuri, R.

    1995-04-01

    In an automotive engine valve forging process, the billet is cold sheared, induction heated, and fed to a mechanical press for a two-stage forging operation with the first stage being extrusion. The main limiting factor in this operation is the wear of the dies during the first stage, extrusion. In this study. abrasive wear was identified as the primary mode of wear, and computer simulation was used to investigate the effect of process variables, such as press speed, initial billet temperature, and die preheat temperature upon abrasive wear. The result generated by this study should be applicable to other part geometry and not limited just to exhaust valves.

  11. Equal Channel Angular Extrusion Progress Report for March 1998 - May 1999

    SciTech Connect

    Macheret, Yevgeny; Watkins, Arthur Deloss; Korth, Gary Elvan; Lillo, Thomas Martin; Flinn, John Elwood Jr.; Herling, D. R.; Smith, M. T.; Schwarz, R. B.

    1999-10-01

    Pure copper and Alloy 5083 aluminum were processed by equal channel angular extrusion (ECAE); their microstructural evolution and corresponding mechanical properties were investigated. Work also began on the possible use of ECAE to synthesize advanced materials or to consolidate metal powders or powder mixtures. The die tooling used for ECAE is described and selected microstructural and mechanical property results for ECAE-processed copper and cold-rolled (conventionally-processed) copper in the as-processed and annealed condition are compared. Results thus far show that the “pure” metal is prone to low temperature recrystallization after large strain hardening—more beneficial effects are expected in the dispersion-strengthened and precipitation-hardening alloys. The large range of tensile properties and grain sizes from the copper allowed a flow stress analysis to be performed. From this analysis, a new model for flow stress behavior is proposed. An evaluation of ECAE processing of material for spot welding electrodes began. Results to date include electrodes of ECAE-processed commercially pure copper (Alloy 101). Future work involving Glidcop® (Al2O3 oxide dispersionstrengthened copper) and CuCrZr (Cr-Zr precipitation dispersion) materials will be required to fully investigate the benefits of ECAE for electrode life extension. Initial work on Aluminum Alloy 5083 showed that ECAE led to grain refinement as well as broke up and more uniformly dispersed the hardening precipitates. This is desirable for enhancing superplastic behavior. Study of ECAE for consolidating metal powder began. Early results with a Cu-Ag powder indicate that near 100% density was achieved with room temperature consolidation.

  12. LINER FOR EXTRUSION BILLET CONTAINERS

    DTIC Science & Technology

    Shrink-fit assembly device for buildup of ceramic-coated liner and sleeve assemblies was tested and modified to develop desired temperatures and...preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal...carbides and borides to form a ceramic extrusion liner of suitable length. Disassembly tooling for rapid separation of shrink-fitted sleeves from a worn

  13. Experimental Investigation and Numerical Simulation During Backward Extrusion of a Semi-Solid Al-Si Hypoeutectic Alloy

    SciTech Connect

    Neag, Adriana; Favier, Veronique; Bigot, Regis; Canta, Traian; Frunza, Dan

    2007-04-07

    This work has been performed along two main directions. First of all we present the experimental results and effects obtained by backward extrusion tests on semi-solid aluminum alloy at three different forming temperatures and different holding times in isothermal conditions. The semi-solid billets were fabricated by the re-melting heat treatment method. Semi-solid extrusion tests were carried out to investigate the load-displacement curves and the deformation behaviour at different temperatures. The load level clearly decreases with increasing temperature and increasing holding time. Numerical simulations of semi-solid extrusion has been made too, using Forge 2005,. Experimental and simulated results are compared and discussed.

  14. Rheological properties of wood polymer composites and their role in extrusion

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Schuschnigg, S.; Gooneie, A.; Langecker, G. R.; Holzer, C.

    2015-04-01

    The influence of the rheological behaviour of PP based wood plastic composites (WPC) has been investigated in this research by means of a high pressure capillary rheometer incorporating dies having different geometries. The rheological experiments were performed using slit and round dies. The influence of moisture content on the flow properties of the WPC has been investigated as well. It was observed that higher moisture contents lead to wall slippage effect. Furthermore, measured viscosity data have been used in flow simulation of an extrusion profile die. Also, the influence of different rheological models on the simulation results is demonstrated. This research work presents a theoretical and experimental study on the measurement and prediction of the die pressure in the extrusion process of wood-plastic composite (WPC).

  15. Liquid phase migration in the extrusion and squeezing of microcrystalline cellulose pastes.

    PubMed

    Mascia, S; Patel, M J; Rough, S L; Martin, P J; Wilson, D I

    2006-09-01

    Extensive movement of the liquid phase relative to the solids in solid-liquid pastes during extrusion forming is an undesirable process phenomenon. The impact of formulation and flow pattern on liquid phase migration (LPM) during extrusion of model pharmaceutical pastes (40-50 wt% microcrystalline cellulose/water) has been investigated by ram extrusion through square-entry and 45 degrees conical-entry dies, and by lubricated squeeze flow (extensional flow). Threshold velocities for LPM were observed in both configurations. Squeeze flow testing showed that dilation during extension can cause LPM, while ram extrusion featured both dilation effects and drainage due to compaction. The threshold velocities observed in the two configurations agreed when presented as characteristic shear rates. The threshold velocity increased with paste solids content.

  16. Method for producing through extrusion an anisotropic magnet with high energy product

    DOEpatents

    Chandhok, Vijay K.

    2004-09-07

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  17. A SUPG approach for determining frontlines in aluminium extrusion simulations and a comparison with experiments

    SciTech Connect

    Koopman, A. J.; Geijselaers, H. J. M.; Huetink, J.; Nilsen, K. E.; Koenis, P. T. G.

    2007-04-07

    In this paper we present a method to determine the frontlines inside the container and inside the extrusion die based on a steady state velocity field. Using this velocity field the convection equation is solved with a SUPG stabilized finite element method for a variable that represents the time it takes from the initial front to a certain point in the domain. When iso-lines in this field are plotted the development of fronts can be tracked. Extrusion experiments are performed with aluminium billets cut in slices. When extrusion is stopped the billet and extrudate are removed from the container and cut in half in the extrusion direction, copper foils between the slices show the frontlines. These lines show good agreement with the iso-lines from the numerical solution of convection equation.

  18. Adaptation of in-line ultrasonic velocimetry to melt flow measurement in polymer extrusion

    NASA Astrophysics Data System (ADS)

    Putz, V.; Burzic, I.; Miethlinger, J.; Maier, F.; Zagar, B. G.

    2013-10-01

    Pulsed wave velocimetry (PWV) is an ultrasonic technique for measuring velocity profiles in flowing liquids. In capillaries, PWV requires using ultrasound transducers with high center frequencies and a large bandwidth. This type of transducer is restricted to operating temperatures below 50 °C. However, in polymer extrusion, velocity profiles of flowing liquids with temperatures up to 250 °C are of interest. This contribution describes the development of a new ultrasonic measurement tool, which is fully integrated in a heated capillary die. It enables long-time measurement of the extrudate using the buffer rod technique and active cooling. The developed prototype was successfully validated in an extrusion experiment: the velocity profile of glass-fiber-filled polypropylene was measured immediately after extrusion in a capillary die.

  19. Characterisation of the wall-slip during extrusion of heavy-clay products

    NASA Astrophysics Data System (ADS)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (d<2µm) was separated by the help of sedimentation. The viscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  20. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  1. Means of determining extrusion temperatures

    DOEpatents

    McDonald, Robert E.; Canonico, Domenic A.

    1977-01-01

    In an extrusion process comprising the steps of fabricating a metal billet, heating said billet for a predetermined time and at a selected temperature to increase its plasticity and then forcing said heated billet through a small orifice to produce a desired extruded object, the improvement comprising the steps of randomly inserting a plurality of small metallic thermal tabs at different cross sectional depths in said billet as a part of said fabricating step, and examining said extruded object at each thermal tab location for determining the crystal structure at each extruded thermal tab thus revealing the maximum temperature reached during extrusion in each respective tab location section of the extruded object, whereby the thermal profile of said extruded object during extrusion may be determined.

  2. Extrusion foaming of protein-based thermoplastic and polyethylene blends

    NASA Astrophysics Data System (ADS)

    Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.

    2016-03-01

    Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.

  3. Co-extrusion as manufacturing technique for multilayer mini-matrices with dual drug release.

    PubMed

    Dierickx, L; Remon, J P; Vervaet, C

    2013-11-01

    The aim of this work was to develop by means of co-extrusion a multilayered dosage form characterized by a dual release profile of the same drug. Co-extrudates consisted of two concentric polymer matrices: a core having a lipophilic character and a coat with a hydrophilic character. Diclofenac sodium (DS) was incorporated as model drug in both layers. Several polymers were screened on the basis of their processability via hot melt extrusion (HME) and in vitro drug release. Polymer combinations with suitable properties (i.e., similar extrusion temperature, appropriate drug release profile) were processed via co-extrusion. (Co-) extruded samples were characterized in terms of solid state (XRD, SEM), in vitro drug release, core/coat adhesion, and bioavailability. Based on the polymer screening, two polymer combinations were selected for co-extrusion: ethylcellulose (core) combined with Soluplus® (coat) and polycaprolactone (core) with PEO (coat). These combinations were successfully co-extruded. XRD revealed that DS remained crystalline during extrusion in ethylcellulose, Soluplus®, polycaprolactone, and PEO. The polycaprolactone/PEO combination could be processed at a lower temperature (70 °C), vs. 140 °C for ethylcellulose/Soluplus®. The maximum drug load in core and coat depended on the extrusion temperature and the die dimensions, while adhesion between core and coat was mainly determined by the drug load and by the extrusion temperature. In vitro drug release from the co-extruded formulations was reflected in the in vivo behavior: formulations with a higher DS content in the coat (i.e., faster drug release) resulted in higher Cmax and higher AUC values. Co-extrusion is a viable method to produce in a single step a multilayer dosage form with dual drug release.

  4. Extrusion Process by Finite Volume Method Using OpenFoam Software

    SciTech Connect

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose; Ivankovic, Alojz

    2011-01-17

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  5. Ultrasonic-assisted extrusion of ZK60Mg alloy micropins at room temperature.

    PubMed

    Lou, Yan; Liu, Xiao; He, Jinsong; Long, Min

    2017-03-18

    A new model of ZK60 magnesium micropins formed through ultrasonic-assisted extrusion at room temperature was developed. The billet was transmitted by the ultrasonic wave during the micropin-forming process. A self-designed apparatus was applied for the ultrasonic-assisted extrusion experiments. The effects of amplitude on the load-displacement curve, load reduction, temperature, microstructure, diameter after extrusion, microhardness, and compressibility of micropins were investigated. The results showed that the punch was always in contact with the billet when the displacement of the punch was larger than the amplitude. The maximum reduction of load was approximately 80% because of the dynamic recrystallization and ultrasonic softening. In addition, load reduction was almost similar under different amplitudes when the diameters of micropins after extrusion were 0.3 and 0.5mm as a result of the size effect. The microhardness of the micropins increased at the amplitude of 39 and 42μm as compared with the traditional extrusion. This finding was inconsistent with the results for copper and aluminum. The compression ratio of micropins prepared through ultrasonic-assisted extrusion improved by 14-20% on average at room temperature.

  6. Characterization of Al-Cu-Li Alloy 2090 Near Net Shape Extrusion

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Domack, M. S.; Hafley, R. A.; Pollock, W. D.

    1998-01-01

    Aluminum-lithium (Al-Li) alloys near net shape extrusions are being evaluated for potential application in launch vehicle structures. The objective of this study was to determine tensile and fracture properties, corrosion resistance, and weldability of integrally stiffened panels of Al-Cu-Li alloy 2090 in the T8 temper. The microstructure was pre-dominantly unrecrystallized. Texture analyses revealed the presence of fiber components in the stiffeners and a combination of fiber and rolling components in the skin. Variations in grain morphology and texture through the extruded cross section were correlated with the tensile, fracture, and corrosion behavior. Tensile strengths at room and cryogenic temperatures of the 2090 extrusions were similar to other 2090 product forms and were higher than 2219-T87, the primary structural material in the Space Shuttle external tank; however, ductilities were lower. The fracture resistance of the 2090 extrusion was lower than 2219-T87 plate at room temperature. At cryogenic temperatures, tensile ductility and fracture behavior of the 2090 extrusion were similar to other 2090 product forms but were lower than 2219-T87 plate. The exfoliation and stress corrosion resistance of the 2090 extrusion compared favorably with the characteristics of other 2090 product forms. The weldability and weldment properties of the extrusions were similar to 2090 and 2219 plates.

  7. Low-aluminum content iron-aluminum alloys

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  8. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  9. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.

    1998-09-08

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.

  10. 75 FR 17436 - Certain Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... of China. Unless the Department of Commerce extends the time for initiation pursuant to sections 702..., or in this case by Monday, May 17, 2010. The Commission's views are due at Commerce within five business days thereafter, or by Monday, May 24, 2010. For further information concerning the conduct...

  11. Analysis of the flow imbalance on the profile shape during the extrusion of thin magnesium sheets

    SciTech Connect

    Gall, Sven; Müller, Sören; Reimers, Walter

    2013-12-16

    The extrusion process facilitates the production of magnesium sheets featuring a very thin thickness as well as excellent surface properties by using a single process step only. However, the extrusion of the magnesium sheets applying not optimized process parameters, e.g. low billet temperature or/ and poorly deformable magnesium alloy, produce pronounced buckling and waving of the extruded sheets as well as a variation of accuracy in profile shape along the cross section. The present investigation focuses on the FEM-simulation of the extrusion of magnesium sheets in order to clarify the origin of the mentioned effects. The simulations identify the flow imbalance during extrusion as the main critical factor. Due to the flow imbalance after passing the die a large compression stress zone is formed causing the buckling and waving of the thin sheets. Furthermore, the simulations of the magnesium sheet extrusion reveal that the interaction of the material flow gradients along the width and along the thickness direction near the die orifice lead to the variation of the accuracy in profile shape.

  12. An upper bound solution for the spread extrusion of elliptical sections

    SciTech Connect

    Abrinia, K.; Makaremi, M.

    2007-04-07

    The three dimensional problem of extrusion of elliptical sections with side material flow or spread has been formulated using the upper bound theory. The shape of the die for such a process is such that it could allow the material to flow sideways as well as in the forward direction. When flat faced dies are used a deforming region is developed with dead metal zones. Therefore this deforming region has been represented in the formulation based on the definitions of streamlines and stream surfaces. A generalized kinematically admissible velocity field was then derived for this formulation and strain rate components obtained for the upper bound solution. The general formulation for the deforming region and the velocity and strain rate fields allow for the optimization of the upper bound solution so that the nearest geometry of the deforming region and dead metal zone to the actual one was obtained.Using this geometry a die with similar surfaces to those of the dead metal zone is designed having converging and diverging surfaces to lead the material flow. The analysis was also carried out for this die and results were obtained showing a reduction in the extrusion pressure compared to the flat faced die. Effects of reduction of area, shape complexity, spread ratio and friction on the extrusion process were also investigated.

  13. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime

    SciTech Connect

    David Schwam; John F. Wallace; Quanyou Zhou

    2002-01-30

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters.

  14. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  15. Research into oil-based high-dispersion graphite lubricants for extrusion of Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Petrov, Alexander N.; Petrov, Mikhail A.; Petrov, Pavel A.

    2016-10-01

    The presented paper deals with oil-based high-dispersion graphite lubricants for hot extrusion Ni-based alloys. This paper emphasize an influence of the lubricant's flash point and oil burning on composition changing of the lubricants. It was found out that oil-based lubricants increase heat shielding properties of the die during extrusion. The temperature of a die surface was estimated on the base of production tests on the mechanical press with nominal force of 1,6MN. The practical recommendations were presented and should help to choose lubricants properly in accordance to the analysis.

  16. Tailoring properties of commercially pure titanium by gradation extrusion

    NASA Astrophysics Data System (ADS)

    Bergmann, Markus; Rautenstrauch, Anja; Selbmann, René; de Oliveira, Raoni Barreto; Coelho, Rodrigo Santiago; Landgrebe, Dirk

    2016-10-01

    Commercially pure titanium (CP Ti) is of great importance in medical applications due to its attractive properties, such as high biocompatibility, excellent corrosion resistance and relatively low density and suitable stiffness. Compared to the commonly used Ti-6Al-4V alloy, its lower strength has to be increased. The most attractive approach is to subject CP Ti to severe plastic deformation (SPD) processes such as Equal Channel Angular Pressing (ECAP). The resulting decreased grain size in CP Ti yields a significant increase in hardness and strength. Common SPD-processes typically provide a uniform modification of the material. Their material efficiency and productivity are critical and limiting factors. A new approach is to tailor the material properties by using Gradation Extrusion, which produces a distinct gradient in microstructure and strength. The forming process combines a regular impact extrusion process and severe plastic deformation in the lateral area of the material. This efficient process can be integrated easily into forming process chains, for instance for dental implants. This paper presents the forming process and the applied die geometry. The results of numerical simulations are used to illustrate the potential of the process to modify and strengthen the titanium material. Experiments show that the material is successfully processed by gradation extrusion. By characterizing the hardness and its distribution within the formed parts the effects of the process are investigated.

  17. Hot-melt extrusion technology and pharmaceutical application.

    PubMed

    Wilson, Matthew; Williams, Marcia A; Jones, David S; Andrews, Gavin P

    2012-06-01

    The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production.

  18. High temperature, high strain rate extrusion of ultrahigh-carbon steels

    SciTech Connect

    Lesuer, D R; Syn, C K; Sherby, O D

    2000-08-23

    It is shown that high rate extrusion is a viable production process for obtaining desirable microstructures and mechanical properties in ultrahigh carbon steels (UHCSs). The coefficient of friction for extrusion was determined for the UHCSs as well as five other materials and shown to be a function of stress--decreasing with increasing stress. The extruded UHCSs deform by a diffusion-controlled dislocation creep process. Stacking fault energies have been calculated from the extrusion data and observed to decrease with increasing concentrations of silicon, aluminum and chromium. Microstructures are either ultrafine pearlite when extruded above the eutectoid temperature or ultrafine spheroidite when extruded below the eutectoid temperature. The resulting strength--ductility properties are shown to be superior to those obtained in high-strength low alloy steels.

  19. Two-sided friction stir riveting by extrusion: A process for joining dissimilar materials

    SciTech Connect

    Evans, William T.; Cox, Chase D.; Strauss, Alvin M.; Cook, George E.; Gibson, Brian T.

    2016-06-25

    Two-sided friction stir riveting (FSR) by extrusion is an innovative process developed to rapidly, efficiently, and securely join dissimilar materials. This process extends a previously developed one sided friction stir extrusion process to create a strong and robust joint by producing a continuous, rivet-like structure through a preformed hole in one of the materials with a simultaneous, two-sided friction stir spot weld. The two-sided FSR by extrusion process securely joins the dissimilar materials together and effectively locks them in place without the use of any separate materials or fasteners. Lastly, in this paper we demonstrate the process by joining aluminum to steel and illustrate its potential application to automotive and aerospace manufacturing processes.

  20. Phenomenological model of maize starches expansion by extrusion

    NASA Astrophysics Data System (ADS)

    Kristiawan, M.; Della Valle, G.; Kansou, K.; Ndiaye, A.; Vergnes, B.

    2016-10-01

    During extrusion of starchy products, the molten material is forced through a die so that the sudden abrupt pressure drop causes part of the water to vaporize giving an expanded, cellular structure. The objective of this work was to elaborate a phenomenological model of expansion and couple it with Ludovic® mechanistic model of twin screw extrusion process. From experimental results that cover a wide range of thermomechanical conditions, a concept map of influence relationships between input and output variables was built. It took into account the phenomena of bubbles nucleation, growth, coalescence, shrinkage and setting, in a viscoelastic medium. The input variables were the moisture content MC, melt temperature T, specific mechanical energy SME, shear viscosity η at the die exit, computed by Ludovic®, and the melt storage moduli E'(at T > Tg). The outputs of the model were the macrostructure (volumetric expansion index VEI, anisotropy) and cellular structure (fineness F) of solid foams. Then a general model was established: VEI = α (η/η0)n in which α and n depend on T, MC, SME and E' and the link between anisotropy and fineness was established.

  1. Optical monitoring of thin oil film thickness in extrusion processes

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Robert; Wroczyński, Piotr; Graczyk, Jan; Gnyba, Marcin

    2005-09-01

    We have used reflectance spectroscopy for the in-situ, non-invasive monitoring of a thin oil film thickness during extrusion process of ceramic paste in capillary rheometer. Investigated pastes are disperse solid liquid systems prepared from the silicone oil AK106 (Wacker) and ceramic powder AlOOH. The thin oil film, extracted from the extruded paste, appears on walls of the rheometer die. A borosilicate view-port-glass provides optical access to the thin film inside the die. Reflectance spectroscopy enables the thin film thickness measurements by wideband spectral analysis of light back reflected from the sample. This spectrum includes extremes, which results from interference between beams reflected from glass-oil boundary and oil-paste boundary. Position and intensity of this extremes were determined by thickness of the thin film as well as refractive indices of the oil and the paste. Optoelectronic system dedicated for process monitoring by means of reflectance spectroscopy had been designed and built. The system comprises tungsten halogen lamp and fiber optic spectrometer. Optical signals are transmitted through bifurcated fibers, focusing optics and the view-port-window. Spectroscopic monitoring was carried out in VIS-NIR range from 400 to 900 nm as a function of extrusion velocity (0.01-5mm/s) and paste particle granulation (5-20 μm). Computer calculation, performed using dedicated software, enables fast determination of thickness even for reflectance spectra interfered by high noise level. Fast development of ceramic components technology requires detailed description of complex rheometric processes. Monitoring of the most important process parameter - oil layer thickness - enables pre-determination of rheometric factors required for proper paste extrusion and accurate shape filling.

  2. Die Materials for Critical Applications and Increased Production Rates

    SciTech Connect

    David Schwam; John Wallace; Sebastian Birceanu

    2002-11-30

    Die materials for aluminum die-casting need to be resistant to heat checking, and have good resistance to washout and to soldering in a fast flow of molten aluminum. To resist heat checking, die materials should have a low coefficient of thermal expansion, high thermal conductivity, high hot yield strength, good temper softening resistance, high creep strength, and adequate ductility. To resist the washout and soldering, die materials should have high hot hardness, good temper resistance, low solubility in molten aluminum and good oxidation resistance. It is difficult for one material to satisfy with all above requirements. In practice, H13 steel is the most popular material for aluminum die casting dies. While it is not an ideal choice, it is substantially less expensive to use than alternative materials. However, in very demanding applications, it is sometimes necessary to use alternative materials to ensure a reasonable die life. Copper-base, nickel-base alloys and superalloys, titanium-,molybdenum-, tungsten-base alloys, and to some extent yttrium and niobium alloys, have all been considered as potential materials for demanding die casting applications. Most of these alloys exhibit superior thermal fatigue resistance, but suffer from other shortcomings.

  3. Environmentally Assisted Cracking Properties of AA7249 Extrusions for Aerospace Applications

    DTIC Science & Technology

    2007-11-02

    USNA Chemistry Department for allowing me access to their DSC unit. Dr. Iulian Gheorghe ( ALU Menziken Aerospace / Universal Alloy Corporation) not...that environmental attacks is now becoming a significant concern. Structural components in the P-3C are currently composed of aluminum alloy AA7075-T6...effects of processing on wide panel extrusions. The results of this study will contribute to the ongoing evaluation of these alloys for replacement

  4. Solid State Bonding Mechanics In Extrusion And FSW: Experimental Tests And Numerical Analyses

    SciTech Connect

    Buffa, G.; Fratini, L.; Donati, L.; Tomesani, L.

    2007-04-07

    In the paper the authors compare the different solid state bonding mechanics for both the processes of hollow profiles extrusion and Friction Stir Welding (FSW), through the results obtained from a wide experimental campaign on AA6082-T6 aluminum alloys. Microstructure evaluation, tensile tests and micro-hardness measurements realized on specimens extracted by samples of the two processes are discussed also by means of the results obtained from coupled FEM simulation of the processes.

  5. Microstructure and Mechanical Properties of Mg-6Zn-2Sn-1Al Alloy Designed by Numerical Analysis with Extrusion Process

    NASA Astrophysics Data System (ADS)

    Lee, K. W.; Lee, B. D.; Baek, U. H.; Kwon, E. H.; Han, J. W.

    2015-03-01

    In the extrusion process, the temperature of the workpiece results in non-uniformity of dimensions, microstructure, and mechanical properties of the product. Although many researchers are expected to participate in the extrusion behavior of Mg alloys, no specific information is available yet to clarify their roles in extrusion process of Mg alloys because of a wide variety of compositions. In this study, a good understanding the role of die in the extrusion process is expected to contribute to the improvement of processing efficiency for Mg-6Zn-2Sn-1Al alloy. To design Mg-6Zn-2Sn-1Al alloy, the parameters, such as temperature and angle of the designed materials, were determined using the commercial software DEFORM 3D. With this simulation model, the real-time extrusion temperature and angle of the die were adjusted according to the simulation results. Using the optimal extrusion process predicted by finite element method analysis, the Mg-6Zn-2Sn-1Al alloy was manufactured. Also, the extruded Mg-6Zn-2Sn-1Al alloys were evaluated on the microstructure and mechanical properties.

  6. Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel J.; Harrington, James A.

    2004-04-01

    An extrusion technique is used to make an all-dielectric, hollow waveguide preform. The structure consists of radially alternating dielectric layers of high/low refractive index pairs. By requiring that the two dielectric materials have a high index contrast, it is possible to make a preform that will have a photonic bandgap structure when drawn into a fiber optic. The preform is made by an extrusion process in which a stack-of-plates, composed of alternating disks of chalcogenide glass and a polymer, is extruded through a die into both solid and hollow-core structures. Laminar flow during extrusion forces the periodicity from an axial to a radial orientation in the final extruded preform. For these experiments the high index material was arsenic selenide glass (As2Se3,n=2.6) and the low index material was polysulfone (PSU,n=1.55), which gives an index contrast of 1.68.

  7. Concept Feasibility Report for Using Co-Extrusion to Bond Metals to Complex Shapes of U-10Mo

    SciTech Connect

    Lavender, Curt A.; Paxton, Dean M.; Smith, Mark T.; Soulami, Ayoub; Joshi, Vineet V.; Burkes, Douglas

    2013-12-01

    In support of the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative (GTRI), Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate fuel for the U.S. high-performance research reactors (USHPRR). This report documents the results of PNNL’s efforts to develop the extrusion process for this concept. The approach to the development of a co-extruded complex-shaped fuel has been described and an extrusion of DU-10Mo was made. The initial findings suggest that given the extrusion forces required for processing U-10Mo, the co-extrusion process can meet the production demands of the USHPRR fuel and may be a viable production method. The development activity is in the early stages and has just begun to identify technical challenges to address details such as dimensional tolerances and shape control. New extrusion dies and roll groove profiles have been developed and will be assessed by extrusion and rolling of U-10Mo during the next fiscal year. Progress on the development and demonstration of the co-extrusion process for flat and shaped fuel is reported in this document

  8. Profile extrusion of wood plastic cellular composites and formulation evaluation using compression molding

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Rubyet

    Wood Plastic Composites (WPCs) have experienced a healthy growth during the last decade. However, improvement in properties is necessary to increase their utility for structural applications. The toughness of WPCs can be improved by creating a fine cellular structure while reducing the density. Extrusion processing is one of the most economical methods for profile formation. For our study, rectangular profiles were extruded using a twin-screw extrusion system with different grades of HDPE and with varying wood fibre and lubricant contents together with maleated polyethylene (MAPE) coupling agent to investigate their effects on WPC processing and mechanical properties. Work has been done to redesign the extrusion system setup to achieve smoother and stronger profiles. A guiding shaper, submerged in the water, has been designed to guide the material directly through water immediately after exiting the die; instead of passing it through a water cooled vacuum calibrator and then through water. In this way a skin was formed quickly that facilitated the production of smoother profiles. Later on chemical blowing agent (CBA) was used to generate cellular structure in the profile by the same extrusion system. CBA contents die temperatures, drawdown ratios (DDR) and wood fibre contents (WF) were varied for optimization of mechanical properties and morphology. Cell morphology and fibre alignment was characterized by a scanning electron microscope (SEM). A new compression molding system was developed to help in quick evaluation of different material formulations. This system forces the materials to flow in one direction to achieve higher net alignment of fibres during sample preparation, which is the case during profile extrusion. Operation parameters were optimized and improvements in WPC properties were observed compared to samples prepared by conventional hot press and profile extrusion.

  9. Development and evaluation of die and container materials

    NASA Technical Reports Server (NTRS)

    Wills, R. R.; Niesz, D. E.

    1979-01-01

    X = 0.75 Beta prime Sialon (a silicon aluminum oxynitride) and Sibeon (silicon beryllium oxynitride) are promising die materials. In sessile drop tests in contact with molten silicon, beryllium contamination was less than ppm and aluminum contamination 50 ppm. A shaping die of the Sialon material was successfully fabricated. Dry milling studies for the preparation of Si3N4-Al2O3-ALN mixtures were performed with butanol, acetic anhydride, oleic acid, and triethanolamine milling aids. Optimum mixing was achieved with 0.15 percent triethanolamine using a milling time of 8 hours. Preliminary evaluation of Sibeon materials indicates that they are more resistent to molten silicon attack than Sialon. Silicon contamination from the beryllium was less than aluminum contamination even though the aluminum impurity level in the Sibeon was only 450 to 1300 ppm. Work designed to produce an aluminum-free Sibeon is described.

  10. Study of Microstructure and Mechanical Properties Effects on Workpiece Quality in Sheet Metal Extrusion Process.

    PubMed

    Suriyapha, Chatkaew; Bubphachot, Bopit; Rittidech, Sampan

    2015-01-01

    Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material's behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material's grains' size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures.

  11. Micromechanisms of grain refinement during extrusion of Mg–0.3 at.% Al at low homologous temperature

    SciTech Connect

    Jäger, A.; Gärtnerová, V.; Mukai, T.

    2014-07-01

    Coarse grained Mg–0.3 at.% Al (0.33 in wt.%) alloy was processed by direct extrusion with a reduction ratio of 25:1 at a temperature of ∼ 433 K. The extrusion remainder was removed from the die and analysed in three distinct zones: the cast billet, the conical zone of extrusion die, and the as-extruded rod. The zones were characterized by electron backscatter diffraction (EBSD) and light microscopy techniques to identify the processes responsible for grain refinement. Complex networks of (10–12) twins in practically all grains produced a noticeable microstructural fragmentation even before the material reached the conical zone of the die. Deformation twinning extended up to the entrance zone of the conical die where it was followed by a continuous dynamic recrystallization (CDRX) that gradually changed low angle boundaries to high angle boundaries. It is apparent that geometrically necessary dislocations play a crucial role in the formation of new grain boundaries. CDRX results in a bimodal structure with grain diameters ∼ 3 and ∼ 30 μm. As a material flows through the conical zone, the ratio of large to small grains is progressively decreased by CDRX in favour of fine grains. The as-extruded microstructure (a rod 8 mm in diameter), with an average grain diameter of ∼ 2.1 μm, shows a strong texture where the vast majority of grains (99.99%) have the c-axis oriented at least 30° from the extrusion direction. - Highlights: • Coarse grained Mg–0.3 at.% Al alloy was extruded at temperature of ∼ 433 K. • Processes responsible for grain refinement were analysed in extrusion remainder. • In the first stage, complex (10–12) twinning produced a noticeable fragmentation. • Deformation twinning was followed by continuous dynamic recrystallization. • 99.99% of grains in extruded rod have c-axis oriented > 30° from extrusion direction.

  12. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  13. The effect of extrusion processing on zein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion processing has been carried out on zein where extrusion temperatures were varied between 100 and 300 deg. C. By differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) thermal degradation begins around 220 deg. C. The color of the extrudate changed the most above tempe...

  14. The Igwisi Hills extrusive 'kimberlites'

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Donaldson, C. H.; Dawson, J. B.; Brown, R. W.; Ridley, W. I.

    1975-01-01

    The petrography and mineral chemistry of volcanic rocks from the Igwisi Hills in Tanzania are discussed. There is considerable evidence to suggest that the Igwisi rocks are extrusive kimberlites: a two-component nature with high P-T minerals in a low P-T matrix; the presence of chrome pyrope, Al enstatite, chrome diopside, chromite and olivine; a highly oxidized, volatile-rich matrix with serpentine, calcite, magnetite, perovskite; high Sr, Zr, and Nb contents; occurrence in a narrow isolated vent within a stable shield area. The Igwisi rocks differ from kimberlite in the lack of magnesian ilmenite, the scarcity of matrix phlogopite, and the overall low alkali content. They apparently contain material from phlogopite-bearing garnet peridotites with a primary mineral assemblage indicative of equilibrium at upper mantle temperatures and pressures. This primary assemblage was brought rapidly to the surface in a gas-charged, carbonate-rich fluid. Rapid upward transport, extrusion, and rapid cooling have tended to prevent reaction between inclusions and the carbonate-rich matrix that might otherwise have yielded a more typical kimberlite.

  15. Bicomponent extrusion of ceramic fibers

    SciTech Connect

    Curran, G.

    1995-11-01

    One of the main problems facing composite fabricators is finding high-temperature ceramic reinforcement fibers that are compatible with their matrices. Unlike metal-matrix composites, which require relatively large diameter fibers and a good bond between fibber and matrix, ceramic-matrix composites requires small diameter fibers having a weaker bond between fiber and matrix. Furthermore, they require an interfacial barrier that dissipates crack propagation energy without being absorbed by the matrix. Process speed is another important concern, because it influences the ultimate cost of the reinforcement fiber. To overcome these problems, a process has been developed to extrude, in a one-pass operation, a bicomponent (core/sheath) fiber system. It is designed to handle either oxide or non-oxide reinforcement core material, with a matching sheath material that acts as an interface between the core and its matrix, and also absorbs crack propagation energy. This article provides a closer look at the patented bicomponent extrusion process, which was developed by the author. Initial development has been undertaken with simple laboratory equipment. Therefore, only the very smallest scale extrusion has been attempted, and no characterizations have been made apart from simple bend tests against such commercially available fibers as Sigma (DRA), Tyranno (Ube), and Nicalon NL607 (Nippon Carbon).

  16. Wege in die Zukunft

    NASA Astrophysics Data System (ADS)

    Kauermann, Göran; Mosler, Karl

    Die Zukunft stellt große Herausforderungen an die Arbeit der Deutschen Statistischen Gesellschaft. Sie betreffen die gestiegenen Anforderungen der Nutzer von Statistik, die Kommunikationsmöglichkeiten des Internets sowie die Dynamik der statistischen Wissenschaften und ihrer Anwendungsgebiete. Das Kapitel 5 beschreibt, wie sich die Gesellschaft diesen Herausforderungen stellt und welche Ziele sie sich in der wissenschaftlichen Zusammenarbeit und im Kampf gegen das Innumeratentum gesetzt hat.

  17. Development of a simulation tool to analyze the orientation of LCPs during extrusion process

    NASA Astrophysics Data System (ADS)

    Ahmadzadegan, Arash

    In this thesis, different aspects of the rheology and directionality of the liquid crystalline polymers (LCPs) are investigated. The rheology of LCPs are modeled with different rheological models in different die geometries. The final goal in modeling the rheology and directionality of LCPs is to have a better understanding of their rheology during extrusion processing methods inside extrusion dies and eventually produce more isotropic films of LCPs. An attempt to design a die geometry that produces more isotropic films was made and it was shown that it is possible to use the inertia of the polymer to generate a more isotropic velocity profile at the lip of the die. This isotropic velocity profile can lead to alignment of directors along the streamlines and produce an isotropic film of LCP. It is shown that the rheological properties of the LCP should be altered to have a very low viscosity for this type of die to work. To be able to investigate the effect of processing on directionality of LCPs, it is essential to develop a method to simulate the directionality based on processing conditions. As a result, a user defined function (UDF) code was added to ANSYSRTM ~FLUENTRTM~ to simulate the directionality of LCPs. The rheology of the LCP is modeled using power-law fluid model and the consistency index (K) and power-law index (n) were estimated based on the experimental measurements done with capillary rheometry. Three main phenomena that affect the directionality namely effects of Franks elastic energy, the effect of shear and the effect of movement of crystals with the bulk of polymer are investigated. The results of this simulation are close to physical phenomena seen in real LCPs. To quantify the directionality of the LCPs, the order parameter of the domain were calculated and compared for different flow and fluid conditions. All polymers including LCPs are viscoelastic fluids in molten state. To understand the rheology of LCPs, a die-swell experiment was carried

  18. Numerical simulation of burst defects in cold extrusion process

    NASA Astrophysics Data System (ADS)

    Labergère, C.; Lestriez, P.; Saanouni, K.

    2007-05-01

    The formation of the central bursts in axisymmetric cold extrusion is numerically simulated by using 2D finite element analysis (FEA) accounting for the mixed isotropic and kinematic hardening together with the ductile damage effect. The coupling between the ductile damage and the elastoplastic constitutive equations is formulated in the framework of the thermodynamics of irreversible processes together with the Continuum Damage Mechanics (CDM) theory. An isotropic ductile damage model is fully coupled with elastoplastic constitutive equations including non linear isotropic and kinematic hardening. A modified ductile damage criterion based on linear combination of the stress tensor invariants is used in order to predict the occurrence of micro-crack initiation as a discontinuous central bursts along the bar axis. The implicit integration scheme of the fully coupled constitutive equations and the Dynamic Explicit resolution scheme to solve the associated initial and boundary value problem are outlined. Application is made to the prediction of the chevron shaped cracks in cold extrusion of a round bar. The effect of various process parameters, as the diameter reduction ratio, the die semi-angle, the friction coefficient and the material ductility, on the central bursts occurrence are discussed.

  19. Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Tae; Park, Leeju; Kim, Hak Jun; Kim, Seok Bong; Lee, Chong Soo

    2014-08-01

    Dynamic tensile extrusion (DTE) tests with the strain rate order of ~105 s-1 were conducted on coarse grained (CG) Cu and ultrafine grained (UFG) Cu. ECAP of 16 passes with route Bc was employed to fabricate UFG Cu. DTE tests were carried out by launching the sphere samples to the conical extrusion die at a speed of ~475 m/sec in a vacuumed gas gun system. UFG Cu was fragmented into 3 pieces and showed a DTE elongation of ~340%. CG Cu exhibited a larger DTE elongation of ~490% with fragmentation of 4 pieces. During DTE tests, dynamic recrystallization occurred in UFG Cu, but not in CG Cu. In order to examine the DTE behavior of CG Cu and UFG Cu under very high strain rates, a numerical analysis was undertaken by using a commercial finite element code (LS-DYNA 2D axis-symmetric model) with the Johnson - Cook model. The numerical analysis correctly predicted fragmentation and DTE elongation of CG Cu. But, the experimental DTE elongation of UFG Cu was much smaller than that predicted by the numerical analysis. This difference is discussed in terms of microstructural evolution of UFG Cu during DTE tests.

  20. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  1. A Study of Tube Extrusion Process

    SciTech Connect

    Haghighat, H.; Mohammadinoori, S.

    2011-01-17

    An upper bound solution for tube extrusion is developed in this paper. The dead zone is assumed to have the sine profile and a kinematically admissible velocity field is proposed. From the proposed velocity field, the upper bound solution on relative punch pressure and extrusion load is determined with respect to chosen process parameters. The results are compared with theoretical and experimental results from a reference to illustrate the validity of the proposed velocity field. This indicates that the analysis presented here renders better upper bound solution than that given by Ebrahimi et al.. [An upper-bound analysis of the tube extrusion process (2008) J. Mater. Process. Technol. 99:214-220].

  2. Process optimization for continuous extrusion wet granulation.

    PubMed

    Tan, Li; Carella, Anthony J; Ren, Yukun; Lo, Julian B

    2011-08-01

    Three granulating binders in high drug-load acetaminophen blends were evaluated using high shear granulation and extrusion granulation. A polymethacrylate binder enhanced tablet tensile strength with rapid disintegration in simulated gastric fluid, whereas polyvinylpyrrolidone and hydroxypropyl cellulose binders produced less desirable tablets. Using the polymethacrylate binder, the extrusion granulation process was studied regarding the effects of granulating liquid, injection rate and screw speed on granule properties. A full factorial experimental design was conducted to allow the statistical analysis of interactions between extrusion process parameters. Response variables considered in the study included extruder power consumption (screw loading), granule bulk/tapped density, particle size distribution, tablet hardness, friability, disintegration time and dissolution.

  3. COVERING A CORE BY EXTRUSION

    DOEpatents

    Karnie, A.J.

    1963-07-16

    A method of covering a cylindrical fuel core with a cladding metal ms described. The metal is forced between dies around the core from both ends in two opposing skirts, and as these meet the ends turn outward into an annular recess in the dics. By cutting off the raised portion formed by the recess, oxide impurities are eliminated. (AEC)

  4. Effects of extrusion variables on the properties of waxy hulless barley extrudates.

    PubMed

    Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W

    2004-02-01

    The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.

  5. 76 FR 5840 - The Basic Aluminum Castings Co., Cleveland, OH; Notice of Revised Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... Employment and Training Administration The Basic Aluminum Castings Co., Cleveland, OH; Notice of Revised... Assistance (TAA) applicable to workers and former workers of The Basic Aluminum Castings Co., Cleveland, Ohio... are engaged in employment related to the production of aluminum die castings. New information...

  6. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  7. Optimizations Of Coat-Hanger Die, Using Constraint Optimization Algorithm And Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lebaal, Nadhir; Schmidt, Fabrice; Puissant, Stephan

    2007-05-01

    Polymer extrusion is one of the most important manufacturing methods used today. A flat die, is commonly used to extrude thin thermoplastics sheets. If the channel geometry in a flat die is not designed properly, the velocity at the die exit may be perturbed, which can affect the thickness across the width of the die. The ultimate goal of this work is to optimize the die channel geometry in a way that a uniform velocity distribution is obtained at the die exit. While optimizing the exit velocity distribution, we have coupled three-dimensional extrusion simulation software Rem3D®, with an automatic constraint optimization algorithm to control the maximum allowable pressure drop in the die; according to this constraint we can control the pressure in the die (decrease the pressure while minimizing the velocity dispersion across the die exit). For this purpose, we investigate the effect of the design variables in the objective and constraint function by using Taguchi method. In the second study we use the global response surface method with Kriging interpolation to optimize flat die geometry. Two optimization results are presented according to the imposed constraint on the pressure. The optimum is obtained with a very fast convergence (2 iterations). To respect the constraint while ensuring a homogeneous distribution of velocity, the results with a less severe constraint offers the best minimum.

  8. Possibility of Extrusion of Wood Powders

    NASA Astrophysics Data System (ADS)

    Miki, Tsunehisa; Takakura, Norio; Iizuka, Takashi; Yamaguchi, Katsuhiko; Kanayama, Kouzou

    Extrusion tests of mixed wood powders of cryptomeria with the Japanese cypress are carried out at various temperatures in order to confirm the possibility of near net shape forming of wood powders. Effects of extrusion temperature, extrusion ratio, moisture content and particle size of the mixed wood powders on the flow characteristics, bending strength, hardness and bulk density of extruded products are discussed. The experimental results show that the fluidity of the mixed powders and the bending strength and bulk density of extruded products increase with increasing temperature and moisture content of powders. However, when the extrusion temperature is too high, the bending strength and bulk density of extruded products tend to decrease due to bubbles generated in the extruded product.

  9. Evaluation of Extrusion Technique for Nanosizing Liposomes.

    PubMed

    Ong, Sandy Gim Ming; Chitneni, Mallikarjun; Lee, Kah Seng; Ming, Long Chiau; Yuen, Kah Hay

    2016-12-21

    The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS), sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity, reproducible for

  10. Evaluation of Extrusion Technique for Nanosizing Liposomes

    PubMed Central

    Ong, Sandy Gim Ming; Chitneni, Mallikarjun; Lee, Kah Seng; Ming, Long Chiau; Yuen, Kah Hay

    2016-01-01

    The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS), sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity, reproducible for

  11. A novel polymer extrusion micropelletization process

    NASA Astrophysics Data System (ADS)

    Aquite, William

    Polymer micropellets provide a variety of potential applications for different processes in the polymer industry. Conventional pellets are in the size range of 2.5 mm to 5 mm, while micropellets are at least ten times smaller, in the size range of 50 μm to 1000 μm. The potential benefits to a processor using micropellets include: high surface to volume ratio, high bulk density, fast and even melting rates in extrusion, improved dry flow properties, faster injection molding cycles, and consequently lower energy consumption during processing. More specialized sintering processes that require polymer powders, such as selective sintering techniques, microporous plastics parts manufacturing, and other powder sintering methods would benefit from the production of polymer micropellets since these exhibit the advantages of pellets yet have a lower average size. This work focuses on the study of a technique developed at the Polymer Engineering Center. The technique uses a microcapillary die for the production of micropellets by causing instabilities in extruded polymer threads deformed using an air stream. Tuning of process conditions allow the development of surface disturbances that promote breakup of the threads into pellets, which are subsequently cooled and collected. Although micropellets with high sphericity and a narrow size distribution can be produced using this technique, minimal changes in process conditions also lead to the production of lenticular pellets as well as pellets, fibers and threads with a wide range of size and shape distributions. This work shows how changing processing conditions achieve a variety of shapes and sizes of micropellets, broadening its application for the production of powders from a variety of polymer resins. Different approaches were used, including dimensional analysis and numerical simulation of the micropelletization process. This research reveals the influence of non-linear viscoelastic effects on the dispersion of a polymer

  12. Cleaning of aluminum after machining with coolants

    SciTech Connect

    Roop, B.

    1995-07-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended.

  13. Inline monitoring and a PAT strategy for pharmaceutical hot melt extrusion.

    PubMed

    Wahl, Patrick R; Treffer, Daniel; Mohr, Stefan; Roblegg, Eva; Koscher, Gerold; Khinast, Johannes G

    2013-10-15

    Implementation of continuous manufacturing in the pharmaceutical industry requires tight process control. This study focuses on a PAT strategy for hot melt extrusion of vegetable calcium stearate (CaSt) as matrix carrier and paracetamol as active pharmaceutical ingredient (API). The extrusion was monitored using in-line near-infrared (NIR) spectroscopy. A NIR probe was located in the section between the extrusion screws and the die, using a novel design of the die channel. A chemometric model was developed based on premixes at defined concentrations and was implemented in SIPAT for real time API concentration monitoring. Subsequently, step experiments were performed for different API concentrations, screw speeds and screw designs. The predicted API concentration was in good agreement with the pre-set concentrations. The transition from one API plateau to another was a smooth curve due to the mixing behaviour of the extruder. The accuracy of the model was confirmed via offline HPLC analysis. The screw design was determined as the main influential factor on content uniformity (CU). Additionally the influence of multiple feeders had a significant impact on CU. The results demonstrate that in-line NIR measurements is a powerful tool for process development (e.g., mixing characterization), monitoring and further control strategies.

  14. Displaced capillary dies

    DOEpatents

    Kalejs, Juris P.; Chalmers, Bruce; Surek, Thomas

    1984-01-01

    An asymmetrical shaped capillary die made exclusively of graphite is used to grow silicon ribbon which is capable of being made into solar cells that are more efficient than cells produced from ribbon made using a symmetrically shaped die.

  15. Displaced capillary dies

    DOEpatents

    Kalejs, Juris P.; Chalmers, Bruce; Surek, Thomas

    1982-01-01

    An asymmetrical shaped capillary die made exclusively of graphite is used to grow silicon ribbon which is capable of being made into solar cells that are more efficient than cells produced from ribbon made using a symmetrically shaped die.

  16. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review.

    PubMed

    Alam, M S; Kaur, Jasmeen; Khaira, Harjot; Gupta, Kalika

    2016-01-01

    Extrusion of foods is an emerging technology for the food industries to process and market a large number of products of varying size, shape, texture, and taste. Extrusion cooking technology has led to production of wide variety of products like pasta, breakfast cereals, bread crumbs, biscuits, crackers, croutons, baby foods, snack foods, confectionery items, chewing gum, texturized vegetable protein (TVP), modified starch, pet foods, dried soups, dry beverage mixes etc. The functional properties of extruded foods plays an important role for their acceptability which include water absorption, water solubility, oil absorption indexes, expansion index, bulk density and viscosity of the dough. The aim of this review is to give the detailed outlines about the potential of extrusion technology in development of different types of products and the role of extrusion-operating conditions and their effect on product development resulting in quality changes i.e physical, chemical, and nutritional, experienced during the extrusion process.

  17. The Ambiguous Dying Syndrome

    ERIC Educational Resources Information Center

    Bern-Klug, Mercedes

    2004-01-01

    More than one-half of the 2.4 million deaths that will occur in the United States in 2004 will be immediately preceded by a time in which the likelihood of dying can best be described as "ambiguous." Many people die without ever being considered "dying" or "at the end of life." These people may miss out on the…

  18. Influence of ultrasonic vibration on micro-extrusion.

    PubMed

    Bunget, Cristina; Ngaile, Gracious

    2011-07-01

    Micro-forming is a miniaturization technology with great potential for high productivity. Some technical challenges, however, need to be addressed before micro-forming becomes a commercially viable manufacturing process. These challenges include severe tribological conditions, difficulty in achieving desired tolerances, and short tool-life due to inability of available die materials to withstand the forces exerted on miniature dies and punches. Some of these problems can be mitigated using ultrasonic technology. The principal objectives of this work were to investigate the possibility of applying ultrasonic vibrations in the micro-forming process, to design a set of tooling for ultrasonic micro-extrusion and to observe experimentally how ultrasonic oscillations influences the forming load and the surface finish. The test results showed a significant drop on the forming load when ultrasonic vibrations were imposed, and also a significant improvement in the surface of the micro-formed parts. Based on the preliminary test results, the study demonstrated high potential for using ultrasonic oscillations as a way to overcome the difficulties brought by the miniaturization.

  19. Investigation on the effect of titanium (Ti) addition to the Mg- AZ31 alloy in the as cast and after extrusion conditions on its metallurgical and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan I. O.; Raghad; Hememat, S.

    2016-08-01

    Magnesium-aluminum alloys are versatile materials which are used in manufacturing a number of engineering and industrial parts in the automobile and aircraft industries due to their strength - to -weight -ratios. Against these preferable characteristics, magnesium is difficult to deform at room temperature; therefore it is alloyed with other elements mainly aluminum and zinc to add some required properties particularly to achieve high strength -to- weight ratio. Grain refinement is an important technology to improve the mechanical propertiesand the microstructure uniformity of the alloys. Most of the published work on grain refinement was directed toward grain refining aluminum and zinc alloys; however, the effect of the addition of rare earth material on the grain size or the mechanical behavior of Mg alloys is rare. In this paper the effect of Ti addition on the grain size, mechanical behavior, ductility, extrusion force and energy, of Mg-AZ31 alloy both in the as cast condition and after direct extrusion is investigated.

  20. Recrystallization behaviour of AA6063 extrusions

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Pettersen, T.; Paulsen, C. O.; Marthinsen, K.; Holmedal, B.; Segatori, A.

    2015-08-01

    Cylindrical profiles of an AA6063 aluminium alloy were produced in a lab-scale direct extrusion set-up. The extrusion was performed at 300 °C, 450 °C and 550 °C, respectively, with the same ram speed. Immediate water quenching was applied to the profiles and the end of billet (butt-end) after extrusion. Microstructure and texture of the material in different states were measured by electron back-scattered diffraction. Only the profile extruded at 300 °C, was found in the deformed state after extrusion, featuring a fibrous grain structure and a strong <111> and weak <100> double fibre texture. Post-extrusion annealing of this profile at 450 °C resulted in an almost fully recrystallized structure (recrystallized fraction of 87%) and with a texture similar to that of the as-deformed state. The profile extruded at 450 °C was almost fully recrystallized (recrystallization fraction 91%) already after quenching, and with a texture characterized by a weak <111> and strong <100> double fibre. The profile extruded at 550 °C showed a partially recrystallized grain structure with recrystallization fraction of 71%, and with a texture dominated by a <100> fibre. The influence of the deformation conditions on the recrystallization behaviour, in terms of recrystallization kinetics and mechanisms, are discussed in view of these results.

  1. HIGH PRESSURE DIES

    DOEpatents

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  2. Dry lubricant films for aluminum forming.

    SciTech Connect

    Wei, J.; Erdemir, A.; Fenske, G. R.

    1999-03-30

    During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

  3. Turbidimetric method for the determination of particle sizes in polypropylene/clay-composites during extrusion.

    PubMed

    Becker, Wolfgang; Guschin, Viktor; Mikonsaari, Irma; Teipel, Ulrich; Kölle, Sabine; Weiss, Patrick

    2017-01-01

    Nanocomposites with polypropylene as matrix material and nanoclay as filler were produced in a double twin screw extruder. The extrusion was monitored with a spectrometer in the visible and near-infrared spectral region with a diode array spectrometer. Two probes were installed at the end at the extruder die and the transmission spectra were measured during the extrusion. After measuring the transmission spectra and converting into turbidity units, the particle distribution density was calculated via numerical linear equation system. The distribution density function shows either a bimodal or mono modal shape in dependence of the processing parameters like screw speed, dosage, and concentration of the nanoclays. The method was verified with SEM measurements which yield comparable results. The method is suitable for industrial in-line processing monitoring of particle radii and dispersion process, respectively.

  4. Validating material modelling for OFHC copper using dynamic tensile extrusion (DTE) test at different velocity impact

    NASA Astrophysics Data System (ADS)

    Bonora, N.; Testa, G.; Ruggiero, A.; Iannitti, G.; Colliander, M. Hörnquist; Mortazavi, N.

    2017-01-01

    In the Dynamic Tensile Extrusion (DTE) test, the material is subjected to very large strain, high strain rate and elevated temperature. Numerical simulation, validated comparing with measurements obtained on soft-recovered extruded fragments, can be used to probe material response under such extreme conditions and to assess constitutive models. In this work, the results of a parametric investigation on the simulation of DTE test of annealed OFHC copper - at impact velocity ranging from 350 up to 420 m/s - using the modified Rusinek-Klepaczko model, are presented. Simulation of microstructure evolution was performed using the visco-plastic self consistent model (VPSC), providing, as input, the velocity gradient history obtained with FEM at selected locations along the axis of the fragment trapped in the extrusion die. Finally, results are compared with EBSD analysis.

  5. TIG welding of aluminum alloys for the APS storage ring - a UHV application

    SciTech Connect

    Goeppner, G.A.

    1996-05-29

    The Advanced Photon Source (APS) incorporates a 7-GeV positron storage ring 1104 meters in circumference. The storage ring vacuum system is designed to maintain a pressure of 1 nTorr or less with a circulating current of 300 mA to enable beam lifetimes of greater than 10 hours. The vacuum chamber is an aluminum extrusion of 6063T5 alloy. There are 235 separate aluminum vacuum chambers in the storage ring connected by stainless steel bellows assemblies. Aluminum was chosen for the vacuum chamber because it can be economically extruded and machined, has good thermal conductivity, low thermal emissivity, a low outgassing rate, low residual radioactivity, and is non-magnetic. The 6063 aluminum-silicon-magnesium alloy provides high strength combined with good machining and weldability characteristics. The extrusion process provides the interior surface finish needed for the ultrahigh vacuum (UHV) environments There are six different vacuum chambers with the same extrusion cross section. The average vacuum chamber length is 171.6 inches. The extruded vacuum chambers are welded to flange assemblies made up of machined 2219 aluminum alloy pieces and 2219 aluminum vacuum flanges from a commercial source.

  6. Improvement of dissolution behavior for poorly water-soluble drug by application of cyclodextrin in extrusion process: comparison between melt extrusion and wet extrusion.

    PubMed

    Yano, Hideki; Kleinebudde, Peter

    2010-06-01

    The purpose of this study was to improve dissolution behavior of poorly water-soluble drugs by application of cyclodextrin in extrusion processes, which were melt extrusion process and wet extrusion process. Indomethacin (IM) was employed as a model drug. Extrudates containing IM and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) in 1:1 w/w ratio were manufactured by both melt extrusion process and wet extrusion process. In vitro drug release properties of IM from extrudates and physiochemical properties of extrudates were investigated. The dissolution rates of IM from extrudates manufactured by melt extrusion and wet extrusion with HP-beta-CyD were significantly higher than that of the physical mixture of IM and HP-beta-CyD. In extrudate manufactured by melt extrusion, gamma-form of IM changed to amorphous completely during melt extrusion due to heating above melting point of IM. On the other hand, in extrudate manufactured by wet extrusion, gamma-form of IM changed to amorphous partially due to interaction between IM and HP-beta-CyD and mechanical agitating force during process. Application of HP-beta-CyD in extrusion process is useful for the enhancement of dissolution rate for poorly water-soluble drugs.

  7. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    SciTech Connect

    Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging

  8. Closed cycle cryogenic fiber extrusion system

    SciTech Connect

    Rahman, H.U.; Ruden, E.L.; Strohmaier, K.D.; Wessel, F.J.; Yur, G.

    1996-10-01

    A fiber extrusion system is described that produces frozen fibers of almost any condensible gas. This extruder has the advantage of employing a closed-refrigeration system. To date, this system has produced fibers of H{sub 2}, D{sub 2}, and Ne of a diameter ranging from 100 to 130 {mu}m. The extrusion occurs at a specific temperature which is several degrees below the triple point of these gases. Once the fiber is extruded it can survive in vacuum for 20 min if the nozzle (extrusion) temperature is lowered to 8 K. The length of these fibers can be of the order of 1 m. D{sub 2} fibers will be used in a staged {ital Z}-pinch experiment as a fuel for thermonuclear fusion. For this application a guiding structure is needed to position the fiber between the electrodes with millimeter precision, without significantly affecting its quality. {copyright} {ital 1996 American Institute of Physics.}

  9. Using artificial neural networks to model extrusion processes for the manufacturing of polymeric micro-tubes

    NASA Astrophysics Data System (ADS)

    Mekras, N.; Artemakis, I.

    2012-09-01

    In this paper a methodology and an application example are presented aiming to show how Artificial Neural Networks (ANNs) can be used to model manufacturing processes when mathematical models are missing or are not applicable e.g. due to the micro- & nano-scaling, due to non-conventional processes, etc. Besides the ANNs methodology, the results of a Software System developed will be presented, which was used to create ANNs models for micro & nano manufacturing processes. More specifically results of a specific application example will be presented, concerning the modeling of extrusion processes for polymeric micro-tubes. ANNs models are capable for modeling manufacturing processes as far as adequate experimental and/or historical data of processes' inputs & outputs are available for their training. The POLYTUBES ANNs models have been trained and tested with experimental data records of process' inputs and outputs concerning a micro-extrusion process of polymeric micro-tubes for several materials such as: COC, PC, PET, PETG, PP and PVDF. The main ANN model of the extrusion application example has 3 inputs and 9 outputs. The inputs are: tube's inner & outer diameters, and the material density. The model outputs are 9 process parameters, which correspond to the specific inputs e.g. process temperature, die inner & outer diameters, extrusion pressure, draw speed etc. The training of the ANN model was completed, when the errors for the model's outputs, which expressed the difference between the training target values and the ANNs outputs, were minimized to acceptable levels. After the training, the micro-extrusion ANN is capable to simulate the process and can be used to calculate model's outputs, which are the process parameters for any new set of inputs. By this way a satisfactory functional approximation of the whole process is achieved. This research work has been supported by the EU FP7 NMP project POLYTUBES.

  10. Co-extrusion as manufacturing technique for fixed-dose combination mini-matrices.

    PubMed

    Dierickx, L; Saerens, L; Almeida, A; De Beer, T; Remon, J P; Vervaet, C

    2012-08-01

    The aim of this study was to develop a multilayer (core/coat) dosage form via co-extrusion, the core providing sustained drug release and the coat immediate drug release. In this study polymers were selected which can be combined in a co-extruded dosage form. Several thermoplastic polymers were hot-melt extruded and evaluated for processability and macroscopic properties (surface smoothness, die swell). Metoprolol tartrate (MPT) and hydrochlorothiazide (HCT) were incorporated as sustained and immediate release model drugs, respectively. Based on the polymer screening experiments a combination of polycaprolactone (core) and polyethylene oxide (coat) was selected for co-extrusion trials, taking into account their drug release profiles and extrusion temperature (70 °C). This combination (containing 10% HCT in the coat and 45% MPT in the core) was successfully co-extruded (diameter core: 3 mm/thickness coat: 0.5 mm). Adhesion between the two polymer layers was good. HCT release from the coat was complete within 30 min, while MPT release was sustained over 24 h (55%, 70%, 85% and 100% after 4, 8, 12 and 2 4h, respectively). DSC, XRD and Raman spectroscopy revealed that MPT remained crystalline during extrusion, whereas HCT was dissolved in the polyethylene oxide matrix. The in vivo study revealed no significant differences between the experimental formulation and the reference formulation (Zok-Zid tablet). Fixed-dose combination mini-tablets with good in vitro and in vivo performance were successfully developed by means of co-extrusion, using a combination of polycaprolactone and polyethylene oxide.

  11. Test Methods for Plasticity and Extrusion Behaviour

    NASA Astrophysics Data System (ADS)

    Göhlert, Katrin; Uebel, Maren

    There is no generally acknowledged method or measuring unit to specify the extrusion behaviour of ceramic bodies. In order to obtain an adequately precise description of the extrusion behaviour, numerous specific methods do exist, which have to be chosen according to the material, for example for bodies to produce bricks and tiles or bodies for the manufacture of catalytic converters, as well as methods relating to specific application requirements, be it, for example, for the purposes of production, quality control or development of the body.

  12. Influence of germination and extrusion with CO(2) injection on physicochemical properties of wheat extrudates.

    PubMed

    Singkhornart, Sasathorn; Edou-ondo, Serge; Ryu, Gi-Hyung

    2014-01-15

    Whole wheat and germinated wheat flour were extruded in a laboratory co-rotating twin screw extruder with die temperatures (90 and 130°C), screw speeds (150 and 200rpm) and CO2 injection. The effects of germination and extrusion process on specific mechanical energy (SME) input, expansion ratio, specific length, piece density, elastic modulus, breaking strength, colour, water solubility index (WSI), water absorption index (WAI) and microstructure were determined. The study showed that the use of germinated wheat flour increased the specific length, lightness and the WSI. When CO2 was injected, the expansion ratios (only 90°C die temperature for extruded germinated wheat) and lightness were significantly increased (p<0.05). The chemical properties (crude protein, fat, ash, reducing sugar, γ-aminobutyric acid, soluble arabinoxylans, β-glucan and phytic acid) were also investigated. The germination step and extrusion process mainly affected the chemical properties. However, the difference of die temperatures, screw speed and CO2 injection had slight effect on the chemical properties.

  13. Die singulation method

    DOEpatents

    Swiler, Thomas P.; Garcia, Ernest J.; Francis, Kathryn M.

    2013-06-11

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  14. Die singulation method

    DOEpatents

    Swiler, Thomas P [Albuquerque, NM; Garcia, Ernest J [Albuquerque, NM; Francis, Kathryn M [Rio Rancho, NM

    2014-01-07

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with a HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  15. Sputtered protective coatings for die casting dies

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nieh, C.-Y.; Wallace, J. F.

    1981-01-01

    Three experimental research designs investigating candidate materials and processes involved in protective die surface coating procedures by sputter deposition, using ion beam technologies, are discussed. Various pre-test results show that none of the coatings remained completely intact for 15,000 test cycles. The longest lifetime was observed for coatings such as tungsten, platinum, and molybdenum which reduced thermal fatigue, but exhibited oxidation and suppressed crack initiation only as long as the coating did not fracture. Final test results confirmed earlier findings and coatings with Pt and W proved to be the candidate materials to be used on a die surface to increase die life. In the W-coated specimens, which remained intact on the surface after thermal fatigue testing, no oxidation was found under the coating, although a few cracks formed on the surface where the coating broke down. Further research is planned.

  16. The Angry Dying Patient.

    PubMed

    Houston, Robert E.

    1999-02-01

    Over 25 years ago, Kubler-Ross identified anger as a predictable part of the dying process. When the dying patient becomes angry in the clinical setting, all types of communication become strained. Physicians can help the angry dying patient through this difficult time by using 10 rules of engagement. When physicians engage and empathize with these patients, they improve the patient's response to pain and they reduce patient suffering. When physicians educate patients on their normal responses to dying and enlist them in the process of family reconciliation, they can impact the end-of-life experience in a positive way.

  17. Improved corn protein (zein) extrusion processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Melt processing using a single and twin screw extruder has been carried out on zein where extrusion temperatures were varied between 100ºC and 300ºC. In addition, melt reprocessing (up to seven times) of zein was undertaken using a single screw extruder. Differential scanning calorimetry (DSC) and t...

  18. Formation of Chromosomal Domains by Loop Extrusion.

    PubMed

    Fudenberg, Geoffrey; Imakaev, Maxim; Lu, Carolyn; Goloborodko, Anton; Abdennur, Nezar; Mirny, Leonid A

    2016-05-31

    Topologically associating domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes, yet the mechanisms of TAD formation remain unclear. Here, we propose that loop extrusion underlies TAD formation. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. Using polymer simulations, we show that this model produces TADs and finer-scale features of Hi-C data. Each TAD emerges from multiple loops dynamically formed through extrusion, contrary to typical illustrations of single static loops. Loop extrusion both explains diverse experimental observations-including the preferential orientation of CTCF motifs, enrichments of architectural proteins at TAD boundaries, and boundary deletion experiments-and makes specific predictions for the depletion of CTCF versus cohesin. Finally, loop extrusion has potentially far-ranging consequences for processes such as enhancer-promoter interactions, orientation-specific chromosomal looping, and compaction of mitotic chromosomes.

  19. Robo-Enabled Tumor Cell Extrusion.

    PubMed

    Richardson, Helena E; Portela, Marta

    2016-12-19

    How aberrant cells are removed from a tissue to prevent tumor formation is a key question in cancer biology. Reporting in this issue of Developmental Cell, Vaughen and Igaki (2016) show that a pathway with an important role in neural guidance also directs extrusion of tumor cells from epithelial tissues.

  20. Reactive Extrusion of Zein with Glyoxal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-linked zein has been produced using glyoxal as the cross-linking reagent via reactive extrusion for the first time in a twin screw extruder using dilute sodium hydroxide as catalyst. Tri(ethylene glycol) was used as a plasticizer for various items. The extrudate was then ground and processed...

  1. Impact of various extrusion processes on zein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn protein (zein) is one of the main co-products of corn bio-ethanol production. Extrusion processing of zein continues to be the preferred route to provide improved articles having lower cost and improved properties. There is a lack of information regarding the conditions which can be employed to...

  2. Effect of multiple extrusion passes on zein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zein was repeatedly processed up to seven times using a single screw extruder at a temperature of 145 °C and at approximately 15 grams per minute to determine the extent of degradation that occurs with multiple extrusion passes. SDS-PAGE shows that with the second pass, and each additional pass, the...

  3. Investigation of High Speed Friction Test for Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Ooki, K.; Takahashi, S.

    2016-08-01

    To shorten the development stage of automobiles, FEM simulation has been applied. It was important to increase the accuracy of the sheet metal simulation results. The friction coefficient between the sheet metal and dies the greatly affected the simulation results. Therefore, apparatus for measuring the friction coefficient with a specific press forming speed (300 mm/s) has been developed. The materials of the sheet metals and dies were aluminum alloys and die steel respectively. It was found that the friction was affected by the difference between the velocity of the sheet metal and that of the dies.

  4. Effect of Shear Rate and Nanoclay Content on the Die Swell of Polypropylene Nanocomposites Extruded Under Capillary Flow

    NASA Astrophysics Data System (ADS)

    Dixit, Tripti; Das, Vishal; Nigam, Vineeta; Pandey, A. K.

    2010-10-01

    Die swell is an important parameter of polymeric materials during extrusion. It plays a significant role in governing the final dimensions of the extrudate and hence is of utmost importance for die design and process control during extrusion. In present study, effect of shear rate and nanoclay content on die swell behavior during extrusion of polypropylene clay nanocomposites with different percentage (1 and 2%) of nanoclay loading was measured by means of Rosand RH7 Capillary Rheometer at 200 °C. The results emphasize that there is no significant change in shear viscosity and shear stress with addition of nanoclay at different shear rates (50 to 10000 sec-1). However, the power law index (n) indicates that the polymer melt becomes less shear thinning with increasing nanoclay loading. Also at lower shear rates up to 1000 sec-1, PP with 1% nanoclay showed higher die swell in comparison to pure PP, whereas at shear rates beyond 1000 sec-1 the same blend showed lower die swell compared to pure PP. The die swell of PP with 2% nanoclay is lower than PP with 1% nanoclay at low shear rates till 600 sec-1 which is reversed as the shear rate is increased beyond 2000 sec-1. So we observed in this study that by controlling the shear rate we can control the die swell behavior of PP nanoclay nanocomposites.

  5. Carbon nanotube composites prepared by ultrasonically assisted twin screw extrusion

    NASA Astrophysics Data System (ADS)

    Lewis, Todd

    Two ultrasonic twin screw extrusion systems were designed and manufactured for the ultrasonic dispersion of multi-walled carbon nanotubes in viscous polymer matrices at residence times of the order of seconds in the ultrasonic treatment zones. The first design consisted of an ultrasonic slit die attachment in which nanocomposites were treated. A second design incorporated an ultrasonic treatment section into the barrel of the extruder to utilize the shearing of the polymer during extrusion while simultaneously applying treatment. High performance, high temperature thermoset phenylethynyl terminate imide oligomer (PETI-330) and two different polyetherether ketones (PEEK) were evaluated at CNT loadings up to 10 wt%. The effects of CNT loading and ultrasonic amplitude on the processing characteristics and rheological, mechanical, electrical, thermal and morphological properties of nanocomposites were investigated. PETI and PEEK nanocomposites showed a decrease in resistivity, an increase in modulus and strength and a decrease in strain at break and toughness with increased CNT loading. Ultrasonically treated samples showed a decrease in die pressure and extruder torque with increasing ultrasonic treatment and an increase in complex viscosity and storage modulus at certain ultrasonic treatment levels. Optical microscopy showed enhanced dispersion of the CNT bundles in ultrasonically treated samples. However, no significant improvement of mechanical properties was observed with ultrasonic treatment due to lack of adhesion between the CNT and matrix in the solid state. A curing model for PETI-330 was proposed that includes the induction and curing stages to predict the degree of cure of PETI-330 under non-isothermal conditions. Induction time parameters, rate constant and reaction order of the model were obtained based on differential scanning calorimetry (DSC) data. The model correctly predicted experimentally measured degrees of cure of compression molded plaques cured

  6. Design for aluminum recycling

    SciTech Connect

    Not Available

    1993-10-01

    This article describes the increasing use of aluminum in automobiles and the need to recycle to benefit further growth of aluminum applications by assuring an economical, high-quality source of metal. The article emphasizes that coordination of material specifications among designers can raise aluminum scrap value and facilitate recycling. Applications of aluminum in automobile construction are discussed.

  7. Is Dying Young Worse than Dying Old?

    ERIC Educational Resources Information Center

    Jecker, Nancy S.; Schneiderman, Lawrence J.

    1994-01-01

    Notes that, in contemporary Western society, people feel death of small child is greater injustice than death of older adult and experience correspondingly greater sorrow, anger, regret, or bitterness when very young person dies. Contrasts these attitudes with those of ancient Greece and shows relevance that different attitudes toward death have…

  8. Micromechanical die attachment surcharge

    DOEpatents

    Filter, William F.; Hohimer, John P.

    2002-01-01

    An attachment structure is disclosed for attaching a die to a supporting substrate without the use of adhesives or solder. The attachment structure, which can be formed by micromachining, functions purely mechanically in utilizing a plurality of shaped pillars (e.g. round, square or polygonal and solid, hollow or slotted) that are formed on one of the die or supporting substrate and which can be urged into contact with various types of mating structures including other pillars, a deformable layer or a plurality of receptacles that are formed on the other of the die or supporting substrate, thereby forming a friction bond that holds the die to the supporting substrate. The attachment structure can further include an alignment structure for precise positioning of the die and supporting substrate to facilitate mounting the die to the supporting substrate. The attachment structure has applications for mounting semiconductor die containing a microelectromechanical (MEM) device, a microsensor or an integrated circuit (IC), and can be used to form a multichip module. The attachment structure is particularly useful for mounting die containing released MEM devices since these devices are fragile and can otherwise be damaged or degraded by adhesive or solder mounting.

  9. Impacts of Scarification and Degermination on the Expansion Characteristics of Select Quinoa Varieties during Extrusion Processing.

    PubMed

    Aluwi, Nicole A; Gu, Bon-Jae; Dhumal, Gaurav S; Medina-Meza, Ilce G; Murphy, Kevin M; Ganjyal, Girish M

    2016-12-01

    Extrusion of 2 quinoa varieties, Cherry Vanilla and Black (scarified and unscarified) and a mixed quinoa variety, Bolivian Royal (scarified and degermed) were studied for their extrusion characteristics. A corotating twin-screw extruder with a 3 mm round die was used. Feed moisture contents of 15%, 20%, and 25% (wet basis) were studied. The extruder barrel temperature was kept constant at 140 °C and screw speeds were varied from 100, 150, and 200 revolutions per minutes. Process responses (specific mechanical energy, back pressure, and torque) and product responses (expansion ratio, unit density, and water absorption index/water solubility index) were evaluated. The degermed Bolivian Royal showed the highest expansion in comparison to all other varieties, attributed to its significantly low levels of fat, fiber, and protein. The scarified Cherry Vanilla resulted in the lowest expansion ratio. This was attributed to the increase in the protein content from the removal of the outer layer. The results indicate that all the varieties performed differently in the extrusion process due to their modification processes as well as the individual variety characteristics.

  10. Non-isothermal FEM analyses of large-strain back extrusion forging

    SciTech Connect

    Flower, E.C.; Hallquist, J.O.; Shapiro, A.B.

    1986-06-19

    Back extrusion forging is a complex metal forming operation dominated by large-strain, non-isothermal deformation. NIKE2D, a fully vectorized implicit finite-element program developed at Lawrence Livermore National Laboratory, was applied to a two-stage isothermal back extrusion forging process. Modeling of the forging process required special features in the FEM code such as friction and interactive rezoning that allows for remeshing of the distorted mesh while maintaining a complete history of all the state variables. To model conditions of the non-isothermal forging process required implementing TOPAZ2D, our LLNL-developed two-dimensional implicit finite element code for heat conduction analysis, as a subroutine into NIKE2D. The fully coupled version maintains all the original features of both codes and can account for the contribution of heat generation during plastic deformation. NIKE/TOPAZ-2D was applied to the piercing operation of the back extrusion forging process. The thermal deformation history of the die, punch, and workpiece and the effective plastic strains were calculated.

  11. Properties of sustained-release tablets prepared by hot-melt extrusion.

    PubMed

    Zhang, F; McGinity, J W

    1999-05-01

    The objectives of the present study were to investigate the properties of polyethylene oxide (PEO) as a drug carrier and to study the release mechanism of chlorpheniramine maleate (CPM) from matrix tablets prepared by hot-melt extrusion. During the hot-melt extrusion process, a dry powder blend of drug, polymer, and other adjuvants was fed into the extruder and melted inside the barrel of the machine. The molten mass was extruded through a rod-shaped die and then cut manually into 400-mg tablets. CPM and PEO were shown to be stable under the processing conditions. The molecular weight of the PEO, the drug loading percentage, and the inclusion of polyethylene glycol as a processing aid, were all found to influence the processing conditions and the drug release properties of the extruded tablets. Faster release of CPM from the matrix tablets was observed in acidic medium than in purified water and phosphate buffer (pH 7.4). Drug release from the matrix tablet was controlled by erosion of the PEO matrix and the diffusion of the drug through the swollen gel layer at the surface of the tablets. CPM was dispersed at the molecular level in the PEO matrix at low drug loading level and recrystallization of CPM was observed at high drug loading levels. Hot-melt extrusion was demonstrated to be a viable novel method to prepare sustained-release tablets. PEO was shown to be a suitable polymeric carrier for this process.

  12. Effects of Extrusion on Fibre Length in Sisal Fibre-Reinforced Polypropylene Composites

    NASA Astrophysics Data System (ADS)

    Pathi, Sridhar; Jayaraman, Krishnan

    Natural fibre reinforced thermoplastic composites find a wide array of applications in the automobile, building and construction industries. These composites are mostly produced by injection moulding or extrusion through properly designed dies. During these production processes, the shear forces exerted by the screw or ram leads to the degradation of the natural fibres. A screwless extruder that minimises fibre degradation and employs a reliable and low technology process has already been developed. However, the fibre degradation caused by the screwless extruder has not been compared with that of the conventional extruders. So, this study is focused on the influence of extrusion processes on the degradation of natural fibres in thermoplastic composites. Sisal fibres of 10 mm length were extruded with polypropylene, to furnish extrudates with a fibre mass fraction of 25%, using conventional single screw and screwless extruders. Polypropylene in the extrudates was dissolved in Xylene in a Sohxlet process; the fibres that were extracted were analysed for length variations. While fibre degradation in the form of fibre length variation is similar in both cases, this can be minimised in screwless extrusion by extending the gap between the front face of the cone and the orifice plate.

  13. Dynamic-tensile-extrusion response of polytetrafluoroethylene (EPFE) and polychlorotrifluoroethylene (PCTFE)

    SciTech Connect

    Trujillo, Carl P; Brown, Eric N; Gray, George T

    2010-01-01

    Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) experiments have been utilized to probe the dynamic tensile responses of polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). These fluoropolymers exhibit more irregular deformation and stochastic-based damage and failure mechanisms than the stable plastic elongation and shear instabilities observed in metals. The technique elucidates a number of tensile mechanisms that are consistent with quasi-static, SHPB, and Taylor Impact results. Similar to the observed ductile-to-brittle transition for Taylor Impact loading, PCTFE failure occurs at a peak velocity greater than for PTFE. However, for the Dyn-Ten-Ext PCTFE exhibits even greater resistance to failure due to the tensile stress-state. While PTFE generates a large number of small fragments when extruded through the die, PCTFE draws out a smaller number of larger particles that dynam ically evolve during the extrusion process through a com bination of local necking mechanisms and bulk relaxation. Under Dyn-Ten-Ext loading, the propensity of PTFE to fail along normal planes is observed without indication of any localization, while the PCTFE clearly forms necks during the initial extrusion process that continue to evolve.

  14. Physical and chemical effects of ultrasound vibration on polymer melt in extrusion.

    PubMed

    Chen, Jinyao; Chen, Yingzi; Li, Huilin; Lai, Shih-Yaw; Jow, Jinder

    2010-01-01

    The physical and chemical effects of ultrasound on polypropylene (PP) melts in extrusion were investigated. By applying ultrasound vibration to the entrance of the die, apparent pressure and viscosity of PP can be obviously decreased under the appropriate ultrasound power. Ultrasound has both physical and chemical effects on the polymer melt. In our study with specific polymer and ultrasound system, we determined that the chemical effect makes up 35-40% of the total effect of ultrasound on the apparent viscosity reduction of PP melts at most of the studied intensities. The physical effect plays a more important role in the ultrasound-applied extrusion than the chemical effect. This chemical effect is an irreversible and permanent change in molecule weight and the molecular-weight distribution due to ultrasound. As the ultrasound intensity increases, the molecular weight of PP reduces and its molecular-weight distribution becomes narrower; the orientation of PP molecules along the flow direction reduces (in melt state) and the crystallinity of PP samples (in solid state) decreases by applying the ultrasound vibration. Ultrasound vibration increases the motion of molecular chains and makes them more disorder; it also affects the relaxation process of polymer melts by shortening the relaxation time of chain segments, leading to weakening the elastic effect and decreasing the extruding swell ratios. All the factors discussed above reduce the non-Newtonian flow characteristics of the polymer melt and result in the viscosity drop of the polymer melt in extrusion.

  15. Apical extrusion of root canal irrigants when using Er:YAG and Er,Cr:YSGG lasers with optical fibers: an in vitro dye study.

    PubMed

    George, Roy; Walsh, Laurence J

    2008-06-01

    Because of the potential for irritant reactions in the periapical region, irrigant solutions must be constrained within the root canal. We examined fluid extrusion beyond the apical constriction by pressure waves generated by pulsed middle infrared lasers using needles and Max-I-Probes (Dentsply) as controls. Both free-running pulsed Erbium: Yttrium Aluminum Garnet (Er:YAG) and Erbium, Chromium: Yttrium Scandium Gallium Garnet (Er,Cr:YSGG) lasers with bare or conical fiber tips at distances of 5 or 10 mm from the apex displaced fluid past the apex. Larger apical openings showed greater extrusion of fluid. The volume of extruded fluid was similar to conventional 25-G needles, but fluid was distributed further from the apex. Because pulsed lasers create pressure waves in irrigant fluids within the root canal, the potential for extrusion of fluid from the apex should be considered when assessing intracanal laser treatments in endodontics.

  16. Die Kometenmission Rosetta

    NASA Astrophysics Data System (ADS)

    Krüger, Harald

    2016-11-01

    Die Rosetta-Mission ist ein Meilenstein in der Erforschung der Kometen und ihrer Entstehung. Eine der größten üerraschungen war die unregelmäßge hantelförmige Gestalt des Zielkometen 67P/Tschurjumow-Gerassimenko. Er besteht wahrscheinlich aus zwei Einzelkörpern, die durch ihre Schwerkraft aneinander gehalten werden. Seine Oberfläche ist sehr rau und zeigt eine sehr vielf ältige Morphologie, die auf eine Vielzahl von ablaufenden Prozessen hindeutet. Der Kometenkern ist vermutlich auf Gr ößnskalen von mehr als etwa 10 bis 100 Metern homogen, Inhomogenitäten auf kleineren Skalen k nnten f r seine Aktivä t verantwortlich sein. Diese ist auf kleine Gebiete konzentriert, und auch Oberflächenveränderungen, die sich innerhalb von einigen Tagen bis wenigen Wochen abspielen, sind lokal. Im Kometenmaterial wurde eine Vielzahl an organischen Substanzen gemessen, die zum Teil als Schlüsselmoleküle für die Synthese der Grundbausteine des Lebens gelten, wie wir es kennen.

  17. Death, dying, and domination.

    PubMed

    Spindelman, Marc

    2008-06-01

    This Article critiques conventional liberal arguments for the right to die on liberal grounds. It contends that these arguments do not go far enough to recognize and address private, and in particular structural, forms of domination. It presents an alternative that does, which is thus more respectful of true freedom in the context of death and dying, and also more consistent with liberalism. After discussing obstacles to the achievement of a right to die that encompasses freedom from both public and private domination, the Article closes with a significant reform project within bioethics that might help bring it about.

  18. Study of protective coatings for aluminum die casting molds

    NASA Astrophysics Data System (ADS)

    Peter, Ildiko; Rosso, Mario; Gobber, Federico Simone

    2015-12-01

    In this paper, the development and characterization of some protective coatings on steel substrate are presented. The coatings are realized by plasma spray techniques. The substrate material used is a Cr-Mo-V based hot work tool steel, initially submitted to vacuum heat treatment to achieve homogeneous hardness. The main attention is focused on the study of wear and on the characterization of the interface between the substrate material and the coating layer, because of their key role in determining the resistance of the coating layer. Simulation of friction and wear processes is performed by pin-on-disk test and the tested samples are observed by scanning electron microscopy.

  19. Noise-induced variability of volcanic extrusions

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Bashkirtseva, I. A.; Ryashko, L. B.

    2016-11-01

    Motivated by important physical applications, we study a non-linear dynamics of volcanic extrusions on the basis of a simple pressure-mass flow model. We demonstrate that the deterministic phase portrait represents either the bulbous-type curves or closed paths stretched to their left depending on the initial conditions. The period of phase trajectories therewith increases when the pressure drop between the conduit top and bottom compensates the lava column pressure in it. Stochastic forcing changes the system dynamics drastically. We show that a repetitive scenario of volcanic behaviour with intermittency of stochastic oscillations of different extrusion amplitudes and frequencies appears in the presence of noises. As this takes place, the mean values of interspike intervals characterizing the system periodicity have a tendency to grow with increasing the noise intensity. The probability distribution functions confirming this dynamic behaviour are constructed.

  20. Downdraw Extrusion of ULE(TM) Glass.

    DTIC Science & Technology

    1984-12-01

    34 diameter orifice and a 7" inner diameter muffle plate. E. Glass Loading After removing the plastic and tissue paper from the cleaned feedstock glass , the...Final Technical Report December 1964 DOWNDRAW EXTRUSION OF ULETM GLASS0 Corning Glass Works P. M. Smith and C. E. Peters APPROVED FOR PUBLIC RELEASE...PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If Gpptieabte ) "Corning Glass Works Rome Air Development Center (OCSE

  1. Late extrusion of alloplastic orbital floor implants.

    PubMed

    Brown, A E; Banks, P

    1993-06-01

    Complications following the use of alloplastic orbital floor implants are well documented but it is not widely recognised that these can occur many years after initial treatment. Three patients who presented with late extrusion of an implant through the facial skin are reported. This complication occurred 10, 16 and 17 years respectively after treatment of the orbital floor fracture. The tissue reaction to silicone rubber and Teflon inplants is reviewed and the possible cause for this late complication is discussed.

  2. Coal extrusion in the plastic state

    NASA Technical Reports Server (NTRS)

    England, C.; Ryason, P. R.

    1977-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 425 C. Coal is then fed, much in the manner of common thermoplastics, using screw extruders. Data on the viscosity and extruder parameters for extrusion of Illinois No. 6 coal are presented.

  3. Dynamic-tensile-extrusion response of fluoropolymers

    SciTech Connect

    Brown, Eric N; Trujillo, Carl P; Gray, George T

    2009-01-01

    The current work applies the recently developed Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). Similar to the Taylor Impact Rod, Dynamic-Tensile-Extrusion is a strongly integrated test, probing a wide range of strain rates and stress states. However, the stress state is primarily tensile enabling investigation of dynamic tensile failure modes. Here we investigate the influence of this propensity to neck or not between PCTFE and PTFE on their response under dynamic tensile extrusion loading. The results of the Dyn-Ten-Ext technique are compared with two classic techniques. Both polymers have been investigated using Tensile Split Hopkinson Pressure Bar. The quasistatic and dynamic responses of both fluoro-polymers have been extensively characterized. The two polymers exhibit significantly different failure behavior under tensile loading at moderate strain rates. Polytetrafluoroethylene resists formation of a neck and exhibits significant strain hardening. Independent of temperature or strain rate, PTFE sustains true strains to failure of approximately 1.5. Polychlorotrifluoroethylene, on the other hand, consistently necks at true strains of approximately 0.05.

  4. Extrusion of pea starch containing lysozyme and determination of antimicrobial activity.

    PubMed

    Nam, S; Scanlon, M G; Han, J H; Izydorczyk, M S

    2007-11-01

    Pea starch, which has inherently good gel strength, was used as the source material for manufacturing a biodegradable and bioactive packaging material. Extrudates containing 99% pea starch and 1% lysozyme were produced under various extrusion conditions (high and low shear screw configurations, 30% to 40% moisture contents, 70 to 150 degrees C die temperatures). The physical and mechanical properties of the extrudates were determined through various expansion indices, piece and cell wall solid density, compression, and 3-point bending tests. The expansion of extrudates increased with an increase in die temperature, whereas increasing moisture content had the opposite effect. Extrudate densities decreased as extrusion temperature increased, whereas lower moisture content in the extrudate dough decreased extrudate densities. The elastic modulus and fracture strengths were highly correlated in a power-law fashion to relative density, showing that the mechanical properties of extrudates were dependent on solid density and foam structure. Up to 48% of the initial lysozyme activity was recovered from the extruded pea starch matrix. The lysozyme released from extrudates showed an inhibition zone against Brochotrix thermosphacta B2. Extruded pea starch matrix containing lysozyme has potential application as an edible and biodegradable packaging material with antimicrobial activity.

  5. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  6. Fatigue performance of welded aluminum deck structures

    SciTech Connect

    Haagensen, P.J.; Ranes, M.; Kluken, A.O.; Kvale, I.

    1996-12-01

    Aluminum alloys are used increasingly in load carrying structures where low weight and low maintenance costs are at a premium. Helicopter decks, structures for living quarters and personnel transfer bridges between platforms are examples of offshore applications. While these structures are not usually subjected to high fatigue loads, the increasing use of aluminum in high speed ships, and more recently in highway bridge structures, makes the question of fatigue performance more important. In this paper the fatigue properties of small scale weldments in an AA6005 alloy are compared with the results of fatigue tests on full scale sections of welded extrusions in the same material, which were used in an aluminum bridge deck structure. The fatigue performance is also compared with the fatigue clauses in the new British design code BS8118 for aluminium structures and the proposed Eurocode 9. The prospects of using a new joining technique, friction stir welding (FSW), in the production of large scale panels for deck and ship hull structures is discussed. The FSW process is described briefly, and some fatigue test data are presented.

  7. Antioxidant activity and polyphenolic compound stability of lentil-orange peel powder blend in an extrusion process.

    PubMed

    Rathod, Rahul P; Annapure, Uday S

    2017-03-01

    Lentil contains substantial amount of protein, carbohydrate, fibre and other nutrients and orange peels powder rich in carbohydrate and fiber content The present study was aimed to investigate the effects of extrusion processing parameter on the level of total phenolic content (TPC), total flavonoid content (TFC), total tannin content and antioxidant activity of lentil-orange peel powder blend, also to investigate the possibility of blend as a candidate for production of protein rich extruded product by using response surface methodology. It was observed that, the physicochemical properties and sensory characteristics of lentil-orange peel based extrudate were highly dependent on process variables. The blend of lentil and orange peel powder has a huge potential for extrusion to produce ready-to-eat extruded with good acceptance. The overall best quality product was optimized and obtained at 16% moisture, 150 °C die temperature and 200 rpm screw speed. Extrusion process increased nutritional value of extruded product with TPC and TFC of 70.4 and 67.62% respectively and antioxidant activity of 60.6%. It showed higher stability at 150 °C with intermediate feed moisture content and despite the use of high temperatures in the extrusion-cooking is possible to minimize the loss of bioactive compounds to achieve products. Thus, results indicated that blend of lentil and orange peel may be used as raw material for the production of extruded snacks with great nutritional value.

  8. Processing and response of aluminum-lithium alloy composites reinforced with copper-coated silicon carbide particulates

    NASA Astrophysics Data System (ADS)

    Khor, K. A.; Cao, Y.; Boey, F. Y. C.; Hanada, K.; Murakoshi, Y.; Sudarshan, T. S.; Srivatsan, T. S.

    1998-02-01

    Lithium-containing aluminum alloys have shown promise for demanding aerospace applications because of their light weight, high strength, and good damage tolerance characteristics. Additions of ceramic reinforcements to an aluminum-lithium alloy can significantly enhance specific strength, and specific modulus while concurrently offering acceptable performance at elevated temperatures. The processing and fabrication of aluminum-lithium alloy-based composites are hampered by particulate agglomeration or clustering and the existence of poor interfacial relationships between the reinforcing phase and the matrix. The problem of distribution of the reinforcing phase in the metal matrix can be alleviated by mechanical alloying. This article presents the results of a study aimed at addressing and improving the interfacial relationship between the host matrix and the reinforcing phase. Copper-coated silicon carbide particulates are introduced as the particulate reinforcing phase, and the resultant composite mixture is processed by conventional milling followed by hot pressing and hot extrusion. The influence of extrusion ratio and extrusion temperature on microstructure and mechanical properties was established. Post extrusion processing by hot isostatic pressing was also examined. Results reveal the increase in elastic modulus of the aluminum-lithium alloy matrix reinforced with copper-coated SiC to be significantly more than the mechanically alloyed Al-Li/SiC counterpart. This suggests the possible contributions of interfacial strengthening on mechanical response in direct comparison with a uniform distribution of the reinforcing ceramic particulates.

  9. High conductivity, low cost aluminum composite for thermal management

    SciTech Connect

    Sommer, J.L.

    1997-04-01

    In order to produce an inexpensive packaging material that exhibits high thermal conductivity and low CTE, Technical Research Associates, Inc. (TRA) has shown in Phase I the feasibility of incorporating natural flake graphite in an aluminum matrix. TRA has developed a proprietary coating technique where graphite flakes have been coated with a thin layer of molybdenum/molybdenum carbide (approximately 0.2 microns). This barrier coating can protect the graphite flake from chemical reaction and high temperature degradation in molten aluminum silicon alloys. Methods to successfully vacuum infiltrate coated flake with molten aluminum alloys were developed. The resulted metal matrix composites exhibited lower CTE than aluminum metal. The CTE of the composites were significantly lower than aluminum and its alloys. The CTE can potentially be tailored for specific applications. The in plane thermal conductivity was higher than the aluminum matrix alloy. The thermal conductivity and CTE of the composite may be significantly improved by improving the bond strength of the molybdenum coating on the graphite flake. The flake can potentially be incorporated in the molten aluminum and pressure die cast to align the flakes within the aluminum matrix. By preferentially aligning high conductivity graphite flakes within a plane or direction, the thermal conductivity of the resulting composite will be above pure aluminum in the alignment direction.

  10. Corrosion of aluminum and aluminum alloys

    SciTech Connect

    Davis, J.R.

    1999-01-01

    This new handbook presents comprehensive coverage of the corrosion behavior of aluminum and aluminum alloys, with emphasis on practical information about how to select and process these materials in order to prevent corrosion attack. Described are the characteristics of these materials and the influences of composition, mechanical working, heat treatment, joining methods, microstructure, and environmental variables on their corrosion.

  11. ALUMINUM-CONTAINING POLYMERS

    DTIC Science & Technology

    ALUMINUM COMPOUNDS, *ORGANOMETALLIC COMPOUNDS, *POLYMERIZATION, *POLYMERS, ACRYLIC RESINS, ALKYL RADICALS, CARBOXYLIC ACIDS, COPOLYMERIZATION, LIGHT TRANSMISSION, STABILITY, STYRENES, TRANSPARENT PANELS.

  12. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  13. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  14. Aging Optimization of Aluminum-Lithium Alloy L277 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Cho, A.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties and improved damage tolerance. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. A design of experiments aging study was conducted for plate and a limited study on extrusions. To achieve the T8 temper, Alloy L277 is typically aged at 290 F for 40 hours. In the study for plate, a two-step aging treatment was developed through a design of experiments study and the one step aging used as a control. Based on the earlier NASA studies on 2195, the first step aging temperature was varied between 220 F and 260 F. The second step aging temperatures was varied between 290 F and 310 F, which is in the range of the single-step aging temperature. For extrusions, two, single-step, and one two-step aging condition were evaluated. The results of the design of experiments used for the T8 temper as well as a smaller set of experiments for the T6 temper for plate and the results for extrusions will be presented.

  15. Conservation of extrusion as an exit mechanism for Chlamydia.

    PubMed

    Zuck, Meghan; Sherrid, Ashley; Suchland, Robert; Ellis, Tisha; Hybiske, Kevin

    2016-10-01

    Chlamydiae exit via membrane-encased extrusion or through lysis of the host cell. Extrusions are novel, pathogen-containing structures that confer infectious advantages to Chlamydia, and are hypothesized to promote cell-to-cell spread, dissemination to distant tissues and facilitate immune evasion. The extrusion phenomenon has been characterized for several Chlamydia trachomatis serovars, but a thorough investigation of extrusion for additional clinically relevant C. trachomatis strains and Chlamydia species has yet to be performed. The key parameters investigated in this study were: (i) the conservation of extrusion across the Chlamydia genus, (ii) the functional requirement for candidate Chlamydia genes in extrusion formation i.e. IncA and CT228 and (iii) extrusion-mediated uptake, and consequent survival of Chlamydia inside macrophages. Inclusion morphology was characterized by live fluorescence microscopy, using an inverted GFP strategy, at early and mid-stages of infection. Enriched extrusions were used to infect bone marrow-derived macrophages, and bacterial viability was measured following macrophage engulfment. Our results demonstrate that extrusion is highly conserved across chlamydiae, including ocular, STD and LGV biovars and divergent Chlamydia species. Consequently, this exit mechanism for Chlamydia may fulfill common advantages important for pathogenesis.

  16. Direct extrusion process analysis with proposed numerical modeling improvements - product quality, process parameters, and microstructure prediction

    NASA Astrophysics Data System (ADS)

    de Pari, Luigi, Jr.

    2009-11-01

    entry in DEFORM(TM) 3-D. The third case study assessed an aluminum alloy's microstructure response to hot-direct extrusion processing conditions. The DEFORM(TM) 3-D simulated state variables were incorporated into a dynamic recrystallization (DRX) model that with reasonable accuracy predicted the surface grain structure evolution when compared to experimental results. By knowing the grain structure response the surface physical properties of the extrudate can be deduced.

  17. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  18. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  19. Updated Life-Cycle Assessment of Aluminum Production and Semi-fabrication for the GREET Model

    SciTech Connect

    Dai, Qiang; Kelly, Jarod C.; Burnham, Andrew; Elgowainy, Amgad

    2015-09-01

    This report serves as an update for the life-cycle analysis (LCA) of aluminum production based on the most recent data representing the state-of-the-art of the industry in North America. The 2013 Aluminum Association (AA) LCA report on the environmental footprint of semifinished aluminum products in North America provides the basis for the update (The Aluminum Association, 2013). The scope of this study covers primary aluminum production, secondary aluminum production, as well as aluminum semi-fabrication processes including hot rolling, cold rolling, extrusion and shape casting. This report focuses on energy consumptions, material inputs and criteria air pollutant emissions for each process from the cradle-to-gate of aluminum, which starts from bauxite extraction, and ends with manufacturing of semi-fabricated aluminum products. The life-cycle inventory (LCI) tables compiled are to be incorporated into the vehicle cycle model of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model for the release of its 2015 version.

  20. Gas extrusion in natural products total synthesis.

    PubMed

    Jiang, Xuefeng; Shi, Lei; Liu, Hui; Khan, Akbar H; Chen, Jason S

    2012-11-14

    The thermodynamic driving force from the release of a gaseous molecule drives a broad range of synthetic transformations. This review focuses on gas expulsion in key reactions within natural products total syntheses, selected from the past two decades. The highlighted examples survey transformations that generate sulfur dioxide, carbon dioxide, carbonyl sulfide, or nitrogen through polar, radical, pericyclic, photochemical, or organometallic mechanisms. Of particular interest are applications wherein the gas extrusion enables formation of a synthetically challenging motif, such as an unusually hindered or strained bond.

  1. Extrusion cycles during dome-building eruptions

    NASA Astrophysics Data System (ADS)

    de' Michieli Vitturi, M.; Clarke, A. B.; Neri, A.; Voight, B.

    2013-06-01

    We identify and quantify controls on the timescales and magnitudes of cyclic (periodic) volcanic eruptions using the numerical model DOMEFLOW (de' Michieli Vitturi et al., 2010) which was developed by the authors for magma systems of intermediate composition. DOMEFLOW treats the magma mixture as a liquid continuum with dispersed gas bubbles and crystals in thermodynamic equilibrium with the melt and assumes a modified Poiseuille form of the viscous term for fully developed laminar flow in a conduit of cylindrical cross-section. During ascent, magma pressure decreases and water vapor exsolves and partially degasses from the melt as the melt simultaneously crystallizes, causing changes in mixture density and viscosity. Two mechanisms previously proposed to cause periodic eruption behavior have been implemented in the model and their corresponding timescales explored. The first applies a stick-slip model in which motion of a shallow solid plug is resisted by static/dynamic friction, as described in Iverson et al. (2006). For a constant magma supply rate at depth, this mechanism yields cyclic extrusion with timescales of seconds to tens of seconds with values generally depending on assumed friction coefficients. The second mechanism does not consider friction but treats the plug as a high-viscosity Newtonian fluid. During viscous resistance, pressure beneath the degassed plug can increase sufficiently to overcome dome overburden, plug weight, and viscous forces, and ultimately drive the plug from the conduit. In this second model cycle periods are on the order of hours, and decrease with increasing magma supply rate until a threshold is reached, at which point periodicity disappears and extrusion rate becomes steady (vanishingly short periods). Magma volatile content for fixed chamber pressure has little effect on cycle timescales, but increasing volatile content increases mass flow rate and cycle magnitude as defined by the difference between maximum and minimum

  2. Rapid billet loader aids extrusion of refractory metals

    NASA Technical Reports Server (NTRS)

    Dolinshek, A. F.; Herman, L. E.

    1964-01-01

    A combination gravity and manually powered rapid billet loader reduces the time required for transferring hot metal billets from a heating furnace to an extrusion press. Positioned between the furnace and extrusion press, this loader is a simple slide-delivery device.

  3. Extracellular cleavage of E-cadherin promotes epithelial cell extrusion.

    PubMed

    Grieve, Adam G; Rabouille, Catherine

    2014-08-01

    Epithelial cell extrusion and subsequent apoptosis is a key mechanism to prevent the accumulation of excess cells. By contrast, when driven by oncogene expression, apical cell extrusion is followed by proliferation and represents an initial step of tumorigenesis. E-cadherin (E-cad), the main component of adherens junctions, has been shown to be essential for epithelial cell extrusion, but its mechanistic contribution remains unclear. Here, we provide clear evidence that cell extrusion can be driven by the cleavage of E-cad, both in a wild-type and an oncogenic environment. We first show that CDC42 activation in a single epithelial cell results in its efficient matrix metalloproteinase (MMP)-sensitive extrusion through MEK signalling activation and this is supported by E-cad cleavage. Second, using an engineered cleavable form of E-cad, we demonstrate that, by itself, truncation of extracellular E-cad at the plasma membrane promotes apical extrusion. We propose that extracellular cleavage of E-cad generates a rapid change in cell-cell adhesion that is sufficient to drive apical cell extrusion. Whereas in normal epithelia, extrusion is followed by apoptosis, when combined with active oncogenic signalling, it is coupled to cell proliferation.

  4. Extrusion of small-diameter, thin-wall tungsten tubing

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Gyorgak, C. A.

    1967-01-01

    Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.

  5. When a Baby Dies.

    ERIC Educational Resources Information Center

    Church, Martha Jo; And Others

    Written especially for grieving mothers whose babies have died, this booklet offers an overview of stages and experiences through which bereaved parents commonly pass. Specifically, the text is intended to give comfort to bereaved parents, offer insight into the grieving process, and provide thoughts on leave-taking ceremonies. The first section…

  6. When Somebody Dies

    MedlinePlus

    ... to have fun with. That absence leaves a big hole in our lives. Maybe you had a pet that died . Remember the first few times you walked into the house after your dog or cat was gone? It was strange not to have ...

  7. Die Kosmologie der Griechen.

    NASA Astrophysics Data System (ADS)

    Mittelstraß, J.

    Contents: 1. Mythische Eier. 2. Thales-Welten. 3. "Alles ist voller Götter". 4. Griechische Astronomie. 5. "Rettung der Phänomene". 6. Aristotelische Kosmololgie. 7. Aristoteles-Welt und Platon-Welt. 8. Noch einmal: die Göttlichkeit der Welt. 9. Griechischer Idealismus.

  8. When Somebody Dies

    MedlinePlus

    ... A A What's in this article? When — and How — Does It Happen? Where Do Dead People Go? What Does Grieving Mean? What About Me? If I'm Going to Die Someday, What Should I Do Now? en español ...

  9. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  10. Aluminum: Recycling of Aluminum Dross/Saltcake

    SciTech Connect

    Blazek, S.

    1999-01-29

    As this NICE3 publication details, the objective of this project is to commercialize the process technology to eliminate all landfill waste associated with black dross and saltcake generated from aluminum recycling in the United States.

  11. Tube extrusion from permeabilized giant vesicles

    NASA Astrophysics Data System (ADS)

    Borghi, N.; Kremer, S.; Askovic, V.; Brochard-Wyart, F.

    2006-08-01

    This letter reports the permeabilization effects of chemical additives on mechanical properties of Giant Unilamellar Vesicles (GUVs). We use a surfactant, Tween 20, inducing transient pores and a protein, Streptolysin O, inducing permanent pores in the membrane. Lipid tubes are extracted from GUVs anchored onto the tip of a micro-needle and submitted to hydrodynamic flows. On bare vesicles, tube extrusion is governed by the entropic elasticity of the membrane. The vesicle tension increases until it balances the flow velocity U and the tube reaches a stationary length. In permeabilized vesicles, the membrane tension is maintained at a constant value σp by the permeation of inner solution through nanometric pores. This allows extrusion of "infinite" tubes at constant velocity that never reach a stationary length. Tween-20 preliminary results suggest that σp strongly depends on surfactant concentration. For Streptolysin O, we have measured σp vs. U and found two regimes: a "high-porosity" regime for U > Up0 and a "low-porosity" regime for U < Up0, where Up0 is related to the number of pores on the vesicle surface.

  12. High Density Die Casting (HDDC): new frontiers in the manufacturing of heat sinks

    NASA Astrophysics Data System (ADS)

    Sce, Andrea; Caporale, Lorenzo

    2014-07-01

    Finding a good solution for thermal management problems is every day more complex. due to the power density and the required performances. When a solution suitable for high volumes is needed. die-casting and extrusion are the most convenient technologies. However designers have to face the well-known limitations for those processes. High Density Die Casting (HDDC) is a process under advanced development. in order to overcome the extrusion and traditional die casting limits by working with alloys having much better thermal performances than the traditional die-casting process. while keeping the advantages of a flexible 3D design and a low cost for high volumes. HDDC offers the opportunity to design combining different materials (aluminium and copper. aluminium and stainless steel) obtaining a structure with zero porosity and overcoming some of die-casting limits. as shown in this paper. A dedicated process involving embedded heat pipes is currently under development in order to offer the possibility to dramatically improve the heat spreading.

  13. Preparation of chalcogenide glass fiber using an improved extrusion method

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Wang, Xunsi; Zhu, Minming; Xu, Huijuan; Nie, Qiuhua; Dai, Shixun; Tao, Guangming; Shen, Xiang; Cheng, Ci; Zhu, Qingde; Liao, Fangxing; Zhang, Peiquan; Zhang, Peiqing; Liu, Zijun; Zhang, Xianghua

    2016-05-01

    We developed the extrusion method to prepare arsenic-free chalcogenide glass fibers with glass cladding. By using the double nested extrusion molds and the corresponding isolated stacked extrusion method, the utilization rate of glass materials was greatly improved compared with the conventional extrusion method. Fiber preforms with optimal stability of core/cladding ratio throughout the 160 mm length were prepared using the developed extrusion method. Typical fiber structure defects between the core/cladding interface, such as bubbles, cracks, and core diameter variation, were effectively eliminated. Ge-Sb-Se/S chalcogenide glasses were used to form a core/cladding pair and fibers with core/cladding structure were prepared by thermally drawing the extruded preforms. The transmission loss, fiber bending loss, and other optical characters of the fibers were also investigated.

  14. Abl suppresses cell extrusion and intercalation during epithelium folding.

    PubMed

    Jodoin, Jeanne N; Martin, Adam C

    2016-09-15

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical-basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT.

  15. A comparison of screen and ram extrusion-spheronisation of simple pharmaceutical pastes based on microcrystalline cellulose.

    PubMed

    Zhang, M; Wilson, D I; Ward, R; Seiler, C; Rough, S L

    2013-11-18

    The performance of two laboratory-scale extrusion apparatuses used to approximate the action of an industrial screen extruder, namely a multi-holed die ram extruder and a roller screen extruder, were compared. Both devices featured short dies (ram 2mm, screen 1mm) with die diameter 1mm and hole area fraction approaching 0.25. A series of water/microcrystalline cellulose (MCC) pastes with water contents varying from 45 to 60 wt% were extruded and pellets obtained from subsequent spheronisation of the extrudates characterised in terms of size and shape. Each device exhibited a different range of processing windows for acceptable spheronised products, with the ram apparatus being able to extrude a wider range of paste water contents than the screen device. The pellets obtained from extrusion-spheronisation (E-S) of the pastes via the screen device were in general smaller, with a wider size distribution, than those from ram E-S. These results are attributed to the different mechanical histories experienced by the pastes in the two types of extruder, which lead to different extrudate densities being achieved. MCC/water/calcium carbonate pastes were also tested, where the latter component represented a 'hard' (non-deformable) active pharmaceutical ingredient. Addition of calcium carbonate increased the stiffness of the paste, which could be countered by adjusting the water content of the deformable MCC/water matrix within the extrudability limits of the latter material.

  16. Herausforderungen durch die deutsche Wiedervereinigung

    NASA Astrophysics Data System (ADS)

    Stäglin, Reiner

    Die Wiedervereinigung stellte auch die Statistik vor große Aufgaben. Die als Organ der staatlichen Planung staatsnah orientierte Statistik der DDR musste auf das zur Neutralität und wissenschaftlichen Unabhängigkeit verpflichtete System der Bundesrepublik umgestellt werden. Ebenso verlangten die Universitäten eine Neuorientierung. Die Deutsche Statistische Gesellschaft hat sich vor allem dreier Aufgaben mit großem Engagement, aber auch mit Bedachtsamkeit angenommen: Aufnahme und Integration der Statistiker aus den neuen Bundesländern in die Gesellschaft, Begleitung der Neuausrichtung des Faches Statistik an deren Hochschulen und Sicherung sowie Nutzung von Datenbeständen der ehemaligen DDR.

  17. Aspects of aluminum toxicity

    SciTech Connect

    Hewitt, C.D.; Savory, J.; Wills, M.R. )

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  18. Modeling the Mechanical Performance of Die Casting Dies

    SciTech Connect

    R. Allen Miller

    2004-02-27

    The following report covers work performed at Ohio State on modeling the mechanical performance of dies. The focus of the project was development and particularly verification of finite element techniques used to model and predict displacements and stresses in die casting dies. The work entails a major case study performed with and industrial partner on a production die and laboratory experiments performed at Ohio State.

  19. Fine Grain Aluminum Superplasticity

    DTIC Science & Technology

    1980-02-01

    time at elevated temperature for 7475 aluminum alloy 5 2 Optical micrographs of 7075 aluminum alloy after exposure to 5160C (960oF) for times...applied to Al-Zn-Mg-Cu ( 7075 Al) alloy. Subsequent developments by Waldman et al. (refs. 8-11) resulted in the demonstration that 7000 series alloys...a number of aluminum alloys. With such a fine grain structure, high temperature deformation character- istics approaching superplastic behavior

  20. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  1. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  2. Mechanical Properties of Solid-State Recycled 4xxx Aluminum Alloy Chips

    NASA Astrophysics Data System (ADS)

    Tokarski, Tomasz

    2016-08-01

    The direct production of aluminum from bauxite ores is known to be a very energetic-intensive operation compared to other metallurgical processes. Due to energy issues and the rapid increase in aluminum demand, new kinds of aluminum production processes are required. Aluminum waste recycling, which has an advantage of lowering the cost of electric power consumption, is considered to be an alternative route for material manufacturing. In this work, the way of reusing aluminum EN-AC 44000 alloy scraps by hot extrusion was presented. Metal chips of different sizes and morphology were cold compacted into billet form and then hot extruded. Mechanical properties investigations combined with microstructure observations were performed. Mechanical anisotropy behavior of material was evaluated on the base of tensile test experiments performed on samples machined at 0°, 45°, and 90°, respectively, to the extrusion direction. It was found that the initial size of the chips has an influence on the mechanical properties of the received profiles. Samples produced from fine chips revealed higher tensile strength in comparison to larger chips, which can be attributed to a refined microstructure containing fine, hard Si particles and Fe-rich intermetallic phases. Finally, it was found that anisotropic behavior of chip-based profiles is similar to conventionally cast and extruded materials which prove good bonding quality between chips.

  3. Illustration of cross flow of polystyrene melts through a coathanger die

    NASA Astrophysics Data System (ADS)

    Schöppner, V.; Henke, B.

    2015-05-01

    To design an optimal coathanger die with a uniform flow rate distribution and low pressure drop, it is essential to understand the flow conditions in the die. This is important because the quality of the product is influenced by the flow velocity and the flow rate distribution. In extrusion dies, cross flows also occur in addition to the main flow, which flow perpendicular to the main flow. This results in pressure gradients in the extrusion direction, which have an influence on flow distribution and pressure drop in the die. In recent decades, quantitative representation and analysis of physical flow processes have made considerable progress in predicting the weather, developing drive technologies and designing aircraft using simulation methods and lab trials. Using the flow-line method, the flow is analyzed in flat film extrusion dies with a rectangular cross-section, in particular cross flows. The simplest method to visualize the flow is based on the measurement of obstacle orientation in the flow field by adding individual particles. A near-surface flow field can be visualized by using wool or textile yarns. By sticking thin, frayed at the ends of strands of wool surface that is to be examined cross flows, near-wall profiles of the flow and vortex and separation regions can be visualized. A further possibility is to add glass fibers and analyze the fiber orientation by microscopy and x-ray analysis. In this paper the influence of process parameters (e.g. melt temperatures and throughput) on cross flow and fiber orientation is described.

  4. Influence of chlorpheniramine maleate on topical hydroxypropylcellulose films produced by hot-melt extrusion.

    PubMed

    Repka, M A; McGinity, J W

    2001-08-01

    The objective of this investigation is to study the influence of chlorpheniramine maleate (CPM) on the chemical and physical-mechanical properties of hydroxypropylcellulose (HPC) hot-melt extruded films without the use of a traditional plasticizer HPC films containing CPM in concentrations of 1, 5, and 10 wt% were prepared by hot-melt extrusion utilizing a Randcastle Microtruder (Model #RCP-0750) with a 6-in. flex-film die. The physical-mechanical properties including tensile strength and percent elongation were determined on an Instron according to the ASTM standards. Glass transition temperatures and thermal analysis of the extruded films were determined utilizing a DSC 2920 Modulated DSC and Thermal Analyst 2000 software. The crystalline properties of the drug, polymer, and extruded films were studied via wide angle X-ray diffraction (XRD) using a Philips Vertical Scanning Diffractometer (Type 42273, Philips Electronic Instrument, Mount Vernon, NY). Gel permeation chromatography was used to study the stability of the polymer matrix as a function of different concentrations of CPM and processing conditions. CPM functioned as an effective plasticizer, increasing percent elongation and decreasing tensile strength in a concentration dependent manner All three concentrations of extruded films exhibited a 10- to 12-fold decrease in tensile strength in contrast to a fourfold increase in percent elongation when testing was performed perpendicular to flow vs. in the direction of flow. The drug was also shown by XRD and DSC data to be in solution in the HPC matrix within the films up to the 10% level. In addition, CPM functioned as a processing aid in the extrusion of hot-melt films, stabilizing the weight-average molecular weight of HPC and allowing for film processing at lower temperatures. CPM could potentially be a candidate antihistamine for transdermal or transmucosal applications in film devices prepared by hot-melt extrusion technology.

  5. Flow analysis in the extrusion of tellurite glass preforms for enhanced optical fibers

    NASA Astrophysics Data System (ADS)

    Belwalkar, Amit Ajit

    Tellurite glasses have excellent optical properties such as good transmission in the mid infrared, high linear and nonlinear refractive indices and physical properties such as good thermal and chemical stability and low temperature forming ability. All these makes tellurite glass an excellent candidate for the fabrication of fiber performs with a variety of geometric profiles which can be tailored to different optical applications, particularly nonlinear applications such as the development of ultra-broad laser sources based on supercontinuum generation. Towards such applications, various tube preforms with excellent surface quality were extruded from the tellurite glass 75TeO 2-20ZnO-5Na2O (TZN-75) on our laboratory press. However, the presence of optical inhomogeneity in the form of "flow lines" (FL) was noticed in the cross-sections of the extruded preforms, which can be detrimental for optical applications because they can distort optical modes in fibers and contribute to losses through the scattering of light. A numerical model was developed to estimate the shear rate and shear stress distribution within the extrusion die, and determine the range of values that would produce extrudates free of these FLs. A theoretical flow analysis and dynamic and steady state shear tests were also performed and their results compared with those of the numerical simulation. An extrusion forming diagram of shear stress distribution for TZN-75 was developed showing the range of values of the extrusion parameters that would produce extruded preforms free of FLs. Such performs should result in fibers with much lower loss and better propagation characteristics.

  6. Die kalte Zunge

    NASA Astrophysics Data System (ADS)

    Bartels, Sören; Müller, Rüdiger

    Gefühlte Temperaturen. Ist ein Null Grad Celsius kalter Metallstab eigentlich kälter als ein Holzstab mit der selben Temperatur? Rein physikalisch gesehen natürlich nicht, aber wenn wir beide Stäbe anfassen, kommt uns der Metallstab deutlich kälter vor. Und wer kennt nicht die Szene aus dem Film Dumm und Dümmer in der Harry mit seiner Zunge am Metallrahmen des Skilifts hängen bleibt.Würde das auch passieren, wenn man an einem eiskalten Stück Holz lecken würde? Wohl kaum, doch woran liegt das eigentlich? Unterschiedliche Materialien haben verschiedene Fähigkeiten, Wärme zu übertragen und zu leiten. So transportiert Metall die von der Zunge ausgehende Wärme sehr schnell weiter und verändert seine Temperatur kaum, während die Zunge abkühlt. Holz hingegen leitet Wärme fast gar nicht und daher wird der Teil, der von der Zunge berührt wird, aufgewärmt.

  7. High-efficiency approach for fabricating MTE rotor by micro-EDM and micro-extrusion

    NASA Astrophysics Data System (ADS)

    Geng, Xuesong; Chi, Guanxin; Wang, Yukui; Wang, Zhenlong

    2014-07-01

    Micro-gas turbine engine (MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, the main manufacturing technologies of the MTE rotor are directed forming fabrication technologies. However, these technologies have a series of problems, such as complex processing technology high manufacturing cost, and low processing efficiency, and so on. This paper takes advantage of micro electric discharge machining (micro-EDM) in the field of microminiature molds manufacturing, organizes many processing technologies of micro-EDM reasonably to improve processing accuracy, presents an integrated micro-EDM technology and its process flow to fabricate MTE rotor die, and conducts a series of experiments to verify efficiency of this integrated micro-EDM. The experiments results show that the MTE rotor die has sharp outline and ensure the good consistency of MTE rotor blades. Meanwhile, the MTE rotor die is applied to micro extrusion equipment, and technologies of micro-EDM and micro forming machining are combined based on the idea of the molds manufacturing, so the MTE rotor with higher aspect ratio and better consistency of blades can be manufactured efficiently. This research presents an integrated micro-EDM technology and its process flow, which promotes the practical process of MTE effectively.

  8. Heated die facilitates tungsten forming

    NASA Technical Reports Server (NTRS)

    Chattin, J. H.; Haystrick, J. E.; Laughlin, J. C.; Leidy, R. A.

    1966-01-01

    Tungsten forming in a press brake employs a bottom die assembly with a heating manifold between two water-cooled die sections. The manifold has hydrogen-oxygen burners spaced along its length for even heat during forming.

  9. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  10. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    PubMed Central

    Zheng, Jun; Rehmann, Lars

    2014-01-01

    Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic) hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs. PMID:25334065

  11. Turbine airfoil fabricated from tapered extrusions

    DOEpatents

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  12. Hot-melt extrusion--basic principles and pharmaceutical applications.

    PubMed

    Lang, Bo; McGinity, James W; Williams, Robert O

    2014-09-01

    Originally adapted from the plastics industry, the use of hot-melt extrusion has gained favor in drug delivery applications both in academia and the pharmaceutical industry. Several commercial products made by hot-melt extrusion have been approved by the FDA, demonstrating its commercial feasibility for pharmaceutical processing. A significant number of research articles have reported on advances made regarding the pharmaceutical applications of the hot-melt extrusion processing; however, only limited articles have been focused on general principles regarding formulation and process development. This review provides an in-depth analysis and discussion of the formulation and processing aspects of hot-melt extrusion. The impact of physicochemical properties of drug substances and excipients on formulation development using a hot-melt extrusion process is discussed from a material science point of view. Hot-melt extrusion process development, scale-up, and the interplay of formulation and process attributes are also discussed. Finally, recent applications of hot-melt extrusion to a variety of dosage forms and drug substances have also been addressed.

  13. Eulerian hydrocode modeling of a dynamic tensile extrusion experiment (u)

    SciTech Connect

    Burkett, Michael W; Clancy, Sean P

    2009-01-01

    Eulerian hydrocode simulations utilizing the Mechanical Threshold Stress flow stress model were performed to provide insight into a dynamic extrusion experiment. The dynamic extrusion response of copper (three different grain sizes) and tantalum spheres were simulated with MESA, an explicit, 2-D Eulerian continuum mechanics hydrocode and compared with experimental data. The experimental data consisted of high-speed images of the extrusion process, recovered extruded samples, and post test metallography. The hydrocode was developed to predict large-strain and high-strain-rate loading problems. Some of the features of the features of MESA include a high-order advection algorithm, a material interface tracking scheme and a van Leer monotonic advection-limiting. The Mechanical Threshold Stress (MTS) model was utilized to evolve the flow stress as a function of strain, strain rate and temperature for copper and tantalum. Plastic strains exceeding 300% were predicted in the extrusion of copper at 400 m/s, while plastic strains exceeding 800% were predicted for Ta. Quantitative comparisons between the predicted and measured deformation topologies and extrusion rate were made. Additionally, predictions of the texture evolution (based upon the deformation rate history and the rigid body rotations experienced by the copper during the extrusion process) were compared with the orientation imaging microscopy measurements. Finally, comparisons between the calculated and measured influence of the initial texture on the dynamic extrusion response of tantalum was performed.

  14. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  15. Designing a Die for Hydroforming

    NASA Astrophysics Data System (ADS)

    Vasile, Radu

    2016-12-01

    Designing a die is in every application field an intensive process of bringing together know how from design, testing and every-day use from previous dies with the new application requirements. Contribution deals with a knowledge oriented, modular and feature integrated computer aided design system for die development. This paper describes the concepts behind designing a hydroforming die for sheet metal forming, with easy application-use in small workshops for testing hydroforming capabilities of different materials.

  16. A novel transflectance near infrared spectroscopy technique for monitoring hot melt extrusion.

    PubMed

    Kelly, A L; Halsey, S A; Bottom, R A; Korde, S; Gough, T; Paradkar, A

    2015-12-30

    A transflectance near infra red (NIR) spectroscopy approach has been used to simultaneously measure drug and plasticiser content of polymer melts with varying opacity during hot melt extrusion. A high temperature reflectance NIR probe was mounted in the extruder die directly opposed to a highly reflective surface. Carbamazepine (CBZ) was used as a model drug, with polyvinyl pyrollidone-vinyl acetate co-polymer (PVP-VA) as a matrix and polyethylene glycol (PEG) as a plasticiser. The opacity of the molten extrudate varied from transparent at low CBZ loading to opaque at high CBZ loading. Particulate amorphous API and voids formed around these particles were found to cause the opacity. The extrusion process was monitored in real time using transflectance NIR; calibration and validation runs were performed using a wide range of drug and plasticiser loadings. Once calibrated, the technique was used to simultaneously track drug and plasticiser content during applied step changes in feedstock material. Rheological and thermal characterisations were used to help understand the morphology of extruded material. The study has shown that it is possible to use a single NIR spectroscopy technique to monitor opaque and transparent melts during HME, and to simultaneously monitor two distinct components within a formulation.

  17. Supervisory control system for monitoring a pharmaceutical hot melt extrusion process.

    PubMed

    Markl, Daniel; Wahl, Patrick R; Menezes, José C; Koller, Daniel M; Kavsek, Barbara; Francois, Kjell; Roblegg, Eva; Khinast, Johannes G

    2013-09-01

    Continuous pharmaceutical manufacturing processes are of increased industrial interest and require uni- and multivariate Process Analytical Technology (PAT) data from different unit operations to be aligned and explored within the Quality by Design (QbD) context. Real-time pharmaceutical process verification is accomplished by monitoring univariate (temperature, pressure, etc.) and multivariate (spectra, images, etc.) process parameters and quality attributes, to provide an accurate state estimation of the process, required for advanced control strategies. This paper describes the development and use of such tools for a continuous hot melt extrusion (HME) process, monitored with generic sensors and a near-infrared (NIR) spectrometer in real-time, using SIPAT (Siemens platform to collect, display, and extract process information) and additional components developed as needed. The IT architecture of such a monitoring procedure based on uni- and multivariate sensor systems and their integration in SIPAT is shown. SIPAT aligned spectra from the extrudate (in the die section) with univariate measurements (screw speed, barrel temperatures, material pressure, etc.). A multivariate supervisory quality control strategy was developed for the process to monitor the hot melt extrusion process on the basis of principal component analysis (PCA) of the NIR spectra. Monitoring the first principal component and the time-aligned reference feed rate enables the determination of the residence time in real-time.

  18. Workability of a gamma titanium aluminide alloy during equal channel angular extrusion

    SciTech Connect

    Semiatin, S.L.; Segal, V.M.; Goforth, R.E.; Hartwig, T.; Goetz, R.L.

    1995-08-15

    Canned performs of the titanium aluminide Ti-45.5Al-2Cr-2Nb were hot worked via equal channel angular extrusion (ECAE). The following conclusions are drawn regarding the effects of extrusion temperature and microstructural condition on workability controlled by shear localization: (1) The tendency for nonuniform deformation during ECAE increases rapidly as the preheat temperature decrease. The trend is most pronounced for material in a cast + HIP`ed condition as compared to that in a wrought condition. The nonuniform flow may develop into well defined shear bands and shear cracks in the cast + HIP`ed titanium aluminide. (2) The occurrence of shear bands and the severity of flow localization within the shear bands can be correlated at least on a first-order basis to material flow behavior as quantified by the alpha parameter, the ratio of the normalized flow softening rate to the strain rate sensitivity exponent. (3) Multi-pass ECAE sequences to breakdown and refine the structure of near-gamma titanium aluminide ingot can be designed through proper consideration of the effect of temperature and material condition on flow localization tendencies. However, can design to minimize die chilling may play an important role in industrial implementation of the ECAE process for this alloy system.

  19. Enhancements in Magnesium Die Casting Impact Properties

    SciTech Connect

    David Schwam; John F. Wallace; Yulong Zhu; Srinath Viswanathan; Shafik Iskander

    2000-06-30

    % in AM50 to over 9% in AZ91, more of the intermetallic Mg17Al12 is formed in the microstructure. For instance, for 15 increase in the aluminum content from AM50 to AM60, the volume fraction of eutectic present in the microstructure increases by 35%! Eventually, the brittle Mg17Al12 compound forms an interconnected network that reduces ductility and impact resistance. The lower aluminum in AM50 and AM60 are therefore a desirable feature in applications that call for higher impact resistance. Further improvement in impact resistance depends on the processing condition of the casting. Sound castings without porosity and impurities will have better mechanical properties. Since magnesium oxidizes readily, good melting and metal transfer practices are essential. The liquid metal has to be protected from oxidation at all times and entrainment of oxide films in the casting needs to be prevented. In this regard, there is evidence that us of vacuum to evacuate air from the die casting cavity can improve the quality of the castings. Fast cooling rates, leading to smaller grain size are beneficial and promote superior mechanical properties. Micro-segregation and banding are two additional defect types often encountered in magnesium alloys, in particular in AZ91D. While difficult to eliminate, segregation can be minimized by careful thermal management of the dies and the shot sleeve. A major source of segregation is the premature solidification in the shot sleeve. The primary solid dendrites are carried into the casting and form a heterogeneous structure. Furthermore, during the shot, segregation banding can occur. The remedies for this kind of defects include a hotter shot sleeve, use of insulating coatings on the shot sleeve and a short lag time between pouring into the shot sleeve and the shot.

  20. High energy density aluminum battery

    SciTech Connect

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  1. Calibrator device for the extrusion of cable coatings

    NASA Astrophysics Data System (ADS)

    Garbacz, Tomasz; Dulebová, Ľudmila; Spišák, Emil; Dulebová, Martina

    2016-05-01

    This paper presents selected results of theoretical and experimental research works on a new calibration device (calibrators) used to produce coatings of electric cables. The aim of this study is to present design solution calibration equipment and present a new calibration machine, which is an important element of the modernized technology extrusion lines for coating cables. As a result of the extrusion process of PVC modified with blowing agents, an extrudate in the form of an electrical cable was obtained. The conditions of the extrusion process were properly selected, which made it possible to obtain a product with solid external surface and cellular core.

  2. [Enucleation: causes of extrusion of orbital implants (author's transl)].

    PubMed

    Hanselmayer, H; Ritzinger, I

    1978-02-01

    The frequency and the causes of extrusion of orbital implants have been investigated. Of the 294 patients in which enucleation was done, in 17 cases (5.8%) extrusion of the first implant developed; in 9 cases with second or third implantations another 5 implants have been extruded. The extrusion of implants is caused mainly by the operative technique and only rarely by intolerance reactions. For a reliable healing exact sutures of the muscles and also exact closure of the implant with plenty of covering tissue is important.

  3. Hot extrusion of B2 iron aluminide powders

    NASA Technical Reports Server (NTRS)

    Strothers, S.; Vedula, K.

    1987-01-01

    The objective of the study was to investigate the effect of powder and processing variables on the microstructure and resultant tensile properties of an extruded FeAlZrB alloy. For a given powder particle size, increasing the extrusion temperature from 1250 to 1450 K is found to increase the grain size and produce a more uniform microstructure. At high extrusion temperatures, where grain boundary mobility is high, powder size is not critical in determining the grain size. The addition of Y2O3 dispersion (1 vol pct) by mechanical alloying makes it possible to obtain very fine-grained materials at low and high extrusion temperatures.

  4. Analysis of Solid State Bonding in the Extrusion Process of Magnesium Alloys --Numerical Prediction and Experimental Verification

    NASA Astrophysics Data System (ADS)

    Alharthi, Nabeel H.

    The automotive industry developments focused on increasing fuel efficiency are accomplished by weight reduction of vehicles, which consequently results in less negative environmental impact. Usage of low density materials such as Magnesium alloys is an approach to replace heavier structural components. One of the challenges in deformation processing of Magnesium is its low formability attributed to the hexagonal close packed (hcp) crystal structure. The extrusion process is one of the most promising forming processes for Magnesium because it applies a hydrostatic compression state of stress during deformation resulting in improved workability. Many researchers have attempted to fully understand solid state bonding during deformation in different structural materials such as Aluminum, Copper and other metals and alloys. There is a lack of sufficient understanding of the extrusion welding in these materials as well as very limited knowledge on this subject for hollow profiles made from Magnesium alloys. The weld integrity and the characteristic of the welding microstructure are generally unknown. In this dissertation three related research projects are investigated by using different tools such as microstructure characterization, mechanical testing, thermo-mechanical physical simulation and finite element numerical modeling. Project 1: Microstructure characterization supported by mechanical testing of the extrusion welding regions in Magnesium alloy AM30 extrudate. The microstructure characterization was conducted using Light Optical Microscopy (LOM), in addition to LOM the electron backscattered diffraction (EBSD) technique was implemented to characterize in depth the deformed and welded microstructure. Project 2: Finite element numerical simulation of AM30 extrudate to model different process parameters and their influence on localized state variables such as strain, strain rate, temperature and normal pressure within the weld zone. Project 3: Physical simulation

  5. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  6. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  7. Spray-formed tooling and aluminum strip

    SciTech Connect

    McHugh, K.M.

    1995-11-01

    Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

  8. Effect of extrusion process parameters and pregelatinized rice flour on physicochemical properties of ready-to-eat expanded snacks.

    PubMed

    Gat, Yogesh; Ananthanarayan, Laxmi

    2015-05-01

    Present study was conducted to investigate effects of pregelatinized rice flour and extrusion process parameters such as feed moisture (16-19 %), die temperature (115-145 °C) and screw speed (150-250 rpm) on physicochemical properties of ready-to-eat expanded snacks by using co-rotating twin-screw extruder. Higher die temperature increased extrudate density and WSI but reduced die pressure, torque and expansion. Increased feed moisture content resulted in extrudates with increased density, WAI and hardness but reduced die pressure, expansion and WSI. Screw speed was found to have no significant effect on expansion and hardness of extrudates, while increase in screw speed resulted in increased WAI of extrudates and reduced torque of extrudates. Effect of pregelatinized rice flour on extrudate expansion and hardness was analysed at 16 % feed moisture, 135 °C die temperature and 150 rpm screw speed. Use of pregelatinized rice flour increased expansion while it reduced hardness of extrudates.

  9. Ultra-high strength Mg-9Gd-4Y-0.5Zr alloy with bi-modal structure processed by traditional extrusion

    NASA Astrophysics Data System (ADS)

    Hong, M.; Shah, S. S. A.; Wu, D.; Chen, R. S.; Du, X. H.; Hu, N. T.; Zhang, Y. F.

    2016-11-01

    It is usual to observe that multi-scale structures can lead to combined strength and ductility both in aluminum alloys and steels, but related research has been seldom reported yet in magnesium alloys. In this study, applying traditional one step extrusion, we have successfully obtained a bimodal (Mg-9Gd-4Y-0.5Zr) alloy capable of ultra-high strength. The characterized sample reveal a bi-modal microstructure with two constitutions, i.e. stretched coarse-grain region with strong basal fiber texture and recrystallization fine-grain region. The bi-modal structured sample exhibit excellent mechanical properties with an ultimate strength 508 MPa and elongation 8% via 400 °C extrusion and subsequently 200 °C-60 h peak aging process. Ultra-high strength can be attributed to its strong extrusion texture in stretched coarse grains and dispersed nano-scale precipitates. This unique bimodal structure could be produced easily by one step extrusion, which is quite reliable and low costs in industrial applications of magnesium alloys with ultra-high strength as well as ideal ductility.

  10. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  11. Extrusion-formed uranium-2.4 wt. % article with decreased linear thermal expansion and method for making the same

    DOEpatents

    Anderson, Robert C.; Jones, Jack M.; Kollie, Thomas G.

    1982-01-01

    The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22.degree. C. and 600.degree. C. which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/sec. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630.degree. C. and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  12. Dying with dignity.

    PubMed

    Madan, T N

    1992-08-01

    Death is a theme of central importance in all cultures, but the manner in which it is interpreted varies from society to society. Even so, traditional cultures, including Christian, Hindu and Jain religious traditions, exhibited a positive attitude to death and did not look upon it in a dualistic framework of good vs bad, or desirable vs undesirable. Nor was pessimism the dominant mood in their thinking about death itself. A fundamental paradigm shift occurred in the West in the eighteenth century when death was desacralized and transformed into a secular event amenable to human manipulation. From those early beginnings, dying and death have been thoroughly medicalized and brought under the purview of high technology in the twentieth century. Once death is seen as a problem for professional management, the hospital displaces the home, and specialists with different kinds and degrees of expertise take over from the family. Everyday speech and the religious idiom yield place to medical jargon. The subject (an ageing, sick or dying person) becomes the object of this make-believe yet real world. As the object of others' professional control, he or she loses the freedom of self-assessment, expression and choice. Or, he or she may be expected to choose when no longer able to do so. Thus, not only freedom but dignity also is lost, and lawyers join doctors in crisis manipulation and perpetuation. Although the modern medical culture has originated in the West, it has gradually spread to all parts of the world, subjugating other kinds of medical knowledge and other attitudes to dying and death.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Studies in reactive extrusion processing of biodegradable polymeric materials

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  14. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys.

  15. Encapsulation of orange terpenes investigating a plasticisation extrusion process.

    PubMed

    Tackenberg, Markus W; Krauss, Ralph; Schuchmann, Heike P; Kleinebudde, Peter

    2015-01-01

    Extrusion is widely used for flavour encapsulation. However, there is a lack of process understanding. This study is aimed at improving the understanding of a counter rotating twin screw extrusion process. Orange terpenes as model flavour, maltodextrin and sucrose as matrix materials, and a water feed rate between 4.0% and 5.7% were applied. Product temperatures < 80 °C and specific mechanical energy inputs <260 Wh/kg resulted. Amorphous and partly crystalline samples were obtained. The loss of crystalline sucrose was linked to a dissolution process of the sugar in the available water amount. Melting of the excipients did not arise, resulting in a plasticisation extrusion process. Maximally 67% of the flavour was retained (corresponding to a 4.1% product flavour load). The flavour loss correlated with insufficient mixing during the process and flavour evaporation after extrusion. Based on these results, recommendations for an improved encapsulation process are given.

  16. Initiator Effects in Reactive Extrusion of Starch Graft Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with water-soluble polymers such as polyacrylamide have potential applications including hydrogels, superabsorbents, and thickening agents. Reactive extrusion is a rapid, continuous method for production of starch graft copolymers with high reaction and grafting efficienc...

  17. Applications of polymer extrusion technology to coal processing

    NASA Technical Reports Server (NTRS)

    Lewis, D. W.

    1981-01-01

    Upon heating, many of the middle-aged bituminous coals exhibit a plasticity very similar to polyethylene for a few minutes. Plastic coal can be extruded, pelletized or molded using common plastics technology and equipment. Investigations concerning the plastic state of coals are conducted with the objective to develop techniques which will make useful commercial applications of this property possible. Experiments which show the characteristics of plastic-state coal are discussed, and problems related to a continuous extrusion of coal are considered. Probably the most significant difference between the continuous extrusion of coal and the extrusion of a thermoplastic polymer is that volatiles are continuously being released from the coal. Attention is given to aspects of dragflow, solids feeding, and melt pumping. Application potentials for plastic coal extrusion might be related to coal gasification, direct liquefaction, and coal combustion.

  18. Making Ceramic/Polymer Parts By Extrusion Stereolithography

    NASA Technical Reports Server (NTRS)

    Stuffle, Kevin; Mulligan, A.; Creegan, P.; Boulton, J. M.; Lombardi, J. L.; Calvert, P. D.

    1996-01-01

    Extrusion stereolithography developmental method of computer-controlled manufacturing of objects out of ceramic/polymer composite materials. Computer-aided design/computer-aided manufacturing (CAD/CAM) software used to create image of desired part and translate image into motion commands for combination of mechanisms moving resin dispenser. Extrusion performed in coordination with motion of dispenser so buildup of extruded material takes on size and shape of desired part. Part thermally cured after deposition.

  19. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    SciTech Connect

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy, typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.

  20. Solid explosive plane-wave lenses pressed-to-shape with dies

    SciTech Connect

    Olinger, B.

    2007-11-01

    Solid-explosive plane-wave lenses 1", 2" and 4¼" in diameter have been mass-produced from components pressed-to-shape with aluminum dies. The method used to calculate the contour between the solid plane-wave lens components pressed-to-shape with the dies is explained. The steps taken to press, machine, and assemble the lenses are described. The method of testing the lenses, the results of those tests, and the corrections to the dies are reviewed. The work on the ½", 8", and 12" diameter lenses is also discussed.

  1. Evaluation of Heat Checking and Washout of Heat Resistant Superalloys and Coatings for Die inserts

    SciTech Connect

    David Schwam; John F. Wallace; Yulong Zhu; Edward Courtright; Harold Adkins

    2005-01-30

    This project had two main objectives: (1) To design, fabricate and run a full size test for evaluating soldering and washout in die insert materials. This test utilizes the unique capabilities of the 350 Ton Squeeze Casting machine available in the Case Meal Casting Laboratory. Apply the test to evaluate resistance of die materials and coating, including heat resistant alloys to soldering and washout damage. (2) To evaluate materials and coatings, including heat resistant superalloys, for use as inserts in die casting of aluminum alloys.

  2. Encapsulation of Liquids Via Extrusion--A Review.

    PubMed

    Tackenberg, Markus W; Kleinebudde, Peter

    2015-01-01

    Various encapsulation techniques are known for pharmaceutical applications. Extrusion is of minor importance. However, extrusion is used to obtain granules with encapsulate liquid active ingredients (AI) like essential oils and flavours for food applications since decades. Many of these AIs can be used for agrochemical, home care, and pharmaceutical products, too. Thus, the focus of this review is on the interdisciplinary presentation and evaluation of the available knowledge about the encapsulation process via extrusion. The desired microcapsule structure is discussed at the outset. The microcapsule is compared to the alternative glassy solid solution system, before an overview of suitable excipients is given. In the next section the development of the extrusion technique, used for encapsulation processes, is presented. Thereby, the focus is on encapsulation using twin-screw extruders. Additionally, the influence of the downstream processes on the products is discussed, too. The understanding of the physical processes during extrusion is essential for specifically adjustment of the desired product properties and thus, highlighted in this paper. Unfortunately not all processes, especially the mixing process, are well studied. Suggestions for further studies, to improve process understanding and product quality, are given, too. The last part of this review focuses on the characterization of the obtained granules, especially AI content, encapsulation efficiency, and storage stability. In conclusion, extrusion is a standard technique for flavour encapsulation, but future studies, may lead to more (pharmaceutical) applications and new products.

  3. Effect of Zr addition on the mechanical characteristics and wear resistance of Al grain refined by Ti after extrusion

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan I. O.; Al-Qawabah, S. M. A.

    2016-08-01

    Aluminum and its alloys are normally grain refined by Ti or Ti+B to transfer their columnar structure during solidification into equiaxed one which improves their mechanical behavior and surface quality. In this paper, the effect of addition of Zr on the metallurgical, and mechanical aspects, hardness, ductility and wear resistance of commercially pure aluminum grain refined by Ti after extrusion is investigated. Zr was added at a level of 0.1% which corresponds to the peretectic limit at the Al-Zr phase diagram. The experimental work was carried out on the specimens after direct extrusion. It was found that addition of Ti resulted in decrease of Al grain size, whereas addition of Zr alone or in the presence of Ti, resulted in reduction of Al grain size. This led to increase of Al hardness. The effect of the addition of Ti or Zr alone resulted almost in the same enhancement of Al mechanical characteristics. As for the strain hardening index,n, increase was obtained when Zr was added alone or in the presence of Ti. Hence pronounced improvement of its formability. Regarding the effect of Zr addition on the wear resistance of aluminum; it was found that at small loads and speeds addition of Ti or Zr or both together resulted in deterioration of its wear resistance whereas at higher loads and speeds resulted in pronounced improvement of its wear resistance. Finally, the available Archard model and the other available models which consider only the mass loss failed to describe the wear mechanism of Al and its micro-alloys because they do not consider the mushrooming effect at the worn end.

  4. Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections

    NASA Astrophysics Data System (ADS)

    Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David

    2015-10-01

    Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.

  5. 78 FR 66895 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ....0, 295.0, 308.0, 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0, A380.0, 413.0, 443.0... not more than 3.0 percent of total materials by weight. The subject merchandise is made from an... magnesium and silicon as the major alloying elements, with magnesium accounting for......

  6. 78 FR 51143 - Aluminum Extrusions From the People's Republic of China: Initiation of Changed Circumstances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ....0, 295.0, 308.0, 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0, A380.0, 413.0, 443.0... manganese accounting for not more than 3.0 percent of total materials by weight. The subject merchandise is... least 0.1 percent but not more than 2.0 percent of total......

  7. 76 FR 30653 - Aluminum Extrusions From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ..., 308.0, 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0, A380.0, 413.0, 443.0, 514.0, 518.1... contains manganese as the major alloying element, with manganese accounting for not more than 3.0 percent... alloying elements, with magnesium accounting for at least 0.1 percent......

  8. 76 FR 80887 - Antidumping Order on Aluminum Extrusions from the People's Republic of China: Initiation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ..., 355.0, C355.0, 356.0, A356.0, A357.0, 360.0, 366.0, 380.0, A380.0, 413.0, 443.0, 514.0, 518.1, and 712... contains manganese as the major alloying element, with manganese accounting for not more than 3.0 percent... alloying elements, with magnesium accounting for at least 0.1 percent but......

  9. 75 FR 22114 - Aluminum Extrusions from the People's Republic of China: Initiation of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... subsidies and that such imports are causing, or threaten to cause, material injury to the domestic industry..., declining capacity, production, shipments, underselling and price depression or suppression, reduced... to cause material injury, to a U.S. industry. See section 703(a)(2) of the Act. A negative...

  10. Development of an Innovative Laser-Assisted Coating Process for Extending Lifetime of Metal Casting Dies. Final Report

    SciTech Connect

    Madhav Rao Gonvindaraju

    1999-10-18

    Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, a homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.

  11. Cast Aluminum Bonding Study

    DTIC Science & Technology

    1988-05-01

    fabricated using P?-’r;est11 bur)ld II19 te(hnll I Oly with 6 cIsL nqs. The cast a lumi num alloy used was A357 . The sur- face preparation was phosphoric acid...from a cast aluminum alloy designated A357 . The bonding surfaces of the adherends were prepared using PAA. One primer and two adhesives considered...System, Cast Aluminum Lap Shear 18 11 Bond Area of 350°F Adhesive System, Cast Aluminum Lap Shear 19 vi LIST OF TABLES TABLE PAGE 1 A357 Chemical

  12. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  13. A cryogenic fiber maker for continuous extrusion

    NASA Astrophysics Data System (ADS)

    Aliaga-Rossel, R.; Bayley, J.

    1998-06-01

    A cryogenic fiber maker that continuously extrudes fibers is presented. The design of the fiber maker is based on the use of two cooling stages maintained at different temperatures. The fiber maker consists of two copper reservoirs that are connected in series and are kept at different temperatures. The first reservoir is used to liquefy the gas coming in from an external gas line. The second reservoir is colder than the first; here, the liquid that comes from the first reservoir is frozen and later extruded using the pressure of the external line gas supply. A two-stage closed-cycle refrigerator (a Gifford-McMahon cooler), which uses helium as a working fluid, is used as a cooling system. The frozen gas is extruded through a stainless-steel capillary nozzle with internal diameters between 50 and 250 μm and a length of 2 mm. The temperature of the two reservoirs is set independently, which permits the extrusion rate of the fibers to be controlled and to produce the fibers continuously. Using this system, hydrogen, deuterium, nitrogen, and argon fibers of various diameters were extruded.

  14. Orthodontic extrusion of horizontally impacted mandibular molars

    PubMed Central

    Ma, Zhigui; Yang, Chi; Zhang, Shanyong; Xie, Qianyang; Shen, Yuqing; Shen, Pei

    2014-01-01

    Objective: To introduce and evaluate a novel approach in treating horizontally impacted mandibular second and third molars. Materials and methods: An orthodontic technique was applied for treatment of horizontally impacted mandibular second and third molars, which included a push-type spring for rotation first, and then a cantilever for extrusion. There were 8 mandibular third molars (M3s) and 2 second molars (M2s) in this study. Tooth mobility, extraction time, the inclination and parallelism of the impacted tooth, alveolar bone height of the adjacent tooth, and the relationship of impacted M3 and the inferior alveolar nerve (IAN) were evaluated. Results: Two horizontally impacted M2s could be upright in the arch and good occlusal relationships were obtained after treatment. All impacted M3s were successfully separated from the IAN, without any neurologic consequences. The average extraction time was 5 minutes. There was a significant change in the inclination and parallelism of the impacted tooth after treatment. A new bone apposition with the average height of 3.2 mm was noted distal to the adjacent tooth. Conclusions: This two-step orthodontic technique as presented here may be a safe and feasible alternative in management of severely horizontally impacted mandibular molars, which achieves a successful separation of M3s from the IAN and an excellent position for M2s. PMID:25419364

  15. Melt extrusion with poorly soluble drugs.

    PubMed

    Shah, Sejal; Maddineni, Sindhuri; Lu, Jiannan; Repka, Michael A

    2013-08-30

    Melt extrusion (ME) over recent years has found widespread application as a viable drug delivery option in the drug development process. ME applications include taste masking, solid-state stability enhancement, sustained drug release and solubility enhancement. While ME can result in amorphous or crystalline solid dispersions depending upon several factors, solubility enhancement applications are centered around generating amorphous dispersions, primarily because of the free energy benefits they offer. In line with the purview of the current issue, this review assesses the utility of ME as a means of enhancing solubility of poorly soluble drugs/chemicals. The review describes major processing aspects of ME technology, definition and understanding of the amorphous state, manufacturability, analytical characterization and biopharmaceutical performance testing to better understand the strength and weakness of this formulation strategy for poorly soluble drugs. In addition, this paper highlights the potential advantages of employing a fusion of techniques, including pharmaceutical co-crystals and spray drying/solvent evaporation, facilitating the design of formulations of API exhibiting specific physico-chemical characteristics. Finally, the review presents some successful case studies of commercialized ME based products.

  16. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  17. 40 CFR 467.31 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extrusion die cleaning, dummy block cooling, stationary casting, artificial aging, annealing, degreasing, and sawing. (b) The term “extrusion die cleaning” shall mean the process by which the steel dies used... dissolve the aluminum followed by a water rinse. It also includes the use of a wet scrubber with the...

  18. 40 CFR 467.31 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... include extrusion die cleaning, dummy block cooling, stationary casting, artificial aging, annealing, degreasing, and sawing. (b) The term “extrusion die cleaning” shall mean the process by which the steel dies... dissolve the aluminum followed by a water rinse. It also includes the use of a wet scrubber with the...

  19. 40 CFR 467.31 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extrusion die cleaning, dummy block cooling, stationary casting, artificial aging, annealing, degreasing, and sawing. (b) The term “extrusion die cleaning” shall mean the process by which the steel dies used... dissolve the aluminum followed by a water rinse. It also includes the use of a wet scrubber with the...

  20. 40 CFR 467.31 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... include extrusion die cleaning, dummy block cooling, stationary casting, artificial aging, annealing, degreasing, and sawing. (b) The term “extrusion die cleaning” shall mean the process by which the steel dies... dissolve the aluminum followed by a water rinse. It also includes the use of a wet scrubber with the...

  1. 40 CFR 467.31 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... include extrusion die cleaning, dummy block cooling, stationary casting, artificial aging, annealing, degreasing, and sawing. (b) The term “extrusion die cleaning” shall mean the process by which the steel dies... dissolve the aluminum followed by a water rinse. It also includes the use of a wet scrubber with the...

  2. Where people die.

    PubMed Central

    Katz, B P; Zdeb, M S; Therriault, G D

    1979-01-01

    Death certificates for 1977 filed with the New York State Department of Health were studied to determine where people died. Data were examined by the location and cause of death and by the age, sex, race, and marital status of the decedent. Comparisons were made with a similar study in which U.S. data were used for 1958 events. Approximately 60 percent of all the 1977 deaths in upstate New York occurred in hospitals; only 27 percent occurred outside an institution. The location of death varied by all the factors studied. Within all age categories, males had a higher percentage of hospital deaths. In those age categories in which nursing home deaths comprised a significant proportion of total deaths, females had a higher percentage of such deaths than males. Differences in the location of death according to its cause reflect the nature of the cause of death, for example, whether it was of sudden onset or the result of chronic disease. Most people do not consider in advance where they might die. The idea that age, sex, and marital status, as well as the more obvious cause, all play a part in the location may seem surprising. Yet all these factors were found to be associated withe location of deaths in upstate New York, and there is no reason to believe that this association does not hold true for the entire nation. More research, however, needs to be done based on more years and other geographic artal stutus may be instructive as to the present state of health resources. PMID:515338

  3. Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

    SciTech Connect

    Hamm, Randy; Peterson, Kenneth A.

    2015-10-01

    This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tilt was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.

  4. Fundamental studies on a novel die concept for round-point shear-clinching

    NASA Astrophysics Data System (ADS)

    Hörhold, Réjane; Müller, Martin; Merklein, Marion; Meschut, Gerson

    2016-10-01

    A newly-developed round-point shear-clinching technology could increase the use of different materials like well formable aluminium and hardly formable ultra-high-strength steels (UHSS). This innovative technology joins in a single-stage process without any pilot-hole, surface pre-treatment or auxiliary joining part. The combination of an inner and outer punch realises an indirect cutting operation of the die-sided material, whereas the punch-sided material remains unharmed. The current die-sided tool set acts as a cutting die and enables a radial extrusion of the punch-sided material after being drawn though the created hole in the UHSS. The die has a fixed die depth. After ejecting the joined components, the slug has to be removed from the top of the spring-loaded anvil. The novel die concept investigated in this paper offers the possibility to push the slug continuously through the die in the joining direction. The removed slugs remain inside the die, so manual removal is unnecessary. The one-parted tool is supposed to be more robust than the multi-parted one that is currently used. This paper represents the task to evaluate the geometry of a useful shear-clinching die concept. To reduce the experimental effort, FEM should assist the development of the most promising approach. To quantify the success, conventional shear-clinching with opening die acts as a reference. The results show the high potential and the raison d'être of shear-clinching technologies as a mechanical joining technology for future multimaterial applications especially for UHSS.

  5. Die Milchstraße.

    NASA Astrophysics Data System (ADS)

    Henbest, N.; Couper, H.

    This book is a German translation, by M. Röser, from the English original "The guide to the Galaxy", published in 1994 (see Abstr. 61.003.065). Contents: 1. Die Entdeckung unserer Galaxis. 2. Die Lokale Gruppe. 3. Die Geographie der Galaxis. 4. Der Perseus-Arm. 5. Der Orion-Arm. 6. Unsere lokale Nachbarschaft: ein typischer Winkel der Galaxis. 7. Der Sagittarius-Arm: innerhalb der Sonnenumlaufbahn. 8. Das Zentrum der Galaxis.

  6. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  7. Walnut Hulls Clean Aluminum

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1984-01-01

    Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.

  8. Aluminum powder applications

    SciTech Connect

    Gurganus, T.B.

    1995-08-01

    Aluminum powders have physical and metallurgical characteristics related to their method of manufacture that make them extremely important in a variety of applications. They can propel rockets, improve personal hygiene, increase computer reliability, refine exotic alloys, and reduce weight in the family sedan or the newest Air Force fighter. Powders formed into parts for structural and non-structural applications hold the key to some of the most exciting new developments in the aluminum future.

  9. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  10. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  11. Microstructure evolution and thixoforming behavior of 7075 aluminum alloy in the semi-solid state prepared by RAP method

    NASA Astrophysics Data System (ADS)

    Fu, Jin-long; Wang, Kai-kun; Li, Xiao-wei; Zhang, Hai-kuan

    2016-12-01

    The effects of isothermal treatments on the microstructural evolution and coarsening rate of semi-solid 7075 aluminum alloy produced via the recrystallization and partial remelting (RAP) process were investigated. Samples of 7075 aluminum alloy were subjected to cold extrusion, and semi-solid treatment was carried out for 5-30 min at temperatures ranging from 580 to 605°C. A backward-extrusion experiment was conducted to investigate liquid segregation during the thixoforming process. The results revealed that obvious grain coarsening and spheroidization occurred during prolonged isothermal treatments. In addition, higher soaking temperatures promoted the spheroidization and coarsening process because of the increased liquid fraction and the melting of second phases. Segregation of the liquid phase caused by the difference in fluidity between the liquid and the solid phases was observed in different regions of the thixoformed specimens.

  12. Investigation of the Influence of Tool Geometry on Effective Strain Distribution in Full Forward Extrusion

    NASA Astrophysics Data System (ADS)

    Merklein, Marion; Ndzomssi, Franck; Engel, Ulf

    2011-05-01

    Due to strain hardening of the material, the hardness of cold forged parts is considerably improved. It is well known that the hardness of cold forged parts is closely related to its deformation, and that this relation is not dependent on the deformation process. The effective strain defines the local deformation, and can be determined in simulation of the cold forming process. In order to reach the required or to set specific hardness distribution with cold forging without any heat treatment processes, it is necessary to find out which manufacturing parameters influence the effective strain, and determine the effects of these parameters. The research work covered in this paper investigates the influence of the die geometry (as manufacturing parameter) on the effective strain. For that, a full forward extrusion process was modeled using the FE-software Simufact. Forming and three parameters of the die geometry, namely the deformation ratio, the shoulder radius and the opening angle were varied. The maximum effective strain from each combination is determined, and the effects of each considered parameter as well as the effects of interactions between these factors are checked.

  13. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod

    PubMed Central

    Schwing, Patrick T.; Romero, Isabel C.; Larson, Rebekka A.; O'Malley, Bryan J.; Fridrik, Erika E.; Goddard, Ethan A.; Brooks, Gregg R.; Hastings, David W.; Rosenheim, Brad E.; Hollander, David J.; Grant, Guy; Mulhollan, Jim

    2016-01-01

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments. PMID:27585268

  14. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod.

    PubMed

    Schwing, Patrick T; Romero, Isabel C; Larson, Rebekka A; O'Malley, Bryan J; Fridrik, Erika E; Goddard, Ethan A; Brooks, Gregg R; Hastings, David W; Rosenheim, Brad E; Hollander, David J; Grant, Guy; Mulhollan, Jim

    2016-08-17

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.

  15. The Effects of Externally Solidified Product on Wave Celerity and Quality of Die Cast Products

    SciTech Connect

    Carroll Mobley; Yogeshwar Sahai; Jerry Brevick

    2003-10-10

    The cold chamber die casting process is used to produce essentially all the die cast aluminum products and about 50% of the die cast magnesium products made today. Modeling of the cold chamber die casting process and metallographic observations of cold chamber die cast products indicate that typically 5 to 20% of the shot weight is solidified in the shot sleeve before or during cavity filling. The protion of the resulting die casting which is solidified in the shot sleeve is referred to as externally solidified product, or, when identified as a casting defect, as cold flakes. This project was directed to extending the understanding of the effects of externally solidified product on the cold chamber die casting process and products to enable the production of defect-free die castings and reduce the energy associated with these products. The projected energy savings from controlling the fraction of externally solidified product in die cast components is 40 x 10 Btu through the year 2025.

  16. I Could Have Died Laughing.

    ERIC Educational Resources Information Center

    Maher, Michael Forrest; Smith, Douglas

    1993-01-01

    Notes that caregivers of the dying would do well to consider the prescriptive power of humor when confronting the challenges of healthy care for the terminally ill. Addresses laughter as the best medicine not only for the dying person but also for family and principal caregivers. Includes examples of therapeutic use of humor with the terminally…

  17. Influence of degassing on hot-melt extrusion process.

    PubMed

    Alshahrani, Saad M; Morott, Joseph T; Alshetaili, Abdullah S; Tiwari, Roshan V; Majumdar, Soumyajit; Repka, Michael A

    2015-12-01

    The present study aimed to evaluate the effect of degassing on an extrusion process, with respect to extrudate quality and drug release properties. Processed formulations were extruded with and without a degassing vent port at various locations along the barrel. All the experiments were performed under constant processing temperature, feeding rate, and screw speed. During the extrusion process, torque and pressure were monitored and recorded. The degassing process was beneficial when used over a conveying section after a mixing section. This is attributed to the large surface area available on the conveying elements, which minimizes the internal volume of the processed material, thereby facilitating the escape of entrapped gases. Degassing enhanced the homogeneity, physical appearance, and drug release properties of all the formulations. Furthermore, the degassing process also enhanced the cross-sectional uniformity of the extruded material, which is beneficial for visual monitoring during processing. Degassing considerably reduced the post-extrusion moisture content of Formula D3, which contains the highly hygroscopic polymer Kollidon® 17 PF, suggesting that the greatest influence of this process is on hygroscopic materials. The reduction in post-extrusion moisture content resulting from the inclusion of a degassing vent port, reduced fluctuations in the values of in-line monitoring parameters such as pressure and torque. Employing a degassing unit during hot-melt extrusion processing could help increase process efficacy and product quality.

  18. Abl suppresses cell extrusion and intercalation during epithelium folding

    PubMed Central

    Jodoin, Jeanne N.; Martin, Adam C.

    2016-01-01

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical–basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena. Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT. PMID:27440923

  19. Mitochondrial Extrusion through the cytoplasmic vacuoles during cell death.

    PubMed

    Nakajima, Akihito; Kurihara, Hidetake; Yagita, Hideo; Okumura, Ko; Nakano, Hiroyasu

    2008-08-29

    Under various conditions, noxious stimuli damage mitochondria, resulting in mitochondrial fragmentation; however, the mechanisms by which fragmented mitochondria are eliminated from the cells remain largely unknown. Here we show that cytoplasmic vacuoles originating from the plasma membrane engulfed fragmented mitochondria and subsequently extruded them into the extracellular spaces in undergoing acute tumor necrosis factor alpha-induced cell death in a caspase-dependent fashion. Notably, upon fusion of the membrane encapsulating mitochondria to the plasma membrane, naked mitochondria were released into the extracellular spaces in an exocytotic manner. Mitochondrial extrusion was specific to tumor necrosis factor alpha-induced cell death, because a genotoxic stress-inducing agent such as cisplatin did not elicit mitochondrial extrusion. Moreover, intact actin and tubulin cytoskeletons were required for mitochondrial extrusion as well as membrane blebbing. Furthermore, fragmented mitochondria were engulfed by cytoplasmic vacuoles and extruded from hepatocytes of mice injected with anti-Fas antibody, suggesting that mitochondrial extrusion can be observed in vivo under pathological conditions. Mitochondria are eliminated during erythrocyte maturation under physiological conditions, and anti-mitochondrial antibody is detected in some autoimmune diseases. Thus, elucidating the mechanism underlying mitochondrial extrusion will open a novel avenue leading to better understanding of various diseases caused by mitochondrial malfunction as well as mitochondrial biology.

  20. Adapt or die?

    PubMed

    Visser, S S; Nel, A H

    1996-12-01

    The worldwide economic recession and the concomitant limited stock of finances have had an influence on the available money of every household and have also inhibited the improvement of socio-economic conditions and medicine. The Reconstruction and Development Programme (RDP) has the objective of improving the living conditions of the people with regard to housing, education, training and health care. The latter seems to be a major problem which has to be addressed with the emphasis on the preventive and promotional aspects of health care. A comprehensive health care system did not come into being property in the past because of the maldistribution of health care services, personnel and differences in culture and health care beliefs and values. The question that now arises, is how to render a quality health care service within the constraints of inadequate financing and resources. A comprehensive literature study has been done with reference to quality health care and financing followed by a survey of existing health services and finances. Recommendations are made about minimum requirements to be accepted if one were to adapt rather than die in terms of the provision of healthcare: the decentralization and rationalization of the administration of health care, the stress on and realization of effective and efficient primary health care, the acceptance of participative management in health providing organizations, the provision of financial management training for health care managers and the application of management accounting principles for the improvement of the efficiency and effectiveness of management.

  1. Two Piece Compaction Die Design

    SciTech Connect

    Coffey, Ethan N

    2010-03-01

    Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the

  2. Aluminum, parathyroid hormone, and osteomalacia

    SciTech Connect

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  3. Fatal aluminum phosphide poisoning.

    PubMed

    Anger, F; Paysant, F; Brousse, F; Le Normand, I; Develay, P; Gaillard, Y; Baert, A; Le Gueut, M A; Pepin, G; Anger, J P

    2000-03-01

    A 39-year-old man committed suicide by ingestion of aluminum phosphide, a potent mole pesticide, which was available at the victim's workplace. The judicial authority ordered an autopsy, which ruled out any other cause of death. The victim was discovered 10 days after the ingestion of the pesticide. When aluminum phosphide comes into contact with humidity, it releases large quantities of hydrogen phosphine (PH3), a very toxic gas. Macroscopic examination during the autopsy revealed a very important asphyxia syndrome with major visceral congestion. Blood, urine, liver, kidney, adrenal, and heart samples were analyzed. Phosphine gas was absent in the blood and urine but present in the brain (94 mL/g), the liver (24 mL/g), and the kidneys (41 mL/g). High levels of phosphorus were found in the blood (76.3 mg/L) and liver (8.22 mg/g). Aluminum concentrations were very high in the blood (1.54 mg/L), brain (36 microg/g), and liver (75 microg/g) compared to the usual published values. Microscopic examination revealed congestion of all the organs studied and obvious asphyxia lesions in the pulmonary parenchyma. All these results confirmed a diagnosis of poisoning by aluminum phosphide. This report points out that this type of poisoning is rare and that hydrogen phosphine is very toxic. The phosphorus and aluminum concentrations observed and their distribution in the different viscera are discussed in relation to data in the literature.

  4. Microfabrication of three-dimensional filters for liposome extrusion

    NASA Astrophysics Data System (ADS)

    Baldacchini, Tommaso; Nuñez, Vicente; LaFratta, Christopher N.; Grech, Joseph S.; Vullev, Valentine I.; Zadoyan, Ruben

    2015-03-01

    Liposomes play a relevant role in the biomedical field of drug delivery. The ability of these lipid vesicles to encapsulate and transport a variety of bioactive molecules has fostered their use in several therapeutic applications, from cancer treatments to the administration of drugs with antiviral activities. Size and uniformity are key parameters to take into consideration when preparing liposomes; these factors greatly influence their effectiveness in both in vitro and in vivo experiments. A popular technique employed to achieve the optimal liposome dimension (around 100 nm in diameter) and uniform size distribution is repetitive extrusion through a polycarbonate filter. We investigated two femtosecond laser direct writing techniques for the fabrication of three-dimensional filters within a microfluidics chip for liposomes extrusion. The miniaturization of the extrusion process in a microfluidic system is the first step toward a complete solution for lab-on-a-chip preparation of liposomes from vesicles self-assembly to optical characterization.

  5. Diffusion between glass and metals for optical fiber preform extrusion

    NASA Astrophysics Data System (ADS)

    Yeo, Felicia Yan Xin; Zhang, Zhifeng; Kumar Chakkathara Janardhanan Nair, Dileep; Zhang, Yilei

    2015-07-01

    When silica is extruded, diffusion of metal atoms into silica results contamination to the silica being heated, and thus is a serious concern for the glass extrusion process, such as extrusion of glass fiber preform. This paper examines diffusion between fused silica and two high strength metals, the stainless steel SS410 and the superalloy Inconel 718, at 1000 °C and under the normal atmosphere condition by SEM and Electron Dispersion Spectrum. It is found that diffusion occurs between silica and SS410, and at the same time, SS410 is severely oxidized during diffusion experiment. On the contrary, the diffusion between Inconel 718 and silica is unnoticeable, suggesting excellent high temperature performance of Inconel 718 for glass extrusion.

  6. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    PubMed

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon(®) VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon(®) VA 64, Soluplus(®) and Eudragit(®) E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon(®) VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon(®) VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  7. Continuous extrusion of coal. [plastic fluidizing process

    NASA Technical Reports Server (NTRS)

    England, C.; Kushida, R.; Daksla, C.

    1978-01-01

    A feeding method for use with bituminous coals that exhibit plasticity at elevated temperatures is described and demonstrated on a small screw extruder previously used to extrude polyethylene. A metered feed of coal heated to a temperature just below that of incipient caking (approximately 450 C) is used. Modifications to the extruder consisting of ceramic band heaters, auxiliary cooling coils on the thrust bearing and special quick opening dies are detailed. Coals successfully extruded include high volatile A bituminous coals, high volatile B bituminous coals, a high volatile C bituminous coal and a coal with high ash content. The computer program, EXTRUD, used to simulate the extruder is described. Predicted power consumption exhibits 30% scatter, which is explained by the sensitivity of the coal friction coefficient to temperature profiles. Detailed analysis reveals some discrepancies in the program that need to be resolved.

  8. Satellite Based Extrusion Rates for the 2006 Augustine Eruption

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Bailey, J. E.; Dean, K. G.; Skoog, R.; Valcic, L.

    2006-12-01

    Extrusion rates were calculated from polar orbiting infrared satellite data for the 2006 eruption of Augustine Volcano, Alaska. The pixel integrated brightness temperatures from the satellite data were converted to estimates of ground temperature by making assumptions and using first hand observations about the geometry of the hot area (lava dome, flows and pyroclastic flow deposits) relative to the cold area in the kilometer scale pixels. Extrusion rate is calculated by assuming that at a given temperature, a lava emits an amount of radiation proportional to its volume. On ten occasions during the activity, helicopter based infrared imagers were used to validate the satellite observations. The pre-January 11 thermal activity was not significantly above background in satellite data. The first strong thermal anomalies were recorded during the first explosive phase on January 11. During successive explosive phases in January, bright thermal signals were observed, often saturating the sensors. Large areas (many km2) were observed to be warm in the satellite data, indicative of pyroclastic flows. Sometime during or after January 29, during a phase of sustained ash emission, the thermal signal became persistent, suggesting the beginning of lava effusion. The extrusion rates derived from satellite data varied from 0 to nearly 7 m3/s, giving an eruption rate of 2.7 m3/s. The extrusion event produced two blocky lava flows which moved down the north flank of the volcano. Extrusion occurred through at least March 15 (day 76) when a sharp drop in extrusion rate and thermal signal is observed. Based on the derived extrusion rates, it is estimated that 18 million m3 of lava was extruded during the course of the eruption. This value agreed well with photogrammetric measurements, but does not agree with volumes derived through subtraction of digital elevation models post- and pre- eruption. It should be noted that the thermal approach only works for hot lavas, and does not

  9. Dying: A universal human experience?

    PubMed

    Bregman, L

    1989-03-01

    This paper explores the question, "Is there a universal psychological experience suffered by all dying persons?" a question to which the popular theory of Kübler-Ross presupposes an affirmative answer. Our answer takes three steps: first, a comparison between the Kübler-Ross model of dying and that of the late medievalBook of the Craft of Dying centered upon the five Kübler-Ross "stages"; second, a philosophical critique of the terms of this comparison; and third, a revised look at the alleged similarities between the two models, providing a deeper look at the moral and spiritual assumptions behind each.

  10. Formation of high-stress phase and extrusion of polyethylene due to nanoconfinements during Ziegler-Natta polymerization inside nanochannels.

    PubMed

    Nair, Sujith; Naredi, Prabhat; Kim, Seong H

    2005-06-30

    Polyethylene nanofibers were synthesized by heterogeneous Ziegler-Natta polymerization inside nanochannels of robust anodized aluminum oxide (AAO) membranes. The polymerization catalysts were chemisorbed at the inner wall of the nanochannels and monomers were provided through diffusion from the outside. Polyethylene is produced inside the nanochannels in the 10-20 mum region from the channel entrance. Polyethylene fibers were extruded from the nanochannels up to 3-5 mum during the polymerization. X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared analyses indicated formation of a highly stressed crystalline structure although the polymerization was carried out without any external pressure or mechanical work. The highly stressed phase formation inside nanochannels and some degree of polyethylene nanofiber extrusion from nanochannels were attributed to catalytic production of excess amounts of polyethylene inside nanoconfined templates.

  11. Effects of processing parameters on the extrusion by continuous variable cross-section direct extrusion with 7A09 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Li, Feng; Wu, Hongbin; Qin, Minghan

    2016-02-01

    In order to study the effects of processing parameters on the continuous variable cross-section direct extrusion (CVCDE), taking 7A09 aluminium alloy for example, the extrusion speed and forming temperature and the friction factor as key processing parameters are applied to research by finite element (FE) simulation. The research result showed that the extrusion speed had a significant influence on the maximum temperature of the billet, at the same time, both decreasing the friction factor and increasing forming temperature within a certain range were beneficial to reduce extrusion load. Both forming temperature and the extrusion speed were inversely linked to extrusion load, but the friction factor was directly proportional to extrusion load. Forming temperature had a far more important influence on extrusion load by comparison: when forming temperature increased from 380∘ to 430∘C, the peak value of extrusion load decreased by 25.6% and the flow uniformity of extruded product got improved. The process window based on both the press limit and surface defects limit was established and the most reasonable forming temperature was 405∘C under this process condition, which provided theoretical basis for formulation process of 7A09 aluminium alloy on the CVCDE extrusion.

  12. Factors Contributing to Pilot Valve Fuel Seal Extrusion in Orbiter PRCS Thrusters

    NASA Technical Reports Server (NTRS)

    Waller, J.M.; Saulsberry, R.L.; Albright, John D.

    2000-01-01

    Extrusion of the polytetrafluoroethylene (PTFE) pilot seal used in the monomethylhydrazine (fuel) valve of the Orbiter Primary Reaction Control System (PRCS) thrusters has been implicated in numerous on-orbit thruster failures and on-ground valve failures. Two extrusion mechanisms have been proposed, one or both may be occurring. The first mechanism is attributed to thermal expansion mismatch between adjacent PTFE and metal parts used in the fuel valve, and is referred to as thermal extrusion. The second mechanism is attributed to nitrogen tetroxide (oxidizer) leakage from the adjacent oxidizer valve on the same thruster during ground turnaround, and is referred to as oxidizer-induced extrusion. Model calculations of PTFE pilot seal in an exact pilot valve configuration show that extrusion can be caused by differential thermal expansion, without the intervening influence of oxidizer. Experimental data on semitrapped PTFE and TFM (modified PTFE) specimens simulating a fuel pilot valve configuration show that thermal extrusion 1) is incremental and irreversible, 2) increases with the size of the thermal excursion, 3) decreases with successive thermal cycling, and 4) is accompanied by gap formation. Both PTFE and TFM exhibit a higher affinity for oxidizer than fuel. The property changes associated with oxidizer uptake may explain why oxidizer seals do not exhibit extrusion. Impression replicas of fuel pilot seals removed from the Orbiter fleet show two types of extrusion: extrusion of the entire seal (loaded extrusion), or extrusion of non-sealing surface (unloaded extrusion). Both extrusion types may arise from differences in service history, rather than in failure mechanism. The plausibility oxidizer-induced extrusion was evaluated. Preliminary calculations suggest that enough energy, heat, or gas may be liberated under certain operational scenarios to cause catastrophic extrusion. However, given the lack of supporting data, conclusions implicating oxidizer leakage

  13. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  14. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  15. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  16. [Process and mechanism of plants in overcoming acid soil aluminum stress].

    PubMed

    Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi

    2013-10-01

    Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.

  17. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  18. Development of Advanced Coating Techniques for Highly-durable Casting Dies

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Takagi, M.; Mano, T.

    2013-03-01

    In order to improve the durability of aluminum die-casting molds, we applied microstructure-controlled PVD coating techniques. Single-layer and multilayer films consisting of chromium nitride (CrN) or titanium aluminum nitride (TiAlN) were prepared using an ion plating process. Structures of multilayer films were observed using transmission electron microscopy. Pin-shaped mold steel specimens coated with each of the films were soaked in the molten aluminum alloy at 953 K different periods of time, and the amount of weight loss due to erosion was evaluated. The weight losses for the multilayer CrN and TiAlN specimens were found to be less than those for the single-layer specimens. As a practical test, five specimens of core pins used in aluminum die casting of automobile parts were coated with multilayer films, and the number of maintenance operations required to remove aluminum alloy remaining on the specimen surfaces after several thousand castings was counted and compared with six control specimens (core pins treated using a commercial salt bath diffusion process). The number of maintenance operations for CrN- and TiAlN-based multilayer-coated core pins was found to be lower than for the control specimens.

  19. Die Sonne, Stern unserer Erde

    NASA Astrophysics Data System (ADS)

    Lang, Kenneth R.; Ehlers, A.

    Dieses reich bebilderte Buch gibt eine Einführung in die Physik der Sonne und ihre Bedeutung für die Erde. Gestützt auf neueste Forschungsergebnisse aus Radioteleskop- und Satellitenbeobachtungen beschreibt der Autor die gewaltigen atomenergetischen Prozesse der Sonne, ihren geheimnisvollen Neutrinofluß, ihre seismischen Aktivitäten, Magnetfelder und Sonnenflecke, Korona, Sonnenausbrüche und Protuberanzen, den Sonnenwind, und die außerordentlich wichtige und vielfältige Bedeutung des Sonnenlichts, das Leben auf der Erde entstehen läßt und es auch gefährdet. Gut verständlich und in ansprechender Sprache geschrieben ist es ein wunderbares Buch für den Leser populärwissenschaftlicher Literatur, ein wertvolles Geschenk für Studenten der Astronomie und verwandter Disziplinen sowie Amateurastronomen.

  20. REMOVAL OF ALUMINUM COATINGS

    DOEpatents

    Peterson, J.H.

    1959-08-25

    A process is presented for dissolving aluminum jackets from uranium fuel elements without attack of the uranium in a boiling nitric acid-mercuric nitrate solution containing up to 50% by weight of nitrtc acid and mercuric nitrate in a concentration of between 0.05 and 1% by weight.

  1. Markets for recovered aluminum

    SciTech Connect

    Not Available

    1993-04-01

    The study describes the operation of the markets for scrap aluminum as an example of how recycling markets are structured, what factors influence the supply of and demand for materials, what projections can be made about recycling markets, and how government policies to increase recycling may affect these markets.

  2. Building an aluminum car

    SciTech Connect

    Ashley, S.

    1994-05-01

    This article examines the increasing use of aluminum in automobiles to decrease weight and consequently increase fuel economy. The topics of the article include federal fuel economy goals, the development of optimum body structure and manufacturing techniques, comparison with steel, cost of materials, weight reduction and recycling of materials.

  3. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  4. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  5. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  6. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  7. Bonding aluminum beam leads

    NASA Technical Reports Server (NTRS)

    Burkett, F. S.

    1978-01-01

    Report makes it relatively easy for hybrid-circuit manufacturers to convert integrated circuit chips with aluminum bead leads. Report covers: techniques for handling tiny chips; proper geometries for ultrasonic bonding tips; best combinations of pressure, pulse time, and ultrasonic energy for bonding; and best thickness for metal films to which beam leads are bonded.

  8. Reactive extrusion of zein with glyoxal and polyethylene maleic anhydride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order for zein, a potentially significant co-product of the bio-ethanol industry, to be used in new markets, improved zein based products are needed. These products need to be produced by the most economical means possible. In the traditional plastics industry, extrusion techniques are the most e...

  9. Extrusion, slide, and rupture of an elastomeric seal

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjin; Chen, Chao; Liu, Qihan; Lou, Yucun; Suo, Zhigang

    2017-02-01

    Elastomeric seals are essential to two great technological advances in oilfields: horizontal drilling and hydraulic fracturing. This paper describes a method to study elastomeric seals by using the pressure-extrusion curve (i.e., the relation between the drop of pressure across a seal and the volume of extrusion of the elastomer). Emphasis is placed on a common mode of failure found in oilfields: leak caused by a crack across the length of a long seal. We obtain an analytical solution of large elastic deformation, which is analogous to the Poiseuille flow of viscous liquids. We further obtain analytical expressions for the energy release rate of a crack and the critical pressure for the onset of its propagation. The theory predicts the pressure-extrusion curve using material parameters (elastic modulus, sliding stress, and fracture energy) and geometric parameters (thickness, length, and precompression). We fabricate seals of various parameters in transparent chambers on a desktop, and watch the seals extrude, slide, rupture and leak. The experimentally measured pressure-extrusion curves agree with theoretical predictions remarkably well.

  10. Extrusion cooking with glucose supplementation reduced fumonisin concentrations and toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrusion cooking involves forcing material through a heated barrel under high pressure using one (single-screw configuration) or two (twin-screw configuration) augers. We previously demonstrated (Bullerman et al., Journal of Agricultural and Food Chemistry 56:2400-2405, 2008; Voss et al., Journal o...

  11. Load beam unit replaceable inserts for dry coal extrusion pumps

    DOEpatents

    Saunders, Timothy; Brady, John D.

    2012-11-13

    A track assembly for a particulate material extrusion pump according to an exemplary aspect of the present disclosure includes a link assembly with a roller bearing. An insert mounted to a load beam located such that the roller bearing contacts the insert.

  12. Track with overlapping links for dry coal extrusion pumps

    DOEpatents

    Saunders, Timothy; Brady, John D

    2014-01-21

    A chain for a particulate material extrusion pump includes a plurality of links, each of the plurality of links having a link body and a link ledge, wherein each link ledge of the plurality of links at least partially overlaps the link body of an adjacent one of the plurality of links.

  13. A dielectric slit die for in-line monitoring of polymer compounding

    NASA Astrophysics Data System (ADS)

    Bur, Anthony J.; Roth, Steven C.; Lee, Yu-Hsin; McBrearty, Michael

    2004-04-01

    The dielectric slit die is an instrument that is designed to measure electrical, rheological, ultrasonics, optical, and other properties of a flowing liquid. In one application, it is connected to the exit of an extruder, pump or mixing machine that passes liquefied material such as molten plastic, solvents, slurries, colloidal suspensions, and foodstuffs into the sensing region of the slit-shaped die. Dielectric sensing is the primary element of the slit die, but in addition to the dielectric sensor, the die contains other sensing devices such as pressure, optical fiber, and ultrasonic sensors that simultaneously yield an array of materials property data. The slit die has a flexible design that permits interchangeability among sensors and sensor positions. The design also allows for the placement of additional sensors and instrumentation ports that expand the potential data package obtained. To demonstrate sensor operation, we present data from the extrusion and compounding of a polymer/clay nanocomposite. An analysis of the dielectric data involves a nonlinear fitting procedure that takes into account effects due to electrode polarization and dc conductivity. Light transmission through a filled polymer is analyzed in terms of a Beer's law attenuation coefficient.

  14. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  15. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion.

    PubMed

    Almeida, A; Possemiers, S; Boone, M N; De Beer, T; Quinten, T; Van Hoorebeke, L; Remon, J P; Vervaet, C

    2011-02-01

    Different ethylene vinyl acetate grades (EVA9, EVA15, EVA28 and EVA40 having a VA content of 9%, 15%, 28% and 40%, respectively) were characterized via differential scanning calorimetry. Glass transition temperature (T(g)), polymer crystallinity, melting point and polymer flexibility were positively influenced by the vinyl acetate content. The processability of EVA-based formulations produced by means of hot-melt extrusion (2mm die) was evaluated in function of VA content, extrusion temperature (60-140°C) and metoprolol tartrate (MPT, used as model drug) concentration (10-60%). Matrices containing 50% MPT resulted in smooth-surfaced extrudates, whereas at 60% drug content severe surface defects (shark skinning) were observed. Drug release from EVA/MPT matrices (50/50, w/w) was affected by the EVA grades: 90% after 24h for EVA15 and 28, while EVA9 and EVA40 formulations released 80% and 60%, respectively. Drug release also depended on drug loading and extrusion temperature. For all systems, the total matrix porosity (measured by X-ray tomography) was decreased after dissolution due to elastic rearrangement of the polymer. However, the largest porosity reduction was observed for EVA40 matrices as partial melting of the structure (melt onset temperature: 34.7°C) also contributed (thereby reducing the drug release pathway and yielding the lowest release rate from EVA40 formulations). The Simulator of the Human Intestinal Microbial Ecosystem (SHIME) used to evaluate the stability of EVA during gastrointestinal transit showed that EVA was not modified during GI transit, nor did it affect the GI ecosystem following oral administration.

  16. Gastrointestinal hemorrhage in aluminum phosphide poisoning.

    PubMed

    Hugar, Basappa S; Praveen, Shivaramareddy; Hosahally, Jayanth S; Kainoor, Sunilkumar; Shetty, Akshith Raj S

    2015-01-01

    Poisoning, both accidental and intentional, is a significant contributor to the mortality and morbidity throughout the world. The commonest pesticide poisoning is organophosphates followed by phosphides. Ingestion of phosphides can induce severe gastrointestinal irritation leading to hemorrhage and ulcerations. Gastrointestinal hemorrhages and ulcerations beyond the duodenum have not been reported in the literature. Here, we report a case of severe hemorrhages and ulcerations in stomach, duodenum, jejunum, and ileum observed in a 45-year-old male who had consumed five tablets of Celphos(®) (each 3 g with 56% aluminum phosphide and 44% Ammonium carbonate) to commit suicide. He started vomiting after consumption, and the vomitus was blood-tinged. Once the treatment was instituted, he was stable for a day and thereafter his condition gradually deteriorated. He died on the 4th day of hospitalization, and autopsy revealed features of multiorgan failure and extensive gastrointestinal hemorrhages.

  17. Program to Develop High Strength Aluminum Powder Metallurgy Mill Products - Phase IV-B-Scale - up to 3200 lb Billet

    DTIC Science & Technology

    1977-04-25

    Part 31. 5. "Design Mechanical Properties, Fracture Toughness, Fatigue Properties, Exfoliation and Stress - Corrosion Resistance of 7050 Sheet, Plate...Forgings, P/M Processing, Fracture Toughness, Stress Corrosion , Fatigue f— rSSTRACT (Continue on reverse side it necessary and Identify by block...CLASSIFICATION OF THIS PAGEfWlan Data Bntend) 20. Continued and stress corrosion compared to existing commercial I/M alloys. Scaled-up P/M extrusions and die

  18. Apical extrusion of debris: a literature review of an inherent occurrence during root canal treatment.

    PubMed

    Tanalp, J; Güngör, T

    2014-03-01

    Extrusion of intracanal debris as well as irrigants is a common occurrence during root canal treatment, and no instrument or technique has thoroughly solved this problem. Because flare-ups may arise with any irritation directed towards periapical tissues, a shaping or irrigation technique should minimize the risk of apical extrusion, even though it may not be prevented. There has been a rapid evolution of root canal instruments and irrigation systems through the last decade, and many have been assessed for their debris extrusion potential. The purpose of this review was to identify publications regarding the evaluation of debris, bacteria and irrigant extrusion during root canal treatment. A PubMed, Ovid and MEDLINE search was conducted using the keywords "apical extrusion", "debris extrusion" and "endodontic treatment". The literature search extended over a period of more than 30 years up to 2012. Content of the review was limited to apical extrusion of debris and irrigants, extrusion of liquid by irrigation methods and bacterial extrusion. Issues relevant to apical extrusion were obtained by further search in the reference sections of the retrieved articles. The review provides an update on the current status of apical extrusion.

  19. Effect of composition and processing on the thermal fatigue and toughness of high performance die steels. Year 1 report

    SciTech Connect

    Wallace, J.F.; Wang, Yumin; Schwam, D.

    1996-06-01

    The goal of this project is to extend the lifetime of dies for die casting by 20%. Since the die contributes about 10% to the cost of die cast parts, such an improvement in lifetime would result in annual savings of over $200 Million dollars. This is based on the estimated annual die production of one Billion dollars in the US. The major tasks of this two year project are: (1) Evaluate NEW DIE STEEL COMPOSITIONS that have been developed for demanding applications and compare them to Premium Grade H-13 die steel. (2) Optimize the AUSTENITIZING TREATMENT of the new composition. Assess the effects of fast, medium and slow COOLING RATES DURING HEAT TREATMENT, on the thermal fatigue resistance and toughness of the die steel. (3) Determine the effect of ELECTRO-DISCHARGE MACHINING (EDM) on the thermal fatigue resistance and impact properties of the steel. (4) Select demanding components and conduct IN-PLANT TESTING by using the new steel. Compare the performance of the new steel with identical components made of Premium Grade H-13. The immersion thermal fatigue specimen developed at CWRU is being used to determine resistance to heat checking, and the Charpy V-notch test for evaluating the toughness. The overall result of this project will be identification of the best steel available on the market and the best processing methods for aluminum die casting dies. This is an interim report for year 1 of the project.

  20. Extrusion-formed uranium-2. 4 wt % article with decreased linear thermal expansion and method for making the same. [Patent application

    DOEpatents

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-05-24

    The present invention is directed to the fabrication of an article of uranium-2.4 wt % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 and 600/sup 0/C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/s. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630/sup 0/C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/s. These critical extrusion parameters provide the article with a desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  1. Use of paprika oily extract as pre-extrusion colouring of rice extrudates: impact of processing and storage on colour stability.

    PubMed

    Gat, Yogesh; Ananthanarayan, Laxmi

    2016-06-01

    Suitability of paprika oily extract as a pre-extrusion colouring of rice extrudate was evaluated as a function of extrusion parameters viz. moisture content, screw speed and die temperature. Most acceptable coloured rice extrudates in terms of colour and overall acceptability was achieved with addition of 3 % paprika oily extract and which is extruded at fixed conditions of 25 % feed moisture, 120 °C barrel temperature and 100 rpm screw speed. During extrusion, retention of red colour of paprika oily extract added rice extrudates increased with an increase in feed moisture and screw speed while decreased with an increase in barrel temperature. Present study was also undertaken to check effect of addition of butylated hydroxytoluene (BHT) on colour stability of coloured rice extrudates. Coloured rice extrudates were packed in polyethylene, metallised polyethylene and vacuum packaging material and subjected to storage studies for 90 days at 25 and 50 °C with 65 % relative humidity conditions. Retention of red colour (a*) of paprika oily extract added rice extrudates follows first order kinetics, showing a faster rate of degradation with half-life of 48 days when packed in metalized polyethylene and stored at higher temperature conditions.

  2. Process design and control of a twin screw hot melt extrusion for continuous pharmaceutical tamper-resistant tablet production.

    PubMed

    Baronsky-Probst, J; Möltgen, C-V; Kessler, W; Kessler, R W

    2016-05-25

    Hot melt extrusion (HME) is a well-known process within the plastic and food industries that has been utilized for the past several decades and is increasingly accepted by the pharmaceutical industry for continuous manufacturing. For tamper-resistant formulations of e.g. opioids, HME is the most efficient production technique. The focus of this study is thus to evaluate the manufacturability of the HME process for tamper-resistant formulations. Parameters such as the specific mechanical energy (SME), as well as the melt pressure and its standard deviation, are important and will be discussed in this study. In the first step, the existing process data are analyzed by means of multivariate data analysis. Key critical process parameters such as feed rate, screw speed, and the concentration of the API in the polymers are identified, and critical quality parameters of the tablet are defined. In the second step, a relationship between the critical material, product and process quality attributes are established by means of Design of Experiments (DoEs). The resulting SME and the temperature at the die are essential data points needed to indirectly qualify the degradation of the API, which should be minimal. NIR-spectroscopy is used to monitor the material during the extrusion process. In contrast to most applications in which the probe is directly integrated into the die, the optical sensor is integrated into the cooling line of the strands. This saves costs in the probe design and maintenance and increases the robustness of the chemometric models. Finally, a process measurement system is installed to monitor and control all of the critical attributes in real-time by means of first principles, DoE models, soft sensor models, and spectroscopic information. Overall, the process is very robust as long as the screw speed is kept low.

  3. Extrusion foaming of thermoplastic cellulose acetate from renewable resources using a two-component physical blowing agent system

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Windeck, C.; Hendriks, S.; Zepnik, S.; Wodke, T.

    2014-05-01

    Thermoplastic cellulose acetate (CA) is a bio-based polymer with optical, mechanical and thermal properties comparable to those of polystyrene (PS). The substitution of the predominant petrol-based PS in applications like foamed food trays can lead to a more sustainable economic practice. However, CA is also suitable for more durable applications as the biodegradability rate can be controlled by adjusting the degree of substitutions. The extrusion foaming of CA still has to overcome certain challenges. CA is highly hydrophilic and can suffer from hydrolytic degradation if not dried properly. Therefore, the influence of residual moisture on the melt viscosity is rather high. Beyond, the surface quality of foam CA sheets is below those of PS due to the particular foaming behaviour. This paper presents results of a recent study on extrusion foamed CA, using a two-component physical blowing agent system compromising HFO 1234ze as blowing agent and organic solvents as co-propellant. Samples with different co-propellants are processed on a laboratory single screw extruder at IKV. Morphology and surface topography are investigated with respect to the blowing agent composition and the die pressure. In addition, relationships between foam density, foam morphology and the propellants are analysed. The choice of the co-propellant has a significant influence on melt-strength, foaming behaviour and the possible blow-up ratio of the sheet. Furthermore, a positive influence of the co-propellant on the surface quality can be observed. In addition, the focus is laid on the effect of external contact cooling of the foamed sheets after the die exit.

  4. Clinical management of dying patients.

    PubMed Central

    Gavrin, J; Chapman, C R

    1995-01-01

    Dying is universal, and death should be a peaceful time. Myriad comfort measures are available in the last weeks before life ends. Discussions about end-of-life issues often suffer from lack of informed opinion. Palliative care experts have identified specific somatic and psychological sources of distress for dying patients and their loved ones. Pain, shortness of breath, nausea and vomiting, and fear of abandonment contribute substantially to both physical and psychological discomfort toward the end of life. Simple, effective methods exist for relieving those symptoms. Knowledge about the natural events associated with dying and an informed approach to medical and psychological interventions contribute to systematic and successful comfort care. We describe the origin of physical and psychological distress at the end of life and provide strategies for alleviating many of the discomforts. PMID:7571591

  5. Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component

    NASA Astrophysics Data System (ADS)

    Cecchel, Silvia; Cornacchia, Giovanna; Panvini, Andrea

    2016-09-01

    The mass of automotive components has a direct influence on several aspects of vehicle performance, including both fuel consumption and tailpipe emissions, but the real environmental benefit has to be evaluated considering the entire life of the products with a proper life cycle assessment. In this context, the present paper analyzes the environmental burden connected to the production of a safety-relevant aluminum high-pressure die-casting component for commercial vehicles (a suspension cross-beam) considering all the phases connected to its manufacture. The focus on aluminum high-pressure die casting reflects the current trend of the industry and its high energy consumption. This work shows a new method that deeply analyzes every single step of the component's production through the implementation of a wide database of primary data collected thanks to collaborations of some automotive supplier companies. This energy analysis shows significant environmental benefits of aluminum recycling.

  6. [Dying with cancer: Hollywood lessons].

    PubMed

    Niemeyer, Fernanda; Kruse, Maria Henriqueta Luce

    2013-12-01

    The study attempts to understand how dying from cancer is portrayed by five movies produced in Hollywood between 1993 and 2006. Based on the cultural studies and their post-structuralism version and supported by the notions of discourse and subjectivity, as proposed by philosopher Michel Foucault, we suggest one of the possible readings of the movie picture corpus. We assess how the movie picture discourse acts as a cultural pedagogy that produces ways of seeing dying with cancer: immortalizing the healthy body image, silencing death, taking care of the dead body and, finally, accepting death. Our proposal is intended to stimulate reflections that may contribute to care and education in nursing.

  7. Portable punch and die jig

    DOEpatents

    Lewandowski, Edward F.; Anderson, Petrus A.

    1978-01-01

    A portable punch and die jig includes a U-shaped jig of predetermined width having a slot of predetermined width in the base thereof extending completely across the width of the jig adapted to fit over the walls of rectangular tubes and a punch and die assembly disposed in a hole extending through the base of the jig communicating with the slot in the base of the jig for punching a hole in the walls of the rectangular tubes at precisely determined locations.

  8. Die Herz-Lungen-Maschine

    NASA Astrophysics Data System (ADS)

    Krane, Markus; Bauernschmitt, Robert; Lange, Rüdiger

    Das Kapitel der modernen Herzchirurgie mit Einsatz der Herz-Lungen-Maschine am Menschen beginnt am 6. Mai 1953, als J. Gibbon bei einer 18-jährigen Patientin einen angeborenen Defekt in der Vorhofscheidewand verschließt [1]. Mit ersten experimentellen Versuchen zur extrakorporalen Zirkulation begann Gibbon bereits in den 30er Jahren des 20. Jahrhunderts. Die Grundlage für die heute gebräuchliche Rollerpumpe schufen Porter und Bradley mit ihrer "rotary pump“, welche sie 1855 zum Patent anmeldeten. Diese Pumpe wurde von DeBakey und Schmidt modifiziert und entspricht im Wesentlichen noch der heute sich im Routinebetrieb befindlichen Rollerpumpe [2].

  9. Aluminum Carbothermic Technology

    SciTech Connect

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major

  10. A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa

    2016-12-01

    High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio (S/N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.

  11. Residence time and conversion in the extrusion of chemically reactive materials

    SciTech Connect

    Zhu, W.; Jaluria, Y.

    1999-07-01

    Extrusion is one of the most versatile and energy-efficient processes for the manufacture of polymer products, including food, pharmaceuticals and plastics. Many functions including mixing, cooking and chemical reaction can be performed in an extruder. Here, twin-screw extruders offer improved control of the residence time distribution (RTD) and mixing in materials such as plastics, rubber and food. Based on the flow and the heat transfer characteristics obtained for a self-wiping, co-rotating twin-screw extruder, the residence time and chemical reaction are studied by tracking the particles. For normally starve-fed twin-screw extruders, the length of the completely filled section is calculated as function of the process variables using the coupling of the flow with the die. With a model of the solid conveying section, the RTD for the whole extruder is calculated for corn meal at different screw speeds and flow rates. The calculated variation of RTD with the screw speed and the flow rate yields good agreement with observations from many experiments. The variation of the fully filled section length, chemical conversion and mixing effectiveness are also obtained under different operation conditions. Most of the results are in qualitative agreement with experimental results and may be used as guidelines for extruder design and determination of optimal operating condition.

  12. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  13. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  14. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  15. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  16. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  17. Deuterium fiber extrusion and handling system for neutron production experiment

    NASA Astrophysics Data System (ADS)

    Ruden, Edward L.; Gale, Donald G.; Rahman, Hafiz U.

    2001-10-01

    A frozen D2 fiber fragment extrusion and handling system has been developed at AFRL to provide a central target for a wire array implosion on SNL's Z machine. The system, though, can be modified for use in Magnetized Target Fusion research. As presently configured, it extrudes a 0.5 mm diameter fiber, cuts the fiber to a length of 7 cm, and drops the fiber fragment into an LN2 refrigerated support structure where the fiber remains intact for about 7 minutes. A heavy hydraulically actuated blast shutter protects the extrusion system after the fragment is dropped. Design and performance information, including detailed images of the fiber during the various phases of operation, will be provided.

  18. Impact of the extrusion process on xanthan gum behaviour.

    PubMed

    Sereno, Nuno M; Hill, Sandra E; Mitchell, John R

    2007-07-23

    Processing xanthan gum by extrusion and subsequent drying produces a biopolymer showing particulate, rather than molecular behaviour in aqueous solution. This form of xanthan disperses very readily to give a viscosity that is strongly dependent on salt concentration. On heating above the temperature of the order-disorder transition as determined by calorimetry, there is a viscosity transition that is indicative of the irreversible loss of the particulate structure. It is suggested that the extrusion process melts and aligns xanthan macromolecules. On cooling reordering will occur but in the highly concentrated environment in the extruder ( approximately 45% water w/w), inter-molecular association between neighbouring macromolecules cannot proceed to completion due to kinetic trapping. As a consequence a network structure is created maintained by associations involving ordered regions. A xanthan solution can be prepared from this particulate material by dispersing and subsequent heating far more readily than can be achieved with non-processed xanthan.

  19. Extrusion process optimization for toughness in balloon films

    NASA Technical Reports Server (NTRS)

    Cantor, K. M.; Harrison, I. R.

    1993-01-01

    An experimental optimization process for blown film extrusion is described and examined in terms of the effects of the technique on the toughness of balloon films. The optimization technique by Cantor (1990) is employed which involves the identification of key process variables including screw speed, nip speed, bubble diameter, and frost-line height for analysis to optimize the merit function. The procedure is employed in the extrusion of a low-density polyethylene polymer, and the resulting optimized materials are toughness- and puncture-tested. Balloon toughness is optimized in the analytical relationship, and the process parameters are modified to attain optimal toughness. The film produced is shown to have an average toughness of 24.5 MPa which is a good value for this key property of balloon materials for high-altitude flights.

  20. Hot-melt extrusion of sugar-starch-pellets.

    PubMed

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled.

  1. Attitudes on Death and Dying.

    ERIC Educational Resources Information Center

    Andrus, Charles E.

    This paper explored attitudes toward death and dying revealed through interviews with members of the clergy, the medical profession, funeral directors, nursing home residents, and selected others. The sampling was small and results are not intended to be representative of the groups to which these people belong. Rather, the study may be used as a…

  2. Robert Merton Dies at 92

    ERIC Educational Resources Information Center

    Snell, Joel C.

    2006-01-01

    This article features Robert Merton, who died recently at age 92. Merton came into this world as a Jewish baby named Meyer Schkolnick. He lived in South Philly where his parents wrenched a living as blue-collar workers. Merton chose an Anglicized name to move into the Yankee dominated America of the 20's and 30's. At Harvard, he studied under…

  3. Mineral of the month: aluminum

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2005-01-01

    Aluminum is the second most abundant metallic element in Earth’s crust after silicon. Even so, it is a comparatively new industrial metal that has been produced in commercial quantities for little more than 100 years. Aluminum is lightweight, ductile, malleable and corrosion resistant, and is a good conductor of heat and electricity. Weighing about one-third as much as steel or copper per unit of volume, aluminum is used more than any other metal except iron. Aluminum can be fabricated into desired forms and shapes by every major metalworking technique to add to its versatility.

  4. Laser welding of aluminum alloys

    SciTech Connect

    Leong, K.H.; Sabo, K.R.; Sanders, P.G.; Spawr, W.J.

    1997-03-01

    Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

  5. Pharmaceutical applications of hot-melt extrusion: part I.

    PubMed

    Crowley, Michael M; Zhang, Feng; Repka, Michael A; Thumma, Sridhar; Upadhye, Sampada B; Battu, Sunil Kumar; McGinity, James W; Martin, Charles

    2007-09-01

    Interest in hot-melt extrusion techniques for pharmaceutical applications is growing rapidly with well over 100 papers published in the pharmaceutical scientific literature in the last 12 years. Hot-melt extrusion (HME) has been a widely applied technique in the plastics industry and has been demonstrated recently to be a viable method to prepare several types of dosage forms and drug delivery systems. Hot-melt extruded dosage forms are complex mixtures of active medicaments, functional excipients, and processing aids. HME also offers several advantages over traditional pharmaceutical processing techniques including the absence of solvents, few processing steps, continuous operation, and the possibility of the formation of solid dispersions and improved bioavailability. This article, Part I, reviews the pharmaceutical applications of hot-melt extrusion, including equipment, principles of operation, and process technology. The raw materials processed using this technique are also detailed and the physicochemical properties of the resultant dosage forms are described. Part II of this review will focus on various applications of HME in drug delivery such as granules, pellets, immediate and modified release tablets, transmucosal and transdermal systems, and implants.

  6. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOEpatents

    Dusek, Joseph T.

    1993-01-01

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  7. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOEpatents

    Dusek, Joseph T.

    1993-10-05

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  8. Intrusion and extrusion of a liquid on nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Amabili, M.; Giacomello, A.; Meloni, S.; Casciola, C. M.

    2017-01-01

    Superhydrophobicity is connected to the presence of gas pockets within surface asperities. Upon increasing the pressure this ‘suspended’ state may collapse, causing the complete wetting of the rough surface. In order to quantitatively characterize this process on nanostructured surfaces, we perform rare-event atomistic simulations at different pressures and for several texture geometries. Such an approach allows us to identify for each pressure the stable and metastable states and the free energy barriers separating them. Results show that, by starting from the superhydrophobic state and increasing the pressure, the suspended state abruptly collapses at a critical intrusion pressure. If the pressure is subsequently decreased, the system remains trapped in the metastable state corresponding to the wet surface. The liquid can be extruded from the nanostructures only at very negative pressures, by reaching the critical extrusion pressure (spinodal for the confined liquid). The intrusion and extrusion curves form a hysteresis cycle determined by the large free energy barriers separating the suspended and wet states. These barriers, which grow very quickly for pressures departing from the intrusion/extrusion pressure, are shown to strongly depend on the texture geometry.

  9. Propulsion at low Reynolds number via beam extrusion

    NASA Astrophysics Data System (ADS)

    Gosselin, Frederick; Neetzow, Paul

    2014-03-01

    We present experimental and theoretical results on the extrusion of a slender beam in a viscous fluid. We are particularly interested in the force necessary to extrude the beam as it buckles with large amplitude due to viscous friction. The problem is inspired by the propulsion of Paramecium via trichocyst extrusion. Self-propulsion in micro-organisms is mostly achieved through the beating of flagella or cilia. However, to avoid a severe aggression, unicellular Paramecium has been observed to extrude trichocysts in the direction of the aggression to burst away. These trichocysts are rod-like organelles which, upon activation, grow to about 40 μm in length in 3 milliseconds before detaching from the animal. The drag force created by these extruding rods pushing against the viscous fluid generates thrust in the opposite direction. We developed an experimental setup to measure the force required to push a steel piano wire into an aquarium filled with corn syrup. This setup offers a near-zero Reynolds number, and allows studying deployments for a range of constant extrusion speeds. The experimental results are reproduced with a numerical model coupling a large amplitude Euler-Bernoulli beam theory with a fluid load model proportional to the local beam velocity. This study was funded in part by the The Natural Sciences and Engineering Research Council of Canada.

  10. Extrusion of metal oxide superconducting wire, tube or ribbon

    SciTech Connect

    Dusek, J.T.

    1990-01-01

    A process and apparatus for extruding a superconducting metal oxide composition YBa{sub 2}Cu{sub 3}O{sub 7-x} provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6--85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87--335 mil has also been produced. Flat ribbons have been produced in the range of 10--125 mil thick by 100--500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  11. Initial strength of highpressed extrusion poly-L-lactide screw.

    PubMed

    Matsushita, T; Nakamura, K; Shiro, R; Takazawa, H; Tsuji, K; Kurokawa, T

    2000-01-01

    We developed a poly-L-lactide material strengthened by a highpressed extrusion technique. The bending strength of a rod made of that material is higher than that of the same size rods made of poly-L-lactide strengthened by drawing technique, which has been used in clinical cases. The purposes of this study were, first to clarify if the initial strength of extrusion-strengthened poly-L-lactide screws is higher than that of draw-strengthened poly-L-lactide screws, and, secondly to investigate the safe torque for driving the screws in clinical usage. In accordance with AO screw design, five kinds of screws were manufactured. In a pull-out test and a twisting test using a DYRACON blocks, the strength of the highpressed extrusion-strengthened poly-L-lactide material was also higher than that of the draw-strengthened poly-L-lactide material after milling into screws. In the simulation using minipig bones and the 4.5 mm psi cortical screws, when the thickness was below 0.5 mm, between 0.5 and 2 mm or over 3 mm, the break locations were in the cortical bone, the thread of the screw and the under head fillet respectively. In the simulation using minipig bones and the 4.0 mm psi cancellous screws, breakage occurred not on the screws but on the cancellous bone in all screws.

  12. Directing collagen fibers using counter-rotating cone extrusion.

    PubMed

    Hoogenkamp, Henk R; Bakker, Gert-Jan; Wolf, Louis; Suurs, Patricia; Dunnewind, Bertus; Barbut, Shai; Friedl, Peter; van Kuppevelt, Toin H; Daamen, Willeke F

    2015-01-01

    The bio-inspired engineering of tissue equivalents should take into account anisotropic morphology and the mechanical properties of the extracellular matrix. This especially applies to collagen fibrils, which have various, but highly defined, orientations throughout tissues and organs. There are several methods available to control the alignment of soluble collagen monomers, but the options to direct native insoluble collagen fibers are limited. Here we apply a controlled counter-rotating cone extrusion technology to engineer tubular collagen constructs with defined anisotropy. Driven by diverging inner and outer cone rotation speeds, collagen fibrils from bovine skin were extruded and precipitated onto mandrels as tubes with oriented fibers and bundles, as examined by second harmonic generation microscopy and quantitative image analysis. A clear correlation was found whereby the direction and extent of collagen fiber alignment during extrusion were a function of the shear forces caused by a combination of the cone rotation and flow direction. A gradual change in the fiber direction, spanning +50 to -40°, was observed throughout the sections of the sample, with an average decrease ranging from 2.3 to 2.6° every 10μm. By varying the cone speeds, the collagen constructs showed differences in elasticity and toughness, spanning 900-2000kPa and 19-35mJ, respectively. Rotational extrusion presents an enabling technology to create and control the (an)isotropic architecture of collagen constructs for application in tissue engineering and regenerative medicine.

  13. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  14. Formation of chromosomal domains in interphase by loop extrusion

    NASA Astrophysics Data System (ADS)

    Fudenberg, Geoffrey

    While genomes are often considered as one-dimensional sequences, interphase chromosomes are organized in three dimensions with an essential role for regulating gene expression. Recent studies have shown that Topologically Associating Domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes. Despite observations that architectural proteins, including CTCF, demarcate and maintain the borders of TADs, the mechanisms underlying TAD formation remain unknown. Here we propose that loop extrusion underlies the formation TADs. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops, but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. This process dynamically forms loops of various sizes within but not between TADs. Using polymer simulations, we find that loop extrusion can produce TADs as determined by our analyses of the highest-resolution experimental data. Moreover, we find that loop extrusion can explain many diverse experimental observations, including: the preferential orientation of CTCF motifs and enrichments of architectural proteins at TAD boundaries; TAD boundary deletion experiments; and experiments with knockdown or depletion of CTCF, cohesin, and cohesin-loading factors. Together, the emerging picture from our work is that TADs are formed by rapidly associating, growing, and dissociating loops, presenting a clear framework for understanding interphase chromosomal organization.

  15. Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking).

    PubMed

    Voss, Kenneth; Ryu, Dojin; Jackson, Lauren; Riley, Ronald; Gelineau-van Waes, Janee

    2017-02-07

    Fumonisins are mycotoxins found in corn. They are toxic to animals and cause cancer in rodents and neural tube defects in LM/Bc mice. Reducing their concentrations in corn-based foods is therefore desirable. Chemical analysis or in vitro bioassays of food extracts might not detect toxic fumonisin reaction products that are unknown or unextractable from food matrices, thus potentially underestimating in vivo toxicity. The effectiveness of two common cooking methods, extrusion and nixtamalization (alkaline cooking), to reduce the toxicity of fumonisin-contaminated corn grits (extrusion) and whole kernel corn (nixtamalization) was shown by means of rat feeding bioassays using fumonisin-specific kidney effects as indicators of potential toxicity. A third bioassay showed that in contrast to fumonisin B1 (FB1), hydrolyzed fumonisin B1 (HFB1; formed from FB1 during nixtamalization) did not cause neural tube defects in LM/Bc mice. The findings indicate that extrusion and nixtamalization reduce the potential toxicity of FB1-contaminated corn.

  16. Investigation on grain size effect in high strain rate ductility of 1100 pure aluminum

    NASA Astrophysics Data System (ADS)

    Bonora, N.; Bourne, N.; Ruggiero, A.; Iannitti, G.; Testa, G.

    2017-01-01

    The effect of the initial grain size on the material ductility at high strain rates in 1100 pure aluminum was investigated. Dynamic tensile extrusion (DTE) tests, at different impact velocities, were performed. Samples have been annealed at 350°C for different exposure times to induce grain growth. Extruded fragments were soft-recovered and the overall length of the extruded jets was used as a measure of material ductility at high strain rates. Numerical simulation of DTE test at different velocity was performed using the modified Rusinek-Klepaczko constitutive model. Results indicates that, as reported for pure copper, the overall ductility of the aluminum increases when grain size decreases. Numerical simulation results were in quite good agreement with experimental data.

  17. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-17

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  18. Finite Element Simulation of Plastic Joining Processes of Steel and Aluminum Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Mori, K.; Abe, Y.; Kato, T.

    2007-05-01

    Various high tensile strength steel sheets and an aluminum alloy sheet were joined with a self-piercing rivet. It is not easy to weld the aluminum alloy sheet and high tensile strength sheets by means of conventional resistance welding because of very different melting points. To obtain optimum joining conditions, joining defects were categorized into separation of the sheets and an inner fracture. The joining range of ultra high tensile strength steel and aluminum alloy sheets was extended by means of dies optimized by finite element simulation. The joint strength is greatly influenced by not only the strength of the sheets and rivets but also the ratio of the thickness of the lower sheet to the total thickness. In addition, mechanical clinching of high strength steel and aluminum alloy sheets was simulated.

  19. In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 mm twin screw extruder using Raman spectroscopy.

    PubMed

    Saerens, Lien; Ghanam, Dima; Raemdonck, Cedric; Francois, Kjell; Manz, Jürgen; Krüger, Rainer; Krüger, Susan; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2014-08-01

    The aim of this research was to use Raman spectroscopy for the in-line monitoring of the solid state of materials during pharmaceutical hot-melt extrusion in the die head of a 12 mm (development scale) twin-screw extruder during formulation development. A full factorial (mixed) design was generated to determine the influence of variations in concentration of Celecoxib (CEL) in Eudragit® E PO, three different screw configurations and varying barrel temperature profiles on the solid state, 'melt temperature' and die pressure of continuously produced extrudates in real-time. Off-line XRD and DSC analysis were used to evaluate the suitability of Raman spectroscopy for solid state predictions. First, principal component analysis (PCA) was performed on all in-line collected Raman spectra from the experimental design. The resulting PC 1 versus PC 2 scores plot showed clustering according to solid state of the extrudates, and two classes, one class where crystalline CEL is still present and a second class where no crystalline CEL was detected, were found. Then, a soft independent modelling of class analogy (SIMCA) model was developed, by modelling these two classes separately by disjoint PCA models. These two separate PCA models were then used for the classification of new produced extrudates and allowed distinction between glassy solid solutions of CEL and crystalline dispersions of CEL. All extrudates were classified similarly by Raman spectroscopy, XRD and DSC measurements, with exception of the extrudates with a 30% CEL concentration extruded at 130 °C. The Raman spectra of these experiments showed bands which were sharper than the amorphous spectra, but broader than the crystalline spectra, indicating the presence of CEL that has dissolved into the matrix and CEL in its crystalline state. XRD and DSC measurements did not detect this. Modifications in the screw configuration did not affect the solid state and did not have an effect on the solid state prediction of

  20. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  1. Cryogenic Properties of Aluminum-Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum- beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-32O F) and (- 252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMet162 material was purchased to the requirements of SAE- AMs7912, "Aluminum-Beryllium Alloy, Extrusions". O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMet162 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O-30H elongation decreased with decreasing temperature.

  2. Bearing Strengths of Some Wrought-aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  3. Recycling of waste of aluminum foil into sheet materials

    SciTech Connect

    Katashinskii, V.P.; Vishnyakov, L.R.; Boiko, P.A.

    1995-07-01

    The principal method of recycling secondary metals, in particular aluminum, is remelting. However, remelting of aluminum swarf, and in particular of foil trimmings, is marked by low effectiveness because of extensive oxidation (in the processing of thin foil loss by oxidation amounts to 80%), low productivity of the metallurgical equipment on account of low volume-weight characteristics of foil trimmings compared with lumpy scrap metal, and high power requirements of metallurgical conversion. The shortcomings of the traditional technology can be eliminated by recycling foil trimmings by methods of powder metallurgy. This eliminates completely remelting and loss of metal by oxidation, simplifies the technological cycle, and reduces power requirements. We investigated the process of recycling aluminum foil marque A6 (GOST 21631-76) 14 and 30 {mu}m thick which is widely used in the food industry. The amount of waste occurring in its production may attain 15% of the annual output. In the initial state the waste of foil for food are trimmings of thin aluminum strip crushed into fragments of arbitrary shape whose maximal size in plan is 5-8 cm. To be processed by methods of powder metallurgy, such waste has to be converted into smaller fragments that fill well the cavity of the die when pressed in closed molds or the deformation zone in rolling or other methods of compaction in open tools.

  4. Sensitivity analysis on an AC600 aluminum skin component

    NASA Astrophysics Data System (ADS)

    Mendiguren, J.; Agirre, J.; Mugarra, E.; Galdos, L.; Saenz de Argandoña, E.

    2016-08-01

    New materials are been introduced on the car body in order to reduce weight and fulfil the international CO2 emission regulations. Among them, the application of aluminum alloys is increasing for skin panels. Even if these alloys are beneficial for the car design, the manufacturing of these components become more complex. In this regard, numerical simulations have become a necessary tool for die designers. There are multiple factors affecting the accuracy of these simulations e.g. hardening, anisotropy, lubrication, elastic behavior. Numerous studies have been conducted in the last years on high strength steels component stamping and on developing new anisotropic models for aluminum cup drawings. However, the impact of the correct modelling on the latest aluminums for the manufacturing of skin panels has been not yet analyzed. In this work, first, the new AC600 aluminum alloy of JLR-Novelis is characterized for anisotropy, kinematic hardening, friction coefficient, elastic behavior. Next, a sensitivity analysis is conducted on the simulation of a U channel (with drawbeads). Then, the numerical an experimental results are correlated in terms of springback and failure. Finally, some conclusions are drawn.

  5. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  6. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  7. Unintentional poisoning by phosphine released from aluminum phosphide.

    PubMed

    Shadnia, S; Mehrpour, O; Abdollahi, M

    2008-01-01

    Aluminum phosphide as a releaser of phosphine gas is used as a grain preservative. In this case report, we describe an accidental severe poisoning in a 35-year-old woman, her 18-year-old daughter, and 6-year-old son caused by inhalation of phosphine gas released from 20 tablets of aluminum phosphide stored in 15 rice bags. The boy died 2 days after exposure before admission to hospital and any special treatment, but the others were admitted 48 h after exposure. They had signs and symptoms of severe toxicity, and their clinical course included metabolic acidosis, electrocardiographic changes, and hypotension. They were treated by intravenous administration of sodium bicarbonate, magnesium sulfate, and calcium gluconate. The patients were discharged after 3 days and followed up for 1 week after discharge. Rapid absorption of phosphine by inhalation, induction of hyperglycemia, and surviving of patients are interesting issues of this case report.

  8. Aluminum nitride grating couplers.

    PubMed

    Ghosh, Siddhartha; Doerr, Christopher R; Piazza, Gianluca

    2012-06-10

    Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO(2)) was used for cladding layers. Peak coupling efficiency of -6.6 dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

  9. Characterization of ultradispersed aluminum

    SciTech Connect

    Simpson, R.L.; Maienschein, J.L.; Swansiger, R.W.; Garcia, F.; Darling, D.H.

    1994-12-08

    Samples of ultradispersed Al were received, which were produced by electrically exploding Al wires in argon. These samples comprised very small particles that were not significantly oxidized and that were stable in air. Particle morphology were studied with SE, micropycnometry, and gas adsorption surface area. Composition were determined using various techniques, as were thermal stability and reaction exotherms. The inexplicable reports of an Al-Ar compound and of an exothermic reaction were not confirmed. The material is a stable, nonoxidized, small-particle, highly reactive form of aluminum that is of interest in energetic materials formulations.

  10. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    SciTech Connect

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  11. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    SciTech Connect

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  12. The Benefits of Aluminum Windows.

    ERIC Educational Resources Information Center

    Goyal, R. C.

    2002-01-01

    Discusses benefits of aluminum windows for college construction and renovation projects, including that aluminum is the most successfully recycled material, that it meets architectural glass deflection standards, that it has positive thermal energy performance, and that it is a preferred exterior surface. (EV)

  13. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  14. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  15. Primary Aluminum Plants Worldwide - 1998

    USGS Publications Warehouse

    1999-01-01

    The 1990 U.S. Bureau of Mines publication, Primary Aluminum Plants Worldwide, has been updated and is now available. The 1998 USGS edition of Primary Aluminum Plants Worldwide is published in two parts. Part I—Detail contains information on individual primary smelter capacity, location, ownership, sources of energy, and other miscellaneous information. Part II—Summary summarizes the capacity data by country

  16. Should assisted dying be legalised?

    PubMed

    Frost, Thomas D G; Sinha, Devan; Gilbert, Barnabas J

    2014-01-15

    When an individual facing intractable pain is given an estimate of a few months to live, does hastening death become a viable and legitimate alternative for willing patients? Has the time come for physicians to do away with the traditional notion of healthcare as maintaining or improving physical and mental health, and instead accept their own limitations by facilitating death when requested? The Universities of Oxford and Cambridge held the 2013 Varsity Medical Debate on the motion "This House Would Legalise Assisted Dying". This article summarises the key arguments developed over the course of the debate. We will explore how assisted dying can affect both the patient and doctor; the nature of consent and limits of autonomy; the effects on society; the viability of a proposed model; and, perhaps most importantly, the potential need for the practice within our current medico-legal framework.

  17. Recycling of Al-Si die casting scraps for solar Si feedstock

    NASA Astrophysics Data System (ADS)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  18. Wettability of Aluminum on Alumina

    NASA Astrophysics Data System (ADS)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  19. Forest die-back modified plankton recovery from acidic stress.

    PubMed

    Vrba, Jaroslav; Kopáček, Jiří; Fott, Jan; Nedbalová, Linda

    2014-03-01

    We examined long-term data on water chemistry of Lake Rachelsee (Germany) following the changes in acidic depositions in central Europe since 1980s. Despite gradual chemical recovery of Rachelsee, its biological recovery was delayed. In 1999, lake recovery was abruptly reversed by a coincident forest die-back, which resulted in elevated terrestrial export of nitrate and ionic aluminum lasting ~5 years. This re-acidification episode provided unique opportunity to study plankton recovery in the rapidly recovering lake water after the abrupt decline in nitrate leaching from the catchment. There were sudden changes both in lake water chemistry and in plankton biomass structure, such as decreased bacterial filaments, increased phytoplankton biomass, and rotifer abundance. The shift from dominance of heterotrophic to autotrophic organisms suggested their substantial release from severe phosphorus stress. Such a rapid change in plankton structure in a lake recovering from acidity has, to the best of our knowledge, not been previously documented.

  20. A mathematical model to predict the strength of aluminum alloys subjected to precipitation hardening

    SciTech Connect

    Qureshi, F.S.; Sheikh, A.K.; Rashid, M.

    1999-06-01

    A number of alloys, notably most of the aluminum alloys, can be heat treated by aging. This aging due to time-dependent precipitation hardening increases the strength and hardness as well as modifying other mechanical properties. Precipitation hardening has been a popular strengthening mechanism for many decades; therefore, extensive information is available in literature about the precipitation-hardening response of various series of aluminum alloys. The age-hardening response of these alloys is usually represented in graphical form as plotted between property changes and aging time for different temperatures. In designing a suitable precipitation-hardening strategy, one can refer to these graphs. However, for automatic control of aging furnaces, as well as for decision making regarding optimal selection of aging conditions (time/temperature combination), it is desirable to express these relationships in a formal mathematical structure. A mathematical model is developed in this article for widely used heat treatable aluminum alloys used in the extrusion industry. This model is a condensed representation of all {sigma} = f(T,t) curves in different series of aluminum alloys, and the parameters of this model characterize the various compositions of the alloys in the series.

  1. A comparison of different irrigation systems and gravitational effect on final extrusion of the irrigant

    PubMed Central

    Görduysus, Melahat; Görduysus, Ömer

    2015-01-01

    Background The aim of this study was to compare manual needle irrigation (MNI), RinsEndo (RE), and passive ultrasonic irrigation (PUI), and assess the effect of gravity on extrusion from the apex in vitro. Material and Methods The distobuccal roots of molars were used and the canals were instrumented up to F2. Teeth were mounted on models, which permitted visualization and manipulation of the apices for necessary procedures. The models were placed in articulator to simulate the jaw. Six groups (G) were formed as: G1, G2 and G3 represented mandibular positioning of teeth and were irrigated with MNI, RE, and PUI, respectively, while G4, G5, and G6 represented maxillary positioning of teeth and were also irrigated in same sequence. Prior to the final irrigation, 72 cube-shaped foam pieces covered with aluminum foil were weighed and the values were recorded as the initial weights. The cubes were then placed on the apical part of each sample. Final irrigation was performed with distilled water and the cubes were weighed again to determine their final weight. Data were analyzed using Kruskal-Wallis and Mann-Whitney U post-hoc test (p<0.05). Results Irrespective of the irrigation technique used, the amount of irrigant extruded from the apex showed a statistically significant difference related to the effect of gravity (p<0.05). There was no statistically significant difference between irrigation methods (p>0.05). When the irrigation systems were compared to examine the effect of gravity, the significant difference was found between G2 and G5 (p<0.05). Conclusions Within the limitations of this study, MNI and PUI were found to be reliable irrigation systems. Caution should be exercised when using RinsEndo. Key words:Final irrigation, manual needle irrigation, passive ultrasonic irrigation, RinsEndo. PMID:26155336

  2. Contoured Orifice for Silicon-Ribbon Die

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1985-01-01

    Die configuration encourages purity and stable growth. Contour of die orifice changes near ribbon edges. As result, silicon ribbon has nearly constant width and little carbon contamination. Die part of furnace being developed to produce high-quality, low-cost material for solar cells.

  3. Thermo-Mechanical Optimization of a Gold Thick-film based SiC Die-attach Assembly using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shun-Tien; Chen, Liang-Yu

    2002-01-01

    A parametric study of the thermomechanical reliability of a Au thick-film based Sic-die- attach assembly using nonlinear finite element analysis (FEA) was conducted to optimize the die-attach thermo-mechanical performance for operation at temperatures from room temperature to 500 "C. This parametric study centered on material selection, structure design and process control. The die-attach assembly is composed of a 1 mm x 1 mm S i c die attached to a ceramic substrate (either 96% aluminum oxide (A1203) or aluminum nitride (AlN)) with a gold (Au) thick-film attach layer. The effects of die-size, Au attach layer thickness, substrate material, and stress relaxing temperature on the stress/strain distribution and relative fatigue lifetime of the die-attach assembly were numerically analyzed. By comparing the calculated permanent strain in the thick-film attach layer, FEA results indicate that AlN is superior to Al2O3. Thicker Au attach layers and smaller die sizes are recommended to reduce the permanent strain in thick-film die attach layer. Thicker S i c die also reduces the stress near the (top) surface region of the die. A stress relaxing temperature close to the midpoint of the operating temperature range further reduces the maximum stress/strain, thereby improving die-attach thermo-mechanical reliability. These recommendations present guidelines to optimize the thermo-mechanical performance of the die-attach assembly and are valid for a wide range of thermal environments.

  4. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    de Jesus, Marcelo Bispo; Radaic, Allan; Zuhorn, Inge S.; de Paula, Eneida

    2013-10-01

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles' in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis).

  5. Alkaline twin-screw extrusion pretreatment for fermentable sugar production

    PubMed Central

    2013-01-01

    Background The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. Results The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. Conclusions With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process

  6. The Limits of Extrusion in the Western Himalaya

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Webb, A. G.; Donaldson, D.; Johnson, S.; Elorriaga, T.

    2014-12-01

    Himalayan orogenesis is commonly explained by 1) extrusion models, involving expulsion of high-grade rocks southwards from beneath Tibet and up towards the High Himalayan orographic front, and/or 2) duplexing models, involving accretion of thrust horses from the downgoing Indian plate to the over-riding orogenic wedge. Most extrusion models predict exhumation and erosion of upper-amphibolite facies metamorphic rocks between the Main Central thrust (MCT) and a structurally higher normal fault, and therefore can be tested by determining if such high grade rocks occur between the MCT and the Indus-Yalu suture to the north. Prior qualitative studies suggest that such rocks are missing across the east Ladakh / Chamba and Kashmir regions of the western Himalaya. Here we present new quantitative and semi-quantitative results that document low peak metamorphic temperatures along a northeast-trending transect across the east Ladakh / Chamba Himalaya. We performed illite crystallinity (IC) and quartz grain boundary analyses to determine metamorphic and deformation temperatures, respectively. Calibrated IC values of structurally high samples range from 0.25 to 0.54, indicating temperatures of ~100 ˚C to ~300 ˚C. In structurally lower, muscovite +/- biotite-bearing meta-pelitic and meta-psammitic rocks, quartz grain boundaries show bulging recrystallization fabrics, corresponding to deformation temperatures of <~450 ˚C. Local exceptions occur along the southeast margin of the study region near a dome, where quartz sub-grain rotation fabrics indicate deformation temperatures between ~450 ˚C and ~550 ˚C. Our results, combined with similar IC values to the north from Girard et al. [2001, Clay Minerals v. 36, p. 237-247], demonstrate that a continuous strip of <~450 ˚C rocks extends from the MCT to the Indus-Yalu suture here. Therefore the predictions of extrusion models are not met in this portion of the Himalaya; we present alternative duplexing models.

  7. Salmonella Inactivation During Extrusion of an Oat Flour Model Food.

    PubMed

    Anderson, Nathan M; Keller, Susanne E; Mishra, Niharika; Pickens, Shannon; Gradl, Dana; Hartter, Tim; Rokey, Galen; Dohl, Christopher; Plattner, Brian; Chirtel, Stuart; Grasso-Kelley, Elizabeth M

    2017-03-01

    Little research exists on Salmonella inactivation during extrusion processing, yet many outbreaks associated with low water activity foods since 2006 were linked to extruded foods. The aim of this research was to study Salmonella inactivation during extrusion of a model cereal product. Oat flour was inoculated with Salmonella enterica serovar Agona, an outbreak strain isolated from puffed cereals, and processed using a single-screw extruder at a feed rate of 75 kg/h and a screw speed of 500 rpm. Extrudate samples were collected from the barrel outlet in sterile bags and immediately cooled in an ice-water bath. Populations were determined using standard plate count methods or a modified most probable number when populations were low. Reductions in population were determined and analyzed using a general linear model. The regression model obtained for the response surface tested was Log (NR /NO ) = 20.50 + 0.82T - 141.16aw - 0.0039T(2) + 87.91aw(2) (R(2) = 0.69). The model showed significant (p < 0.05) linear and quadratic effects of aw and temperature and enabled an assessment of critical control parameters. Reductions of 0.67 ± 0.14 to 7.34 ± 0.02 log CFU/g were observed over ranges of aw (0.72 to 0.96) and temperature (65 to 100 °C) tested. Processing conditions above 82 °C and 0.89 aw achieved on average greater than a 5-log reduction of Salmonella. Results indicate that extrusion is an effective means for reducing Salmonella as most processes commonly employed to produce cereals and other low water activity foods exceed these parameters. Thus, contamination of an extruded food product would most likely occur postprocessing as a result of environmental contamination or through the addition of coatings and flavorings.

  8. Physics based modeling and control of reactive extrusion

    NASA Astrophysics Data System (ADS)

    Elkouss, Paul F.

    2004-11-01

    Kinematic modeling has been shown to be important for the understanding and control of co-rotating twin screw extruders. The residence time distribution (RTD) is often used to characterize the steady-state behavior of an extrusion process. Due to the complex rheological behavior of polymer flow in the extruder, few have felt that the RTD would be independent of changes in operating conditions for the same screw configuration. To investigate, we are asserting that resident distributions could be independent of operating conditions for certain types of polymers. Four different polymers, two polyethylenes and two polypropylenes, were processed on the same 30mm Werner and Pfleiderer co-rotating twin-screw extruder (CoTSE) equipped with reflectance optical probes to compare their RTD's. Additionally, each material was tested to determine its complex viscosity, to better understand the phenomena involved. Using physically motivated models to control reactive extrusion processes is attractive because of the flexibility and robustness it could provide. This thesis uses residence distribution analyses to characterize the material flow through a co-rotating twin-screw extruder. Furthermore, we examine the applicability of residence distributions as the basis for kinematic modeling of the extrusion process. This demonstration of using a steady-state model---the residence distribution---as a basis for kinematic behavior is unique. The signals have been deconvoluted to kinematically characterize the flow in the different regions of the extruder, such as the melting, mixing and metering zones. Studies of step changes have shown that the steady state value of extrudate viscosity is dependent on the peroxide concentration, volume mixing, and on the residence time from the specific throughput. This data has also provided plant models of the peroxide initiated degradation reaction using system identification techniques. Although a specific example of vis-breaking of polypropylene is

  9. Aluminum plasmonic photocatalysis

    PubMed Central

    Hao, Qi; Wang, Chenxi; Huang, Hao; Li, Wan; Du, Deyang; Han, Di; Qiu, Teng; Chu, Paul K.

    2015-01-01

    The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications. PMID:26497411

  10. Enhancing restorative, periodontal, and esthetic outcomes through orthodontic extrusion.

    PubMed

    Fakhry, Ali

    2007-01-01

    Traumatic tooth fractures, dental caries, and overzealous tooth preparations can lead to the loss of coronal tooth structure, thus complicating the definitive prosthetic plan. Although exposure of additional clinical tooth structure by surgical crown lengthening is often recommended, such an approach is usually discouraged because of the possible adverse periodontal changes to the adjacent teeth and compromised esthetics, especially in the presence of an otherwise intact arch. This article discusses the application of orthodontic extrusion to conservatively restore a single tooth with minimal coronal tooth structure in the esthetic zone. A detailed description of the prosthetic approach used before, during, and after orthodontic therapy is presented.

  11. Short fiber-reinforced cementitious composites manufactured by extrusion technology

    NASA Astrophysics Data System (ADS)

    Mu, Bin

    The use of short fibers in the cement-based composites is more preferable due to the simplicity and economic nature in fabrication. The short fiber-reinforced cementitious composite (SFRCC) manufactured by the extrusion method show a great improvement in both strength and toughness as compared to the fiber-reinforced composites made by traditional casting methods. This improvement can be attributed to the achievement of low porosity and good interfacial bond in SFRCC under high shear and compressive stress during the extrusion process. In the present study, products of cylinders, sheets, pipes and honeycomb panels incorporating various mineral admixtures such as slag, silica fume, and metakaolin have been manufactured by the extrusion technology. Two kinds of short fibers, ductile polyvinyl alcohol (PVA) fibers and stronger but less ductile glass fibers, were used as the reinforcement in the products. After the specimens were extruded, tension, bending and impact tests were performed to study the mechanical properties of these products. The rheology test was performed for each mix to determine its viscoelastic properties. In addition, X-ray diffraction (XRD) and scanning electronic microscopy (SEM) technology were employed to get an insight view of the mechanism. A freezing and thawing experiment (ASTM C666) was also carried to investigate the durability of the specimens. Based on these experimental results, the reinforcing behaviors of these two short fibers were investigated. The enhancing effects of silica fume and metakaolin on the extrudates were compared and discussed. Finally, the optimum amount of silica fume and slag was proposed. Since the key point for a successful extrusion is the properly designed rheology which controls both internal and external flow properties of extrudate, a nonlinear viscoelastic model was applied to investigate the rheological behavior of a movable fresh cementitious composite in an extruder channel. The velocity profile of the

  12. Aqueous-Based Extrusion Fabrication of Ceramics on Demand

    DTIC Science & Technology

    2007-07-01

    utilizing a plastic syringe and hypodermic needles is shown in Figure 3. Single lines were deposited at table velocities of 25 mm/s and 30 mm/s with a...extrusion mechanism utilizing a plastic syringe and hypodermic needles . 3 0 2 4 6 8 10 12 20 40 60 80 100 120 140 E xc es s D ep os iti on L...the plastic syringe and hypodermic needles with a two-piece metal reservoir. The metal reservoir reduces variability in the internal pressure due

  13. Aluminum: Industry of the future

    SciTech Connect

    1998-11-01

    For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

  14. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  15. [Microbiological corrosion of aluminum alloys].

    PubMed

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  16. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  17. Non-Chromate Aluminum Pretreatments, Phase 2

    DTIC Science & Technology

    2004-09-01

    September 2004 78 ALUMINUM AL2024-T3 ALUMINUM AL7075 -T6 PNL ID 4 Control 5...ALUMINUM - AL2024-T3 192 ALUMINUM - AL7075 -T6 112 Table 5.13: AMCOM – NAVAIR PANEL TEST MATRIX OCTOBER 2003 NCAP Phase II Interim Report

  18. Die Welt des Herrn Kuhn

    NASA Astrophysics Data System (ADS)

    Kern, Daniela

    Eines Morgens erwachte Herr Kuhn fröstelnd und staunte darüber, dass es in seinerWohnung eiskalt war. Dennoch quälte er sich aus seiner kuscheligen Bettdecke heraus und schlurfte ins Bad. "Hoffentlich wird wenigstens das Wasser warm", dachte er sich, als er den Wasserhahn betätigte - aber es kam nicht nur kein warmesWasser, außer einem unheilvollen Gluckser kam gar nichts aus der Leitung. "Dann werde ich wohl mal den Klempner anrufen", sprach er sich leise in den Bart und griff zu seinem Handy - doch das Netz war tot! Herr Kuhn begann nun, sich ernsthaft Sorgen zu machen, "Oje, was ist denn heute nur los? Ist irgendetwas Schlimmes passiert?" Um einen besseren Überblick über die Lage zu bekommen und sich austauschen zu können, brannte er nun förmlich darauf, rauszugehen und zur Arbeit zu fahren. An anderen Tagen, die er frisch geduscht und mit Kaffee und Marmeladen-Brot begann, war er selten so motiviert. So ging er also nun mit leerem Magen aus dem Haus. Hätte er den Versuch unternommen, sein tägliches Marmeladenbrot zuzubereiten, und dafür den Kühlschrank geöffnet, um das Marmeladenglas herauszunehmen, wäre ihm aufgefallen, dass auch die Stromversorgung Störungen unterworfen war, unschön zu erkennen an den ersten grünen, felligen Inseln auf seinem Lieblingskäse.

  19. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Kittur, Jayant K.; Herwadkar, T. V.; Parappagoudar, M. B.

    2010-10-01

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  20. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    SciTech Connect

    Kittur, Jayant K.; Herwadkar, T. V.; Parappagoudar, M. B.

    2010-10-26

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.