Science.gov

Sample records for aluminum garnet crystals

  1. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  2. Magneto-optical property of terbium-lutetium-aluminum garnet crystals

    NASA Astrophysics Data System (ADS)

    Man, Peiwen; Ma, Fengkai; Xie, Tao; Ding, Jingxin; Wu, Anhua; Su, Liangbi; Li, Huanying; Ren, Guohao

    2017-04-01

    Mixed terbium lutetium aluminum garnet Tb2.2Lu0.8Al5O12 (LuTAG) single crystal was grown by Czochralski technique successfully. The structure had been analyzed by X-ray diffraction. The paramagnetic behavior was observed in magnetic measurement. Magneto-optical properties and thermal conductivity of LuTAG had been studied in detail and compared with these of TGG sample. The crystal exhibited a high thermal conductivity and very high transmittance, particularly in visible and near-infrared region, indicating terbium-lutetium-aluminum garnet could be a potential magneto-optical material using in high-power laser system.

  3. Spectroscopic investigation of the Cr to Tm energy transfer in Yttrium Aluminum Garnet (YAG) crystals

    NASA Technical Reports Server (NTRS)

    Dibartolo, B.

    1988-01-01

    New and interesting schemes have recently been considered for the efficient operation of solid-state ionic laser systems. Often the available data on these systems were obtained only because they seemed directly related to the laser performance and provide no insight into the physical processes. A more systematic approach is desirable, where more attention is devoted to the elementary basic processes and to the nature of the mechanisms at work. It is with this aim that we have undertaken the present study. Yttrium Aluminum Garnet (Y4Al5O12), called YAG, has two desirable properties as host for rare earth impurities: (1) trivalent rare earth ions can replace the yttrium without any charge compensation problem, and (2) YAG crystals have high cutoff energies. The results of measurements and calculations indicate that the Cr(3+) ion in YAG can be used to sensitize efficiently the Tm(3+) ion.

  4. Defects in laser crystals of rare-earth aluminum and gallium garnets

    SciTech Connect

    Vorob`ev, Yu.P.; Goncharov, O.Yu.

    1994-12-01

    Using thermodynamic and crystallochemical analysis of garnets R{sub 3}Ga{sub 5}O{sub 12}(R=Sm - Lu, Y) and R{sub 3}Al{sub 5}O{sub 12} (R = Gd - Lu, Y) and their solid solutions, we characterized point defects present in their structure and, for the first time, estimated their contents. We showed that the garnets under consideration contain cationic defects and oxygen vacancies: (1) In aluminum garnets R{sub 3}Al{sub 5}O{sub 12}, improper-valence ions form at octahedral sites. (2) In gallium garnets R{sub 3}Ga{sub 5}O{sub 12} and Ga-containing solid solutions, there are Ga vacancies at octahedral sites. (3) In Dy{sub 3}(Ga{sub c}Al{sub 1-c}){sub 5}O{sub 12} solid solutions, in addition to the above-mentioned defects typical of gallium garnets, antistructural, substitutional defects (Ga{sup 3+}{sub IV}) are present. The Ga{sup 3+}ions occupy preferentially octahedra; that is, they exhibit a higher affinity for octahedral coordination than Alk{sup 3+} ions, in agreement with Goldschmidt`s crystallochemical approach. The refined solid-solution ranges for R{sub 3}Ga{sub c}Al{sub 1-c}{sub 5}O{sub 12}(R=Nd,Sm,Eu,Gd) are 0.75 {le}c{le} 1 for Nd, 0.5 {le}c{le} 1 for Sm, 0.4 {le}c{le} 1 for Eu, and 0.25 {le}c{le} 1 for Gd.

  5. Magnetic and fluorescence properties of cerium-doped yttrium gadolinium aluminum iron garnet crystals

    NASA Astrophysics Data System (ADS)

    Aoki, Daichi; Shima, Mutsuhiro

    2014-11-01

    Magnetic and fluorescence properties of chemically synthesized Ce:Gd-YAIG (Ce0.05GdxY2.95-xAl5-yFeyO12) nanocrystals have been investigated. The structural characterization by X-ray diffraction (XRD) shows that a garnet phase has been identified in samples with 0 ≤ x ≤ 2.95 and 0 ≤ y ≤ 3.0. When y = 0, only garnet peaks are observed for 0 ≤ x ≤ 2.5, while both garnet and perovskite phases are present for x > 2.5. It is found from XRD Rietveld analyses that the site occupancy of Fe3+ at the tetrahedral and octahedral sites in the garnet is independent of the amount of Y3+ substituted by Ce3+ and Gd3+ at the dodecahedral sites. The saturation magnetization for the sample with x = 0 and y = 3.0 is 4.35 emu/g, while that with x = 2.5 and y = 3.0 is 87.5 emu/g. When the Fe3+ composition y is varied from 0 to 3.0 at x = 2.5, the intensity of fluorescence at the emission wavelength ˜570 nm significantly decreases presumably due to absorption by Fe3+ that is increased in the crystal.

  6. Ce-doped single crystal and ceramic garnets for γ ray detection

    SciTech Connect

    Hull, G; Roberts, J; Kuntz, J; Fisher, S; Sanner, R; Tillotson, T; Drobshoff, A; Payne, S; Cherepy, N

    2007-07-30

    Ceramic and single crystal Lutetium Aluminum Garnet scintillators exhibit energy resolution with bialkali photomultiplier tube detection as good as 8.6% at 662 keV. Ceramic fabrication allows production of garnets that cannot easily be grown as single crystals, such as Gadolinium Aluminum Garnet and Terbium Aluminum Garnet. Measured scintillation light yields of Cerium-doped ceramic garnets indicate prospects for high energy resolution.

  7. Electronic structure of Ce3+ multicenters in yttrium aluminum garnets

    NASA Astrophysics Data System (ADS)

    Przybylińska, H.; Ma, Chong-Geng; Brik, M. G.; Kamińska, A.; Sybilski, P.; Wittlin, A.; Berkowski, M.; Zorenko, Yu.; Gorbenko, V.; Wrzesinski, H.; Suchocki, A.

    2013-06-01

    Low temperature, infrared, and visible-ultraviolet absorption spectra of yttrium aluminum garnet (YAG) bulk crystals and epitaxial layers doped with Ce are presented. In the region of intra-configurational 4f-4f transitions, the spectra of the bulk YAG crystals exhibit existence of at least two different Ce3+ related centers, a major one associated with Ce in regular positions substituting yttrium and also additional center, due to so called antisite positions in the garnet host, i.e., ions in the Al positions. Crystal field analysis based on exchange charge model exhibit excellent agreement with the experimental data for major Ce3+ center.

  8. Terbium photoluminescence in yttrium aluminum garnet xerogels

    SciTech Connect

    Maliarevich, G. K.; Gaponenko, N. V. Mudryi, A. V.; Drozdov, Yu. N.; Stepikhova, M. V.; Stepanova, E. A.

    2009-02-15

    Based on a colloidal solution containing terbium, yttrium, and aluminum metal ions, a powder was synthesized and films of terbium-doped yttrium aluminum garnet Tb{sub 0.15}Y{sub 2.85}Al{sub 5}O{sub 12} were grown on single-crystal silicon and porous anodic alumina. Annealing of the sample in a temperature range from 200-1100 deg. C results in an increase in the photoluminescence intensity in the wavelength range from 480-640 nm, which is caused by Tb{sup 3+} ion intra-atomic transitions {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub j} (j = 3, 4, 5, 6). Annealing at 900 deg. C and higher temperatures gives rise to low-intensity photoluminescence bands in the region of 667 and 681 nm, which correspond to transitions {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub 0}, {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub 1}, and room-temperature Stark term splitting, which suggests the existence of a crystalline environment of Tb{sup 3+} ions. The FWHM of spectral lines in the region of 543 nm decreases from {approx}10 to {approx}(2-3) nm as the xerogel annealing temperature is increased from 700 to 900 deg. C and higher. Three bands with maxima at 280, 330, and 376 nm, which correspond to Tb{sup 3+} ion transitions {sup 7}F{sub 6}{sup {yields}}{sup 5}I{sub 8}, {sup 5}L{sub 6}, {sup 5}G{sub 6}, {sup 5}D{sub 3}, are observed in the photoluminescence excitation spectra of the studied structures for the emission wavelength at 543 nm. X-ray diffraction detected the formation of a crystalline phase for a terbium-doped yttrium aluminum garnet powder after annealing at 1100 deg. C.

  9. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  10. Crystal Chemistry of Melanite Garnet

    NASA Technical Reports Server (NTRS)

    Nguyen, Dawn Marie

    1999-01-01

    This original project resulted in a detailed crystal chemical data map of a titanium rich garnet (melanite) suite that originates from the Crowsnest Volcanics of Alberta Canada. Garnet is typically present during the partial melting of the earth's mantle to produce basalt. Prior studies conducted at Youngstown State University have yielded questions as to the crystal structure of the melanite. In the Studies conducted at Youngstown State University, through the use of single crystal x-ray diffraction, the c-axis appears to be distorted creating a tetragonal crystal instead of the typical cubic crystal of garnets. The micro probe was used on the same suite of titanium rich garnets as used in the single crystal x-ray diffraction. The combination of the single crystal x-ray research and the detailed microprobe research will allow us to determine the exact crystal chemical structure of the melanite garnet. The crystal chemical data was gathered through the utilization of the SX100 Electron Probe Micro Analyzer. Determination of the exact chemical nature may prove useful in modeling the ultramafic source rock responsible for the formation of the titanium rich lunar basalts.

  11. Dynamics of the IR-to-blue wavelength upconversion in Pr3+-doped yttrium aluminum garnet and LiYF4 crystals

    NASA Astrophysics Data System (ADS)

    Malinowski, M.; Joubert, M. F.; Jacquier, B.

    1994-11-01

    The infrared-to-blue upconversion in Pr3+-doped yttrium aluminum garnet and yttrium lithium fluoride crystals has been studied at temperatures between 4.4 and 300 K for different activator concentrations. The excitation spectra and decay-time measurements indicated the sequential absorption of two photons between levels of the 4f2 electronic configuration. The first photon is absorbed nonresonantly by a weak phonon band associated with the 3H4-->1G4 transition; the second resonant absorption step is from the 1G4(1) to one of the 1I6 levels that relax to the 3P0 state. Transitions from the excited 1G4 state obeyed the spin and point symmetry selection rules for electric-dipole transitions. Excited-state-absorption spectra revealed structure not observed in one photon absorption and excitation spectra.

  12. Fabrication of transparent yttrium aluminum garnet ceramic

    NASA Astrophysics Data System (ADS)

    Li, Xia

    2009-03-01

    In this paper, the synthesis of Nd-doped yttrium aluminum garnet (Nd:YAG) spherical nano-crystallites was investigated by using the solvothermal method, and the optimum processing conditions for processing the transparent ceramic preparation was determined. Powder consisting of nanosized particles obtained by the solvothermal method displays significantly less crystallite agglomeration, indicating a high degree of sinterability. The phase structure and the morphology of the YAG crystallites were depended on the reaction conditions, the optimum temperature is 300 centigrade for 1h, at which the pure phase of spherically shaped YAG nanoparticles can be obtained. Microstructure evolution at different sintering stages demonstrated that fully transparent YAG ceramic can be fabricated by vacuum sintering at 1750 centigrade for 5h by using the as-synthesized powders. The ceramic has a relative density of about 99.98% of the theoretical value, and an average grain size of about 3-5μm. The transmittance of the ceramic is 55% in the visible range, and 70% in the infrared range.

  13. Paramagnetic resonance of yttrium aluminum garnet doped with 151Eu2+ ions

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Asatryan, G. R.; Petrosyan, A. G.; Ovanesyan, K. L.; Fokin, A. V.; Shakurov, G. S.

    2016-12-01

    The 151Eu2+ orthorhombic centers in yttrium aluminum garnet crystals have been investigated. The initial splitting and hyperfine interaction parameters have been obtained taking into account the positions of the hyperfine structure components. The relative signs of the fine and hyperfine structure parameters have been determined from the analysis of the type of the hyperfine structure formed by the allowed and forbidden electron-nuclear transitions.

  14. Aluminum Nitride Crystal Growth

    DTIC Science & Technology

    1979-12-01

    UOSR-TR- 80 - 04 2 4EL4- G LEYEL ALUMINUM NITRIDE CRYSTAL GROWTH G.A. Slack FINAL REPORT Contract F49620-78-C-0021 DTIC Period Covered ELECTE I...Laboratory personnel worked on the problem of Aluminum Nitride Heat Sink Crystal Growth for the U.S. Air Force Office of Scientific Research under Contract...Number F44620-76-C-0039. From November 1, 1977 to the present we have worked on Aluminum Nitride and Boron Phosphide Crystal Growth under Contract NUmber

  15. Processing and Characterization of Polycrystalline Yag (Yttrium Aluminum Garnet) Core-Clad Fibers - Postprint

    DTIC Science & Technology

    2015-01-01

    AFRL-RY-WP-TP-2014-0296 PROCESSING AND CHARACTERIZATION OF POLYCRYSTALLINE YAG ( YTTRIUM ALUMINUM GARNET) CORE-CLAD FIBERS -POSTPRINT...April 2013 – 1 April 2014 4. TITLE AND SUBTITLE PROCESSING AND CHARACTERIZATION OF POLYCRYSTALLINE YAG ( YTTRIUM ALUMINUM GARNET) CORE-CLAD FIBERS...of polycrystalline YAG ( Yttrium Aluminum Garnet) core-clad fibers Hyun Jun Kima,b, Geoff E. Faira*, Santeri A

  16. Structure-terahertz property relationship in yttrium aluminum garnet ceramics

    NASA Astrophysics Data System (ADS)

    Steere, D. W.; Clark, B. M.; Gaume, R.; Sundaram, S. K.

    2017-08-01

    Terahertz (THz) transmission measurements on chemically variant yttrium aluminum garnet (YAG) ceramics are described. Chemical compositions and processing parameters were varied to determine the effect of stoichiometry, density, and pore volume distribution on the optical and dielectric properties in the THz frequency regime. Density has the largest effect on properties out of the parameters that were investigated. In addition, a linear correlation between cubic root of real permittivity at 1 THz and average density of these samples is observed. Our results show promise for design and fabrication of advanced optical materials and devices with desired THz properties via controlling density and porosity of the materials.

  17. Excited state dynamics of thulium ions in yttrium aluminum garnets

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Buoncristiani, A. M.; Dibartolo, B.

    1991-01-01

    The processes that take place in the excited states of a trivalent Thulium (Tm) ion in an Yttrium Aluminum Garnet (YAG) crystal, being relevant to the use of this system for laser applications, have been the object of several studies. We have reexamined this system focusing our attention on the dynamics of Tm following its excitation in the H-3(sub 4) level. Under these conditions the system relaxes through a cross-relaxation process. H-3(sub 4) yields F-3(sub 4), H-3(sub 6) yields F-3(sub 4), whose rate depends upon both the concentration of the Tm ion and the temperature of the crystal. The excitation spectrum obtained by monitoring the 1.8 micron emission of Tm (due to the F-3(sub 4) yields H-3(sub 6) transition) indicates an increase in the contribution to this emission from the H-3(sub 4) level relative to the H-3(sub 5) level as the Tm concentration increases; this shows the increased role played by the H-3(sub 4) level in pumping the infrared emission. Correspondingly, the duration of the luminescence originating in the H-3(sub 4) level is shortened as the concentration of Tm increases. The concentration quenching of this lifetime can be fit to a model which assumes that the cross-relaxation is due to a dipole-dipole interaction; from this fit, the intrinsic Tm lifetime in the absence of cross relaxation can be derived. We have used this lifetime to calculate the rate of the cross-relaxation process. We have evaluated this rate as a function of the temperature and found it to be fastest at 77 K. We have also calculated the microscopic interaction parameters for the cross-relaxation process by using two independent experimental features: (1) the time evolution of the emission from the H-3(sub 4) level; and (2) the spectral overlap between the H-3(sub 4) yields F-3(sub 4) emission and the H-3(sub 6) yields F-3(sub 4) absorption. We have also considered the migration of excitation among the Tm ions in the F-3(sub 4) level and calculated the relevant

  18. Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Bakar Sulong, Abu; Khan, Muhammad Azhar; Ahmad, Mukhtar; Murtaza, Ghulam; Raza, M. R.; Raza, R.; Saleem, M.; Kashif, M.

    2016-03-01

    Yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrite samples were synthesized by microemulsion method. The effect of sintering was examined by heating the samples at 900, 1000, and 1100 °C. The YIG and YAIG samples were then characterized using X-ray diffraction and field-emission scanning electron microscopy. Static and dynamic magnetic properties were measured by evaluating initial permeability, Q factor, and vibrating sample magnetometry properties of YIG and YAIG samples. YIG samples sintered at 1100 °C showed higher initial permeability and Q factor compared with YAIG samples. However, hysteresis loops also showed variations in the saturation magnetization, remanence, and coercivity of YIG and YAIG samples sintered at 900, 1000, and 1100 °C. The observed magnetic parameter such as saturation magnetization, coercivity and initial permeability are strongly affected by increasing temperature. The saturation magnetization and coercivity of YIG and YAIG nanoferrites were found in the range 11.56-19.92 emu/g and 7.30-87.70 Oe respectively. Furthermore, the decreasing trends in the static and magnetic properties of YAIG samples may be due to the introduction of Al ions in the YIG crystal lattice. Thus, YIG and YAIG sintered at 1100 °C can be used for wide-ranging frequency applications.

  19. Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+ multicenter structure

    NASA Astrophysics Data System (ADS)

    Przybylińska, H.; Wittlin, A.; Ma, Chong-Geng; Brik, M. G.; Kamińska, A.; Sybilski, P.; Zorenko, Yu.; Nikl, M.; Gorbenko, V.; Fedorov, A.; Kučera, M.; Suchocki, A.

    2014-07-01

    Low temperature, infrared transmission spectra of lutetium aluminum garnet (LuAG) bulk crystals and epitaxial layers doped with Ce are presented. In the region of intra-configurational 4f-4f transitions the spectra of the bulk LuAG crystal exhibit the signatures of several different Ce3+ related centers. Apart from the dominant center, associated with Ce substituting lutetium, at least six other centers are found, some of them attributed to so-called antisite locations of rare-earth ions in the garnet host, i.e., ions in the Al positions. X-ray diffraction data prove lattice expansion of bulk LuAG crystals due presence of rare-earth antisites.

  20. Transendoscopic neodymium:yttrium aluminum garnet laser irradiation in horses.

    PubMed

    Tate, L P; Sweeney, C L; Cullen, J M; Corbett, W T; Newman, H C; Brown, T C; Ketner, M T

    1989-05-01

    A neodymium:yttrium aluminum garnet (Nd:YAG) laser was used to study effects of applying laser irradiation transendoscopically to the corniculate process of the arytenoid cartilage in horses. Dosimetry was established initially in vitro in 10 corniculate cartilages that were irradiated and examined histologically to determine penetration depths at selected power settings. Eleven horses were given xylazine IV and butorphoral tartrate IV, and their left ventricle and corniculate process were irradiated. Six horses had left laryngeal hemiplegia and were euthanatized and necropsied 14 weeks after laser application and evaluation for upper airway stridor. Endoscopy was performed in the 5 other horses; they were euthanatized and necropsied at selected intervals to characterize the healing process. Healing was by second intention and was complete at 14 weeks. Two horses developed buds of granulation tissue along the laser incision, which resolved after a second laser application. Scar tissue formation resulted in left of midline displacement of the dorsal portion of the right corniculate process. The left ventricle healed without complications and was totally ablated. All horses had inspiratory stridor when exercised 14 weeks after laser irradiation.

  1. Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAlG) nanoferrite via sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Musa, Makiyyu Abdullahi; Azis, Raba'ah Syahidah; Osman, Nurul Huda; Hassan, Jumiah; Zangina, Tasiu

    The structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (Y3AlxFe5-xO12, YAIG) (x = 0.2, 0.6, 1, 1.4, 1.8, and 2.2) nanoparticles were investigated. The samples were prepared via auto combustion sol-gel technique, using citric acid as chelating agent and fuel for the combustion process. The obtained powder was heated at 950 °C. X-ray diffraction peaks confirmed the garnet phase formation. Crystallite size increases with Al from 28.5894 to 28.6170 nm. Lattice constant of the samples was found to decrease from 12.4674 Å to 12.3233 Å as Al increase from 0.0 to 2.2. FTIR was used to confirm the garnet structure, the main vibrating modes were observed to shift to higher wave number with increasing Al concentration. Saturation magnetization, Ms shows a decreasing trend from 20.721 to 0.7586 emu/g with increasing Al from 0.0 to 2.2. Furthermore, the decreasing trends in the static magnetic properties of YAIG samples may be due to the introduction of Al ions in the YIG crystal lattice. High content of Al substitution on YIG leads to paramagnetic behavior of the ferrite. The grain size decreased from 0.64 μm to 0.32 μm, while the bulk density decreased from 5.058 gcm-3 to 4.233 gcm-3 as Al increase from 0.0 to 2.2.

  2. Grain growth and microstructural evolution of yttrium aluminum garnet nanocrystallites during calcination process

    SciTech Connect

    Qin, Jie; Yang, Ru; Liu, Guoqiang; Li, Min; Shi, Yongxi

    2010-10-15

    An yttrium aluminum garnet (YAG) precursor precipitate was synthesized by urea method using yttria (Y{sub 2}O{sub 3}) and aluminum nitrate (Al(NO{sub 3}){sub 3}.9H{sub 2}O) as raw materials. The fresh wet precipitate was dried by supercritical carbon dioxide (CO{sub 2}) fluid and the resulting powder was calcined at temperatures from 600 to 1600 {sup o}C. Crystallization of YAG was detected at 800 {sup o}C, and completed at 900 {sup o}C. HRTEM images of the YAG product obtained above 900 {sup o}C revealed crystallographically specific oriented attachment along the [1 1 2] direction. Based on the observation of the particle morphology a possible growth mechanism of YAG nanoparticles was presented. The fast increase on the average crystallite size of YAG at temperatures from 900 to 1300 {sup o}C is attributed to the crystallographically specific oriented attachment growth process. As the growth process proceeds at higher temperatures, oriented attachment based growth becomes less important because of the increase on particle size, and the self-integration assisted by the Ostwald ripening becomes dominant.

  3. Timing capabilities of garnet crystals for detection of high energy charged particles

    NASA Astrophysics Data System (ADS)

    Lucchini, M. T.; Gundacker, S.; Lecoq, P.; Benaglia, A.; Nikl, M.; Kamada, K.; Yoshikawa, A.; Auffray, E.

    2017-04-01

    Particle detectors at future collider experiments will operate at high collision rates and thus will have to face high pile up and a harsh radiation environment. Precision timing capabilities can help in the reconstruction of physics events by mitigating pile up effects. In this context, radiation tolerant, scintillating crystals coupled to silicon photomultipliers (SiPMs) can provide a flexible and compact option for the implementation of a precision timing layer inside large particle detectors. In this paper, we compare the timing performance of aluminum garnet crystals (YAG: Ce, LuAG: Ce, GAGG: Ce) and the improvements of their time resolution by means of codoping with Mg2+ ions. The crystals were read out using SiPMs from Hamamatsu glued to the rear end of the scintillator and their timing performance was evaluated by measuring the coincidence time resolution (CTR) of 150 GeV charged pions traversing a pair of crystals. The influence of crystal properties, such as density, light yield and decay kinetics on the timing performance is discussed. The best single detector time resolutions are in the range of 23-30 ps (sigma) and only achieved by codoping the garnet crystals with divalent ions, such as Mg2+. The much faster scintillation decay in the co-doped samples as compared to non co-doped garnets explains the higher timing performance. Samples of LSO: Ce, Ca and LYSO:Ce crystals have also been used as reference time device and showed a time resolution at the level of 17 ps, in agreement with previous results.

  4. Multicolor filter all-garnet magneto-optical photonic crystals.

    PubMed

    Ansari, N; Khartsev, S I; Grishin, A M

    2012-09-01

    We demonstrate a multicolor optical filter and isolator based on a double-cavity magneto-optical (MO) photonic crystal. Being grown as a heteroepitaxial all-garnet multilayer, it compromises a strong MO response and high optical transmittance. Low-loss, high Faraday rotation passbands as well as strong light rejection within the stop band were achieved by optimization of distance between cavities and repetition number of distributed Bragg reflectors.

  5. Neodymium YAG (yttrium-aluminum-garnet) lasers. (Latest citations from the Inspec database). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the properties and applications of neodymium-yttrium-aluminum-garnet (Nd:YAG) lasers. Applications include welding, soldering of printed circuit boards, medical applications, telecommunication systems, rangefinding, and optical pumping of high powered lasers.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Raman calibration of the HT-7 yttrium aluminum garnet Thomson scattering for electron density measurements

    SciTech Connect

    Zang Qing; Zhao Junyu; Gao Xiang; Shi Lingwei; Zhang Tao; Xi Xiaoqi; Yang Li; Hu Qingsheng; Sajjad, S.

    2007-11-15

    A multipulse neodym doped yttrium aluminum garnet laser Thomson scattering system calibrated by the anti-Stokes rotational Raman scattering from nitrogen gas had been developed in the HT-7 superconducting Tokmak. By virtue of this system, measured electron density results of the plasma were obtained. The results showed good repeatability and its total uncertainty was estimated to be {+-}18%.

  7. Time-resolved electronic Raman spectrum of terbium aluminum garnet excited with visible and UV laser sources

    NASA Astrophysics Data System (ADS)

    Myslynski, P.; Koningstein, J. A.

    1987-05-01

    Excitation profiles for the intensities of electronic Raman transitions between crystal field components of the 7F 6 and 7F 5 manifolds of terbium aluminum garnet are recorded for excitation in the spectral region where absorption bands due to levels of the 5D 4 manifold occur. The intensities of the electronic transitions are not enhanced which is thought to be caused by the small values of electric dipole matrix elements of the resonating electronic states in comparison to the values of such elements to other intermediate states which occur in the expression for the scattering tensor. Fluorescence from the 5D 4 levels is induced and resonance fluorescence are time resolved with respect to the Raman transitions. We report electronic Raman transitions excited with the 308.0 nm line of an XeCl excimer laser. As opposed to excitation with visible laser sources, transitions are recorded which terminate on all the crystal field levels of the 7F 5…0 levels. In addition, fluorescence from 5D 3 to the ground state of terbium aluminum garnet is also observed.

  8. A COMPARISON OF FAR INFRARED AND RAMAN SPECTRA OF SOME RARE EARTH GARNET SINGLE CRYSTALS,

    DTIC Science & Technology

    RARE EARTH COMPOUNDS, *INFRARED SPECTRA), (*GARNET, RARE EARTH COMPOUNDS), (* RAMAN SPECTROSCOPY, RARE EARTH COMPOUNDS), SINGLE CRYSTALS, ALUMINATES...PHONONS, YTTRIUM COMPOUNDS, YTTERBIUM COMPOUNDS, TERBIUM COMPOUNDS, DYSPROSIUM COMPOUNDS, CANADA

  9. Erbium-doped yttrium aluminum garnet as a magnetic refrigerant for low temperature x-ray detectors

    NASA Astrophysics Data System (ADS)

    Kushino, Akihiro; Aoki, Yuji; Yamasaki, Noriko Y.; Namiki, Takahiro; Ishisaki, Yoshitaka; Matsuda, Tatsuma D.; Ohashi, Takaya; Mitsuda, Kazuhisa; Yazawa, Takashi

    2001-12-01

    Garnets doped with rare-earth elements can be used in adiabatic demagnetization refrigerators. We have measured the specific heat and magnetization of a single crystal yttrium aluminum garnet (YAG) doped with 30% Er3+ ion at temperatures between 93 mK and 8 K under magnetic fields up to 8.0 T along the <111> crystal axis. From the specific heat and magnetization, we derived consistent temperature and magnetic-field dependence of the magnetic entropy. Under zero magnetic field, the magnetic entropy begins to decrease below 2 K and becomes half of R ln 2 at ˜160 mK. This decrease is considered to be due to an antiferromagnetic short-range ordering among Er3+ ions. This behavior of the specific heat in the measured temperature range can be explained by a model in which both the crystalline-electric-field ground state and the first excited state are included. The operating temperature of the Er3+-doped YAG as a magnetic coolant is estimated to extend down to ˜100 mK, which is lower than those with nonsubstituted garnets such as gallium-gadolinium-garnet used in the range ˜4.2-15 K. With a doping level of 30%, we estimate that ˜6 kg of Er3+-doped YAG exhibits the same cooling performance at 60 mK as the 916 g of ferric-ammonium-alum salt used for the x-ray spectrometer (microcalorimeter detectors) on the Astro-E satellite.

  10. Comparison of the erbium-yttrium aluminum garnet and carbon dioxide lasers for in vitro bone and cartilage ablation

    SciTech Connect

    Gonzalez, C.; van de Merwe, W.P.; Smith, M.; Reinisch, L. )

    1990-01-01

    The in vitro bone- and cartilage-ablation characteristics of the solid-state erbium:yttrium aluminum garnet laser were compared to those of the carbon dioxide laser. Ablations of fresh, frozen cadaver septal cartilage and maxillary sinus bone were performed using total energies between 1 and 6 J. Specimens were studied using hematoxylin and eosin stain and digitized, computer-assisted measurements of 35-mm photographs. Erbium-yttrium aluminum garnet-ablated bone averaged 5 microns of adjacent tissue thermal injury, compared with 67 microns with carbon dioxide-ablated bone. Erbium-yttrium aluminum garnet-ablated cartilage averaged 2 microns of adjacent tissue thermal injury, compared with 21 microns with the carbon dioxide-ablated cartilage. The tissue-ablation characteristics of the erbium-yttrium aluminum garnet laser are promising for future otolaryngologic applications.

  11. Optical constants of yttrium-iron garnet single-crystal film structures

    NASA Astrophysics Data System (ADS)

    Sobol, V. R.; Volchik, T. V.; Arabei, S. M.; Korzun, B. V.; Kalanda, N. A.

    2009-03-01

    Light-attenuation spectra of yttrium-iron garnet single-crystal film structures grown on a gallium-gadolinium garnet substrate by liquid-phase epitaxy from the undercooled solution in the melt have been studied and compared with those of bulk yttrium-iron garnet samples. The calculated optical constants are discussed taking into account the influence of crystal field on the splitting of the energy states of iron ions in the film samples.

  12. Bulk optical damage thresholds for doped and undoped, crystalline and ceramic yttrium aluminum garnet.

    PubMed

    Do, Binh T; Smith, Arlee V

    2009-06-20

    We measured the bulk optical damage thresholds of pure and Nd-doped ceramic yttrium aluminum garnet (YAG), and of pure, Nd-doped, Cr-doped, and Yb-doped crystalline YAG. We used 9.9 ns, 1064 nm, single-longitudinal mode, TEM00 pulses, to determine that the breakdown thresholds are deterministic, with multiple-pulse thresholds ranging from 1.1 to 2.2 kJ/cm2.

  13. Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet

    SciTech Connect

    Dotsenko, V.P.; Berezovskaya, I.V.; Voloshinovskii, A.S.; Zadneprovski, B.I.; Efryushina, N.P.

    2015-04-15

    Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions have been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.

  14. Efficient triwavelength laser with a Nd:YGG garnet crystal.

    PubMed

    Yu, Haohai; Wu, Kui; Yao, Bin; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang; Zhang, Xingyu; Jiang, Minhua

    2010-06-01

    We demonstrate a laser-diode pumped efficient triwavelength laser at about 1.06microm with a Nd-doped yttrium gallium garnet crystal for the first time, to our knowledge. Continuous wave output power of 7.15W was achieved under an absorbed pump power of 14.1W, corresponding to the slope efficiency of 52.7%. With Cr:YAG as the saturable absorber, passive Q-switching performance was obtained. The shortest pulse width, largest pulse energy, and highest peak power were obtained at 3.1ns, 153.8microJ, and 46.6kW, respectively. The laser spectrum was found to be a triwavelength, with respective wavelengths of 1062.1, 1060.3, and 1058.9nm, and three laser transitions were assigned.

  15. REFINEMENT OF THE CRYSTAL STRUCTURE OF GUANIDINIUM ALUMINUM SULFATE HEXAHYDRATE.

    DTIC Science & Technology

    FERROELECTRIC CRYSTALS, * CRYSTAL STRUCTURE ), (*GUANIDINES, CRYSTAL STRUCTURE ), (*ALUMINUM COMPOUNDS, CRYSTAL STRUCTURE ), SULFATES, HYDRATES, X RAY DIFFRACTION, CHROMIUM COMPOUNDS, CRYSTAL LATTICES, CHEMICAL BONDS

  16. Luminescence of Terbium and Neodymium Ions in Yttrium Aluminum Garnet Xerogels on Porous Anodic Alumina

    NASA Astrophysics Data System (ADS)

    Rudenko, M. V.; Gaponenko, N. V.; Mudryi, A. V.; Orekhovskaya, T. I.

    2016-03-01

    Luminescent structures of yttrium aluminum garnet doped with rare-earth elements Tb and Nd (YAG:Tb3+ and YAG:Nd3+) were formed by the sol-gel route on films of porous anodic alumina. The morphology, phase composition, and luminescence of the fabricated structures were investigated. Photoluminescence spectra of the YAG:Tb3+ and YAG:Nd3+ structures revealed emission bands due to electronic transitions of the relevant rare-earth elements. Fine structure was observed in the luminescence bands of all fabricated samples and was associated with the manifestation of a Stark effect.

  17. Crystallization of pegmatites: Insights from chemistry of garnet, Jacumba pegmatites, San Diego County, California

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Sirbescu, M. C.

    2013-12-01

    Systematic mineral and textural variations from the border zone to the core of a zoned pegmatite sheet may reflect the kinetic or equilibrium fractionation processes that occurred during sequential crystallization of the pegmatite magma. Rhythmic layering, also named 'line rock', is a salient textural feature of world famous San Diego Co. pegmatites, that consists of alternating garnet × tourmaline layers and albite - quartz layers, mm's to cm's thick. Slowly diffusing, incompatible elements in the felsic magma including B, Fe, and Mn may become enriched in boundary layers formed ahead of rapidly crystallized quartzo-felspathic assemblages. This study explores whether the chemistry of garnet concentrated in the border and foot-wall zones and dispersed in the graphic feldspar, core, and pocket zones of Garnet Ledge pegmatite, Jacumba district, might fingerprint the diffusion-controlled oscillatory boundary layers. The lithium-cesium-tantalum (LCT) Jacumba pegmatite district, late product of the Eastern Peninsular Ranges Batholith, consists of numerous subparallel dikes, 3 to 7 m thick, intruding pre-batholitic metasedimentary rocks. The composite aplite-pegmatite dikes are texturally diverse. Comb-textured tourmaline, other unidirectional textures, garnet × tourmaline 'line rock', and coarse graphic K-feldspar crystals occur in the outer zones, followed by massive feldspar-quartz cores, vuggy cleavlandite- euhedral garnet, and miarolitic cavities. The Jacumba pegmatites have produced gem spodumene, beryl, and garnet from several open cuts such as the Beebe Hole and Pack Rat - Garnet Ledge workings. Systematic mineralogical and textural variations, and SEM-EDS garnet compositions were recorded from border to core at Garnet Ledge outcrop and thin section scale, focusing on continuous traverses across the line rock. Garnet from Garnet Ledge belongs to the spessartine-almandine series (Sp42 to Sp65) with minor contents of Mg, Ca, and Ti, consistent with garnet

  18. Phonon spectroscopy of the low-energy excitations in the solid solutions of yttrium–rare-earth metal–aluminum garnets

    SciTech Connect

    Khazanov, E. N. Taranov, A. V.; Shevchenko, E. V.; Charnaya, E. V.

    2015-07-15

    The transport characteristics of thermal-frequency phonons and the specific heat of a series of single crystals of yttrium–rare-earth metal–aluminum garnet solid solutions are studied at the helium temperatures. It is found that the existence of low-energy levels of various origins, which are responsible for an increase in the specific heat, retards phonon transport by one–three orders of magnitude. The temperature dependences of specific heat and the kinetic characteristics of phonons have a similar character.

  19. Phonon spectroscopy of the low-energy excitations in the solid solutions of yttrium-rare-earth metal-aluminum garnets

    NASA Astrophysics Data System (ADS)

    Khazanov, E. N.; Taranov, A. V.; Shevchenko, E. V.; Charnaya, E. V.

    2015-07-01

    The transport characteristics of thermal-frequency phonons and the specific heat of a series of single crystals of yttrium-rare-earth metal-aluminum garnet solid solutions are studied at the helium temperatures. It is found that the existence of low-energy levels of various origins, which are responsible for an increase in the specific heat, retards phonon transport by one-three orders of magnitude. The temperature dependences of specific heat and the kinetic characteristics of phonons have a similar character.

  20. Increased luminescence and improved decay kinetics in lithium and cerium co-doped yttrium aluminum garnet scintillators grown by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Dickens, Peter T.; Haven, Drew T.; Friedrich, Stephan; Saleh, Muad; Lynn, Kelvin G.

    2017-03-01

    In this study, four yttrium aluminum garnet single crystals co-doped with cerium and lithium were produced by the Czochralski method and the scintillation and defect properties were investigated. Our results demonstrated an increase in luminescence with Li co-doping as well as elimination of longer decay times. Surprisingly, although Li is monovalent, no oxidation of cerium from Ce3+ to Ce4+ was found as would be expected to maintain charge neutrality. Additionally, thermoluminescence results indicated a reduction in the trapping of charge carriers by shallow and deep traps, and room temperature photoluminescence measurements showed an improvement in the Ce3+ 5d to 4f transition efficiency.

  1. Garnet polycrystals and the significance of clustered crystallization

    NASA Astrophysics Data System (ADS)

    Whitney, Donna L.; Seaton, Nicholas C. A.

    2010-10-01

    Polycrystalline garnets are common in metamorphic rocks and may form as a result of close spacing of nuclei (if clustering is early) or impingement of larger grains (if clustering occurs later in the growth history). The timing of clustering relative to garnet growth is relevant to understanding the formation and evolution of porphyroblasts and evaluating the significance (if any) of clustering. Electron backscattered diffraction (EBSD) analysis of garnet-bearing metamorphic rocks reveals the presence of polycrystalline garnet in nine localities examined in this study: the northern Appalachians (Vermont, Maine, New York, USA); North American Cordillera (North Cascades Range, Washington; Snake Range, Nevada, USA); western Rocky Mountains (British Columbia, Canada); southern Menderes Massif (Turkey); Santander Massif (Colombia); and the Sanandaj-Sirjan zone (Hamadan, Iran). In some samples, polycrystals comprise ~20-30% of garnets analyzed, and chemical and textural evidence suggests that early coalescence of garnet polycrystals is common. Some early-coalescing polycrystals exhibit growth zoning that is concentric about the geometric center of the polycrystal. In thin section, these garnets may be undetectable as polycrystals based on morphology or zoning. In some polycrystals, zoning is unrelated to the location of internal grain boundaries; in others, Fe-Mn-Mg zoning has a different pattern than that of Ca; zoning patterns may vary on the scale of a single thin section. In addition, some polycrystals are characterized by high-angle misorientation boundaries that may be in special (non-random) orientations, an observation that indicates that these polycrystals are not random clusters of grains. The presence of internal grain boundaries may affect diffusion pathways and length scales, and may facilitate communication of porphyroblast interiors with matrix phases, thereby influencing reaction history of the rock and the composition/zoning of garnet.

  2. Acid resistance of erbium-doped yttrium aluminum garnet laser-treated and phosphoric acid-etched enamels.

    PubMed

    Kim, Jung-Ho; Kwon, Oh-Won; Kim, Hyung-Il; Kwon, Yong Hoon

    2006-11-01

    To compare the effects of erbium-doped yttrium aluminum garnet (Er:YAG) laser ablation and of phosphoric acid etching on the in vitro acid resistance of bovine enamel. Teeth were polished to make the surface flat. The polished enamel was either etched with 37% phosphoric acid for 30 seconds or ablated with a single 33 J/cm2 pulse from an Er:YAG laser. The control specimens were free from acid etching and laser ablation. Changes in crystal structure, dissolved mineral (calcium [Ca] and phosphorus [P]) contents, and calcium distribution in the enamel subsurface after a pH-cycling process were evaluated. After laser treatment, poor crystal structures improved without forming any new phases, such as tricalcium phosphates. Among the tested enamels, dissolved mineral contents were significantly different (P < .05). Er:YAG laser-treated enamels had the lowest mineral dissolution (Ca, 13.78 ppm; P, 6.33 ppm), whereas phosphoric acid-etched enamels had the highest (Ca, 15.90 ppm; P, 7.33 ppm). The reduction rate and reduced depth of calcium content along the subsurface were lowest in Er:YAG laser-treated enamels. The Er:YAG laser-treated enamels are more acid resistant to acid attack than phosphoric acid-etched enamels.

  3. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved, A. V.

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW - magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW - magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW - magnonic crystals are promising for signal processing in the GHz range.

  4. Mineral inclusions in garnet crystals and their application in studies of high and ultrahigh pressure rocks

    NASA Astrophysics Data System (ADS)

    Perchuk, Alexei

    2010-05-01

    Mineral inclusions in crystals like garnet, zircon or clinopyroxene play a key role in identifying ultrahigh-pressure (UHP) metamorphic rocks and in deciphering their metamorphic (P) - temperature (T) history. In this contribution, we address the questions related to the modification of garnet interiors mediated by H2O and/or CO2 fluids released either from the mineral inclusions or from the exterior source. The data presented are based on experimental studies of eclogitic garnets containing various mineral inclusions and on petrologic studies of natural rocks from several HP and UHP complexes. An experimental study on eclogitic garnets with different min¬eral inclusions (including hydrous phases and carbonates) from several subduction-related complexes reveals considerable modification of garnet interiors at temperatures of 700-1100˚C and a pressure of 3-4 GPa, representative of different diamond-bearing metamorphic UHP terranes. Epidote, amphibole, and chlorite inclusions in the garnets underwent dehydration melting over the entire experimental PT range. In the presence of aqueous fluids, carbonate minerals in the inclusions began to melt at 800 °C and 3 GPa. Melting gave rise to new garnet, with the composition controlled by the chemistry of the primary inclusions and by PT run conditions. Garnet either grew directly from the melt or formed by metasomatic replacement of host garnet walls, leaving residual melt at the substitution front in the latter case. Partial melting of inclusions decreased the mechanical strength of the garnet host and led to local shearing. The following diagnostic criteria for melt in metamorphic garnet may be formulated on the basis of the experimental study: (1) (sub-) euhedral garnet grows within the inclusion and/or xenomorphic garnet replaces the garnet host; (2) newly formed garnet is characterized by a composition different from the garnet host; (3) the inclusion surface is features characteristic wedge-shaped ledges or radial

  5. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    SciTech Connect

    Shao, Guojian; Lou, Chaogang; Kang, Jian; Zhang, Hao

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluate roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.

  6. Luminescence and absorption of divalent ytterbium ion in yttrium-aluminum garnet ceramics

    NASA Astrophysics Data System (ADS)

    Solomonov, V. I.; Osipov, V. V.; Spirina, A. V.

    2014-09-01

    Strong absorption bands at 280, 385, and 640 nm; a pulsed cathodoluminescence band with peaks at 325 and 520 nm and a dip at 385 nm; and a structured luminescence band in the range of 591-711 nm composed of four pair lines and having a dip near 640 nm have been observed in the spectra of yttrium-aluminum garnet ceramics activated with ytterbium (10 mol %) and subjected to vacuum sintering at a temperature of 1800°C. It is shown that these spectral features are absorption and luminescence bands of divalent ytterbium ions with the 4 f 136 s electron configuration of the ground state. These ions occupy the cubic site that is formed under conditions of oxygen deficit and disappears when the latter is removed during annealing ceramics in air.

  7. Bleb reduction using combined photodisruptive and photocoagulative neodymium-doped yttrium-aluminum-garnet laser.

    PubMed

    Kumar, Harsh; Dangda, Sonal

    2016-12-01

    This case report aims to highlight the role of photodisruptive neodymium-doped yttrium-aluminum-garnet (Nd:YAG) (1064 nm) laser in the treatment of bleb dysesthesia, which occurs in overhanging blebs or with perilimbal spread. Although treatment of such dysesthetic blebs with laser photocoagulation has been previously described, cases where the height of bleb precludes laser penetration, desired effect might not be seen. We herein describe a technique using a combination of photocoagulative (532 nm) and photodisruptive (1064 nm) Nd:YAG laser for a high bleb migrating nasally and inferiorly along the limbus in a 64-year-old female, causing hypotony and consequent macular edema. Successful reduction could be achieved within a week of treatment. By 6 weeks, intraocular pressure improved to 8 mmHg, macular edema subsided, and visual acuity improved to 6/6. Although surgical procedures to correct bleb dysesthesia are available, laser procedures being quick outpatient modalities are more comfortable for the patients.

  8. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    NASA Astrophysics Data System (ADS)

    Shao, Guojian; Lou, Chaogang; Kang, Jian; Zhang, Hao

    2015-12-01

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluate roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.

  9. Yttrium aluminum garnet Nanoparticles with low antisite Defects studied with neutron and X-ray diffraction

    SciTech Connect

    Sang Yuanhua; Yu Dehong; Avdeev, Maxim; Qin Haiming; Wang Jiyang; Liu Hong; Lv Yaohui

    2012-08-15

    The presence of cation antisite defects is considered to be one of the most important factors determining the fluorescence, laser, and scintillation properties of rare earth-doped yttrium aluminum garnet (YAG) materials. However, no direct evidence or systematic investigation of antisite defect evolution as a function of cation composition variation in YAG has been reported in the previous literature. In this paper, we report a combined neutron and X-ray diffraction investigation on cation antisite defects performed on specially synthesized nonstoichiometric yttrium aluminum garnet nanoparticles to try to understand the defect chemistry in the YAG system. No evidence was found for Y{sub Al,16a}, Y{sub Al,24d} and Al{sub Y,24c} antisite defects in these specially fabricated samples within the limit of diffraction techniques. The results suggest that YAG materials containing low level or no antisite defects can be achieved through low temperature synthesis process. - Graphical Abstract: Through combined Rietveld refinement against both the NPD and XRD data, no or low level antisite defect exists in the low temperature synthesized YAG powders, bond lengths are changeless as a function of the nominal Y/Al ratio, nonstoichiometry has little influence on antisite defect formation. Highlights: Black-Right-Pointing-Pointer Defects investigation with combined Rietveld refinement of NPD and XRD. Black-Right-Pointing-Pointer No or less than 2at% for Y{sub Al,16a} and Y{sub Al,24d} antisite defects. Black-Right-Pointing-Pointer Nonstoichiometry has little influence on antisite defect formation.

  10. Cathodoluminescent properties of an Am3+ ion in a matrix of yttrium-aluminum garnet Y3Al5O12

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Ya. V.; Usacheva, V. P.; Zamoryanskaya, M. V.

    2014-03-01

    The luminescent properties of an americium ion are studied. Luminescence spectra of americium in yttrium-aluminum garnet are recorded for the first time. The luminescence bands are identified, and the levels responsible for the observed optical transitions are determined.

  11. Tunable 2-mm lasing in calcium - niobium - gallium garnet crystals doped with Ho3+ ions

    NASA Astrophysics Data System (ADS)

    Ryabochkina, P. A.; Chabushkin, A. N.; Zakharov, N. G.; Vorontsov, K. V.; Khrushchalina, S. A.

    2017-07-01

    Lasing on the 5I7 → 5I8 transition of Ho3+ ions in holmium-doped calcium - niobium - gallium garnet crystals is obtained at a wavelength of about 2095 nm with an output power of 2.1 W under pumping by a laser based on Tm : LiYF4 crystal. Tunable lasing in these crystals within a wavelength range of 2045-2120 nm is achieved using an interference - polarisation filter.

  12. Macrodeformation Twins in Single-Crystal Aluminum

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Wang, L.; Fan, D.; Bie, B. X.; Zhou, X. M.; Suo, T.; Li, Y. L.; Chen, M. W.; Liu, C. L.; Qi, M. L.; Zhu, M. H.; Luo, S. N.

    2016-02-01

    Deformation twinning in pure aluminum has been considered to be a unique property of nanostructured aluminum. A lingering mystery is whether deformation twinning occurs in coarse-grained or single-crystal aluminum at scales beyond nanotwins. Here, we present the first experimental demonstration of macrodeformation twins in single-crystal aluminum formed under an ultrahigh strain rate (˜106 s-1 ) and large shear strain (200%) via dynamic equal channel angular pressing. Large-scale molecular dynamics simulations suggest that the frustration of subsonic dislocation motion leads to transonic deformation twinning. Deformation twinning is rooted in the rate dependences of dislocation motion and twinning, which are coupled, complementary processes during severe plastic deformation under ultrahigh strain rates.

  13. Water flow on erbium:yttrium-aluminum-garnet laser irradiation: effects on dental tissues.

    PubMed

    Colucci, Vivian; do Amaral, Flávia Lucisano Botelho; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2009-09-01

    Since lasers were introduced in dentistry, there has been considerable advancement in technology. Several wavelengths have been investigated as substitutes for high-speed air turbine. Owing to its high absorbability in water and hydroxyapatite, the erbium:yttrium-aluminum-garnet (Er:YAG) laser has been of great interest among dental practitioners and scientists. In spite of its great potential for hard tissue ablation, Er:YAG laser effectiveness and safety is directly related to an adequate setting of the working patterns. It is assumed that the ablation rate is influenced by certain conditions, such as water content of the target tissue, and laser parameters. It has been shown that Er:YAG irradiation with water coolant attenuates temperature rise and, hence, minimizes the risk of thermally induced pulp injury. It also increases ablation efficiency and enhances adhesion to the lased dental tissue. The aim of this review was to obtain insights into the ablation process and to discuss the effects of water flow on dental tissue ablation using Er:YAG laser.

  14. Investigating lanthanide dopant distributions in Yttrium Aluminum Garnet (YAG) using solid state paramagnetic NMR.

    PubMed

    McCarty, Ryan J; Stebbins, Jonathan F

    2016-10-01

    This paper demonstrates the approach of using paramagnetic effects observed in NMR spectra to investigate the distribution of lanthanide dopant cations in YAG (yttrium aluminum garnet, Y3Al5O12) optical materials, as a complimentary technique to optical spectroscopy and other standard methods of characterization. We investigate the effects of Ce(3+), Nd(3+), Yb(3+), Tm(3+), and Tm(3+)-Cr(3+) on (27)Al and (89)Y NMR spectra. We note shifted resonances for both AlO4 and AlO6 sites. In some cases, multiple shifted peaks are observable, and some of these can be empirically assigned to dopant cations in known configurations to the observed nuclides. In many cases, AlO6 peaks shifted by more than one magnetic neighbor can be detected. In general, we observe that the measured intensities of shifted resonances, when spinning sidebands are included, are consistent with predictions from models with dopant cations that are randomly distributed throughout the lattice. In at least one set of (27)Al spectra, we identify two sub-peaks possibly resulting from two paramagnetic cations with magnetically coupled spin states neighboring the observed nucleus. We identify systematic changes in the spectra related to known parameters describing the magnetic effects of lanthanide cations, such as larger shift distances when the expectation value of electron spins is greater. We lastly comment on the promise of this technique in future analyses of laser and other crystalline oxide materials. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Co-precipitation synthesis of lutetium aluminum garnet (LuAG) powders: The influence of ethanol

    NASA Astrophysics Data System (ADS)

    Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Zhang, Pande; Mao, Xiaojian; Zhang, Long

    2017-09-01

    Aluminum Garnet (LuAG) precursors were co-precipitated by using ethanol-water as the precipitant solvent. The effect of different volume ratios of ethanol to water (R) on the preparation of pure-phase LuAG powders has been mainly studied. The evolution of phase, composition and micro-structure of the as-synthesized LuAG powders were characterized by TG/DTA, FTIR, XRD, BET, and SEM. The BET-equivalent diameter of LuAG nano particles increased with R. The ethanol-water solvent does not change the main composition of the LuAG precursors, but has great influence on the morphology of the final LuAG nano particles. Uniformly dispersed LuAG powders calcined at 1200 °C for 3 h with a particle size of approximately 120 nm were obtained by using ethanol-water solvent with proper R = 1. The mechanism of ethanol in the preparation process was discussed.

  16. Highly efficient neodymium:yttrium aluminum garnet laser end pumped by a semiconductor laser array

    NASA Technical Reports Server (NTRS)

    Sipes, D. L.

    1985-01-01

    In recent experiments, 80-mW CW power in a single mode has been achieved from a neodymium:yttrium aluminum garnet (Nd:YAG) laser with only 1 W of electrical power input to a single semiconductor laser array pump. This corresponds to an overall efficiency of 8 percent, the highest reported CW efficiency for a Nd:YAG laser. A tightly focused semiconductor laser end pump configuration is used to achieve high pumping intensities (on the order of 1 kW/sq cm), which in turn causes the photon to photon conversion efficiency to approach the quantum efficiency (76 percent for Nd:YAG at 1.06 microns pumped at 0.810 micron). This is achieved despite the dual-lobed nature of the pump. Through the use of simple beam-combining schemes (e.g., polarization coupling and multireflection point pumping), output powers over 1 W and overall electrical to optical efficiencies as high as 10 percent are expected.

  17. Bleb reduction using combined photodisruptive and photocoagulative neodymium-doped yttrium-aluminum-garnet laser

    PubMed Central

    Kumar, Harsh; Dangda, Sonal

    2016-01-01

    This case report aims to highlight the role of photodisruptive neodymium-doped yttrium-aluminum-garnet (Nd:YAG) (1064 nm) laser in the treatment of bleb dysesthesia, which occurs in overhanging blebs or with perilimbal spread. Although treatment of such dysesthetic blebs with laser photocoagulation has been previously described, cases where the height of bleb precludes laser penetration, desired effect might not be seen. We herein describe a technique using a combination of photocoagulative (532 nm) and photodisruptive (1064 nm) Nd:YAG laser for a high bleb migrating nasally and inferiorly along the limbus in a 64-year-old female, causing hypotony and consequent macular edema. Successful reduction could be achieved within a week of treatment. By 6 weeks, intraocular pressure improved to 8 mmHg, macular edema subsided, and visual acuity improved to 6/6. Although surgical procedures to correct bleb dysesthesia are available, laser procedures being quick outpatient modalities are more comfortable for the patients. PMID:28112138

  18. Hinged Capsulotomy – Does it Decrease Floaters After Yttrium Aluminum Garnet Laser Capsulotomy?

    PubMed Central

    Alipour, Fatemeh; Jabbarvand, Mahmoud; Hashemian, Hesam; Hosseini, Simindokht; Khodaparast, Mehdi

    2015-01-01

    Objectives: The objective was to compare conventional circular yttrium aluminum garnet (YAG) laser capsulotomy with hinged capsulotomy to manage posterior capsular opacification (PCO). Materials and Methods: This prospective, randomized clinical trial enrolled pseudophakic patients with visually significant posterior capsule opacification. Patients were randomized to undergo posterior YAG laser capsulotomy with either conventional circular technique or a new technique with an inferior hinge. At 1-month postoperatively, patients were asked if they had any annoying floaters and the responses were compared between groups. P < 0.05 was considered statistically significant. Results: A total of 83 patients were enrolled. Forty-three patients underwent hinged posterior YAG capsulotomy and 40 patients underwent routine circular capsulotomy. At 1-month postoperatively, there was a statistically significant decrease in annoying floaters in the group that underwent circular capsulotomy (P = 0.02). There was no statistically significant association in the total energy delivered (P = 0.4) or the number of spots (P = 0.2) and patient perception of annoying floaters. Conclusion: Hinged YAG capsulotomy was effective at decreasing the rate of floaters in patients with PCO. PMID:26180476

  19. Effect of erbium:yttrium-aluminum-garnet laser energies on superficial and deep dentin microhardness.

    PubMed

    Chinelatti, Michelle Alexandra; Raucci-Neto, Walter; Corona, Silmara Aparecida Milori; Palma-Dibb, Regina Guenka

    2010-05-01

    This study evaluated the microhardness of superficial and deep dentin irradiated with different erbium:yttrium-aluminum-garnet (Er:YAG) laser energies. Seventy-two molars were bisected and randomly assigned to two groups (superficial dentin or deep dentin) and into six subgroups (160 mJ, 200 mJ, 260 mJ, 300 mJ, 360 mJ, and control). After irradiation, the cavities were longitudinally bisected. Microhardness was measured at six points (20 microm, 40 microm, 60 microm, 80 microm, 100 microm, and 200 microm) under the cavity floor. Data were submitted to analysis of variance (ANOVA) and Fisher's tests (alpha = 0.05). Superficial dentin presented higher microhardness than deep dentin; energy of 160 mJ resulted in the highest microhardness and 360 mJ the lowest one. Values at all points were different, exhibiting increasing microhardness throughout; superficial dentin microhardness was the highest at 20 microm with 160 mJ energy; for deep dentin, microhardness after irradiation at 160 mJ and 200 mJ was similar to that of the control. The lowest energy increased superficial dentin microhardness at the closest extent under the cavity; deep dentin microhardness was not altered by energies of 160 mJ and 200 mJ.

  20. Electrochemical performance of LiCoO 2 cathodes by surface modification using lanthanum aluminum garnet

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-Zhang; Chen, Jin-Ming; Cho, Yung-Da; Hsu, Wen-Hsiang; Muralidharan, P.; Fey, George Ting-Kuo

    LiCoO 2 particles were coated with various wt.% of lanthanum aluminum garnets (3LaAlO 3:Al 2O 3) by an in situ sol-gel process, followed by calcination at 1123 K for 12 h in air. X-ray diffraction (XRD) patterns confirmed the formation of a 3LaAlO 3:Al 2O 3 compound and the in situ sol-gel process synthesized 3LaAlO 3:Al 2O 3-coated LiCoO 2 was a single-phase hexagonal α-NaFeO 2-type structure of the core material without any modification. Scanning electron microscope (SEM) images revealed a modification of the surface of the cathode particles. Transmission electron microscope (TEM) images exposed that the surface of the core material was coated with a uniform compact layer of 3LaAlO 3:Al 2O 3, which had an average thickness of 40 nm. Galvanostatic cycling studies demonstrated that the 1.0 wt.% 3LaAlO 3:Al 2O 3-coated LiCoO 2 cathode showed excellent cycle stability of 182 cycles, which was much higher than the 38 cycles sustained by the pristine LiCoO 2 cathode material when it was charged at 4.4 V.

  1. Microtensile bond strength of composite resin to human enamel prepared using erbium: Yttrium aluminum garnet laser.

    PubMed

    Delfino, Carina Sinclér; Souza-Zaroni, Wanessa Christine; Corona, Silmara Aparecida Milori; Palma-Dibb, Regina Guenka

    2007-02-01

    The Erbium: Yttrium Aluminum Garnet (YAG) laser used for preparation of cavity can alter the substrate and it could influence the bond strength of enamel. The aim of this in vitro study was to evaluate the influence of Er:YAG laser's energy using microtensile bond test. Three groups were obtained (cavity preparation) and each group was divided into two subgroups (adhesive system). After that the adhesive protocol was performed, sections with a cross-sectional area of 0.8 mm2 (+/-0.2 mm2) were obtained. The specimens were mounted in a universal testing machine (0.5 mm/min). Statistical analysis showed a decrease in bond strength for lased groups (p < 0.01) and when the total-etching adhesive system was used the laser 300 mJ subgroup showed higher bond strength compared to the laser 250 mJ (p < 0.01). It was concluded that the cavities prepared using laser appear less receptive to adhesive procedures than conventional bur-cut cavities.

  2. Subtotal canine prostatectomy with the neodymium: yttrium-aluminum-garnet laser.

    PubMed

    Hardie, E M; Stone, E A; Spaulding, K A; Cullen, J M

    1990-01-01

    A technique was developed for subtotal prostatectomy in dogs with the neodymium:yttrium-aluminum-garnet (Nd:YAG) laser. In six normal dogs, full-thickness necrosis of the prostate occurred if the central-lateral region within 5 mm of the urethra was photoablated at 60 watts for 1 second. Moderate to superficial necrosis occurred when the prostate within 5 mm of the urethra was photoablated at 35 watts for 2 seconds or 60 watts for 0.5 second. At necropsy, leakage of the urethra occurred in two dogs at sites treated at 60 watts for 1 second. In a clinical study, complications associated with subtotal prostatectomy with the Nd:YAG laser (n = 6) were compared with complications associated with prostatic drainage (n = 6) in dogs with prostatic disease. Intraoperative death (2/6 dogs) and nocturnal incontinence (4/4 surviving dogs) occurred with subtotal prostatectomy. Uncontrolled prostatic infection (2/6 dogs) occurred with prostatic drainage and resulted in the death of one dog on day 11. Four of five dogs surviving prostatic drainage developed recurrent urinary tract infection.

  3. Refractory open-angle glaucoma after neodymium-yttrium-aluminum-garnet laser lysis of vitreous floaters.

    PubMed

    Cowan, Lisa A; Khine, Kay T; Chopra, Vikas; Fazio, Doreen T; Francis, Brian A

    2015-01-01

    To illustrate 3 cases of chronic open-angle glaucoma secondary to the neodymium-yttrium-aluminum-garnet (Nd:YAG) laser vitreolysis procedure for symptomatic vitreous floaters. Observational case series. Location of the study was the Doheny Eye Institute. Three eyes of 2 patients who developed chronic open-angle glaucoma after Nd:YAG vitreolysis for symptomatic floaters presenting with very high intraocular pressure (IOP >40 mm Hg) were selected. The time from the laser treatment to the onset of elevated pressure ranges from 1 week to 8 months. There was no associated inflammation, steroid use, or other identifiable cause of chronic IOP elevation. All eyes were treated initially with glaucoma medication, followed by selective laser trabeculoplasty (SLT) and eventually glaucoma surgery (Trabectome) in 2 eyes for disease management. In all eyes, intraocular pressures were eventually stabilized within a normal pressure range from 18 to 38 months following Nd:YAG vitreolysis. At the latest follow-up post surgery, all eyes had intraocular pressures of 22 mm Hg or less with or without medications. Secondary open-angle glaucoma is a complication of Nd:YAG vitreolysis for symptomatic floaters that may present with an increase in intraocular pressure immediately, or many months after the surgery. Furthermore this complication may be permanent and require chronic medical therapy or glaucoma surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Treatment of onychomycosis using a submillisecond 1064-nm neodymium:yttrium-aluminum-garnet laser.

    PubMed

    Carney, Caitlin; Cantrell, Wendy; Warner, Judy; Elewski, Boni

    2013-10-01

    Laser treatment has emerged as a novel treatment modality for onychomycosis. We sought to determine thermal response and optical effects of a submillisecond neodymium:yttrium-aluminum-garnet (Nd:YAG) 1064-nm laser on common fungal nail pathogens, and the clinical efficacy and safety of the Nd:YAG 1064-nm laser on onychomycotic toenails. A 4-part in vitro and in vivo study was conducted using a Nd:YAG 1064-nm laser. The first portion evaluated 3 different nail pathogens in suspension at 7 heat and time exposures. The second and third parts of the study irradiated pure fungal colonies. The final portion involved an in vivo treatment of toenails over 5 treatment sessions. A fungicidal effect for Trichophyton rubrum was seen at 50°C after 15 minutes, and for Epidermophyton floccosum at 50°C after 10 minutes. Limited growth of Scytalidium was seen at 55°C after 5 minutes. No inhibition was observed after laser treatment of fungal colonies or suspensions. In vivo treatment of toenails showed no improvement in Onychomycosis Severity Index score. The Nd:YAG 1064-nm laser was the only laser tested. Laser treatment of onychomycosis was not related to thermal damage or direct laser effects. In vivo treatment did not result in onychomycosis cure. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  5. The nature of photoinduced changes in the magnetostriction of yttrium-iron garnet single crystals

    SciTech Connect

    Vorob'eva, N. V.

    2011-05-15

    A model of the occurrence of photoinduced changes in linear magnetostriction is proposed based on a complex experimental study of magnetostrictive strains in yttrium-iron garnets Y{sub 3}Fe{sub 5}O{sub 12} with low contents of different impurities. Analytical expressions for calculating the magnetostriction in yttrium-iron garnet single crystals with different types of doping are presented. The correlation of the photoinduced change in the magnetostriction with the crystallographic features of the samples is demonstrated. The changes in the magnetostriction constants are analyzed quantitatively for samples prepared in different ways.

  6. Magnetophotonic crystal with cerium substituted yttrium iron garnet and enhanced Faraday rotation angle.

    PubMed

    Yoshimoto, Takuya; Goto, Taichi; Isogai, Ryosuke; Nakamura, Yuichi; Takagi, Hiroyuki; Ross, C A; Inoue, M

    2016-04-18

    Magnetophotonic crystals (MPCs) comprising cerium-substituted yttrium iron garnet (CeYIG) sandwiched by two Bragg mirrors were fabricated by vacuum annealing. CeYIG was deposited on Bragg mirrors at room temperature and annealed in 5 Pa of residual air. No ceria or other non-garnet phases were detected. Cerium 3 + ions substituted on the yttrium sites and no cerium 4 + ions were found. The Faraday rotation angle of the MPC was -2.92° at a wavelength of λ = 1570 nm was 30 times larger than that of the CeYIG film. These results showed good agreement with calculated values derived using a matrix approach.

  7. MAGNETORESISTANCE AND HALL EFFECT IN SINGLE CRYSTALS OF ALUMINUM

    DTIC Science & Technology

    ALUMINUM, *SINGLE CRYSTALS, CRYSTALS, HALL EFFECT , IMPURITIES, LOW PRESSURE, MAGNETIC FIELDS, MAGNETIC PROPERTIES, PARTICLE TRAJECTORIES, ELECTRICAL RESISTANCE, SOLID STATE PHYSICS, SURFACE PROPERTIES.

  8. High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal.

    PubMed

    Chen, Zhe; Yang, Lei; Wang, Xiangyong; Yin, Hang

    2016-06-01

    Magneto-optical characteristics of a new magneto-active material, (Tb(1-x)Hox)3Ga5O12 crystal, have been grown by the Czochralski (Cz) method. A high value of the Verdet constant was obtained at room temperature-namely, 214.9 and 77.8  rad·m-1 T-1 for 632.8 and 1064 nm, respectively. The Verdet constant of the Ho-doped terbium gallium garnet crystal at 1064 nm is about 2 times higher than that of terbium gallium garnet crystal. High value of magneto-optical figure-of-merit makes it an attractive next-generation magneto-optics material for high-power Faraday isolators.

  9. Bond durability in erbium:yttrium-aluminum-garnet laser-irradiated enamel.

    PubMed

    Amaral, F L B; Colucci, V; Souza-Gabriel, A E; Chinelatti, M A; Palma-Dibb, R G; Corona, S A M

    2010-03-01

    This study sought to evaluate the influence of thermocycling and water storage on the microtensile bond strength of composite resin bonded to erbium:yttrium-aluminum-garnet (Er:YAG)-irradiated and bur-prepared enamel. Eighty bovine incisors were selected and sectioned. Specimens were ground to produce a flat enamel surface. Samples were randomly assigned according to cavity preparation device: (I) Er:YAG laser and (II) high-speed turbine, and were subsequently restored with composite resin. They were subdivided according to the duration of water storage (WS)/number of thermocycles (TCs): 24 h WS/no TCs; 7 days WS/500 TCs; 1 month WS/2,000 TCs; 6 months WS/12,000 TCs. The teeth were sectioned into 1.0 mm(2)-thick slabs and subjected to tensile stress in a universal testing machine. Data were submitted to two-way analysis of variance (ANOVA) and Tukey's test at a 0.05 significance level. The different periods of water storage and thermocycling did not influence the microtensile bond strength (microTBS) values in the Er:YAG laser-prepared groups. In bur-prepared enamel, the group submitted to 12,000 TCs/6 months' WS (IID) showed a significant decrease in bond strength values when compared to the group stored in water for 24 h and not submitted to thermocycling (IIA), but values were statistically similar to those obtained in all Er:YAG laser groups and in the bur- prepared groups degraded with 500 TCs/1 week WS (IIB) or 2,000 TCs/1 month WS (IIC). It may be concluded that adhesion of an etch-and-rinse adhesive to Er:YAG laser-irradiated enamel was not affected by the methods used to simulate degradation of the adhesive interface and was similar to adhesion in the bur-prepared groups in all periods of water storage and thermocycling.

  10. Evaluation of 16 New Holmium:Yttrium-Aluminum-Garnet Laser Optical Fibers for Ureteroscopy.

    PubMed

    Akar, Erin C; Knudsen, Bodo E

    2015-08-01

    To test the performance of 16 new single-use holmium:yttrium-aluminum-garnet (YAG) laser fibers. Small and medium core fibers were evaluated for flexibility, true diameter, connector temperature, and failure threshold. A flexible ureteroscope was deflected with the fiber in the working channel to measure flexibility. Diameter was measured by micrometer and connector temperature by infrared thermometer. Failure threshold was determined by bending the fiber to 180°, beginning with a radius of 1.25 cm. A 100 W holmium:YAG laser was operated at 1.2 J/10 Hz for 30 seconds or until fiber fracture. The radius was decreased in 0.25-cm increments until a minimum bend radius of 0.4 cm was attained or until fiber fracture. Of the small core-fibers, the Cook-HLF-S150 (Cook Medical) had the smallest diameter and the Flexiva TracTip 200 (Boston Scientific) the largest. The Cook-HLF-S150 and S200 were the most flexible and the SlimLine EZ200 (Lumenis) the least. The SlimLine EZ200 failed at the largest bend radius, whereas the Flexiva 200 and Flexiva TracTip 200 did not fracture. Of the medium-core fibers, the ScopeSafe 300 had the smallest diameter and the Flexiva 365 the largest. The ScopeSafe 300 was the most flexible and the SlimLine 365 the least. The ScopeSafe 365 failed at the largest radius of 1.25 cm, and the Flexiva 365 did not fail in 6 of 9 trials at the tightest radius. Performance characteristics of these new holmium:YAG optical fibers differed significantly but performance was on par or better than historical controls. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-11-01

    Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs.

  12. Synthesis and photoluminescence properties of cerium-doped terbium-yttrium aluminum garnet phosphor for white light-emitting diodes applications

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Han, Tao; Lang, Tianchun; Tu, Mingjing; Peng, Lingling

    2015-11-01

    Cerium-doped terbium-yttrium aluminum garnet phosphors were synthesized using the solid-state reaction method. The crystalline phase, morphology, and photoluminescence properties were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), and fluorescence spectrophotometer, respectively. The XRD results indicate that with an increase of the amount of x (Tb3+), all of the samples have a pure garnet crystal structure without secondary phases. The SEM images reveal that the samples are composed of sphere-like crystallites, which exhibit different degrees of agglomeration. The luminescent properties of Ce ions in )Al5O12∶Ce0.1 have been studied, and it was found that the emission band shifted toward a longer wavelength. The redshift is attributed to the lowering of the 5d energy level centroid of Ce, which can be explained by the nephelauxetic effect and compression effect. These phosphors were coated on blue light-emitting diode (LED) chips to fabricate white light-emitting diodes (WLEDs), and their color-rendering indices, color temperatures, and luminous efficiencies were measured. As a consequence of the addition of Tb, the blue LED pumped )Al5O12∶Ce0.1 phosphors WLEDs showed good optical properties.

  13. Acute effects of anti-inflammatory drugs on neodymium:yttrium aluminum garnet laser-induced uveitis in dogs.

    PubMed

    Millichamp, N J; Dziezyc, J; Rohde, B H; Chiou, G C; Smith, W B

    1991-08-01

    Dogs were treated with flunixin meglumine, a cyclooxygenase inhibitor; L-651,896, a 5-lipoxygenase inhibitor; and matrine, a herbal anti-inflammatory drug. Acute inflammation was induced in the eyes by disruption of the anterior lens capsule, using a neodymium:yttrium aluminum garnet laser. Intraocular pressure, pupil diameter, and eicosanoid production in the aqueous humor were measured. Statistically significant effects were seen in the eyes of flunixin meglumine-treated dogs where mydriasis was maintained and aqueous prostaglandin E2 concentration was reduced.

  14. Clinical efficacy of the dual-pulsed Q-switched neodymium:yttrium-aluminum-garnet laser: Comparison with conservative mode.

    PubMed

    Kim, Byung Wook; Lee, Mi Hye; Chang, Sung Eun; Yun, Woo Jin; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan

    2013-12-01

    The quality (Q)-switched neodymium:yttrium-aluminum-garnet (Nd:YAG) laser is one of the first non-ablative lasers to be used for facial resurfacing and photorejuvenation. Recently, the method of low-fluence Q-switched Nd:YAG lasers known as 'laser toning' has been used for non-ablative skin rejuvenation and for the treatment of melasma in Asian countries. We report our experience of using a novel Q-switched Nd:YAG laser that was operated as a dual pulse at half fluence and 140-μs intervals compared with conservative mode laser.

  15. Characterization of a Natural Garnet Crystal as a Reference Material for Micro Analytical Determination of Trace Elements

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Pearson, D. G.; Hardman, M. F.; Woodland, S. J.

    2016-12-01

    Garnet has been widely used in igneous and metamorphic studies of a wide variety of rock types. It is particularly important in provenance studies to locate and assess kimberlites and lamproites during diamond exploration (Fedorowich, Jain et al. 1995). However, an international garnet reference material with well-characterized trace element compositions for in situ laser ablation ICPMS is not widely available. This study aims to characterize the concentrations of trace and ultra- trace elements in a natural garnet crystal, PHN1617, using both laser ablation ICP-MS and solution ICP-MS. LA-ICP-MS trace element mapping was used to confirm the homogeneity of the garnet crystal. Inter-laboratory comparison has been performed to obtain a consensus value for the trace element data. We conclude that the PHN1617 garnet can serve as a reference material or secondary reference material for micro-analytical applications. The use of Ni-in-garnet as a geothermometer for diamond exploration necessitates obtaining high quality Ni ICP-MS data. As such we have evaluated the effect of using Pt, Al, and Ni ICP-MS cones on Ni data quality. A variety of LA-ICP-MS standardization strategies, suited to garnet analysis, have also been investigated using NIST612 and other USGS glasses and these results are presented here. Fedorowich, J. S., et al. (1995). "TRACE-ELEMENT ANALYSIS OF GARNET BY LASER-ABLATION MICROPROBE ICP-MS." Canadian Mineralogist 33: 469-480.

  16. Faraday effect improvement by Dy{sup 3+}-doping of terbium gallium garnet single crystal

    SciTech Connect

    Chen, Zhe Yang, Lei; Hang, Yin; Wang, Xiangyong

    2016-01-15

    Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy{sup 3+} in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy{sup 3+}-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS–NIR) at room temperature. The Verdet constants increase at measured wavelengths and high thermal stability was found in Dy{sup 3+}-doped TGG, as compared to the properties of pure TGG, indicating that Dy{sup 3+}-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS–NIR wavelengths. - Graphical abstract: Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) and pure TGG single crystals were grown by Czochralski method. The Dy{sup 3+}-doped TGG possesses 20–30% higher Verdet values in reference to TGG independently on wavelength.

  17. Fluid-induced Crystallization of Majoritic Garnet During Deep Continental Subduction (Western Gneiss Region, Norway)

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Pettke, T.; van Roermund, H. L.

    2008-12-01

    In ultrahigh pressure (UHP) rocks, garnet containing pyroxene exsolutions derives from breakdown of majorite crystallized at depths > 200 km. Presence of microdiamonds in some of these rocks [1], including those of the Western Gneiss Region (WGR) of Norway [2], may suggest a fluid-bearing environment for the genesis of majorite. The WGR UHP gneisses host garnet peridotite and websterite recording uplift from extraordinary depths prior to uptake in a subducting slab [2]. These ultramafic rocks (islands of Otrøy and Bardane) derive from depleted Archean transition-zone mantle (350 km depth) upwelled and accreted to a cratonic lithosphere (M2 stage). Evidence for this are decimetric garnets (grt) preserved in Otrøy, hosting up to 20 volume% orthopyroxene (opx) and clinopyroxene (cpx) exsolved from precursor majoritic garnet (M1 stage). The pyroxene lamellae (20-30 ¥ìm thick, hundreds of ¥ìm long) [3] were exsolved under high-T, as shown by the garnet/cpx REE distribution [4]. This Archean-mid Proterozoic record is overprinted by the 425- 390 Ma Scandian continental subduction (M3 stage), forming new grt + cpx + opx + phlogopite (phl) + spinel (sp) that contain diamond-bearing micro-inclusions witnessing deep COH subduction fluids [2]. Here we document formation of new majoritic garnet in the M3 assemblage and in veins at Bardane [5]. Textural characteristics, together with the LREE and LILE enrichments of the M3 minerals, indicate that the new majorite is linked to infiltration of subduction fluids during renewed burial towards sub-lithospheric depths. It represents the deepest occurrence of fluid-related microstructures in mantle rocks. The new majoritic garnet crystallized at grain boundaries and in micro-veins at 7 Gpa and 900-1000 °C. It hosts thin pyroxene needles (5 mm thick, 100 mm long) exsolved under comparatively low-T, as indicated by the garnet/cpx REE distribution. The trace element signature of the majorite-bearing subduction assemblage is LREE

  18. Faraday effect improvement by Dy3+-doping of terbium gallium garnet single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Lei; Hang, Yin; Wang, Xiangyong

    2016-01-01

    Highly transparent Dy3+-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy3+ in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy3+-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS-NIR) at room temperature. The Verdet constants increase at measured wavelengths and high thermal stability was found in Dy3+-doped TGG, as compared to the properties of pure TGG, indicating that Dy3+-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS-NIR wavelengths.

  19. Single-Crystal X-Ray Diffraction of Pyrope Garnet to 84 GPa

    NASA Astrophysics Data System (ADS)

    Finkelstein, G. J.; Dera, P. K.; Duffy, T. S.

    2012-12-01

    Garnets are characteristic minerals of many metamorphic and igneous rocks, and are also important upper-mantle constituents. Mg-rich (pyrope) garnets occur in both peridotite and eclogite compositions in the upper mantle. At high temperatures and pressures above 25 GPa, garnets transform to the perovskite structure. The post-garnet transition kinetics are sluggish, and in cold subducting slabs garnets could persist metastably at temperatures as high as 1700 K on geological timescales. These phases could add positive buoyancy to a subducting slab, inhibiting subduction. There has been minimal previous work on the 300 K compression behavior of aluminosilicate garnets at pressures higher than 10 GPa. In this work, we have collected single-crystal X-ray diffraction data on near end-member natural pyrope (Dora Maira pyrope) to 84 GPa. By extending the compression of pyrope to much higher pressures, we can better constrain the equation of state while also characterizing the structural response to such extreme pressures for the first time. Crystals were polished to ~5-10 μm in thickness, and loaded in a diamond anvil cell with gold foil and ruby balls as pressure calibrants. Helium was used as a pressure-transmitting medium. High-pressure single-crystal X-ray diffraction experiments were performed at the GSECARS 13-ID-D beamline of the Advanced Photon Source and the 12.2.2 beamline of the Advanced Light Source. Structure refinements were carried out successfully to the highest pressure using Shelx-97, extending the range over which the compression behavior of this material has been characterized by a factor of nearly three. Pyrope exhibits smooth compression behavior and no phase transitions over the investigated pressure range. A preliminary 3rd order Birch-Murnaghan equation of state was successfully fit to data up to 52 GPa. If the bulk modulus is fixed to 170 GPa, a value consistent with previous Brillouin and Ultrasonic studies, our data yields a pressure derivative

  20. Defect reduction in seeded aluminum nitride crystal growth

    DOEpatents

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Stack, Glen A.

    2017-04-18

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  1. Defect reduction in seeded aluminum nitride crystal growth

    DOEpatents

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.

    2017-06-06

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  2. Determinants of holmium:yttrium-aluminum-garnet laser time and energy during ureteroscopic laser lithotripsy.

    PubMed

    Molina, Wilson R; Marchini, Giovanni S; Pompeo, Alexandre; Sehrt, David; Kim, Fernando J; Monga, Manoj

    2014-04-01

    To evaluate the association of preoperative noncontrast computed tomography stone characteristics, laser settings, and stone composition with cumulative holmium:yttrium-aluminum-garnet (Ho:YAG) laser time/energy. We retrospectively reviewed patients who underwent semirigid/flexible ureteroscopy and Ho:YAG laser lithotripsy (200 or 365 μm laser fiber; 0.8-1.0 J energy; and 8-10 Hz rate) at 2 tertiary care centers (April 2010-May 2012). Studied parameters were as follows: patient's characteristics; stone characteristics (location, burden, hardness, and composition); total laser time and energy; and surgical outcomes. One hundred patients met our inclusion criteria. Mean stone size was 1.01 ± 0.42 cm and volume 0.33 ± 0.04 cm(3). Mean stone radiodensity was 990 ± 296 HU, and Hounsfield units density 13.8 ± 6.0 HU/mm. All patients were considered stone free. Stone size and volume had a significant positive correlation with laser energy (R = 0.516, P <.001; R = 0.621, P <.001) and laser time (R = 0.477, P <.001; R = 0.567, P <.001). When controlling for stone size, only the correlation between HU and laser time was significant (R = 0.262, P = .011). In the multivariate analysis, with exception of stone composition (P = .103), all parameters significantly increased laser energy (R(2) = 0.524). Multivariate analysis revealed a positive significant association of laser time with stone volume (P <.001) and Hounsfield units density (P <.001; R(2) = 0.512). In multivariate analysis for laser energy, only calcium phosphate stones required less energy to fragment compared with uric acid stones. No significant differences were found in the multivariate laser time model. Ho:YAG laser cumulative energy and total time are significantly affected by stone dimensions, hardness location, fiber size, and power. Kidney location, laser fiber size, and laser power have more influence on the final laser energy than on the total laser time. Calcium phosphate stones require less laser

  3. Modification of the crystal structure of gadolinium gallium garnet by helium ion irradiation

    SciTech Connect

    Ostafiychuk, B. K.; Yaremiy, I. P. Yaremiy, S. I.; Fedoriv, V. D.; Tomyn, U. O.; Umantsiv, M. M.; Fodchuk, I. M.; Kladko, V. P.

    2013-12-15

    The structure of gadolinium gallium garnet (GGG) single crystals before and after implantation by He{sup +} ions has been investigated using high-resolution X-ray diffraction methods and the generalized dynamic theory of X-ray scattering. The main types of growth defects in GGG single crystals and radiation-induced defects in the ion-implanted layer have been determined. It is established that the concentration of dislocation loops in the GGG surface layer modified by ion implantation increases and their radius decreases with an increase in the implantation dose.

  4. Dimensional control of quasisingle crystals of aluminum alloy in production

    SciTech Connect

    Radchenko, A.I.; Karuskevich, M.V.; Naim, V.R.

    1995-01-01

    The article deals with a method of controlling the dimensions of quasisingle crystal grains of an aluminum alloy used instead of single crystal specimens in static fatigue tests with the object of substantiating a discrete probabilistic model of the fatigue of metals and alloys. We obtained a mathematical model of dimensional control of quasisingle crystals of the aluminum alloy.

  5. Optical spectroscopy and optimal crystal growth of some Cr4+-doped garnets

    NASA Astrophysics Data System (ADS)

    Henderson, B.; Gallagher, H. G.; Han, T. P. J.; Scott, M. A.

    2000-02-01

    This paper describes the growth of single crystals of Cr4+ -doped Y3 Ga5 O12 (YGG) and Y3 Al5 O12 (YAG). Control of melt composition and post-growth annealing yields material that contains optimal concentrations of Cr4+ ions in distorted tetrahedral sites normally occupied by Ga3+ ions in YGG and Al3+ ions in YAG. Both Cr4+ -doped garnets exhibit strong visible and near-infrared absorption bands with peak cross sections of order 10-18 -10-19 cm2 and emit into vibronically broadened but weakly allowed 3 B2 (3 T2 )icons/Journals/Common/to" ALT="to" ALIGN="TOP"/> 3 B1 (3 A2 ) transitions. Nonradiative decay is more efficient in YGG than in YAG as a consequence of the slightly reduced energy gap against radiative decay in the Ga-based garnet.

  6. Single crystal elasticity of majoritic garnet at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Pamato, M. G.; Kurnosov, A.; Boffa Ballaran, T.; Frost, D. J.; Ziberna, L.; Giannini, M.; Trots, D. M.; Tkachev, S. N.; Zhuravlev, K. K.; Prakapenka, V.

    2013-12-01

    Seismological observations are fundamental for understanding the chemistry and structure of the Earth's interior, providing a tangible method for tracing the chemical anomalies caused by the subduction of oceanic lithosphere. The mineral garnet is a dominant component of subducted mid ocean ridge basalts (MORB) in the upper mantle and transition zone and as such can influence its physical-chemical properties. Among garnet minerals, the high pressure structured majoritic garnet, is stable throughout the entire transition zone, being volumetrically the most abundant mineral phase in this region. In order to constrain the seismic appearance and buoyancy of subducting slabs into the Earth's transition zone, the knowledge of the elastic properties and density of majoritic garnet at high pressures and temperatures is of crucial importance. Here, we report for the first time the P-V-T equation of state and Vs and Vp sound velocities of single crystals of majoritic garnet (Mg3.24Al1.53Si3.23O12) simultaneously determined by means of Brillouin spectroscopy and X ray diffraction, up to 30 GPa and 880 K. Measurements were performed on single-crystals synthesized in a multianvil apparatus at 17 GPa and 1900 °C and loaded in a diamond anvil cell with Ne as a pressure transmitting medium. A single crystal of Sm:YAG, whose fluorescence has been calibrated against an absolute pressure determination, was used as a pressure calibrant. In addition, ruby chips were used to accurately derive the temperature inside the cell. A specially designed internal resistive heater was placed around the diamonds for achieving high temperatures. An accurate pressure scale is a major issue in the investigation of physical properties of mantle minerals at the depth and temperature required to understand the Earth's interior. In this study, simultaneous measurements of density and sound velocities at the same conditions, allowed accurate determinations of the absolute pressure. We combine our

  7. Pressure-induced nano-crystallization of silicate garnets from glass

    NASA Astrophysics Data System (ADS)

    Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.

    2016-12-01

    Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ~10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ~30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications.

  8. Pressure-induced nano-crystallization of silicate garnets from glass

    PubMed Central

    Irifune, T.; Kawakami, K.; Arimoto, T.; Ohfuji, H.; Kunimoto, T.; Shinmei, T.

    2016-01-01

    Transparent ceramics are important for scientific and industrial applications because of the superior optical and mechanical properties. It has been suggested that optical transparency and mechanical strength are substantially enhanced if transparent ceramics with nano-crystals are available. However, synthesis of the highly transparent nano-crystalline ceramics has been difficult using conventional sintering techniques at relatively low pressures. Here we show direct conversion from bulk glass starting material in mutianvil high-pressure apparatus leads to pore-free nano-polycrystalline silicate garnet at pressures above ∼10 GPa in a limited temperature range around 1,400 °C. The synthesized nano-polycrystalline garnet is optically as transparent as the single crystal for almost the entire visible light range and harder than the single crystal by ∼30%. The ultrahigh-pressure conversion technique should provide novel functional ceramics having various crystal structures, including those of high-pressure phases, as well as ideal specimens for some mineral physics applications. PMID:27924866

  9. First in-situ single-crystal structure refinement of a garnet included in diamond

    NASA Astrophysics Data System (ADS)

    Nestola, Fabrizio; Nimis, Paolo; Longo, Micaela; Kopylova, Maya; de Stefano, Andrea; Marzoli, Andrea; Fedortchouk, Yana; Manghnani, Murli; Harris, Jeff W.

    2010-05-01

    The study of mineral inclusions in diamond is providing invaluable insight into the geodynamics of the Earth's mantle. A complete characterization of inclusions in diamond is fundamental in order to evaluate the P-T-ƒO2 conditions and thus they represent a real "Earth's ultra-deep microprobe". The in-situ investigation of the inclusions using non-destructive techniques remains challenging. One of the potentially most powerful non-destructive methods is single-crystal X-ray diffraction. The application of such technique on inclusions in diamond is hampered by the complicated centering of the X-ray beam on the inclusion single-crystal (Kunz et al. 2002). Because of this experimental problem, in-situ single-crystal structure refinements of inclusions in diamond have never been carried out. In this work we investigated by X-ray diffraction a diamond-hosted garnet single-crystal from the Jericho kimberlite (Slave Craton, Canada). The garnet, not clearly visible under the microscope due to the irregular shape of the diamond host, had the largest size not greater than 100 microns. We used two STADI-IV STOE single-crystal diffractometers: the first instrument, equipped with a CCD detector, allowed us to collect a large number of diffraction reflections and to obtain an approximate orientation matrix for the garnet. Using this matrix, we mounted the diamond on the second instrument, equipped with a point detector and the software SINGLE (Angel et al. 2000), capable of obtaining an accurate X-ray beam centering through the 8-position centering method (this method is often used in high-pressure, in-situ X-ray studies). Such a procedure allowed us to measure with very high accuracy and precision the unit-cell edge (a = 11.5826(2)Å). Then we mounted back the diamond with the perfectly centered garnet on the first diffractometer and collected a complete X-ray intensity dataset in order to obtain complete structural information. We collected 410 unique reflections up to 2theta

  10. Local trigonal distortions for the substituting Cr 3+ ions in garnet crystals

    NASA Astrophysics Data System (ADS)

    Wen-Chen, Zheng

    1995-09-01

    The local trigonal distortions β - β0 for the substituting Cr 3+ ions in garnet (YAlG, LuAlG and YGG) crystals are determined from a more reasonable method based on the studies of the zero-field splitting D, the first excited state splitting Δ( 2E) and the anisotropy of the g factor (characterized by Δg = g∥ - g⊥). The results show that the local octahedral environments of the substituting Cr 3+ ions are more regular than those of the host ions. This confirms the previous assumption for the local environment of Cr 3+ in YGG based on the studies of only part of these spectral parameters.

  11. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    SciTech Connect

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan; Shinde, Seema

    2014-04-24

    Cerium doped Gadolinium garnets (Gd{sub 3}Al{sub x}Ga{sub 5−x}O{sub 12} where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  12. From electrocautery, balloon dilatation, neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser to argon plasma coagulation and cryotherapy

    PubMed Central

    Pickering, Edward M.; Lee, Hans J.

    2015-01-01

    Over the past decade, there has been significant advancement in the development/application of therapeutics in thoracic diseases. Ablation methods using heat or cold energy in the airway is safe and effective for treating complex airway disorders including malignant and non-malignant central airway obstruction (CAO) without limiting the impact of future definitive therapy. Timely and efficient use of endobronchial ablative therapies combined with mechanical debridement or stent placement results in immediate relief of dyspnea for CAO. Therapeutic modalities reviewed in this article including electrocautery, balloon dilation (BD), neodymium-doped:yttrium-aluminum-garnet (Nd:YAG) laser, argon plasma coagulation (APC), and cryotherapy are often combined to achieve the desired results. This review aims to provide a clinically oriented review of these technologies in the modern era of interventional pulmonology (IP). PMID:26807284

  13. Confocal microscopy to guide erbium:yttrium aluminum garnet laser ablation of basal cell carcinoma: an ex vivo feasibility study.

    PubMed

    Sierra, Heidy; Larson, Bjorg A; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2013-09-01

    For the removal of superficial and nodular basal cell carcinomas (BCCs), laser ablation provides certain advantages relative to other treatment modalities. However, efficacy and reliability tend to be variable because tissue is vaporized such that none is available for subsequent histopathological examination for residual BCC (and to confirm complete removal of tumor). Intra-operative reflectance confocal microscopy (RCM) may provide a means to detect residual tumor directly on the patient and guide ablation. However, optimization of ablation parameters will be necessary to control collateral thermal damage and preserve sufficient viability in the underlying layer of tissue, so as to subsequently allow labeling of nuclear morphology with a contrast agent and imaging of residual BCC. We report the results of a preliminary study of two key parameters (fluence, number of passes) vis-à-vis the feasibility of labeling and RCM imaging in human skin ex vivo, following ablation with an erbium:yttrium aluminum garnet laser.

  14. Fabrication of cerium active terbium aluminum garnet (TAG:Ce) phosphor powder via the solid-state reaction method

    SciTech Connect

    Tsai, M.-S. Liu, G.-M.; Chung, S.-L.

    2008-05-06

    A modified solid-state reaction method for the formation of terbium aluminum garnet (TAG:Ce) powder was studied. The starting materials, which included terbium oxide (Tb{sub 4}O{sub 7}), boehmite and cerium chloride (CeCl{sub 3}.7H{sub 2}O), were pre-aged at pH 3. This pre-aging process helps to form the core-shell structure, which leads to the formation of TAG:Ce phosphor powder via a solid-state reaction more easily. The emission intensity at 551 nm of the product pre-aged at pH 3 is higher than that formed without pre-aging.

  15. The use of Erbium: Yttrium-aluminum-garnet laser in cavity preparation and surface treatment: 3-year follow-up

    PubMed Central

    Buyukhatipoglu, Isil; Secilmis, Asli

    2015-01-01

    From the currently available choices, esthetic restorative materials for posterior teeth are limited to composite and ceramic restoration. Ceramic inlays/onlays are reliable solutions for both of these treatments. For successful treatment planning, usable ceramic and adhesive systems should be chosen by the dentist. Since the Federal Drug Administration approval of the erbium: Yttrium-aluminum-garnet (Er:YAG) laser-for caries removal, cavity preparation and the conditioning of tooth substance-in 1997, there have been many reports on the use of this technique in combination with composite resins. In addition, cavity pretreatment with the Er:YAG laser (laser etching) has been proposed as an alternative to acid etching of enamel and dentin. This case report presents the use of the Er:YAG in cavity preparation for composite resin restoration and surface treatment for ceramic onlay restoration of adjacent permanent molars. PMID:26038665

  16. Dislocation of polyfocal full-optics accommodative intraocular lens after neodymium-doped yttrium aluminum garnet capsulotomy in vitrectomized eye.

    PubMed

    Kang, Kyung Tae; Kim, Yu Cheol

    2013-11-01

    We report a case of dislocation of WIOL-CF® polyfocal full-optics intraocular lens (IOL) after neodymium-doped yttrium aluminum garnet (Nd: YAG) laser capsulotomy in the vitrectomized eye. At 22 months before the dislocation of the IOL, a 55-year-old male patient underwent phacoemulsification with WIOL-CF® IOL implantation in a local clinic and 10 months after the cataract surgery the patient underwent pars plana vitrectomy, endolaser photocoagulation and 14% C 3 F 8 gas tamponade for the treatment of rhegmatogenous retinal detachment. At 9 months after the vitrectomy, the patient visited our clinic for a sudden decrease of vision after Nd: YAG capsulotomy in the local clinic. On fundus examination, the dislocated IOL was identified and the Nd: YAG capsulotomy site and the larger break, which is suspected to have been a route of the dislocation were observed in the posterior capsule.

  17. Effects of neodymium:yttrium aluminum garnet laser irradiation on endometrium and on endometrial cysts in six mares.

    PubMed

    Blikslager, A T; Tate, L P; Weinstock, D

    1993-01-01

    Effects of neodymium:yttrium aluminum garnet (Nd:YAG) laser irradiation on equine endometrium were evaluated in vitro and in six mares with endometrial cysts. The Nd:YAG laser was applied to six endometrial sites, in each of five uterine specimens, with power densities of 5659 to 33,954 J/cm2. Depth of tissue ablation was measured and graded on histologic sections of the tissue lesions. Power density had a significant effect on the depth of tissue ablation (p < .001). Grade 3 lesions (full-thickness ablation of the endometrium) were created with energy densities of 16,977 to 33,954 J/cm2. Six mares had endometrial cysts treated by photoablation. Two of the four mares that were reproductively sound but barren, despite appropriate breeding, produced foals after treatment. One mare remained reproductively unsound after treatment, and another mare that was treated postpartum was bred successfully.

  18. The use of Erbium: Yttrium-aluminum-garnet laser in cavity preparation and surface treatment: 3-year follow-up.

    PubMed

    Buyukhatipoglu, Isil; Secilmis, Asli

    2015-01-01

    From the currently available choices, esthetic restorative materials for posterior teeth are limited to composite and ceramic restoration. Ceramic inlays/onlays are reliable solutions for both of these treatments. For successful treatment planning, usable ceramic and adhesive systems should be chosen by the dentist. Since the Federal Drug Administration approval of the erbium: Yttrium-aluminum-garnet (Er:YAG) laser-for caries removal, cavity preparation and the conditioning of tooth substance-in 1997, there have been many reports on the use of this technique in combination with composite resins. In addition, cavity pretreatment with the Er:YAG laser (laser etching) has been proposed as an alternative to acid etching of enamel and dentin. This case report presents the use of the Er:YAG in cavity preparation for composite resin restoration and surface treatment for ceramic onlay restoration of adjacent permanent molars.

  19. Resection of a plantar calcaneal spur using the holmium:yttrium-aluminum-garnet (Ho:YAG) laser.

    PubMed

    Smith, W K; Noriega, J A; Smith, W K

    2001-03-01

    Many procedures have been described for the resection of plantar calcaneal spurs as treatment of heel spur syndrome and chronic plantar fasciitis. Most of these techniques involve a medial incision of between 2 and 6 cm for adequate exposure of the calcaneal spur. This article describes a new technique for resecting a calcaneal spur with a smaller medial incision using the holmium:yttrium-aluminum-garnet (Ho:YAG) laser. This laser permits adequate resection of a plantar calcaneal spur as well as coagulation of the bone and surrounding tissues. This minimally invasive procedure has been used with good results over the past year by the senior author (W.K.S.) for the resection of calcaneal spurs.

  20. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, R.K.; Bowman, K.A.; Mazgaj, R.M.; Cochran, C.N.

    1983-10-25

    A method is described for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm. 2 figs.

  1. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, Robert K.; Bowman, Kenneth A.; Mazgaj, Robert M.; Cochran, C. Norman

    1983-10-25

    A method for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm.

  2. Electronic stopping power of aluminum crystal

    SciTech Connect

    Campillo, I.; Pitarke, J.M.; Eguiluz, A.G. |

    1998-10-01

    {ital Ab initio} calculations of the electronic energy loss of ions moving in aluminum crystal are presented, within linear-response theory, from a realistic description of the one-electron band structure and a full treatment of the dynamical electronic response of valence electrons. For the evaluation of the density-response function we use the random-phase approximation and, also, a time-dependent extension of local-density-functional theory. We evaluate both position-dependent and random stopping powers, for a wide range of projectile velocities. Our results indicate that at low velocities band-structure effects slightly enhance the stopping power. At velocities just above the threshold velocity for plasmon excitation, the stopping power of the real solid is found to be smaller than that of jellium electrons, corrections being of about 10{percent}. This reduction can be understood from sum rule arguments. {copyright} {ital 1998} {ital The American Physical Society}

  3. Preparation and characterization of highly transparent Ce3+ doped terbium gallium garnet single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Lei; Hang, Yin; Wang, Xiangyong

    2015-09-01

    A Ce3+ doped terbium gallium garnet crystal (TCGG) with 30 mm in diameter and 25 mm in length has been grown by the Czochralski (Cz) method. The cation distributions in the TCGG crystal and thermal expansion coefficient have been investigated. Absorption spectrum was evaluated in the visible and near-infrared region (VIS-NIR) at room temperature, which indicated the crystal had low absorption coefficient at 500-1500 nm. The specific Faraday rotation of single crystal was measured at room temperature in 532, 633, and 1064 nm. The Verdet constant of the crystal at 633 nm comes up to 164.3 rad m-1 T-1, 26.3% larger than that of TGG at 633 nm. The thermal conductivity and laser induced damage threshold (LIDT) were also measured. Overall, the TCGG single crystal studied here exhibits superior properties than the commercial TGG so far, therefore it has potential to cover the increasing demand for new and improved Faraday rotators in the VIS-NIR region.

  4. Rare-earth distribution behaviour and lattice parameter changes on rare-earth substituted garnet single crystals

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Numazawa, T.; Sato, M.

    1994-08-01

    The selection of rare-earth substituted Ga and Al garnets in solid solution and their growth to single crystals using the conventional Czochralski technique is described. The crystals grown were investigated for their distribution behavior and lattice parameter changes in order to understand their characteristics in the solid solution. Investigation was by means of an ICP chemical analysis and X-ray diffraction analysis with powdered samples ground from wafers taken from both the tops and tails of the crystals grown.

  5. Crystallization of aluminum hydroxide in the aluminum-air battery: Literature review, crystallizer design and results of integrated system tests

    NASA Astrophysics Data System (ADS)

    Maimoni, A.

    1988-03-01

    The literature on aluminum trihydroxide crystallization is reviewed and the implications of crystallization on the design and performance of the aluminum-air battery are illustrated. Results of research on hydrargillite crystallization under battery operating conditions at Alcoa Laboratories, Alcan Kingston Laboratories, and Lawrence Livermore National Laboratory are summarized and are applied to the design of an electrolyte management system using lamella settlers for clarification of the electrolyte and product separation. The design principles were validated in a series of experiments that, for the first time in the aluminum-air program, demonstrated continuous operation of an integrated system consisting of cells, crystallizer, and a product-removal system.

  6. Structure and temperature effects on Nd3+ spectra in polycrystalline mixed scandium aluminum garnets Y3ScxAl5-xO12

    NASA Astrophysics Data System (ADS)

    Lupei, A.; Lupei, V.; Hau, S.; Gheorghe, C.; Voicu, F.

    2015-09-01

    New spectroscopic data obtained from high resolution low temperature absorption and emission spectra of Nd3+ in mixed scandium aluminum garnets Y3ScxAl5-xO12 - (x = 0-2) translucent ceramics revealed transition dependent composition effects: modification of the shapes (Lorentz at x = 0 and 2, quasi-Gauss at x = 1, x-dependent asymmetric for other x values, with obvious multicenter structure for low x), widths and shifts of the lines. Nd3+ electronic structure dependence on structural changes with composition is analyzed in terms of nephelauxetic effect and maximum splitting of manifolds: Sc3+ co-doping reduces the nephelauxetic effect, and the increase of 4F3/2 splitting from 85 cm-1 (x = 0) to 98 cm-1 (x = 2) denotes the lowering of local symmetry. The multicenter structure and inhomogeneous broadening of Nd3+ lines is attributed to crystal field distributions determined by the random occupancy of the octahedral sites by Sc3+ and Al3+. For low x (0.2) the resolved two satellites S1, S2 that accompany Nd:YAG lines are correlated to anisotropic crystal field perturbations produced by the n.n. Sc3+ by analogy to those determined by Y3+-antisites (excess of Y3+ ions that enter in octahedral sites of the melt-grown YAG crystals). The temperature evolution of the Nd3+ spectral characteristics (line intensity, shift, broadening) in the 10-300 K range is analyzed in terms of thermal population of the Stark levels, of the effect on electron-phonon interaction and on lattice expansion. The relevance of the spectroscopic properties on the laser emission characteristics in these systems is discussed.

  7. Quantifying garnet-melt trace element partitioning using lattice-strain theory: new crystal-chemical and thermodynamic constraints

    NASA Astrophysics Data System (ADS)

    van Westrenen, Wim; Draper, David S.

    2007-12-01

    Many geochemical models of major igneous differentiation events on the Earth, the Moon, and Mars invoke the presence of garnet or its high-pressure majoritic equivalent as a residual phase, based on its ability to fractionate critical trace element pairs (Lu/Hf, U/Th, heavy REE/light REE). As a result, quantitative descriptions of mid-ocean ridge and hot spot magmatism, and lunar, martian, and terrestrial magma oceans require knowledge of garnet-melt partition coefficients over a wide range of conditions. In this contribution, we present new crystal-chemical and thermodynamic constraints on the partitioning of rare earth elements (REE), Y and Sc between garnet and anhydrous silicate melt as a function of pressure ( P), temperature ( T), and composition ( X). Our approach is based on the interpretation of experimentally determined values of partition coefficients D using lattice-strain theory. In this and a companion paper (Draper and van Westrenen this issue) we derive new predictive equations for the ideal ionic radius of the dodecahedral garnet X-site, r 0(3+), its apparent Young’s modulus E X(3+), and the strain-free partition coefficient D 0(3+) for a fictive REE element J of ionic radius r 0(3+). The new calibrations remedy several shortcomings of earlier lattice-strain based attempts to model garnet-melt partitioning. A hitherto irresolvable temperature effect on r 0(3+) is identified, as is a pronounced decrease in E X(3+) as Al on the garnet Y site is progressively replaced by quadruvalent cations (Si, Ti) as pressure and garnet majorite content increase. D 0(3+) can be linked to the free energy of fusion of a hypothetical rare-earth garnet component JFe2Al3Si2O12 through simple activity-composition relations. By combining the three lattice-strain parameter models, garnet-anhydrous melt and majorite-anhydrous melt D values for the REE, Y and Sc can be predicted from P, T, garnet major element composition, and melt iron content at pressures from 2.5 25 GPa

  8. Calcium - niobium - gallium and calcium - lithium - niobium - gallium garnet crystals as active media for diode-pumped lasers

    SciTech Connect

    Voronko, Yu K; Es'kov, N A; Podstavkin, A S; Ryabochkina, P A; Sobol, A A; Ushakov, S N

    2001-06-30

    The energy and spectral parameters of calcium - niobium - gallium and calcium - lithium - niobium - gallium garnet crystals pumped by a 2 - W laser diode are studied. The stable parameters of laser radiation are demonstrated upon small variations in the temperature of the pump laser diode. (lasers, active media)

  9. Internal photopumping of Nd3+ (2H9/2, 4F5/2) states in yttrium aluminum garnet by excitation transfer from oxygen deficiency centers and Fe3+ continuum emission

    NASA Astrophysics Data System (ADS)

    Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.

    2011-07-01

    Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.

  10. Nonlinear magneto-optical effects in all-garnet magnetophotonic crystals

    NASA Astrophysics Data System (ADS)

    Murzina, T. V.; Razdolski, I. E.; Aktsipetrov, O. A.; Grishin, A. M.; Khartsev, S. I.

    2009-04-01

    Nonlinear magneto-optical properties of all-garnet magnetophotonic crystals composed of alternating layers of ferromagnetic Bi 3Fe 5O 12 (BIG) and Sm 3Ga 5O 12 quarter-wavelength layers with a half-wavelength BIG microcavity mode are presented. The samples are grown by rf-magnetron sputtering on non-magnetic GGG substrate. Many-fold enhancement of the magnetization-induced effects in second-harmonic generation (SHG) as compared with linear magneto-optical effects are observed: the SHG magnetic contrast up to 50% and magnetization-induced rotation of the polarization plane of about 90° are measured at the resonance microcavity wavelengh of λ=779 nm.

  11. Luminescence properties of phosphors based on Tb3Al5O12 (TbAG) terbium-aluminum garnet

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Gorbenko, V.; Voznyak, T.; Zorenko, T.; Kuklinski, B.; Turos-Matysyak, R.; Grinberg, M.

    2009-03-01

    The processes of excitation energy transfer in phosphors based on single-crystal Tb3Al5O12:Ce (TbAG:Ce) and Tb3Al5O12:Ce,Eu (TbAG:Ce,Eu) garnet films have been investigated. These films are considered to be promising materials for screens for X-ray images and luminescence converters of blue LED radiation. The conditions for excitation energy transfer from the matrix (Tb3+ cations) to Ce3+ and Eu3+ ions in TbAG:Ce and TbAG:Ce,Eu phosphors have been analyzed in detail. It is established that a cascade process of excitation energy transfer from Tb3+ ions to Ce3+ and Eu3+ ions and from Ce3+ ions to Eu3+ ions is implemented in TbAG:Ce,Eu via dipole-dipole interaction and through the Tb3+ cation sublattice.

  12. Study of the influence of Tb-Sc-Al garnet crystal composition on Verdet constant

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Karimov, D. N.; Snetkov, I. L.; Palashov, O. V.; Kochurikhin, V. V.; Masalov, A. V.; Fedorov, V. A.; Ksenofontov, D. A.; Kabalov, Y. K.

    2017-04-01

    The influence of the composition of Tb-Sc-Al garnet crystals (TSAG) on the value of Verdet constant was investigated at the wavelengths of 400-1060 nm. It was found that this value increased both, with the decrease of Sc3+ ions content and with the decrease of lattice parameter. The value of Verdet constant of TSAG crystals depend on lattice parameter value and increased from 0.168 to 0.198 min/(Oe cm) (at λ = 1064 nm) with the decrease of Sc3+ ions content from 1.76 to 1.3 f.u. The value of Verdet constant for TSAG crystals with Sc3+ ions content of 1.3 f.u. can be described using one- and two-oscillator models with the same accuracy. The absorption at the wavelengths of 226 and 272 nm for the sample with a thickness of 13 μm was observed and wavelengths were used for calculations of Verdet constant in accordance with the two-oscillator model.

  13. Measurements of magnetostriction constants of epitaxial garnet films by double-crystal x-ray diffraction

    SciTech Connect

    Mada, J.; Yamaguchi, K.

    1982-01-01

    Magnetostriction constants lambda/sub 111/ have been determined at room temperature with the double-crystal x-ray diffraction technique by measuring a small change in the lattice parameter. Measurements were carried out for epitaxial garnet films of Y/sub 3/Fe/sub 5/O/sub 12/ and Sm/sub 0.85/Tm/sub 2.15/Fe/sub 5/O/sub 12/ grown on (111) oriented Gd/sub 3/Ga/sub 5/O/sub 12/ substrates; and also for flux-grown bulk single crystal of Y/sub 3/Fe/sub 5/O/sub 12/. Values of lambda/sub 111/ obtained were -1.7 x 10/sup -6/ for film and -3.0 x 10/sup -6/ for bulk crystal. lambda/sub 111/ of Sm/sub 0.85/Tm/sub 2.15/Fe/sub 5/O/sub 12/ was -5.0 x 10/sup -6/. The discrepancy in lambda/sub 111/ values between film and bulk Y/sub 3/Fe/sub 5/O/sub 12/ is almost accounted for by the fact that the film can deform only perpendicular to the film plane due to the shear force of the substrate. It has been experimentally demonstrated that lambda/sub 111/ does not depend on film thickness or lattice mismatch, which is consistent with the present analysis.

  14. Interaction of Er{sup 3+} ions in Er-doped calcium - niobium - gallium garnet crystals

    SciTech Connect

    Malov, A V; Popov, A V; Ryabochkina, P A; Bol'shakov, E V

    2010-08-03

    The processes of nonradiative energy transfer in calcium - niobium - gallium garnet (CNGG) crystals doped with Er{sup 3+} ions are studied. It is found that the energy of erbium ions in the Er:CNGG crystal with the erbium atomic concentrations C{sub Er}=6% and 11% is transferred via the nonradiative co-operative processes {sup 4}I{sub 11/2{yields}} {sup 4}I{sub 15/2}, {sup 4}I{sub 11/2{yields}} {sup 4}F{sub 7/2}, {sup 4}I{sub 11/2{yields}} {sup 4}I{sub 15/2}, {sup 4}I{sub 13/2{yields}} {sup 4}F{sub 9/2}; and {sup 4}I{sub 13/2{yields}} {sup 4}I{sub 15/2}, {sup 4}I{sub 13/2{yields}} {sup 4}I{sub 9/2}, whose efficiency increases with increasing intensity of exciting radiation. It is shown that the cross-relaxation processes {sup 4}S{sub 3/2{yields}}{sup 4}I{sub 9/2}, {sup 4}I{sub 15/2{yields}}{sup 4}I{sub 13/2}, whose intensity depends on the concentration of Er{sup 3+} ions, are characteristic for Er:CNGG crystals with the Er atomic concentration above 1%. (active media)

  15. Efficient eye-safe neodymium doped composite yttrium gallium garnet crystal laser.

    PubMed

    Yu, Haohai; Wang, Shuxian; Han, Shuo; Wu, Kui; Su, Liangbi; Zhang, Huaijin; Wang, Zhengping; Xu, Jun; Wang, Jiyang

    2014-03-15

    We report a laser-diode pumped continuous-wave (cw) and passively Q-switched eye-safe laser at about 1.42 μm with the neodymium-doped yttrium gallium garnet (Nd:YGG) crystal for the first time to our knowledge. The composite Nd:YGG crystal was developed originally. A systematic comparison of laser performance between the homogeneously doped and composite Nd:YGG crystal was made, which showed that the composite Nd:YGG manifested less thermally induced effects. Cw output power of 2.06 W was obtained with the slope efficiency of 20.7%. With a V:YAG as a saturable absorber, the passive Q-switching at 1.42 μm was gotten with the pulse width, pulse energy, and peak power of 34 ns, 46.7 μJ, and 1.4 kW, respectively. The present work should provide a potential candidate for the generation of eye-safe lasers.

  16. Periorbital Syringomas Treated With an Externally Used 1,444 nm Neodymium-Doped Yttrium Aluminum Garnet Laser.

    PubMed

    Kim, Jun Young; Lee, Jae Won; Chung, Kee Yang

    2017-03-01

    The 1,444 nm wavelength is also well absorbed in water making it a possible setting for treatment of cystic lesions such as eccrine hydrocystomas and syringomas. The authors aimed to investigate the efficacy of an externally used 1,444 nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser for the treatment of periorbital syringomas. Nineteen patients with periorbital syringomas were treated twice with the externally used 1,444 nm Nd:YAG laser at 2-month intervals. Laser fluences were delivered to each papule with pulse energy of 160 mJ, 1.6 W of power, and at a 10 Hz pulse rate. Clinical improvement and patient satisfaction were assessed at 2 and 6 months after each treatment. Side effects were also examined. Clinical improvement of >50% was observed in 68.4% of individuals at 2 months after first treatment (2FT) and in all patients at 6 months after second treatment (6ST). Patient satisfaction of no less than "satisfied" was recorded for 63.2% of patients at 2FT, and in 89.5% of patients at 6ST. Erythema was observed in 63.2% of patients but only at 2FT. Externally used 1,444 nm Nd:YAG laser treatment may represent an effective and safe approach for the treatment of periorbital syringomas, resulting in good satisfaction and minimal side effects.

  17. Finite element analysis of neodymium: yttrium-aluminum-garnet incisions for the prevention of anterior capsule contraction syndrome.

    PubMed

    Wang, Yan-ling; Wang, Zhen-ze; Zhao, Lu; Xiong, Shi-hong; Li, Qian; Wang, Ning-li; Sun, An-qiang

    2013-02-01

    Anterior capsular contraction syndrome is a potential complication of continuous curvilinear capsulorhexis (CCC). Three neodymium: yttrium-aluminum-garnet (Nd:YAG) laser relaxing incisions decrease anterior capsular contraction but the mechanism is unknown. The present study analyzed the biomechanical mechanism of three Nd:YAG laser relaxing incisions made to reduce anterior capsular contraction. A three-dimensional control model and a three-dimensional Nd:YAG model of the anterior capsule with an opening diameter of 6 mm were created. Three incisions of 1 mm in length were made centrifugally at intervals of 120° around the opening circle. The stress alterations of the anterior capsule after CCC with and without Nd:YAG relaxation were numerically simulated and compared. In the control model, the stress was axially uniform in the inner area and relatively high near the inner rim of the opening. Meanwhile, in the Nd:YAG model, the stress level was very low in the inner opening areas, especially near the three incisions. The relaxing incisions in the Nd:YAG model significantly released the relatively high stress on the anterior capsule. Additionally, there was a high stress gradient near the relaxing incisions. Biomechanical effects of stress release may be the preventive mechanism of Nd:YAG incision against anterior capsular contraction syndrome.

  18. [Histological evaluations on periapical tissues after irradiation by erbium-doped yttrium aluminum garnet laser in Labradors dogs].

    PubMed

    Wang, Hao-Ming; Zhou, Meng-Qi; Hong, Jin

    2016-12-01

    To investigate the thermal effects on periapical tissues of Labrador dogs after intra-canal irradiation by erbium-doped yttrium aluminum garnet (Er:YAG) laser at different powers based on the antibacterial experiment of Enterococcus faecalis and Escherichia coli in root canals with an isthmus, to assess the histological changes, and to prove the safety for clinical applications. Two hundred root canals of 10 healthy adult Labradors dogs were selected and divided into 5 groups. Excepted one as control group, root canals in other 4 groups were irradiated by Er:YAG laser with 1.5, 2.0, 2.5, 3.0 W for 30 s. Ten Labradors dogs were sacrificed at 0 (immediately after irradiation), 2 days, 2 weeks, 1 and 2 months. After preparation of pathological specimen, histological changes after laser irradiation in periapical tissues were evaluated and scores of inflammation were graded. Statistical analysis was performed using SPSS 13.0 software package. No significant difference was observed at the apical area between 1.5, 2.0, 2.5 W and control groups at most periods (P>0.05), whereas significant difference was observed between 3.0 W and other groups for all periods (P<0.05). These results suggest that if proper output powers (2.0-2.5 W) of laser irradiation are chosen, disinfection in root canals can be finished successfully and thermal effects on the periapical tissues can be minimized.

  19. Push-out bond strength of oval versus circular fiber posts irradiated by erbium-doped yttrium aluminum garnet laser.

    PubMed

    Uzun, Ismail; Keskin, Cangül; Özsu, Damla; Güler, Buğra; Aydemir, Hikmet

    2016-09-01

    Fiber posts in conjunction with resin cements are widely used to provide retention in endodontically treated teeth. The bond strength of restorative materials to root canal dentin is an important issue for the long-term success of restorative procedures. The push-out test is widely used to measure the bonding between the post and radicular dentin. The purpose of this in vitro study was to evaluate the effect of erbium-doped yttrium aluminum garnet (Er-YAG) laser treatment of dentinal walls on the bond strength of circular and oval fiber posts luted in oval root canals. Forty mandibular premolar teeth were endodontically treated and restored with 2 different intracanal post systems. Push-out tests were performed and data were analyzed by using 2-way analysis of variance and post hoc Bonferroni tests. Laser pretreatment of dentinal walls resulted in higher push-out bond strength than that of the nonlasered groups (P<.05). Oval fiber posts showed significantly higher push-out bond strength values than those of circular fiber posts in the coronal region (P<.05). In the apical region, no statistically significant difference was noted among the groups regarding push-out bond strength (P>.05). The laser pretreatment with an oval ultrasonic tip of an oval fiber post system improved bonding to root canal dentin when compared with a circular post system with conventional preparation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Successful treatment of facial telangiectasias using a micropulse 1,064-nm neodymium-doped yttrium aluminum garnet laser.

    PubMed

    Rose, Amy E; Goldberg, David J

    2013-07-01

    To evaluate the safety and efficacy of a microsecond 1,064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser for the treatment of facial telangiectasias. Subjects ages 35-70 with Fitzpatrick skin types I to III and facial telangiectasias underwent two treatments with a micropulse (0.65 ms) 1,064-nm Nd:YAG laser. Treatments were spaced 30 days apart, with a final evaluation 60 days after the second treatment. Evaluation included digital photography and an assessment of the degree of improvement on a scale from 1 to 5 by the subject and a nontreating investigator. Twenty subjects (18 women, two men) with Fitzpatrick skin type II and III completed the study. The nontreating investigator rated the objective clinical response as total clearance (100% clear) in 10% (n = 2) of subjects, significant clearance (≥50% clear) in 75% (n = 15), and some clearance (0-49% clear) in 15% (n = 3). None of the subjects was rated as having no clearance or worsening. In terms of subjective clearance reported by subjects, 80% (n = 16) reported significant clearance, with the remainder reporting some clearance. No adverse events were reported. The micropulse 1,064-nm Nd:YAG successfully treated facial telangiectasias with a high degree of patient satisfaction, minimal discomfort, and no adverse events. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  1. High-fluence fractional treatment of photodamaged facial skin using a 2940 nm erbium:yttrium-aluminum-garnet laser.

    PubMed

    Khatri, Khalil A; Mahoney, Danielle; Hakam, Laila

    2012-12-01

    Fractional resurfacing with an Erbium:yttrium-aluminum-garnet (Er:YAG) 2940 nm laser is an increasingly popular option for the treatment of the signs of facial photoaging, which include wrinkles as well as pigmentation issues and unwanted textural changes. Fractional treatment has produced favorable clinical responses, but with less complications and shorter recovery times than traditional laser resurfacing. This study was conducted to evaluate a fractionated Er:YAG treatment regimen of 1-2 higher fluence sessions with a multiple-pass technique. Eight subjects with moderate to severely photodamaged facial skin received one to two full-face laser treatments. Multiple-pass (MP) treatment results were evaluated in terms of procedure time, discomfort, social downtime and effectiveness. A photographic evaluation, subject improvement assessments and a subject satisfaction assessment were performed. An investigator's photographic review showed a 26-75% improvement in the signs of overall photoaging. Subjects treated with the MP technique exhibited a relatively short 3-4 day downtime and ratings of mostly moderate discomfort with the use of topical anesthetic cream only. Subjects treated with higher fluences demonstrated the highest average improvement in specific features of photoaging. Two laser treatments resulted in substantially higher improvement scores than those received just one laser treatment.

  2. Successful Treatment of Classic Kaposi Sarcoma With Long-Pulse Neodymium-Doped Yttrium Aluminum Garnet Laser: A Preliminary Study.

    PubMed

    Özdemir, Mustafa; Balevi, Ali

    2017-03-01

    Kaposi sarcoma (KS) is a systemic disease that can present with cutaneous lesions with or without internal involvement, mostly caused by infection with human herpesvirus-8. The treatment options include surgical excision, cryotherapy, radiotherapy, intralesional chemotherapy, laser, and elastic stockings for the prevention of lymphedema. This article presents 7 cases with classic KS treated with the long-pulse neodymium:yttrium-aluminum-garnet (Nd:YAG) laser. Forty-nine lesions of 7 KS patients (5 stage 1, 2 stage 2A) were treated with Nd:YAG laser with a spot size of 4 to 6 mm and a fluence of 180 J/cm increased by 10 J/cm in the neighboring area to a maximum of 260 J/cm. The pulse sequencing was 1.5, and delay time was 5 milliseconds. Sessions were continued at 4-week intervals for 2 to 4 sessions. All patients exhibited clinical and histological improvement. One session was sufficient for small lesions, whereas coalescing and multicentric lesions required up to 4 sessions. All the lesions healed in 2 to 4 weeks, with the only complication being mild atrophic scars. With the advantage of penetrating into deeper sites than other lasers, long-pulse Nd:YAG is an efficient and safe local treatment alternative especially for papulonodular and deeper lesions located on bony structures.

  3. Recurrent late-onset fibrotic capsular block syndrome after neodymium-yttrium-aluminum-garnet laser anterior capsulotomy: a case report.

    PubMed

    Koh, Joong Sik; Song, Young Bin; Wee, Won Ryang; Han, Young Keun

    2016-06-11

    Capsular block syndrome is an uncommon complication that occurs after cataract surgery. It is characterized by capsular distension, anterior intraocular lens displacement, anterior chamber shallowing, and unexpected myopic shifts. We report a case of recurrent fibrotic capsular block syndrome with Elschnig's pearl-type posterior capsule opacification 10 months after neodymium-yttrium-aluminum-garnet (Nd:YAG) laser anterior capsulotomy. A 72-year-old Asian man complained of decreased visual acuity 5 years after undergoing phacoemulsification with posterior chamber lens implantation. Under slit-lamp examination, late postoperative capsular block syndrome was diagnosed and Nd:YAG laser anterior capsulotomy was performed. Ten months after anterior capsulotomy, the patient returned with decreased visual acuity and was diagnosed with recurrent fibrotic capsular block syndrome. Nd:YAG laser posterior capsulotomy was performed. We found that fibrotic capsular block syndrome could recur with Elschnig's pearl-type posterior capsule opacification after Nd:YAG laser anterior capsulotomy for late postoperative capsular block syndrome without posterior capsule opacification.

  4. Surface Treatment by Different Parameters of Erbium:Yttrium-Aluminum-Garnet (Er:YAG) Laser: Scanning Electron Microscope (SEM) Evaluation.

    PubMed

    Chiniforush, Nasim; Nokhbatolfoghahaei, Hanieh; Monzavi, Abbas; Pordel, Edris; Ashnagar, Sajjad

    2016-01-01

    This study aimed to assess the Scanning Electron Microscope (SEM) analysis of tooth surface irradiated by erbium:yttrium-aluminum-garnet (Er:YAG) laser with various parameters. Number of 25 extracted human third molars free of caries were used in this study. The teeth were put into 5 groups for laser irradiation as follows: group 1 (power: 0.5 W, Energy: 50 mJ); group 2 (power: 1 W, Energy: 100 mJ); group 3 (power: 1.5 W, Energy: 150 mJ); group 4 (power: 2 W, Energy: 200 mJ); group 5 (power: 2.5 W, Energy: 250 mJ). All samples were prepared by repetition rate of 10 Hz and duration of 230 μs, using a non-contact handpiece at a distance of 4 mm. Then, the samples were prepared for SEM examination. SEM evaluation of every 25 samples, treated by Er:YAG, showed that all groups had exposed dentinal tubules without any melted area or cracks. In this study we used SEM to investigate ablated dentine with different parameters of Er:YAG laser energy. Our findings support these conclusions. All powers of laser below 3 W are proper for ablation, and make no cracks.

  5. Evaluation of stability region for scandium-containing rare-earth garnet single crystals and their congruent-melting compositions

    NASA Astrophysics Data System (ADS)

    Kaurova, I. A.; Domoroshchina, E. N.; Kuz'micheva, G. M.; Rybakov, V. B.

    2017-06-01

    Single crystals of scandium-containing rare-earth garnets in system R-Sc-C-O (R3+=Y, Gd; C3+=Al, Ga) have been grown by the Czochralski technique. X-ray diffraction analysis has been used to refine crystal compositions. The fundamental difference between the melt compositions and compositions of grown crystals has been found (except for compositions of congruent-melting compounds, CMC). The specific features of garnet solid solution formation have been established and the ternary diagrams with real or hypothetical phases have been built. The dinamics of coordination polyhedra changes with the formation of substitutional solid solutions have been proposed based on the mathematical modeling and experimental data. Possible existence of CMC with garnet structure in different systems as well as limit content of Sc ions in dodecahedral and octahedral sites prior to their partial substitution of ions, located in other sites, have been evaluated. It was established that the redistribution of cations over crystallographic sites (antistructural point defects) due to system self-organization to maintain its stability may be accompanied by cation ordering and the symmetry change of individual polyhedrons and/or the whole crystal.

  6. Evidence of multicenter structure of cerium ions in gadolinium gallium garnet crystals studied by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Przybylińska, H.; Ma, Chong-Geng; Brik, M. G.; Kamińska, A.; Szczepkowski, J.; Sybilski, P.; Wittlin, A.; Berkowski, M.; Jastrzębski, W.; Suchocki, A.

    2013-01-01

    Low temperature, infrared absorption spectra of gadolinium gallium garnet crystals doped with Ce are presented. In the region of intraconfigurational 4f-4f transitions the spectra exhibit existence of at least two different, major Ce3+ related centers in the GGG crystals and also some other centers at lower concentration. The spectrum of 4f-4f intrashell transitions of Ce3+ ions extends up to about 3700 cm-1 due to the large splitting of the 2F7/2 excited state. In the visible region the absorption spectrum shows influence of symmetry-related selection rules. The absorption coefficient changes in the region of 4f1-5d1 transitions due to thermal population of the second level, belonging to the 2F5/2 ground state. This suggests that the symmetry of the site occupied by Ce3+ ions, which substitute Gd3+, is higher than D2 expected for garnet hosts.

  7. Optical signal inverter of erbium-doped yttrium aluminum garnet with red shift of laser diodes.

    PubMed

    Maeda, Y

    1994-08-10

    An optical signal inverter was demonstrated in a simple structure that combined a laser diode with Er-doped YAG crystal. The optical signal inversion occurred at a response time of 7 ns and was caused by the decrease of transmission of Er:YAG against the red shift of the wavelength of the laser diode.

  8. Preparation, characterization and optical properties of Dy-doped yttrium aluminum garnet

    NASA Astrophysics Data System (ADS)

    Cao, Xiuqing; Li, Xiaolan; Chen, Xiaowei; Xu, Shoulei; Xiong, Dingkang; Deng, Wen

    2017-07-01

    The Y2.94Dy0.06Al5O12 (Dy:YAG) ceramic rods were sintered at different temperatures from 1000∘C to 1450∘C by solid-state reaction method and the Dy:YAG single crystals were grown by the optical floating zone method. The XRD found the Y4Al2O9 (YAM) phase after sintering at 1000∘C and disappeared after sintering at 1450∘C. The YAG phase and the YAlO3 (YAP) phase were found in the ceramic sintered at >1200∘C. As the sintering temperature increases, the amount of the YAG phase increases, while YAP phase decreases. There is only a single YAG phase in the Dy:YAG single crystal. The SEM images showed that the grain size in the Dy:YAG ceramic increases with the sintering temperature. There are several emission bands in the photoluminescence spectrum of the Dy:YAG single crystal located at 483 nm in the blue region, 580 nm in yellow region and 670 nm in red region. Dy:YAG is a good candidate crystal for white light emission.

  9. Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition

    PubMed Central

    Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody

    2012-01-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489

  10. Temperature Dependence of a Diode-pumped Cryogenic Erbium (Er):Yttrium Aluminum Garnet (YAG) Laser

    DTIC Science & Technology

    2009-07-01

    Table 1. Temperature (T) dependence of the fluorescence lifetime of 0.5% Er:YAG, averaged over the two emission wavelengths...the laser is due to its attractive combination of spectroscopic and thermomechanical properties, and the resulting extensive development of YAG...minimize reabsorption for fluorescence spectra and lifetime data. A 2 atomic % Er:YAG single-crystal sample from Scientific Materials was fabricated to

  11. Properties Data for Adhesion and Surface Chemistry of Aluminum: Sapphire-Aluminum, Single-Crystal Couple

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pohlchuck, Bobby; Whitle, Neville C.; Hector, Louis G., Jr.; Adams, Jim

    1998-01-01

    An investigation was conducted to examine the adhesion and surface chemistry of single-crystal aluminum in contact with single-crystal sapphire (alumina). Pull-off force (adhesion) measurements were conducted under loads of 0. I to I mN in a vacuum of 10(exp -1) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) at room temperature. An Auger electron spectroscopy analyzer incorporated directly into an adhesion-measuring vacuum system was primarily used to define the chemical nature of the surfaces before and after adhesion measurements. The surfaces were cleaned by argon ion sputtering. With a clean aluminum-clean -sapphire couple the mean value and standard deviation of pull-off forces required to separate the surfaces were 3015 and 298 micro-N, respectively. With a contaminated aluminum-clean sapphire couple these values were 231 and 241 micro-N. The presence of a contaminant film on the aluminum surface reduced adhesion by a factor of 13. Therefore, surfaces cleanliness, particularly aluminum cleanliness, played an important role in the adhesion of the aluminum-sapphire couples. Pressures on the order of 10(exp -8) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) maintained a clean aluminum surface for only a short time (less then 1 hr) but maintained a clean sapphire surface, once it was achieved, for a much longer time.

  12. Thulium:yttrium-aluminum-garnet laser for en bloc resection of bladder cancer: clinical and histopathologic advantages.

    PubMed

    Muto, Giovanni; Collura, Devis; Giacobbe, Alessandro; D'Urso, Leonardo; Muto, Gian Luca; Demarchi, Andrea; Coverlizza, Sergio; Castelli, Emanuele

    2014-04-01

    To determine whether thulium:yttrium-aluminum-garnet laser resection of bladder tumor (TmLRBT) may offer advantages over classic resection. From April 2011 to September 2012, 55 consecutive patients newly diagnosed with clinical stage ≤T2 bladder cancer were enrolled in a prospective study on TmLRBT. Neoplasm was removed en bloc in all cases. When the tumor size was >3 cm, it was necessary to incise longitudinally and/or across the lesion and the bladder wall at its the base into 2 or more parts. All cases of non-muscle-invasive bladder cancer underwent second look in 30-90 days. Pathology reported urothelial carcinoma with Ta low grade in 31 patients (56.4%), T1 high grade in 18 (32.7%), and T2 high grade in 6 (10.9%). Histopathologic evaluation showed that the bladder detrusor was provided in all cases. Hemostasis was excellent, and no postoperative hematuria was reported. In a case of T1 G3, endoscopic re-evaluation showed a focal infiltration of the bladder detrusor, so the patient underwent radical cystectomy. To date, with a mean follow-up of 16 months (range, 8-25), the recurrence rate in patients with superficial disease is 14.5%. All recurrences were outside the site of first resection, and there was no progression in tumor grade. TmLRBT is a simple method that seems to overcome the "incise and scatter" problem associated with traditional transurethral resection of bladder tumor. Our initial data on staging accuracy and reduction of the local recurrence rate are encouraging. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Bactericidal Effect of Erbium-Doped Yttrium Aluminum Garnet Laser and Photodynamic Therapy on Aggregatibacter Actinomycetemcomitans Biofilm on Implant Surface.

    PubMed

    Saffarpour, Anna; Fekrazad, Reza; Heibati, Maryam Naghavi; Bahador, Abbas; Saffarpour, Aida; Rokn, Amir R; Iranparvar, Aysel; KharaziFard, Mohammad J

    2016-01-01

    Peri-implantitis is a common complication of dental implants. The first step of treatment is elimination of bacterial biofilm and disinfection of the implant surface. This study sought to compare the effects of an erbium-doped yttrium aluminum garnet (Er:YAG) laser, photodynamic therapy using an indocyanin green-based photosensitizer (ICG-based PS) and diode laser, toluidine blue O (TBO) photosensitizer and light-emitting diode (LED) light source, and 2% chlorhexidine (CHX) on biofilm of Aggregatibacter actinomycetemcomitans to sandblasted, large-grit, acid-etched (SLA) implant surfaces. Fifty SLA implants were divided into five groups and were incubated with A actinomycetemcomitans bacteria to form bacterial biofilm. Group 1 underwent Er:YAG laser radiation (with 10-Hz frequency, 100-mJ energy, and 1-W power); group 2 was subjected to LED (with 630-nm wavelength and maximum output intensity of 2.000 to 4.000 mW/cm(2)) and TBO as a photosensitizer; group 3 was exposed to diode laser radiation (with 810-nm wavelength and 300-mW power) and ICG-based PS; and group 4 was immersed in 2% CHX. Group 5 was the control group, and the samples were rinsed with normal saline. The number of colony-forming units (CFU) per implant was then calculated. Data were analyzed using one-way analysis of variance (ANOVA), and the five groups were compared. Significant differences was found between the control group and the other groups (P < .01). The lowest mean of CFU per implant count was in group 4 (P < .01), and the highest mean belonged to the control group. Photodynamic therapy by TBO + LED and ICG-based PS + diode laser was more effective than Er:YAG laser irradiation in suppression of this organism (P < .01). There was no significant difference between groups 2 and 3. The antibacterial effect of 2% CHX was greater than that of other understudy methods.

  14. Long-pulsed 1064-nm neodymium:yttrium-aluminum-garnet laser treatment for refractory warts on hands and feet.

    PubMed

    Kimura, Utako; Takeuchi, Kaori; Kinoshita, Ayako; Takamori, Kenji; Suga, Yasushi

    2014-03-01

    Common warts (verruca vulgaris) are the most commonly seen benign cutaneous tumors. However, warts in the hands and feet regions often respond poorly to treatment, some are resistant to more than 6 months of treatment with currently available modalities, including cryotherapy, being defined as refractory warts. We investigated the usefulness of long-pulsed neodymium:yttrium-aluminum-garnet (LP-Nd:YAG) treatment for refractory warts. The clinical trial was conducted on 20 subjects (11 male, nine female) with a total of 34 lesions (periungual/subungual areas, plantar areas, fingers and/or toes). All the subjects suffered from refractory warts despite conventional treatments for more than 6 months. The patients were administrated up to six sessions of treatment, at intervals of 4 weeks between sessions, with an LP-Nd:YAG at a spot size of 5 mm, pulse duration of 15 msec and fluence of 150-185 J/cm(2) . Evaluation of the treatment results at 24 weeks after the initial treatment showed complete clearance of the refractory warts in 56% of the patients. Histological evaluation showed separation of the dermis and epidermis at the basement membrane with coagulated necrosis of the wart tissue in the lower epidermis, as well as coagulation and destruction of the blood vessels in the papillary dermis following the laser irradiation. No scarring, post-hyperpigmentary changes or serious adverse events were documented. Our preliminary results show that LP-Nd:YAG treatments are safe and effective for refractory warts of hands and feet, causing minimal discomfort, and is a viable treatment alternative.

  15. Planar waveguides in neodymium-doped calcium niobium gallium garnet crystals produced by proton implantation

    NASA Astrophysics Data System (ADS)

    Chun-Xiao, Liu; Meng, Chen; Li-Li, Fu; Rui-Lin, Zheng; Hai-Tao, Guo; Zhi-Guang, Zhou; Wei-Nan, Li; She-Bao, Lin; Wei, Wei

    2016-04-01

    In this work, the fabrication and optical properties of a planar waveguide in a neodymium-doped calcium niobium gallium garnet (Nd:CNGG) crystal are reported. The waveguide is produced by proton (H+) implantation at 480 keV and a fluence of 1.0×1017 ions/cm2. The prism-coupling measurement is performed to obtain the dark mode of the waveguide at a wavelength of 632.8 nm. The reflectivity calculation method (RCM) is used to reconstruct the refractive index profile. The finite-difference beam propagation method (FD-BPM) is employed to calculate the guided mode profile of the waveguide. The stopping and range of ions in matter 2010 (SRIM 2010) code is used to simulate the damage profile induced by the ion implantation. The experimental and theoretical results indicate that the waveguide can confine the light propagation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 61405240, 61077070, 61177086, 51002181, and 61177084), the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY214159), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China (Grant No. ZSF0401).

  16. Seeded batch crystallization of ammonium aluminum sulfate from aqueous solution

    NASA Astrophysics Data System (ADS)

    Kubota, Noriaki; Onosawa, Masahiro

    2009-10-01

    Seed crystals of ammonium aluminum sulfate ((NH 4)Al(SO 4) 2··12H 2O) were grown in aqueous solution by cooling. The temperature of a crystallizer was lowered with no control by circulating cooling water through the jacket. It fell in an exponential manner. The effects of seed amount and size on the product crystal size distribution were examined. The product crystals obtained were of narrow and uni-modal size distribution with suppressed secondary nucleation if seed crystals were loaded more than a critical value. The critical value was determined and well compared with previously reported values for other material systems. This crystallization technique does not need any prior knowledge of the kinetics of crystal growth and nucleation. It is simple and robust, and can be easily applied to an existing crystallizer without installing any additional control systems.

  17. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties

    SciTech Connect

    Shaposhnikov, A.N.; Karavainikov, A.V.; Prokopov, A.R.; Berzhansky, V.N.; Salyuk, O.Y.

    2012-06-15

    Graphical abstract: Faraday hysteresis loops for Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} film on glass-ceramic substrate (a), Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} film on gallium–gadolinium garnet (b) and for glass-ceramic/SiO{sub 2}/Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} structure (c). Highlights: ► Bismuth-substituted iron garnet films as magneto-optical layers in magneto-photonic crystals. ► It is impossible to crystallize the films with high Bi content on amorphous substrates. ► The crystallization of the films can be achieved by their deposition on buffer layer with low bismuth content. -- Abstract: The crystallization processes in Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12}, Bi{sub 2.5}Gd{sub 0.5}Fe{sub 3.8}Al{sub 1.2}O{sub 12}, Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} and Bi{sub 1.0}Y{sub 0.5}Gd{sub 1.5}Fe{sub 4.2}Al{sub 0.8}O{sub 12} garnet films deposited by reactive ion beam sputtering on (1 1 1) gadolinium–gallium garnet substrates, optical glass-ceramic and SiO{sub 2} films have been studied. Films were annealed at low pressure in oxygen atmosphere and in the air. The possibility of preparation of crystalline garnet films with high concentration of bismuth on the SiO{sub 2} films using a buffer layer with low concentration of Bi has been shown. This allows to produce one-dimensional magneto-photonic crystals with high effective Faraday rotation (several tens of°/μm for the visible optical spectrum).

  18. Growth of terbium gallium garnet (TGG) magneto-optic crystals by edge-defined film-fed growth method

    NASA Astrophysics Data System (ADS)

    Zhuang, Naifeng; Song, Caigen; Guo, Liwei; Wang, Rongfeng; Hu, Xiaolin; Zhao, Bin; Lin, Shukun; Chen, Jianzhong

    2013-10-01

    Although terbium gallium garnet (TGG) single crystals suitable for practical applications have been grown by the Czochralski technique due to its congruent melting nature, the interface shape readily deteriorates to spiral growth when grown with a flat interface or facet formation when grown with a convex interface. The Edge-defined Film-fed Growth (EFG) method was used to grow TGG crystals for the first time. The influence of the raw material sintering temperature, growth atmosphere, growth rate and other growth conditions on the crystal quality were investigated. The Verdet constant of as-grown crystal was measured as 39 rad/T.m at 1064 nm by the extinction method, which was close to the literature value. The source of color centers in the crystals is also discussed.

  19. Molecular dynamics simulation of shock melting of aluminum single crystal

    NASA Astrophysics Data System (ADS)

    Ju, Yuanyuan; Zhang, Qingming; Gong, Zizheng; Ji, Guangfu; Zhou, Lin

    2013-09-01

    Molecular dynamics method in conjunction with multi-scale shock technique is employed to study the melting characteristics of aluminum single crystal under dynamic conditions. The simulated results show that a linear relationship exists between the shock wave velocity and particle velocity, in good agreement with the experimental data. Comparing the Lindemann melting curve with the two Hugoniot curves for the solid and liquid phases, the Hugoniot melting is found to begin at 93.6 GPa and end at 140 GPa, which is consistent with the theoretical calculations. The impact of crystal defects on the melting characteristics of aluminum single crystal is also studied, and the results indicate that the pressure and temperature increase slightly for the system experiencing the same dynamic loading due to the crystal defects.

  20. Dynamic strength of aluminum single crystals at melting

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Baumung, K.; Singer, J.; Razorenov, S. V.

    2000-05-01

    Results of measurements of dynamic tensile strength ("spall strength") of aluminum single crystals are presented. In the shock-wave experiments the load duration was about 40 ns, the initial temperature was varied from 20 to 648 °C that is only 12 °C less than the melting temperature of aluminum. Under these conditions the dynamic tensile strength of aluminum single crystals has been found practically independent on the temperature up to ˜630 °C. The spall strength slightly decreases at further increase in the initial temperature up to 648 °C. The high-temperature data exceed estimated stresses at which melting should start in a stretched material.

  1. Is erbium:yttrium-aluminum-garnet laser versus conventional rotary osteotomy better in the postoperative period for lower third molar surgery? Randomized split-mouth clinical study.

    PubMed

    Romeo, Umberto; Libotte, Fabrizio; Palaia, Gaspare; Tenore, Gianluca; Galanakis, Alexandros; Annibali, Susanna

    2015-02-01

    Lasers have been extensively used in dentistry for several applications. We investigated and compared the use of an erbium:yttrium-aluminum-garnet laser and conventional rotary instruments for bone removal in third molar surgery. We implemented a randomized, split-mouth clinical trial. Patients with bilateral and symmetrical third molar impaction referred to the Department of Oral and Maxillo-Facial Sciences, "Sapienza" University of Rome, were enrolled in the study. Each patient was treated once with the erbium:yttrium-aluminum-garnet laser and once with conventional rotary instruments for bone removal during third molar surgery. Pain, swelling, and trismus were taken into account to match the 2 techniques.In addition, the times required to complete osteotomy and for the full operation were recorded. Descriptive and bivariate statistics were computed, and the P value was set at .05. The sample was composed of 15 patients (8 men and 7 women) ranging in age from 18 to 30 years. Pain perceived in the laser-treated group was significantly less than that in the conventional group(P = .0013). This also was true for trismus (P = .0002) and swelling. The operating time for osteotomy was longer in the laser group. The results of this study suggest that the laser could be an interesting alternative to conventional rotary instruments. Future studies with a larger number of patients are required to confirm the conclusions achieved from this work.

  2. Endovenous laser ablation of the great and short saphenous veins with a 1320-nm neodymium:yttrium-aluminum-garnet laser: retrospective case series of 1171 procedures.

    PubMed

    Moul, Danielle K; Housman, Leland; Romine, Sara; Greenway, Hubert

    2014-02-01

    Venous insufficiency is a common medical condition affecting up to 50.5% of women and 30.1% of men. Endovenous laser ablation is a minimally invasive procedure that safely and effectively treats reflux involving the great and short saphenous veins. We sought to present safety and efficacy data of 1171 endovenous laser ablations using the Scripps Clinic endovenous laser therapy (EVLT) protocol. We conducted an institutional review board-approved, retrospective chart analysis of 1171 endovenous laser ablations performed from March 2007 until February 2011 treated at Scripps Clinic with the 1320-nm neodymium:yttrium-aluminum-garnet laser with 1-month, 6-month, 1-year, and 2-year follow-up data. Our current overall experience is greater than 2000 EVLT procedures. The mean follow-up for this case series of 1171 EVLT procedures (1066 great saphenous veins and 105 short saphenous veins) is 11.4 months with an overall closure success rate of 99.9% for patients not lost to follow-up. There has been no incidence of deep vein thrombosis, permanent nerve damage, or pulmonary embolism related to laser ablation. Retrospective chart analysis, investigator bias, patients lost to follow-up, and lack of quality-of-life assessment are limitations. EVLT using a 1320-nm neodymium:yttrium-aluminum-garnet laser appears to be a viable option for venous insufficiency and venous ulceration unresponsive to conservative treatment. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  3. Determination of the variation of the fluorescence line positions of ruby, strontium tetraborate, alexandrite, and samarium-doped yttrium aluminum garnet with pressure and temperature

    NASA Astrophysics Data System (ADS)

    Raju, Selva Vennila; Zaug, Joseph M.; Chen, Bin; Yan, Jinyuan; Knight, Jason W.; Jeanloz, Raymond; Clark, Simon M.

    2011-07-01

    The pressure and temperature dependent fluorescence line-shift of strontium tetraborate has been measured concurrently with x-ray diffraction from the pressure standards sodium chloride or gold. Temperature was found to have a small effect on the fluorescence line-shift under pressure. We found a maximum pressure uncertainty of ±1.8 GPa at 25 GPa (7.2%) and 857 K when making no temperature correction. The fluorescence line-shifts for ruby, Alexandrite, and samarium-doped yttrium aluminum garnet were also determined, using our strontium tetraborate calibration to determine pressure and a thermocouple to measure temperature. Fluorescence measurements were extended up to 800 K for ruby and Alexandrite. Temperature was found to have a small effect on the fluorescence line-shift of samarium-doped yittrium aluminum garnet. We found a maximum uncertainty of ±2.7 GPa at 25 GPa (11.1%) and 857 K when no temperature correction was applied. We determined equations relating to the fluorescence line position from these data, which include a cross derivative term to account for the combined effect of pressure and temperature. We present a method to independently determine pressure and/or temperature from combined fluorescence line-shift measurements of a pair of optical sensors.

  4. Treatment of melasma in men with low-fluence Q-switched neodymium-doped yttrium-aluminum-garnet laser versus combined laser and glycolic acid peeling.

    PubMed

    Vachiramon, Vasanop; Sahawatwong, Sinijchaya; Sirithanabadeekul, Punyaphat

    2015-04-01

    Low-fluence Q-switched neodymium-doped yttrium-aluminum-garnet 1,064-nm laser (LFQS) and glycolic acid (GA) peeling have been reported as a treatment option for melasma. However, there are limited data on their efficacy in men. To compare the efficacy and safety of LFQS monotherapy with combined LFQS and 30% GA peeling in male patients with melasma. Fifteen males with mixed type melasma were randomized to receive 5 weekly sessions of LFQS on one side of the face and LFQS plus 30% GA peeling on the contralateral side and were followed for 12 weeks. Twelve patients completed the protocol. Mean relative lightness index (RL*I) of the combined treatment side was lowered throughout the study period, with the maximal improvement of 52.3% reduction at the fourth week follow-up (p = .023). Patient self-assessment was favorable in the combined treatment. However, the mean RL*I increased at 8 and 12 weeks of follow-up. One subject (8.3%) developed guttate hypopigmentation, which did not resolve by the 12-week follow-up. Low-fluence Q-switched neodymium-doped yttrium-aluminum-garnet 1,064-nm laser combined with GA peeling temporarily reduced melasma in men, but the incidence of side effects does not justify the short-lived benefits of this procedure. This technique requires further study.

  5. Magmatic garnet in the Cordilleran-type Galiléia granitoids of the Araçuaí belt (Brazil): Evidence for crystallization in the lower crust

    NASA Astrophysics Data System (ADS)

    Narduzzi, F.; Farina, F.; Stevens, G.; Lana, C.; Nalini, H. A.

    2017-06-01

    Magmatic garnet, together with epidote, is a rare mineral association in cordilleran-I-type granitoids and of special petrogenetic significance. The metaluminous to slightly peraluminous (ASI = 0.97-1.07) Galiléia batholith (Brazil) is a large (ca. 30,000 km2), Neoproterozoic (ca. 632-570 Ma) weakly foliated calc-alkaline granitoid body, characterized by the widespread occurrence of garnet (grossular 25-43 mol%) and epidote (pistacite 9.3-22.7 mol%). Field, petrographic and mineral chemical evidence indicates that garnet, epidote, biotite as well as white mica crystals (low-Si phengite), are magmatic. There is no difference in bulk rock major and trace element composition between the Galiléia granitoids and other garnet-free cordilleran-type granitoids worldwide. This evidence strongly suggests that the origin of the uncommon garnet + epidote parageneses is related to the conditions of magma crystallization, such as pressure, temperature and water content. Comparison between the mineral assemblages and mineral compositions from this study and those recorded in crystallization experiments on metaluminous calc-alkaline magmas, as well as within garnet-bearing metaluminous volcanic rocks and granitoids, indicates that the supersolidus coexistence of grossular-rich garnet, epidote and white mica is consistent with magma crystallization at pressures greater than 0.8 GPa (above 25 km depth) and at temperatures below 700 °C, i.e. near the water saturated solidus. Furthermore, resorption textures around garnet (plagioclase ± quartz coronas) and epidote suggest that these minerals have been partially consumed prior to complete crystallization. These findings demonstrate that at 630 Ma the crust underneath the Araçuaí Orogen was already at least 25-30 km thick and relatively cool. However, this contrasts with the marked high heat flow registered from the neighbour Carlos Chagas Batholith located 50 km to the east. In fact such granitoids record granulite

  6. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    A general overview of the industrial garnet industry is provided. About 20 percent of global industrial garnet production takes place in the U.S. During 2000, an estimated 300 kt of industrial garnets were produced worldwide. The U.S. is the world's largest consumer of industrial garnet, consuming 56.9 kt in 2000.

  7. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    SciTech Connect

    Li, Junlang; Xu, Jian; Shi, Ying; Qi, Hongfang; Xie, Jianjun; Lei, Fang

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in this paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.

  8. Controlling silicon crystallization in aluminum-induced crystallization via substrate plasma treatment

    NASA Astrophysics Data System (ADS)

    Hainey, Mel F.; Innocent-Dolor, Jon-L.; Choudhury, Tanushree H.; Redwing, Joan M.

    2017-03-01

    The effect of reactive ion etching using chlorine or fluorine-based plasmas on aluminum-induced crystallization (AIC) of silicon on fused silica glass substrates was investigated with the goal of chemically modifying the substrate surface and thereby influencing the crystallization behavior. Chlorine etching of the glass prior to AIC resulted in six times faster silicon crystallization times and smaller grain sizes than films formed on untreated substrates while fluorine etching resulted in crystallization times double than those on untreated surfaces. The differences in crystallization behavior were attributed to changes in surface chemistry and surface energy of the glass as a result of the plasma treatment as supported by X-ray photoelectron spectroscopy and contact angle measurements. The different surface treatments were then combined with optical lithography to control the location of crystallization on the substrate surface to realize the production of patterned polycrystalline silicon films from initially continuous aluminum and silicon.

  9. Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Young, A P; Schwope, A D

    1956-01-01

    This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

  10. Single crystal elasticity of majoritic garnets: Stagnant slabs and thermal anomalies at the base of the transition zone

    NASA Astrophysics Data System (ADS)

    Pamato, Martha G.; Kurnosov, Alexander; Boffa Ballaran, Tiziana; Frost, Daniel J.; Ziberna, Luca; Giannini, Mattia; Speziale, Sergio; Tkachev, Sergey N.; Zhuravlev, Kirill K.; Prakapenka, Vitali B.

    2016-10-01

    The elastic properties of two single crystals of majoritic garnet (Mg3.24Al1.53Si3.23O12 and Mg3.01Fe0.17Al1.68Si3.15O12), have been measured using simultaneously single-crystal X-ray diffraction and Brillouin spectroscopy in an externally heated diamond anvil cell with Ne as pressure transmitting medium at conditions up to ∼30 GPa and ∼600 K. This combination of techniques makes it possible to use the bulk modulus and unit-cell volume at each condition to calculate the absolute pressure, independently of secondary pressure calibrants. Substitution of the majorite component into pyrope garnet lowers both the bulk (Ks) and shear modulus (G). The substitution of Fe was found to cause a small but resolvable increase in Ks that was accompanied by a decrease in ∂Ks / ∂ P, the first pressure derivative of the bulk modulus. Fe substitution had no influence on either the shear modulus or its pressure derivative. The obtained elasticity data were used to derive a thermo-elastic model to describe Vs and Vp of complex garnet solid solutions. Using further elasticity data from the literature and thermodynamic models for mantle phase relations, velocities for mafic, harzburgitic and lherzolitic bulk compositions at the base of Earth's transition zone were calculated. The results show that Vs predicted by seismic reference models are faster than those calculated for all three types of lithologies along a typical mantle adiabat within the bottom 150 km of the transition zone. The anomalously fast seismic shear velocities might be explained if laterally extensive sections of subducted harzburgite-rich slabs pile up at the base of the transition zone and lower average mantle temperatures within this depth range.

  11. Discrete zero-phonon Cr3+ lines in the spectra of Terbium-Yttrium-Lutetium Aluminum garnets solid solutions: Lattice compression and dilation

    NASA Astrophysics Data System (ADS)

    Feofilov, S. P.; Kulinkin, A. B.; Ovanesyan, K. L.; Petrosyan, A. G.

    2016-01-01

    The zero-phonon electronic transitions in Cr3+ impurity ions in a series of Tb3zY3-3zAl5O12 (0garnet solid solution crystals were studied experimentally. The discrete zero-phonon R-line (2E-4A2) fluorescence spectra of Cr3+ ions were observed which are not accompanied by strong inhomogeneous broadening, as usually happens in solid solutions. This effect which was first observed in LuYAG and ascribed to high C3i symmetry of Cr3+(Al3+) sites that allows only a limited number of non-equivalent Cr3+ centers in mixed environment. The energies and radiative lifetimes of 2E states of locally identical Cr3+ centers inside different Tb-Y-Lu mixed garnet matrices are studied; the observed dependences on Tb and Lu content are discussed in terms of lattice compression and dilation according to Vegard's law. Selective laser spectroscopy confirms the small number of non-equivalent Cr3+ centers in garnet solid solutions.

  12. Determination of the concentration of conduction electrons in Y{sub 3}Fe{sub 5}O{sub 12} garnet crystals

    SciTech Connect

    Lomako, I. D.

    2013-07-15

    Ferrites (garnets) are a model object of study and a promising material to be used in magneto-optical devices for data recording and processing and IR modulators. Due to the narrow ferromagnetic resonance line, optical transparency, and high elastic Q factor of ferrite single crystals, they are promising for solid-state microwave, optoelectronic, and computation devices. To ensure the optimal application of ferromagnetic materials, it is necessary to complete the following important task: develop a certification for samples with allowance for the degree of their imperfection caused by the deviation of crystals with garnet structure from stoichiometry, the competitive incorporation of process and dominant impurities, oxygen vacancies, etc.

  13. Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures.

    PubMed

    Majeed, Hassaan; Shaheen, Amrozia; Anwar, Muhammad Sabieh

    2013-10-21

    We report the complete determination of the polarization changes caused in linearly polarized incident light due to propagation in a magneto-optically active terbium gallium garnet (TGG) single crystal, at temperatures ranging from 6.3 to 300 K. A 28-fold increase in the Verdet constant of the TGG crystal is seen as its temperature decreases to 6.3 K. In contrast with polarimetry of light emerging from a Faraday material at room temperature, polarimetry at cryogenic temperatures cannot be carried out using the conventional fixed polarizer-analyzer technique because the assumption that ellipticity is negligible becomes increasingly invalid as temperature is lowered. It is shown that complete determination of light polarization in such a case requires the determination of its Stokes parameters, otherwise inaccurate measurements will result with negative implications for practical devices.

  14. Crystal Growth Process of Rb-Doped Iron Garnet Films for M-O Recording Prepared by Pyrolysis

    NASA Astrophysics Data System (ADS)

    Nakagawa, Katsuji; Odagawa, Kenji; Itoh, Akiyoshi

    1990-09-01

    The crystal growth process of nondoped and Rb-doped Bi-iron garnet films prepared by pyrolysis on glass substrates was investigated. The growth processes were observed with a differential interference microscope. Crystal domains appearing at the early stage of the annealing were fused to each other with the progress of the annealing. Rb-doped films were much more smooth and uniform than the nondoped films. It is concluded that the contrast of light intensity observed by DIM was not caused by the surface roughness but was caused by the inhomogeneity of the refractive index. The media noise and writing noise level could be decreased in the Rb-doped films because of their improved homogeneity.

  15. Phase stable rare earth garnets

    DOEpatents

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  16. Revised calibration of the Sm:SrB{sub 4}O{sub 7} pressure sensor using the Sm-doped yttrium-aluminum garnet primary pressure scale

    SciTech Connect

    Rashchenko, Sergey V. Litasov, Konstantin D.; Kurnosov, Alexander; Dubrovinsky, Leonid

    2015-04-14

    The pressure-induced shift of Sm:SrB{sub 4}O{sub 7} fluorescence was calibrated in a quasi-hydrostatic helium medium up to 60 GPa using the recent Sm-doped yttrium-aluminum garnet primary pressure scale as a reference. The resulting calibration can be written as P = −2836/14.3 [(1 + Δλ/685.51){sup −14.3 }− 1]. Previous calibrations based on the internally inconsistent primary scales are revised, and, after appropriate correction, found to agree with the proposed one. The calibration extended to 120 GPa was also performed using corrected previous data and can be written as P = 4.20 Δλ (1 + 0.020 Δλ)/(1 + 0.036 Δλ)

  17. Commentary: Is There Clinical Benefit From Using a Diode or Neodymium:Yttrium-Aluminum-Garnet Laser in the Treatment of Periodontitis?

    PubMed

    Cobb, Charles M

    2016-10-01

    Despite a quarter of a century of laser research, there is a persistent debate regarding the efficacy of dental lasers in the treatment of periodontitis or periodontal maintenance therapy. There are many claims and much hyperbole surrounding the use of lasers, either as a monotherapy or adjunctive to scaling and root planing, to treat periodontitis. There is little evidence that using a diode or neodymium:yttrium-aluminum-garnet laser adds clinical value over and above conventional non-surgical or surgical periodontal treatment. There is a significant need for better designed human clinical trials. Data from such trials should be analyzed according to initial probing depth and characteristics of the treated sites, such as non-molar, molar flat surfaces, and molar furcations, and evaluated for long-term post-treatment results.

  18. In vitro study of the erbium:yttrium aluminum garnet laser cleaning of root canal by the use of shadow photography

    NASA Astrophysics Data System (ADS)

    Gregorčič, Peter; Lukač, Nejc; Možina, Janez; Jezeršek, Matija

    2016-01-01

    Erbium:yttrium aluminum garnet laser cleaning is a promising technique in endodontic treatment. In our in vitro study, we measured the vapor-bubble dynamics in the root canal by using shadow photography. The canal model was made of a plastic cutout placed between two transparent glass plates. An artificial smear layer was applied to the glass to study cleaning efficiency. In our results, no shock waves have been observed, since the pulp-chamber dimensions have been in the same range as the maximum diameter of the vapor bubble. This leads to the conclusion that shock waves are not the main cleaning mechanism within our model. However, the cleaning effects are also visible in the regions significantly below the bubble. Therefore, it can be concluded that fluid flow induced by the bubble's oscillations contributes significantly to the canal cleaning. We also proposed a simple theoretical model for cleaning efficiency and used it to evaluate the measured data.

  19. Does the Heat Generation by the Thulium:Yttrium Aluminum Garnet Laser in the Irrigation Fluid Allow Its Use on the Upper Urinary Tract? An Experimental Study.

    PubMed

    Kallidonis, Panagiotis; Amanatides, Lefteris; Panagopoulos, Vasileios; Kyriazis, Iason; Vrettos, Theofanis; Fligou, Fotini; Kamal, Wissam; Liatsikos, Evangelos N

    2016-04-01

    The current experimental study aimed into evaluating the temperature raise of the irrigation fluid caused by the use of the Thulium:Yttrium aluminum garnet (Tm:YAG) laser. The study setting was designed to replicate conditions of upper urinary tract (UT) surgery. An experimental setting was designed for the investigation of differences in the temperature of the irrigation fluid in different flow rates, laser power settings, and laser activation times and modes. The experimental configuration included a burette equipped with a micrometric stopcock, a thermocouple, and a modified 40-mL vessel. A Tm:YAG and Holmium:Yttrium aluminum garnet (Ho:YAG) laser devices were used. The Tm:YAG in the continuous mode and in power settings of 5, 10, and 20 W showed similar temperature changes during the 10-minute observation period. The temperatures of the Tm:YAG in the pulsed mode tended to range within similar levels (46.8°C-61°C) with the continuous mode (47.8°C-68°C) when power settings up to 20 W were considered. When the higher power settings (50 and 100 W) were investigated, the temperatures reached were significantly higher in both pulsed and continuous modes. The Ho:YAG showed similar temperatures in comparison to the Tm:YAG in all the flow rates and power settings. The temperatures ranged between 45.6°C and 68.7°C. The Tm:YAG in the pulsed and continuous mode with power settings up to 20 W seemed to have potential for UT use. By combining a power setting at the above limit and a low flow rate (as low as 2 mL/minute), it is possible to use the Tm:YAG with safety in terms of temperature.

  20. Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method

    NASA Astrophysics Data System (ADS)

    Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui

    2013-12-01

    A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.

  1. Fano resonance in anodic aluminum oxide based photonic crystals.

    PubMed

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  2. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate

    NASA Astrophysics Data System (ADS)

    Bhopal, Muhammad Fahad; Lee, Doo Won; Lee, Soo Hong

    2016-09-01

    Thin-film polycrystalline silicon ( pc-Si) on foreign (non-silicon) substrates has been researched by various research groups for the production of photovoltaic cells. High quality pc-Si deposition on foreign substrates with superior optical properties is considered to be the main hurdle in cell fabrication. Metal induced crystallization (MIC) is one of the renowned techniques used to produce this quality of material. In the current study, an aluminum induced crystallization (AIC) method was adopted to produce pc-Si thin-film on aluminum nitride (AlN) substrate by a seed layer approach. Aluminum and a-Si layer were deposited using an e-beam evaporator. Various annealing conditions were used in order to investigate the AIC grown pc-Si seed layers for process optimization. The effect of thermal annealing on grain size, defects preferentially crystallographic orientation of the grains were analyzed. Surface morphology was studied using an optical microscope. Poly-silicon film with a crystallinity fraction between 95-100% and an FWHM between 5-6 cm-1 is achievable at low temperatures and for short time intervals. A grain size of about 10 micron can be obtained at a low deposition rate on an AIN substrate. Similarly, Focused ion beam (FIB) also showed that at 425 °C sample B and at 400 °C sample A were fully crystallized. The crystalline quality of pc-Si was evaluated using μ-Raman spectroscopy as a function of annealed conditions and Grazing incidence X-ray diffraction (GIXRD) was used to determine the phase direction of the pc-Si layer. The current study implicates that a poly-silicon layer with good crystallographic orientation and crystallinity fraction is achievable on AIN substrate at low temperatures and short time frames.

  3. One-dimensional photonic crystals with highly Bi-substituted iron garnet defect in reflection polar geometry

    NASA Astrophysics Data System (ADS)

    Mikhailova, T. V.; Berzhansky, V. N.; Karavainikov, A. V.; Shaposhnikov, A. N.; Prokopov, A. R.; Lyashko, S. D.

    2016-08-01

    It is represented the results of modelling of magnetooptical properties in reflection polar geometry of one-dimensional photonic crystal, in which highly Bi-substituted iron garnet defect of composition Bi1.0Y0.5Gd1.5Fe4.2Al0.8O12 / Bi2.8Y0.2Fe5Oi2 is located between the dielectric Bragg mirrors (SiO2 / TiO2)m (were m is number of layer pairs) and buffer SiO2 and gold top layers of different thicknesses is placed on structure. The modification of spectral line- shapes of microcavity and Tamm plasmon-polariton modes depending on m is found.

  4. Effect of Air Abrasion and Erbium-Doped Yttrium Aluminum Garnet (Er: YAG) laser preparation on Shear Bond Strength of Composite to Dentin.

    PubMed

    Pahlavan, Ayoub; Mehmanchi, Mobin; Ranjbar Omrani, Ladan; Chiniforush, Nasim

    2013-01-01

    The aim of this study was to assess shear bond strength of composite to dentin after air abrasion and laser treatment. 40 human extracted molars divided into 4 groups (n=10) received the following treatments. Group 1: carbide bur, Group 2: air abrasion with aluminum oxide 50 μm, Group 3: irradiated with Erbium-Doped Yttrium Aluminum Garnet (Er: YAG) laser (150 mJ/20Hz), Group 4: irradiated with Er:YAG laser (150 mJ/20Hz)+ air. Specimens in all groups were chemically etched with phosphoric acid 37% and treated with bonding agent (single bond 3M). Then, composite build-up was performed by tygon tube. After storage in distilled water at 37°c for one week, all specimens were subjected to a shear bond strength test with universal testing machine. Data were analyzed with ANOVA and T-Test. The mean and standard deviation of shear bond strength of the 4 groups were 20.8±6.76, 14.98±3.98, 11.43±4.36 and 14.95± 3.18 MPa, respectively. Air abrasion after laser treatment improved the shear bond strength.

  5. A possible new origin of long absorption tail in Nd-doped yttrium aluminum garnet induced by 15 MeV gold-ion irradiation and heat treatment

    SciTech Connect

    Amekura, Hiro; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2016-05-07

    When ion irradiation introduces point-defects in semiconductors/insulators, discrete energy levels can be introduced in the bandgap, and then optical transitions whose energies are lower than the bandgap become possible. The electronic transitions between the discrete level and the continuous host band are observed as a continuous tail starting from the fundamental edge. This is the well-known mechanism of the absorption tail close to the band-edge observed in many semiconductors/insulators. In this paper, we propose another mechanism for the absorption tail, which is probably active in Nd-doped yttrium aluminum garnet (Nd:YAG) after ion irradiation and annealing. A Nd:YAG bulk crystal was irradiated with 15 MeV Au{sup 5+} ions to a fluence of 8 × 10{sup 14} ions/cm{sup 2}. The irradiation generates an amorphous layer of ∼3 μm thick with refractive index reduction of Δn = −0.03. Thermal annealing at 1000 °C induces recrystallization to randomly aligned small crystalline grains. Simultaneously, an extraordinarily long absorption tail appeared in the optical spectrum covering from 0.24 to ∼2 μm without fringes. The origin of the tail is discussed based on two models: (i) conventional electronic transitions between defect levels and YAG host band and (ii) enhanced light scattering by randomly aligned small grains.

  6. Dynamics of mineral crystallization at inclusion-garnet interface from precipitated slab-derived fluid phase: first in-situ synchrotron x-ray measurements

    NASA Astrophysics Data System (ADS)

    Malaspina, Nadia; Alvaro, Matteo; Campione, Marcello; Nestola, Fabrizio

    2015-04-01

    Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. These inclusions are frequently hosted by minerals stable at mantle depths, such as garnet, and show the same textural features as fluid inclusions. The mineral infillings of the solid multiphase inclusions are generally assumed to have crystallized by precipitation from the solute load of dense supercritical fluids equilibrating with the host rock. Notwithstanding the validity of this assumption, the mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatised at ~ 4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometers and negative crystal shapes. Infilling minerals (spinel: 10-20 vol.%; amphibole, chlorite, talc, mica: 80- 90 vol.%) occur with constant volume ratios and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by means of Synchrotron Radiation at DLS-Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and their reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Epitaxy drives a first-stage nucleation of spinel under near-to-equilibrium conditions

  7. Mineral of the month: garnet

    USGS Publications Warehouse

    Olson, Donald

    2005-01-01

    Garnet is the general name given to a group of complex silicate minerals, all with isometric crystal structure, similar properties and chemical compositions. Garnet occurs in every color of the spectrum except blue, but it is most commonly red, purple, brown and green. Garnet necklaces dating from the Bronze Age have been found in graves and also among the ornaments adorning the oldest Egyptian mummies.

  8. The crystal structure of aluminum doped {beta}-rhombohedral boron

    SciTech Connect

    Bykova, Elena; Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Chernyshov, Dmitry; Dubrovinsky, Leonid

    2012-10-15

    A crystal structure of aluminum doped {beta}-rhombohedral boron was studied by single-crystal X-ray diffraction at 80 K. The crystals were synthesized using high-pressure high temperature technique at 3 GPa and 2100 K. The structure is based on three-dimensional framework made of B{sub 12} icosahedra with voids occupied by the B{sub 28}-B-B{sub 28} units, it has the R-3m space group with a=10.9014(3), c=23.7225(7) A lattice dimensions in hexagonal setting. Aluminum atoms are located in A1 and D special positions of the {beta}-B structure with occupancies of 82.7(6)% and 11.3(4)%, respectively. Additional boron atoms are located near the D-site. Their possible distribution is discussed. Finally we have found two appropriate structural models whose refinement suggests two possible chemical compositions, AlB{sub 44.8(5)} and AlB{sub 37.8(5)}, which are in a good agreement with the chemical analysis data obtained from EDX. The crystal structure of AlB{sub 44.8(5)} is described in detail. - Graphical abstract: The atomic distribution near the B(15) atom (non-labeled atom in the center of the picture) shown along the c axis. Anisotropic displacement ellipses for Al(2) (D-site) and B(15) are shown with 50 % probability level. The mirror plane with Miller indices (1 1 0) and related to it (-1 2 0) and (-2 1 0) generated by the 3-fold rotation-inversion axis parallel to the c axis splits the position of B(16) over two sites. Highlights: Black-Right-Pointing-Pointer The crystal structure of the AlB{sub 44.8(5)} has been refined. Black-Right-Pointing-Pointer Aluminum atoms partially fill certain types of voids (the A1- and D-sites). Black-Right-Pointing-Pointer We have got two possible models of atomic distribution near the D-site.

  9. Field-induced magnetic transition in a mixed rare-earth aluminum garnet Er2HoAl5O12

    NASA Astrophysics Data System (ADS)

    Shevchenko, E. V.; Charnaya, E. V.; Khazanov, E. N.; Taranov, A. V.; Bugaev, A. S.

    2017-04-01

    The temperature dependence of the ac magnetic susceptibility of a single-crystal mixed rare-earth garnet Er2HoAl5O12 has been investigated within the range from 1.8 to 300 K in a zero constant field and in applied bias fields of up to 9 T. In the absence of a constant magnetic field the magnetic susceptibility followed the Curie-Weiss law. The application of a constant magnetic field caused a magnetic phase transition, the temperature of which increased with increasing magnetic field. The temperature of the maximum of the ac magnetic susceptibility, which is a characteristic of the phase transition, did not show a noticeable dependence on the frequency of the alternating magnetic field.

  10. Spectroscopic investigation of Cr to Tm energy transfer in yttrium aluminum garnet crystals

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Di Bartolo, B.; Buoncristiani, A. M.

    1989-01-01

    A series of experiments has been conducted in order to examine the nature of the energy transfer process between the Cr(3+) and Tm(3+) ions in YAG. Data are obtained on various samples doped with Cr(3+) and/or Tm(3+). These data include absorption, luminescence, excitation spectra and time-resolved response to pulsed excitation. The measurements were carried out over a range of temperatures from 78 to 350 K. The rate of nonradiative energy transfer from Cr(3+) to Tm(3+) depends on temperature, and in the region from 200 to 350 K, this dependence is due primarily to the thermal variation in the radiative decay probability of the Cr ion.

  11. Spectroscopic investigation of Cr to Tm energy transfer in yttrium aluminum garnet crystals

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Di Bartolo, B.; Buoncristiani, A. M.

    1989-01-01

    A series of experiments has been conducted in order to examine the nature of the energy transfer process between the Cr(3+) and Tm(3+) ions in YAG. Data are obtained on various samples doped with Cr(3+) and/or Tm(3+). These data include absorption, luminescence, excitation spectra and time-resolved response to pulsed excitation. The measurements were carried out over a range of temperatures from 78 to 350 K. The rate of nonradiative energy transfer from Cr(3+) to Tm(3+) depends on temperature, and in the region from 200 to 350 K, this dependence is due primarily to the thermal variation in the radiative decay probability of the Cr ion.

  12. Single-crystal Rare-earth Doped YAG Fiber Lasers Grown by the Laser-heated Pedestal Growth Technique

    DTIC Science & Technology

    2014-02-04

    thulium have been successfully doped into single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) fibers by use of the laser heated pedestal growth...holmium and thulium have been successfully doped into single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) fibers by use of the laser heated...Ann Arbor, MI 48109 dSPAWAR System Center, San Diego, CA ABSTRACT High concentrations of the rare-earth elements erbium, holmium and thulium

  13. Comparative study of intrinsic luminescence in undoped transparent ceramic and single crystal garnet scintillators

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yutaka; Yanagida, Takayuki; Yagi, Hideki; Yanagidani, Takagimi; Chani, Valery

    2014-10-01

    Scintillation properties associated with intrinsic lattice defects of undoped Y3A5O12 (YAG) and Lu3A5O12 (LuAG) transparent ceramics and single crystals are compared. The ceramics excited with X-ray demonstrated relatively low emission intensity when compared with that of the single crystals. Decay times of the ceramics and the single crystals were similar. These parameters were approximately 430 ns (YAG ceramic), 460 ns (YAG single crystal), 30 ns and 1090 ns (LuAG ceramic), and 25 ns and 970 ns (LuAG single crystal). According to the pulse height spectra recorded under 137Cs gamma-ray irradiation, the scintillation light yield of the both ceramics were about 2950 ± 290 ph/MeV. However, the single crystals had greater kight yield of about about 14,300 ± 1430 ph/MeV for YAG and 8350 ± 830 ph/MeV for LuAG.

  14. Aluminum nitride bulk crystal growth in a resistively heated reactor

    NASA Astrophysics Data System (ADS)

    Dalmau, Rafael Federico

    A resistively heated reactor capable of temperatures in excess of 2300°C was used to grow aluminum nitride (AlN) bulk single crystals from an AlN powder source by physical vapor transport (PVT) in nitrogen atmosphere. AlN crystals were grown at elevated temperatures by two different methods. Self-seeded crystals were obtained by spontaneous nucleation on the crucible walls, while seeded growth was performed on singular and vicinal (0001) surfaces of silicon carbide (SiC) seeds. During self-seeded growth experiments a variety of crucible materials, such as boron nitride, tungsten, tantalum, rhenium, tantalum nitride, and tantalum carbide, were evaluated. These studies showed that the morphology of crystals grown by spontaneous nucleation strongly depends on the growth temperature and contamination in the reactor. Crucible selection had a profound effect on contamination in the crystal growth environment, influencing nucleation, coalescence, and crystal morphology. In terms of high-temperature stability and compatibility with the growth process, the best results for AlN crystal growth were obtained in crucibles made of sintered tantalum carbide or tantalum nitride. In addition, contamination from the commercially purchased AlN powder source was reduced by presintering the powder prior to growth, which resulted in a drastic reduction of nearly all impurities. Spontaneously grown single crystals up to 15 mm in size were characterized by x-ray diffraction, x-ray topography, glow discharge mass spectrometry, and secondary ion mass spectrometry. Average dislocation densities were on the order of 103 cm -3, with extended areas virtually free of dislocations. High resolution rocking curves routinely showed peak widths as narrow as 7 arcsec, indicating a high degree of crystalline perfection. Low-temperature partially polarized optical reflectance measurements were used to calculate the crystal-field splitting parameter of AlN, Deltacr = -230 meV, and a low-temperature (1

  15. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride

    SciTech Connect

    David A. Parks; Bernhard R. Tittmann

    2014-07-01

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5 pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.

  16. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness, and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  17. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet's angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  18. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2010-01-01

    In 2009, U.S. production of crude garnet concentrate for industrial use was estimated to be 56.5 kt (62,300 st), valued at about $8.85 million. This was a 10-percent decrease in quantity compared with 2008 production. Refined garnet material sold or used was 28 kt (31,000 st) valued at $7.96 million.

  19. Heat capacity of yttrium aluminum garnet, Y{sub 3}Al{sub 5}O{sub 12}, in the range 350-610 K

    SciTech Connect

    Pashinkin, A.S.; Malkova, A.S.; Ivanov, I.A.

    1995-12-01

    Yttrium aluminum garnet (YAG), Y{sub 3}Al{sub 5}O{sub 12}, doped most often with neodymium (Nd{sup 3+}), is widely used as a gain medium in lasers. In thermodynamic and physical calculations aimed at optimizing conditions for the preparation of YAG, data on its thermodynamic properties, including heat capacity C{sub p}, are of key importance. In earlier studies, C{sub p} of undoped YAG in the range 4.25-300.8 K was measured and its standard entropy calculated. At higher temperatures (223 - 673), heat capacity measurements with an IT-S-400 calorimeter yielded values about 4% greater than an adiabatic calorimeter. This systematic error was taken into account in further calculations so as to match the C{sub p} data in the range 298-673 K with low-temperature measurements. These results should, however, be considered preliminary. Further measurements and more thorough data treatment revealed a pronounced scatter in C{sub p} data in the range 448 - 673 K. Therefore, we undertook repeat measurements of the isobaric heat capacity of YAG with a DSM-2M differential scanning calorimeter.

  20. Adhesives bonded to erbium:yttrium-aluminum-garnet laser-irradiated dentin: transmission electron microscopy, scanning electron microscopy and tensile bond strength analyses.

    PubMed

    Ramos, Andreia Cristina Bastos; Esteves-Oliveira, Marcella; Arana-Chavez, Victor E; de Paula Eduardo, Carlos

    2010-03-01

    The aim of this in vitro study was to investigate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiation on dentinal collagen by transmission electron microscopy and to analyze the resin-dentin interface by scanning electron microscopy. A tensile bond strength test was also applied. Specimens from 69 sound human third molars were randomly divided into three groups: control (no laser), and two irradiated groups, laser 250 (250 mJ/2 Hz) and laser 400 (400 mJ/4 Hz). Then, specimens were restored with two adhesive systems, an etch-and-rinse or a self-etch system. Although ultrastructural examination showed a modified surface in the irradiated dentin, there was no statistical difference in bond strength values between the laser groups and controls (P < 0.05). In conclusion, the use of Er:YAG laser for ablating human dentin did not alter the main adhesion parameters when compared with those obtained by conventional methods, thus reinforcing its use in restorative dentistry.

  1. Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2015-04-01

    The purpose of the study was to review the existing literature on holmium:yttrium-aluminum-garnet laser lithotripsy regarding lithotripter settings and laser fibers. An online search of current and past peer-reviewed literature on holmium laser lithotripsy was performed on several databases, including PubMed, SciElo, and Google Scholar. Relevant studies and original articles about lithotripter settings and laser fibers were examined, and the most important information is summarized and presented here. We examine how the choice of lithotripter settings and laser fibers influences the performance of holmium laser lithotripsy. Traditional laser lithotripter settings are analyzed, including pulse energy, pulse frequency, and power levels, as well as newly developed long-pulse modes. The impact of these settings on ablation volume, fragment size, and retropulsion is also examined. Advantages of small- and large-diameter laser fibers are discussed, and controversies are highlighted. Additionally, the influence of the laser fiber is examined, specifically the fiber tip preparation and the lithotripter settings' influence on tip degradation. Many technical factors influence the performance of holmium laser lithotripsy. Knowing and understanding these controllable parameters allows the urologist to perform a laser lithotripsy procedure safely, efficiently, and with few complications.

  2. Photorejuvenation using long-pulsed alexandrite and long-pulsed neodymium:yttrium-aluminum-garnet lasers: a pilot study of clinical outcome and patients' satisfaction in Koreans.

    PubMed

    Lee, Young Bok; Shin, Ji Yeon; Cheon, Min Suk; Oh, Shin Taek; Cho, Baik Kee; Park, Hyun Jeong

    2012-05-01

    Long-pulsed 755-nm alexandrite and long-pulsed 1064-nm neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers have been used for photorejuvenation of the face. The aim of this study was to investigate the safety and efficacy of long-pulsed alexandrite and long-pulsed Nd:YAG lasers for photorejuvenation in Korea. One hundred and sixteen Korean patients with photo-aged facial skin were enrolled. Sixty-two patients with facial pigmentation underwent long-pulsed alexandrite laser treatment. Eleven patients that wanted to improve facial pigmentation with minimal pain had quasi-long-pulsed alexandrite laser treatment. Forty three patients had long-pulsed Nd:YAG laser therapy. Outcome assessments included standard photographs and global evaluation by blinded investigators. The self-assessment grade was provided in questionnaires. Forty-four percent of patients reported excellent or good improvement of their pigmentary lesions (>50% improvement) using a long-pulsed alexandrite laser. Of patients who underwent long-pulsed Nd:YAG laser treatment, 36% reported excellent or good improvement in skin tightening, 50% in facial flushing and 45% in pigmentary lesions. We conclude that long-pulsed alexandrite and long-pulsed Nd:YAG lasers are safe and effective for facial photorejuvenation in Koreans.

  3. Treatment of Postinflammatory Pigmentation Due to Acne with Q-Switched Neodymium-Doped Yttrium Aluminum Garnet In 78 Indian Cases

    PubMed Central

    Zawar, Vijay P.; Agarwal, Madhuri; Vasudevan, Biju

    2015-01-01

    Background: Postinflammatory hyperpigmentation (PIH) is a common sequela seen in the Indian population following affliction by acne. It is psychologically extremely disturbing for the patients and can severely affect the quality of life. Very few therapeutic modalities have proved to be really efficacious in this condition. Aims: The aim was to review our experience with 1,064-nm Q-switched neodymium-doped yttrium aluminum garnet (QSNY) laser in the treatment of PIH. Materials and Methods: Seventy-eight patients with postacne hyperpigmentation were included in the study. They were treated with six sessions at two weekly intervals using a 1,064-nm QSNY laser. Patient and physician scores were assessed at 1 month and 3 months after the last treatment. Clinical photographs also were reviewed to determine the efficacy. Adverse effects were noted. Results: Seventy percent of the patients reported significant improvement in hyperpigmentation as compared to the baseline. The majority of the adverse events were limited to mild, brief erythema. Conclusion: The 1,064-nm QSNY laser is an effective modality for the treatment of PIH caused by acne. PMID:26865787

  4. Effects of long-pulsed 1,064-nm neodymium-doped yttrium aluminum garnet laser on dermal collagen remodeling in hairless mice.

    PubMed

    Lee, Young Bok; Kang, Na Hyeon; Eun, Young Sun; Cheon, Min Seok; Kim, Kyung Moon; Cho, Baik Kee; Park, Hyun Jeong

    2012-07-01

    Nonablative lasers are used for dermal collagen remodeling. Although clinical improvements have been reported using various laser devices, the mechanism of dermal collagen remodeling remains unknown. To investigate the effects of energy fluences of the long-pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) nonablative laser on dermal collagen remodeling and evaluate the dermal collagen remodeling mechanism. Hairless mice were pretreated with ultraviolet B irradiation to produce photo-damage. The laser treatment used a long-pulse 1,064-nm Nd:YAG laser at energy fluences of 20, 40, and 60 J/cm(2) . The amount of dermal collagen and expressions of transforming growth factor beta (TGF-β), matrix metalloproteinase-1 (MMP-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1) of laser treated skin were compared with those of nontreated control skin. The long-pulse Nd:YAG laser treatment increased dermal collagen and significantly increased TGF-β expression. The expression of MMP-1 decreased with low energy fluence. The expression of TIMP-1 was not significantly different. Long-pulsed 1,064-nm Nd:YAG laser increases the dermal collagen in association with the increased expression of TGF-β. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  5. Ablative fractional erbium-doped yttrium aluminum garnet laser with coagulation mode for the treatment of atrophic acne scars in Asian skin.

    PubMed

    Hu, Sindy; Hsiao, Wen-Chin; Chen, Min-Chi; Huang, Yau-Li; Chang, Shyue-Luen; Shih, Po-Yu; Gold, Michael H

    2011-07-01

    The introduction of fractional photothermolysis (FP) for the treatment of atrophic acne scars has been proven to provide satisfactory results. For severe atrophic acne scarring, nonablative FP achieves fair improvement and takes multiple treatment sessions. Ablative fractional resurfacing provides an alternative modality with greater satisfaction. To evaluate the effectiveness and safety of the ablative fractional 2,940-nm erbium-doped yttrium aluminum garnet (Er:YAG) laser with coagulation mode for the treatment of atrophic facial acne scars in Asian skin. Thirty-four patients aged 19 to 44 (mean 34.2) with Fitzpatrick skin types III and IV, received one ablative fractional 2,940-nm Er:YAG laser treatment with an adjustable coagulation mode and were followed for 3 months. Physician evaluation and patient satisfaction were graded on a 4-point scale. Side effects were recorded at each follow-up visit. Almost three-quarters of the patients rated their satisfaction as good to excellent (score of 3 or 4). All patients experienced short downtime, and the incidence of postinflammatory hyperpigmentation was low (3.0%). The ablative fractional Er:YAG laser with coagulation mode is recommended for the treatment of moderate to severe atrophic acne scars, with acceptable downtime and high satisfaction in Asian patients. © 2011 by the American Society for Dermatologic Surgery, Inc.

  6. Treatment of café-au-lait macules with a high-fluenced 1064-nm Q-switched neodymium:yttrium aluminum garnet laser.

    PubMed

    Kim, Jiehoon; Hur, Hoon; Kim, Yu Ri; Cho, Sung Bin

    2017-07-06

    Café-au-lait macules (CALMs) are light to dark brown macules or patches of increased melanin concentration found along the dermoepidermal junction. Although many attempts to treat CALMs using various kinds of laser/light-based devices have been reported, CALMs remain refractory thereto with high recurrence rates. In this case series, we describe four patients with idiopathic CALMs that were effectively and safely treated with a non-ablative, high-fluenced, Q-switched (QS), 1064-nm neodymium:yttrium aluminum garnet (Nd:YAG) laser. The typical laser parameters for treating CALMs, including a spot size of 7-7.5 mm, a fluence of 2.4-2.5 J/cm(2), and one to two passes until the appearance of mild erythema, but not petechiae, were utilized in this study over 12-24 treatment sessions at 2-week intervals. We suggest that high-fluenced QS 1064-nm Nd:YAG laser treatment can be used as an effective and alternative treatment modality for CALMs with minimal risk of side effects.

  7. A study of latent hardening behavior in aluminum single crystals

    SciTech Connect

    Wang Mingzhang; Lin Shi; Li Chenghua; Xiao Jimei; Wang Zhongguang

    1996-11-15

    In order to obtain a better understanding or a complete description of plastic properties of polycrystals, especially in polycrystal modelling viewpoint, investigations on latent hardening behavior of single crystals have been performed in a great number. Recently, however, Wu et al. have pointed out that the definition of the yield stress of latent system using the conventional back extrapolation is ambiguous in terms of determining the latent hardening moduli because the initial rapid work-hardening of the transient zone is neglected. They proposed a more precise measure of the yield stress of latent system based on the decrease of the tangent modulus from the linear elastic modulus, and showed that the latent hardening, which would not plus the initial work-hardening of the transient zone, is actually lower than that obtained from the backward extrapolation. Thus, in their opinion, it is considered that the hardening behavior of latent system (such as the directionality, the effects of relative orientation and prestrain) need be newly or further studied in detail. Single crystals of aluminum have been grown with high purity to investigate this behavior.

  8. Wavelength dependence of Verdet constant of Pr doped terbium gallium garnet crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Lei; Wang, Xiangyong; Hang, Yin

    2016-12-01

    Samples of the magneto-active material - Pr3+: Tb3Ga5O12 crystals with Pr3+ ion concentration of 1%, 2%, 3% and 5%. The Verdet constant measurement has been carried out at room temperature in the 400-1500 nm range for all crystal samples and was compared with a pure Tb3Ga5O12 material. A high value of the Verdet constant for 5% Pr3+: Tb3Ga5O12 crystal was obtained at room temperature - namely, 324.5, 200.1 and 68.7 rad/(T·m) for 532, 632.8 and 1064 nm, respectively. The Verdet constant of Pr doped TGG crystal at 1064 nm is much more higher than that of TGG. The superior performance of the materials indicates that Pr3+: Tb3Ga5O12 crystals have great potential to meet the increasing demand for magneto-optical devices in the VIS-NIR wavelength.

  9. Scanning electron microscope study of polytetrafluoroethylene sliding on aluminum single crystals

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1973-01-01

    Friction experiments were conducted in air with polytetrafluoroethylene (PTFE) sliding on aluminum single crystals. Mechanical scoring of the crystals with (110) and (100) orientations was observed with a single pass of the PTFE slider. No scoring was observed on the (111). The degree of scoring of the crystals is related to the hardness, with the hardest surface (111) showing no damage and the softest surface (110) showing the most severe scoring. Scoring is caused by work-hardened pieces of aluminum which, as a consequence of the adhesion between PTFE and aluminum, were pulled out of the bulk and became embedded in the PTFE polymer.

  10. Influence of magnetic anisotropy on dynamic magnonic crystals created by surface acoustic waves in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved, A. V.

    2017-03-01

    Experimental results on the investigation of the influence of magnetic crystallographic anisotropy onto parameters of dynamic magnonic crystals arising at surface acoustic wave (SAW) propagation in yttrium iron garnet (YIG) films are presented. The main features of such an influence, as we have shown, are: 1) appearance of extra magnonic band gaps together with the normal magnonic band gap existing without anisotropy, 2) the absence of reflections of the incident surface magnetostatic wave at the frequency of these extra gaps, 3) the same depth for the extra gaps was achieved with a relatively small SAW power, almost by the order of magnitude less than in the case of normal magnonic gaps caused by SAW. A possible explanation of the features is given on the base of inelastic scattering of surface magnetostatic waves by SAW with the transformation of the reflected surface wave to the anisotropic direct volume magnetostatic wave existence of which is due to cubic crystallographic anisotropy in YIG. These results may be useful in designing new devices of information processing.

  11. Magneto-optical properties of magnetic photonic crystal fiber of terbium gallium garnet filled with magnetic fluid

    NASA Astrophysics Data System (ADS)

    Otmani, Hamza; Bouchemat, Mohamed; Bouchemat, Touraya; Lahoubi, Mahieddine; Pu, Shengli; Deghdak, Rachid

    2016-11-01

    We present in this work, magneto-optical (MO) properties of a magnetophotonic crystal fiber (MPCF) based on terbium gallium garnet Tb3Ga5O12 or TGG. The air holes of a periodic triangular lattice are filled with magnetic fluid (MF). With a light which can be confined in the core area of this MF filled MPCF we obtain a confinement corresponding to the propagation of the single mode by assuming an effective index (neff). The variations of neff as a function of the gyrotropy parameter (g) and magnetic nanoparticle volume fraction concentrations are well established at the telecommunication wavelength λ = 1.55 μm. The TE-TM mode conversion based on the Faraday rotation and modal birefringence are then numerically simulated. Faraday rotation exhibits largest value of 8700.08°/cm at MF concentration of 0.25% and g = 0.0144, whereas the modal birefringence is reduced to 0.00177 at the same conditions. These results could be helpful for experimentally designing and realizing isolators with these filled MF-MPCFs based on this TGG material. They appear to possess significant potential for the practical applications due to their unique MO properties.

  12. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, US production of crude garnet concentrate for industrial use was 28.4 kt valued at $3.05 million. Refined garnet material sold or used was 30.4 kt valued at $10 million. For the year, the US was one of the world's leading consumers of industrial garnet. Domestic values for crude concentrates for different applications ranged from about $53 to $120/t. In the short term, excess production capacity, combined with suppliers that vary in quality, grain size and mineral type, will keep prices down.

  13. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    The state of the global industrial garnet industry in 1999 is discussed. Industrial garnet mined in the U.S., which accounts for approximately one-third of the world's total, is usually a solid-solution of almandine and pyrope. The U.S. is the largest consumer of industrial garnet, using an estimated 47,800 st in 1999 as an abrasive and as a filtration medium in the petroleum industry, filtration plants, aircraft and motor vehicle manufacture, shipbuilding, wood furniture finishing operations, electronic component manufacture, ceramics manufacture, and glass production. Prices for crude concentrates ranged from approximately $50 to $110/st and refined garnet from $50 to $215/st in 1999, depending on type, source, quantity purchased, quality, and application.

  14. Metal thickness dependence on spin wave propagation in magnonic crystal using yttrium iron garnet

    SciTech Connect

    Kanazawa, Naoki; Goto, Taichi Hoong, Jet Wei; Buyandalai, Altansargai; Takagi, Hiroyuki; Inoue, Mitsuteru

    2015-05-07

    Magnonic crystals (MCs) are key components for spin wave manipulation. MCs realized with periodically metallized surfaces have an advantage in ease of the fabrication, but the effect of the metal thickness has not been studied well. In this work, the metal thickness dependence on the transmission spectra of localized mode spin waves was investigated. The metal thickness over half of the skin depth was necessary to prevent strong attenuation of spin waves.

  15. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  16. Efficacy of the Q-switched Neodymium: Yttrium Aluminum Garnet Laser in the Treatment of Blue-black Amateur and Professional Tattoos

    PubMed Central

    Lakshmi, Chembolli; Krishnaswamy, Gayathri

    2015-01-01

    Background: Q-switched neodymium: yttrium aluminum garnet (Nd: YAG) laser at a wavelength of 1064 nm primarily targets dermal melanin and black tattoo ink. Recent studies have shown that this laser is effective in treating black tattoos. There are few studies conducted in India for the same. Aim: The aim was to assess the effectiveness of Q-switched Nd: YAG laser (QSNYL) in the treatment of blue-black tattoos following 3 treatment sessions. Materials and Methods: This study, a prospective interventional study included a total of 12 blue-black tattoos. Following informed consent for the procedure, as well as for photographs, a questionnaire was administered, and improvement perceived by the patient was recorded. In addition, global assessment score (GAS) by a blinded physician was also recorded. Photographs were taken at baseline and at every follow-up. Each patient underwent three treatment sessions with 1064 nm QSNYL at 4–6 weekly intervals. Fluences ranged from 1.8 to 9 J/cm2. The follow-up was done monthly for 4 months from the first treatment session. The response was assessed by patient assessment (PA) and GAS by comparing photographs. Results: After three treatment sessions, although no patient achieved clearance, most patients showed good response with few adverse effects. An average of 64.1% (GAS) and 54.2% (PA) improvement was observed in 12 tattoos. Tattoos more than 10-year-old showed quicker clearing than those less than 10-year-old. Amateur tattoos also showed a better response in comparison to professional tattoos. Conclusion: Totally, 1064 nm QSNYL is safe and effective for lightening blue-black tattoos in pigmented Indian skin. All patients achieved near complete clearance following the continuation of treatment (an average of six sessions) although this was spaced at longer intervals. PMID:26677271

  17. Efficacy of the Q-switched Neodymium: Yttrium Aluminum Garnet Laser in the Treatment of Blue-black Amateur and Professional Tattoos.

    PubMed

    Lakshmi, Chembolli; Krishnaswamy, Gayathri

    2015-01-01

    Q-switched neodymium: yttrium aluminum garnet (Nd: YAG) laser at a wavelength of 1064 nm primarily targets dermal melanin and black tattoo ink. Recent studies have shown that this laser is effective in treating black tattoos. There are few studies conducted in India for the same. The aim was to assess the effectiveness of Q-switched Nd: YAG laser (QSNYL) in the treatment of blue-black tattoos following 3 treatment sessions. This study, a prospective interventional study included a total of 12 blue-black tattoos. Following informed consent for the procedure, as well as for photographs, a questionnaire was administered, and improvement perceived by the patient was recorded. In addition, global assessment score (GAS) by a blinded physician was also recorded. Photographs were taken at baseline and at every follow-up. Each patient underwent three treatment sessions with 1064 nm QSNYL at 4-6 weekly intervals. Fluences ranged from 1.8 to 9 J/cm(2). The follow-up was done monthly for 4 months from the first treatment session. The response was assessed by patient assessment (PA) and GAS by comparing photographs. After three treatment sessions, although no patient achieved clearance, most patients showed good response with few adverse effects. An average of 64.1% (GAS) and 54.2% (PA) improvement was observed in 12 tattoos. Tattoos more than 10-year-old showed quicker clearing than those less than 10-year-old. Amateur tattoos also showed a better response in comparison to professional tattoos. Totally, 1064 nm QSNYL is safe and effective for lightening blue-black tattoos in pigmented Indian skin. All patients achieved near complete clearance following the continuation of treatment (an average of six sessions) although this was spaced at longer intervals.

  18. Skin healing and collagen changes of rats after fractional erbium:yttrium aluminum garnet laser: observation by reflectance confocal microscopy with confirmed histological evidence.

    PubMed

    Yang, Jing; Wang, Sha; Dong, Liyun; An, Xiangjie; Li, Yan; Li, Jun; Tu, Yating; Tao, Juan

    2016-08-01

    The fractional erbium:yttrium aluminum garnet (Er:YAG) laser is widely applied. Microstructural changes after laser treatment have been observed with histopathology. Epidermal and dermal microstructures have also been analyzed using reflectance confocal microscopy (RCM). However, no studies have compared these two types of microstructural changes in the same subject at multiple time points after irradiation, and it is unclear if these two types of changes are consistent. We use RCM to observe the effect of different laser energies on skin healing and collagen changes in the skin of Sprague-Dawley rats that had been irradiated by fractional Er:YAG lasering at different energies. RCM was used to observe skin healing and detect collagen changes at different time points. Collagen changes were observed using hematoxylin and eosin (H&E) staining and quantitatively analyzed by western blot. RCM showed that, irrespective of laser energy, microscopic treatment zones (MTZs) were larger at 1 day after irradiation. The MTZs then reduced in size from 3 to 7 days after irradiation. The higher the energy, the larger the MTZ area. The amount of collagen also increased with time from 1 day to 8 weeks. However, the increase in the collagen amount on both RCM and H&E staining was not influenced by the laser energy. Western blotting confirmed that the amount of type I and type III collagens increased over time, but there were no significant differences between the different energy groups (p > 0.05). In conclusion, RCM is a reliable technique for observing and evaluating skin healing and collagen expression after laser irradiation.

  19. The removal of cutaneous pigmented lesions with the Q-switched ruby laser and the Q-switched neodymium: yttrium-aluminum-garnet laser. A comparative study.

    PubMed

    Tse, Y; Levine, V J; McClain, S A; Ashinoff, R

    1994-12-01

    The Q-switched ruby laser (QSRL) (694 nm) has been used successfully in the removal of tattoos and a variety of cutaneous pigmented lesions. The frequency-doubled Q-switched neodymium:yttrium-aluminum-garnet laser (QSNd:YAG) (1064 and 532 nm) has also been shown to be effective in the treatment of tattoos, however, little has been published regarding the QSNd:YAG laser in the removal of cutaneous pigmented lesions. The purpose of this study is to compare the efficacy and side effect profile of the QSRL and the frequency-doubled QSNd:YAG lasers in the removal of cutaneous pigmented lesions, including lentigines, café-au-lait macules, nevus of Ota, nevus spilus, Becker's nevus, postinflammatory hyperpigmentation, and melasma. Twenty patients with pigmented lesions were treated with the QSRL and the frequency-doubled QSNd:YAG lasers. Clinical lightening of the lesion was assessed 1 month after a single treatment. Side effects and patient satisfaction were also evaluated. A minimum of 30% lightening was achieved in all patients after only one treatment with either the QSRL or the frequency-doubled QSNd:YAG laser. The QSRL seems to provide a slightly better treatment response than the QSNd:YAG laser. Neither laser caused scarring or textural change of the skin. Most patients found the QSRL to be more painful during treatment, but the QSNd:YAG laser caused more postoperative discomfort. Both the QSRL and the frequency-doubled QSND:YAG laser are safe and effective methods of treatment of epidermal and dermal pigmented lesions.

  20. Analysis of early morbidity and functional outcome of thulium: yttrium-aluminum-garnet laser enucleation for benign prostate enlargement: patient age and prostate size determine adverse surgical outcome.

    PubMed

    Rausch, Steffen; Heider, Thomas; Bedke, Jens; Kruck, Stephan; Schwentner, Christian; Fischer, Karsten; Stenzl, Arnulf; Kälble, Tilman

    2015-01-01

    To evaluate complications and functional outcome and to identify patient-associated risk factors, we analyzed consecutive patients undergoing thulium:yttrium-aluminum-garnet laser enucleation of the prostate (ThuLEP) in our department. A total of 234 patients were prospectively analyzed. Preoperative data, postoperative complications, and outcome at 6, 12, and 24 months were recorded. Individual risk factors for complications and treatment failure were assessed by univariate and multivariate analyses. Mean age at surgery was 72.88 ± 7.83 years. Mean preoperative prostate size was 84.8 ± 34.9 mL. Thirty-day complication rate was 19.7%. Functional treatment failure occurred in 9.0% of all patients. Decline of mean International Prostate Symptom Score was -75%, quality of life index -76%, and postvoid residual -86% at 24 months. Maximum urine flow at 24 months was improved at +231%. In univariate analysis, age >80 years and prostate size <50 mL were significant predictors of complications, which was confirmed by multivariate analysis (P = .0277 and .0409, respectively). Age >80 years, prostate size <80 mL or <50 mL, and American Society of Anesthesiologists classification were significant predictors of functional treatment failure in univariate analysis. Prostate size <80 mL or <50 mL was significantly associated with treatment failure (P < .001) in multivariate analysis. ThuLEP is a safe and efficient surgical procedure, even in a patient cohort with high prostate volumes, age, and comorbidities. However, high patient age and small prostate size were significant determinants of adverse outcomes after surgery. To address the question of optimal therapy selection for patients with prostates smaller than 80 mL, further prospective randomized evaluation of ThuLEP and alternative surgical interventions is needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A comparative study of pressure-dependent emission characteristics in different gas plasmas induced by nanosecond and picosecond neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers.

    PubMed

    Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Marpaung, Alion Mangasi; Pardede, Marincan; Jobiliong, Eric; Hedwig, Rinda; Suliyanti, Maria Margaretha; Ramli, Muliadi; Suyanto, Heri; Kagawa, Kiichiro; Tjia, May On; Lie, Zener Sukra; Lie, Tjung Jie; Kurniawan, Hendrik Koo

    2013-11-01

    An experimental study has been performed on the pressure-dependent plasma emission intensities in Ar, He, and N2 surrounding gases with the plasma induced by either nanosecond (ns) or picosecond (ps) yttrium aluminum garnet laser. The study focused on emission lines of light elements such as H, C, O, and a moderately heavy element of Ca from an agate target. The result shows widely different pressure effects among the different emission lines, which further vary with the surrounding gases used and also with the different ablation laser employed. It was found that most of the maximum emission intensities can be achieved in Ar gas plasma generated by ps laser at low gas pressure of around 5 Torr. This experimental condition is particularly useful for spectrochemical analysis of light elements such as H, C, and O, which are known to suffer from intensity diminution at higher gas pressures. Further measurements of the spatial distribution and time profiles of the emission intensities of H I 656.2 nm and Ca II 396.8 nm reveal the similar role of shock wave excitation for the emission in both ns and ps laser-induced plasmas, while an additional early spike is observed in the plasma generated by the ps laser. The suggested preference of Ar surrounding gas and ps laser was further demonstrated by outperforming the ns laser in their applications to depth profiling of the H emission intensity and offering the prospect for the development of three-dimensional analysis of a light element such as H and C.

  2. Evaluation of effectiveness of erbium:yttrium-aluminum-garnet laser on atrophic facial acne scars with 22-MHz digital ultrasonography in a Turkish population.

    PubMed

    Engın, Burhan; Kutlubay, Zekayi; Karakuş, Özge; Yardimci, Gürkan; Doğan, Zafer; Tüzün, Yalçın; Serdaroğlu, Server

    2012-12-01

    Scar formation due to acne is a common problem among the young population and significantly affects their quality of life. The aim of this study was to evaluate the efficacy of erbium:yttrium-aluminum-garnet (Er:YAG) laser resurfacing for acne scars and to objectively demonstrate the altering of collagen density in the dermis by 22-MHz digital ultrasonography. Twenty-one patients, aged 19-55 years, with facial acne scars were treated with Er:YAG laser. The results of the laser resurfacing were evaluated for the degree of clinical improvement, alteration of the collagen density by 22-MHz digital ultrasonography and any adverse effects at 3 months. At 3 months after the treatment, good (in 12 patients) and near total (in four patients) clinical improvement was noted in most of the patients compared to baseline. Overall treatment results were 76% (both near total and good) in 16 patients. By ultrasonographic evaluation, the average density of dermal collagen (total density/number of patients) of 21 patients was 32.714 (right cheek) and 32.142 (left cheek) before laser facial resurfacing. At the third month after treatment, the average density of dermal collagen of 21 patients was 36.380 (right cheek) and 38.809 (left cheek). In conclusion, Er:YAG laser skin resurfacing was found to be a safe and effective treatment modality for treatment of atrophic facial acne scars. As public demand grows for less invasive modalities to approach clinical diagnosis and evaluation, digital ultrasonography seems to provide an easy and confidential method for collagen density evaluation.

  3. A Retrospective Study on the Characteristics of Treating Nevus of Ota by 1064-nm Q-switched Neodymium-doped Yttrium Aluminum Garnet Laser

    PubMed Central

    Liu, Yanting; Zeng, Weihui; Geng, Songmei

    2016-01-01

    Background: The Q-switched neodymium-doped yttrium aluminum garnet (QS Nd:YAG) laser has a significant effect in treating nevus of Ota, but there is lack of a retrospective study about the characteristics of efficacy. Aims and Objectives: To retrospectively analyze the correlation between the clinical characteristics and efficacy, complications, recurrence of QS Nd:YAG laser in treating nevus of Ota. Materials and Methods: One hundred and seventy-one Chinese patients (144 female, 27 male) of nevus of Ota were treated with the 1064-nm QS Nd:YAG laser. All cases were treated with fluencies of 4–8 J/cm2 and a spot size of 2–4 mm. Clinical photographs were taken before every treatment and patients were followed up by their clinicians. Results: One hundred and forty-five patients (84.8%) acquired more than 75% improvement with an average of 4.6 sessions. The treatment effect has no significant correlation with sex (P > 0.05). The blue-black and brown lesions improved more than the light-brown (P < 0.05). Hyperpigmentation affected two (1.2%) of the patients and hypopigmentation affected one patient (0.6%). No other adverse effect was observed. Recurrence was seen in two patients (1.2%). Conclusion: The 1064-nm QS Nd:YAG laser is effective with rare complications and recurrence in the treatment of nevus of Ota. The efficacy correlated with lesion color, which is meaningful to estimate the prognosis. PMID:27293272

  4. Experimental study on thermic effects, morphology and function of guinea pig cochlea: a comparison between the erbium:yttrium-aluminum-garnet laser and carbon dioxide laser.

    PubMed

    Ren, Dong-Dong; Chi, Fang-Lu

    2008-08-01

    Surgery of the inner ear requires atraumatic techniques to preserve the morphology of the inner ear. Recent experiment and clinical studies have demonstrated that several laser systems are suitable for cochleostomy. The goal of this study was to quantify the thermic effects, morphology and function of guinea pig cochlea in vivo by comparing the erbium:yttrium-aluminum-garnet (Er:YAG) laser and carbon dioxide (CO(2)) laser and to determine the optimum laser parameters for safe clinical treatment. A fenestration in the basal cochlear turn of guinea pigs was created. A type K thermocouple was placed on the membrane of round window to detect the local temperature change during laser irradiation. The auditory evoked brainstem response (ABR) was measured before and after laser application. Confocal laser microscopy and scanning electron microscopy (SEM) was used for cochlear morphology. An increased hearing loss immediately and 4 weeks later after irradiation was observed in animals with the higher power CO(2) laser in accordance with a higher temperature increase during laser application. In contrast, a wider safety scope of Er:YAG application in cochleostomy was presented with little temperature increase. These findings were correlated with the ultrastructural changes in guinea pig cochlea. The Er:YAG and CO(2) lasers are shown to be safe if the total amount of energy is kept within the limits applied in this study. In addition, on this preliminary basis by guinea pig laser cochleostomy, Er:YAG laser maybe less damaging to inner ear structures than CO(2) laser with a larger safety scope and less thermic effects. (c) 2008 Wiley-Liss, Inc.

  5. Effect of subdermal 1,444-nm pulsed neodymium-doped yttrium aluminum garnet laser on the nasolabial folds and cheek laxity.

    PubMed

    Lee, Soo Hyun; Roh, Mi Ryung; Jung, Jin Young; Jee, Hyunjoong; Nam, Kyoung Ae; Chung, Kee Yang

    2013-07-01

    Wrinkle formation usually accompanies skin aging. In particular, accentuated nasolabial folds and loss of elasticity are early signs of skin aging. The use of 1,444-nm pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers has increased in popularity. To evaluate the safety and efficacy of a novel 1,444-nm pulsed Nd:YAG laser in the treatment of NLF and cheek laxity using subdermal laser therapy. Ten Korean patients with moderate to severe NLF were enrolled. Each received a single treatment session with a 1,444-nm Nd:YAG laser. Two blinded physicians evaluated clinical improvement by rating comparative photographs on a 5-point scale. Efficacy was also assessed by measuring elasticity and roughness. Skin biopsies were performed on five volunteers before treatment and 3 months after treatment. The 1,444-nm Nd:YAG laser effectively promoted clinical improvement of NLF and cheek laxity (p < .05). Significant differences in elasticity and roughness were observed (p < .05). Epidermal proliferation was stimulated as demonstrated by increases in epidermal thickness and Ki-67 expression (p < .05). Quantitative image analyses of pre- and post-treatment biopsies revealed that collagen fibers increased from baseline (p > .05). Transforming growth factor beta and heat shock protein-70 messenger RNA levels quantified using real-time reverse transcriptase polymerase chain reaction increased significantly from baseline (p < .05). The 1,444-nm Nd:YAG laser is an effective treatment modality with minimal complications for the treatment of NLF and cheek laxity, but further research with a larger group of patients is needed to confirm these findings. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  6. Stone Attenuation Values Measured by Average Hounsfield Units and Stone Volume as Predictors of Total Laser Energy Required During Ureteroscopic Lithotripsy Using Holmium:Yttrium-Aluminum-Garnet Lasers.

    PubMed

    Ofude, Mitsuo; Shima, Takashi; Yotsuyanagi, Satoshi; Ikeda, Daisuke

    2017-04-01

    To evaluate the predictors of the total laser energy (TLE) required during ureteroscopic lithotripsy (URS) using the holmium:yttrium-aluminum-garnet (Ho:YAG) laser for a single ureteral stone. We retrospectively analyzed the data of 93 URS procedures performed for a single ureteral stone in our institution from November 2011 to September 2015. We evaluated the association between TLE and preoperative clinical data, such as age, sex, body mass index, and noncontrast computed tomographic findings, including stone laterality, location, maximum diameter, volume, stone attenuation values measured using average Hounsfield units (HUs), and presence of secondary signs (severe hydronephrosis, tissue rim sign, and perinephric stranding). The mean maximum stone diameter, volume, and average HUs were 9.2 ± 3.8 mm, 283.2 ± 341.4 mm(3), and 863 ± 297, respectively. The mean TLE and operative time were 2.93 ± 3.27 kJ and 59.1 ± 28.1 minutes, respectively. Maximum stone diameter, volume, average HUs, severe hydronephrosis, and tissue rim sign were significantly correlated with TLE (Spearman's rho analysis). Stepwise multiple linear regression analysis defining stone volume, average HUs, severe hydronephrosis, and tissue rim sign as explanatory variables showed that stone volume and average HUs were significant predictors of TLE (standardized coefficients of 0.565 and 0.320, respectively; adjusted R(2) = 0.55, F = 54.7, P <.001). Stone attenuation values measured by average HUs and stone volume were strong predictors of TLE during URS using Ho:YAG laser procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Combined vitamin C sonophoresis and neodymium-doped yttrium aluminum garnet (NdYAG) laser for facial hyperpigmentation: An outcome observation study in Asian patients.

    PubMed

    Chen, Yu-Tsung; Chang, Chang-Cheng; Hsu, Cherng-Ru; Shen, Jen-Hsiang; Shih, Chao-Jen; Lin, Bor-Shyh

    2016-01-01

    The neodymium-doped yttrium aluminum garnet (NdYAG) laser therapy has been a popular technique for facial rejuvenation but certain adverse effects like post-inflammatory hyperpigmentation are issues of concern to Asian patients. To assess the outcome following combined treatment with vitamin C sonophoresis and NdYAG laser, in selected cases of facial hyperpigmentation. Twenty three women with dyschromia or melasma who had undergone five sessions of Q-switched NdYAG laser therapy followed by transdermal delivery of vitamin C via sonophoresis were selected after a retrospective review of case records. The objective and subjective clinical outcomes and the side effects, including erythema, scaling, pruritus, dryness and post-inflammatory hyperpigmentation were evaluated. In both objective or subjective outcomes, 91.3% (21/23) of the patients showed an excellent or better outcome, while 8.7% (2/23) showed no change. A majority of the patients (73.9%, 17/23) experienced no post-inflammatory hyperpigmentation or had slight post-inflammatory hyperpigmentation which quickly resolved within 1 week. Only one (4.3%) patient had extreme post-inflammatory hyperpigmentation which lasted for over a month. This was a retrospective study without a control group; a comparative study with a control group (patients treated with the laser alone, without vitamin C sonopheresis) is needed to determine the difference in the outcome. The use of vitamin C sonophoresis along with NdYAG laser may reduce the incidence of adverse effects in Asian patients. Patients experienced obvious improvement in hyperpigmentation and had lower chances of experiencing extreme or severe post-inflammatory hyperpigmentation.

  8. Beneficial Effect of Low Fluence 1,064 nm Q-Switched Neodymium:Yttrium-Aluminum-Garnet Laser in the Treatment of Senile Lentigo

    PubMed Central

    Nam, Jae-Hui; Kim, Han-Saem; Lee, Ga-Young

    2017-01-01

    Background Low fluence 1,064 nm Q-switched (QS) Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG) laser treatment, also known as laser toning, is widely used for pigmentary disorders. There has been no reliable evaluation of the effect of low fluence 1,064 nm QS Nd:YAG laser for senile lentigo. Objective To investigate the beneficial effect of low fluence 1,064 nm QS Nd:YAG laser in the treatment of senile lentigo on the face. Methods A retrospective review was conducted on patients treated only with repetitive low fluence 1,064 nm QS Nd:YAG laser. Among them, 12 patients with multiple senile lentigines before treatment were included. All side effects were recorded to assess the safety of the modality. Results Mean age was 56.1±7.8 years old and male-to-female ratio was 1:11. Mean treatment fluence was 1.62±0.16 J/cm2 and mean total treatment session was 8.8±2.6. Mean interval period between each session was 28.0±11.4 days and mean treatment session to reach marked and near total improvement was 8.7±2.8. At the final visit, seven of 12 (58.3%) patients reached marked and near total improvement, and three of 12 (25.0%) reached moderate improvement. No side effects occurred. Conclusion Repetitive low fluence 1,064 nm QS Nd:YAG laser treatment may be an effective and safe optional modality for senile lentigo. PMID:28761290

  9. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    PubMed Central

    Mishra, Mitul Kumar; Prakash, Shobha

    2013-01-01

    Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG) laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface, but removed more

  10. Cytotoxicity evaluation of dentin contacting materials with dentin barrier test device using erbium-doped yttrium, aluminum, and garnet laser-treated dentin.

    PubMed

    Ülker, H E; Ülker, M; Botsalı, M S; Dündar, A; Acar, H

    2014-09-01

    The effect of dentin contacting materials on three-dimensional cultures of pulp-derived cells was evaluated in a dentin barrier test device using erbium-doped yttrium, aluminum, and garnet (Er:YAG) laser-treated dentin. The test materials (iBond(®), G-Bond™, and Vitrebond™) were applied on laser-treated or untreated dentin discs. After 24 h of exposure with perfusion of the test chamber, cell survival was evaluated by enzyme activity and related to a nontoxic control material. The mean values of control tissues were set to represent 100% viability. Data were analyzed using Kruskal-Wallis and Mann-Whitney U test. Vitrebond was the most toxic material for both laser-treated and untreated dentin. On untreated dentin, G-bond was cytotoxic to the pulp-derived cells (p < 0.05), and iBond was similar to the negative control group (p > 0.05). However, G-Bond and iBond were not cytotoxic when they were applied to Er:YAG laser-treated dentin (p > 0.05). Er:YAG laser treatment of dentin may protect the pulp cells from toxic substances of dentin contacting restorative materials; however, this effect is material related. Taking into consideration the limitations of this in vitro study, the Er:YAG laser treatment of dentin before restoration might be an option for decreasing the cytotoxic effects of the dental materials. Further research is required for clinical applications. © The Author(s) 2014.

  11. Atomic structure of the {sigma}5 (210)/[001] symmetric tilt grain boundary in yttrium aluminum garnet

    SciTech Connect

    Campbell, G.H.; King, W.E.

    1996-06-24

    The {Sigma}5(210)/[100] symmetric tilt grain boundary in YAG was produced by UHV diffusion bonding precisely oriented single crystals. The boundary has been characterized by HREM along two different directions, parallel and perpendicular to the tilt axis. Models of the atomic structure of the boundary were formed following the Coincident Site Lattice scheme. The resulting models are equivalent to twins formed at the atomic scale. The high resolution images show no rigid crystal translations away from the perfect mirror reflection relation. Comparison of the simulated images using the atomic model as input with the experimental images identifies the plane of mirror symmetry. The atomic model is shown to be in good agreement with the experimental images when viewed parallel to tilt axis, but disagrees with the images perpendicular to tilt axis. Agreement between simulated and experimental images can be improved by changing the composition of the grain boundary with respect to the bulk. To reach a more certain conclusion on the structure of the grain boundary will require additional theoretical calculations.

  12. High temperature fracture toughness of single crystal yttrium-aluminium garnet

    SciTech Connect

    Blumenthal, W.R.; Taylor, S.T.

    1997-07-01

    Y{sub 3}Al{sub 5}O{sub 12} (YAG) is the most creep-resistant single crystal oxide known and is therefore an attractive candidate for very high temperature applications. The fracture toughness, K{sub 1c}, was measured as a function of temperature using the single edge precracked beam (SEPB) method and was compared to notched beam method results in the literature. The fracture toughness of annealed SEPB specimens was found to be independent of both temperature from 20 C to at least 1,700 C and loading rate over two orders of magnitude. Thus the brittle-to-ductile transition does not occur before 1,700 C. Previous reports of remarkable increases in the fracture toughness below 1,700 C using notched beam methods are considered erroneous due to microcrack healing and crack blunting effects. The SEPB fracture toughness method avoids these problems since a long, sharp crack exists in the specimen prior to testing and can be effectively preserved at high temperatures using a preloading procedure.

  13. Synthesis of garnet structure compounds using aqueous sol-gel processing

    NASA Astrophysics Data System (ADS)

    Leleckaite, A.; Kareiva, A.

    2004-07-01

    The sol-gel method based on metal chelates in aqueous solvents has been developed to prepare different oxides having garnet crystal structure. This synthetic approach has been used to prepare rare-earth doped yttrium aluminum garnet Y 3Al 5O 12:Ce, Y 3Al 5O 12:Nd, Y 3Al 5O 12:Ho, and Y 3Al 5O 12:Er samples (YAG:Ln). The polycrystalline powders sintered at 1000 °C are formed as single-phase garnet materials. The formation of pure and neodymium-doped lanthanum aluminum garnets (La 3Al 5O 12 (LAG), and La 3Al 5O 12:Nd (LAG:Nd)) at the same synthesis conditions, however, does not proceed. A systematic study of sol-gel technique synthesized Y 3Ga 5O 12 (YGG) is presented using six different complexing agents. These complexing agents were found to influence the characteristics of the end products, in particular the homogeneity. Finally, some specific features of sol-gel derived mixed-metal Y 3Sc xAl 5- x- yGa yO 12 (0⩽ x, y⩽5) (YSAGG) garnets are discussed in the present paper. The phase purity, composition and microstructural features in the polycrystalline samples were studied by XRD analysis, IR spectroscopy and scanning electron microscopy.

  14. The SHAND quaternary system for evaluating the supersilicic or subsilicic crystal-chemistry of eclogite minerals, and potential new UHPM pyroxene and garnet end-members

    NASA Astrophysics Data System (ADS)

    Smith, D. C.

    2006-09-01

    The stoichiometry of pyroxenes {viiiX2+ viY2+ ivZ4+ 2 O6} and garnets {xiiX2+ 3 viY3+ 2 ivZ4+ 3 O12} is re-evaluated by a theoretical crystal-chemical approach that takes into account natural phenomena that do not fit with conventional anhydrous stoichiometric mineralogy: the existence in eclogites of microinclusions of other minerals that may have been exsolved from previous supersilicic or subsilicic UHPM pyroxene or garnet. Different definitions of supersilicic and subsilicic are discussed and the one based on the ability to exsolve SiO2 and leave behind a stoichiometric pyroxene or garnet is recommended for general adoption. The SHAND system (S = Si et al.; H = H; A = Al et al.; N = Na et al.; D = divalents) for projecting multivariate chemical space involving 23 cations and 104 selected natural or potential mineral species on to two essential diagrams (SAND and SHND) is described in full for the first time. Numerous possible chemical exchanges are considered and justified with respect to known mineral phenomena such as cation vacancies, octahedral silicon or protonation. Several new potential end-members are presented, in particular “supersilipyx”, “supersiligar” and “subsiligar”. It is suggested that small quantities of these end-members can be incorporated into UHPM solid-solutions and lead to various exsolution phenomena during eclogite exhumation.

  15. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1983-12-01

    Ferrites Lithium Ferrite Magnetostatic Wave Garnets Epitaxy Yttrium Iron Garnet Liquid Phase Epitaxy Hexagonal Ferrite Microwave Signal Processing...epitaxial ferrit ( materials for use in microwave and millirreter-wave signal processing devices. The major emphasis has been on multiple layer...overall objective of this research is to develop epitaxial single crystal ferrite films suitable for microwave and millimeter-wave signal processing at

  16. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  17. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Garnet has been used as a gemstone since the Bronze Age. However, garnet’s angular fractures, relatively high hardness and specific gravity, chemical inertness and nontoxicity make it ideal for many industrial applications. It is also free of crystalline silica and can be recycled.

  18. Efficacy and Safety of 120-W Thulium:Yttrium-Aluminum-Garnet Vapoenucleation of Prostates Compared with Holmium Laser Enucleation of Prostates for Benign Prostatic Hyperplasia

    PubMed Central

    Hong, Kai; Liu, Yu-Qing; Lu, Jian; Xiao, Chun-Lei; Huang, Yi; Ma, Lu-Lin

    2015-01-01

    Background: This study compared the efficacy and safety between 120-W thulium:yttrium-aluminum-garnet (Tm:YAG) vapoenucleation of prostates (ThuVEP) and holmium laser enucleation of prostates (HoLEP) for patients with lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH). Methods: A retrospective analysis of 88 consecutive patients with symptomatic BPH was carried out, who underwent either 120-W ThuVEP or HoLEP nonrandomly. Patient demographics and peri-operative and 12-month follow-up data were analyzed with the International Prostate Symptom Score (IPSS), quality of life (QoL) score, maximum flow rate (Qmax), postvoid residual urine volume (PVR), and rates of peri-operative and late complications. Results: The patients in each group showed no significant difference in preoperative parameters. Compared with the HoLEP group, patients in the 120-W ThuVEP group required significantly shorter time for laser enucleation (58.3 ± 12.8 min vs. 70.5 ± 22.3 min, P = 0.003), and resulted in a significant superiority in laser efficiency (resected prostate weight/laser enucleation time) for 120-W Tm:YAG laser compared to holmium:YAG laser (0.69 ± 0.18 vs. 0.61 ± 0.19, P = 0.048). During 1, 6, and 12 months of follow-ups, the procedures did not demonstrate a significant difference in IPSS, QoL score, Qmax, or PVR (P > 0.05). Mean peri-operative decrease of hemoglobin in the HoLEP group was similar to the ThuVEP group (17.1 ± 12.0 g/L vs. 15.2 ± 10.1 g/L, P = 0.415). Early and late incidences of complications were low and did not differ significantly between the two groups of 120-W ThuVEP and HoLEP patients (P > 0.05). Conclusions: 120-W ThuVEP and HoLEP are potent, safe and efficient modalities of minimally invasive surgeries for patients with LUTS due to BPH. Compared with HoLEP, 120-W ThuVEP offers advantages of reduction of laser enucleation time and improvement of laser efficiency. PMID:25836607

  19. Efficacy and safety of 120-W thulium:yttrium-aluminum-garnet vapoenucleation of prostates compared with holmium laser enucleation of prostates for benign prostatic hyperplasia.

    PubMed

    Hong, Kai; Liu, Yu-Qing; Lu, Jian; Xiao, Chun-Lei; Huang, Yi; Ma, Lu-Lin

    2015-04-05

    This study compared the efficacy and safety between 120-W thulium:yttrium-aluminum-garnet (Tm:YAG) vapoenucleation of prostates (ThuVEP) and holmium laser enucleation of prostates (HoLEP) for patients with lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH). A retrospective analysis of 88 consecutive patients with symptomatic BPH was carried out, who underwent either 120-W ThuVEP or HoLEP nonrandomly. Patient demographics and peri-operative and 12-month follow-up data were analyzed with the International Prostate Symptom Score (IPSS), quality of life (QoL) score, maximum flow rate (Qmax), postvoid residual urine volume (PVR), and rates of peri-operative and late complications. The patients in each group showed no significant difference in preoperative parameters. Compared with the HoLEP group, patients in the 120-W ThuVEP group required significantly shorter time for laser enucleation (58.3 ± 12.8 min vs. 70.5 ± 22.3 min, P = 0.003), and resulted in a significant superiority in laser efficiency (resected prostate weight/laser enucleation time) for 120-W Tm:YAG laser compared to holmium:YAG laser (0.69 ± 0.18 vs. 0.61 ± 0.19, P = 0.048). During 1, 6, and 12 months of follow-ups, the procedures did not demonstrate a significant difference in IPSS, QoL score, Qmax, or PVR (P > 0.05). Mean peri-operative decrease of hemoglobin in the HoLEP group was similar to the ThuVEP group (17.1 ± 12.0 g/L vs. 15.2 ± 10.1 g/L, P = 0.415). Early and late incidences of complications were low and did not differ significantly between the two groups of 120-W ThuVEP and HoLEP patients (P > 0.05). 120-W ThuVEP and HoLEP are potent, safe and efficient modalities of minimally invasive surgeries for patients with LUTS due to BPH. Compared with HoLEP, 120-W ThuVEP offers advantages of reduction of laser enucleation time and improvement of laser efficiency.

  20. Comparative Study of Diode Laser Versus Neodymium-Yttrium Aluminum: Garnet Laser Versus Intense Pulsed Light for the Treatment of Hirsutism.

    PubMed

    Puri, Neerja

    2015-01-01

    Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum - garnet (Nd: YAG) laser and intense pulsed light (IPL) on 30 female patients of hirsutism. Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, <25% reduction in hair density. It was seen that the percentage of hair reduction after two sessions of treatment was maximum (40%) in the diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64%) in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92%) in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser.

  1. Comparative Study of Diode Laser Versus Neodymium-Yttrium Aluminum: Garnet Laser Versus Intense Pulsed Light for the Treatment of Hirsutism

    PubMed Central

    Puri, Neerja

    2015-01-01

    Introduction: Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. Aims: To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminumgarnet (Nd: YAG) laser and intense pulsed light (IPL) on 30 female patients of hirsutism. Materials and Methods: Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, <25% reduction in hair density. Results: It was seen that the percentage of hair reduction after two sessions of treatment was maximum (40%) in the diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64%) in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92%) in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. Conclusions: To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser. PMID:26157309

  2. Laser intervention on trabeculo-Descemet's membrane after resistant viscocanalostomy: Selective 532 nm gonioreconditioning or conventional 1064 nm neodymium-doped yttrium aluminum garnet laser goniopuncture?

    PubMed Central

    Sabur, Huri; Baykara, Mehmet; Can, Basak

    2016-01-01

    Purpose: To compare the results of conventional 1064 nm neodymium-doped yttrium-aluminum garnet laser goniopuncture (Nd:YAG-GP) and selective 532 nm Nd:YAG laser (selective laser trabeculoplasty [SLT]) gonioreconditioning (GR) on trabeculo-Descemet's membrane in eyes resistant to viscocanalostomy surgery. Methods: Thirty-eight eyes of 35 patients who underwent laser procedure after successful viscocanalostomy surgery were included in the study. When postoperative intraocular pressure (IOP) was above the individual target, the eyes were scheduled for laser procedure. Nineteen eyes underwent 532 nm SLT-GR (Group 1), and the remaining 19 eyes underwent conventional 1064 nm Nd:YAG-GP (Group 2). IOPs before and after laser (1 week, 1 month, 3 months, 6 months, 1 year, and last visit), follow-up periods, number of glaucoma medications, and complications were recorded for both groups. Results: Mean times from surgery to laser procedures were 17.3 ± 9.6 months in Group 1 and 13.0 ± 11.4 months in Group 2. Mean IOPs before laser procedures were 21.2 ± 1.7 mmHg in Group 1 and 22.8 ± 1.9 mmHg in Group 2 (P = 0.454). Postlaser IOP measurements of Group 1 were 12.1 ± 3.4 mmHg and 13.8 ± 1.7 mmHg in the 1st week and last visit, respectively; in Group 2, these measurements were 13.6 ± 3.7 mmHg and 14.9 ± 4.8 mmHg, respectively. There were statistically significant differences (P < 0.001) in IOP reduction at all visits in both groups; the results of the two groups were similar (P > 0.05). Mean follow-up was 16.6 ± 6.4 months after SLT-GR and 18.9 ± 11.2 months after Nd:YAG-GP. Conclusions: While conventional Nd:YAG-GP and SLT-GR, a novel procedure, are both effective choices in eyes resistant to viscocanalostomy, there are fewer complications with SLT-GR. SLT-GR can be an alternative to conventional Nd:YAG-GP. PMID:27688277

  3. Comparative analysis of root surface smear layer removal by different etching modalities or erbium:yttrium-aluminum-garnet laser irradiation. A scanning electron microscopy study.

    PubMed

    Theodoro, Letícia Helena; Zezell, Denise Maria; Garcia, Valdir Gouveia; Haypek, Patrícia; Nagata, Maria José Hitomi; de Almeida, Juliano Milanezi; de Paula Eduardo, Carlos

    2010-07-01

    The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mum) irradiation on the removal of root surface smear layer of extracted human teeth and to compare its efficacy with that of citric acid, ethylenediamine tetra-acetic acid (EDTA), or a gel containing a mixture of tetracycline hydrochloride (HCl) and citric acid, using scanning electron microscopy (SEM). Thirty human dentin specimens were randomly divided into six groups: G1 (control group), irrigated with 10 ml of physiologic saline solution; G2, conditioned with 24% citric acid gel; G3, conditioned with 24% EDTA gel; G4, conditioned with a 50% citric acid and tetracycline gel; G5, irradiated with Er:YAG laser (47 mJ/10 Hz/5.8 J/cm(2)/pulse); G6, irradiated with Er:YAG laser (83 mJ/10 Hz/10.3 J/cm(2)/pulse). Electron micrographs were obtained and analyzed according to a rating system. Statistical analysis was conducted with Kruskal-Wallis and Mann-Whitney tests (P < 0.05). G1 was statistically different from all the other groups; no statistically significant differences were observed between the Er:YAG laser groups and those undergoing the other treatment modalities. When the two Er:YAG laser groups were compared, the fluency of G6 was statistically more effective in smear layer removal than the one used in G5 (Mann-Whitney test, P < 0.01). Root surfaces irradiated by Er:YAG laser had more irregular contours than those treated by chemical agents. It can be concluded that all treatment modalities were effective in smear layer removal. The results of our study suggest that the Er:YAG laser can be safely used to condition diseased root surfaces effectively. Furthermore, the effect of Er:YAG laser irradiation on root surfaces should be evaluated in vivo so that its potential to enhance the healing of periodontal tissues can be assessed.

  4. Crystal field disorder effects in the optical spectra of Nd{sup 3+} and Yb{sup 3+}-doped calcium lithium niobium gallium garnets laser crystals and ceramics

    SciTech Connect

    Lupei, V.; Lupei, A.; Gheorghe, C.; Gheorghe, L.; Achim, A.; Ikesue, A.

    2012-09-15

    The optical spectroscopic properties of RE{sup 3+} (Nd, 1 at. % or Yb, 1 to 10 at. %)-doped calcium-lithium-niobium-gallium garnet (CLNGG) single crystals and ceramics in the 10 K-300 K range are analyzed. In these compositionally disordered materials, RE{sup 3+} substitute Ca{sup 2+} in dodecahedral sites and the charge compensation is accomplished by adjusting the proportion of Li{sup +}, Nb{sup 5+}, and Ga{sup 3+} to the doping concentration. The crystals and ceramics show similar optical spectra, with broad and structured (especially at low temperatures) bands whose shape depends on temperature and doping concentration. At 10 K, the Nd{sup 3+4}I{sub 9/2}{yields}{sup 4}F{sub 3/2,5/2} and Yb{sup 3+2}F{sub 7/2}{yields}{sup 2}F{sub 5/2} absorption bands, which show prospect for diode laser pumping, can be decomposed in several lines that can be attributed to centers with large differences in the crystal field. The positions of these components are the same, but the relative intensity depends on the doping concentration and two main centers dominate the spectra. Non-selective excitation evidences broad emission bands, of prospect for short-pulse laser emission, whereas the selective excitation reveals the particular emission spectra of the various centers. The modeling reveals that the nonequivalent centers correspond to RE{sup 3+} ions with different cationic combinations in the nearest octahedral and tetrahedral coordination spheres, and the most abundant two centers have 4Nb and, respectively, 3Nb1Li in the nearest octahedral sphere. At 300 K, the spectral resolution is lost. It is then inferred that the observed optical bands are envelopes of the spectra of various structural centers, whose resolution is determined by the relative contribution of the temperature-dependent homogeneous broadening and the effects of crystal field disordering (multicenter structure, inhomogeneous broadening). The relevance of spectroscopic properties for selection of pumping

  5. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage.

    PubMed

    Weidenthaler, Claudia; Pommerin, André; Felderhoff, Michael; Sun, Wenhao; Wolverton, Christopher; Bogdanović, Borislav; Schüth, Ferdi

    2009-11-25

    A novel type of complex rare-earth aluminum hydride was prepared by mechanochemical preparation. The crystal structure of the REAlH(6) (with RE = La, Ce, Pr, Nd) compounds was calculated by DFT methods and confirmed by preliminary structure refinements. The trigonal crystal structure consists of isolated [AlH(6)](3-) octahedra bridged via [12] coordinated RE cations. The investigation of the rare-earth aluminum hydrides during thermolysis shows a decrease of thermal stability with increasing atomic number of the RE element. Rare-earth hydrides (REH(x)) are formed as primary dehydrogenation products; the final products are RE-aluminum alloys. The calculated decomposition enthalpies of the rare-earth aluminum hydrides are at the lower end for reversible hydrogenation under moderate conditions. Even though these materials may require somewhat higher pressures and/or lower temperatures for rehydrogenation, they are interesting examples of low-temperature metal hydrides for which reversibility might be reached.

  6. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  7. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of industrial garnet was about 326 kt in 2006, with the U.S. producing about 11 percent of this total. U.S. consumption, imports, and exports were estimated at 74.3 kt, 52.3 kt, and 13.2 kt, respectively. The most important exporters are Australia, China, and India. Although demand is expected to rise over the next 5 years, prices are expected to remain low in the short term.

  8. Efficacy and safety of fractional Q-switched 1064-nm neodymium-doped yttrium aluminum garnet laser in the treatment of melasma in Chinese patients.

    PubMed

    Yue, Baishuang; Yang, Qianli; Xu, Jinhua; Lu, Zhong

    2016-11-01

    Melasma is an acquired disorder of symmetrical hyperpigmentation commonly seen in patients with Fitzpatrick skin types III and IV. Various novel therapeutic modalities have emerged to treat melasma. The large-spot low-fluence QS Nd:YAG laser has been widely used in Asia; however, the modality needs to be optimized because of the high recurrence rate. The objective of this study is to explore the clinical efficacy and safety of fractional-mode (Pixel) Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) 1064-nm laser for treatment of melasma in Chinese patients. Twenty-seven patients were enrolled and completed all the treatment sessions and the 12-week follow-up. All were treated using the fractional-mode Pixel QS Nd:YAG (1064 nm) laser for eight sessions at a 2-3-week interval. Clinical photographs were taken using the Visia skin analysis imaging system. Two blinded assessors evaluated melasma area and severity index (MASI) scores before and 4 weeks after the final session. Melanin index (MI) and erythema index (EI) was measured before each treatment visit and after the final treatment. The degree of pigmentation and erythema was assessed using a tristimulus color analyzer. Physicians' global assessment (PGA) and patients' self-assessment were taken as the subjective assessments. Wilcoxon signed-rank test was performed to evaluate clinical response. Recurrence rate were also evaluated. Mean MASI scores decreased from 12.84 ± 6.89 to 7.29 ± 4.15 after treatment (p = 0.000). Seventy percent of patients got moderate to good improvements after all the treatment. Mean MI decreased significantly from 56.52 ± 23.35 to 32.75 ± 12.91 (p = 0.000). L value increased from 59.21 ± 2.22 before treatment to 61.60 ± 2.40 (p = 0.000) after therapy. The mean score of PGA was 3.76 ± 0.71, indicating a "moderate" clearance of the lesion. In patients' self-evaluations, 70 % of the patients rated the result as "good" to

  9. Effect of chloride incorporation on the crystallization of zirconium-barium-lanthanum-aluminum fluoride glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Smith, G. L.; Weinberg, M. C.

    1985-01-01

    One aspect of the influence of preparation procedure on the crystallization behavior of a zirconium-barium-lanthanum-aluminum fluoride glass was studied. The crystallization pattern of this glass may be affected by the chlorine concentration within it. In particular, when such glasses are heated at low temperatures, the alpha-Ba-Zr-F6 crystalline phase forms only in those glasses which contain chloride.

  10. Molecular dynamics analysis of the crystallization of an overcooled aluminum melt

    NASA Astrophysics Data System (ADS)

    Norman, G. E.; Pisarev, V. V.

    2012-09-01

    The homogeneous nucleation of a crystal in an overcooled aluminum melt was modeled by the molecular dynamics (MD) method. The MD simulation used the embedded-atom potential. The crystallization delay times were determined from MD simulation data. In a set of systems at the same temperature and pressure, the lifetimes were distributed exponentially. Nucleation frequencies at different temperatures and pressures were determined. The resulting nucleation frequencies were compared with the ones predicted by classical nucleation theory.

  11. PHASE ANALYSIS AND CRYSTAL STRUCTURE STUDIES ON BINARY ALLOYS OF ALUMINUM WITH TRANSITION METALS.

    DTIC Science & Technology

    In order to provide the necessary background for detailed crystal-chemistry studies in the field of binary aluminum - transition metal systems, extensive investigations have been carried out on the phase relations of a large number of such systems. The results of these studies are briefly summarized, as are also the results of crystal structure determinations of a few alumi num - transition metal phases. (Author)

  12. Effect of chloride incorporation on the crystallization of zirconium-barium-lanthanum-aluminum fluoride glass

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Smith, G. L.; Weinberg, M. C.

    1985-01-01

    One aspect of the influence of preparation procedure on the crystallization behavior of a zirconium-barium-lanthanum-aluminum fluoride glass was studied. The crystallization pattern of this glass may be affected by the chlorine concentration within it. In particular, when such glasses are heated at low temperatures, the alpha-Ba-Zr-F6 crystalline phase forms only in those glasses which contain chloride.

  13. Microstructure Evolution in High Purity Aluminum Single Crystal Processed by Equal Channel Angular Pressing (ECAP).

    PubMed

    Dong, Jinfang; Dong, Qing; Dai, Yongbing; Xing, Hui; Han, Yanfeng; Ma, Jianbo; Zhang, Jiao; Wang, Jun; Sun, Baode

    2017-01-22

    Aluminum single crystal with 99.999% purity was deformed at room temperature by equal channel angular pressing (ECAP) up to 16 passes. Grain size and misorientation of processed samples were quantitatively characterized by TEM and EBSD. The results show that the refinement efficiency of high purity aluminum single crystal was poor in the initial stage. Extrusion by fewer ECAP passes (n ≤ 8) resulted in only elongated grains containing a large number of subgrains and small misorientations between grains. Stable microstructures of nearly equiaxed grains with high misorientations were obtained by 15 passages, indicating that the initial extremely coarse grains and highly uniform grain orientation are not conducive to the accumulation of strain energy. The initial state of high purity aluminum has a significant effect on the refining efficiency of the ECAP process.

  14. Microstructure Evolution in High Purity Aluminum Single Crystal Processed by Equal Channel Angular Pressing (ECAP)

    PubMed Central

    Dong, Jinfang; Dong, Qing; Dai, Yongbing; Xing, Hui; Han, Yanfeng; Ma, Jianbo; Zhang, Jiao; Wang, Jun; Sun, Baode

    2017-01-01

    Aluminum single crystal with 99.999% purity was deformed at room temperature by equal channel angular pressing (ECAP) up to 16 passes. Grain size and misorientation of processed samples were quantitatively characterized by TEM and EBSD. The results show that the refinement efficiency of high purity aluminum single crystal was poor in the initial stage. Extrusion by fewer ECAP passes (n ≤ 8) resulted in only elongated grains containing a large number of subgrains and small misorientations between grains. Stable microstructures of nearly equiaxed grains with high misorientations were obtained by 15 passages, indicating that the initial extremely coarse grains and highly uniform grain orientation are not conducive to the accumulation of strain energy. The initial state of high purity aluminum has a significant effect on the refining efficiency of the ECAP process. PMID:28772447

  15. The Durability of Various Crucible Materials for Aluminum Nitride Crystal growth by Sublimation

    SciTech Connect

    Liu,B.; Edgar, J.; Gu, Z.; Zhuang, D.; Raghothamachar, B.; Dudley, M.; Sarua, A.; Kuball, M.; Meyer, H.

    2004-01-01

    Producing high purity aluminum nitride crystals by the sublimation-recondensation technique is difficult due to the inherently reactive crystal growth environment, normally at temperature in excess of 2100 C. The durability of the furnace fixture materials (crucibles, retorts, etc.) at such a high temperature remains a critical problem. In the present study, the suitability of several refractory materials for AlN crystal growth is investigated, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride. The thermal and chemical properties and performance of these materials in inert gas, as well as under AlN crystal growth conditions are discussed. TaC and NbC are the most stable crucible materials with very low elemental vapor pressures in the crystal growth system. Compared with refractory material coated graphite crucibles, HPBN crucible is better for AlN self-seeded growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density.

  16. Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors

    NASA Astrophysics Data System (ADS)

    Fan, Linran; Sun, Xiankai; Xiong, Chi; Schuck, Carsten; Tang, Hong X.

    2013-04-01

    We develop a piezoelectrically actuated, one-dimensional acoustic and photonic crystal nanocavity fabricated from aluminum nitride (AlN). Through simultaneous band structure engineering in both photonic and acoustic domains, we obtain high-quality piezo-acousto-photonic crystal nanocavities with intrinsic optical Q of 1.2 × 105. The piezoelectric actuation of the confined mechanical mode at 3.18 GHz is demonstrated with mechanical Q exceeding 10 000. Such piezo-acousto-photonic crystal nanocavities will find important applications in cavity optomechanics that desire effective coupling to the electrical degree of freedom.

  17. Control of Crystal Orientation and Diameter of Silicon Nanowire Using Anodic Aluminum Oxide Template

    NASA Astrophysics Data System (ADS)

    Shimizu, Tomohiro; Inoue, Fumihiro; Wang, Chonge; Otsuka, Shintaro; Tada, Yoshihiro; Koto, Makoto; Shingubara, Shoso

    2013-06-01

    The control of the crystal orientation and diameter of vertically grown epitaxial Si nanowires was demonstrated using a combination of a vapor-liquid-solid (VLS) growth technique and the use of an anodic aluminum oxide (AAO) template on a single-crystal Si substrate. The [100], [110], and [111] nanowires were selectively obtained by choosing the Si substrate with appropriate crystal orientation. The diameter of a Si nanowire in the AAO template could be controlled by the modification of the pore size of the AAO template with anodic voltage during anodization.

  18. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    SciTech Connect

    Sokolov, N. S. Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V.; Maksimova, K. Yu.; Grunin, A. I.; Tabuchi, M.

    2016-01-14

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  19. 71Ga Chemical Shielding and Quadrupole Coupling Tensors of the Garnet Y(3)Ga(5)O(12) from Single-Crystal (71)Ga NMR.

    PubMed

    Vosegaard, Thomas; Massiot, Dominique; Gautier, Nathalie; Jakobsen, Hans J.

    1997-05-21

    A single-crystal (71)Ga NMR study of the garnet Y(3)Ga(5)O(12) (YGG) has resulted in the determination of the first chemical shielding tensors reported for the (71)Ga quadrupole. The single-crystal spectra are analyzed in terms of the combined effect of quadrupole coupling and chemical shielding anisotropy (CSA). (71)Ga quadrupole coupling and CSA parameters for the two (tetrahedrally and octahedrally coordinated) gallium sites with axial symmetry in YGG (Ga(IV), C(Q) = 13.1 +/- 0.2 MHz and delta(sigma) = 54 +/- 50 ppm; Ga(VI), C(Q) = 4.10 +/- 0.06 MHz and delta(sigma) = 24 +/- 3 ppm) are fully consistent with its cubic crystal structure which supports the reliability of the experimental data. In addition, the (71)Ga and (27)Al isotropic chemical shifts for YGG and YAG give further support to the linear correlation observed earlier between (71)Ga and (27)Al isotropic chemical shifts.

  20. Silica crystals and aluminum salts mediate NALP-3 inflammasome activation via phagosomal destabilization

    PubMed Central

    Hornung, Veit; Bauernfeind, Franz; Halle, Annett; Samstad, Eivind O.; Kono, Hajime; Rock, Kenneth L.; Fitzgerald, Katherine A.; Latz, Eicke

    2010-01-01

    Inhalation of silica crystals causes inflammation in the alveolar space. Prolonged silica exposure can lead to the development of silicosis, an irreversible, fibrotic pulmonary disease. The mechanisms by which silica and other crystals activate immune cells are not well understood. Here, we demonstrate that silica and aluminum salt crystals activate the NALP3 inflammasome. NALP3 activation requires crystal phagocytosis and crystal uptake leads to lysosomal damage and rupture. Sterile lysosomal damage is also sufficient to induce NALP3 activation and inhibition of phagosomal acidification or cathepsin B impairs NALP3 activation. These results indicate that the NALP3 inflammasome can sense lysosomal damage induced by various means as an endogenous danger signal. PMID:18604214

  1. Localization of Plastic Deformation in Aluminum Single Crystals at Different Scale Levels

    NASA Astrophysics Data System (ADS)

    Bespalova, I. V.; Teplyakova, L. A.; Kunitsyna, T. S.

    2017-07-01

    The paper generalizes results of investigating the localization and fragmentation of plastic deformation in aluminum single crystals having a different orientation of the compression axis and lateral faces. The surface topography of the samples induced by plastic deformation includes such elements as deformation bands, folds and shear markings observed at different scale levels (macro, meso and micro). The morphological uniformity is identified for these elements in the aluminum single crystals. Depending on the resolution required, the quantification of the shear deformation markings is provided by the optical microscope and the scanning and transmission electron microscopes using the replication technique. The following parameters are obtained: the distance between the nearest shear deformation markings, width of shear markings, local shear; shear γ; the single-crystal volume fraction in which the shear deformation occurs at macro, meso, and micro-levels. The statistical examination of the shear deformation markings in aluminum single crystals with different geometry is performed at these three levels and allows us to conclude that the micro-scale level makes the main contribution to the shear deformation.

  2. Chemical properties of Garnets from Garnet Ridge, Navajo volcanic field in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Koga, I.; Ogasawara, Y.

    2012-12-01

    Significant amounts of garnet crystals have derived from kimberlitic diatremes at Garnet Ridge in northern Arizona. These garnets are chemically diverse and their origins have been still controversial. The diatremes at Garnet Ridge were dated at 30Ma (Smith et al., 2004). Coesite-bearing lawsonite eclogite reported by Usui et al., (2003) is important evidence for subduction of the Fallaron Plate below the Colorado plateau. This study characterized various kinds of garnets with several origins by petrographical observations and electron microprobe analyses (JXA-8900 WDS mode and JXA-733 EDS mode). On the basis of the chemical compositions and other features, the garnets were classified into the following 8 groups (A to H). Inclusions and exsolved phases were identified by laser Raman spectroscopy. (A) Garnet crystals (5-8 mm) with purple color are called ''Navajo Ruby''. A significant amount of Cr2O3 is a typical feature (up to ~5.9 wt. %). These garnet were rich in pyrope (66-78 mol. %). Olivine, Cpx, and exsolved lamellae of rutile were contained. (B) Reddish brown garnets were Pyp-rich (60-75 mol. %), and contained a minor amount of Cr2O3 (less than ~1 wt. %). The inclusions were rod-shaped rutile , Cpx, Opx, zircon, olivine and exsolved lamellae of apatite. (C) Garnet megacrysts (8-12 cm) were plotted near the center of Prp-Alm-Grs triangle (Pyp30-35 Alm28-33 Grs29-35). Exsolved apatite lamellae were confirmed. (D) Some of reddish brown garnets were plotted on same area as the Type-C. (E) Garnets in eclogite have Alm-rich composition (Pyp6-22 Alm52-65 Grs16-42). They clearly showed prograde chemical zonation; MgO: 1.4 to 5.4 wt. %, CaO: 14.0 to 5.6 wt. % both from core to rim. (F) Garnets in altered or metasomatized eclogite had a wide range of chemical composition (Pyp7-38 Alm52-69 Grs4-31) with similar prograde zonation. The cores were plotted near the rim of Type-E garnet. (G) Garnets in unidentified rock (strongly altered) had Alm-rich composition near Alm

  3. Production of extreme-purity aluminum and silicon by fractional crystallization processing

    NASA Astrophysics Data System (ADS)

    Dawless, R. K.; Troup, R. L.; Meier, D. L.; Rohatgi, A.

    1988-06-01

    Large scale fractional crystallization is used commercially at Alcoa to produce extreme purity aluminum (99.999+% Al). The primary market is sputtering targets used to make interconnects for integrated circuits. For some applications the impurities uranium and thorium are reduced to less than 1 ppbw to avoid "soft errors" associated with α particle emission. The crystallization process achieves segregation coefficients which are close to theoretical at normal yields, and this, coupled with the scale of the units, allows practical production of this material. The silicon purification process involves crystallization of Si from molten aluminum alloys containing about 30% silicon. The crystallites from this process are further treated to remove residual Al and an extreme purity ingot is obtained. This material is considered suitable for single crystal or ribbon type photovoltaic cells and for certain IC applications, including highly doped substrates used for epitaxial growth. In production of both extreme purity Al and Si, impurities are rejected to the remaining melt as the crystals form and some separation is achieved by draining this downgraded melt from the unit. Purification of this downgrade by crystallization has also been demonstrated for both systems and is important for achieving high recoveries.

  4. Multiscale Crystal Plasticity Modeling Considering Nucleation of Dislocations Based on Thermal Activation Process on Ultrafine-grained Aluminum

    NASA Astrophysics Data System (ADS)

    Aoyagi, Y.

    2017-05-01

    In this study, a crystal plasticity model expressing the behavior of the dislocation source and the mobile dislocations is proposed by considering a thermal activation process of dislocations. In order to predict the variation of critical resolved shear stress due to grain boundaries, mobile dislocations, or dislocation sources, information on these crystal defects is introduced into a hardening law of crystal plasticity. The crystal orientation and shape of ultrafine-grained (UFG) aluminum produced by accumulative roll bonding processes are measured by electron backscatter diffraction (EBSD). Mechanical properties of the UFG aluminum are estimated using tensile test and indentation test. Results obtained by EBSD are introduced into a computational model. Finite element simulation for polycrystal of aluminum investigates the effect of microstructure on mechanical properties of UFG aluminum.

  5. Crystal chemical characterization of mullite-type aluminum borate compounds

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Hooper, T. J. N.; Zhao, H.; Kolb, U.; Murshed, M. M.; Fischer, M.; Lührs, H.; Nénert, G.; Kudějová, P.; Senyshyn, A.; Schneider, H.; Hanna, J. V.; Gesing, Th. M.; Fischer, R. X.

    2017-03-01

    Al-rich aluminum borates were prepared by different synthesis routes using various Al/B ratios, characterized by diffraction methods, spectroscopy and prompt gamma activation analysis. The 11B NMR data show a small amount of BO4 species in all samples. The chemical analysis indicates a trend in the Al/B ratio instead of a fixed composition. Both methods indicate a solid solution Al5-xB1+xO9 where Al is substituted by B in the range of 1-3%. The structure of B-rich Al4B2O9 (C2/m, a=1488 pm, b=553 pm, c=1502 pm, ß=90.6°), was re-investigated by electron diffraction methods, showing that structural details vary within a crystallite. In most of the domains the atoms are orderly distributed, showing no signal for the postulated channel oxygen atom O5. The absence of O5 is supported by density functional theory calculations. Other domains show a probable disordered configuration of O5 and O10, indicated by diffuse scattering along the b direction.

  6. Control of Crystal Morphology for Mold Flux During High-Aluminum AHSS Continuous Casting Process

    NASA Astrophysics Data System (ADS)

    GUO, Jing; SEO, Myung-Duk; SHI, Cheng-Bin; CHO, Jung-Wook; KIM, Seon-Hyo

    2016-08-01

    In the present manuscript, the efforts to control the crystal morphology are carried out aiming at improving the lubrication of lime-alumina-based mold flux for casting advanced high-strength steel with high aluminum. Jackson α factors for crystals of melt crystallization in multi-component mold fluxes are established and reasonably evaluated by applying thermodynamic databases to understand the crystal morphology control both in lime-alumina-based and lime-silica-based mold fluxes. The results show that Jackson α factor and supercooling are the most critical factors to determine the crystal morphology in a mold flux. Crystals precipitating in mold fluxes appear with different morphologies due to their different Jackson α factors and are likely to be more faceted with higher Jackson α factor. In addition, there is a critical supercooling degree for crystal morphology dendritic transition. When the supercooling over the critical value, the crystals transform from faceted shape to dendritic ones in morphology as the kinetic roughening occurs. Typically, the critical supercooling degrees for cuspidine dendritic transition in the lime-silica-based mold fluxes are evaluated to be between 0.05 and 0.06. Finally, addition of a small amount of Li2O in the mold flux can increase the Jackson α factor and decrease the supercooling for cuspidine precipitation; thus, it is favorable to enhance a faceted cuspidine crystal.

  7. Faraday isolator based on TSAG crystal for high power lasers.

    PubMed

    Mironov, E A; Palashov, O V

    2014-09-22

    A Faraday isolator based on a new magneto-optical medium, TSAG (terbium scandium aluminum garnet) crystal, has been constructed and investigated experimentally. The device provides an isolation ratio of more than 30 dB at 500 W laser power. It is shown that this medium can be used in Faraday isolators for kilowatt-level laser powers.

  8. Studies of the Crystallization Process of Aluminum-Silicon Alloys Using a High Temperature Microscope. Thesis

    NASA Technical Reports Server (NTRS)

    Justi, S.

    1985-01-01

    It is shown that primary silicon crystals grow polyhedral in super-eutectic AlSi melts and that phosphorus additives to the melt confirm the strong seeding capacity. Primary silicon exhibits strong dendritic seeding effects in eutectic silicon phases of various silicon alloys, whereas primary aluminum does not possess this capacity. Sodium addition also produces a dendritic silicon network growth in the interior of the sample that is attributed to the slower silicon diffusion velocity during cooling.

  9. In Situ Liquid-Crystal-Polymer Fiber Reinforced Aluminum Matrix Composite.

    DTIC Science & Technology

    1991-05-01

    Prepared for B U NAVAL AIR SYSTEMS COMMAND (AIR-51412) Washington, DC 20361-0001 9182600991-08867 NOTICES REPORT NUMBERING SYSTEM - The numbering of...the twentieth Center report for the year 1988 and prepared by the Air Vehicle and Crew Systems Technology Department. The numerical codes are as...examined in this research were prepared from commercially pure aluminum and Vectra, a wholly aromatic, thermotropic, liquid-crystal copolyester (LCPE). The

  10. Kinetics of silicon precipitation in a directionally crystallized binary aluminum-silicon alloy

    NASA Astrophysics Data System (ADS)

    Egorova, L. M.; Korchunov, B. N.; Osipov, V. N.; Bershtein, V. A.; Nikanorov, S. P.

    2013-12-01

    The precipitation of silicon atoms in aluminum in an Al-Si alloy has been studied using differential scanning calorimetry. The alloys containing 8, 13, and 15 wt % silicon were obtained by directional solidification of a ribbon pulled from the melt through a shaper by the Stepanov method at a rate of about 103 μm/s. From the characteristics of the exothermic effects observed in the temperature range 430-650 K, it has been found that the precipitation process leading to the formation of the Guinier-Preston zones occurs with the effective activation energy of 75 kJ/mol, and its intensity decreases with increasing silicon content in the alloy from 8 wt % to the eutectic content. The effect correlates with a decrease in the volume fraction of dendrites of the primary α-Al crystals in the alloy. It can be assumed that the precipitation occurs in the dendrite primary crystals of the solid solution. Based on this assumption, it has been concluded that, during directional solidification of an aluminum-silicon alloy at a rate of 103 μm/s, the metastable solid solution of silicon in aluminum, in which silicon atoms of the metallic lattice are transformed into clusters with covalent bonding forces, is formed during the dendrite growth of the primary crystals.

  11. Simulation of Transport Phenomena in Aluminum Nitride Single-Crystal Growth

    SciTech Connect

    de Almeida, V F

    2002-04-03

    The goal of this project is to apply advanced computer-aided modeling techniques for simulating coupled radiation transfer present in the bulk growth of aluminum nitride (AlN) single-crystals. Producing and marketing high-quality single-crystals of AlN is currently the focus of Crystal IS, Inc., which is engaged in building a new generation of substrates for electronic and optical-electronic devices. Modeling and simulation of this company's proprietary innovative processing of AlN can substantially improve the understanding of physical phenomena, assist design, and reduce the cost and time of research activities. This collaborative work supported the goals of Crystal IS, Inc. in process scale-up and fundamental analysis with promising computational tools.

  12. Simulation of Transport Phenomena in Aluminum Nitride Single-Crystal Growth

    SciTech Connect

    de Almeida, VF

    2002-05-16

    The goal of this project is to apply advanced computer-aided modeling techniques for simulating coupled radiation transfer present in the bulk growth of aluminum nitride (AlN) single-crystals. Producing and marketing high-quality single-crystals of AlN is currently the focus of Crystal IS, Inc., which is engaged in building a new generation of substrates for electronic and optical-electronic devices. Modeling and simulation of this company's proprietary innovative processing of AlN can substantially improve the understanding of physical phenomena, assist design, and reduce the cost and time of research activities. This collaborative work supported the goals of Crystal IS, Inc. in process scale-up and fundamental analysis with promising computational tools.

  13. Crystal structure of complex natural aluminum magnesium calcium iron oxide

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2010-07-15

    The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) A, b = 17.1823(4) A, c = 23.5718(5) A, {beta} = 90{sup o}, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with vertical bar F vertical bar > 7{sigma}(F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula (Z = 4) is Ca{sub 2}Mg{sub 2}{sup IV}Fe{sub 2}{sup (2+)IV}[Al{sub 14}{sup VI}O{sub 31}(OH)][Al{sub 2}{sup IV}O][Al{sup IV}]AL{sup IV}(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe{sup 2+} tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.

  14. Magnetic interactions and electronic structure of uvarovite and andradite garnets. An ab initio all-electron simulation with the CRYSTAL06 program

    NASA Astrophysics Data System (ADS)

    Meyer, A.; Pascale, F.; Zicovich-Wilson, C. M.; Dovesi, R.

    The ground-state electronic structure of a number of magnetic phases of the garnets andradite (Ca3Fe2Si3O12) and uvarovite (Ca3Cr2Si3O12) has been investigated at the density functional theory level of approximation using the periodic ab initio code CRYSTAL. An all-electron Gaussian-type basis has been used in conjunction with the B3LYP hybrid functional. The exchange coupling constants between the first (J1a and J1b differentiating the two nonidentical sites), second (J2), and third (J3) nearest neighbors have been evaluated and are found to be in good agreement with the experimental data that is available for andradite. As a consequence of both the different J1a to J1b ratio and the opposite sign of J2 in the two minerals, different antiferromagnetic (AF) ground states are found for uvarovite and andradite, which is in agreement with experimental observation. Strong support for the additivity and transferability of the J constants is provided by calculations in which Cr and Fe ions are embedded in the related grossular structure. The mechanism for the stabilization of the AF states is discussed within the Anderson theory of superexchange; the kinetic energy gain in the AF states is calculated, and the spin density maps and profiles are examined. Density of states, charge density maps, and Mulliken population data complete the analysis of the electronic structure.

  15. An occurrence of metastable cristobalite in high-pressure garnet Granulite

    USGS Publications Warehouse

    Darling, R.S.; Chou, I.-Ming; Bodnar, R.J.

    1997-01-01

    High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low- pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the ??/?? phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.

  16. Continuous wave 1.6 μm laser action in Er doped garnets at room temperature⋆

    NASA Astrophysics Data System (ADS)

    Stange, H.; Petermann, K.; Huber, G.; Duczynski, E. W.

    1989-09-01

    We report on room-temperature cw laser action of Er3+: Yttrium-aluminum-garnet (YAG) and Er3+: Yttrium-gallium-garnet (YGG) crystals at 1.64 μm. The laser operates from the metastable4 I 13/2 manifold into an upper Stark level of the4 I 15/2 ground-state manifold of Er3+. Due to reabsorption losses, the Er3+ concentration of the laser crystals must be low. Laser pumping at a wavelength of 647.1 nm yields lowest thresholds around 30 mW and slope efficiencies up to 12.7% for Er:YAG. Laser operation in Er:YGG is achieved with higher thresholds of about 200 mW and smaller slope efficiencies of 0.9%. The effective emission cross section in YAG is estimated to be σe≈5×10-21 cm2.

  17. Luminescent properties of Cr-doped gallium garnet crystals grown by the micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Kurosawa, Shunsuke; Suzuki, Akira; Yamaji, Akihiro; Kamada, Kei; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Chani, Valery Ivanovich; Yoshikawa, Akira

    2016-10-01

    Cr-doped (GdxY1-x)3Ga5O12 crystals (x=0.00, 0.25, 0.50, 0.75 and 1.00) were grown by the micro-pulling-down method and examined for their possible application as red and infrared scintillating detectors in medical field. Although Cr:(Gd0.75Y0.25)3Ga5O12 and Cr:Gd3Ga5O12 had similar X-ray diffraction patterns, other samples showed some change in lattice constant. All the crystals had broad emission bands in the red and infrared region when excited by either 450 nm photons or X rays. These bands were associated with 4T2→A2 transitions. Moreover, redshift of the emission-peak wavelengths (4T2→4A2) and absorption peaks (4A2→4T1 and 4T2) was observed with increase of Gd content (x) in Cr-doped (GdxY1-x)3Ga5O12 due to the change of the crystal fields. The crystals had scintillation emissions in the wavelength region suitable for the real time dose monitoring in radiation therapy.

  18. Effect of adding aluminum ion on the structural, optical, electrical and magnetic properties of terbium doped yttrium iron garnet nanoparticles films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Aldbea, Ftema W.; Ibrahim, N. B.; Yahya, M.

    2014-12-01

    Tb0.8Y2.2AlyFe5-yO12 nanoparticle films with y = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 were prepared by a sol-gel method for potential use as a magnetic sensor and in magneto-optical applications. The films were deposited onto quartz substrate, followed by annealing at 900 °C in air for 2 h. X-ray diffractometry results confirmed the formation of a pure garnet structure. The lattice parameter decreased with increasing Al3+ content due to the substitution of Al3+ ions with the larger Fe3+ ions. The grain size of the films decreased up to y = 0.6. This variation is discussed based on the stress on the grain surface. The films observed to be transparent between 76 and 92% in the visible and infrared regions. The films demonstrated a strong absorption of 104 cm-1 caused by the charge transfer transition in the UV region. The absorption edge shifts to lower wavelengths at higher Al contents of 0.8 and 1 due to electronic transitions. The conductivity of films increased with increasing of Al content due to the increasing in free carrier concentration. The saturation magnetization at room temperature decreased with increasing Al3+ content, whereas the coercivity increased markedly at y = 0.6.

  19. Comparison of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet laser for treatment of cosmetic tattoos containing titanium and iron in an animal model.

    PubMed

    Wang, Chia-Chen; Huang, Chuen-Lin; Yang, An-Hang; Chen, Chih-Kang; Lee, Shao-Chen; Leu, Fur-Jiang

    2010-11-01

    Cosmetic tattoos contain titanium and ferric oxide and darken through reduction after Q-switched laser irradiation. The optimal treatment for removing these pigments remains unknown. To compare the effects of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet (SP Er:YAG) laser to remove cosmetic tattoos in an animal model. Rats were tattooed using white, flesh-colored, and brown inks (4 bands of each color) on their backs. For each color, one band was left untreated, and one each was treated with a Q-switched neodymium-doped YAG laser, a Q-switched alexandrite laser, and a SP Er:YAG laser every 3 weeks until the pigments were clear. The two Q-switched lasers were equally effective; all three pigments darkened initially and then resolved gradually. Up to 20, 18, and 10 sessions were required to remove white, flesh-colored, and brown tattoos, respectively. Only six sessions were required with the SP Er:YAG laser. Minimal scarring was observed with all lasers. Skin biopsies confirmed pigment granule fragmentation after Q-switched laser treatment and a decrease in the amount of pigment after SP Er:YAG laser treatment. The SP Er:YAG laser was superior to the Q-switched lasers for removing cosmetic tattoos. © 2010 by the American Society for Dermatologic Surgery, Inc.

  20. Prospective Comparison of Dual Wavelength Long-Pulsed 755-nm Alexandrite/1,064-nm Neodymium:Yttrium-Aluminum-Garnet Laser versus 585-nm Pulsed Dye Laser Treatment for Rosacea

    PubMed Central

    Seo, Hyun-Min; Kim, Jung-In; Kim, Han-Saem; Choi, Young-Jun

    2016-01-01

    Background Rosacea treatments including oral/topical medications and laser therapy are numerous but unsatisfactory. Objective To compare the effectiveness of the dual wavelength long-pulsed 755-nm alexandrite/1,064-nm neodymium: yttrium-aluminum-garnet laser (LPAN) with that of 585-nm pulsed dye laser (PDL) for rosacea. Methods This was a randomized, single-blinded, comparative study. Full face received four consecutive monthly treatments with LPAN or PDL, followed-up for 6 months after the last treatment. Erythema index was measured by spectrophotometer, and digital photographs were evaluated by consultant dermatologists for physician's global assessment. Subjective satisfaction surveys and adverse effects were recorded. Results Forty-nine subjects with rosacea enrolled and 12 dropped out. There were no significant differences between LPAN and PDL in the mean reduction of the erythema index (p=0.812; 3.6% vs. 2.8%), improvement of physician's global assessment (p=1.000; 88.9% vs. 89.5%), and subject-rated treatment satisfaction (p=0.842; 77.8% vs. 84.2%). PDL showed more adverse effects including vesicles than LPAN (p=0.046; 26.3% vs. 0.0%). No other serious or permanent adverse events were observed in both treatments. Conclusion Both LPAN and PDL may be effective and safe treatments for rosacea. PMID:27746641

  1. Intense Pulsed Light Alone and in Combination with Erbium Yttrium-Aluminum-Garnet Laser on Small-to-Medium Sized Congenital Melanocytic Nevi: Single Center Experience Based on Retrospective Chart Review

    PubMed Central

    Lee, Mi So; Jun, Hee Jin; Cho, Sang Hyun; Lee, Jeong Deuk

    2017-01-01

    Background Treatment of congenital melanocytic nevi (CMN) with intense pulsed light (IPL) has recently produced promising results. Objective To evaluate the clinical and histological outcomes of small-to-medium sized CMN treated with IPL alone and in combination with erbium: yttrium-aluminum-garnet (Er: YAG) laser. Methods We performed a retrospective chart review of 26 small-to-medium sized CMN treated as described above. The reduction in visible pigmentation, signs of recurrence and any adverse skin changes were evaluated by two independent clinicians. Results Seventeen patients completed treatment and were followed-up. Nine were not able to complete treatment due to work, change in residence, and treatment related stress. Ten patients received IPL alone (mean: 10.5 sessions) and 7 underwent treatment with IPL (mean: 7.7 sessions) and Er: YAG/IPL combination therapy (mean: 4.7 sessions). The initial treatment outcome was cleared in 5 patients and excellent in 12. Fourteen patients (82.4%) showed CMN recurrence one year after treatment completion. The histological results from a patient with an excellent clinical outcome showed remnant nevus cells nests in the deep dermis. Conclusion IPL treatment alone and in combination with Er: YAG laser are not definitive treatments for CMN and should not be considered as first-line treatment. PMID:28223745

  2. Induction of melasma by 1064-nm Q-switched neodymium:yttrium-aluminum-garnet laser therapy for acquired bilateral nevus of Ota-like macules (Hori nevus): A study on related factors in the Chinese population.

    PubMed

    Wang, Ben; Xie, Hong-Fu; Tan, Jun; Xie, Hong-Ju; Xu, Lin-Yong; Ding, Rong; Liu, Fang-Fen; Chen, Xiang; Jian, Dan; Li, Ji

    2016-06-01

    Laser treatment has emerged as a common treatment modality for acquired bilateral nevus of Ota-like macules (ABNOM). To identify the ratio of melasma induction and exacerbation before and after laser therapy for ABNOM and to observe the risk factors related to the induction and exacerbation of melasma by laser therapy, we analyzed related factors of 1268 adult Chinese patients who underwent 1064-nm Q-switched neodymium:yttrium-aluminum-garnet (Nd:YAG) laser (QNYL) treatment using case series and case-control studies. Overall, 24.0% of the ABNOM patients had mixed melasma. Among the ABNOM patients without melasma, after laser therapy the development of melasma was more frequently noted in patients older than 35 years (P < 0.0001), as well in patients whose ABNOM was less than 10 cm(2) (P = 0.027), ABNOM were light (similar to yellow-brown) in color (P = 0.021) and skin types were closer to type IV (P < 0.0001). New melasma lesions also appeared most frequently in the zygomatic region (P < 0.0001). Among the ABNOM patients with melasma, 89.5% experienced worsening of their melasma, irrespective of their related factors above. We concluded that the risk of inducing melasma is great after 1064-nm QNYL treatment in ABNOM patients, and particularly in the patients with both ABNOM and melasma. ABNOM patients should be treated as early as possible and before the age of 35 years.

  3. A prospective, randomized, double-blind comparison of an ablative fractional 2940-nm erbium-doped yttrium aluminum garnet laser with a nonablative fractional 1550-nm erbium-doped glass laser for the treatment of photoaged Asian skin.

    PubMed

    Moon, Hye-Rim; Yun, Woo-Jin; Lee, Ye Jin; Lee, Mi-Woo; Chang, SungEun

    2015-01-01

    As compared with ablative fractional CO2 laser, ablative fractional erbium-doped yttrium aluminum garnet (Er:YAG) laser is considered to be a more suitable treatment option for photoaged skin in Asians due to the lower incidence of postinflammatory hyperpigmentation. To compare the efficacy and safety of ablative fractional Er:YAG laser (ablative fractional resurfacing [AFR]) and nonablative fractional 1550-nm Er:glass laser (non-AFR [NAFR]) in the treatment of photoaging. This was a prospective, randomized, double-blinded comparative study. In three sessions, at four-week intervals, 19 patients received Er:YAG AFR, and 15 patients received Er:glass NAFR. Pigmentation, uneven tone/erythema, wrinkles and overall features of photoaging were scored. Patient satisfaction, adverse effects and pain scores were recorded. Melanin and erythema indexes were measured. Reductions in pigmentation and uneven tone/erythema scores were significantly greater after Er:YAG AFR, while wrinkle score reduction was significantly greater after Er:glass NAFR. Physician and patient assessments for the overall features showed greater improvement in the Er:glass NAFR. Treatment-related pain or adverse events were less in the Er:YAG AFR. Both Er:YAG AFR and Er:glass NAFR are effective and safe and could be used in a complementary manner for treating photoaged Asian skin.

  4. Prospective Comparison of Dual Wavelength Long-Pulsed 755-nm Alexandrite/1,064-nm Neodymium:Yttrium-Aluminum-Garnet Laser versus 585-nm Pulsed Dye Laser Treatment for Rosacea.

    PubMed

    Seo, Hyun-Min; Kim, Jung-In; Kim, Han-Saem; Choi, Young-Jun; Kim, Won-Serk

    2016-10-01

    Rosacea treatments including oral/topical medications and laser therapy are numerous but unsatisfactory. To compare the effectiveness of the dual wavelength long-pulsed 755-nm alexandrite/1,064-nm neodymium: yttrium-aluminum-garnet laser (LPAN) with that of 585-nm pulsed dye laser (PDL) for rosacea. This was a randomized, single-blinded, comparative study. Full face received four consecutive monthly treatments with LPAN or PDL, followed-up for 6 months after the last treatment. Erythema index was measured by spectrophotometer, and digital photographs were evaluated by consultant dermatologists for physician's global assessment. Subjective satisfaction surveys and adverse effects were recorded. Forty-nine subjects with rosacea enrolled and 12 dropped out. There were no significant differences between LPAN and PDL in the mean reduction of the erythema index (p=0.812; 3.6% vs. 2.8%), improvement of physician's global assessment (p=1.000; 88.9% vs. 89.5%), and subject-rated treatment satisfaction (p=0.842; 77.8% vs. 84.2%). PDL showed more adverse effects including vesicles than LPAN (p=0.046; 26.3% vs. 0.0%). No other serious or permanent adverse events were observed in both treatments. Both LPAN and PDL may be effective and safe treatments for rosacea.

  5. Elastic anisotropy of shocked aluminum single crystals: Use of molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zimmerman, J. A.; Winey, J. M.; Gupta, Y. M.

    2011-05-01

    Molecular dynamics (MD) calculations were used to examine shock wave propagation along [100], [111], and [110] directions in aluminum single crystals. Four different embedded-atom method (EAM) potentials were used to obtain wave profiles in ideal (defect-free) crystals shocked to peak longitudinal stresses approaching 13 GPa. Due to the lack of defects in the simulated crystals, the peak stresses considered, and the short time scales examined, inelastic deformation was not observed in the MD simulations. Time-averaged and spatially averaged continuum variables were determined from the MD simulations to compare results from different potentials and to provide a direct comparison with results from nonlinear elastic continuum calculations that incorporated elastic constants up to fourth order. These comparisons provide a basis for selecting the optimal potential from among the four potentials examined. MD results for shocks along the [100] direction show significant differences for stresses and densities determined from simulations using different EAM potentials. In contrast, the continuum variables for shocks along the [111] and [110] directions show smaller differences for three of the four potentials examined. Comparisons with the continuum calculations show that the potential developed recently by Winey, Kubota, and Gupta [Modell. Simul. Mater. Sci. Eng.0965-039310.1088/0965-0393/17/5/055004 17, 055004 (2009)] provides the best overall agreement between the MD simulations and the continuum calculations. As such, this potential is recommended for MD simulations of shock wave propagation in aluminum single crystals. Extending the current findings to elastic-plastic deformation would be desirable. More generally, our work demonstrates that MD simulations of elastic shock waves in defect-free single crystals, in combination with nonlinear elastic continuum calculations, constitute an important step in establishing the applicability of classical MD potentials for

  6. Implications of garnet resorption for the Lu-Hf garnet geochronometer: Makhevinekh Lake Pluton aureole, Labrador

    NASA Astrophysics Data System (ADS)

    Kelly, E. D.; Carlson, W. D.; Connelly, J.

    2009-12-01

    In the contact aureole of the Makhevinekh Lake Pluton (MLP), Labrador, garnet resorption caused redistribution of Lu and loss of Hf, creating spuriously young Lu-Hf ages. Resetting of the Lu-Hf system by contact metamorphic heating is not primarily responsible for progressively younger ages toward the MLP; instead, ages depend upon the degree of garnet resorption and the original core-to-rim Lu zoning. Garnet grew during granulite-facies regional metamorphism at 1850 Ma. At 1322 Ma, garnet rims were replaced by coronas of opx + crd during contact metamorphism. Garnet-rutile and garnet-ilmenite Lu-Hf geochronology using bulk garnet separates yields ages younging from 1878 ±22 Ma at 4025 m from the contact to 1397 ±8 Ma at 450 m from the contact. Toward the contact, garnet Lu/Hf ratios increase and garnet crystals are progressively more resorbed. Concentrations of Lu measured by LA-ICP-MS along radial traverses on central sections through relict garnets decrease gently away from the cores but rise steeply within 50-200 microns of the edge of the relict garnet. Enrichments of Lu in rims of relict garnets demonstrate strong partitioning of Lu into garnet during resorption and limited intracrystalline diffusion of Lu during contact metamorphism. Hf distributions could not be measured, but considering the strong incompatibility of Hf with garnet, it is likely that all Hf in resorbed portions of the garnets was lost from the crystals. We hypothesize that Lu-Hf ages in the aureole are controlled predominantly by retention of Lu and loss of Hf during garnet resorption. We tested this hypothesis with a simple numerical model in which we treat a population of garnets of uniform size with identical original Lu growth zoning. The model simulates: (1) Lu-Hf decay for a specified period before resorption; (2) retention of Lu and loss of Hf from the rim during instantaneous resorption; and (3) Lu-Hf decay during a specified period after resorption. We varied the volume fraction

  7. EPR Investigation of UV-Irradiated Single Crystals of Chromate-Doped Methylammonium and Potassium Aluminum Alums

    NASA Astrophysics Data System (ADS)

    Yu, Jiang-Tsu; Lou, Ssu-Hao

    1993-08-01

    Electron paramagnetic resonance (EPR) has been used to identify and analyze a CrO 3-4 species produced by UV irradiation in single crystals of chromate-doped methylammonium aluminum alum and in potassium aluminum alum lightly codoped with the methylammonium ion. The photoreduction is a simple reduction of the type CrO 2-4 + e- → CrO 3-4, where the odd electron is a photoelectron liberated by the methylammonium ion.

  8. Magma, Magma, Quite Contaminated, How Does Your Garnet Grow?

    NASA Astrophysics Data System (ADS)

    Lackey, J.; Romero, G. A.; Valley, J. W.

    2010-12-01

    Garnet in granitoid rocks has drawn considerable attention and discussion because of uncertainty surrounding its origins. For example, enrichment of Al, resulting in peraluminous magmas capable of crystallizing garnets, may be controlled by contamination or extreme differentiation; Mn enrichment in aplitic and pegmatitic phases suggests garnet may appear only at relatively low, near solidus temperatures. Peritectic garnet, grown by magma-wallrock reaction, may be confused with magmatic garnet, and xenocrysts of metamorphic garnet, entrained from wallrocks, further complicate interpretation. We address these uncertainties with the SIMS analysis of oxygen isotope variations in single garnet crystals and crystal populations in granitic rocks. Values of δ18O were measured on a CAMECA IMS 1280 using a 10 µm spot size and typical precision of ± 0.3 at 2 standard deviations. Analyses were corrected for instrumental mass fractionation according to the newly solved bias correction protocol for garnet (Page et al. 2010). Samples were collected from the Devonian Togus and Hallowell plutons in the south central Maine. These plutons are an ideal site for this study because they are peraluminous and contain pervasive garnet, they locally intrude pelitic, garnet-bearing wallrocks, and they have field evidence of xenolith entrainment and peritectic reaction of xenoliths and the host magmas. Garnet δ18O values of 7.5-10.5‰ show a large range of crustal input to host magmas. Crystal-to-crystal variation of δ18O in hand-samples varies up to 2‰, confirming that garnet populations have complex origins. Traverses (20-50 spots) of single crystals show that δ18O varies up to 1‰, with rims of crystals (outer 50-100µm) being up to 1‰ higher or lower than interiors. Increases of δ18O are interpreted as late-stage contamination, whereas lower δ18O rims, with correspondence to decreasing Fe/Mg ratio, suggest growth during falling magma temperature (50-100°C). Some garnet

  9. Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals

    NASA Astrophysics Data System (ADS)

    Hasnaoui, A.; Politano, O.; Salazar, J. M.; Aral, G.; Kalia, R. K.; Nakano, A.; Vashishta, P.

    2005-03-01

    The oxidation of aluminum single crystals is studied using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. The simulations are performed on three aluminum low-index surfaces ((1 0 0), (1 1 0) and (1 1 1)) at room temperature. The results show that the oxide film growth kinetics is independent of the crystallographic orientation under the present conditions. Beyond a transition regime (100 ps) the growth kinetics follow a direct logarithmic law and present a limiting thickness of ˜3 nm. The obtained amorphous structure of the oxide film has initially Al excess (compared to the composition of Al 2O 3) and evolves, during the oxidation process, to an Al percentage of 45%. We observe also the presence of an important mobile porosity in the oxide. Analysis of atomistic processes allowed us to conclude that the growth proceeds by oxygen atom migration and, to a lesser extent, by aluminum atoms migration. In both cases a layer-by-layer growth mode is observed. The results are in good agreement with both experiments and earlier MD simulations.

  10. Third-order nonlinearity and passive Q-switching of Cr⁴⁺:YGG garnet crystal.

    PubMed

    Wang, Shuxian; Zhang, Yuxia; Wu, Kui; Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Zhang, Guanghui; Xiong, Qihua

    2015-05-15

    We demonstrate the third-order nonlinear optical properties of Cr(4+):Y(3)Ga(5)O(12) (Cr(4+):YGG) and Q-switched lasers with Cr(4+):YGG as the saturable absorber for the first time to our knowledge. The third-order nonlinear properties, including the optical Kerr nonlinearity and saturable absorption, were systematically measured and analyzed in detail by using a Z-scan technique. The measured data show that Cr(4+):YGG has a large nonlinear refractive index, ground-state absorption cross section, and excited-state absorption cross section in contrast to Cr(4+):Y(3)Al(5)O(12) (Cr(4+):YAG). With a Nd:YGG crystal as the gain medium and a Cr(4+):YGG crystal as the saturable absorber, the passively Q-switched laser was performed. The shortest pulse width and largest pulse energy were achieved at the absorbed pump power of 8 W with the values of 9.1 ns and 26.1 μJ, respectively, corresponding to the average output power of 0.87 W and peak power of 2.9 kW. The results indicate that Cr(4+):YGG is an available and promising optical switcher for pulsed lasers.

  11. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Razorenov, S. V.; Baumung, K.; Singer, J.

    2001-07-01

    This article presents experimental results of the dynamic yield strength and dynamic tensile strength ("spall strength") of aluminum single crystals at shock-wave loading as a function of temperature. The load duration was ˜40 and ˜200 ns. The temperature varied from 20 to 650 °C which is only by 10 °C below the melting temperature. A linear growth of the dynamic yield strength by more than a factor of 4 was observed within this temperature range. This is attributed to the phonon drag effect on the dislocation motion. High dynamic tensile strength was maintained over the whole temperature range, including the conditions at which melting should start in a material under tension. This could be an indication of the existence of superheated states in solid crystals.

  12. Structural properties of a-Si films and their effect on aluminum induced crystallization

    SciTech Connect

    Tankut, Aydin; Ozkol, Engin; Karaman, Mehmet; Turan, Rasit; Canli, Sedat

    2015-10-15

    In this paper, we report the influence of the structural properties of amorphous silicon (a-Si) on its subsequent crystallization behavior via the aluminum induced crystallization (AIC) method. Two distinct a-Si deposition techniques, electron beam evaporation and plasma enhanced chemical vapor deposition (PECVD), are compared for their effect on the overall AIC kinetics as well as the properties of the final poly-crystalline (poly-Si) silicon film. Raman and FTIR spectroscopy results indicate that the PECVD grown a-Si films has higher intermediate-range order, which is enhanced for increased hydrogen dilution during deposition. With increasing intermediate-range order of the a-Si, the rate of AIC is diminished, leading larger poly-Si grain size.

  13. Fabrication of Si(111) crystalline thin film on graphene by aluminum-induced crystallization

    SciTech Connect

    Høiaas, I. M.; Kim, D. C. E-mail: helge.weman@ntnu.no; Weman, H. E-mail: helge.weman@ntnu.no

    2016-04-18

    We report the fabrication of a Si(111) crystalline thin film on graphene by the aluminum-induced crystallization (AIC) process. The AIC process of Si(111) on graphene is shown to be enhanced compared to that on an amorphous SiO{sub 2} substrate, resulting in a more homogeneous Si(111) thin film structure as revealed by X-ray diffraction and atomic force microscopy measurements. Raman measurements confirm that the graphene is intact throughout the process, retaining its characteristic phonon spectrum without any appearance of the D peak. A red-shift of Raman peaks, which is more pronounced for the 2D peak, is observed in graphene after the crystallization process. It is found to correlate with the red-shift of the Si Raman peak, suggesting an epitaxial relationship between graphene and the adsorbed AIC Si(111) film with both the graphene and Si under tensile strain.

  14. Intense Pulsed Light and Q-Switched 1,064-nm Neodymium-Doped Yttrium Aluminum Garnet Laser Treatment for the Scarring Lesion of Discoid Lupus Erythematosus.

    PubMed

    Byun, Yun Sun; Son, Jee Hee; Cho, Yong Se; Chung, Bo Young; Cho, Hee Jin; Park, Chun Wook; Kim, Hye One

    2017-06-01

    Discoid lupus erythematosus (DLE) is a chronic form of cutaneous lupus that can cause permanent scarring. Treatment of DLE includes protection from sunlight and artificial sources of ultraviolet light, as well as systemic and topical medications. The first-line standard therapies are antimalarials and topical steroids. Other systemic therapies include systemic steroid, azathioprine, dapsone, and immunosuppressive agents. Topical tacrolimus and pimecrolimus have also been evaluated. Recent studies reported that several treatments, including pulsed dye laser, CO2 laser, intense pulsed light (IPL), and 1,064-nm long-pulse neodymium-doped yttrium aluminum (Nd:YAG) have been used for the cosmetic treatment of DLE. Here, we report a case of a DLE scar that was successfully treated with a combination therapy of IPL and Q-switched 1,064-nm Nd:YAG laser.

  15. Hydrous Na-garnet from Garnet Ridge; products of mantle metasomatism underneath the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Sakamaki, Kunihiko; Sato, Yuto; Ogasawara, Yoshihide

    2016-12-01

    This is the first report on amphibole exsolution in pyrope from the Colorado Plateau. Pyrope crystals delivered from mantle depths underneath the Colorado Plateau by kimberlitic volcanism at 30 Ma were collected at Garnet Ridge, northern Arizona. The garnet grains analyzed in this study occur as discrete crystals (without adjacent rock matrix) and are classified into two major groups, Cr-rich pyrope and Cr-poor pyrope. The Cr-poor pyrope group is divided into four subgroups based on exsolved phases: amphibole lamella type, ilmenite lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type. Exsolved amphibole occurs in amphibole lamella type, dense lamellae type, and clinopyroxene/amphibole lamellae type of Cr-poor pyrope. The amphibole crystals tend to have preferred orientations in their garnet hosts and occur as monomineralic hexagonal or rhombic prisms and tablets, and as multimineralic needles or blades with other exsolved phases. Exsolved amphibole has pargasitic compositions (Na2O up to 1.6 apfu based on 23 oxygen). Garnet host crystals that have undergone amphibole exsolution have low OH contents (2-42 ppmw H2O) compared to garnets that do not have amphibole lamellae (up to 115 ppmw H2O). The low OH contents of garnets hosting amphibole lamellae suggest loss of OH from garnet during amphibole exsolution. Amphibole exsolution from pyrope resulted from breakdown of a precursor "hydrous Na-garnet" composition (Mg,Na+ x)3(Al2 - x, Mgx)2Si3O12 - 2x(OH)2x. Exsolution of amphibole and other phases probably occurred during exhumation to depths shallower than 100 km prior to volcanic eruption.

  16. Identification and characterization of point defects in aluminum nitride and zinc oxide crystals

    NASA Astrophysics Data System (ADS)

    Evans, Sean M.

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) studies have been performed on single crystals of aluminum nitride (AlN) and zinc oxide (ZnO), two wide-band-gap semiconductors having the wurtzite crystal structure. These studies were used to characterize point defects in each material. In the first study in AlN, new EPR and ENDOR spectra were acquired from a deep donor. Although observed in as-grown crystals, exposure to x rays significantly increased the concentration of this center. ENDOR identified a strong hyperfine interaction with one aluminum neighbor along the c axis and weaker equivalent hyperfine interactions with three additional aluminum neighbors in the basal plane. These aluminum interactions indicate that the responsible center was located at a nitrogen site. The observed paramagnetic defect is either an oxygen substituting for nitrogen or a nitrogen vacancy. An analysis of the hyperfine data suggests that substitutional oxygen is the most likely candidate. The second point defect studied in AlN was silicon substituting for aluminum. Silicon is a shallow donor in AlN, and its neutral charge state is paramagnetic. Two samples containing silicon were studied. Only one of the samples was intentionally doped with silicon. The silicon-related EPR signals from these two samples had different behaviors. The signal from the doped sample had behavior similar to that described in previous studies where the silicon was explained as a DX center. The undoped sample had behavior that was inconsistent with a DX center. In ZnO, EPR was used to monitor oxygen vacancies and zinc vacancies in a ZnO crystal irradiated near room temperature with 1.5 MeV electrons. Out-of-phase detection at 30 K greatly enhanced the EPR signals from these vacancies. Following the electron irradiation, but before illumination, Fe3+ ions and nonaxial singly ionized zinc vacancies were observed. Illumination with 325 nm laser light at low temperature

  17. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.

    PubMed

    Mahmoud, Morsi M; Cui, Yuantao; Rohde, Magnus; Ziebert, Carlos; Link, Guido; Seifert, Hans Juergen

    2016-06-23

    Lithium aluminum germanium phosphate (LAGP) glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD) were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW) processing. Thirty GHz microwave (MW) processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM). Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.

  18. Deposition and characterization of silicon thin-films by aluminum-induced crystallization

    NASA Astrophysics Data System (ADS)

    Ebil, Ozgenc

    Polycrystalline silicon (poly-Si) as a thin-film solar cell material could have major advantages compared to non-silicon thin-film technologies. In theory, thin-film poly-Si may retain the performance and stability of c-Si while taking advantage of established manufacturing techniques. However, poly-Si films deposited onto foreign substrates at low temperatures typically have an average grain size of 10--50 nm. Such a grain structure presents a potential problem for device performance since it introduces an excessive number of grain boundaries which, if left unpassivated, lead to poor solar cell properties. Therefore, for optimum device performance, the grain size of the poly-Si film should be at least comparable to the thickness of the films. For this project, the objectives were the deposition of poly-Si thin-films with 2--5 mum grain size on glass substrates using in-situ and conventional aluminum-induced crystallization (AIC) and the development of a model for AIC process. In-situ AIC experiments were performed using Hot-Wire Chemical Vapor Deposition (HWCVD) both above and below the eutectic temperature (577°C) of Si-Al binary system. Conventional AIC experiments were performed using a-Si layers deposited on aluminum coated glass substrates by Electron-beam deposition, Plasma Enhanced Chemical Vapor Deposition (PECVD) and HWCVD. Continuous poly-Si films with an average grain size of 10 mum on glass substrates were achieved by both in-situ and conventional aluminum-induced crystallization of Si below eutectic temperature. The grain size was determined by three factors; the grain structure of Al layer, the nature of the interfacial oxide, and crystallization temperature. The interface oxide was found to be crucial for AIC process but not necessary for crystallization itself. The characterization of interfacial oxide layer formed on Al films revealed a bilayer structure containing Al2O3 and Al(OH)3 . The effective activation energy for AIC process was determined

  19. Garnets from the Camafuca-Camazambo kimberlite (Angola).

    PubMed

    Correia, Eugénio A; Laiginhas, Fernando A T P

    2006-06-01

    This work presents a geochemical study of a set of garnets, selected by their colors, from the Camafuca-Camazambo kimberlite, located on northeast Angola. Mantle-derived garnets were classified according to the scheme proposed by Grütter et al. (2004) and belong to the G1, G4, G9 and G10 groups. Both sub-calcic (G10) and Ca-saturated (G9) garnets, typical, respectively, of harzburgites and lherzolites, were identified. The solubility limit of knorringite molecule in G10D garnets suggests they have crystallized at a minimum pressure of about 40 to 45 kbar (4-4.5 GPa). The occurrence of diamond stability field garnets (G10D) is a clear indicator of the potential of this kimberlite for diamond. The chemistry of the garnets suggests that the source for the kimberlite was a lherzolite that has suffered a partial melting that formed basaltic magma, leaving a harzburgite as a residue.

  20. Study to Determine the Feasibility of Utilizing Skull-Melting Techniques for the Growth of Single Crystals of Yttrium Vanadate

    DTIC Science & Technology

    1986-04-01

    1• STUDY TO DETERMINE THE FEASIBILITY T" ~OF UTILIZING SKULL-MELTING TECHNIQUES . S~FOR THE GROWTH OF SINGLE CRYSTALS OF S~YTTRIUM. VANADATE.. f...determine the feasibility of Final Report utilizing skull-melting techniques for the 15 Sept. 1981 to 14 Sept 1984 growth of single crystals of yttrium...KEY WORDS (Continue on reveree side If neceeess , and Identify by block number) Yttrium Vanadate, Yttrium Aluminum Garnet Crystal Growth , Cold Crucible

  1. Aluminum manganese oxides with mixed crystal structure: high-energy-density cathodes for rechargeable sodium batteries.

    PubMed

    Han, Dong-Wook; Ku, Jun-Hwan; Kim, Ryoung-Hee; Yun, Dong-Jin; Lee, Seok-Soo; Doo, Seok-Gwang

    2014-07-01

    We report a new discovery for enhancing the energy density of manganese oxide (Nax MnO2 ) cathode materials for sodium rechargeable batteries by incorporation of aluminum. The Al incorporation results in NaAl(0.1) Mn(0.9) O2 with a mixture of tunnel and layered crystal structures. NaAl(0.1) Mn(0.9) O2 shows a much higher initial discharge capacity and superior cycling performance compared to pristine Na(0.65) MnO2 . We ascribe this enhancement in performance to the formation of a new orthorhombic layered NaMnO2 phase merged with a small amount of tunnel Na(0.44) MnO2 phase in NaAl(0.1) Mn(0.9) O2 , and to improvements in the surface stability of the NaAl(0.1) Mn(0.9) O2 particles caused by the formation of Al-O bonds on their surfaces. Our findings regarding the phase transformation and structure stabilization induced by incorporation of aluminum, closely related to the structural analogy between orthorhombic Na(0.44) MnO2 and NaAl(0.1) Mn(0.9) O2 , suggest a strategy for achieving sodium rechargeable batteries with high energy density and stability.

  2. Study of polycrystalline silicon obtained by aluminum-induced crystallization depending on process conditions

    NASA Astrophysics Data System (ADS)

    Pereyaslavtsev, Alexander; Sokolov, Igor; Sinev, Leonid

    2016-11-01

    In this paper, we have decided to consider an alternative method of producing polycrystalline silicon and study change of its electrophysical characteristics depending on process parameters. As an alternative low-pressure chemical vapor deposition method appears aluminum-induced crystallization (AIC), which allows to obtain a polycrystalline silicon film is significantly larger grain size, thereby reducing contribution of grain boundaries. A comprehensive study of polycrystalline silicon was carried out using a variety of microscopic (OM, SEM) and spectroscopic (RAMAN, XPS) and diffraction (EBSD, XRD) analytic methods. We also considered possibility of self-doping in AIC, result of which was obtained polycrystalline silicon with different resistance. Additionally considered changes in temperature coefficient of resistance depending on technological parameters of AIC process.

  3. Elastic response of shocked aluminum single crystals: a continuum analysis of molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Zimmerman, J. A.; Winey, J. M.; Gupta, Y. M.

    2011-06-01

    Molecular dynamics (MD) simulations were used to examine elastic shock wave propagation in aluminum single crystals along [100], [110] and [111] directions using four different embedded-atom method potentials. Continuum variables extracted from MD results show that stresses, densities, and temperatures for [100] shock propagation are significantly different for the various potentials, while the results for [110] and [111] propagation are similar for three of the four potentials. Overall, the recent potential by Winey, Kubota and Gupta [MSMSE 17, 055004 (2009)] provides the best agreement with nonlinear elastic calculations that include elastic constants up to fourth order. Our MD-continuum approach provides a key step in establishing the applicability of classical MD potentials for dynamic compression. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact

    SciTech Connect

    Ju, Yuanyuan; Zhang, Qingming

    2015-12-15

    Molecular dynamics method is used to study the threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact. Two effective simulation methods, piston-driven method and multi-scale shock technique, are used to simulate the shock wave. The simulation results from the two methods agree well with the experimental data, indicating that the shock wave velocity is linearly dependent on the particle velocity. The atom is considered to be ionized if the increase of its internal energy is larger than the first ionization energy. The critical impact velocity for plasma phase transition is about 13.0 km/s, corresponding to the threshold of pressure and temperature which is about 220 GPa and 11.0 × 10{sup 3 }K on the shock Hugoniot, respectively.

  5. Optical properties of one-dimensional photonic crystals based on porous films of anodic aluminum oxide

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Klimonsky, S. O.; Filatov, V. V.; Napolskii, K. S.

    2016-04-01

    The optical properties of one-dimensional photonic crystals based on porous anodic aluminum oxide films have been studied by measuring transmittance and specular reflectance spectra in the visible and UV spectral regions. Angular dependences of the spectral positions of optical stop bands are obtained. It is shown that the reflectance within the first stop band varies from point to point on the sample surface, reaching a level of 98-99% at some points. The dispersion relation for electromagnetic waves in the model of infinite periodic structure is calculated for the samples under study. The possibility of using models with an infinite or finite number of layers to calculate reflectance spectra near the first optical stop band is discussed.

  6. Growth of P-type 4H-SiC single crystals by physical vapor transport using aluminum and nitrogen co-doping

    NASA Astrophysics Data System (ADS)

    Eto, Kazuma; Suo, Hiromasa; Kato, Tomohisa; Okumura, Hajime

    2017-07-01

    P-type 4H-silicon carbide (SiC) crystal growth has been achieved by physical vapor transport using aluminum and nitrogen co-doping. Aluminum carbide with a two-zone heating furnace was used for p-type doping, and yielded homogenous aluminum doping during SiC crystal growth by physical vapor transport. The 4H-SiC polytype with high-aluminum doping was unstable, but aluminum-nitrogen co-doping improved its stability. We grew p-type 4H-SiC bulk crystals of less than 90 mΩ cm by using co-doping. Secondary-ion mass spectrometry and Raman spectroscopy showed that the crystal growth of highly doped p-type SiC can be achieved by using the physical vapor transport method.

  7. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte

    PubMed Central

    Mahmoud, Morsi M.; Cui, Yuantao; Rohde, Magnus; Ziebert, Carlos; Link, Guido; Seifert, Hans Juergen

    2016-01-01

    Lithium aluminum germanium phosphate (LAGP) glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD) were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW) processing. Thirty GHz microwave (MW) processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM). Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery. PMID:28773627

  8. Crystallization kinetics and phase transformations in aluminum ion-implanted electrospun TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Albetran, H.; Low, I. M.

    2016-12-01

    Electrospun TiO2 nanofibers were implanted with aluminum ions, and their crystallization kinetics, phase transformations, and activation energies were investigated from 25 to 900 °C by in situ high-temperature synchrotron radiation diffraction. The amorphous non-implanted and Al ion-implanted TiO2 nanofibers transformed to crystalline anatase at 600 °C and to rutile at 700 °C. The TiO2 phase transformation of the Al ion-implanted material was accelerated relative to non-implanted sample. Compared with non-implanted nanofibers, the Al-implanted materials yielded a decreased activation energies from 69(17) to 29(2) kJ/mol for amorphous-to-anatase transformation and from 112(15) to 129(5) kJ/mol for anatase-to-rutile transformation. A substitution of smaller Al ions for Ti in the TiO2 crystal structure results in accelerated titania phase transformation and a concomitant reduction in the activation energies.

  9. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by erbium:yttrium-aluminum-garnet (Er:YAG) lasers.

    PubMed

    Ayobian-Markazi, Nader; Fourootan, Tahereh; Zahmatkesh, Atieh

    2014-01-01

    Erbium:yttrium-aluminum-garnet (Er:YAG) laser treatment is an effective option for the removal of bacterial plaques. Many studies have shown that Er:YAG lasers cannot re-establish the biocompatibility of titanium surfaces. The aim of this study was to evaluate the responses of the human osteoblast-like cell line, SaOs-2, to sand-blasted and acid-etched (SLA) titanium surface irradiation using different energy settings of an Er:YAG laser by examining cell viability and morphology. Forty SLA titanium disks were irradiated with an Er:YAG laser at a pulse energy of either 60 or 100 mJ with a pulse frequency of 10 Hz under water irrigation and placed in a 24-well plate. Human osteoblast-like SaOs-2 cells were seeded onto the disks in culture media. Cells were then kept in an incubator with 5% carbon dioxide at 37 °C. Each experimental group was divided into two smaller groups to evaluate cell morphology by scanning electron microscope and cell viability using 3-4,5-dimethylthiazol 2,5-diphenyltetrazolium bromide test. In both the 60 and the 100 mJ experimental groups, spreading morphologies, with numerous cytoplasmic extensions, were observed prominently. Similarly, a majority of cells in the control group exhibited spreading morphologies with abundant cytoplasmic extensions. There were no significant differences among the laser and control groups. The highest cell viability rate was observed in the 100 mJ laser group. No significant differences were observed between the cell viability rates of the two experimental groups (p = 1.00). In contrast, the control group was characterized by a significantly lower cell viability rate (p < 0.001). Treatments with an Er:YAG laser at a pulse energy of either 60 or 100 mJ do not reduce the biocompatibility of SLA titanium surfaces. In fact, modifying SLA surfaces with Er:YAG lasers improved the biocompatibility of these surfaces.

  10. Effects of two erbium-doped yttrium aluminum garnet lasers and conventional treatments as composite surface abrasives on the shear bond strength of metal brackets bonded to composite resins

    PubMed Central

    Sobouti, Farhad; Dadgar, Sepideh; Sanikhaatam, Zahra; Nateghian, Nazanin; Saravi, Mahdi Gholamrezaei

    2016-01-01

    Background: Bonding brackets to dental surfaces restored with composites are increasing. No studies to date have assessed the efficacy of laser irradiation in roughening of composite and the resulted shear bond strength (SBS) of the bonded bracket. We assessed, for the 1st time, the efficacy of two laser beams compared with conventional methods. Materials and Methods: Sixty-five discs of light-cured composite resin were stored in deionized distilled water for 7 days. They were divided into five groups of 12 plus a group of five for scanning electron microscopy (SEM): Bur-abrasion followed by phosphoric acid etching (bur-PA), hydrofluoric acid conditioning (HF), sandblasting, 3 W and 2 W erbium-doped yttrium aluminum garnet laser irradiation for 12 s. After bracket bonding, specimens were water-stored (24 h) and thermocycled (500 cycles), respectively. SBS was tested at 0.5 mm/min crosshead speed. The adhesive remnant index (ARI) was scored under ×10 magnification. SEM was carried out as well. Data were analyzed using analysis of variance (ANOVA), Kruskal–Wallis, Tukey, Dunn, one-sample t-test/Wilcoxon tests, and Weibull analysis (α =0.05). Results: The SBS values (megapascal) were bur-PA (11.07 ± 1.95), HF (19.70 ± 1.91), sandblasting (7.75 ± 1.10), laser 2 W (15.38 ± 1.38), and laser 3 W (20.74 ± 1.73) (compared to SBS = 6, all P = 0.000). These differed significantly (ANOVA P = 0.000) except HF versus 3 W laser (Tukey P > 0.05). ARI scores differed significantly (Kruskal–Wallis P = 0.000), with sandblasting and 2 W lasers having scores inclined to the higher end (safest debonding). Weibull analysis implied successful clinical outcome for all groups, except for sandblasting with borderline results. Conclusion: Considering its high efficacy and the lack of adverse effects bound with other methods, the 3 W laser irradiation is recommended for clinical usage. PMID:26998473

  11. Crystal Structure of Garnet-Related Li-Ion Conductor Li7–3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification?

    PubMed Central

    2016-01-01

    Li-oxide garnets such as Li7La3Zr2O12 (LLZO) are among the most promising candidates for solid-state electrolytes to be used in next-generation Li-ion batteries. The garnet-structured cubic modification of LLZO, showing space group Ia-3d, has to be stabilized with supervalent cations. LLZO stabilized with Ga3+ shows superior properties compared to LLZO stabilized with similar cations; however, the reason for this behavior is still unknown. In this study, a comprehensive structural characterization of Ga-stabilized LLZO is performed by means of single-crystal X-ray diffraction. Coarse-grained samples with crystal sizes of several hundred micrometers are obtained by solid-state reaction. Single-crystal X-ray diffraction results show that Li7–3xGaxLa3Zr2O12 with x > 0.07 crystallizes in the acentric cubic space group I-43d. This is the first definite record of this cubic modification for LLZO materials and might explain the superior electrochemical performance of Ga-stabilized LLZO compared to its Al-stabilized counterpart. The phase transition seems to be caused by the site preference of Ga3+. 7Li NMR spectroscopy indicates an additional Li-ion diffusion process for LLZO with space group I-43d compared to space group Ia-3d. Despite all efforts undertaken to reveal structure–property relationships for this class of materials, this study highlights the potential for new discoveries. PMID:27019548

  12. Timing of anatexis and melt crystallization in the Socorro-Guaxupé Nappe, SE Brazil: Insights from trace element composition of zircon, monazite and garnet coupled to Usbnd Pb geochronology

    NASA Astrophysics Data System (ADS)

    Rocha, B. C.; Moraes, R.; Möller, A.; Cioffi, C. R.; Jercinovic, M. J.

    2017-04-01

    The timing of partial melting and melt crystallization in granulite facies rocks of the Socorro-Guaxupé Nappe (SGN), Brazil is constrained using a combination of imaging techniques, LA-ICP-MS and EPMA dating, trace element geochemistry and thermobarometry. (Orthopyroxene)-garnet-bearing migmatite that records extensive biotite dehydration melting shows evidence for a clockwise P-T-t path. UHT peak conditions were attained at 1030 ± 110 °C, 11.7 ± 1.4 kbar, with post-peak cooling to 865 ± 38 °C, 8.9 ± 0.8 kbar. Cryogenian igneous inheritance of ca. 720-640 Ma is identified in oscillatory zoned zircon cores (n = 167) with steep HREE patterns. Resorbed, Y-rich monazite cores preserve a prograde growth stage at 631 ± 4 Ma prior to the partial melting event, providing an upper age limit for the granulite facies metamorphism in the SGN. REE-rich, Th-depleted monazite related to apatite records the initial stages of decompression at 628 ± 4 Ma. Multiple monazite growth episodes record melt crystallization events at 624 ± 3 Ma, 612 ± 5 Ma and 608 ± 6 Ma. Stubby, equant ;soccer ball; zircon provide evidence for melt crystallization at 613 ± 2 Ma and 607 ± 4 Ma. The excess scatter in zircon and monazite age populations between 629 ± 4 and 601 ± 3 Ma is interpreted as discontinuous and episodic growth within this age range, characterizing a prolonged metamorphic event in the SGN lasting ca. 30 m.y. The development of Y + HREE-rich monazite rims at ca. 600 Ma documents retrograde garnet breakdown, extensive biotite growth and the final stages of melt crystallization. Th-rich, Y + HREE-poor monazite rims at ca. 590 Ma record monazite recrystallization.

  13. Crystal Structure of Garnet-Related Li-Ion Conductor Li7-3x Ga x La3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification?

    PubMed

    Wagner, Reinhard; Redhammer, Günther J; Rettenwander, Daniel; Senyshyn, Anatoliy; Schmidt, Walter; Wilkening, Martin; Amthauer, Georg

    2016-03-22

    Li-oxide garnets such as Li7La3Zr2O12 (LLZO) are among the most promising candidates for solid-state electrolytes to be used in next-generation Li-ion batteries. The garnet-structured cubic modification of LLZO, showing space group Ia-3d, has to be stabilized with supervalent cations. LLZO stabilized with Ga(3+) shows superior properties compared to LLZO stabilized with similar cations; however, the reason for this behavior is still unknown. In this study, a comprehensive structural characterization of Ga-stabilized LLZO is performed by means of single-crystal X-ray diffraction. Coarse-grained samples with crystal sizes of several hundred micrometers are obtained by solid-state reaction. Single-crystal X-ray diffraction results show that Li7-3x Ga x La3Zr2O12 with x > 0.07 crystallizes in the acentric cubic space group I-43d. This is the first definite record of this cubic modification for LLZO materials and might explain the superior electrochemical performance of Ga-stabilized LLZO compared to its Al-stabilized counterpart. The phase transition seems to be caused by the site preference of Ga(3+). (7)Li NMR spectroscopy indicates an additional Li-ion diffusion process for LLZO with space group I-43d compared to space group Ia-3d. Despite all efforts undertaken to reveal structure-property relationships for this class of materials, this study highlights the potential for new discoveries.

  14. Surface and crystalline analysis of aluminum oxide single crystal treated by quasistationary compression plasma flow

    SciTech Connect

    Maletic, S.; Popovic, D.M.; Cubrovic, V.; Zekic, A.A.; Dojcilovic, J.

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The effects of treatment of Al{sub 2}O{sub 3} (0001) surface by CPF are analyzed. Black-Right-Pointing-Pointer Oriented low-dimensional structures are occurred for the treated Al{sub 2}O{sub 3} crystal. Black-Right-Pointing-Pointer The dimension of these ripples are 1 {mu}m and the distance between them is about 10 {mu}m. Black-Right-Pointing-Pointer The ripple-shaped structures contain a higher percentage of oxygen than the surroundings. Black-Right-Pointing-Pointer Results could promote CPF as a tool for producing organized oxygen-rich structures. -- Abstract: Material such as aluminum oxide (Al{sub 2}O{sub 3}) is important in electronics industry. On the other hand, plasma is one of the most efficient and sophisticated tools for materials processing. In this work a treatment of Al{sub 2}O{sub 3} (0001) surface by quasistationary compression plasma flow (CPF) is analyzed in detail. Offline metrology was performed using dielectric measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). Oriented low-dimensional periodic structures are occurred for the plasma treated Al{sub 2}O{sub 3} single crystal. In the paper is reported that these oriented ripple-shaped structures contain a higher percentage of oxygen than the surrounding crystal surface. This could be the framework for usage of CPF as a tool in manufacturing of surfaces containing the highly organized oxygen-rich structures.

  15. Features of YAG crystal growth under Ar+CO reducing atmosphere

    NASA Astrophysics Data System (ADS)

    Arhipov, P.; Tkachenko, S.; Vasiukov, S.; Hubenko, K.; Gerasymov, Ia.; Baumer, V.; Puzan, A.; Mateychenko, P.; Lebbou, K.; Sidletskiy, O.

    2016-09-01

    The influence of the reducing Ar+CO atmosphere on the stages of starting raw material preparation, growth and post-growth annealing of yttrium aluminum garnet, Y3Al5O12 (YAG) crystals was studied. The chemical reactions involving CO atmosphere and its impact on the raw material, melt, and crystal composition are determined. Modification of YAG optical properties under the reducing annealing is discussed.

  16. The effect of hydrogen in the mechanism of aluminum-induced crystallization of sputtered amorphous silicon using scanning auger microanalysis

    SciTech Connect

    Hossain, Maruf; Meyer III, Harry M; Abu-Safe, Husam H; Naseem, Hameed; Brown, Walter D

    2006-01-01

    The metal-induced crystallization (MIC) of hydrogenated sputtered amorphous silicon (a-Si:H) using aluminum has been investigated using Xray diffraction (XRD) and scanning Auger microanalysis (SAM). Hydrogenated, as well as non-hydrogenated, amorphous silicon (a-Si) films were sputtered on glass substrates, then capped with a thin layer of Al. Following the depositions, the samples were annealed in the temperature range 200 C to 400 C for varying periods of time. Crystallization of the samples was confirmed by XRD. Non-hydrogenated films started to crystallize at 350 C. On the other hand, crystallization of the samples with the highest hydrogen (H2) content initiated at 225 C. Thus, the crystallization temperature is affected by the H2 content of the a-Si. Material structure following annealing was confirmed by SAM. In this paper, a comprehensive model for MIC of a-Si is developed based on these experimental results.

  17. Structure and scintillation yield of Ce-doped Al–Ga substituted yttrium garnet

    SciTech Connect

    Sidletskiy, Oleg; Kononets, Valerii; Lebbou, Kheirreddine; Neicheva, Svetlana; Voloshina, Olesya; Bondar, Valerii; Baumer, Vyacheslav; Belikov, Konstantin; Gektin, Alexander; Grinyov, Boris; Joubert, Marie-France

    2012-11-15

    Highlights: ► Range of Y{sub 3}(Al{sub 1−x}Ga{sub x}){sub 5}O{sub 12}:Ce solid solution crystals are grown from melt by the Czochralski method. ► Light yield of mixed crystals reaches 130% of the YAG:Ce value at x ∼ 0.4. ► ∼1% of antisite defects is formed in YGG:Ce, but no evidence of this is obtained for the rest of crystals. -- Abstract: Structure and scintillation yield of Y{sub 3}(Al{sub 1−x}Ga{sub x}){sub 5}O{sub 12}:Ce solid solution crystals are studied. Crystals are grown from melt by the Czochralski method. Distribution of host cations in crystal lattice is determined. Quantity of antisite defects in crystals is evaluated using XRD and atomic emission spectroscopy data. Trend of light output at Al/Ga substitution in Y{sub 3}(Al{sub 1−x}Ga{sub x}){sub 5}O{sub 12}:Ce is determined for the first time. Light output in mixed crystals reaches 130% comparative to Ce-doped yttrium–aluminum garnet. Luminescence properties at Al/Ga substitution are evaluated.

  18. Inclusion/lamella mineralogy and chemical characteristics of garnets from the Garnet Ridge in the Colorado Plateau, northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ogasawara, Y.

    2013-12-01

    A wide variety of garnets as xenocrysts and those in xenoliths, come from kimberlitic diatreme (Smith et al. 2004), occurs at the Garnet Ridge. Koga and Ogasawara (2012) classified these garnets into 9 groups: (a) Cr and pyrope-rich garnet, (b) pyrope-rich reddish brown garnet, (c) reddish brown garnet, (d) garnet in eclogite, (e) garnet in metasomatized eclogite, (f) garnet aggregate, (g) garnet megacryst, (h) garnet in metasomatic rock I, (i) garnet in metasomatic rock II. They divided genetically these groups into four: mantle peridotite (a, b), subducted oceanic crust (d, e), high-pressure metasomatism (c, f, g), low-pressure metasomatism (h, i).In this study, the following 4 groups (a, b, f, g) were chose for inclusion mineralogy by laser Raman spectroscopy. Groups (a) and (b): pyrope-rich garnets (a: 45-82, b: 61-80 Prp mol%) both Cr-rich and Cr-poor (a: 1.0-5.9, b: 0.0-1.0 wt.% Cr2O3) are Ca-poor (1.5-7.0 wt.% CaO) and single-crystals of 5-15 mm in diameter. Group (a) is identical to chrome-pyrope based on the classification of kimberlitic garnets by Dawson and Stephens (1975). CaO-Cr2O3 ratio of (a, b) indicates lherzorite origin (Turkin and Sobolev 2009). Wang et al. (1999) have reported the detailed inclusion and lamella mineralogy of pyrope-rich garnets from the Garnet Ridge. We identified inclusions of Chl (OH: 3450, 3582, 3679 cm-1), Amp (OH: 3685, 3711 cm-1), Ol, Opx, Cpx, Rt (OH: 3295 cm-1), Mgs, Dol, Cal, sulfides, fluid (OH: 3445 cm-1) and spherical composite inclusions of Amp, Ap, Dol, Mgs, Rt and sulfides, and oriented lamellae (presumable exsolution) of Qz, Ol, Opx, Cpx, Amp, Chl, Rt, Ilm, crichtonite (6-7 Peaks at 120-820 cm-1), carmichaelite (710-782 cm-1, OH: 3340 cm-1), Ap (OH: 3570 cm-1) and Ti-Chn (OH: 3404, 3527, 3564 cm-1) adjacent to the oriented Ol. The mineral assemblages of the inclusion and lamella show a correlation with the host garnet compositions; inclusions: (a, b) Ol + Opx + Cpx × composite, (b, low Mg) Opx + Cpx + Amp

  19. Crystal growth of Yb 3+-doped oxide single crystals for scintillator application

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Nikl, Martin; Ogino, Hiraku; Lee, Jong-Ho; Fukuda, Tsuguo

    2003-03-01

    Long emission wavelength scintillators are strongly required from the viewpoint of the practical use of silicon photo-diode, which has higher resolution with lower cost compared with photo-multipllier. Among the various scintillator emission centers, we regard emission from Yb 3+ charge-transitions state (CTS) as a candidate. In order to investigate proper hosts for Yb 3+ CTS, the yttrium gallium garnet host and lutetium aluminum garnet host were studied. Transparent and crack-free heavily Yb-doped YGG, i.e. {Y 1- xYb x} 3[Ga] 2(Ga) 3O 12 (Yb: YGG, x=0.15, 0.5, 1.0) and heavily Yb-doped LuAG, i.e. {Lu 1- xYb x} 3[Al] 2(Al) 3O 12 (Yb: LuAG, x=0.15, 0.5, 1.0) single crystals could be grown by the Modified Pulling Down method with <1 1 1> orientation. Emission, excitation spectra and decay kinetics were measured for these crystals. The CT transition of Yb 3+ in the yttrium gallium garnet host was discussed compared with the Yb 3+ one in the lutetium aluminum garnet host.

  20. Experimenting with a Visible Copper-Aluminum Displacement Reaction in Agar Gel and Observing Copper Crystal Growth Patterns to Engage Student Interest and Inquiry

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wu, Meifen; Wang, Xiaogang; Yang, Yangyiwei; Shi, Xiang; Wang, Guoping

    2016-01-01

    The reaction process of copper-aluminum displacement in agar gel was observed at the microscopic level with a stereomicroscope; pine-like branches of copper crystals growing from aluminum surface into gel at a constant rate were observed. Students were asked to make hypotheses on the pattern formation and design new research approaches to prove…

  1. Experimenting with a Visible Copper-Aluminum Displacement Reaction in Agar Gel and Observing Copper Crystal Growth Patterns to Engage Student Interest and Inquiry

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wu, Meifen; Wang, Xiaogang; Yang, Yangyiwei; Shi, Xiang; Wang, Guoping

    2016-01-01

    The reaction process of copper-aluminum displacement in agar gel was observed at the microscopic level with a stereomicroscope; pine-like branches of copper crystals growing from aluminum surface into gel at a constant rate were observed. Students were asked to make hypotheses on the pattern formation and design new research approaches to prove…

  2. Presumed Multiple Metasomatism underneath the Colorado Plateau; Decoding from Chemistry and Inclusion/Lamella Mineralogy of Diverse Garnets from the Garnet Ridge, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ogasawara, Y.

    2015-12-01

    Various garnets containing the information on mantle petrology and related metasomatism occur at the Garnet Ridge, Colorado Plateau. The origins of garnets range from deep mantle to shallow continental crust. These garnets were delivered by kimberlitic diatreme of 30 Ma (Smith et al. 2004). We have classified the garnets into 10 groups (A to J, see figure) by naked eye observation, major chemistry, minor Na-Ti-P, inclusion/lamella mineralogy. Among them, groups A to D are of mantle origin, E to G of subducted oceanic crust origin, and H to J of continental crust origin. We summarized results as in the followings. A: Cr and pyrope-rich garnet has Cr2O3(0.8-6.3 wt.%) and inclusions of Ol, Cpx, Opx, Ti-Chu/Chn and carbonates, indicating carbonated garnet lherzolites as host. Cr contents negatively correlates with Na-Ti-P contents and occurrence of exsolved Rt, Ilm and crichtonite. This indicates Cr-rich end-member is the most "primitive" mantle garnet before metasomatism. B: Pyrope-rich reddish brown garnet of peridotitic origins was subdivided into 4 subgroups (B1 to B4, see figure). Compositional range in Ca-Mg-Fe triangle expands to Fe-rich side from group A. Exsolved Na-bearing amphibole and inclusions of Ap, carbonates and fluid were identified. These indicate metasomatism of group A. C: Garnet megacryst is coarse-grained garnet (2-10 cm across) with crystal faces. This garnet has wide chemical variation plotted in the center area of Ca-Mg-Fe triangle. D: Garnet aggregate has similar chemistry of group C and is composed of several grains. Grain boundaries of garnet were recognized by Rt, Ilm and other minerals and oscillatory zonings of Ca, Mg, Fe and Na-Ti-P. Fluid inclusions of groups C and D suggest these garnets might crystalized from fluid. E: Garnet in eclogite and F: Garnet in metasomatized eclogite are xenolith samples (the Fallaron Plate origin?). Aggregate of Zo+Ab contained in group E indicates decomposed precursor lawsonite inclusion. G: Quartz

  3. Threshold for dynamic re-crystallization in shock loaded aluminum alloy

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, Yury; Divakov, A. K.; Zhigacheva, N. I.; Makarevich, I. P.; Barakhtin, B. K.

    2011-06-01

    Shock loading of D16 aluminum alloy within impact velocity range of 30-450 m/s reveals two regimes of dynamic deformation. Three dynamic variables -- particle velocity Up, particle velocity dispersion D2 and velocity deficit at the plateau of compressive pulse ΔU are registered in real time at every shock. At the impact velocities lower 380 m/s, velocity deficit (which quantitatively characterizes an intensity of meso-macro energy exchange) is very small or absent at all. In this region of impact velocities the structure of material remains invariable. At 380 m/s a catastrophical growth of velocity deficit occurs, which corresponds to start of dynamic re-crystallization process as adaptation mechanism to loss of structural stability of dynamically deformed material. The size of grains decreases from 30 μm to 1,5 -2 μm. The catastrophical growth of velocity deficit happens when rate of change of velocity dispersion becomes higher than rate of change of mean particle velocity, i.e. a criterion (D/u \\Ddot/\\udot ) >= 1 is fulfilled.

  4. Helical Growth of Aluminum Nitride: New Insights into Its Growth Habit from Nanostructures to Single Crystals

    PubMed Central

    Zhang, Xing-Hong; Shao, Rui-Wen; Jin, Lei; Wang, Jian-Yu; Zheng, Kun; Zhao, Chao-Liang; Han, Jie-Cai; Chen, Bin; Sekiguchi, Takashi; Zhang, Zhi; Zou, Jin; Song, Bo

    2015-01-01

    By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model. PMID:25976071

  5. High temperature transducer using aluminum nitride single crystal for laser ultrasound detection

    NASA Astrophysics Data System (ADS)

    Kim, Taeyang; Kim, Jinwook; Jiang, Xiaoning

    2017-04-01

    In this work, a new ultrasound nondestructive testing (NDT) method based on laser-generated Lamb wave detection was proposed for high temperature (HT) NDT. Lamb waves were introduced to a stainless steel plate by the Nd:YAG pulsed laser at one point and detected by aluminum nitride (AlN) transducer at a distant position. The fundamental symmetric (S0) and antisymmetric (A0) mode Lamb waves were successfully propagated in the thin stainless steel plate. The time-of- flight (TOF) of the S0 and A0 mode waves proportionally increased with the distance (D) between the laser source and the sensor, and almost no attenuation of the amplitude was observed. For the HT NDT experiment, AlN single crystal was adopted as the ultrasonic sensor material due to its high thermal resistance of the dielectric and piezoelectric constants at the elevated temperature up to 800 °C. The combination of non-contact, portable laser source as a Lamb wave generator and temperature-robust NDT sensor made of AIN has shown its great capability to detect the Lamb waves at elevated temperatures.

  6. Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis - southeastern Arabian Shield

    USGS Publications Warehouse

    du Bray, E.A.

    1988-01-01

    Garnet, an uncommon accessory mineral in igneous rocks, occurs in seven small peraluminous granitoid plutons in the southeastern Arabian Shield; textural equilibrium between garnet and other host granitoid minerals indicates that the garnets crystallized from their host magmas. Compositions of the garnets form three groups that reflect host-granitoid compositions, which in turn reflect source compositions and tectonic regimes in which the host magmas were generated. Garnets from the seven plutons have almandine-rich cores and spessartine-rich rims. This reverse zoning depicts host magma compositional evolution; i.e. rimward spessartine enrichment resulted from progressive, host-magma manganese enrichment. The garnets are heavy rare-earth element enriched; (Lu/La)N ranges from 13 to 355 and one of the garnets contains spectacularly elevated abundances of Y, Ta, Th, U, Zn, Zr, Hf, Sn, and Nb. Involvement of garnets with these trace element characteristics in magma genesis or evolution can have dramatic effects on trace element signatures of the resulting magmas. Other researchers suggest that Mn-enriched magmas are most conducive to garnet nucleation. Although the garnetiferous granitoids discussed here are slightly Mn enriched, other genetically similar peraluminous Arabian granitoids lack garnet; Mn enrichment alone does not guarantee garnet nucleation. The presence of excess alumina in the magma may be a prerequisite for garnet nucleation. ?? 1988 Springer-Verlag.

  7. Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits

    SciTech Connect

    Goto, Taichi; Ross, C. A.; Eto, Yu; Kobayashi, Keiichi; Haga, Yoji; Inoue, Mitsuteru

    2013-05-07

    Polycrystalline cerium-substituted yttrium iron garnet (CeYIG) showing large Faraday rotation (FR) in the near-IR region was grown on non-garnet (synthetic fused silica, Si, and Si-on-insulator) substrates by sputtering followed by thermal annealing in vacuum. The FR of the films is comparable to the single crystal value. Structural characterization, magnetic properties, refractive index, extinction coefficient, surface topography, and FR vs. wavelength were measured and the magnetooptical figure of merit was compared with that of CeYIG films on garnet substrates.

  8. Combining (27)Al Solid-State NMR and First-Principles Simulations To Explore Crystal Structure in Disordered Aluminum Oxynitride.

    PubMed

    Tu, Bingtian; Liu, Xin; Wang, Hao; Wang, Weimin; Zhai, Pengcheng; Fu, Zhengyi

    2016-12-19

    The nuclear magnetic resonance (NMR) technique gives insight into the local information in a crystal structure, while Rietveld refinement of powder X-ray diffraction (PXRD) sketches out the framework of a crystal lattice. In this work, first-principles calculations were combined with the solid-state NMR technique and Rietveld refinement to explore the crystal structure of a disordered aluminum oxynitride (γ-alon). The theoretical NMR parameters (chemical shift, δiso, quadrupolar coupling constants, CQ, and asymmetry parameter, η) of Al22.5O28.5N3.5, predicted by the gauge-including projector augmented wave (GIPAW) algorithm, were used to facilitate the analytical investigation of the (27)Al magic-angle spinning (MAS) NMR spectra of the as-prepared sample, whose formula was confirmed to be Al2.811O3.565N0.435 by quantitative analysis. The experimental δiso, CQ, and η of (27)Al showed a small discrepancy compared with theoretical models. The ratio of aluminum located at the 8a to 16d sites was calculated to be 0.531 from the relative integration of peaks in the (27)Al NMR spectra. The occupancies of aluminum at the 8a and 16d positions were determined through NMR investigations to be 0.9755 and 0.9178, respectively, and were used in the Rietveld refinement to obtain the lattice parameter and anion parameter of Al2.811O3.565N0.435. The results from (27)Al NMR investigations and PXRD structural refinement complemented each other. This work provides a powerful and accessible strategy to precisely understand the crystal structure of novel oxynitride materials with multiple disorder.

  9. Quantification of water in majoritic garnet

    SciTech Connect

    Thomas, Sylvia -Monique; Wilson, Kathryn; Koch-Muller, Monika; Hauri, Erik H.; McCammon, Catherine; Jacobsen, Steven D.; Lazarz, John; Rhede, Dieter; Ren, Minghua; Blair, Neal; Lenz, Stephan

    2015-05-01

    Majoritic garnet, characterized by an excess of silicon (>3 Si per formula unit), is considered one of the major phases of the Earth’s transition zone from 410-660 km depth. Quantifying the H2O content of nominally anhydrous mantle minerals is necessary to evaluate their water storage capacity from experiments and modeling the Earth’s deep water cycle. We present mineral-specific infrared absorption coefficients for the purpose of quantifying the amount of water incorporated into majorite as hydroxyl point defects. A suite of majoritic garnet samples with varying proportions of Si, Fe, Al, Cr and H2O was synthesized at conditions of 18-19 GPa and 1500-1800°C. Single-crystals were characterized using X-ray diffraction, electron microprobe analysis, secondary Ion Mass spectrometry (SIMS), IR, Raman and Mössbauer spectroscopy. We utilize SIMS and Raman spectroscopy in combination with IR spectroscopy to provide IR absorption coefficients for water in majoritic garnets with the general mineral formula (Mg,Fe)3(Si,Mg,Fe,Al,Cr)2[SiO4]3. Furthermore, the IR absorption coefficient for majoritic garnet in the OH stretching region is frequency-dependent and ranges from 10 470 ± 3100 Lmol-1cm-2 to 23 400 ± 2300 Lmol-1cm-2.

  10. Quantification of water in majoritic garnet

    DOE PAGES

    Thomas, Sylvia -Monique; Wilson, Kathryn; Koch-Muller, Monika; ...

    2015-05-01

    Majoritic garnet, characterized by an excess of silicon (>3 Si per formula unit), is considered one of the major phases of the Earth’s transition zone from 410-660 km depth. Quantifying the H2O content of nominally anhydrous mantle minerals is necessary to evaluate their water storage capacity from experiments and modeling the Earth’s deep water cycle. We present mineral-specific infrared absorption coefficients for the purpose of quantifying the amount of water incorporated into majorite as hydroxyl point defects. A suite of majoritic garnet samples with varying proportions of Si, Fe, Al, Cr and H2O was synthesized at conditions of 18-19 GPamore » and 1500-1800°C. Single-crystals were characterized using X-ray diffraction, electron microprobe analysis, secondary Ion Mass spectrometry (SIMS), IR, Raman and Mössbauer spectroscopy. We utilize SIMS and Raman spectroscopy in combination with IR spectroscopy to provide IR absorption coefficients for water in majoritic garnets with the general mineral formula (Mg,Fe)3(Si,Mg,Fe,Al,Cr)2[SiO4]3. Furthermore, the IR absorption coefficient for majoritic garnet in the OH stretching region is frequency-dependent and ranges from 10 470 ± 3100 Lmol-1cm-2 to 23 400 ± 2300 Lmol-1cm-2.« less

  11. Garnet phosphors prepared via hydrothermal synthesis

    SciTech Connect

    Phillips, M.L.F.; Walko, R.J.; Shea, L.E.

    1996-05-01

    This project studied hydrothermal synthesis as a route to producing green-emitting cathodoluminescent phosphorus isostructural with yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, or YAG). Aqueous precipitation of Y, Gd, Al, Ga, and Tb salts produced amorphous gels, which were heated with water at 600 C and 3,200 bar to produce crystalline YAG:Tb, Y{sub 3}Ga{sub 5}O{sub 12}:Tb, Y{sub 3}Al{sub 3}Ga{sub 2}O{sub 12}:Tb, and Gd{sub 3}Ga{sub 5}O{sub 12}:Tb powders. Process parameters were identified that yielded submicron YAG:Tb and Y{sub 3}Ga{sub 5}O{sub 12}:Tb powders without grinding. Cathodoluminescent efficiencies were measured as functions of power density at 600 V, using both the hydrothermal garnets and identical phosphor compositions synthesized at high temperatures. Saturation behavior was independent of synthetic technique, however, the hydrothermal phosphorus were less susceptible to damage (irreversible efficiency loss) at very high power densities (up to 0.1 W/cm{sup 2}). The fine grain sizes available with hydrothermal synthesis make it an attractive method for preparing garnet phosphorus for field emission, projection, and head-up displays.

  12. Structural and optical properties of ε-phase tris(8-hydroxyquinoline) aluminum crystals prepared by using physical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Xie, Wanfeng; Pang, Zhiyong; Zhao, Yu; Jiang, Feng; Yuan, Huimin; Song, Hui; Han, Shenghao

    2014-10-01

    Crystals of ε-phase tris(8-hydroxyquinoline) aluminum (ε-Alq3) were prepared by using physical vapor deposition (PVD) method in a double zone tube furnace. The structural properties of the ε-Alq3 crystals were investigated by using an X-ray single crystal diffractometer (XSCD) and a high resolution scanning electron microscope (SEM). Large straight steps were observed from the side face of the pine needle-like crystals. The straight steps are parallel with each other like terraces and the widths of the steps are fixed, indicating that the ε-Alq3 crystals may have layered structures. The photoluminescence (PL) spectra at different temperatures (7 K, 66 K, 220 K, 300 K and 350 K) and the absorption spectrum were also investigated. The optical band gap of the ε-Alq3 crystals was calculated to be about 2.82 eV. This value is a little larger than that of amorphous mer-Alq3 (about 2.7 eV), indicating a minimizing of impurities, grain boundaries and defects.

  13. INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS

    SciTech Connect

    Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

    2008-09-23

    The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted

  14. On the Discontinuity of Polycrystalline Silicon Thin Films Realized by Aluminum-Induced Crystallization of PECVD-Deposited Amorphous Si

    NASA Astrophysics Data System (ADS)

    Pan, Qingtao; Wang, Tao; Yan, Hui; Zhang, Ming; Mai, Yaohua

    2017-01-01

    Crystallization of glass/Aluminum (50, 100, 200 nm) /hydrogenated amorphous silicon (a-Si:H) (50, 100, 200 nm) samples by Aluminum-induced crystallization (AIC) is investigated in this article. After annealing and wet etching, we found that the continuity of the polycrystalline silicon (poly-Si) thin films was strongly dependent on the double layer thicknesses. Increasing the a-Si:H/Al layer thickness ratio would improve the film microcosmic continuity. However, too thick Si layer might cause convex or peeling off during annealing. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) are introduced to analyze the process of the peeling off. When the thickness ratio of a-Si:H/Al layer is around 1 to 1.5 and a-Si:H layer is less than 200 nm, the poly-Si film has a good continuity. Hall measurements are introduced to determine the electrical properties. Raman spectroscopy and X-ray diffraction (XRD) results show that the poly-Si film is completely crystallized and has a preferential (111) orientation.

  15. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: Elementary source vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Peitsen; Funato, Mitsuru; Kawakami, Yoichi

    2015-11-01

    Aluminum nitride (AlN) has attracted increasing interest as an optoelectronic material in the deep ultraviolet spectral range due to its wide bandgap of 6.0 eV (207 nm wavelength) at room temperature. Because AlN bulk single crystals are ideal device substrates for such applications, the crystal growth of bulky AlN has been extensively studied. Two growth methods seem especially promising: hydride vapor phase epitaxy (HVPE) and sublimation. However, the former requires hazardous gases such as hydrochloric acid and ammonia, while the latter needs extremely high growth temperatures around 2000 °C. Herein we propose a novel vapor-phase-epitaxy-based growth method for AlN that does not use toxic materials; the source precursors are elementary aluminum and nitrogen gas. To prepare our AlN, we constructed a new growth apparatus, which realizes growth of AlN single crystals at a rate of ~18 μm/h at 1550 °C using argon as the source transfer via the simple reaction Al + 1/2N2 → AlN. This growth rate is comparable to that by HVPE, and the growth temperature is much lower than that in sublimation. Thus, this study opens up a novel route to achieve environmentally friendly growth of AlN.

  16. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: Elementary source vapor phase epitaxy

    PubMed Central

    Wu, PeiTsen; Funato, Mitsuru; Kawakami, Yoichi

    2015-01-01

    Aluminum nitride (AlN) has attracted increasing interest as an optoelectronic material in the deep ultraviolet spectral range due to its wide bandgap of 6.0 eV (207 nm wavelength) at room temperature. Because AlN bulk single crystals are ideal device substrates for such applications, the crystal growth of bulky AlN has been extensively studied. Two growth methods seem especially promising: hydride vapor phase epitaxy (HVPE) and sublimation. However, the former requires hazardous gases such as hydrochloric acid and ammonia, while the latter needs extremely high growth temperatures around 2000 °C. Herein we propose a novel vapor-phase-epitaxy-based growth method for AlN that does not use toxic materials; the source precursors are elementary aluminum and nitrogen gas. To prepare our AlN, we constructed a new growth apparatus, which realizes growth of AlN single crystals at a rate of ~18 μm/h at 1550 °C using argon as the source transfer via the simple reaction Al + 1/2N2 → AlN. This growth rate is comparable to that by HVPE, and the growth temperature is much lower than that in sublimation. Thus, this study opens up a novel route to achieve environmentally friendly growth of AlN. PMID:26616203

  17. On the Discontinuity of Polycrystalline Silicon Thin Films Realized by Aluminum-Induced Crystallization of PECVD-Deposited Amorphous Si

    NASA Astrophysics Data System (ADS)

    Pan, Qingtao; Wang, Tao; Yan, Hui; Zhang, Ming; Mai, Yaohua

    2017-04-01

    Crystallization of glass/Aluminum (50, 100, 200 nm) /hydrogenated amorphous silicon (a-Si:H) (50, 100, 200 nm) samples by Aluminum-induced crystallization (AIC) is investigated in this article. After annealing and wet etching, we found that the continuity of the polycrystalline silicon (poly-Si) thin films was strongly dependent on the double layer thicknesses. Increasing the a-Si:H/Al layer thickness ratio would improve the film microcosmic continuity. However, too thick Si layer might cause convex or peeling off during annealing. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) are introduced to analyze the process of the peeling off. When the thickness ratio of a-Si:H/Al layer is around 1 to 1.5 and a-Si:H layer is less than 200 nm, the poly-Si film has a good continuity. Hall measurements are introduced to determine the electrical properties. Raman spectroscopy and X-ray diffraction (XRD) results show that the poly-Si film is completely crystallized and has a preferential (111) orientation.

  18. Hydroxyl in garnets from Garnet Ridge, northern Arizona

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Koga, I.

    2012-12-01

    Various kinds of garnets and garnet-bearing rocks occur in Garnet Ridge, northern Arizona. These garnets have diverse origins such as mantle peridotite, subducted oceanic slab and crustal level metasomatic products (Koga & Ogasawara, 2012, AGU Fall Meeting Abstract). A typical garnet from Garnet Ridge, called "Navajo Ruby" is Cr-bearing pyrope-rich garnet that could be of the mantle peridotite origin, and another interesting garnet occurs in eclogite xenoliths of subducted slab origin, probably of Farallon plate origin (Usui et al., 2003). To understand the water behavior underneath the Colorado Plateau, we measured micro FT-IR spectra for several kinds of garnets from Garnet Ridge. The samples for micro FT-IR analyses are thick sections (50 - 500 micrometer in thickness). The size of analyzed areas is 50 x 50 μm square. We detected significant amounts of OH in "Navajo Ruby" garnets and in other types of garnets; however, OH in the garnet in eclogite xenolith was negligible or below detection limit. The peridotitic garnets (up to 2 cm across) look purplish to red brownish and are rich in pyrope component (up to 78 mol%) with significant amounts of Cr2O3 (up to 5.9 wt%) without chemical zonation. The inclusions of olivine, clinopyroxene, orthopyroxene and apatite were confirmed by laser Raman spectroscopy. The representative FT-IR absorption spectra of this type garnet are: 1) grain A (Pyp52 Alm29 Sps1 Grs14 And2 Uv2) shows two very strong IR absorption bands by OH centered at 3575 and 3660 cm-1, 2) grain B (Pyp63 Alm14 Sps0 Grs12 And1 Uv10) shows a very strong IR absorption at 3575 cm-1, and 3) grain C (Pyp62 Alm20 Sps1 Grs12 And0 Uv5) did not show IR absorption by OH. No heterogeneity of IR absorption by OH was detected in a single grain. The garnets in eclogite xenolith show clear prograde chemical zonation; core (Pyp6 Alm54 Sps1 Grs34 And5 Uv0) to rim (Pyp21 Alm64 Sps2 Grs15 And1 Uv0). The well developed rim of this garnet has no IR absorption band by OH

  19. Elastic moduli of pyrope rich garnets

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Pandey, A. K.; Singh, C. K.

    2013-06-01

    The elastic properties of minerals depend on its composition, crystal structure, temperature and level of defects. The elastic parameters are important for the interpretation of the structure and composition of the garnet rich family. In present work we have calculated the elastic moduli such as isothermal bulk modulus, Young's modulus and Shear modulus over a wide range of temperature from 300 K to 1000 K by using Birch EOS and Poirrier Tarantola equation of state. The obtained results are compared with the experimental results obtained by measuring the elastic moduli of single crystal. The calculated results show that the logarithmic isothermal EOS does not cooperate well with experimental results.

  20. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    NASA Astrophysics Data System (ADS)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  1. Crystal growth of a series of lithium garnets Ln{sub 3}Li{sub 5}Ta{sub 2}O{sub 12} (Ln=La, Pr, Nd): Structural properties, Alexandrite effect and unusual ionic conductivity

    SciTech Connect

    Roof, Irina P.; Smith, Mark D.; Cussen, Edmund J.; Loye, Hans-Conrad zur

    2009-02-15

    We report the single crystal structures of a series of lanthanide containing tantalates, Ln{sub 3}Li{sub 5}Ta{sub 2}O{sub 12} (Ln=La, Pr, Nd) that were obtained out of a reactive lithium hydroxide flux. The structures of Ln{sub 3}Li{sub 5}Ta{sub 2}O{sub 12} were determined by single crystal X-ray diffraction, where the Li{sup +} positions and Li{sup +} site occupancies were fixed based on previously reported neutron diffraction data for isostructural compounds. All three oxides crystallize in the cubic space group Ia3-bard (No. 230) with lattice parameters a=12.7735(1), 12.6527(1), and 12.5967(1) A for La{sub 3}Li{sub 5}Ta{sub 2}O{sub 12}, Pr{sub 3}Li{sub 5}Ta{sub 2}O{sub 12}, and Nd{sub 3}Li{sub 5}Ta{sub 2}O{sub 12}, respectively. A UV-Vis diffuse reflectance spectrum of Nd{sub 3}Li{sub 5}Ta{sub 2}O{sub 12} was collected to explain its unusual Alexandrite-like optical behavior. To evaluate the transport properties of Nd{sub 3}Li{sub 5}Ta{sub 2}O{sub 12}, the impedance data were collected in air in the temperature range 300{<=}T(deg. C){<=}500. - Graphical abstract: Crystal structure of garnets Ln{sub 3}Li{sub 5}Ta{sub 2}O{sub 12} (Ln=La, Pr, Nd). TaO{sub 6} polyhedra are shown in yellow and Ln{sup 3+} are shown as light blue spheres. Octahedrally and tetrahedrally coordinated Li{sup +} ions are shown in green and brown, respectively. Oxygen atoms are omitted for clarity.

  2. Growth and optical properties of Bi{sub 12}SiO{sub 20} single crystals doped with first row transition metal and aluminum

    SciTech Connect

    Petrova, D.; Gospodinov, M.; Sveshtarov, P.

    1995-10-01

    Bi{sub 12}SiO{sub 20} single crystals co-doped with first row transition metals and aluminum were grown from the melt by the Czochralski technique. Optimal growth conditions for optically homogeneous crystals have been established. Dopant molar concentrations in the crystal were determined and segregation coefficients calculated. Transmission spectra were measured in the 0.38--0.85 {micro}m range. It was established that adding Al to the melt bleached the crystals and blue-shifted the entire transmission spectrum. Doping with Cu produced a strong photochromic effect after daylight exposure, changing the crystal color from yellow to red.

  3. Unraveling the history of complex zoned garnets from the North Motagua Mélange (Guatemala)

    NASA Astrophysics Data System (ADS)

    Barickman, M. H.; Martin, C.; Flores, K. E.; Harlow, G. E.; Bonnet, G.

    2016-12-01

    The Guatemala Suture Zone (GSZ) is situated in central Guatemala, between the North American and Caribbean plates. Two serpentinite mélanges straddle the Motagua Fault system: the North Motagua Mélange (NMM) and the South Motagua Mélange (SMM). In this study, chemically zoned garnet grains from four eclogite blocks from the NMM were analyzed by EMPA for major elements and LA-ICP-MS for trace elements to unravel the geological history of the eclogites. These eclogites typically consist of euhedral to subhedral garnets, partly retrogressed omphacite grains, and accessory minerals such as phengite and epidote as inclusions in garnet. EBSD was employed to examine apparent garnet inclusions in garnet. The garnet grains in NMM eclogites display complex chemical zonations: all grains roughly show a spessartine-rich core, an almandine-rich core and/or intermediate zone, and a pyrope and grossular-rich rim. Additionally, crystal resorption can be observed between the different zones, and the pyrope-grossular rim can display oscillatory zoning. Finally, grossular-rich zones (crystallographically syntactic) within garnet are present in all studied samples. REE and spider diagrams do not show any significant difference in the patterns of the different zones within the garnet, or indicating that the chemical environment from which each garnet zone grew was broadly the same. The lack of significant variation in LILE content indicates that a fluid influx during garnet growth is unlikely. Consequently, we interpret that garnet grains grew in a largely closed system; however, the presence of the grossular-rich zones, argues for occasional excursions into conditions when either two garnets crystallized or Ca-rich overgrowths that were largely resorbed prior to subsequent continued garnet growth.

  4. Atomistic simulation of trace element incorporation into garnets - comparison with experimental garnet-melt partitioning data

    NASA Astrophysics Data System (ADS)

    van Westrenen, W.; Allan, N. L.; Blundy, J. D.; Purton, J. A.; Wood, B. J.

    2000-05-01

    garnet and melt, using binary and other oxides to simulate cation co-ordination environment in the melt. Usol also shows a parabolic dependence on trace element radius, with inter-garnet trends in EX and r0 similar to those found for relaxation energies. However, r0( i+) obtained from minima in plots of Usol vs. radius are located at markedly different positions, especially for heterovalent substitutions ( i = 1, 3). For each end-member garnet, r0 now decreases with increasing Zc, consistent with experiment. Furthermore, although different assumptions for trace element environment in the melt, e.g., REE 3+ (VI) vs. REE 3+ (VIII), lead to parabolae with differing curvatures and minima, relative differences between end-members are always preserved. We conclude that: 1. The simulated variation in r0 and EX between garnets is largely governed by the solid phase. This stresses the overriding influence of crystal local environment on trace element partitioning. 2. Simulations suggest r0 in garnets varies with trace element charge, as experimentally observed. 3. Absolute values of r0 and EX can be influenced by the presence and structure of a coexisting melt. Thus, quantitative relations between r0, E and crystal chemistry should be derived from well-constrained systematic mineral-melt partitioning studies, and cannot be predicted from crystal-structural data alone.

  5. Two-garnet rodingite from Amador County, California

    USGS Publications Warehouse

    Duffield, W.A.; Beeson, M.H.

    1973-01-01

    Two distinct phases of garnet have been discovered in rodingite from Amador County, Calif. The two garnets are hydrogrossular and (hydro?) grossular-andradite. Only one, generally hydrogrossular, has been reported in rodingitcs studied by other workers. The rodingite of this study formed from a mafic dike with abundant euhedral plagioclase laths. The hydrogrossular is concentrated within the areas of these laths and is volumetrically about as abundant. The (hydro?) grossular-andradite is concentrated in the groundmass and as incursions into the plagioclase laths. The garnets apparently grew during one general episode of metasomatism, and their spatial distribution and compositions were controlled principally by the unequal distribution of iron and aluminum caused by the presence of plagioclase laths (and mafic minerals?) in the original unaltered dike.

  6. An inverse modeling strategy and a computer program to model garnet growth and resorption

    NASA Astrophysics Data System (ADS)

    Lanari, Pierre; Giuntoli, Francesco

    2017-04-01

    GrtMod is a computer program that allows numerical simulation of the pressure-temperature (P-T) evolution of garnet porphyroblasts based on the composition of successive growth zones preserved in natural samples. For each garnet growth stage, a new reactive bulk composition is optimized, allowing for resorption and/or fractionation of the previously crystalized garnet. The successive minimizations are performed using a heuristic search method and an objective function that quantify the amount by which the predicted garnet composition deviates from the measured values. The automated strategy of GrtMod includes a two stages optimization and one refinement stage. In this contribution, we will present several application examples. The new strategy provides quantitative estimates of the optimal P-T conditions whereas it was generally derived in a qualitatively way by using garnet isopleth intersections in equilibrium phase diagrams. GrtMod can also be used to model the evolution of the reactive bulk composition along any P-T trajectories. The results for typical MORB and metapelite compositions demonstrate that fractional crystallization models are required to derive accurate P-T information from garnet compositional zoning. GrtMod can also be used to retrieve complex garnet histories involving several stages of resorption. For instance, it has been used to model the P-T condition of garnet growth in grains from the Sesia Zone (Western Alps). The compositional variability of successive growth zones is characterized using standardized X-ray maps and the program XMapTools. Permian garnet cores crystalized under granulite facies conditions (T > 800°C and P = 6 kbar), whereas Alpine garnet rims grew at eclogite facies conditions (650°C and 16 kbar) involving several successive episodes of resorption. The model predicts that up to 50 vol% of garnet was dissolved before a new episode of garnet growth.

  7. Morphology and magnetic characterisation of aluminium substituted yttrium-iron garnet nanoparticles prepared using sol gel technique.

    PubMed

    Yahya, Noorhana; Al Habashi, Ramadan Masoud; Koziol, Krzysztof; Borkowski, Rafal Dunin; Akhtar, Majid Niaz; Kashif, Muhammad; Hashim, Mansor

    2011-03-01

    Aluminum substituted yttrium iron garnet nano particles with compositional variation of Y(3.0-x) A1(x)Fe5O12, where x = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 were prepared using sol gel technique. The X-ray diffraction results showed that the best garnet phase appeared when the sintering temperature was 800 degrees C. Nano-crystalline particles with high purity and sizes ranging from 20 to 100 nm were obtained. It was found that the aluminum substitution had resulted in a sharp fall of the d-spacing when x = 2, which we speculated is due to the preference of the aluminum atoms to the smaller tetrahedron and octahedron sites instead of the much larger dodecahedron site. High resolution transmission electron microscope (HRTEM) and electron diffraction (ED) patterns showed single crystal nanoparticles were obtained from this method. The magnetic measurement gave moderate values of initial permeability; the highest value of 5.3 was shown by sample Y3Fe5O12 at more than 100 MHz which was attributed to the morphology of the microstructure which appeared to be homogeneous. This had resulted in an easy movement of domain walls. The substitution of aluminum for yttrium is speculated to cause a cubic to rhombodedral structural change and had weakened the super-exchange interactions thus a fall of real permeability was observed. This might have created a strain in the sub-lattices and had subsequently caused a shift of resonance frequencies to more than 1.8 GHz when x > 0.5.

  8. [Research on the phase and optical properties of nc-Si films prepared by low temperature aluminum induced crystallization].

    PubMed

    Duan, Liang-fei; Yang, Wen; Yang, Pei-zhi; Song, Zhao-ning

    2014-08-01

    In the present paper, nanocrystalline silicon thin films on glass substrates were prepared by rapid thermal annealing (RTA) of RF magnetron sputtered system and alpha-Si/Al films at a low temperature in Nz atmosphere. Optical metallographic microscope, confocal optical microscopy, X-ray diffractometer, Raman scattering and UV-Vis-NIR spectrometers were used to characterize the surface morphology and the phase and optical properties of nc-Si films. The influence of annealing process on the nc-Si films properties was studied. The results showed that nc-Si films were obtained after aluminum induced crystallization of the alpha-Si/Al films at 300 degrees C, withthe crystallization rate 15.56% and the grain size 1.75 nm. The surface uniformity and lattice distortion of nc-Si films reduced, while grain size, degree of crystallization and the optical band gap of the films increased with increasing annealing temperature from 300 to 400 degrees C. As the annealing temperature increased from 400 to 500 degrees C, although the degree of crystallization and grain size increased, the tendencies of all other characteristics were opposite. On the contrary, the surface uniformity and the lattice distortion increased, but the optical band gap of nc-Si films reduced. The optical properties of the resulting films were confirmed by the absorption model of nc-Si thin films, where the tendency of band gap changes is in consistent with the optical modeling.

  9. Controlled aluminum-induced crystallization of an amorphous silicon thin film by using an oxide-layer diffusion barrier

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Hyun; Kwak, Hyunmin; Kwon, Myeung Hoi

    2014-03-01

    Aluminum-induced crystallization (AIC) of amorphous silicon with an Al2O3 diffusion barrier was investigated for controlling Si crystallization and preventing layer exchange during the annealing process. An Al2O3 layer was deposited between the a-Si and the Al films (a-Si/Al2O3/Al/Glass) and was blasted with an air spray gun with alumina beads to form diffusion channels between the Si and the Al layers. During the annealing process, small grain Si x Al seeds were formed at the channels. Then, the Al2O3 diffusion barrier was restructured to close the channels and prevent further diffusion of Al atoms into the a-Si layer. A polycrystalline Si film with (111), (220) and (311) crystallization peaks in the X-ray diffraction pattern was formed by annealing at 560 °C in a conventional furnace. That film showed a p-type semiconducting behavior with good crystallinity and a large grain size of up to 14.8 µm. No layer conversion occurred between the Si and the Al layers, which had been the fundamental obstacle to the applications in the crystallization of a-Si films by using the AIC method.

  10. Polycrystalline Garnet Porphyroblasts, an EBSD Study

    NASA Astrophysics Data System (ADS)

    Seaton, N. C.; Whitney, D. L.; Anderson, C.; Alpert, A.

    2008-12-01

    Polycrystalline garnet porphyroblasts (PGP's) are significant because their formation provides information about metamorphic crystalline mechanisms, in particular during early stages of crystal growth, which may differ from those governing later stages; and because their existence may affect the chemical and structural evolution of metamorphic rocks. For example, the extent of element exchange between the garnet interior and the matrix may be affected by the presence of grain boundaries within PGP's. There have been several previous studies of PGP's but important questions about them remain; e.g. whether early coalescence is a common method by which garnets crystallize, whether grains rotate during growth to attain an energetically favorable grain-grain contact, and whether deformation and/or precursor minerals or other chemical or mechanical heterogeneities influence the formation of PGP's. PGP's have been detected by us in several different localities including; micaschist from SE Vermont (USA), including locality S35j of Rosenfeld (1968); the Solitude Range (British Columbia, Canada); the Southern Menderes Massif (Turkey); and three zones (garnet, staurolite, kyanite) from the Dutchess County Barrovian sequence in NY (USA). We have identified two types of PGP: cryptic and morphologically distinct. Cryptic PGP have no obvious morphological expression of the high angle boundaries within them and appear to be a single crystal. Morphologically distinct PGP have an obvious depression in the outer grain boundary where it is intersected by the internal grain boundary. Most PGP's contain inclusion trails and the high angle grain boundaries crosscut the trend of these as well as the inclusions themselves. PGP also show major element growth zoning that is not influenced by the internal grain boundaries except in rare cases. PGP's comprise ~ 5-35% of the garnet populations analyzed. More than 95% of the PGP's we have analyzed are comprised of 2-3 domains; the rest contain

  11. Mantle garnets: A cracking yarn

    NASA Astrophysics Data System (ADS)

    Matthews, M.; Harte, B.; Prior, D.

    1992-07-01

    Garnets showing variation in chemical composition occur in the metasomatised peridotitic wallrocks to intrusive pyroxenitic "dikes" in mantle xenoliths from the Matsoku kimberlite pipe. They have been examined by scanning electron microscope (SEM) and imaged using both high contrast and electron channelling backscattered electron (BSE) methods. The images revealed intricate variation in the backscatter coefficient, η, across garnets. The pattern of variation is one of very slightly diffuse "brightwhite" (high η) lines surrounded by paler diffuse auras, grading into darker (lower η.) areas away from the bright lines. The bright lines are usually irregular in detail and show branching and braiding; but in some cases they form regularly spaced parallel to subparallel sets which reflect crystallographic orientation. Electron and ion microprobe analyses, including a highly exhaustive 40,000 data point electron microprobe survey across one garnet, have correlated the change in the backscatter coefficient with compositional variation. The compositional changes largely involve enrichment in Fe and Ti and decrease in Mg of the garnet forming the bright lines and pale auras and are consistent with those of metasomatic garnets identified by previous work on an extensive suite of Matsoku xenoliths. The high Ti and Fe garnet is also enriched in Y, Zr, MREEs and HREEs and is considered to have formed by direct crystallisation from the melt causing metasomatism, whilst areas away from the high η lines show compositions similar to those of garnets in unmetasomatised rock. The bright (high η) lines are interpreted as delineating a pattern of fractures along which the metasomatising melt was able to penetrate the garnet and from this melt new garnet crystallised to heal the fractures and form the high Fe-Ti garnet. Diffusion of elements outward from these melt-filled and subsequently healed fractures into the main body of the garnet produced the more diffuse zonation pattern

  12. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand

    USGS Publications Warehouse

    Stowell, H.; Tulloch, A.; Zuluaga, C.; Koenig, A.

    2010-01-01

    Pembroke Granulite from Fiordland, New Zealand provides a window into the mid- to lower crust of magmatic arcs. Garnet Sm-Nd and zircon U-Pb ages constrain the timing and duration of high-P partial melting that produced trondhjemitic high Sr/Y magma. Trace element zoning in large, euhedral garnet is compatible with little post growth modification and supports the interpretation that garnet Sm-Nd ages of 126.1??2.0 and 122.6??2.0. Ma date crystal growth. Integration of the garnet ages with U-Pb zircon ages elucidates a history of intrusion(?) and a protracted period of high-temperature metamorphism and partial melting. The oldest zircon ages of 163 to 150. Ma reflect inheritance or intrusion and a cluster of zircon ages ca. 134. Ma date orthopyroxene-bearing mineral assemblages that may be magmatic or metamorphic in origin. Zircon and garnet ages from unmelted gneiss and garnet reaction zones record garnet granulite facies metamorphism at 128 to 126. Ma. Peritectic garnet and additional zircon ages from trondhjemite veins and garnet reaction zones indicate that garnet growth and partial melting lasted until ca. 123. Ma. Two single fraction garnet ages and young zircon ages suggest continued high-temperature re-equilibration until ca. 95. Ma. Phase diagram sections constrain orthopyroxene assemblages to <0.6 GPa @ 650??C, peak garnet granulite facies metamorphic conditions to 680-815??C @ 1.1-1.4. GPa, and a P-T path with a P increase of???0.5. GPa. These sections are compatible with water contents???0.28wt.%, local dehydration during garnet granulite metamorphism, and <0.3. GPa P increases during garnet growth. Results demonstrate the utility of integrated U-Pb zircon and Sm-Nd garnet ages, and phase diagram sections for understanding the nature, duration, and conditions of deep crustal metamorphism and melting. Geochronologic and thermobarometric data for garnet granulite indicate that thickening of arc crust, which caused high-pressure metamorphism in northern

  13. Thermal Conductivity of Garnets and the Middle Mantle

    NASA Astrophysics Data System (ADS)

    Giesting, P. A.; Hofmeister, A. M.

    2001-12-01

    The thermal conductivity (k) of garnet phases is calculated from a formula originating with Debye, adapted to treat the vibrations in a solid as a collection of damped harmonic oscillators. Our model utilizes phonon lifetimes obtained from Kramers-Kronig analyses of existing IR reflectivity spectra, as well as new measurements presented here, and calculates k at ambient conditions. Two series of natural garnets were investigated: (1) X3Al2Si3O12, where the X site holds varying amounts of Mg, Fe2+, and Ca (pyrope-almandines with subordinate grossular); and (2) Ca3Y2Si3O12, where the Y site holds Al and/or Fe3+ (grossular-andradites). The model predicts k at ambient conditions for the end-members. The occurrence of a minimum in k near the midpoint of each compositional series correlates with the maximum widths of the IR peaks: the amount of disorder on lattice sites is a key factor controlling the thermal conductivity of mixed crystals. We also utilized available IR spectra for three synthetic yttrium garnets to test the model against literature values for their thermal conductivities. Our calculated k for YAG with 5.5% Sm is between the results for pure YAG and YAG with 5% Yb. Experimental determinations of k for YGG and YIG are higher than calculated values; given the close comparison of calculated and measured k for YAG and natural garnets, these measured data may be in excess of the true value. Disparities this size among values of thermal conductivity from different laboratories are common. Based on the success of the model in predicting k for surface garnets, we go on to analyze the spectra of majorite and estimate its thermal conductivity as well. Since a majorite-rich garnet phase is expected to occur in the mantle transition zone, a region whose properties are critical to mantle convection, the thermal conductivity of majorite is an important value that will assist in resolving the debate between layered and full-mantle convection in the earth. Our

  14. Thermal oxidation of single crystal aluminum antimonide and materials having the same

    DOEpatents

    Sherohman, John William; Yee, Jick Hong; Coombs, III, Arthur William; Wu, Kuang Jen J.

    2012-12-25

    In one embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a partial vacuum atmosphere at a temperature conducive for air adsorbed molecules to desorb, surface molecule groups to decompose, and elemental Sb to evaporate from a surface of the AlSb crystal and exposing the AlSb crystal to an atmosphere comprising oxygen to form a crystalline oxide layer on the surface of the AlSb crystal. In another embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a non-oxidizing atmosphere at a temperature conducive for decomposition of an amorphous oxidized surface layer and evaporation of elemental Sb from the AlSb crystal surface and forming stable oxides of Al and Sb from residual surface oxygen to form a crystalline oxide layer on the surface of the AlSb crystal.

  15. Aluminum induced crystallization of amorphous Ge thin films on insulating substrate

    SciTech Connect

    Singh, Ch. Kishan Tah, T.; Sunitha, D. T.; Polaki, S. R.; Madapu, K. K.; Ilango, S.; Dash, S.; Tyagi, A. K.

    2016-05-23

    Aluminium (metal) induced crystallization of amorphous Ge in bilayer and multilayer Ge/Al thin films deposited on quartz substrate at temperature well below the crystallization temperature of bulk Ge is reported. The crystallization of poly-Ge proceeds via formations of dendritic crystalline Ge grains in the Al matrix. The observed phases were characterized by Raman spectroscopy and X-ray diffraction. The microstructure of Al thin film layer was found to have a profound influence on such crystallization process and formation of dendritic grains.

  16. Two-Stage Separation of V(IV) and Al(III) by Crystallization and Solvent Extraction from Aluminum-Rich Sulfuric Acid Leaching Solution of Stone Coal

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing; Liu, Hong

    2017-10-01

    To improve separation of V(IV) and Al(III) from aluminum-rich sulfuric acid leaching solution of stone coal, the two-stage separation by crystallization and solvent extraction methods have been developed. A co-extraction coefficient ( k) was put forward to evaluate comprehensively co-extraction extent in different solutions. In the crystallization stage, 68.2% of aluminum can be removed from the solution. In the solvent extraction stage, vanadium was selectively extracted using di-2-ethylhexyl phosphoric acid/tri-n-butyl phosphate from the crystalline mother solution, followed by H2SO4 stripped efficiently. A V2O5 product with purity of 98.39% and only 0.10% Al was obtained after oxidation, precipitation, and calcination. Compared with vanadium extraction from solution without crystallization, the counter-current extraction stage of vanadium can be decreased from 6 to 3 and co-extraction coefficient ( k) decreased from 2.51 to 0.58 with two-stage separation. It is suggested that the aluminum removal by crystallization can evidently weaken the influence of aluminum co-extraction on vanadium extraction and improve the selectivity of solvent extraction for vanadium.

  17. Two-Stage Separation of V(IV) and Al(III) by Crystallization and Solvent Extraction from Aluminum-Rich Sulfuric Acid Leaching Solution of Stone Coal

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing; Liu, Hong

    2016-12-01

    To improve separation of V(IV) and Al(III) from aluminum-rich sulfuric acid leaching solution of stone coal, the two-stage separation by crystallization and solvent extraction methods have been developed. A co-extraction coefficient (k) was put forward to evaluate comprehensively co-extraction extent in different solutions. In the crystallization stage, 68.2% of aluminum can be removed from the solution. In the solvent extraction stage, vanadium was selectively extracted using di-2-ethylhexyl phosphoric acid/tri-n-butyl phosphate from the crystalline mother solution, followed by H2SO4 stripped efficiently. A V2O5 product with purity of 98.39% and only 0.10% Al was obtained after oxidation, precipitation, and calcination. Compared with vanadium extraction from solution without crystallization, the counter-current extraction stage of vanadium can be decreased from 6 to 3 and co-extraction coefficient (k) decreased from 2.51 to 0.58 with two-stage separation. It is suggested that the aluminum removal by crystallization can evidently weaken the influence of aluminum co-extraction on vanadium extraction and improve the selectivity of solvent extraction for vanadium.

  18. Unconventional Superfluidity in Yttrium Iron Garnet Films

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L.

    2016-06-01

    We argue that the magnon condensate in yttrium iron garnet may display experimentally observable superfluidity at room temperature despite the 100 times dominance of the normal density over superfluid ones. The superfluidity has a more complicated nature than in known superfluids since the U(1) symmetry of the global phase shift is violated by the dipolar interaction leading to the exchange of spin moment between the condensate and the crystal lattice. It produces periodic inhomogeneity in the stationary superfluid flow. We discuss the manner of observation and possible applications of magnon superfluidity. It may strongly enhance the spin-torque effects and reduce the energy consumption of the magnonic devices.

  19. Variations in Ti coordination and concentration in garnet in response to temperature, pressure and composition

    NASA Astrophysics Data System (ADS)

    Ackerson, M. R.; Tailby, N.; Watson, E. B.; Spear, F. S.

    2013-12-01

    Titanium concentrations in garnet vary over several orders of magnitude in natural systems-- from trace-element levels in continental metamorphic systems to several weight percent in garnets from mantle xenoliths. Broadly speaking the wide range of concentrations is due to crystallization from diverse environments. Understanding the crystallographic site and Ti-substitution mechanism in garnet is crucial to deciphering concentration trends and how these relate to the petrogenetic history. This study uses XANES spectroscopy to measure Ti coordination in natural and synthetic garnets known to crystallize over a wide range of conditions to investigate whether changes in Ti coordination and concentration correlate with changes T, P and bulk composition. Ti XANES spectroscopy utilizes shifts in the 1s-3d pre-edge feature, which shows systematic shifts in intensity and energy with coordination. Natural and synthetic garnets grown at >800 oC and >1 GPa incorporate Ti almost entirely on the octahedral site in garnet. It is possible that a small amount of Ti substitutes on the tetrahedral site in these garnets, but the concentration is too low to be observed in the spectra. The most feasible mechanism for octahedral substitution involves charge-balanced coupled substitution with an M2+ cation (where M2+=Mg, Fe, Ca, or Mn) resulting in a net loss of two Al for every Ti gained. Substitution of Al onto the tetrahedral site and Ti on the octahedral site is an other feasible mechanism, although the stoichiometric deficit of Al in experimental garnets suggests this mechanism could only account for a small percentage of Ti. Increases in Ti concentration correlate best with increasing Ca content in experimental garnets. Ti solubility also changes in response to T and P. These observations suggest that Ti incorporation on the octahedral site is dependent on the activities of Ti, Al and other M2+ cation system components. This helps to explain some of the differences in Ti

  20. Shock Absorption Capability of a Single-Crystal Beta-Aluminum-Bronze Rod

    DTIC Science & Technology

    1976-08-01

    change. Both the static and dynam- ic tests were repeatable and reproducible with a given rod. The rod-end impacts showed no adverse effects on the...CLASSIFICATION OF THIS PAGEfWhon Dml * Emertdi INTRODUCTION Superelasticity is an effect whereby strain is attained, as in beta-aluminum- bronze, through a...shown in Figure 8. Curve 1 is the data of Tests 7 and 8 which were performed with a dry (unlubricated) fixture. Curve 2 is the data of Tests 9 and

  1. On the Synthesis and Characterization of Novel Aluminum-Arsenic Compounds; Crystal Structure of Et2AlAs(SiMe3)22

    DTIC Science & Technology

    1991-10-03

    ARSENIC COMPOUNDS; CRYSTAL STRUCTURE OF [Et2AIAs(SiMe 3 )2 ]2 12 PERSONAL AUTHOR(S) :ells, A.T. McPhail, and T. M. Speer 13a. ’YPE OF REPORT 13b. riME...synthesis, crystal structure , ring compound 19 ABSTRACT (Continue on reverse ir necessary &nd iaenrtiy by 6lOCK numOer) See attached. 91-12706 ITu 20...DU/DC/TR-24 ON THE SYNTHESIS AND CHARACTERIZATION OF NOVEL ALUMINUM-ARSENIC COMPOUNDS- CRYSTAL STRUCTURE OF [Et 2 A1As(SiMe 3)21 2 by R. L. Wells, A. T

  2. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    SciTech Connect

    Melo, E. G. Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I.; Carvalho, D. O.; Ferlauto, A. S.

    2016-01-14

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.

  3. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    NASA Astrophysics Data System (ADS)

    Melo, E. G.; Carvalho, D. O.; Ferlauto, A. S.; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I.

    2016-01-01

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.

  4. The origin of garnet in the anorthosite-charnockite suite of the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1977-01-01

    Detailed analysis of textural and chemical criteria in rocks of the anorthosite-charnockite suite of the Adirondack Highlands suggests that development of garnet in silica-saturated rocks of the suite occurs according to the reaction: {Mathematical expression}, where ?? is a function of the distribution of Fe and Mg between the several coexisting ferromagnesian phases. Depending upon the relative amounts of Fe and Mg present, quartz may be either a reactant or a product. Using an aluminum-fixed reference frame, this reaction can be restated in terms of a set of balanced partial reactions describing the processes occurring in spatially separated domains within the rock. The fact that garnet invariably replaces plagioclase as opposed to the other reactant phases indicates that the aluminum-fixed model is valid as a first approximation. This reaction is univariant and produces unzoned garnet. It differs from a similar equation proposed by de Waard (1965) for the origin of garnet in Adirondack metabasic rocks, i.e. 6 Orthopyroxene+2 Anorthite = Clinopyroxene+Garnet+2 Quartz, the principle difference being that iron oxides (ilmenite and/or magnetite) are essential reactant phases in the present reactions. The product assemblage (garnet+clinopyroxene+plagioclase ?? orthopyroxene ?? quartz) is characteristic of the clinopyroxene-almandine subfacies of the granulite facies. ?? 1977 Springer-Verlag.

  5. Crystal growth and characterization of Tm doped mixed rare-earth aluminum perovskite

    SciTech Connect

    Totsuka, Daisuke; Yanagida, Takayuki; Sugiyama, Makoto; Fujimoto, Yutaka; Yokota, Yuui; Yoshikawa, Akira

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer (Lu{sub x}Gd{sub y}Y{sub 0.99-x-y}Tm{sub 0.01})AP single crystals were grown by the {mu}-PD method. Black-Right-Pointing-Pointer The grown crystals were single phase with perovskite structure (Pbnm). Significant segregation of Lu and Gd was detected in the growth direction. Black-Right-Pointing-Pointer Some absorption bands due to Tm{sup 3+}, Gd{sup 3+} and color centers were exhibited. Black-Right-Pointing-Pointer Radioluminescence spectra showed several emission peaks ascribed to Tm{sup 3+} and Gd{sup 3+}. -- Abstract: In this work, we present results of structural characterization and optical properties including radio luminescence of (Lu{sub x}Gd{sub y}Y{sub 0.99-x-y}Tm{sub 0.01})AP single crystal scintillators for (x, y) = (0.30, 0.19), (0, 0.19) and (0, 0) grown by the micro-pulling-down ({mu}-PD) method. The grown crystals were single phase materials with perovskite structure (Pbnm) as confirmed by XRD and had a good crystallinity. The distribution of the crystal constituents in growth direction was evaluated, and significant segregation of Lu and Gd was detected in (Lu{sub 0.30}Gd{sub 0.19}Y{sub 0.50}Tm{sub 0.01})AP sample. The crystals demonstrated 70% transmittance in visible wavelength range and some absorption bands due to Tm{sup 3+}, Gd{sup 3+} and color centers were exhibited in 190-900 nm. The radioluminescence measurement under X-ray irradiation demonstrated several emission peaks ascribed to 4f-4f transitions of Tm{sup 3+} and Gd{sup 3+}. The ratio of emission intensity in longer wavelength range was increased when Y was replaced by Lu or Gd.

  6. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Z; Du, Li; Edgar, J H; Payzant, E Andrew; Walker, Larry R; Liu, R; Engelhard, M H

    2005-01-01

    AlN-SiC alloy crystals, with a thickness greater than 500μm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8 or 3.68 ) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlNSiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). Xray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 10^6cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  7. The Clinical and Histological Effect of a Low-Fluence Q-Switched 1,064-nm Neodymium: Yttrium-Aluminum-Garnet Laser for the Treatment of Melasma and Solar Lentigenes in Asians: Prospective, Randomized, and Split-Face Comparative Study.

    PubMed

    Kaminaka, Chikako; Furukawa, Fukumi; Yamamoto, Yuki

    2017-09-01

    The low-fluence Q-switched 1,064-nm neodymium:yttrium-aluminum-garnet laser (QSNYL) is popular for melasma treatment among Asians. This study was to evaluate the clinical and histological effects of the low-fluence QSNYL for treatment of melasma and solar lentigenes. In this randomized split-face clinical study, 22 patients with melasma or solar lentigo received low-fluence QSNYL weekly for 10 sessions on one cheek. The treatment efficacy was determined by Mexameter skin colorimetry, physician and patient assessment, and by evaluating histological changes. The treated sides had statistically significant reductions in the melanin and erythema indices (EI); 50.0% of melasma and 62.5% of solar lentigo patients had >50% clearance after the final treatment. The increased EI, vascularity, and mast cell activity in patients with melasma and large-sized solar lentigo showed no improvement. The recurrence rates were 16.7% and 12.7% for melasma and solar lentigo, respectively. Postinflammatory hyperpigmentation developed in 1 patient, but no serious side effects were noted. Low-fluence QSNYL is effective in treating melasma and small type solar lentigo in Asians. The authors' study also demonstrated that lesion thickness, vascularity, and mast cell activity can be used to predict the efficacy of the treatment of these lesions.

  8. Single-crystal elastic properties of aluminum oxynitride (AlON) from brillouin scattering

    DOE PAGES

    Satapathy, Sikhanda; Ahart, Muhtar; Dandekar, Dattatraya; ...

    2016-01-19

    The Brillouin light-scattering technique was used to determine experimentally the three independent elastic constants of cubic aluminum oxynitride at the ambient condition. They are C11=334.8(±1.8) GPa, C12=164.4(± 1.2) GPa, and C44=178.6(± 1.1) GPa. Its bulk modulus is 221.2 GPa. The magnitude of Zener anisotropic ratio is 2.1 similar to other spinels. Here, the anisotropic nature of the material is shown by a large variation in the Young’s modulus and Poisson’s ratio with crystallographic directions. The material was found to be auxetic in certain orientations.

  9. Single-crystal elastic properties of aluminum oxynitride (AlON) from brillouin scattering

    SciTech Connect

    Satapathy, Sikhanda; Ahart, Muhtar; Dandekar, Dattatraya; Hemley, Russell J.; Schuster, Brian; Khoma, Petro

    2016-01-19

    The Brillouin light-scattering technique was used to determine experimentally the three independent elastic constants of cubic aluminum oxynitride at the ambient condition. They are C11=334.8(±1.8) GPa, C12=164.4(± 1.2) GPa, and C44=178.6(± 1.1) GPa. Its bulk modulus is 221.2 GPa. The magnitude of Zener anisotropic ratio is 2.1 similar to other spinels. Here, the anisotropic nature of the material is shown by a large variation in the Young’s modulus and Poisson’s ratio with crystallographic directions. The material was found to be auxetic in certain orientations.

  10. Growth of large aluminum nitride single crystals with thermal-gradient control

    DOEpatents

    Bondokov, Robert T.; Rao, Shailaja P.; Schowalter, Leo J.

    2017-02-28

    In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.

  11. Growth of large aluminum nitride single crystals with thermal-gradient control

    DOEpatents

    Bondokov, Robert T; Rao, Shailaja P; Gibb, Shawn Robert; Schowalter, Leo J

    2015-05-12

    In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.

  12. Correlation by Rb-Sr geochronology of garnet growth histories from different structural levels within the Tauern Window, Eastern Alps

    SciTech Connect

    Christensen, John N.; Selverstone, Jane; Rosenfeld, John L.; Depaolo, Donald J.

    1993-06-01

    In order to evaluate rates of tectonometamorphic processes, growth rates of garnets from metamorphic rocks of the Tauern Window, Eastern Alps were measured using Rb-Sr isotopes. The garnet growth rates were determined from Rb-Sr isotopic zonation of single garnet crystals and the Rb-Sr isotopic compositions of their associated rock matrices. Garnets were analyzed from the Upper Schieferhulle (USH) and Lower Schieferhulle (LSH) within the Tauern Window. Two garnets from the USH grew at rates of 0.67(-0.13)+0.19 mm/million years and 0.88(-0.19)+0.34 mm/million years, respectively, indicating an average growth duration of 5.4 +- 1.7 million years. The duration of growth coupled with the amount of rotation recorded by inclusion trails in the USH garnets yields an average shear-strain rate during garnet growth of 2.7(-0.7)+1.2 x 10(-14) s-1 . Garnet growth in the sample from the USH occurred between 35.4 +- 0.6 and 30 +- 0.8 Ma. The garnet from the LSH grew at a rate of 0.23 +- 0.015 mm/mil lion years, between 62 +- 1.5 Ma and 30.2 +- 1.5 Ma. Contemporaneous cessation of garnet growth in both units at approximately 30 Ma is in accord with previous dating of the thermal peak of metamorphism in the Tauern Window. Correlation with previously published pressure-temperature paths for garnets from the USH and LSH yields approximate rates of burial, exhumation and heating during garnet growth. Assuming that these P - T paths are applicable to the garnets in this study, the contemporaneous exhumation rates recorded by garnet in the USH and LSH were approximately 4(-2)+3 mm/year and 2 +- 1 mm/year, respectively. [References: 34

  13. Fractographic and three body abrasion behaviour of Al-Garnet-C hybrid chill cast composites

    NASA Astrophysics Data System (ADS)

    Bandekar, Nityanand; Prasad, M. G. Anantha

    2017-08-01

    Fractographic and tribological behaviour of hybrid composite of aluminum alloy LM13 matrix with garnet and carbon was investigated. Conventional stir casting technique was used to fabricate the composites with chill cast technique. Various chill materials like Copper, Steel, Iron and Silicon carbide were used to improve the directional solidification. The garnet being added ranges from 3 to 12 wt-% in steps of 3wt-% and constant 3wt-% of carbon. The experiment evaluates the mechanical, fractographic and three body abrasion behaviour of the hybrid composites for various parameters of load, garnet and chills. Microstructural characterization of the composite samples revealed a uniform distribution of reinforcements with minimum clustering. SEM was used for examine worn surfaces. The addition of garnet and carbon reinforcement decreases the wear rate of hybrid composites. Fracture behaviour showed the changes from ductile mode to brittle mode of failure. Further, directional chilling with copper chill improves the wear resistance of the composites.

  14. Map showing areas with potential for garnet resources in bedrock and placer in the Blacktail Mountains and the Gravelly, Greenhorn, Ruby, and Snowcrest ranges of southwestern Montana

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Hammarstrom, Jane M.; Kellogg, Karl S.; Berg, Richard B.

    1998-01-01

    Garnet crystals, some of gem quality, have been sought by rock hounds for many years in the alluvial deposits of the Alder Gulch-Ruby River area. Since 1995, garnet have been extracted from these gravels for industrial products at two separately own placer mines in the region: (1) at Cominco American's "Ruby Garnet" operation at Alder , Montana and (2) at the "Sweetwater Garnet" operation in the Sweetwater Basin of the Ruby Range. The two placer mines excavate different types of garnetiferous deposits, but both produce sized concentrates of almandine garnet derived from similar source rocks. 

  15. Characterisation of a garnet population from the Sikkim Himalaya: insights into the rates and mechanisms of porphyroblast crystallisation

    NASA Astrophysics Data System (ADS)

    George, F. R.; Gaidies, F.

    2017-07-01

    The compositional zoning of a garnet population contained within a garnet-grade metapelitic schist from the Lesser Himalayan Sequence of Sikkim (India) provides insight into the rates and kinetic controls of metamorphism, and the extent of chemical equilibration during porphyroblast crystallisation in the sample. Compositional profiles across centrally sectioned garnet crystals representative of the observed crystal size distribution indicate a strong correlation between garnet crystal size and core composition with respect to major end-member components. Systematic steepening of compositional gradients observed from large to small grains is interpreted to reflect a progressive decrease in the growth rate of relatively late-nucleated garnet as a result of an increase in interfacial energies during progressive crystallisation. Numerical simulation of garnet nucleation and growth using an equilibrium approach accounting for chemical fractionation associated with garnet crystallisation reproduces both the observed crystal size distribution and the chemical zoning of the entire garnet population. Simulation of multicomponent intracrystalline diffusion within the population indicates rapid heating along the pressure-temperature path, in excess of 100°C Myr^{-1}. Radial garnet growth is correspondingly rapid, with minimum rates of 1.4 mm Myr^{-1}. As a consequence of such rapid crystallisation, the sample analysed in this study provides a close to primary record of the integrated history of garnet nucleation and growth. Our model suggests that nucleation of garnet occurred continuously between incipient garnet crystallisation at ˜520°C, 4.5 kbar and peak metamorphic conditions at ˜565°C, 5.6 kbar. The good fit between the observed and predicted garnet growth zoning suggests that the departure from equilibrium associated with garnet nucleation and growth was negligible, despite the particularly fast rates of metamorphic heating. Consequently, rates of major element

  16. On the growth of conductive aluminum doped zinc oxide on 001 strontium titanate single crystals

    NASA Astrophysics Data System (ADS)

    Trinca, L. M.; Galca, A. C.; Aldica, G.; Radu, R.; Mercioniu, I.; Pintilie, L.

    2016-02-01

    Aluminum doped zinc oxide (AZO) thin films were obtained by pulsed laser deposition on (001) SrTiO3 (STO) on a range of substrate temperatures during ablation between 300 °C and 600 °C. A hexagonal system lying on a cubic one should be difficult to be obtained in epitaxial form. The geometrical selection of the AZO growth on (001) STO is not giving a unique preferential orientation. Two orientations, c-axis (along [001]) and 110, have been observed experimentally with different ratios at different substrate temperature. Discussions are made with respect to the temperature dependence of lattice mismatch between the two cases and the cubic surface of the substrate, and to the substrate surface morphology and terminating atomic layer composition. The 110 AZO is the main phase at deposition temperature of 550 °C, while for other substrate temperatures the 001 is the preferential orientation. The conductive character of 110 AZO thin film have been inferred from both ellipsometry spectra and current-voltage measurements. Excepting the samples deposited at 300 °C, the lowest resistivity is recorded for the samples with 110 AZO as the main phase.

  17. LOW MAGNETIC SATURATION GARNETS.

    DTIC Science & Technology

    Ten single crystal runs consisting of YCaVIG, BiCaVIG, YBiCaVIG and BiCaV( Al )IG were prepared and evaluated. Good quality crystals were grown in...with increasing temperature ( - 180 to + 25C). Polycrystalline samples of Y1.6Ca1.4V0.7AlwFe4.3-wO12 were prepared for w = 0 to 0.5. Lattice

  18. Synthesis of bulk nanostructured aluminum containing in situ crystallized amorphous particles

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui

    5083 Al containing in situ crystallized Al85Ni10La 5 amorphous particles (10% and 20% in volume fraction) was synthesized through a powder metallurgy route consisting of cold isostatic pressing, degassing and hot extrusion. The nanostructured 5083 Al powders (grain size ˜28 nm) were produced through mechanical milling in liquid nitrogen. The Al 85Ni10La5 powders were produced via gas atomization using helium gas and the fraction in the size range of <500 mesh (<25 mum), which appeared to be fully amorphous on the basis of X-ray diffraction studies, was isolated for further investigation. The amorphous Al85Ni10La5 alloy exhibited a glass transition at ˜259°C (at a heating rate of 40°C/min) and nanoscale crystallites (< 100 nm) with an equiaxed morphology formed during the subsequent crystallization reactions. At temperatures higher than 283°C, only the equilibrium phases Al, Al3Ni and Al11La 3 were formed. An unusually high nucleation density (1021-22 /m3) was recorded in the crystallization process. The copious nucleation sites were rationalized from the presence of quenched-in Al nuclei, which were evidenced by isothermal calorimetric tracing (235°C) and a direct HRTEM observation of the amorphous Al85Ni10La 5 powders. The feasibility of preparation of nanocrystalline/amorphous particles via melt spinning followed by ball milling was also studied. In the as-extruded composites, the amorphous Al85Ni10 La5 particles underwent complete crystallization resulting in a grain size of 100 ˜ 200 nm; the 5083 Al matrix had a grain size around 200 nm in the fine-grained region interspersed by coarse-grained region with a grain size of 600 ˜ 1500 nm. A metallurgical bond formed between the 5083 Al matrix and Al85Ni10La5 particles showing a grain-boundary-like interface. The compressive fracture strength of the as-extruded 10% and 20% Al85Ni10La5 composites were determined to be 1025 MPa and 837 MPa, respectively. The influence of secondary processing, i.e., swaging

  19. The crystal structure and chemical state of aluminum-doped hydroxyapatite by experimental and first principles calculation studies.

    PubMed

    Wang, Ming; Wang, Liping; Shi, Chao; Sun, Tian; Zeng, Yi; Zhu, Yingchun

    2016-08-03

    Aluminum (Al) is a trace element found in hard tissues, and the induction of bone diseases by Al accumulation has generated interest in the role and mechanism of Al in bone metabolism. Because hydroxyapatite (HA) constitutes the main inorganic content of human hard tissues, the biological effect of Al in human hard tissues is closely related to the intrinsic state of Al-doped HA (Al-HA). However, few investigations to date have focused on the crystallography of Al-HA. Herein, we determined the crystallographic characteristics and energy states of Al-HA by conducting theoretical and experimental studies. Al-HA [Ca10-1.5xAlx(PO4)6(OH)2] with a defect structure was synthesized. XRD patterns and morphology images revealed that doping of Al decreased the crystallinity and the HA nanocrystal size. The optimized crystal structure indicated that Al was preferentially substituted for Ca(2) and Ca vacancies appeared at the Ca(2)1 site. Al doping locally distorted the regularity and integrity of the HA crystal structure, leading to the occurrence of Ca(2+) vacancies and the displacement and rotation of OH(-) and [PO4](3-) chains. The total energy of Al-HA increased and the stability decreased. Consequently, Al-HA might be readily degraded by osteoclasts and bone resorption could be accelerated. The destruction and over-resorption of bones caused by excessive Al could result in abnormal bone metabolism. The present findings not only provide the first crystallographic information on the disruptive effects of Al doping in HA but also complement the present understanding of the mechanisms underlying Al-induced bone diseases.

  20. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms.

    PubMed

    Kuroda, Etsushi; Ishii, Ken J; Uematsu, Satoshi; Ohata, Keiichi; Coban, Cevayir; Akira, Shizuo; Aritake, Kosuke; Urade, Yoshihiro; Morimoto, Yasuo

    2011-04-22

    Particulates such as silica crystal (silica) and aluminum salts (alum) activate the inflammasome and induce the secretion of proinflammatory cytokines in macrophages. These particulates also induce the production of immunoglobulin E via a T helper 2 (Th2) cell-associated mechanism. However, the mechanism involved in the induction of type 2 immunity has not been elucidated. Here, we showed that silica and alum induced lipopolysaccharide-primed macrophages to produce the lipid mediator prostaglandin E₂ (PGE₂) and interleukin-1β (IL-1β). Macrophages deficient in the inflammasome components caspase 1, NALP3, and ASC revealed that PGE₂ production was independent of the NALP3 inflammasome. PGE₂ expression was markedly reduced in PGE synthase-deficient (Ptges⁻/⁻) macrophages, and Ptges⁻/⁻ mice displayed reduced antigen-specific serum IgE concentrations after immunization with alum or silica. Our results indicate that silica and alum regulate the production of PGE₂ and that the induction of PGE₂ by particulates controls the immune response in vivo. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Fractional Crystallization Model of Multicomponent Aluminum Alloys: A Case Study of Aircraft Recycling

    NASA Astrophysics Data System (ADS)

    Muñiz-Lerma, Jose Alberto; Paliwal, Manas; Jung, In-Ho; Brochu, Mathieu

    2017-04-01

    A one-dimensional numerical solidification model has been developed to predict the recovery and refining efficiency of fractional crystallization applied to a blend of aircraft Al scraps with variations of Fe and Si. The model incorporates the effective partition coefficient depending on the degree of melt stirring. Moreover, the kinetic factors that affect the formation of primary Al FCC during fractional crystallization such as solidification velocity, thermal gradient, cooling rate, and solute back-diffusion are taken into account. The simulation results suggest that the optimum solidification velocities that are able to yield the highest refining can be ranged between 1.0 × 10-6 and 1.0 × 10-5 m/s with medium to high stirring levels. The maximum recovery of refined Al has been estimated to be 31 wt pct of the initial scrap when the process is carried out at 1 × 10-6 m/s and the initial concentrations of Fe and Si are 1 and 2 pct, respectively.

  2. Fractional Crystallization Model of Multicomponent Aluminum Alloys: A Case Study of Aircraft Recycling

    NASA Astrophysics Data System (ADS)

    Muñiz-Lerma, Jose Alberto; Paliwal, Manas; Jung, In-Ho; Brochu, Mathieu

    2017-01-01

    A one-dimensional numerical solidification model has been developed to predict the recovery and refining efficiency of fractional crystallization applied to a blend of aircraft Al scraps with variations of Fe and Si. The model incorporates the effective partition coefficient depending on the degree of melt stirring. Moreover, the kinetic factors that affect the formation of primary Al FCC during fractional crystallization such as solidification velocity, thermal gradient, cooling rate, and solute back-diffusion are taken into account. The simulation results suggest that the optimum solidification velocities that are able to yield the highest refining can be ranged between 1.0 × 10-6 and 1.0 × 10-5 m/s with medium to high stirring levels. The maximum recovery of refined Al has been estimated to be 31 wt pct of the initial scrap when the process is carried out at 1 × 10-6 m/s and the initial concentrations of Fe and Si are 1 and 2 pct, respectively.

  3. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  4. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  5. Molecular dynamics study of void effect on nanoimprint of single crystal aluminum

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Sun, Tao; Zhang, Junjie; Yan, Yongda

    2011-06-01

    Pre-existing defects can alter mechanical behavior of materials significantly under applied load. In current study molecular dynamics (MD) simulations are performed to reveal pre-existing void effect on nanoimprint of single crystal Al thin films, such as deformation mechanism and spring back phenomenon. Current simulation results show void acts as strong barrier to dislocation motion, although plastic deformation is dominantly controlled by dislocation activities. It indicates the void volume fraction has strong influence on nanoimprint: the larger the void volume fraction, the smaller the maximum force required for initial dislocation nucleation, and the stronger the interaction between extended dislocation and void. It also demonstrates that there is a critical void volume fraction for minimum spring back, which is resulted from competition between two roles affecting dislocation annihilation.

  6. Characteristics of Polycrystalline Garnets in Micaschists From the Southern Menderes Massif (Turkey) and the Solitude Range (BC, Canada)

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Whitney, D. L.; Seaton, N.

    2008-12-01

    Electron backscatter diffraction (EBSD) analysis of garnets in metamorphic rocks has revealed the presence of grain boundaries within what appear, based on morphology, to be single crystals. There have only been a few previous studies that have described these types of polycrystals in nature. In this study we analyzed garnets from two suites of metamorphic rocks: kyanite-staurolite schist from the Solitude Range, SW Rocky Mountains (BC, Canada), and mica schist from the southern Menderes Massif (western Turkey). Garnets from both sites are growth zoned and formed during a single metamorphic event, although the Solitude Range garnets record in their zoning and inclusion textures a change from chloritoid-present to staurolite- present (chloritoid-out) reaction history. The garnet-bearing rocks from these sites formed at P-T conditions of 430-550 C, 7-8 kbar (Menderes) and 550-600 C, 6-7 kbar (BC). Less than 10% of the garnets analyzed are polycrystals, but all polycrystals detected have similar characteristics: high-angle misorientation boundaries that crosscut inclusions and inclusion trails. Most polycrystals have 2-3 domains (crystals), but one complex polycrystal was comprised of 16 distinct lattice domains. In most cases, misorientation boundaries crosscut growth zoning, but one Menderes polycrystal exhibited distinct zoning in each domain. Most polycrystals likely formed early in the garnet growth history as closely-spaced nuclei coalesced, but clustering (coalescence) continued throughout the history of garnet crystallization in these rocks.

  7. Electronic Raman scattering from terbium gallium garnet excited with a picosecond laser

    NASA Astrophysics Data System (ADS)

    Koningstein, J. A.; Lemaire, H.; Atkinson, G. H.

    1987-09-01

    The electronic Raman (ER) spectrum of terbium gallium garnet, recorded using picosecond radiation from the frequency-doubled output of a Nd:YAG laser is reported. The observed spectral bands with frequency shifts up to 6000 cm-1 are the result of the effect of a strong crystal field which causes J-mixing between the 7F 6,5,....,0 states. The site symmetry of Tb 3+ in the garnet can be confirmed from this spectroscopy.

  8. Faraday rotator based on TSAG crystal with <001> orientation.

    PubMed

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Aleksey; Mironov, Evgeniy; Palashov, Oleg

    2016-07-11

    A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the <001> direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10-4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems.

  9. Mineral resource of the month: garnet

    USGS Publications Warehouse

    Olson, Donald W.

    2011-01-01

    Garnet, the birthstone for the month of January, has been used as a gemstone for centuries. Garnet necklaces dating from the Bronze Age have been found in graves, and garnet is found among the ornaments adorning the oldest Egyptian mummies. However, garnet’s characteristics, such as its relatively high hardness and chemical inertness, make it ideal for many industrial applications.

  10. Aluminum Migration and Intrinsic Defect Interaction in Single-Crystal Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Johansen, K. M.; Vines, L.; Bjørheim, T. S.; Schifano, R.; Svensson, B. G.

    2015-02-01

    Vacancy-mediated migration of Al in single-crystal zinc oxide (ZnO) is investigated using secondary-ion mass spectrometry (SIMS) combined with hybrid density-functional theory (DFT) calculations. A thin film of Al-doped ZnO is deposited by sputtering onto the single-crystal bulk material and heat treated at temperatures in the range of 900 °C - 1300 °C . The migration of Al is found to be Zn-vacancy mediated. In order to elucidate the physical processes involved, an alternative model based on reactive diffusion is developed. The model includes the time evolution of the concentration of Al atoms on the Zn site (AlZn ), Zn vacancies (vZn), and a complex between the two, where the influence of the charge state of vZn on its formation energy is incorporated through the free carrier concentration. The modeling results exhibit close agreement with the experimental data and the AlZnvZn complex is found to diffuse with an activation energy of 2.6 eV and a preexponential factor of 4 ×10-2 cm2 s-1 . The model is supported by the results from hybrid DFT calculations combined with thermodynamical modeling, which also suggest that a complex between AlZn and vZn is promoted in n -doped material. The charge state of this complex is effectively -1 , and it thus acts as a compensating acceptor, limiting full utilization of the shallow AlZn donor. Furthermore, the DFT calculations also predict a high formation energy for both substitutional Al on the O site (AlO ) and interstitial Al (Ali), and are therefore of minor importance for Al migration in ZnO. The close coupling between the hybrid DFT calculations and the developed diffusion model enable benchmarking of the accuracy of several parameters extracted from the DFT calculations. Furthermore, since the diffusion model hinges strongly on defect concentrations, it couples directly to results from measurements by other experimental techniques than those used in this paper and provides an opportunity for independent verification

  11. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  12. Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints.

    USGS Publications Warehouse

    Zen, E.

    1986-01-01

    The degree of Al saturation of an igneous rock may be given by its aluminium saturation index (ASI), defined as the molar ratio Al2O3/(CaO+K2O+Na2O). One suggested origin for mildly peraluminous granites (ASI 1-1.1) is fractional crystallization of subaluminous magmas (ASI 1. For hornblende to effectively cause a melt to evolve into a peraluminous composition, it must be able to coexist with peraluminous magmas; e.g. at = or <5 kbar hornblende can coexist with strongly peraluminous melts (ASI approx 1.5). Potentials and problems of using coarse-grained granitic rocks to prove courses of magmatic evolution are illustrated by a suite of samples from the Grayling Lake pluton, SW Montana. Such rocks generally contain a large cumulate component and should not be used as a primary test for the occurrence or efficacy of a fractionation process that might lead to peraluminous melts. The process is unlikely to give rise to peraluminous plutons of batholithic dimensions. A differential equation is presented which allows the direct use of mineral chemistry and modal abundance to predict the path of incremental evolution of a given magma.-R.A.H.

  13. Optical isolator based on mode conversion in magnetic garnet films.

    PubMed

    Hemme, H; Dötsch, H; Menzler, H P

    1987-09-15

    Calculations are presented describing a novel optical isolator which works by complete TE(0)-TM(0) mode conversion in magnetic garnet films caused by stress-induced optical anisotropy (50%) and by Faraday rotation (50%). These conversions take place along two different, perpendicular light paths in the same crystal that are connected by an integrated mirror. Possible tolerances of the film parameters are given so that a 30-dB isolation is still guaranteed.

  14. Modeling of residual thermal stresses for aluminum nitride crystal growth by sublimation

    NASA Astrophysics Data System (ADS)

    Lee, R. G.; Idesman, A.; Nyakiti, L.; Chaudhuri, J.

    2007-09-01

    Residual thermal stress distribution in AlN single crystal, grown on tungsten as a crucible material, was investigated using a numerical study. It has been demonstrated that a three-dimensional, instead of a two-dimensional, formulation predicts significantly greater values of stress. Dimensionless coordinates were used to essentially simplify the stress analysis and reduce the number of calculations. In addition, thermoelasticity approach simplifies the study of stresses for a nonstationary temperature field. The stress in the AlN film along the thickness or [0001] growth direction is essentially zero but the in-plane stress is large. The stress at the corner of the film is much higher due to stress concentration and could cause formation of microcracks. The stress in the film is tensile while that in the substrate is compressive, which causes a reversal of the stress across the interface. Separation or delamination of the film from the substrate could occur due to this reversal of the stress at the interface. The stress decreases as the thickness of the film increases or the thickness of the substrate decreases. Thus, formation of microscopic cracks in the film could be avoided by using a thinner substrate. The analysis on interaction of neighboring islands in order to simulate coalescence of island growth indicates stress concentration at the boundaries of the islands, which could produce threading dislocations and hence polycrystalline growth. The analysis of the effect of misorientation of the neighboring grains on the residual thermal stress in the film has shown that a large stress can develop at the grain boundary and can lead to grain boundary cracking.

  15. High-pressure and high-temperature studies on oxide garnets

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Mirov, Sergey; Vohra, Yogesh K.

    1996-09-01

    We report high-pressure and high-temperature studies on a series of oxide garnets of chemical composition A3B2C3O12. The members of this family investigated are gadolinium scandium gallium garnet (GSGG), gadolinium gallium garnet (GGG), and yttrium aluminum garnet (YAG). The GSGG and GGG are doped with both neodymium and chromium while the YAG is doped only with neodymium. Photoluminescence, synchrotron x-ray-diffraction, and laser heating studies were carried out in a diamond-anvil cell. Variety of optical sensors (ruby, Sm-doped YAG) and x-ray pressure marker (copper) were employed for pressure measurement. Pressure-induced amorphization was observed in GSGG at 58+/-3 GPa and GGG at 84+/-4 GPa by x-ray-diffraction studies. The photoluminescence studies show only gradual broadening of emission bands through the amorphization transition. On increasing pressure beyond amorphization, very broad and featureless emission bands were observed in the fluorescence spectra at 77+/-2 GPa for GSGG and at 88+/-2 GPa for GGG. Laser heating of the pressure-induced amorphous phase in GSGG caused recrystallization to the stable cubic phase. High-pressure x-ray study on YAG shows that it retains cubic phase up to 101+/-4 GPa. A pressure-volume relation for each member of the oxide garnet at ambient temperatures is presented, structural transformation mechanisms, and application of oxide garnets as pressure sensors are also discussed.

  16. Fragmentation of wall rock garnets during deep crustal earthquakes

    PubMed Central

    Austrheim, Håkon; Dunkel, Kristina G.; Plümper, Oliver; Ildefonse, Benoit; Liu, Yang; Jamtveit, Bjørn

    2017-01-01

    Fractures and faults riddle the Earth’s crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic slip rates along ancient faults is rare and usually related to frictional melting and the formation of pseudotachylites. We report novel microstructures from garnet crystals in the immediate vicinity of seismic slip planes that transected lower crustal granulites during intermediate-depth earthquakes in the Bergen Arcs area, western Norway, some 420 million years ago. Seismic loading caused massive dislocation formations and fragmentation of wall rock garnets. Microfracturing and the injection of sulfide melts occurred during an early stage of loading. Subsequent dilation caused pervasive transport of fluids into the garnets along a network of microfractures, dislocations, and subgrain and grain boundaries, leading to the growth of abundant mineral inclusions inside the fragmented garnets. Recrystallization by grain boundary migration closed most of the pores and fractures generated by the seismic event. This wall rock alteration represents the initial stages of an earthquake-triggered metamorphic transformation process that ultimately led to reworking of the lower crust on a regional scale. PMID:28261660

  17. Fragmentation of wall rock garnets during deep crustal earthquakes.

    PubMed

    Austrheim, Håkon; Dunkel, Kristina G; Plümper, Oliver; Ildefonse, Benoit; Liu, Yang; Jamtveit, Bjørn

    2017-02-01

    Fractures and faults riddle the Earth's crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic slip rates along ancient faults is rare and usually related to frictional melting and the formation of pseudotachylites. We report novel microstructures from garnet crystals in the immediate vicinity of seismic slip planes that transected lower crustal granulites during intermediate-depth earthquakes in the Bergen Arcs area, western Norway, some 420 million years ago. Seismic loading caused massive dislocation formations and fragmentation of wall rock garnets. Microfracturing and the injection of sulfide melts occurred during an early stage of loading. Subsequent dilation caused pervasive transport of fluids into the garnets along a network of microfractures, dislocations, and subgrain and grain boundaries, leading to the growth of abundant mineral inclusions inside the fragmented garnets. Recrystallization by grain boundary migration closed most of the pores and fractures generated by the seismic event. This wall rock alteration represents the initial stages of an earthquake-triggered metamorphic transformation process that ultimately led to reworking of the lower crust on a regional scale.

  18. Lattice and Magnetic Effects on Multiferroic Transitions in Garnets

    NASA Astrophysics Data System (ADS)

    Louca, Despina; Kamazawa, K.; Proffen, T.

    2007-03-01

    The possible presence of ferroelectricity in a magnetically ordered state has attracted considerable attention particularly in ABO3 and AB2O5 systems with B = Mn. Evidence for strong coupling of the two order parameters has been provided in the so-called multiferroics, where the field-induced polarization leads to a giant magnetoelectric effect and a magneto-dielectric effect. It was recently shown that the ferrimagnetic garnet crystal of Tb3Fe5O12 exhibits a large magnetodielectric response as well when a very small magnetic field is applied (1). To understand the origin of the high sensitivity of the dielectric effect in garnets, we investigated the crystal and magnetic structures of Tb3(Fe/Ga)5O12 using pulsed neutron diffraction. The garnet crystal appears to be very close to a lattice instability and high-resolution diffraction showed that the lattice gradually changes symmetry from cubic to rhombohedral with cooling over a wide temperature range. At the same time, magnetic diffuse scattering is observed that goes away by 15 K. The role of the lattice and of local distortions in the magnetic polarization and the coupling of the magnetostriction to the dielectric effect will be discussed. (1) N. Hur et al, Appl. Phys. Lett. 87, 042901 (2005).

  19. Simulation study of directional coarsening (rafting) of gamma' in single crystal nickel-aluminum

    NASA Astrophysics Data System (ADS)

    Zhou, Ning

    Dislocation propagation in and work hardening of gamma channels and directional coarsening (rafting) of gamma' precipitates are the major microscopic processes taking place during high temperature deformation of single crystal Ni-base superalloys. Understanding of those processes is crucial for developing improved models of creep and fatigue of turbine blades in aircraft engines. Recent investigations of rafting in superalloys demonstrate clearly the importance of elastic modulus difference between the gamma and gamma' phases and dislocation-level activities in the gamma-channels in determining the kinetic pathway of the processes. The elastic modulus difference can lead to the non-uniform distribution of stresses through the interaction with the lattice misfit and external load. While work hardening in the gamma channels has a direct effect on differentiation of the stress state in the vertical and horizontal channels and on gamma/gamma' interface coherency and energy, and hence influences the diffusive flow and morphological changes of the gamma/gamma' microstructure. In turn, changes in particle shape and coherency of the interface alter the local stress state and thereby the Peach-Koehler force on dislocations. Although existing models treating these processes separately can offer a qualitative explanation about the direction of rafting for typical superalloys, a complete quantitative understanding of rafting phenomena requires these processes to be treated simultaneously in a common framework because of their intimate coupling. The objective of this thesis is to develop an integrated computational approach in simulating simultaneous evolution of both gamma/gamma' microstructure and dislocations in an elastically anisotropic and inhomogeneous system by using a single, consistent phase field methodology. In particular, the phase field dislocation model is used to simulate the initial dislocation gamma channel filling process and calculate stress distribution

  20. Ce(3+)-Doped garnet phosphors: composition modification, luminescence properties and applications.

    PubMed

    Xia, Zhiguo; Meijerink, Andries

    2017-01-03

    Garnets have the general formula of A3B2C3O12 and form a wide range of inorganic compounds, occurring both naturally (gemstones) and synthetically. Their physical and chemical properties are closely related to the structure and composition. In particular, Ce(3+)-doped garnet phosphors have a long history and are widely applied, ranging from flying spot cameras, lasers and phosphors in fluorescent tubes to more recent applications in white light LEDs, as afterglow materials and scintillators for medical imaging. Garnet phosphors are unique in their tunability of the luminescence properties through variations in the {A}, [B] and (C) cation sublattice. The flexibility in phosphor composition and the tunable luminescence properties rely on design and synthesis strategies for new garnet compositions with tailor-made luminescence properties. It is the aim of this review to discuss the variation in luminescence properties of Ce(3+)-doped garnet materials in relation to the applications. This review will provide insight into the relation between crystal chemistry and luminescence for the important class of Ce(3+)-doped garnet phosphors. It will summarize previous research on the structural design and optical properties of garnet phosphors and also discuss future research opportunities in this field.

  1. Age trends in garnet-hosted monazite inclusions from upper amphibolite facies schist in the northern Grouse Creek Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Hoisch, Thomas D.; Wells, Michael L.; Grove, Marty

    2008-11-01

    We performed in situ Th-Pb dating of monazite in upper amphibolite facies pelitic schist from the Grouse Creek Mountains in northwest Utah. Sixty-six ages from inclusions in four garnet grains range from 37 to 72 Ma and decrease with radial distance from garnet cores. The age range of 30 matrix monazite grains overlaps and extends to younger ages than inclusions (25-58 Ma). The monazite grains are not intersected by cracks in the garnets, through which dissolution, reprecipitation or Pb loss might occur, and are generally too small (<20 μm) to allow for more than one age determination on any one grain. Processes that might explain inclusion ages that decrease with radial distance from garnet cores include: (1) Pb diffusion in monazite, (2) dissolution and reprecipitation of monazite, and (3) co-crystallization of monazite and garnet. After consideration of these possibilities, it is concluded that the co-crystallization of monazite and garnet is the most plausible, with monazite neoblasts deriving REE s from the breakdown of muscovite. Garnet ages derived by regression of the inclusion ages and assuming a constant rate of volume increase during garnet growth yield model ages with a maximum difference between core and rim of 22 m.y.

  2. Chapter L: U.S. Industrial Garnet

    USGS Publications Warehouse

    Evans, James G.; Moyle, Phillip R.

    2006-01-01

    The United States presently consumes about 16 percent of global production of industrial garnet for use in abrasive airblasting, abrasive coatings, filtration media, waterjet cutting, and grinding. As of 2005, domestic garnet production has decreased from a high of 74,000 t in 1998, and imports have increased to the extent that as much as 60 percent of the garnet used in the United States in 2003 was imported, mainly from India, China, and Australia; Canada joined the list of suppliers in 2005. The principal type of garnet used is almandite (almandine), because of its specific gravity and hardness; andradite is also extensively used, although it is not as hard or dense as almandite. Most industrial-grade garnet is obtained from gneiss, amphibolite, schist, skarn, and igneous rocks and from alluvium derived from weathering and erosion of these rocks. Garnet mines and occurrences are located in 21 States, but the only presently active (2006) mines are in northern Idaho (garnet placers; one mine), southeastern Montana (garnet placers; one mine), and eastern New York (unweathered bedrock; two mines). In Idaho, garnet is mined from Tertiary and (or) Quaternary sedimentary deposits adjacent to garnetiferous metapelites that are correlated with the Wallace Formation of the Proterozoic Belt Supergroup. In New York, garnet is mined from crystalline rocks of the Adirondack Mountains that are part of the Proterozoic Grenville province, and from the southern Taconic Range that is part of the northern Appalachian Mountains. In Montana, sources of garnet in placers include amphibolite, mica schist, and gneiss of Archean age and younger granite. Two mines that were active in the recent past in southwestern Montana produced garnet from gold dredge tailings and saprolite. In this report, we review the history of garnet mining and production and describe some garnet occurrences in most of the Eastern States along the Appalachian Mountains and in some of the Western States where

  3. Evaluation of thermobarometers for garnet peridotites

    NASA Technical Reports Server (NTRS)

    Finnerty, A. A.; Boyd, F. R.

    1984-01-01

    Twenty-one geothermometers and six geobarometers are evaluated for accuracy and precision for garnet lherzolites, with a suite of well-equilibrated xenoliths from kimberlites of northern Lesotho. Accuracy was tested by comparison of P-T estimates for a diamond-bearing and a graphite-bearing xenolith with the experimentally determined diamond-graphite univariant curve and by comparison of P-T estimates for phlogopite-bearing xenoliths to the high-temperature stability limit of phlogopite. Precision was evaluated by measuring the scatter of P-T estimates for each of four xenoliths from a wide range of P and T when many point analyses of the constituent minerals are used for P-T estimation. Most satisfactory is a thermobarometer composed of the uncorrected diopside-enstatite miscibility gap of Lindsley and Dixon (1976), combined with the uncorrected isopleths for aluminum in enstatite coexisting with pyrope of MacGregor (1974). The inflection observed in the northern Lesotho paleogeotherm cannot be an artifact of the method of temperature estimation.

  4. Stress Tuning of Laser Crystals

    NASA Technical Reports Server (NTRS)

    Carty, Atherton A.

    1995-01-01

    The topic of stress tunable laser crystals is addressed in this study with the purpose of determining the piezo-optic coefficients of a new laser material. This data was collected using a quadruple pass birefringence technique because of its high degree of sensitivity relative to the other methods examined including fringe shift analysis using a Mach-Zender interferometer. A green He-Ne laser was passed through a light chopper and Glan-Thompson prism before entering a crystal of Erbium doped Yttrium Aluminum Garnet (Er:YAG) (used in order to validate the experimental technique). The Er:YAG crystal is mounted in a press mechanism and the laser is quadruple passed through test specimen before being returned through the prism and the orthogonally polarized portion of the beam measured with a optical sensor. At a later stage, the Er:YAG crystal was replaced with a new crystal in order to determine the piezo-optic coefficients of this uncharacterized material. The applied load was monitored with the use of a 50 lb. load cell placed in line with the press. Light transmission readings were taken using a lock-in amplifier while load cell measurements were taken with a voltmeter from a 5 volt, 0.5 amp power supply. Despite the fact that an effective crystal press damping system was developed, size limitations precluded the use of the complete system. For this reason, data points were taken only once per full turn so as to minimize the effect of non uniform load application on the collected data. Good correlation was found in the transmission data between the experimentally determined Er:YAG and the previously known peizo-optic constants of non-doped crystal with which it was compared. The variation which was found between the two could be accounted for by the aforementioned presence of Erbium in the experimental sample (for which exact empirical data was not known). The same test procedure was then carried out on a Yttrium Gallium Aluminum garnet (YGAG) for the purpose of

  5. First Report of Majoritic-Garnet Diamond Inclusions From Yakutian Kimberlites

    NASA Astrophysics Data System (ADS)

    Sobolev, N. V.; Taylor, L. A.; Logvinova, A. M.; Seryotkin, Y. V.; Koptil, V. I.; Yefimova, E. S.

    2002-12-01

    The presence of a majoritic component in mantle garnets is significant in that it indicates a deeper-than-normal origin for their host diamonds. We have discovered the first majoritic garnets both of peridotitic (P-/U-type) and eclogitic (E-type) parageneses, included in microdiamonds (<1 mm) from three Yakutian kimberlite pipes: Yubileynaya, Komsomolskaya, and Krasnopresnenskaya, all located in the Alakit kimberlite field of Upper Devonian age. Up until now, a considerable number of majoritic garnets have been recovered from placers. The new finds of majoritic garnets reported here practically double the number of kimberlitic pipes worldwide where such garnets have been detected. Multiple inclusions of garnet and olivine occur in single P-type diamond from Yubileynaya. Here, a CrCa-rich majoritic garnet coexists with a CrCa-rich non-majoritic garnet and olivine, but the 3 grains are not in contact. Positive identification of the majoritic garnet was obtained by single-crystal X-ray diffraction: space group Ia3d; a = 11.775 (1) Å; V = 1632.6 (2) Å3. All garnets were analyzed extensively by electron microprobe. The specific features of the compositions of `coexisting' majoritic and non-majoritic garnets, resp., are: Si (pfu) = 3.22 and 3.02: Cr2O3 (wt %) = 10.2 and 13.7; CaO (wt %) = 20.8 and 12.7; Mg# 77.6 and 69.9. Coexisting olivine is Fo 91.5, which is consistent with the relatively low Mg# of the majoritic garnet. This Yubileynaya majoritic garnet diamond inclusion (DI) represents the first find of a garnet, containing solid solution pyroxene, from a wehrlitic paragenesis. Furthermore, its CaCr-component (uvarovite) content is unusually high (~50%). The chemical differences of the wehrlitic garnets in this one Yubileynaya diamond testifies directly to the complex history of this diamond, specifically to a large range of pressures. Majoritic garnet DIs from the Komsomolskaya and Krasnopresnenskaya pipes are both of E-type and are characterized by the following

  6. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit

    NASA Astrophysics Data System (ADS)

    Gaspar, Miguel; Knaack, Charles; Meinert, Lawrence D.; Moretti, Roberto

    2008-01-01

    Metamorphic and magmatic garnets are known to fractionate REE, with generally HREE-enriched patterns, and high Lu/Hf and Sm/Nd ratios, making them very useful as geochemical tracers and in geochronological studies. However, these garnets are typically Al-rich (pyrope, almandine, spessartine, and grossular) and little is known about garnets with a more andraditic (Fe 3+) composition, as frequently found in skarn systems. This paper presents LA-ICP-MS data for garnets from the Crown Jewel Au-skarn deposit (USA), discusses the factors controlling incorporation of REE into garnets, and strengthens the potential of garnet REE geochemistry as a tool to help understand the evolution of metasomatic fluids. Garnets from the Crown Jewel deposit range from Adr 30Grs 70 to almost pure andradite (Adr >99). Fe-rich garnets (Adr >90) are isotropic, whereas Al-rich garnets deviate from cubic symmetry and are anisotropic, often showing sectorial dodecahedral twinning. All garnets are extremely LILE-depleted, Ta, Hf, and Th and reveal a positive correlation of ΣREE 3+ with Al content. The Al-rich garnets are relatively enriched in Y, Zr, and Sc and show "typical" HREE-enriched and LREE-depleted patterns with small Eu anomalies. Fe-rich garnets (Adr >90) have much lower ΣREE and exhibit LREE-enriched and HREE-depleted patterns, with a strong positive Eu anomaly. Incorporation of REE into garnet is in part controlled by its crystal chemistry, with REE 3+ following a coupled, YAG-type substitution mechanism ([X]-1VIII[REE]+1VIII[Si]-1IV[Z]+1IV), whereas Eu 2+ substitutes for X 2+ cations. Thermodynamic data (e.g., Hmixing) in grossular-andradite mixtures suggest preferential incorporation of HREE in grossular and LREE in more andraditic compositions. Variations in textural and optical features and in garnet geochemistry are largely controlled by external factors, such as fluid composition, W/ R ratios, mineral growth kinetics, and metasomatism dynamics, suggesting an overall system

  7. Thermal conductivity of disordered garnets from infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Giesting, P. A.; Hofmeister, A. M.

    2002-04-01

    The thermal conductivity (k) of garnets is calculated from a formula originating with Debye, adapted to treat the vibrations in a solid as a collection of damped harmonic oscillators. Our model utilizes phonon lifetimes obtained from Kramers-Kronig analyses of existing IR reflectivity spectra, as well as new data presented here, and calculates k at ambient conditions within a nominal uncertainty of 6% of the experimental values for eight natural samples with well-constrained chemical compositions. Agreement is good for the remaining garnets with uncertain compositions. Two series of natural mixed crystals were studied: (1) X3Al2Si3O12, where the X site has varying amounts of Mg, Fe2+, and Ca and (2) Ca3Y2Si3O12, where the Y site has Al and/or Fe3+. The model predicts k at ambient conditions for the end members. The occurrence of a minimum in k near the midpoint of each compositional series correlates with the maximum widths of the IR peaks. Thus, disorder on crystallographic sites largely controls the thermal conductivity of mixed crystals. We also tested the model using available data on synthetic yttrium garnets. Agreement is good for YAG. Observation of ~30% discrepancy between calculated and experimental k of YGG and YIG suggests that these unconfirmed measurements should be repeated.

  8. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1982-04-20

    Iron Garnet Liquid Phase Epitaxy Hexagonal Ferrite microwave Signal Processing Millimeter-Wave 20. ABSTRACT (Continue ani revee arde if necoeermy and...le.’uIfy by block rns.) e objective of this research is to develop new and improved epitauial ferrite materials for use in microwave and millimeter... ferrite films suitable for microwave and millimeter-wave signal processing at frequencies above 1 GHz. The specific tasks are: a. Analyze and develop

  9. Study of structural and optical properties of YAG and Nd:YAG single crystals

    SciTech Connect

    Kostić, S.; Lazarević, Z.Ž.; Radojević, V.; Milutinović, A.; Romčević, M.; Romčević, N.Ž.; Valčić, A.

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  10. Integrating magneto-optical garnet isolators on semiconductor substrates

    NASA Astrophysics Data System (ADS)

    Sung, Sang-Yeob

    In optical communications, laser sources need to be protected from unwanted reflected light, a challenge best act by magneto-optical isolators. For integrating magneto-optical isolators with semiconductor devices, including most of these laser sources, it is necessary to develop film fabrication methods that are friendly to batch semiconductor processes. Integrated magneto-optical isolators each consist of a magnetic film layer, optical cladding layers, and a magneto-optical waveguide layer. Traditionally yttrium iron garnet (YIG) films, which are the active layers in magneto-optic isolators, have been grown by thermal deposition process, such as Liquid phase epitaxy (LPE) on garnet substrates. Such thermal processes could damage semiconductor substrates and other semiconductor devices during the deposition, and garnet substrates are difficult to integrate with semiconductor devices. In this work, YIG films were grown by low-temperature RF sputtering onto non-garnet substrates, MgO, fused quartz, and more importantly Si and InP. Two different sputtering methods were used, one involved single target sputtering and the other was multi-target sputtering with a partial pressure differential. After deposition, either post thermal annealing by a conventional tube furnace or a rapid thermal annealing (RTA) was done. To improve the optical characteristics of YIG films, Bi or Ce was substituted into the films. Next, SmCo thin magnetic films were investigated for biasing the active layer. These were grown by RF sputtering. All deposited films were characterized with Energy Dispersive X-ray Spectroscopy (EDS), and X-Ray Diffractometry (XRD), to find atomic composition and crystal structures. Vibrating Sample Magnetometry (VSM) was done for magnetic characterization. Together with integrated photonic crystal polarizer, fully integrated optical isolator can be achieved. Finally, photonic integrated circuits (PIC) and optoelectric integrated circuits (OEIC) can be realized with

  11. A randomized, split-face clinical trial of low-fluence Q-switched neodymium-doped yttrium aluminum garnet (1,064 nm) laser versus low-fluence Q-switched alexandrite laser (755 nm) for the treatment of facial melasma.

    PubMed

    Fabi, Sabrina G; Friedmann, Daniel P; Niwa Massaki, Ane B; Goldman, Mitchel P

    2014-09-01

    Melasma is distressing for patients and challenging for physicians to treat. Clinical data from controlled comparative studies is lacking to support the efficacy, longevity, and safety of laser treatments for melasma. Compare the efficacy and safety of low fluence Q-switched neodymium-doped yttrium aluminum garnet (1,064 nm) laser (Nd:YAG) versus low-fluence Q-switched alexandrite laser (755 nm) (QSAL) for the treatment of facial melasma. Twenty male and female subjects with moderate to severe mixed-type melasma on both sides of the face were randomized to six, weekly treatments with the low-fluence Q-switched Nd:YAG laser on one side and the low-fluence QSAL to the other side. Two independent investigators conducted Modified Melasma Area and Severity Index (MMASI) evaluations and subjects completed self-assessment questionnaires at baseline, after three treatments and each follow-up visit 2, 12, and 24 weeks after the last treatment. Standardized digital photographs were taken at baseline and at each subsequent follow-up visit. One male and fifteen females, mean age of 43.4 (range 32-64) years, completed the 29-week study. Both laser treated sides showed a significant improvement in MMASI evaluations after two treatments (22% improvement on the QS-Nd:YAG, 17% QSAL) and each follow-up visit 2 (36% QS-Nd:YAG; 44% QSAL), 12 (27% QS-Nd:YAG; and 24% QSAL), and 24 weeks (27% QS-Nd:YAG; and 19% QSAL) after the last treatment, but no significant difference was seen between study groups at any visit. There was also no significant difference in subject evaluation of improvement between both treatment sides at any visit. Both laser treated sides were tolerated well, and no serious adverse events were noted. Only one subject was taken out of the study due to development of post-inflammatory hyperpigmentation bilaterally. Both low-fluence Q-switched Nd:YAG and low-fluence QSAL were equally effective at improving moderate to severe mixed-type facial melasma. This was a

  12. Enhanced light extraction of LYSO scintillator by photonic crystal structures from a modified porous anodized aluminum oxide layer

    NASA Astrophysics Data System (ADS)

    Zhang, Juannan; Liu, Bo; Zhu, Zhichao; Wu, Qiang; Cheng, Chuanwei; Liu, Jinliang; Chen, Liang; Ouyang, Xiaoping; Gu, Mu; Xu, Jun; Chen, Hong

    2017-08-01

    Although porous anodized aluminum oxide layer can be used to extract scintillation light from a LYSO scintillator, the low refractive index contrast of porous AAO layer obtains a moderate enhancement. In this investigation, we have designed and fabricated a modified porous anodized aluminum oxide layer with conformal deposition layer of high refractive index material of TiO2 on the surface of LYSO scintillator, achieving a significant enhancement by 60% with wavelength- and angle-integrated emission intensity. The fabrication method of the present study is simple and low-cost for the large area applications in the field of radiation detection.

  13. Raman imaging of fluid inclusions in garnet from UHPM rocks (Kokchetav massif, Northern Kazakhstan).

    PubMed

    Korsakov, Andrey V; Dieing, Thomas; Golovin, Aleksandr V; Toporski, Jan

    2011-10-01

    Confocal Raman imaging of fluid inclusions in garnet porphyroblasts from diamond-grade metamorphic calc-silicate rocks from the Kumdy-Kol microdiamond deposit (Kokchetav Massif, Northern Kazakhstan) reveals that these fluid inclusions consist of almost pure water with different step-daughter phases (e.g., calcite, mica and rare quartz). These fluid inclusions are characterized by negative crystal shape of the host-garnet and they exclusively occur within the core of garnet porphyroblasts. These observations are consistent with their primary origin, most likely at ultrahigh-pressure (UHP) metamorphic conditions. The euhedral newly formed garnet, different in color and composition, was found to be associated with these fluid inclusions. It is proposed that newly formed garnet and water fluid inclusions appear by reaction between the hydrous fluid and the garnet-host. These fluid inclusions provide an unequivocal record of almost pure H(2)O fluids, indicating water-saturated conditions within subducted continental crust during prograde stage and/or ultrahigh-P metamorphism.

  14. High temperature garnet growth in New England: regional temperature-time trends revealed

    NASA Astrophysics Data System (ADS)

    Sullivan, N.; Ostwald, C.; Chu, X.; Baxter, E. F.; Ague, J. J.; Eckert, J. O.

    2013-12-01

    smaller 1-3mm garnet crystals at 351 Ma (which may also reflect resetting of the earlier event), reaching similar temperatures of 920-960οC. These temperatures were obtained by Zr-in-rutile thermometry performed on rutile inclusions within the garnet. Even farther south, in the UHT zone around Willington, CT, temperatures of at least 1000οC were determined using Zr-in-rutile thermometry on rutile inclusions in garnet and reintegration of ternary feldspar compositions (Ague et al., 2013; Geology). The garnet age for a representative UHT sample from this site is 340.3 × 1.7 Ma. The geochronologic data presented here indicates a prolonged period of UHT/HT garnet growth within the Central Maine Terrane, beginning at ~400 Ma in Bristol, NH and ending at ~340 Ma in Willington, CT. Peak temperatures are >820οC in NH, >950οC in MA, and ~1000οC in CT, resulting in a regional pattern of increasing temperature with decreasing age from north to south across this 250 km long region.

  15. Multistage metasomatism in lithospheric mantle beneath V. Grib pipe (Arkhangelsk diamondiferous province, Russia): evidence from REE patterns in garnet xenocrysts.

    NASA Astrophysics Data System (ADS)

    Shchukina, Elena; Alexei, Agashev; Nikolai, Pokhilenko

    2015-04-01

    150 garnet xenocrysts from V. Grib kimberlite pipe were analyzed for major and trace elements compositions. 70 % of garnet belong to lherzolite field; 14 % - megacrysts and pyroxenites; 11 % - eclogites; 4 % - harzburgite; 1 % (1- wehrlite defined by Sobolev (1973). Harzburgite garnets: sinusoidal REE patterns Smn/Ern > 5 (5.2 - 19.8). low Y (0.5 - 3.9 ppm), Zr (1.1 - 44.6 ppm), Ti (54 - 1322 ppm). Wehrlite garnetd: close to sinusoidal REE patterns, Smn/Ern - 1.8. Megacrysts and pyroxenites garnets: normal REE patterns Smn/Ern < 1 (0.2 - 0.6), high TiO2 (0.9 - 1.3 wt %). Lherzolite garnets 70 % show four groups of REE patterns similar to peridotite xenoliths (Shchukina et al., 2013, 2015). 1-st contains MREE at С1 level, Sm/Ern - 0.03, La/Ybn - 0.002. increasing La -Yb range, low Y, Zr, Ti indicating residual nature. 2-nd: MREE at 2 - 13 chondrite units, Smn/Ern (0.16 - 0.98), La/Ybn - 0.001 - 0.040 and flat pattern from MREE to HREE. 3-rd -MREE at 5 - 14 chondrite units, Sm/Ern > 1 (1.05 - 4.81) La/Ybn - 0.010-0.051 increasing an hump at MREE decreasing to HREE. 4-th: sinusoidal REE, Sm/Ern 4.2 - 27.2. and harzburgite Y, Zr, Ti . Average Cr2O3 content increases from 2-nd to the 3-rd group (3.3 to 5.7 wt%) and 4th (7.9 wt %). Average Y/Zr decreases from 2-nd (0.6) to 3rd (0.2) and 4th group (0.08). REE and Y, Zr, Ti indicate the metasomatic origin of garnets of 2, 3. 4 groups. Modeling of TREfor equilibrated melts and fractional crystallization 2nd group close to Turyino field basalts and 3-rd - to Izmozero field picrites of Arkhangelsk diamondiferous province (ADP). Basing on geochemical data of garnet xenocrysts and garnets and clinopyroxenes in peridotites (Shchukina et al., 2013, 2015) we suppose at least 3 stage of high-temperature metasomatic enrichment. 1st stage - is enrichment of residual garnets (found only in peridotite garnets) in LREE by the influence of carbonatite melt close to the Mela field carbonatites of ADP. REE patterns in clinopyroxenes from

  16. Garnet cannibalism provides clues to extensive hydration of lower crustal fragments in a subduction channel (Sesia Zone, Northwestern Alps)

    NASA Astrophysics Data System (ADS)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2015-04-01

    The extent to which granulites are transformed to eclogites is thought to impose critical limits on the subduction of continental lower crust. Although it is seldom possible to document such densification processes in detail, the transformation is believed to depend on fluid access and deformation. Remarkably complex garnet porphyroblasts are widespread in eclogite facies micaschists in central parts of the Sesia Zone (Western Italian Alps). They occur in polydeformed samples in assemblages involving phengite+quartz+rutile ±paragonite, Na-amphibole, Na-pyroxene, chloritoid. Detailed study of textural and compositional types reveals a rich inventory of growth and partial resorption zones in garnet. These reflect several stages of the polycyclic metamorphic evolution. A most critical observation is that the relict garnet cores indicate growth at 900 °C and 0.9 GPa. This part of the Eclogitic Micaschist Complex thus derived from granulite facies metapelites of Permian age. These dry rocks must have been extensively hydrated during Cretaceous subduction, and garnet records the conditions of these processes. Garnet from micaschist containing rutile, epidote, paragonite and phengite were investigated in detail. Two types of garnet crystals are found in many thin sections: mm-size porphyroclasts and smaller atoll garnets, some 100 µm in diameter. X-ray maps of the porphyroclasts show complex zoning in garnet: a late Paleozoic HT-LP porphyroclastic core is overgrown by several layers of HP-LT Alpine garnet, these show evidence of growth at the expense of earlier garnet generations. Textures indicate 1-2 stages of resorption, with garnet cores that were fractured and then sealed by garnet veins, rimmed by multiple Alpine overgrowth rims with lobate edges. Garnet rim 1 forms peninsula and embayment structures at the expense of the core. Rim 2 surrounds rim 1, both internally and externally, and seems to have grown mainly at the expense of the core. Rim 3 grew mainly at

  17. Nano- and micro-scale Bi-substituted iron garnet films for photonics and magneto-optic eddy current defectoscopy

    NASA Astrophysics Data System (ADS)

    Berzhansky, V. N.; Karavainikov, A. V.; Mikhailova, T. V.; Prokopov, A. R.; Shaposhnikov, A. N.; Shumilov, A. G.; Lugovskoy, N. V.; Semuk, E. Yu.; Kharchenko, M. F.; Lukienko, I. M.; Kharchenko, Yu. M.; Belotelov, V. I.

    2017-10-01

    Synthesis technology of nano-scale Bi-substituted iron garnets films with high magneto-optic activity for photonics and plasmonics applications were proposed. The micro-scale single-crystal garnet films with different types of magnetic anisotropy as a magneto-optic sensors were synthesized. It was shown that easy-axis anisotropy films demonstrated the best results for visualization of redistribution eddy current magnetic field near defects.

  18. Garnet-bearing ultramafic rocks from the Dominican Republic: Fossil mantle plume fragments in an ultra high pressure oceanic complex?

    NASA Astrophysics Data System (ADS)

    Gazel, Esteban; Abbott, Richard N.; Draper, Grenville

    2011-07-01

    Ultra high pressure (UHP) garnet-bearing ultramafic rocks from the Dominican Republic may represent the only known example where such rocks were exhumed at an ocean-ocean convergent plate boundary, and where the protolith crystallized from a UHP magma (> 3.2 GPa, > 1500 °C). This study focuses on the petrology and geochemistry of one of the ultramafic lithologies, the pegmatitic garnet-clinopyroxenite (garnet + clinopyroxene + spinel + corundum + hornblende). Three distinct types of garnet were recognized: Type-1 garnet (low Ca, high Mg) is interpreted as near magmatic (P > 3.2 GPa, > 1500 °C). Type-1‧ garnet (high Ca, low Mg) is interpreted as having formed approximately isochemically from magmatic high-Al clinopyroxene. Type-2 garnet (intermediate Ca, high Mg, and low Fe + Mn) formed together with hornblende as a result of late, low-pressure retrograde hydration. Clinopyroxene is close to diopside-hedenbergite (Mg# ~ 88) and metasomatized by arc-related fluids. Spinel and corundum occur as microinclusions in type-1 and type-1‧ garnets in the only reported natural occurrence of coexisting garnet + spinel + corundum, indicative of very high pressure. Chondrite-normalized REEs (rare earth elements) of the garnets show humped or weakly sinusoidal patterns, typically associated with garnet inclusions in diamond and garnet in kimberlite that crystallized at UHP conditions. These humped to weakly sinusoidal REE patterns developed as the result of interaction with a light REE-enriched metasomatic fluid. Partitioning of REEs between type-1‧ and type-1 garnets is consistent with the former having inherited its REEs from a high-Al clinopyroxene predecessor. The partitioning preserves a record of near-solidus temperatures (~ 1475 °C). Petrology and phase relationships independently suggest near-solidus conditions > 1500 °C (the highest temperature conditions reported in a UHP orogenic setting), providing evidence for an origin in a mantle plume. Therefore, the

  19. Influence of Li(+) and H(+) Distribution on the Crystal Structure of Li(7-x)H(x)La3Zr2O12 (0 ≤ x ≤ 5) Garnets.

    PubMed

    Orera, Alodia; Larraz, Guillermo; Rodríguez-Velamazán, José Alberto; Campo, Javier; Sanjuán, María Luisa

    2016-02-01

    With appropriate doping or processing, Li7La3Zr2O12 (LLZO) is an excellent candidate to be used in Li batteries either as a solid electrolyte or as a separator between the Li anode and a liquid electrolyte. For both uses, the reactivity with water either from the air or in aqueous media is a matter of interest. We address here the structural changes undergone by LLZO as a result of H(+)/Li(+) exchange and relate them with the amount of H content and atomic distribution. Neutron diffraction is performed to elucidate Li and H location. Two different cubic phases derive from LLZO through H(+)/Li(+) exchange: Deep hydration up to 150 °C yields a noncentrosymmetric I4̅3d phase in which octahedral Li ions are exchanged by H ions, tetrahedral Li ions split into two sites with very different occupancies, and H ions form O4H4 entities around the less occupied tetrahedral site. Annealing above 300 °C results in a centrosymmetric Ia3̅d phase with lower H content in which Li ions occupy the usual sites of the cubic garnets and H ions occupy a split pseudooctahedral site. The centrosymmetric or noncentrosymmetric character is determined by the temperature at which exchange is performed and the H content. Both factors are not independent: at low temperature, the high H content favors H ordering around the vacant tetrahedra, while low H content and higher mobility at 350 °C lead to a disordered configuration of Li and H ions. The deeply hydrated garnets are stable up to at least 300 °C and also upon aging at room temperature.

  20. Polycrystalline magnetic garnet films comprising weakly coupled crystallites for piezoelectrically-driven magneto-optic spatial light modulators

    SciTech Connect

    Mito, S.; Sakurai, H.; Takagi, H.; Inoue, M.; Baryshev, A. V.

    2012-04-01

    We have investigated the magnetization process of the polycrystalline magnetic garnet films in order to determine the most suitable composition of garnet films for piezoelectrically-driven magneto-optic spatial light modulators (MOSLMs). For experiment, the bismuth-dysprosium-aluminum-substituted yttrium iron (Bi{sub 1.3}Dy{sub 0.7}Y{sub 1.0}Fe{sub 3.1}Al{sub 1.9}O{sub 12}) garnet films were deposited by an RF magnetron sputter and annealed at 700 deg. C in air. The annealing time was varied in a range of several minutes to control the grain size. The saturation magnetization, the remanent magnetization and the composition of the fabricated garnet films slightly changed versus the annealing time. Experiments showed that the coercivity and the grain size increased at longer annealing; the coercivity was larger for films with bigger grains. This work shows that garnet films with smaller coercivity are most suitable for controlling the magnetization of garnet and, correspondingly, the magneto-optical rotation of MOSLM pixels driven by piezoelectrics.

  1. Effect of the ion-beam bombardment and annealing temperature on sol-gel derived yttrium aluminum oxide film as liquid crystal alignment layer

    NASA Astrophysics Data System (ADS)

    Jeong, Hae-Chang; Heo, Gi-Seok; Kim, Eun-Mi; Lee, Ju Hwan; Han, Jeong-Min; Seo, Dae-Shik

    2017-02-01

    We demonstrated a homogeneous liquid-crystal (LC) alignment state on yttrium aluminum oxide (YAlO) films, where the alignment was induced by ion-beam (IB) irradiation. Topographical analysis was performed by atomic force microscopy as a function of annealing temperature. Higher annealing temperatures yielded a smoother surface, accompanied by reduced light scattering. Transparency in the visible region increased on the surface fabricated at higher annealing temperatures. LC alignment mechanism was determined by X-ray diffraction (XRD) analysis. Moreover, IB-irradiated YAlO films annealed at temperatures greater than 200 °C exhibited good thermal stability and low capacitance-voltage hysteresis. The IB-irradiated YAlO films are suitable as alternative alignment layers in advanced LC display applications.

  2. Raman spectroscopy of garnet-group minerals

    USGS Publications Warehouse

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  3. Origin of garnet in aplite and pegmatite from Khajeh Morad in northeastern Iran: A major, trace element, and oxygen isotope approach

    NASA Astrophysics Data System (ADS)

    Samadi, Ramin; Miller, Nathan R.; Mirnejad, Hassan; Harris, Chris; Kawabata, Hiroshi; Shirdashtzadeh, Nargess

    2014-11-01

    Triassic monzogranites and granodiorites of the Khajeh Morad region in northeastern Iran are cut by two types of garnet-bearing intrusive veins: (1) aplite and (2) granitic pegmatite. The former is composed of quartz, feldspar, muscovite, with minor garnet, biotite, and ilmenite. The latter contains quartz, plagioclase (± quartz and muscovite inclusions), alkali feldspar, and muscovite, with minor amounts of garnet, tourmaline, beryl, columbite, and ilmenite. Garnet in both rock types has MnO > 12 wt.% and CaO < ~ 2 wt.% with spessartine-rich cores, and a core-to-rim increase in Fe, Mg, and Ca. Garnet cores are enriched in Y, REE, Zr, Nb, Ta, Hf, and U. The Y, HREE, and Mn concentrations show strong positive correlations in both types of garnet associations and decrease from core-to-rim. These core-to-rim elemental variations can be explained by increasing fluid content and H2O activity in magma, together with decreasing Mn contents of an evolved host melt. Aplite and pegmatite garnet δ18O values are nearly identical (~ 10.3‰, n = 7, SD = 0.09) and are similar to magmatic garnets in granitoids elsewhere. On the basis of calculated δ18O values for magma (~ 12.5 and 12.6‰) and quartz (~ 13.6‰, n = 7, SD = 0.08) as well as the major and trace element characteristics, we suggest that the Khajeh Morad garnets crystallized from a variably fractionated S-type monzogranitic magma.

  4. Radiative performance of rare earth garnet thin film selective emitters

    SciTech Connect

    Lowe, R.A.; Chubb, D.L.; Good, B.S.

    1994-08-01

    In this paper the authors present the first emitter efficiency results for the thin film 40 percent Er-1.5 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) and 25 percent Ho YAG selective emitter at 1500 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns). Emitter efficiency and power density are significantly improved with the addition of multiple rare earth dopants. Predicted efficiency results are presented for an optimized (equal power density in the Er, (4)I[sub 15/2]-(4)I[sub 13/2] at 1.5 microns, and Ho, (5)I[sub 7]-(5)I[sub 8] at 2.0 micron emission bands) Er-Ho YAG thin film selective emitter.

  5. Radiative Performance of Rare Earth Garnet Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1994-01-01

    In this paper we present the first emitter efficiency results for the thin film 40 percent Er-1.5 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) and 25 percent Ho YAG selective emitter at 1500 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns). Emitter efficiency and power density are significantly improved with the addition of multiple rare earth dopants. Predicted efficiency results are presented for an optimized (equal power density in the Er, (4)I(sub 15/2)-(4)I(sub 13/2) at 1.5 microns, and Ho, (5)I(sub 7)-(5)I(sub 8) at 2.0 micron emission bands) Er-Ho YAG thin film selective emitter.

  6. Compositional evolution of grossular garnet from leucotonalitic pegmatite at Ruda nad Moravou, Czech Republic; a complex EMPA, LA-ICP-MS, IR and CL study

    NASA Astrophysics Data System (ADS)

    Gadas, Petr; Novák, Milan; Talla, Dominik; Vašinová Galiová, Michaela

    2013-04-01

    Five distinct paragenetic, morphological and compositional types of grossular garnet (G1, G2, G3, G4, G5) were distinguished within the individual (sub)units of the zoned leucotonalitic pegmatite cutting serpentinized lherzolite with rodingite dikes at Žďár near Ruda nad Moravou, Staré Město Unit, Northern Moravia. Detailed study using Electron Microprobe Analysis, Laser Ablation Inductively Coupled Plasma Mass Spectrometry, Cathodoluminiscence and Infrared Spectroscopy revealed distinct compositional trends in major, minor and trace elements. The contents of Fe3+, Mn, Mg and Ti increase from early garnet (G1) in the outermost grossular subunit through the interstitial garnet (G2) in the leucocratic subunit to graphic intergrowths of quartz+garnet (G3) in the coarse-grained unit. Then these constituents decrease in inclusions of garnet (G4) from the blocky unit and large crystals of garnet (G5) from the quartz core. Some trace elements (V, Ni, Y) exhibit the same trends, only Be evidently increases in garnet from border zone to the centre. Fluorine has negative correlation with Fe3+ as well as some trace elements (Ta, Pb). Concentrations of H2O in garnets, up to 0.22 wt.% H2O, are comparable with spessartine-almandine garnets from the Rutherford No. 2 pegmatite, Virginia, and grossular garnets from high-temperature calc-silicate rocks (skarns). Water contents correlate positively with Fe3+, but inversely with F. The use of water contents in garnet to elucidate the fluctuations of activity of H2O during the pegmatite formation is only limited; the incorporation of hydrous defects seems to be controlled instead by crystal-structural constraints. However, the sum of all volatile components (H2O + F) increases about twice from the outermost subunit to the centre of the pegmatite body.

  7. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements

  8. Irradiation of synthetic garnet by heavy ions and α-decay of 244Cm

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaming; Livshits, Tatiana S.; Lizin, Andrey A.; Hu, Qiaona; Ewing, Rodney C.

    2010-12-01

    Garnet, A 3B 2X 3O 12, has a structure that can incorporate actinides. Hence, the susceptibility of the garnet structure to radiation damage has been investigated by comparing the results of self-radiation damage from α-decay of 244Cm and a 1 MeV Kr 2+ ion irradiation. Gradual amorphization with increasing fluence was observed by X-ray diffraction analysis and in situ transmission electron microscopy. The critical dose, D c, for an yttrium-aluminum garnet (Y 3Al 5O 12) doped with 3 wt.% 244Cm is calculated to be 0.4 displacements per atom (dpa). While the doses obtained by ion irradiation experiments of garnets with different compositions (Y 2.43Nd 0.57)(Al 4.43Si 0.44)O 12, (Ca 1.64Ce 0.41Nd 0.42La 0.18Pr 0.18Sm 0.14Gd 0.04)Zr 1.27Fe 3.71O 12, and (Ca 1.09Gd 1.23Ce 0.43)Sn 1.16Fe 3.84O 12, varied from 0.29 to 0.55 dpa at room temperature. The similarity in the amorphization dose at room temperature and critical temperature of the different garnet compositions suggest that the radiation response for the garnet structure is structurally constrained, rather than sensitive to composition, which is the case for the pyrochlore structure-type.

  9. Deuterium implantation in magnetic garnets

    SciTech Connect

    Wilts, C.H.; Urai, A.

    1988-11-01

    The magnetic effects of deuterium implantation and subsequent annealing were measured in Gd, Tm, and Ga-substituted yttrium iron garnet films for comparison with measurements made earlier with hydrogen implantation. Implantation energy was 60 keV and the dose ranged from 0.5 to 3 x 10/sup 16/ ions/cm/sup 2/ for D/sup +//sub 2/ ions, as compared to an energy of 120 keV and a dose from 0.3 to 4 x 10/sup 16/ ions/cm/sup 2/ for H/sup +//sub 2/ in the earlier study. Measurements made included x-ray rocking curves and ferromagnetic resonance spectra measured at 9.5 GHz. For all doses the implanted layer remained crystalline. Implanted layer thickness was about 4200 A and peak strain occured at a depth of 2600 A. Peak strain increased monotonically, but departed from a linear relation with dose. For the highest dose, the peak strain was 2.5%. Relaxation of strain with annealing was intermediate between that found earlier for hydrogen and neon implantation. As compared to all other implant elements, both deuterium and hydrogen show a large anomalous magnetic anisotropy which can exceed 10 000 Oe for either ion. The absence of this effect for He, Ne, and other ions supports the conjecture that the effect is chemical and related to electronic bonding rather than strain or disorder. The anomalous anisotropy for deuterium decreases and shifts location with annealing. It has largely disappeared at temperatures of 300--350 /sup 0/C. The shape of the profile is consistent with the hypothesis that the shift in anisotropy is associated with diffusion of the deuterium atoms to the surface of the garnet film. At the highest dose, crystalline damage in the region of highest strain is sufficient to radically alter magnetic properties and in particular reduces even the excess anisotropy so that a two-peak profile results until modified by annealing.

  10. Exsolution halos surrounding ruptured inclusions in garnets from UHT and UHP rocks

    NASA Astrophysics Data System (ADS)

    Axler, Jennifer; Ague, Jay

    2015-04-01

    Distinctive halos of rutile ± apatite needles and/or plates centered on quartz or multiphase inclusions with radial cracks in garnet are investigated. The quartz is likely former coesite and the multiphase inclusions are interpreted to be decrepitated fluid inclusions. We study samples from two localities: (1) ultrahigh-temperature (UHT) metapelitic gneisses from the Central Maine Terrane in Connecticut, USA (Ague et al., 2013) (rutile halos only) and (2) ultrahigh-pressure (UHP) diamondiferous saidenbachite from the Saxonian Erzgebirge (Massonne, 2003) (rutile and apatite halos). The rutile and apatite needles in the halos are typically oriented in three directions. Within the halos, garnet is depleted in Ti (and P if apatite is present). The halos extend about three inclusion radii away from the central quartz or multiphase inclusions. We propose that the inclusion halos of rutile ± apatite formed by exsolution out of garnet due to rupturing of the central inclusions. The internal pressure of an inclusion in garnet can be larger than the surrounding lithostatic pressure if the entrapment pressure is maintained or if a large positive volume phase change occurs. A large pressure difference between an inclusion and host strains the host and causes deformation, which in turn produces dislocations and other defects. During exhumation the pressure difference between inclusions and the surrounding rock matrix can become so great that rupturing of the garnet occurs. The rupturing creates more dislocations and defects in the garnet with the dislocation density highest around the inclusion. The defects in the crystal structure are ideal nucleation sites for exsolved precipitates. Another factor assisting exsolution is the drop in pressure in the surrounding garnet caused by the rupturing which should in turn decrease the solubility of Ti and P in garnet. To test the exsolution hypothesis, chemical reintegration of the Ti or P contents of the garnet in the halos plus the

  11. Computational modelling of Er(3+): Garnet laser materials

    NASA Technical Reports Server (NTRS)

    Spangler, Lee H.

    1994-01-01

    The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host

  12. Vapor-Phase Garnet at Yucca Mountain, Nevada: Geochemistry and Oxygen-Isotope Thermometry

    SciTech Connect

    R. J. Moscati; C.A. Johnson; J.F. Whelan

    2001-07-03

    About 20 vapor-phase garnets were studied in two samples of the Topopah Spring Tuff from Yucca Mountain, in southern Nevada. The Miocene-age Topopah Spring Tuff is a 350-m-thick, devitrified, moderately to densely welded ash flow that is compositionally zoned from high-silica rhyolite to quartz latite. During cooling of the tuff, escaping vapor produced lithophysae (former gas cavities) lined with an assemblage of tridymite, cristobalite, alkali feldspar, and locally, hematite and/or garnet. Vapor-phase topaz and economic deposits (such as porphyry molybdenum-tungsten) commonly associated with topaz-bearing rhyolites (characteristically enriched in fluorine) were not found in the Topopah Spring Tuff at Yucca Mountain. The garnets are not primary igneous phenocrysts, but rather crystals that grew from a fluorine-poor magma-derived vapor trapped during emplacement of the tuff. The garnets are euhedral, vitreous, reddish brown, trapezohedral, as large as 2 mm in diameter, and fractured. The garnets also contain inclusions of tridymite. Electron-microprobe analyses of the garnets reveal that they are almandine-spessartine (48.0 and 47.9 mol percent, respectively), have an average chemical formula of (Fe{sub 1.46}, Mn{sub 1.45}, Mg{sub 0.03}, Ca{sub 0.10}) (Al{sub 1.93}, TiO{sub 0.02}) Si{sub 3.01}O{sub 12}, and are homogeneous in Fe and Mn concentrations from core to rim. Composited garnets from each sample site have {delta}{sup 18}O values of 7.2 and 7.4{per_thousand}. The coexisting tridymite, however, has {delta}{sup 18}O values of 17.4 and 17.6{per_thousand} values indicative of reaction with later, low-temperature water. Unaltered tridymite from higher in the stratigraphic section has a {delta}{sup 18}O of 11.1{per_thousand} which, when coupled with the garnet {delta}{sup 18}O values in a quartz-garnet fractionation equation, indicates vapor-phase crystallization at temperatures of almost 600 C. This high-temperature mineralization, formed during cooling of the

  13. Fractured garnet as an indicator of lower crustal seismicity (Musgrave Ranges, Central Australia)

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Pennacchioni, Giorgio; Camacho, Alfredo

    2017-04-01

    The Davenport Shear Zone in the Musgrave Ranges, Central Australia, is a lower crustal shear zone developed under sub-eclogitic metamorphic conditions (ca. 650 °C, 1.2 GPa), with the general absence of newly grown hydrous minerals indicating effectively "dry" conditions. In this shear zone, mutually overprinting mylonites and pseudotachylytes can be found. Pseudotachylytes form by frictional melting during seismic slip and are therefore indicative of seismogenic fault zones. In close proximity to pseudotachylyte veins, relict garnets from a previous granulite facies metamorphism are fractured, often in a conjugate manner. These garnets preserve evidence for calcium diffusion both on the rims and along fractures, interpreted to reflect breakdown of the anorthite component of plagioclase to kyanite + Ca-rich garnet during mylonitisation associated with the Davenport Shear Zone. Diffusion patterns at the rims are offset by fractures, but are also present along the fractures themselves, indicating elevated temperatures above 600 °C during fracturing. Fractures are filled with mainly biotite and kyanite. EBSD (electron backscatter diffraction) data shows a relative rotation of individual garnet fragments, typically of around 20°. Furthermore, some garnet fragments show internal zones of misorientation on the order of 5°, which potentially results from crystal plastic behavior. In these zones, diffusion is strongly enhanced compared to the fractures or rims of the garnet. The grain size of dynamically recrystallized quartz in the same sample is in the range of 50-100 µm, indicating differential stresses on the order of 10's of MPa. In contrast, brittle fracture of garnet under dry conditions at pressures of 1.2 GPa would require much higher differential stress levels, on the order of 1 GPa. These high stresses are interpreted to be transient and to reflect repeated lower crustal seismicity, as indicated by the multiple generations of pseudotachylyte.

  14. Fluorescence lifetimes for neodymium-doped yttrium aluminum garret and yttrium oxide powders

    NASA Astrophysics Data System (ADS)

    Christensen, H. P.; Gabbe, D. R.; Jenssen, H. P.

    1982-02-01

    A simple theoretical model for the radiative lifetime of a fluorescent ion in a particle of a powder is described. The model predicts that the lifetime depends on the size of the particle, the density of the powder, and the refractive index of the surrounding medium. For a dilute system of very small particles the lifetime should be inversely proportional to the index of the surroundings. In Nd-doped yttrium aluminum garnet (YAG) and Y2O3 powders, prepared by different methods, the Nd3+: 4F32 decay rate was measured and compared to the particle size, the powder density, and the refractive index of the surroundings. In agreement with the theory the decay is slower the smaller the particles, the less dense the powder, and the lower the refractive index. For index-matched conditions the decay rate is close to what is observed in the bulk single crystal.

  15. Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks

    NASA Astrophysics Data System (ADS)

    Krippner, Anne; Meinhold, Guido; Morton, Andrew C.; von Eynatten, Hilmar

    2014-06-01

    This work is an attempt to evaluate six different garnet discrimination diagrams (one binary diagram and five ternary diagrams) commonly used by many researchers. The mineral chemistry of detrital garnet is a useful tool in sedimentary provenance studies, yet there is no clear-cut understanding of what garnet type originates from which host lithology. Several discrimination diagrams exist for garnet showing distinct compositional fields, separated by strict boundaries that are thought to reflect specific types of source rocks. For this study, a large dataset was compiled (N = 3532) encompassing major element compositions of garnets derived from various host lithologies, including metamorphic, igneous, and mantle-derived rocks, in order to test the applicability of the various discrimination schemes. The dataset contains mineral chemical data collected from the literature complemented with some new data (N = 530) from garnet-bearing metamorphic and ultramafic rocks in Austria and Norway. Discrimination of the tested diagrams only works for a small group of garnets derived from mantle rocks, granulite-facies metasedimentary rocks, and felsic igneous rocks. For other garnet types, the assignment to a certain type of host rock remains ambiguous. This is considered insufficient and therefore the evaluated diagrams should be used with great care. We further apply compositional biplot analysis to derive some hints towards future perspectives in detrital garnet discrimination.

  16. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet, and magnesium oxide.

  17. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  18. Thermal-mechanical stability of single crystal oxide refractive concentrators for high-temperature solar thermal propulsion

    SciTech Connect

    Zhu, D.; Jacobson, S.; Miller, R.A.

    1999-07-01

    Single crystal oxides such as yttria-stabilized zirconia (Y{sub 2}O{sub 3}-ZrO{sub 2}), yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, or YAG), magnesium oxide (MgO) and sapphire (Al{sub 2}O{sub 3}) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO{sub 2} laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  19. Intercomparison of garnet barometers and implications for garnet mixing models

    SciTech Connect

    Anovitz, L.M.; Essene, E.J.

    1985-01-01

    Several well-calibrated barometers are available in the system Ca-Fe-Ti-Al-Si-O, including: Alm+3Ru-3Ilm+Sil+2Qtz (GRAIL), 2Alm+Grreverse arrow6Ru=6Ilm+3An+3Qtz (GRIPS); 2Alm+Gr=3Fa+3An (FAG); 3AnGr+Ky+Qtz (GASP); 2Fs-Fa+Qtz (FFQ); and Gr+Qtz=An+2Wo (WAGS). GRIPS, GRAIL and GASP form a linearly dependent set such that any two should yield the third given an a/X model for the grossular/almandine solid-solution. Application to barometry of garnet granulite assemblages from the Grenville in Ontario yields average pressures 0.1 kb lower for GRIPS and 0.4 kb higher for FAGS using our mixing model. Results from Parry Island, Ontario, yield 8.7 kb from GRAIL as opposed to 9.1 kb using Ganguly and Saxena's model. For GASP, Parry Island assemblages yield 8.4 kb with the authors calibration. Ganguly and Saxena's model gives 5.4 kb using Gasparik's reversals and 8.1 kb using the position of GASP calculated from GRIPS and GRAIL. These corrections allow GRIPS, GRAIL, GASP and FAGS to yield consistent pressures to +/- 0.5 kb in regional metamorphic terranes. Application of their mixing model outside of the fitted range 700-1000 K is not encouraged as extrapolation may yield erroneous results.

  20. Method to simulate and analyse induced stresses for laser crystal packaging technologies.

    PubMed

    Ribes-Pleguezuelo, Pol; Zhang, Site; Beckert, Erik; Eberhardt, Ramona; Wyrowski, Frank; Tünnermann, Andreas

    2017-03-20

    A method to simulate induced stresses for a laser crystal packaging technique and the consequent study of birefringent effects inside the laser cavities has been developed. The method has been implemented by thermo-mechanical simulations implemented with ANSYS 17.0. ANSYS results were later imported in VirtualLab Fusion software where input/output beams in terms of wavelengths and polarization were analysed. The study has been built in the context of a low-stress soldering technique implemented for glass or crystal optics packaging's called the solderjet bumping technique. The outcome of the analysis showed almost no difference between the input and output laser beams for the laser cavity constructed with an yttrium aluminum garnet active laser crystal, a second harmonic generator beta-barium borate, and the output laser mirror made of fused silica assembled by the low-stress solderjet bumping technique.

  1. Determination of the enthalpy of crystallization of the europium, ytterbium, and lutecium iron garnets Eu/sub 3/Fe/sub 5/O/sub 12/, Yb/sub 3/Fe/sub 5/O/sub 12/, and Lu/sub 3/Fe/sub 5/O/sub 12/ and the solid solutions LuEu/sub 2/Fe/sub 5/O/sub 12/, Nd/sub 0. 94/Gd/sub 2. 06/Fe/sub 5/O/sub 12/, Lu/sub 0. 48/Sm/sub 2. 52/Fe/sub 5/O/sub 12/, and La/sub 0. 24/Gd/sub 2. 76/Fe/sub 5/O/sub 12/

    SciTech Connect

    Reznitskii, L.A.; Filippova, S.E.; Leonov, A.V.; Viting, L.M.

    1987-05-01

    The authors have investigated the mechanism and determined the enthalpy of crystallization of x-ray amorphous iron garnets of rare-earth elements and their solid solutions. The authors have established a relation between the mechanism of the solid-phase reaction of formation of the iron garnets and the decrease in the ionic radius of the rare-earth element in the dodecahedral positions. A rise in the temperature during crystallization of amorphous phases facilitates a rapid completion of the reaction in which double oxides with a complex three-sublattice structure are released.

  2. Diamond-garnet geobarometry: The role of garnet compressibility and expansivity

    NASA Astrophysics Data System (ADS)

    Milani, S.; Nestola, F.; Alvaro, M.; Pasqual, D.; Mazzucchelli, M. L.; Domeneghetti, M. C.; Geiger, C. A.

    2015-06-01

    We report P-V and T-V Equations of State (EoS) for synthetic single crystal pyrope (Py, Mg3Al2Si3O12) and the P-V EoS for synthetic single crystals of almandine (Alm, Fe3Al2Si3O12) as well as an intermediate composition (Py60Alm40) as measured by in-situ high-pressure and high-temperature X-ray diffraction experiments. The unit-cell volumes of the three samples were measured at room temperature and different pressures and up to about 8 GPa in a diamond-anvil cell. The high-temperature experiment was carried out using a micro-furnace. The pressure-volume data were fitted to a third order Birch-Murnaghan EoS giving the following coefficients: V0 = 1506.15(16) Å3, KT0 = 163.7(1.7) GPa and K‧ = 6.4(4) for pyrope, V0 = 1533.52(10) Å3, KT0 = 172.6(1.5) GPa and K‧ = 5.8(5) for almandine and V0 = 1516.32(13) Å3, KT0 = 167.2(1.7) GPa and K‧ = 5.6(5) for the intermediate Py60Alm40 composition. The unit-cell volume along the pyrope-almandine join changes linearly within the error of measurement indicating ideality in the volume of mixing behaviour for the solid solution. The first pressure derivative, K‧, for all three garnets is similar within experimental uncertainty with an average value of K‧ = 6.0(4). The thermal expansion parameters for end-member pyrope, as described using to the Kroll-type EoS, with the Einstein temperature, θE, fixed to 320 K, are α(303 K, 1 bar) = 2.543(5) ∗ 10- 5 K- 1 and V0 = 1504.64(4) Å3. The determined thermoelastic parameters were combined in a thermal-pressure type EoS (thermal-P type EoS) to calculate the entrapment pressures, Pe, for natural garnet inclusions in diamonds at mantle temperatures. A calculated pressure of 5.8 GPa at T = 1500 K using our newly determined thermoelastic parameters appears to be more consistent with diamond-forming conditions compared to the higher pressures that range up to 6.8 GPa at T = 1500 K, which are obtained using thermoelastic data in the literature.

  3. ALUMINUM NITRIDE AS A HIGH TEMPERATURE TRANSDUCER

    SciTech Connect

    Parks, D. A.; Tittmann, B. R.; Kropf, M. M.

    2010-02-22

    The high temperature capabilities of bulk single crystal aluminum nitride are investigated experimentally. Temperatures in excess of 1100 deg. Celsius are obtained and held for eight hours. Variation in the performance of single crystal samples is demonstrated.

  4. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P 2O 5 and TiO 2 nucleants

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-06-01

    Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li 2O-4.0Al 2O 3-68.6SiO 2-3.0K 2O-2.6B 2O 3-0.5P 2O 5-0.9TiO 2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li 2SiO 3) is the first phase to c form followed by cristobalite (SiO 2) and lithium disilicate (Li 2Si 2O 5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li 3PO 4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li 3PO 4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO 4 ( M=B, Al or Ti) complexes. The presence of BO 3 and BO 4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO 3) increases at the expense of tetrahedrally coordinated B (BO 4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.

  5. Garnet ships in a quartzite sea

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Rice, A. Hugh N.; Grasemann, Bernhard; Huet, Benjamin

    2016-04-01

    During progressive deformation, a strong inclusion in a weaker matrix causes a stress concentration that may result in strain localization, seen in a matrix grain-size reduction. A superb example of this phenomena, but rather more complex, has been observed in north Norwegian Caledonides. A probably subvertical metadolerite dyke has been rotated to lie parallel to the penetrative regional low-angled foliation during the emplacement of the overlying nappe. The metadolerite, now only ~1.4 cm thick and lying between two quartzite layers has been retrogressed to a biotite schist with an assemblage of biotite, titanite, epidote group, garnet and quartz. Garnets are from 0.2 mm to 4 cm in size, subhedral and have two growth zones, with inclusions of predominantly titanite and rare amphibole. The country-rock metasedimentary schists contain staurolite, indicating mid-amphibolite-facies conditions (~550 °C and 6 kbar). During late deformation, some garnets were forced into the quartzite, resulting in the development of pronounced gouges (tectoglyphs), up to 70 mm long, 14 mm wide and 14 mm deep, deepening in the direction of movement. Quartz was pushed up at the sides of the gouges and forms a pronounced bow-wave at the front of the garnets. Where garnets are gouged into the quartzite, intense strain localization occurs. Both in front of and under the garnet, a up to 18 mm wide zone of quartz mylonite developed. The mylonitic foliation curves around the garnet, with a relatively sharp boundary to the adjacent quartzite that preserves an older random fabric. Deformation in the mylonite, which shows a strong crystallographic preferred orientation, seems to have occurred by (1) intense dislocation glide followed by (2) subgrain rotation resulting in an almost foam-like fabric. The grain size of the mylonite (at the quartzite-biotite schist interface) increases with increasing distance behind the present position of the garnets. This observation is consistent with an expected

  6. Retrograde isochemical phase transformations of majoritic garnets included in diamonds: A case study of subcalcic Cr-rich majoritic pyrope from a Snap Lake diamond, Canada

    NASA Astrophysics Data System (ADS)

    Sobolev, N. V.; Wirth, R.; Logvinova, A. M.; Yelisseyev, A. P.; Kuzmin, D. V.

    2016-11-01

    Homogeneity of a peridotitic garnet inclusion in diamond demonstrating excess in Si concentration (i.e. presence of majorite component) was investigated by TEM using FIB prepared foils. The host diamond is a low-nitrogen brown stone, which can be related to type IIa with features of strong plastic deformation. The studied sample is represented by Ca-poor Cr-pyrope of harzburgitic (H) paragenesis from Snap Lake dyke, Canada The garnet had been previously reported to contain Si = 3.16 apfu. The revised examination of the sample, resulted in detection of extremely fine-grained symplectite consisting of low Ca-orthopyroxene, clinopyroxene, Cr-spinel and coesite completely located and isolated in the inner part of the garnet crystal, which forms a sharp interface with the surrounding homogeneous garnet. XRD study confirmed the presence of the minerals constituting the symplectite. EPMA showed an identical bulk chemistry of the nanometer-sized symplectite and garnet. Further polishing of the garnet inclusion on the same surface with diamond removed the symplectite, which possibly was present as a thin lens within garnet. The remaining garnet is completely homogeneous as checked by two profiles, and contains unusually high Ni (118.2 ppm) and depleted REE patterns. Estimated PT formation conditions of this garnet are 10.8 GPa and 1450 °C within asthenosphere. Symplectite testifies partial retrograde isochemical phase transformation of the examined garnet which is suggested to be caused by decompression along with plastic deformation of diamond within the coesite stability field at T > 1000 °C and depth no less than 100 km. Because previously published studies of rare majoritic garnets composition were performed by EPMA only, it is possible that the traces of partial phase transformation (symplectite formation) could have been overlooked without additional XRD and/or TEM/AEM studies.

  7. Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons

    NASA Astrophysics Data System (ADS)

    An, Yajun; Huang, Jin-Xiang; Griffin, W. L.; Liu, Chuanzhou; Huang, Fang

    2017-03-01

    We present Mg and Fe isotopic data for whole rocks and separated minerals (olivine, clinopyroxene, orthopyroxene, garnet, and phlogopite) of garnet peridotites that equilibrated at depths of 134-186 km beneath the Kaapvaal and Siberian cratons. There is no clear difference in δ26Mg and δ56Fe of garnet peridotites from these two cratons. δ26Mg of whole rocks varies from -0.243‰ to -0.204‰ with an average of -0.225 ± 0.037‰ (2σ, n = 19), and δ56Fe from -0.038‰ to 0.060‰ with an average of -0.003 ± 0.068‰ (2σ, n = 19). Both values are indistinguishable from the fertile upper mantle, indicating that there is no significant Mg-Fe isotopic difference between the shallow and deep upper mantle. The garnet peridotites from ancient cratons show δ26Mg similar to komatiites and basalts, further suggesting that there is no obvious Mg isotopic fractionation during different degrees of partial melting of deep mantle peridotites and komatiite formation. The precision of the Mg and Fe isotope data (⩽±0.05‰ for δ26Mg and δ56Fe, 2σ) allows us to distinguish inter-mineral isotopic fractionations. Olivines are in equilibrium with opx in terms of Mg and Fe isotopes. Garnets have the lowest δ26Mg and δ56Fe among the coexisting mantle minerals, suggesting the dominant control of crystal structure on the Mg-Fe isotopic compositions of garnets. Elemental compositions and mineralogy suggest that clinopyroxene and garnet were produced by later metasomatic processes as they are not in chemical equilibrium with olivine or orthopyroxene. This is consistent with the isotopic disequilibrium of Mg and Fe isotopes between orthopyroxene/olivine and garnet/clinopyroxene. Combined with one sample showing slightly heavy δ26Mg and much lighter δ56Fe, these disequilibrium features in the garnet peridotites reveal kinetic isotopic fractionation due to Fe-Mg inter-diffusion during reaction between peridotites and percolating melts in the Kaapvaal craton.

  8. Water contents of garnets from the Garnet Ridge, northern Arizona: H2O behavior underneath the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Ogasawara, Y.; Sakamaki, K.; Sato, Y.

    2013-12-01

    Kimberlitic volcanism at the Garnet Ridge delivered a wide variety of garnets and garnet-associated rocks in large vertical range from the deep mantle to shallow depths underneath the Colorado Plateau (Smith et al., 2004). Koga and Ogasawara (2012) classified the garnets at the Garnet Ridge into the following nine groups; (a) Cr and pyrope-rich garnet, (b) pyrope-rich reddish brown garnet, (c) reddish brown garnet, (d) garnet in eclogite, (e) garnet in metasomatized eclogite, (f) garnet aggregate, (g) garnet megacryst, (h) garnet in metasomatic rock I, (i) garnet in metasomatic rock II. They regarded these garnets as the four origins: mantle peridotite (a, b), subducted oceanic crust (d, e), high-pressure metasomatism (c, f, g), low-pressure metasomatism (h, i). On the garnets (a, b, d), Sakamaki et al. (2012) preliminary reported OH qualitatively using micro FT-IR spectroscopy. In garnets (a, b), OH was detected clearly, but in garnet (d) OH was below detection limit because the thickness of a doubly polished section of garnet (d) was too small (thickness: ~70 μm) and the concentration was too low. Using micro FT-IR method, this study conducted the quantitative analysis of H2O for 20 grains of group (a), 18 grains of group (b) and 6 grains of group (d). The garnet samples were prepared as doubly polished thick sections (thicknesses of 0.1-1.3 mm). An IR absorption coefficient of 8770 L/mol/cm2 (Katayama et al., 2005) for garnets was used. Significant amounts of hydroxyl were detected in garnets (a, b, d); clear OH bands were identified in garnets (a, b), but very week and extremely broad OH bands in garnet (d). In the analyzed garnets, no zonal distribution of OH was identified. Garnet (a): the IR spectra have a main OH band at 3575 cm-1 and often with a week band at 3675 cm-1. The resultant H2O contents range from the below detection limit to 119 ppm wt. and are distributed at 0~10 and at ca. 100 ppm wt., bimodally. Garnet (b): the IR spectra have a main OH band

  9. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  10. Ultrahigh-Pressure Orogenic Garnet Peridotites: A Prospective View

    NASA Astrophysics Data System (ADS)

    Liou, J.; Zhang, R.; Ernst, W.

    2006-12-01

    Mantle-derived garnet peridotites are a minor component in many ultrahigh-pressure (UHP) terranes that formed during continental subduction and collision. These mantle rocks contain trace amounts of zircon, and micron-size inclusions; the constituent minerals exhibit pre- and post-subduction microstructures including polymorphic transformation and mineral exsolution. Recent studies on orogenic peridotites have yielded numerous significant findings: (1) Many orogenic peridotites were derived from a depleted, metasomatized mantle or crustal cumulate, and were later subjected to subduction-zone UHP metamorphism. (2) Some peridotites preserve a record of ultradeep origin revealed by mineral exsolution and persistence of UHP polymorphs. (3) Several peridotites contain dense hydrous magnesian silicates that are stable only at mantle depths. (4) Some garnet peridotites and their host continental crust underwent coeval subduction-zone UHP metamorphism under P-T conditions characterized by low thermal gradients (< 5°C/km), based on SHRIMP U-Pb ages of zircon separates from both rock types. How we distinguish the petrochemical processes taking place in a mantle wedge setting from those deeply subducted ultramafic rocks of the continental lithosphere remains to be challenged. It requires detailed examination of micron-size minerals, exsolution textures and polymorphic transformations using novel techniques involving high spatial, temporal, and energy resolution. For example, garnet nodules in the Western Gneiss Region, Norway, formed prior to emplacement in the Caledonian subduction zone. Numerous lines of evidence suggest continental subduction depths > 200 km for some UHP terranes; these include the occurrence of supersilicic titanite in marble, exsolution lamellae of Qtz or K-fsp ± Phn in diopside from diamond-bearing marble and gneiss, and nanometric inclusions of aragonite and magnesite in microdiamonds from the Kokchetav massif, and α- PbO2 - type TiO2 between

  11. Successful synthesis of highly transparent Nano-Polycrystalline Garnets (NPG) for sound velocity measurements

    NASA Astrophysics Data System (ADS)

    Irifune, T.; Arimoto, T.

    2015-12-01

    Well-sintered polycrystalline aggregates are important as the specimens for sound velocity measurements with either ultrasonic interferometry or Brillouin scattering method. We recently developed techniques to synthesize translucent~transparent polycrystalline garnets at high very high pressure and temperature using Kawai-type multianvil apparatus. However, the grain sizes of these garnets remained significantly larger than 1 mm, which are not small enough for the measurements with GHz ultrasonic interferometry because of significant acoustic scattering by grain boundaries.We further developed the synthesis techniques and have succeeded to make well-sintered bodies of grossular and pyrope garnets made of nano-crystals (< 100 nm) at limited temperature ranges at a pressure of 15 GPa. Thus synthesized nano-polycrystalline garnets (NPG) are as transparent as the single crystals, having Real In-line Transmissions (RITs) close to those predicted by the refractive indices for the wide wave-length range in the visible light region.The present ultra-high pressure synthesis technique provides a new way to make transparent nano-polycrystalline minerals, which should be important not only for the mineral physics measurements but also for some industrial/scientific applications, such as novel photonic materials.

  12. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  13. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  14. Crystallization of calcium sulfate dihydrate under simulated conditions of phosphoric acid production in the presence of aluminum and magnesium ions

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Mahmoud, M. H. H.; Ibrahim, I. A.; Abdel-Aal, E. A.

    2004-06-01

    The effect of Al 3+ and Mg 2+ ions, as additives, on the crystallization of gypsum was studied under simulated conditions of the phosphoric acid production. Calcium hydrogen phosphate and sulfuric acid were mixed with dilute phosphoric acid at 80°C, and the turbidity of the reaction mixture was measured at different time periods to calculate the induction time of gypsum crystals formation. Addition of Al 3+ ions up to 2% decreased the induction time and increased the growth efficiency while addition of Mg 2+ increased the induction time and decreased the growth efficiency compared with in absence of additives. Interestingly, the crystals mean and median diameters were found to increase in the presence of Al 3+ and decrease in the presence of Mg 2+. The surface energy increased with Al 3+ and decreased with Mg 2+ compared to the baseline (without additives). Gypsum morphology changed from needle-like type in absence of additives to thick-rhombic in the presence of Al 3+ ions.

  15. Oxygen Isotope Zoning in Skarn Garnets: Evidence for Spatial and Temporal Fluid Source Variability in the Sierra Nevada and Mojave

    NASA Astrophysics Data System (ADS)

    Gevedon, M. L.; Ryan-Davis, J.; Lackey, J. S.; Barnes, J.; Kitajima, K.; Valley, J. W.

    2014-12-01

    Skarns provide insight to the depth, longevity, and dominant fluid regime associated with Sierra Nevada plutonism and Mesozoic magmatism in the Mojave National Preserve, which represent different spatial and temporal exposures of the Mesozoic arc. Skarns from these regions may serve as proxies for intricacies in the fluid source, and have the potential to resolve magmatic flare-ups and relative depths of emplacement. Both laser fluorination (LF) and secondary ion mass spectrometry (SIMS) δ18O analyses of garnet from multiple Mojave (Lucerne valley) skarns indicate a strong, early influence of meteoric fluid despite the presence of relatively deep plutonism. LF data from individual whole garnets and garnet chips broken during sample preparation reveal variation from +4.2‰ to -8.8‰ (n = 24), with an average of approximately -4.0‰. The large spread in these LF data suggest that (A) δ18O reflects an average of varying δ18O (fluid) compositions spanning multiple garnet growth oscillations; or (B) multiple generations of garnets exist within individual skarns, the growth of each coinciding with changes in the hydrothermal source and composition. SIMS analysis of two individual Mojave skarn garnets with oscillatory zoning (seen in backscatter electron images) reveal crystal cores with δ18O values of -9.6‰, internal variations of -9.4‰ to -3.3‰, and crystal rims of -2.2‰ and -2.9‰ (precision ±0.3; 2σ). In general, δ18O values negatively correlate with andradite compositions, with high andradite zones having lower δ18O values ([AND + CaTi] compositions range from 100 to 73). Similar analyses (both SIMS and LF) of garnets from Sierra Nevadan skarns (Tungsten Hills region) show variation in δ18O values with LF data ranging from 5.4‰ to 6.2‰ (n = 8), with an average of 5.7‰, and an additional 2.7‰ value obtained from a garnet interior. SIMS data show δ18O compositional variation from 4.0‰ to 5.9‰. Data across the two Tungsten Hills garnets

  16. Thermodynamic Properties of Rock-Forming Garnets: How Well Known are They?

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Dachs, E.

    2011-12-01

    garnet solid solutions? Here, there is much less is known (Geiger 1999). The precise mixing behavior of most garnet binaries, for example, is not understood. An exception is the pyrope-grossular binary, which has now been investigated numerous times and some consensus on its mixing properties now exist. In a related area, crystal-chemical investigations are providing good insight on possible macroscopic thermodynamic mixing behavior. Here, for example, low temperature synchrotron measurements on line broadening of powder diffraction lines give the first quantitative lattice-strain determinations on a solid solution (Dapiaggi et al. 20005). The asymmetric nature of the mixing functions ΔHex, ΔSex, and ΔVex can be explained via strain and local Ca/Mg-O bond behavior. Another area needing further investigation is short-range order. 29Si NMR spectroscopic study of synthetic Py-Gr garnets indicates that some short-range Ca-Mg order may be present. Bosenick et al. (1999) estimate that configurational entropy effects of about 2 J/mole.K may result at T > 1000 °C. It remains to be determined, however, what the structural state is at lower temperatures of 600 to 900 °C. The degree of short-range order could be substantial in metamorphic garnet solid solutions.

  17. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  18. The Local Structural State of Aluminosilicate Garnet Solid Solutions: An Investigation of Grospydite Garnet from the Roberts Victor Kimberlite Using Paramagnetically Shifted 27Al and 29Si MAS NMR Resonances

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Palke, A. C.; Stebbins, J. F.

    2014-12-01

    Most rock-forming silicates are substitutional solid solutions. Over the years extensive research has been done to determine their structural and crystal chemical properties. Here, the distribution of cations, or order-disorder behavior, is of central importance. In the case of aluminosilicate garnet solid solutions (X3Al2Si3O12 with X = Mg, Fe2+, Mn2+ and Ca) it has been shown that both synthetic and natural crystals have random long-range X-cation disorder in space group Ia-3d, as given by X-ray single-crystal diffraction measurements. However, the structural state of natural garnets at the local scale is not known. Garnet from a grospydite xenolith from the Roberts Victor kimberlite, South Africa, was studied by 27Al and 29Si MAS NMR spectroscopy. The research thrust was placed on measuring and analyzing paramagnetically shifted resonances to determine the local (short range) structural state of the X-cations in a grossular-rich ternary aluminosilicate garnet solid solution. The garnet crystals are compositionally homogeneous based on microprobe analysis, showing no measurable zoning, and have the formula Grs46.7Prp30.0Alm23.3. The garnet is cubic with the standard garnet space group Ia-3d. The 27Al MAS NMR spectrum shows a very broad asymmetric resonance located between about 100 and -50 ppm. It consists of a number of individual overlapping paramagnetically shifted resonances, which are difficult to analyze quantitatively. The 29Si MAS NMR spectrum, showing better resolution, has two observable resonances termed S0 and S4. S0 is located between about -60 ppm and -160 ppm and S4 is centered at roughly 95 ppm. Both S0 and S4 are composite resonances in nature containing many overlapping individual peaks. S0 contains information on local cation configurations whereby an isolated SiO4 group in the garnet structure does not have an edge-shared Fe2+-containing dodecahedron. S4 involves local configurations where there is one edge-shared dodecahedron containing Fe2

  19. Influence of deuterium implantation on bubble garnet properties

    SciTech Connect

    Gerard, P.; Capra, T.; Magnin, J.

    1985-12-15

    A classical (Y Sm Lu Ca)/sub 3/ (Fe Ge)/sub 5/ O/sub 12/ bubble garnet, supporting 1.8-..mu..m bubbles, has been implanted with 1.5 x 10/sup 16/ D/sup +//sub 2/ cm/sup 2/ at 60 keV either directly or through a predeposited 100-A-thick silica layer. Nuclear techniques such as D (/sup 3/He, ..cap alpha..) p nuclear reaction and Rutherford backscattering combined with channeling measurements were used to determine the implant and damage profiles, respectively. Double-crystal x-ray diffraction was used to measure the maximum strain and magnetic properties were obtained from ferromagnetic resonance. The evolution of these parameters has been studied as a function of annealing treatments. It follows that, as compared to hydrogen, deuterium also interacts at damage-level inducing within the garnet new magnetic phenomena. A higher annealing temperature is required for bubble memory applications. The silica overlayer which is useful for increasing the anisotropy field change, somewhat affects the magnetic properties of the implanted layer.

  20. Preparation of transparent neodymium-doped yttrium aluminate garnet (Nd:YAG) ceramics with the use of freeze granulation

    NASA Astrophysics Data System (ADS)

    Wajler, Anna; Węglarz, Helena; Sidorowicz, Agata; Zych, Łukasz; Nakielska, Magdalena; Jach, Katarzyna; Tomaszewski, Henryk

    2015-12-01

    This paper presents the results of the application of freeze granulation to the production of transparent neodymium-doped yttrium-aluminum garnet ceramics. Aqueous suspensions of aluminium oxide, yttrium oxide and neodymium oxide powders were prepared based on nanometric or submicronic powders which were either commercially available or prepared by precipitation. The relations between the composition of suspension, the properties of granulate and the final properties of ceramics (microstructure, optical transmission and emission spectra) were studied.

  1. Isochemical breakdown of garnet in orogenic garnet peridotite and its implication to reaction kinetics

    NASA Astrophysics Data System (ADS)

    Obata, Masaaki; Ozawa, Kazuhito; Naemura, Kosuke; Miyake, Akira

    2013-12-01

    An isochemical kelyphite (orthopyroxene+spinel+plagioclase) that has nearly the same bulk chemical composition as the precursor garnet was found within a matrix of ordinary kelyphites (orthopyroxene+clinopyroxene+spinel±amphibole) in garnet peridotites from the Czech part of the Moldanubian Zone. It was shown that the kelyphitization of garnet took place in three stages: (1) the garnet-olivine reaction, accompanied by a long-range material transfer across the reaction zone, and (2) the isochemical breakdown of garnet, essentially in a chemically-closed system, and finally, (3) an open-system hydration reaction producing a thin hydrous zone (amphibole+spinel+plagioclase), which is located between the isochemical kelyphite and relict garnet. The presence of relict garnet suggests that this breakdown reaction of the second stage did not proceed to a completion probably being hindered by the formation of the hydrous zone at the reaction front. It was found by electron back-scattered diffraction method that orthopyroxene and spinel do not show any topotaxic relationship in the first type of kelyphite; whereas they show locally topotaxic relationship in the isochemical kelyphite. The transition from the first type to the second type of kelyphite is discussed on the basis of the detailed observations in the transition zone between the two kelyphites. More widespread occurrence of isochemical kelyphite is expected to occur in orogenic peridotites as well as from xenoliths brought by volcanics.

  2. Refinement of the crystal structure of calcium-lithium-aluminum tourmaline from the pegmatite vein in the Sangilen Upland (Tuva Republic)

    SciTech Connect

    Rozhdestvenskaya, I. V. Bronzova, Yu. M.; Frank-Kamenetskaya, O. V.; Zolotarev, A. A.; Kuznetsova, L. G.; Bannova, I. I.

    2008-03-15

    The crystal structure of a natural calcium-lithium-aluminum tourmaline, which has the unique composition (Ca{sub 0.62}Na{sub 0.32}{open_square}{sub 0.06})(Al{sub 1.08}Li{sub 0.99}Fe{sub 0.66}{sup 2+} Mg{sub 0.24}Ti{sub 0.03})Al{sub 6}[Si{sub 6}O{sub 18}](BO{sub 3}){sub 3}(OH{sub 2.28}O{sub 0.72}) . (F{sub 0.84}O{sub 0.16}), is refined (R = 0.019, R{sub w} = 0.022, S = 1.47). It is found that the O(1)(W) site is split into two sites, O(1) and O(11), which are incompletely occupied by fluorine and oxygen anions, respectively, and that the O(3)(V) site contains bivalent oxygen anions. The solid solution studied is close in composition to the liddicoatite mineral species and differs from the latter one by the Li: Al ratio in the Y octahedra and the presence of bivalent oxygen anions in the O(3) site. The tourmaline studied differs from the hypothetical oxyliddicoatite by the population of the O(1)(W) site by fluorine and accommodation of additional oxygen anions in the O(3)(V) site.

  3. Refinement of the crystal structure of calcium-lithium-aluminum tourmaline from the pegmatite vein in the Sangilen Upland (Tuva Republic)

    SciTech Connect

    Rozhdestvenskaya, I. V. Bronzova, Yu. M.; Frank-Kamenetskaya, O. V.; Zolotarev, A. A.; Kuznetsova, L. G.; Bannova, I. I.

    2008-03-15

    The crystal structure of a natural calcium-lithium-aluminum tourmaline, which has the unique composition (Ca{sub 0.62}Na{sub 0.32}{open_square}{sub 0.06})(Al{sub 1.08}Li{sub 0.99}Fe{sub 0.66}{sup 2+} Mg{sub 0.24}Ti{sub 0.03})Al{sub 6}[Si{sub 6}O{sub 18}](BO{sub 3}){sub 3}(OH{sub 2.28}O{sub 0.72}) {center_dot} (F{sub 0.84}O{sub 0.16}), is refined (R = 0.019, R{sub w} = 0.022, S = 1.47). It is found that the O(1)(W) site is split into two sites, O(1) and O(11), which are incompletely occupied by fluorine and oxygen anions, respectively, and that the O(3)(V) site contains bivalent oxygen anions. The solid solution studied is close in composition to the liddicoatite mineral species and differs from the latter one by the Li: Al ratio in the Y octahedra and the presence of bivalent oxygen anions in the O(3) site. The tourmaline studied differs from the hypothetical oxyliddicoatite by the population of the O(1)(W) site by fluorine and accommodation of additional oxygen anions in the O(3)(V) site.

  4. 19. General view showing garneting machine number eight on right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. General view showing garneting machine number eight on right, and garneting machines numbers four through seven on left in background - Norfolk Manufacturing Company Cotton Mill, 90 Milton Street, Dedham, Norfolk County, MA

  5. CIE colorimetric system fails to calculate the chroma of a Nd:YAG crystal under the fluorescent illuminant F7

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Chen, Qinghan; Bu, Xianhui; Feng, Pingyun

    2002-06-01

    The rare earth element neodymium doped yttrium aluminum garnet (Nd:YAG) is a laser crystal widely used for producing laser in the infrared range. Neodymium causes many characteristic absorption peaks in the transmittance spectrum of the Nd:YAG crystal in the visible range. The crystal appears pink under daylight and incandescent light, and colorless under fluorescent light. The colorimetric calculation results of chroma under the CIE standard fluorescent illuminant F7 do not agree with the color appearance under fluorescent light. The calculated chroma values should be near zero to agree with a colorless appearance, but it is actually 11.79 in the CIELAB color space. This failure of the colorimetric calculation is caused by the color matching functions of the CIE colorimetric observers. The color matching functions do not agree with the spectral sensitivity curves of the human eye, especially the x(λ) function does not matches the spectral sensitivity curve of the long wavelength cone photoreceptors.

  6. Magnetodielectric coupling in multiferroic holmium iron garnets

    NASA Astrophysics Data System (ADS)

    Malar Selvi, M.; Chakraborty, Deepannita; Venkateswaran, C.

    2017-02-01

    Single phase magneto-electric multiferroics require a large magnetic or electric field for producing magneto-electric (ME) and magnetodielectric (MD) effects. For utilizing these effects in devices investigations on the room temperature and low field MD studies are necessary. Recently, efforts have been largely devoted to the investigation of rare earth iron garnets. In the physical method, the preparation of rare earth iron garnet requires high sintering temperature and processing time. To solve these problems, ball milling assisted microwave sintering technique is used to prepare nanocrystalline holmium iron garnets (Ho3Fe5O12). Magnetic and dielectric properties of the prepared sample are investigated. These properties get enhanced in nanocrystalline form when compared to the bulk. The MD coupling of the prepared sample is evident from the anomaly in the temperature dependent dielectric constant plot and the ME coupling susceptibility is derived from the room temperature MD measurements.

  7. Combinatorial pulsed laser deposition of doped yttrium iron garnet films on yttrium aluminium garnet

    SciTech Connect

    Sposito, A. Eason, R. W.; Gregory, S. A.; Groot, P. A. J. de

    2014-02-07

    We investigate the crystalline growth of yttrium iron garnet (YIG) films doped with bismuth (Bi) and cerium (Ce) by combinatorial pulsed laser deposition, co-ablating a YIG target and either a Bi{sub 2}O{sub 3} or a CeO{sub 2} target, for applications in microwave and optical communications. Substrate temperature is critical for crystalline growth of YIG with simultaneous inclusion of Bi in the garnet lattice, whereas Ce is not incorporated in the garnet structure, but forms a separate CeO{sub 2} phase.

  8. Micro-Raman spectra of ugrandite garnet.

    PubMed

    Moroz, T; Ragozin, A; Salikhov, D; Belikova, G; Puchkov, V; Kagi, H

    2009-08-01

    The natural garnets from chromite ores associated with pegmatoid pyroxenites of Sangalyk area (Uchaly ore district, southern Urals, Russia) were studied by means of micro-Raman spectroscopy. The compositions of these garnets were close to ugrandite, an isomorphous intermediate group of uvarovite-grossularite-andradite, X(3)Y(2)(SiO(4))(3), X = Ca(2+), Y = Al(3+), Fe(3+), Cr(3+), according to Raman spectra and X-ray microprobe analyses. An assignment of most of the observed bands in visible and near infrared Raman spectra is reported.

  9. Micro-Raman spectra of ugrandite garnet

    NASA Astrophysics Data System (ADS)

    Moroz, T.; Ragozin, A.; Salikhov, D.; Belikova, G.; Puchkov, V.; Kagi, H.

    2009-08-01

    The natural garnets from chromite ores associated with pegmatoid pyroxenites of Sangalyk area (Uchaly ore district, southern Urals, Russia) were studied by means of micro-Raman spectroscopy. The compositions of these garnets were close to ugrandite, an isomorphous intermediate group of uvarovite-grossularite-andradite, X 3Y 2(SiO 4) 3, X = Ca 2+, Y = Al 3+, Fe 3+, Cr 3+, according to Raman spectra and X-ray microprobe analyses. An assignment of most of the observed bands in visible and near infrared Raman spectra is reported.

  10. Crystal Plasticity Analysis of Texture Evolution of Pure Aluminum During Processing by a New Severe Plastic Deformation Technique

    NASA Astrophysics Data System (ADS)

    Khajezade, Ali; Parsa, Mohammad Habibi; Mirzadeh, Hamed

    2016-02-01

    Texture evolution in a newly developed severe plastic deformation technique, named multi-axial incremental forging and shearing (MAIFS), was studied applying the visco-plastic self-consistent crystal plasticity formulation by consideration of macroscopic deformation history. The simulated texture evolutions revealed that although shear-like texture had developed by the MAIFS process, texture components rotated around normal to mid-plane section. This could be ascribed to the complex deformation history that naturally develops during processing by the MAIFS process. The increased complexity of the deformation history in the MAIFS process, compared to the techniques that are solely based on the simple shear deformation, causes more activated slip planes, which in turn can result in an enhanced grain refinement ability of this processing technique.

  11. Crystal growth of a series of lithium garnets Ln3Li 5Ta 2O 12 ( Ln=La, Pr, Nd): Structural properties, Alexandrite effect and unusual ionic conductivity

    NASA Astrophysics Data System (ADS)

    Roof, Irina P.; Smith, Mark D.; Cussen, Edmund J.; zur Loye, Hans-Conrad

    2009-02-01

    We report the single crystal structures of a series of lanthanide containing tantalates, Ln3Li 5Ta 2O 12 ( Ln=La, Pr, Nd) that were obtained out of a reactive lithium hydroxide flux. The structures of Ln3Li 5Ta 2O 12 were determined by single crystal X-ray diffraction, where the Li + positions and Li + site occupancies were fixed based on previously reported neutron diffraction data for isostructural compounds. All three oxides crystallize in the cubic space group Ia3¯d (No. 230) with lattice parameters a=12.7735(1), 12.6527(1), and 12.5967(1) Å for La 3Li 5Ta 2O 12, Pr 3Li 5Ta 2O 12, and Nd 3Li 5Ta 2O 12, respectively. A UV-Vis diffuse reflectance spectrum of Nd 3Li 5Ta 2O 12 was collected to explain its unusual Alexandrite-like optical behavior. To evaluate the transport properties of Nd 3Li 5Ta 2O 12, the impedance data were collected in air in the temperature range 300⩽ T(°C)⩽500.

  12. Enhancement of the electron electric dipole moment in gadolinium garnets

    SciTech Connect

    Mukhamedjanov, T.N.; Dzuba, V.A.; Sushkov, O.P.

    2003-10-01

    Effects caused by the electron electric dipole moment (EDM) in gadolinium garnets are considered. Experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. Our calculation accounts for both direct and exchange diagrams.

  13. Origin of color centers in the flux-grown europium gallium garnet

    SciTech Connect

    Aleksandrovsky, A. S.; Arkhipkin, V. G.; Bezmaternykh, L. N.; Gudim, I. A.; Krylov, A. S.; Vagizov, F.

    2008-04-15

    Europium gallium garnet (EuGG) single crystals were grown from fluxes with various contents. Optical absorption spectra of EuGG grown from a flux containing calcium show an additional band in the ultraviolet and blue regions of the spectra as compared to the case of a calcium-free flux. Moessbauer spectra of the samples grown from the fluxes with different additives show no signs of other valence states of the europium ions except for 3+. However, they indicate changes in the crystal field due to the entrance of additive ions. The nature of the additional absorption must be the same as that for calcium-doped gadolinium gallium garnet, i.e., anion vacancies. Moessbauer isotope shifts and quadrupole splitting for EuGG are determined.

  14. Coexisting cummingtonite and aluminous hornblende from garnet amphibolite, Boehls Butte area, Idaho, USA

    USGS Publications Warehouse

    Hietanen, A.

    1973-01-01

    Electron microprobe analyses of green hornblende and coexisting cummingtonite from garnet amphibolite show identical Fe/Mg ratios ( = 0.9). Cummingtonite is iron-magnesium silicate with very little calcium and aluminum and practically no alkalies. In contrast, the hornblende has 1.5 tetrahedral Al, 0.9 octahedral Al and a considerable amount of Ca and alkalies. Comparison with the hornblendes from the Sierra Nevada shows a higher relative amount of tschemakite molecule in the hornblendes from Idaho where pressures during the recrystallization were higher. ?? 1973.

  15. Effect of Titanium on REE and HFSE Partitioning Between Garnet and Melt

    NASA Astrophysics Data System (ADS)

    Dwarzski, R. E.; Draper, D. S.

    2004-12-01

    Garnet is a strong fractionator of trace elements and plays an important role in the petrogenetic history of planetary interiors at high pressure. In order to model petrogenetic processes that operate within terrestrial planets accurately, it is important to understand how garnet partitions rare earth and high field strength elements. Here we assess the influence of Ti on garnet-melt trace element partitioning with a view both to constrain important crystal-chemical effects and to evaluate possible roles for garnet in lunar petrogenesis. Experiments were performed at ˜5 GPa and 1650-1675° C in a Walker-style multi-anvil high pressure apparatus using an Apollo 14 black picritic glass composition ( ˜17 wt% TiO2) to assess the effect of Ti on garnet partitioning. These experiments were also designed to examine the possible presence of garnet in mare source regions. Experimental charges were analyzed for major and trace elements by EPMA and SIMS, respectively. D-values measured in this study using the Apollo 14 black Ti-rich composition are consistently higher than those measured by Draper et al. (2004, LPSC XXXV:1297), who used Apollo 15 green C glass (<0.5 wt% TiO2). D vs. ionic radii are well-described for the trivalent cations by the lattice-strain partitioning model of Blundy and Wood (1994, Nature 372:452), with D0 = 2.27 ± 0.40, E = 159 ± 58 GPa, and r0 = 0.879 ± 0.044 Å (r2 = 0.957). For comparison, this model applied to the low-Ti experiments of Draper et al. (2004) yields D0 = 2.93 ± 0.25, E = 572 ± 40 GPa, and r0 = 0.926 ± 0.005 Å (r2 = 0.996) at ˜3.5 GPa. Both these fits show significant mismatch to the partitioning predicted by the formulations of van Westrenen et al. (2001, CMP 142:219), as previously shown for Fe-rich systems by Draper et al. (2003, PEPI 139:149). Use of our D-values (for rare earth and high field strength elements in batch-melting models) provisionally supports the hypotheses of Neal (2001, JGR 106:27865) and Neal and

  16. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  17. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  18. Major and Trace Element Concentrations in Garnet Performed by Electron Microprobe and MicroPIXE

    NASA Astrophysics Data System (ADS)

    Borghi, A.; Cossio, R.; Mazzoli, C.; Olmi, F.; Vaggelli, G.

    2003-12-01

    The chemical composition of rock-forming minerals reflects their crystallisation history and provides information on the temperature and pressure conditions during their formation. Among metamorphic minerals, garnet is one of the most commonly studied in metamorphic petrology because a chemical zoning is often observed in porphyroblasts that potentially records the changes in the reaction history of the rock. In the past, only major element composition could be determined by non-destructive analytical procedure. However, at high temperature major element growth zoning may be significantly modified by intra-crystalline diffusion. Consequently, the study of trace elements distribution, which may be less susceptible to diffusional modification, becomes of fundamental importance. In this regard, an inverse correlation between yttrium concentration in garnet and metamorphic grade has been recently proposed for pelitic rocks (Pyle & Spear, 2000). This coupling is of great advantage as it may be used to calibrate new geothermometers based on exchange equilibria involving trace elements in garnet In the present paper, a micro-beam Proton Induced X-Ray Emission (micro-PIXE) analytical technique and a WDS electron microprobe (EPMA), were been applied to a specific geological problem particularly affected by the limitations of other techniques. The collected samples come from meta-pelitic samples belonging to the tectonic unit of Monte Rosa Nappe (Western Alps). Selected garnet crystals were analysed for major (Si, Al, Mg, Ca, Mn, Fe) and trace elements. The former were analysed by EPMA and the latter by micro-PIXE. The considered garnet crystals show well-defined compositional zoning, characterised by a smooth and concentric variation of the selected elements from core to rim. As regards the trace elements distribution, the two-dimensional X-ray maps display a strong Y enrichment in the core, followed by a flat pattern at the inner and outer rim. Y concentration spreads over

  19. Major element chemistry and inclusion/lamella mineralogy of garnets from the Garnet Ridge in the Colorado Plateau, northern Arizona

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Koga, I.; Ogasawara, Y.

    2014-12-01

    Various garnets with diverse features and origins occur in the Garnet Ridge. These were transported from upper mantle to crustal depths underneath the Colorado Plateau by a kimberlitic diatreme (ca. 30 Ma) as xenocrysts and xenoliths. On the basis of major element chemistry, inclusion/lamella mineralogy, color, and host rocks of garnets, the Garnet Ridge garnets were classified into the following ten groups (Table) using 495 analyzed grains: A. Cr and pyrope-rich garnet, B. pyrope-rich reddish brown garnet, C. garnet aggregate, D. garnet megacryst, E. garnet in eclogite, F. garnet in metasomatized eclogite, G. quartz lamellae-bearing garnet, H. garnet in metasomatic rock I, I. garnet in metasomatic rock II, J. almandine-rich garnet. A and B are of mantle peridotite origins. Both garnets were characterized by Cr-Spl lamellae for A, and Cpx/Amp lamellae for B, respectively. B is subdivided into 2 types by lamellae and inclusions: (Prp 49-66, Grs 16-26 mol%) lamellae of Rt, Ilm, Cpx, Amp, and Chl, and (Prp 47-66, Grs 11-24 mol%) lamellae of Ilm and fluid inclusions. C and D have similar chemistry and inclusion/lamella mineralogy. The chemistry (Prp 22-53, Grs 11-41, Alm 26-50 mol%) and the wide variation suggest metasomatism at mantle depths. E includes Rt, Omp, Zrn, Ap, Kfs, and simplectite of Zo + Ab. F contains Rt, Omp, and Ap. Both E and F have chemical zonation from core to rim in Alm component. These garnets are of subducted oceanic slab origins, probably Fallaron plate. G includes Cpx, Zrn, and fluid, and oriented lamellae of Rt, Ap, and Qtz. Oriented Qtz lamellae characterize this group. The host rock of H is of metasomatism origin at crustal depths. H has Grs-rich composition and inclusions of Mt, Zo, Ttn, Ap and fluid. I has lamellae of Rt and crichtonites, and includes Qtz and Zrn. The host rock of I was strongly altered. J shows chemical zonation from core to rim in Alm component. This garnet includes Pl, Qtz, Ilm with Mt lamellae, and Rt lamella. The

  20. The Role of Garnet in Martian Mantle Evolution: Further Evidence from Shergottite Rare Earth Patterns

    NASA Astrophysics Data System (ADS)

    Gleason, J. D.; Kring, D. A.; Boynton, W. V.

    1996-03-01

    REE fractionation and isotopic decoupling effects in SNC meteorites have been attributed in the past to the presence of garnet in their mantle source regions. Quantifying the garnet effect is now possible using the parent melt REE compositions determined by for the shergottites, a group of SNC meteorites characterized by complex rare earth element (REE) patterns and 180 Ma isotopic ages. Below, we develop a multi-stage REE evolution model for a shergottite source which underwent fractional fusion at earlier stages with garnet present. Similar processes may account for (1) the decoupling of the Sm-Nd isotopic system from the Rb-Sr and U-Th-Pb isotopic systems in SNC meteorites, and (2) non-chondritic abundance ratios for certain refractory lithophile elements (e.g., high Th/La, U/La, and low Al/Ti) in SNC's. If this model is generally correct, it then requires a planet large enough to have crystallized substantial garnet in its mantle source regions, consistent with a martian origin for the SNC's.

  1. Single and multiphase inclusions in metapelitic garnets of the Rhodope Metamorphic Province, NE Greece.

    PubMed

    Mposkos, Evripidis; Perraki, Maria; Palikari, Sarra

    2009-08-01

    Single and multiphase inclusions in garnet porphyroblasts from the diamond-bearing pelitic gneisses were studied by means of combined Raman Spectroscopy and Electron Scanning Microscopy (SEM/EDX). They are either randomly distributed or with preferred orientation within the garnet host and their dimensions vary from less than 5 up to 60 microm. In the single-phase inclusions quartz, rutile, kyanite and graphite dominate. Biotite, zircon, apatite, monazite and allanite are also common. Two types of multiphase inclusions were recognized, hydrous silicate (Type I) and silicate-carbonate (Type II) ones. The carbon-bearing multiphase inclusions predominantly consist of Mg-siderite+graphite+CO(2)+muscovite+quartz formed by a high density carboniferous fluid rich in Fe, Mg, Si and less Ca, Mn, Al and K trapped in the growing garnet in a prograde stage of metamorphism at high-pressure (HP) conditions. The carbon-free multiphase inclusions predominantly consist of biotite+quartz+rutile+/-kyanite+muscovite formed through decompression-dehydration/melting reactions of pre-existing phengite. Single and multiphase inclusions are characterized by polygonal to negative crystal shape formed by dissolution-reprecipitation mechanism between the garnet host and the inclusions during the long lasting cooling period (>100 Ma) of the Kimi Complex.

  2. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.

    PubMed

    Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y

    2012-12-01

    Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Inhibitors in LPE growth of garnets

    NASA Astrophysics Data System (ADS)

    De Roode, W. H.; Robertson, J. M.

    1983-09-01

    The growth rate of LPE growth garnets can be reduced considerably by the addition of small amounts of group II oxides. This effect can be helpful for the controlled growth of very thin garnet films for sub-micron bubbles and optical devices. The largest effect was found with the addition of Mg 2+ and Ca 2+, resulting in a maximum decrease of the growth rate of approximately 70%. A semi-empirical formula was used to describe the growth rate as a function of the dipping temperature. The change in the growth rate on the addition of the inhibitor ion at constant temperature was found to be proportional to ( aMO)/( aMO+2 Ln 2O 3), where M is a group II element, Ln 2O 2 is the sum of the yttrium and RE oxides in the melt, and a is the inhibitor factor. The value of the inhibitor factor depends on both the inhibitor ion as well as the composition of the garnet. The lowering of the growth rate on the addition of an inhibitor ion is explained by the introduction of an extra growth resistance due to the charge compensation mechanism of the divalent ions. The influence of the different charge compensation possibilities in the garnet system is examined and the relative importance of these possibilities for charge compensation is discussed.

  4. Investigating Damage Evolution at the Nanoscale: Molecular Dynamics Simulations of Nanovoid Growth in Single-Crystal Aluminum

    NASA Astrophysics Data System (ADS)

    Bhatia, M. A.; Solanki, K. N.; Moitra, A.; Tschopp, M. A.

    2013-02-01

    Nanovoid growth was investigated using molecular dynamics to reveal its dependence on void size, strain rate, crystallographic loading orientation, initial nanovoid volume fraction, and simulation cell size. A spherical nanovoid was embedded into a periodic face-centered cubic (fcc) Al lattice, and a remote uniaxial load was applied to elucidate dislocation nucleation and shear loop formation from the void surface as well as the subsequent void growth mechanisms. The nucleation stresses and void growth mechanisms were compared for four different strain rates (107 to 1010 seconds-1), five different simulation cell sizes (4-nm to 28-nm lengths), four different initial nanovoid volume fractions, and seven different tensile loading orientations representative of the variability within the stereographic triangle. The simulation results show an effect of the size scale, crystallographic loading orientation, initial void volume fraction, and strain rate on the incipient yield stress for simulations without a void (single-crystal bulk material). For instance, the crystallographic orientation dependence on yield stress was less pronounced for simulations containing a void. As expected, dislocations and shear loops nucleated on various slip systems for the different loading orientations, which included orientations favored for both single slip and multiple slip. The evolution of the nanovoid volume fraction with increasing strain is relatively insensitive to loading orientations, which suggests that the nanoscale plastic anisotropy caused by the initial lattice orientation has only a minor role in influencing the nanovoid growth rate. In contrast, a significant influence of the initial nanovoid volume fractions was observed on the yield stress, i.e., a ~35 pct decrease in yield stress was caused by introducing a 0.4 pct nanovoid volume fraction. Furthermore, a continuum-scale bridging parameter m—which is a material rate sensitivity parameter in continuum damage mechanics

  5. Effects of processing on the low-voltage performance of cathodoluminescent garnet phosphors

    SciTech Connect

    Phillips, M.L.F.; Shea, L.E.

    1995-08-01

    Field emission flat panel displays place new demands on the performance of cathodoluminescent phosphors. In particular, such phosphors must be efficient at lower voltages (ca. 100-1000 V), and must withstand higher current densities than are present on cathode ray tube screens. ZnO:Zn has been studied extensively as a low-voltage phosphor, but problems such as poor chromatic saturation and temperature sensitivity of emission remain. In this work the use of terbium-doped garnet phases such as yttrium aluminum garnet (YAG) and gadolinium gallium garnet (GGG) as low voltage green-emitting phosphors is evaluated. Hydrothermal synthesis yields well-faceted YAG grains with particle diameters of less than 1 {mu}m. Cathodoluminescent efficiency at a particular voltage was not affected by synthetic route, though the hydrothermally synthesized material was less susceptible to damage at high power densities. An efficiency of 3.5 lm/W was observed for GGG:Tb at 800 V. Deposition of the phosphors onto conducting screens increased their efficiencies at very low voltages (< 200 V). These materials may be considered alternatives to reduced zinc oxide as green-emitting phosphors.

  6. Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits.

    PubMed

    Goto, Taichi; Onbaşlı, Mehmet C; Ross, C A

    2012-12-17

    Thin films of polycrystalline cerium substituted yttrium iron garnet (CeYIG) were grown on an yttrium iron garnet (YIG) seed layer on Si and Si-on-insulator substrates by pulsed laser deposition, and their optical and magneto-optical properties in the near-IR region were measured. A YIG seed layer of ~30 nm thick processed by rapid thermal anneal at 800°C provided a virtual substrate to promote crystallization of the CeYIG. The effect of the thermal budget of the YIG/CeYIG growth process on the film structure, magnetic and magnetooptical properties was determined.

  7. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    unobstructed by reaction products. - Neighbouring garnet coronas are interconnected, i.e. in direct contact to each other. From a mechanical point of view, we interpret touching garnet coronas that form a rigid, potentially load-supporting framework to affect the rheology of the rock. - In the most highly deformed eclogites, the oblate shapes of elongated garnet clusters reflect a deformational origin of the microfabrics. The clusters define a foliation, whose orientation and intensity we quantified using a star volume distribution algorithm. We interpret the aligned garnet clusters to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. - EBSD on garnets shows that, there is no evidence for crystal plastic deformation and all the garnets are internally strain free and show a near-random crystal preferred orientation. There is, however evidence for minor fracturing. We interpret these observations as pointing to a mechanical disintegration of the garnet coronas during strain localisation, and their rearrangement into individual clusters. This process will have been supported by pressure solution/reprecipitation processes. Our study clearly demonstrates what 3- or even 4-dimensional data from reaction microfabrics can add to the understanding of metamorphic processes.

  8. Group Theoretical Techniques in Analyzing Vibronic Spectra from Doped Crystals.

    NASA Astrophysics Data System (ADS)

    Aproberts-Warren, Nicholas; Collins, John

    2007-04-01

    In this work we consider the use of vibronic spectra of rare earth and transition metal ions in ionic crystals to gain information on the phonon density of states. The impurity ion destroys the translational symmetry, leading to vibronic sidebands to emission lines that resemble the density of states. We focus on the application of selection rules for vibronic transitions to select crystals. Using group theoretical techniques, the symmetry of a crystal's unit cell and Brillouin Zone lead to ``irreducible representations'' of the space group of the crystal. Each of these representations corresponds to specific phonon modes of the perfect crystal. To determine which phonon modes can interact with the ion, the space group representations are reduced in terms of the site symmetry of the impurity, after which the selection rules can be applied. The specific case of Vn^2+ in MgO is examined, and the results are compared with neutron scattering, Raman, and infrared data. Selection rules are also found for the cases of Cr^3+ in strontium titanate and in yttrium aluminum garnet. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.B1.5

  9. Skarn formation and trace elements in garnet and associated minerals from Zhibula copper deposit, Gangdese Belt, southern Tibet

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Ciobanu, Cristiana L.; Cook, Nigel J.; Zheng, Youye; Sun, Xiang; Wade, Benjamin P.

    2016-10-01

    . Molybdenum, W, and Sn display excellent co-correlation and shared zonation patterns on LA-ICP-MS maps of garnet, indicating substitution in the crystal lattice. As well as assisting in interpreting skarn evolution in time and space, and providing constraints on ore genesis, the trace element data for garnet explain the range of colours observed. The discovery of garnets carrying significant concentrations of W, Sn and Mo is a valuable finding that deserves evaluation in post-collisional skarns elsewhere, and is potentially of critical significance in prospecting. Together with a conspicuous trace ore mineral signature, garnet compositions at Zhibula support a genetic connection and sharing of ore-forming fluids between the skarn and the Qulong porphyry Cu-Mo deposit, 2 km to the north. Within the Gangdese belt, or in analogous settings elsewhere, the presence of deep-seated porphyry mineralization beneath exposed skarns could be tested for by studying garnet chemistry. As more data become available, such trace element signatures could be viable tools for distinguishing barren from mineralized skarn systems.

  10. Retrograde phase transitions of majoritic garnets included in diamonds: a case study of subcalcic Cr-rich majoritic pyrope from a Snap Lake diamond, Canada

    NASA Astrophysics Data System (ADS)

    Sobolev, N.; Wirth, R.; Logvinova, A. M.; Pokhilenko, N. P.; Kuzmin, D. V.

    2008-12-01

    component (29 mol.%) was previously studied by single crystal XRD (Sobolev et al., 2004), and appeared to be completely homogeneous after checking it by TEM/AEM. Since EMPA was the only tool used in previous studies of rare majoritic garnets, it is possible that the presence of partial (or even complete) phase transitions could have been missed without additional XRD and/or TEM/AEM studies and masked by identical results of chemical analyses of garnets and possible nanometer sized retrograde symplectite.

  11. Deciphering the timescales of Archean HT/UHT metamorphism in the Pikwitonei Granulite Domain using garnet petrochronology

    NASA Astrophysics Data System (ADS)

    Dragovic, B.; Guevara, V.; Caddick, M. J.; Couëslan, C. G.; Baxter, E. F.

    2016-12-01

    Sm-Nd garnet geochronology, trace element zoning, and the modeling of major and trace element diffusion in garnet are used to determine the timescales of high/ultrahigh temperature (HT/UHT) metamorphism in the 2.7 Ga Pikwitonei Granulite Domain (PGD), a >150,000 km2 area of dominantly granulite-facies rocks in the NW Superior Province. Combining these techniques with an appropriate pressure-temperature (P-T) path can help elucidate the mechanisms for crustal heating, and the formation of stable cratonic lithosphere, in the PGD. ID-TIMS Sm-Nd garnet geochronology has been performed on a wide range of granulite-facies lithologies, either by bulk garnet analysis (i.e. dating based upon multiple whole garnet crystals rather than portions thereof) or by zoned geochronology, where possible. The use of bulk garnet separates as a HT/UHT geochronometer has proven challenging, as the effects of a) polymetamorphism, b) long metamorphic durations, and c) slow cooling can result in scattered age distributions. However, garnet geochronology on distinct, microsampled growth zones can provide a far more accurate assessment of the rate and duration of metamorphism. Inferred peak T in the region, derived by Zr-in-rutile thermometry and phase equilibria modeling, ranges from 760ºC in the southernmost part of the PGD to 900-960ºC in the central/western PGD ( 40-60 km apart). While slow cooling from HT/UHT will result in some degree of intra-mineral age resetting, detailed isotopic study of a range of large garnet porphyroblasts from the PGD (crystals which are variably reset depending on peak T, grain size, and initial cooling rate) can reveal information about both prograde growth and initial cooling history of the region. Geospeedometry of major and trace element diffusion profiles in garnet can aid geochronologic data in determining timescales of prograde, peak, and retrograde metamorphism. Preliminary modeling in samples from the southern PGD (peak T of 760 ºC) suggests

  12. First findings of monocrystalline aragonite inclusions in garnet from diamond-grade UHPM rocks (Kokchetav Massif, Northern Kazakhstan).

    PubMed

    Korsakov, Andrey V; Vandenabeele, Peter; Perraki, Maria; Moens, Luc

    2011-10-01

    The presence of aragonite inclusions in garnet from diamond-grade metamorphic rocks from the Kokchetav Massif, Northern Kazakhstan was identified for the first time by means of Raman analyses and mapping. Aragonite appears within the inclusions up to 50 μm in size as a single crystal. These inclusions have rounded shape. The grain boundary between the host-garnet is smooth. No cracks occur around the aragonite inclusions. No significant shift in the main aragonite Raman band was measured. These observations indicate that residual pressure within the inclusion is minor. These findings imply either non-UHPM origin of the host garnet or significant plastic deformation of host minerals during retrograde stage. These features should be taken into account for recovery peak metamorphic conditions and modeling of exhumation processes of UHPM complexes.

  13. Optical and physical properties of ceramic crystal laser materials

    NASA Astrophysics Data System (ADS)

    Simmons, Jed A.

    Historically ceramic crystal laser material has had disadvantages compared to single crystal laser material. However, progress has been made in the last decade and a half to overcome the disadvantages associated with ceramic crystal. Today, because of the promise of ceramic crystal as a high power laser material, investigation into its properties, both physical and optical, is warranted and important. Thermal expansion was measured in this thesis for Nd:YAG (yttrium aluminum garnet) ceramic crystal using an interferometric method. The interferometer employed a spatially filtered HeNe at 633 nm wavelength. Thermal expansion coefficients measured for the ceramic crystal samples were near the reported values for single crystal Nd:YAG. With a similar experimental setup as that for the thermal expansion measurements, dn/dT for ceramic crystal Nd:YAG was measured and found to be slightly higher than the reported value for single crystal. Depolarization loss due to thermal gradient induced stresses can limit laser performance. As a result this phenomenon was modeled for ceramic crystal materials and compared to single crystals for slab and rod shaped gain media. This was accomplished using COMSOL Multiphysics, and MATLAB. Results indicate a dependence of the depolarization loss on the grain size where the loss decreases with decreased grain size even to the point where lower loss may be expected in ceramic crystals than in single crystal samples when the grain sizes in the ceramic crystal are sufficiently small. Deformation-induced thermal lensing was modeled for a single crystal slab and its relevance to ceramic crystal is discussed. Data indicates the most notable cause of deformation-induced thermal lensing is a consequence of the deformation of the top and bottom surfaces. Also, the strength of the lensing along the thickness is greater than the width and greater than that due to other causes of lensing along the thickness of the slab. Emission spectra, absorption

  14. Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto-optical properties.

    PubMed

    Chen, Zhe; Hang, Yin; Yang, Lei; Wang, Jun; Wang, Xiangyong; Hong, Jiaqi; Zhang, Peixiong; Shi, Chunjun; Wang, Yaqi

    2015-03-01

    High optical quality (Tb((1-x))Ce(x))₃Ga₅O₁₂ (TCGG) single crystal has been grown by the Czochralski method. The optical and magneto-optical properties of the TCGG are analyzed in detail and the Verdet constant (V) of TCGG is compared with that of undoped terbium gallium garnet (TGG) crystal. TCGG presents a very high transmittance, particularly in the visible-near infrared (VIS-NIR) region, and its V is obviously larger than that of TGG in the VIS-NIR region. The figure of merit and optical features point out the superior characteristics of TCGG with respect to TGG.

  15. Merging of the 4F3/2 level states of Nd3+ ions in the photoluminescence spectra of gadolinium-gallium garnets under high pressure

    NASA Astrophysics Data System (ADS)

    Kaminska, A.; Buczko, R.; Paszkowicz, W.; Przybylińska, H.; Werner-Malento, E.; Suchocki, A.; Brik, M.; Durygin, A.; Drozd, V.; Saxena, S.

    2011-08-01

    The 4F3/2 state of Nd3+ dopant ions is split due to the crystal field at orthorhombic D2 symmetry sites in several members of the garnet family of crystals. In the gadolinium-gallium garnet crystal this splitting is found to almost disappear under hydrostatic pressures between 8 and 11 GPa created in the diamond-anvil cell. This pressure is much lower than that required for the phase transition to the so called high-pressure phase. This effect is explained with help of x-ray diffraction, optical spectroscopy, and ab initio calculations as an effect of accidental near-degeneracy arising from a particular lattice structure of garnets.

  16. The strain-dependent spatial evolution of garnet in a high-P ductile shear zone from the Western Gneiss Region (Norway): a synchrotron X-ray microtomography study

    SciTech Connect

    Macente, A.; Fusseis, F.; Menegon, L.; Xianghui, X.; John, T.

    2017-01-01

    Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono-metamorphic processes, however they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron-based X-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets with increasing strain. Our microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X-ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low strain domain, garnets form a well interconnected large garnet aggregate that develops throughout the entire Page 1 of 52 sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet show a near-random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo-nucleation and overgrowth. Microprobe chemical analysis

  17. Purplish-red almandine garnets with alexandrite-like effect: causes of colors and color-enhancing treatments

    NASA Astrophysics Data System (ADS)

    Krambrock, K.; Guimarães, F. S.; Pinheiro, M. V. B.; Paniago, R.; Righi, A.; Persiano, A. I. C.; Karfunkel, J.; Hoover, D. B.

    2013-07-01

    Fine gem-quality, purplish-red garnets from the Tocantins State, Brazil, were investigated for their crystal chemistry and optical properties by several spectroscopic techniques, including electron microprobe analysis, Mössbauer, Raman spectroscopy and optical absorption. Although most garnets are purplish-red, some specimens show color zoning, with deep red color in the core and purple in the outer parts. Electron microprobe analysis showed that these garnets are principally almandine-pyrope solid solution at the rim. However, at the red core, they contain also up to 7 % of spessartine. Mössbauer spectroscopy reveals that the iron content is predominantly Fe2+ (>99 %) in the natural garnets. The optical absorption spectra are dominated by spin-allowed and unusual high-intense spin-forbidden transitions from eightfold coordinated Fe(II) in the near infrared and visible spectral region, respectively. For the red core, in addition, three sharp bands centered in the blue part of the visible spectral range and a broad charge transfer band in the near-UV region are observed. All garnets with purplish colors show also a remarkable color-changing effect from purple in daylight light to red in incandescent light called alexandrite-like effect. Heat treatments in the 700-900 °C temperature range in oxidizing and reducing atmospheres lead to reversible and irreversible color changes which are discussed based on the microscopic changes in the Fe ion coordination and valence states.

  18. Comparative Studies on Al-Based Composite Powder Reinforced with Nano Garnet and Multi-wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Basariya, M. Raviathul; Srivastava, V. C.; Mukhopadhyay, N. K.

    2015-11-01

    Effect of mechanical alloying/milling on microstructural evolution and hardness variations of garnet and multi-walled carbon nanotubes (MWCNTs)-reinforced Al-Mg-Si alloy (EN AW6082) composites are investigated. Structural and morphological studies revealed that the composite powders prepared by milling display a more homogenous distribution of the reinforcing particles. Improved nanoindentation hardness viz., 4.24 and 5.90 GPa are achieved for EN AW6082/Garnet and EN AW6082/MWCNTs composites, respectively, and it is attributed to severe deformation of the aluminum alloy powders and embedding of the harder reinforcement particles uniformly into the aluminum alloy matrix. However, enhancement in case of MWCNTs-reinforced composite makes apparent the effect of its nanosized uniform dispersion in the matrix, thereby resisting the plastic deformation at lower stress and increased dislocation density evolved during high-energy ball milling. The results of the present study indicate that carbon nanotubes and garnet can be effectively used as reinforcements for Al-based composites.

  19. Magnetic anisotropies in (210)-oriented bismuth substituted iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Nistor, I.; Holthaus, C.; Tkachuk, S.; Mayergoyz, I. D.; Krafft, C.

    2007-05-01

    The liquid phase epitaxy growth and characterization of single crystal (210)-oriented thin garnet films with Bi substitution up to 1.5at./f.u. is reported. These epitaxial films exhibit an easy plane of magnetization which is inclined with respect to the film plane, making them uniquely suitable for garnet-based magneto-optic imagers (MOIs). In order to identify the optimal growth conditions to attain the highest sensitivity of such MOIs, the chemical composition of the films is discussed in relation with their magnetic and optic properties. It has been demonstrated that the increase in the amount of Pr tends to increase the in-plane orthorhombic anisotropy field HKi, while the rare-earth substitution by Bi has a strong effect on the canted orthorhombic anisotropy Kyz. The best MOI film had a saturation field of 130Oe and a sensitivity of 175deg /A.

  20. Majorite-Garnet Partitioning of the Highly Siderophile Elements: New Results and Application to Mars

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Waeselmann, N.; Humayun, M.

    2015-01-01

    HSE and Os isotopes are used to constrain processes such as accretion, mantle evolution, crustal recycling, and core-mantle mixing, and to constrain the timing and depth of differentiation of Mars. Although showed that the HSE contents of the martian mantle could have been established by metal-silicate equilibrium in early Mars, the role of a cooling magma ocean and associated crystallization in further fractionating the HSEs is unclear. Garnet is thought to have played an important role in controlling trace element concentrations in the martian mantle reservoirs. However, testing these models, including Os isotopes, has been hindered by a dearth of partitioning data for the HSE in deep mantle phases - majorite, wadsleyite, ringwoodite, akimotoite - that may be present in the martian mantle. We examine the partitioning behavior of HSEs between majorite garnet (gt), olivine (oliv), and silicate liquid (melt).

  1. Platinum/yttrium iron garnet inverted structures for spin current transport

    NASA Astrophysics Data System (ADS)

    Aldosary, Mohammed; Li, Junxue; Tang, Chi; Xu, Yadong; Zheng, Jian-Guo; Bozhilov, Krassimir N.; Shi, Jing

    2016-06-01

    30-80 nm thick yttrium iron garnet (YIG) films are grown by pulsed laser deposition on a 5 nm thick sputtered Pt atop gadolinium gallium garnet substrate (GGG) (110). Upon post-growth rapid thermal annealing, single crystal YIG(110) emerges as if it were epitaxially grown on GGG(110) despite the presence of the intermediate Pt film. The YIG surface shows atomic steps with the root-mean-square roughness of 0.12 nm on flat terraces. Both Pt/YIG and GGG/Pt interfaces are atomically sharp. The resulting YIG(110) films show clear in-plane uniaxial magnetic anisotropy with a well-defined easy axis along <001> and a peak-to-peak ferromagnetic resonance linewidth of 7.5 Oe at 9.32 GHz, similar to YIG epitaxially grown on GGG. Both spin Hall magnetoresistance and longitudinal spin Seebeck effects in the inverted bilayers indicate excellent Pt/YIG interface quality.

  2. Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite.

    PubMed

    Tomioka, Naotaka; Miyahara, Masaaki; Ito, Motoo

    2016-03-01

    MgSiO3 tetragonal garnet, which is the last of the missing phases of experimentally predicted high-pressure polymorphs of pyroxene, has been discovered in a shocked meteorite. The garnet is formed from low-Ca pyroxene in the host rock through a solid-state transformation at 17 to 20 GPa and 1900° to 2000°C. On the basis of the degree of cation ordering in its crystal structure, which can be deduced from electron diffraction intensities, the cooling rate of the shock-induced melt veins from ~2000°C was estimated to be higher than 10(3)°C/s. This cooling rate sets the upper bound for the shock-temperature increase in the bulk meteorite at ~900°C.

  3. Discovery of natural MgSiO3 tetragonal garnet in a shocked chondritic meteorite

    PubMed Central

    Tomioka, Naotaka; Miyahara, Masaaki; Ito, Motoo

    2016-01-01

    MgSiO3 tetragonal garnet, which is the last of the missing phases of experimentally predicted high-pressure polymorphs of pyroxene, has been discovered in a shocked meteorite. The garnet is formed from low-Ca pyroxene in the host rock through a solid-state transformation at 17 to 20 GPa and 1900° to 2000°C. On the basis of the degree of cation ordering in its crystal structure, which can be deduced from electron diffraction intensities, the cooling rate of the shock-induced melt veins from ~2000°C was estimated to be higher than 103°C/s. This cooling rate sets the upper bound for the shock-temperature increase in the bulk meteorite at ~900°C. PMID:27051873

  4. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  5. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  6. Low-temperature thermal conductivity of terbium-gallium garnet

    SciTech Connect

    Inyushkin, A. V. Taldenkov, A. N.

    2010-11-15

    Thermal conductivity of paramagnetic Tb{sub 3}Ga{sub 5}O{sub 12} (TbGG) terbium-gallium garnet single crystals is investigated at temperatures from 0.4 to 300 K in magnetic fields up to 3.25 T. A minimum is observed in the temperature dependence {kappa}(T) of thermal conductivity at T{sub min} = 0.52 K. This and other singularities on the {kappa}(T) dependence are associated with scattering of phonons from terbium ions. The thermal conductivity at T = 5.1 K strongly depends on the magnetic field direction relative to the crystallographic axes of the crystal. Experimental data are considered using the Debye theory of thermal conductivity taking into account resonance scattering of phonons from Tb{sup 3+} ions. Analysis of the temperature and field dependences of the thermal conductivity indicates the existence of a strong spin-phonon interaction in TbGG. The low-temperature behavior of the thermal conductivity (field and angular dependences) is mainly determined by resonance scattering of phonons at the first quasi-doublet of the electron spectrum of Tb{sup 3+} ion.

  7. The effect of f[subscript O2] on the partitioning and valence of V and Cr in garnet/melt pairs and the relation to terrestrial mantle V and Cr content

    SciTech Connect

    Righter, K.; Sutton, S.; Danielson, L.; Pando, K.; Schmidt, G.; Yang, H.; Berthet, S.; Newville, M.; Choi, Y.; Downs, R.T.; Malavergne, V.

    2011-09-16

    Chromium and vanadium are stable in multiple valence states in natural systems, and their distribution between garnet and silicate melt is not well understood. Here, the partitioning and valence state of V and Cr in experimental garnet/melt pairs have been studied at 1.8-3.0 GPa, with variable oxygen fugacity between IW-1.66 and the Ru-RuO{sub 2} (IW+9.36) buffer. In addition, the valence state of V and Cr has been measured in several high-pressure (majoritic garnet up to 20 GPa) experimental garnets, some natural megacrystic garnets from the western United States, and a suite of mantle garnets from South Africa. The results show that Cr remains in trivalent in garnet across a wide range of oxygen fugacities. Vanadium, on the other hand, exhibits variable valence state from 2.5 to 3.7 in the garnets and from 3.0 to 4.0 in the glasses. The valence state of V is always greater in the glass than in the garnet. Moreover, the garnet/melt partition coefficient, D(V), is highest when V is trivalent, at the most reduced conditions investigated (IW-1.66 to FMQ). The V{sup 2.5+} measured in high P-T experimental garnets is consistent with the reduced nature of those metal-bearing systems. The low V valence state measured in natural megacrystic garnets is consistent with f{sub O{sub 2}} close to the IW buffer, overlapping the range of f{sub O{sub 2}} measured independently by Fe{sup 2+}/Fe{sup 3+} techniques on similar samples. However, the valence state of V measured in a suite of mantle garnets from South Africa is constant across a 3 log f{sub O{sub 2}} unit range (FMQ-1.8 to FMQ-4.5), suggesting that the valence state of V is controlled by the crystal chemistry of the garnets rather than f{sub O{sub 2}} variations. The compatibility of V and Cr in garnets and other deep mantle silicates indicates that the depletion of these elements in the Earth's primitive upper mantle could be due to partitioning into lower mantle phases as well as into metal.

  8. Microstrain and short-range ordering of Ca and Mg cations in pyrope-grossular garnet system

    NASA Astrophysics Data System (ADS)

    DU, W.; Clark, S. M.; Walker, D.

    2016-12-01

    Synchrotron X-ray diffraction (XRD) was used to measure the unit cell parameters of synthetic pyrope (Mg3Al2Si3O12), grossular (Ca3Al2Si3O12) and four intermediate garnet solid solutions at the Advanced Light Source, Lawrence Berkeley National Laboratory (ALS on beamline 12.2.2 at room temperature and pressure). Analysis of X-ray diffraction profiles by using Williamson-Hall plots shows that XRD peak width getting broadened with diffraction angle and the degree of the XRD peak broadening changes with garnet composition. Microstrain in the garnet structure, rather than grain size variation, is the principal reason for the observed XRD peak broadening. Garnets with compositions Py80Gr20 and Py20Gr80, close to the negligibly strained end members pyrope (Py100) and grossular (Gr100), have large microstrains, which is contrast to garnet with intermediate composition Py40Gr60, which almost has no microstrain. This compositional dependent elastic structural strain shows a complex correlation with other nonideal mixing properties along the pyrope-grossular binary, for example, excess volume, mixing enthalpy, thermal expansion etc. The observation that the two end member garnets carry almost zero microstrain indicates that the microstrain calculated from XRD peak broadening is related to the Mg-Ca substitution. A different degree of short-range ordering of Ca-Mg in dodecahedral site that develops during annealing after MA crystallization may be partly responsible for these nonideal-mixing phenomena along the pyrope-grossular join.

  9. Interface Engineering of Garnet Solid Electrolytes

    NASA Astrophysics Data System (ADS)

    Cheng, Lei

    Solid lithium ion conductors represent a promising class of materials for next generation high energy density batteries, with the potential for enabling use of high capacity Li metal anodes and providing opportunities for novel lithium-free cathode materials. However, highly resistive interfaces stymie their practical use. This urgent scientific challenge requires mechanistic understanding of ion transport at interfaces, as well as development of novel processes to achieve low interfacial resistances. The goal of this PhD dissertation was to generate fundamental understandings of garnet-structured Al substituted Li7La3Zr2O 12 (LLZO) electrolyte surfaces and interfaces with lithium metal electrodes. Specifically in this research, the topmost surface microstructure, local chemical environment, and surface chemistry were carefully studied. The ceramic processing of garnet is discussed and ways to control the sintering behavior and microstructures were explored and successfully demonstrated. Factors contributing to high interfacial resistance were systematically studied. The source of the high interfacial impedance has been traced to the presence of Li2CO 3 on pellet surfaces resulting from air exposure after processing. In addition, it was discovered that surface grain boundaries are surprisingly fast ion transport pathways and surface microstructure is critically important to lithium ion transport at interfaces. Complex homo- and heterostructured LLZO solid electrolytes with controllable surface and bulk microstructures were successfully fabricated, which allowed the comparison and separation of the contribution from the surface and the bulk. Engineered pellet surfaces allowed us to achieve the lowest interfacial resistance ever reported for this composition, resulting in significantly improved cycling behavior. Lastly, it was found that LLZO surfaces can be effectively stabilized under air exposure conditions, preventing Li2CO3 formation and maintaining low

  10. Diversity of microstructure of kelyphite and symplectite after garnet and its implication to ascent process of mantle peridotites

    NASA Astrophysics Data System (ADS)

    Obata, M.; Ozawa, K.; Spengler, D.

    2009-12-01

    Kelyphite is a fine grained, fibrous and radially oriented mineral assembly surrounding partially retrogressed garnet. Texturally it appears to represent a replacement of garnet, although not isochemically to garnet, suggesting that the replacement reaction is a chemically-open system phenomenon involving material transfer across the reaction zone. We made a comparative study of kelyphites developed in mantle derived garnet peridotites from various localities (including Czech Moldanubian, western Norway), using optical microscopy, electron probe microanalyzer and EBSD analysis to consider the reaction mechanism. In garnet peridotites, fine-grained (sub-micron sized) kelyphite (Opx+Cpx+Sp) is typically surrounded by a thin (ca. 100 micron) rim of coarse Opx, which separates the kelyphite from the matrix olivine. Optical microscopy shows that kelyphite consists of several domains of Opx. EBSD studies show that each domain represents a single crystal of Opx, which includes small patches of Cpx and both pyroxenes contain thin (sub-micron size) lamellae of spinel, forming a spinel-pyroxene symplectite. Each kelyphite domain- which is referred to as a 'cell' - has an internal coherent structure of lineation defined by spinel lamellae. The kelyphitic Opx is optically and crystallographically continuous to the adjacent coarse-rim Opx, forming a single crystal. EBSD anayses reveiled that each domain (cell) has topotaxic relationship between Opx and Cpx by sharing (100) and (010) and [001]. Two kinds of cell maybe recognized according to the topotaxic relationships between the spinel and pyroxenes: (1) topotaxic cell, in which one of spinel {111} coincides with pyroxene (100) and one of spinel {110} coincides with pyroxene (010); (2) non-topotaxic cell, in which topotaxic relationships is incomplete or none. Such topotaxic relationship may be understood in terms of oxygen close-packed structure in the crystal. Kelyphite that formed at relatively high-temperatures (e.g. Czech

  11. Very high-pressure orogenic garnet peridotites

    PubMed Central

    Liou, J. G.; Zhang, R. Y.; Ernst, W. G.

    2007-01-01

    Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341

  12. Thermal Spin Dynamics of Yttrium Iron Garnet

    NASA Astrophysics Data System (ADS)

    Barker, Joseph; Bauer, Gerrit E. W.

    2016-11-01

    The magnetic insulator yttrium iron garnet can be grown with near perfection and is therefore and ideal conduit for spin currents. It is a complex material with 20 magnetic moments in the unit cell. In spite of being a ferrimagnet, YIG is almost always modeled as a simple ferromagnet with a single spin wave mode. We use the method of atomistic spin dynamics to study the temperature evolution of the full spin wave spectrum, in quantitative agreement with neutron scattering experiments. The antiferromagnetic or optical mode is found to suppress the spin Seebeck effect at room temperature and beyond due to thermally pumped spin currents with opposite polarization to the ferromagnetic mode.

  13. Majorite Garnet and Lithosphere Evolution: Kaapvaal Craton

    NASA Astrophysics Data System (ADS)

    Griffin, W. L.; Tessalina, S.; O'Reilly, S. Y.

    2013-12-01

    The uppermost 50-70 km of the subcontinental lithospheric mantle (SCLM) beneath the Kaapvaal Craton (S. Africa) consists largely of highly-depleted chromite harzburgites. These rocks are understudied, mainly because of their uniformity and their lack of indicator minerals such as garnet and clinopyroxene (cpx). Kimberlite-borne xenoliths of these rocks contain rare volumes of cpx-spinel (modal 76/24) symplectite, with smooth grain boundaries; many studies have suggested that these might represent low-pressure breakdown products of garnet (majorite + olivine → cpx + spinel). Our reconstruction of a suite of these grains, using element mapping and EMP analysis of constituent minerals, gives a majoritic garnet with mean composition 21.8% CaO, 15.8% Cr2O3, 9.22% Al2O3, Si=3.118, mg#=0.93. The majorite contents suggest formation at depths of 250-280 km. Ni contents imply temperatures ≥1500 °C, but have large uncertainties related to the subtraction of olivine (ca 20%) during the reconstruction calculation. LAM-ICPMS analyses show strongly sinuous REE patterns with CN Dy/Lu <0.1 and Ce/Dy >100. Most analyses have negative Eu anomalies, consistent with chromite compositions that indicate strongly reducing conditions (ΔfO2(FMQ) = -4 to -5). Melt modeling suggests that the harzburgites are products of 30-40% melting of asthenospheric mantle at 250 km depth, leaving residues of ol+opx+chromite. The presence of the majorites and their overall LREE enrichment are ascribed to the introduction of carbonatitic metasomatic fluids, similar to those recorded by diamond-inclusions (subcalcic garnets), shortly after the depletion. We suggest that the melting, the metasomatism and the ultimate breakdown of the majorite track a process of mantle upwelling, with melt-extraction at depth providing the buoyancy that allowed the residual harzburgites to rise to shallow levels and stabilize the SCLM. Os-isotope analyses of sulfides associated with the majorites give TRD = 2.5-3.4 Ga

  14. Rare evidence for formation of garnet + corundum during isobaric cooling of ultrahigh temperature metapelites: New insights for retrograde P-T trajectory of the Highland Complex, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Dharmapriya, P. L.; Malaviarachchi, Sanjeeva P. K.; Galli, Andrea; Su, Ben-Xun; Subasinghe, N. D.; Dissanayake, C. B.

    2015-04-01

    We report the occurrence of coexisting garnet + corundum in spinel- and corundum-bearing, garnet-sillimanite-biotite-graphite gneiss (pelitic granulites) from the Highland Complex (HC), Sri Lanka. In the investigated pelitic granulites, two domains such as quartz-saturated and quartz-undersaturated are distinguishable. The quartz-saturated domains consist of porphyroblastic garnet, quartz, plagioclase, alkali-feldspar and biotite flakes rimming garnet. The quartz-undersaturated domains are constituted of two generations of garnet (Grt1 and Grt2), sillimanite, plagioclase, alkali-feldspar, corundum, spinel and biotite. Grt1 encloses rare Ti-rich biotite and numerous rutile needles and apatite rods. Grt2 contains rare sillimanite and/or spinel inclusions. Corundum occurs in mutual contact with Grt2, partially embedded at the rim or as an inclusions in Grt2. Thermobarometry on inclusion phases in Grt1 indicates that during the prograde history pelitic granulites attained a P of 10.5-11 kbar at T of ~ 850 °C. Textural observations coupled with both pseudosections calculated in the NCKFMASHTMnO system and Ti-in-Garnet geothermobarometry suggest that peak metamorphism occurred at ultrahigh temperature (UHT) conditions of 950-975 °C and pressures of 9-9.5 kbar. Peak T was followed by a period of isobaric cooling that formed corundum and Grt2 at approx. 930 °C along with exsolution of rutile needles and apatite rods in Grt1. Thermodynamic modelling confirms that corundum appears along an isobaric cooling path at about 920-930 °C and 9-9.5 kbar. Therefore, the investigated granulites provide a rare example of post-peak crystallization of garnet + corundum along a retrograde metamorphic trajectory under UHT conditions. Thus, isobaric cooling at the base of the crust could be regarded as an alternative process to form coexisting garnet + corundum.

  15. MOLECULAR ORBITALS AND ELECTRON-TRANSFER SPECTRA IN RUTILE. GROWTH OF CRYSTALS BY FLAME FUSION,

    DTIC Science & Technology

    CRYSTAL GROWTH , *TITANIUM COMPOUNDS, *ABSORPTION, SINGLE CRYSTALS , OXIDES, MEASUREMENT, ELECTRON TRANSITIONS, SPECTROPHOTOMETERS, ULTRAVIOLET...RADIATION, POLARIZATION, CRYSTAL STRUCTURE, SYMMETRY(CRYSTALLOGRAPHY), YTTRIUM COMPOUNDS, ALUMINUM COMPOUNDS.

  16. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  17. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  18. The Garnet to Majorite Transformation in Mafic Compositions

    NASA Technical Reports Server (NTRS)

    Xirouchakis, D.; Draper, David S.; Agee, C. B.

    2002-01-01

    The garnet to majorite transformation in mafic compositions is controlled by bulk composition and the presence of silicate melt, clinopyroxene, and silicate perovskite as well as pressure. Thus, the use of empirical geobarometers based on garnet Si(4+) and/or [Al(3+) +/- Cr(3+)] (p.f.u) seems unjustified. Additional information is contained in the original extended abstract.

  19. Imaging Domains In Magnetic Garnets By Use Of TSMFM

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.; Rice, Paul

    1994-01-01

    Tunneling-stabilized magnetic-force microscopy (TSMFM) demonstrated to yield images of magnetic domains in low-coercivity magnetic garnets with perpendicular anisotropy. Ability to generate images of domain walls and minute vertical Bloch lines aids study of vertical-Bloch-line magnetic memory devices that contain garnets. TSMFM provides desired resolution because its resolution not limited by diffraction.

  20. Excitation of an electronic subsystem of YAG crystal with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kononenko, V. V.; Zavedeev, E. V.; Okhrimchuk, A. G.; Konov, V. I.

    2017-06-01

    The temporal dynamics of refractive index change induced by intense femtosecond 800 nm laser radiation in a yttrium aluminum garnet (YAG) crystal was explored using pump-probe interferometry. Beyond the Kerr effect, only a positive laser-induced rise of permittivity was detected ( Δ n˜ +{{10}-3} ), whereas most of the material demonstrates a remarkable transient response opposite in sign to that assigned usually to free carrier generation. Observed dynamics of n indicates that (i) the possible formation of free electron-hole (e-h) pairs is totally masked and (ii) the formation of tightly bound electronic states (transient defects) takes time approximately equal to a pulse duration. We discuss whether the latter could be a direct light-induced process or still a result of the ultrafast decay of radiatively generated electron-hole pairs.