Sample records for aluminum nitride ceramic

  1. Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic

    DTIC Science & Technology

    2015-09-01

    tile(s) Aluminum nitride (AlN) 163 a Polymer layers Polyurethane foam 18 b Backing metal Aluminum 6061-T6 (Al) 23 c Projectile Tungsten heavy alloy...larger (a factor of 3.8) than the most dense polyurethane foam of the available constitutive models. Default options for element failure were imposed in...AlN), a polycrystalline ceramic. The total thickness of the tile(s) is 38.1 mm in all cases. A thin polyurethane laminate separates neighboring tiles

  2. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications

    PubMed Central

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-01-01

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range. PMID:26370999

  3. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  4. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  5. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOEpatents

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  6. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates

    DTIC Science & Technology

    2013-02-01

    Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and

  7. Dimensional Analysis and Extended Hydrodynamic Theory Applied to Long-Rod Penetration of Ceramics

    DTIC Science & Technology

    2016-07-01

    thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide. Test...of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron ...since the mid 20th century. Popular candidate ceramics for such systems include alumina, aluminum nitride, boron carbide, silicon carbide, and titanium

  8. Aluminum nitride insulating films for MOSFET devices

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  9. Defect reduction in seeded aluminum nitride crystal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.

    2017-04-18

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  10. Defect reduction in seeded aluminum nitride crystal growth

    DOEpatents

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.

    2017-06-06

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  11. Defect reduction in seeded aluminum nitride crystal growth

    DOEpatents

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  12. Experimental and Modeling Studies on the Microstructures and Properties of Oxidized Aluminum Nitride Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Xu, Haixian; Zhan, Jun; Zhang, Hao; Wei, Xin; Wang, Jianmin; Cui, Song; Tang, Wenming

    2018-05-01

    Oxidation of aluminum nitride (AlN) ceramic substrates doped with 2 wt.% Y2O3 was performed in air at temperatures ranging from 1000 to 1300 °C for various lengths of time. Microstructure, bending strength, and thermal conductivity of the oxidized AlN substrates were studied experimentally and also via mathematical models. The results show that the oxide layer formed on the AlN substrates is composed of α-Al2O3 nanocrystallines and interconnected micropores. Longitudinal and transverse cracks are induced in the oxide layer under tensile and shear stresses, respectively. Intergranular oxidation of the AlN grains close to the oxide layer/AlN interface also occurs, leading to widening and cracking of the AlN grain boundaries. These processes result in the monotonous degradation of bending strength and thermal conductivity of the oxidized AlN substrates. Two mathematic models concerning these properties of the oxidized AlN substrates versus the oxide layer thickness were put forward. They fit well with the experimental results.

  13. Nanoparticles of wurtzite aluminum nitride from the nut shells

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Gorzkowski, E. P.; Rath, B. B.; Feng, C. R.; Amarasinghe, R.

    2016-11-01

    Nanoparticles of aluminum nitride were produced from a thermal treatment of a mixture of aluminum oxide (Al2O3) and shells of almond, cashew, coconuts, pistachio, and walnuts in a nitrogen atmosphere at temperatures in excess of 1450 °C. By selecting the appropriate ratios of each nut powder to Al2O3, it is shown that stoichiometric aluminum nitride can be produced by carbo-thermal reduction in nitrogen atmosphere. Using x-ray diffraction analysis, Raman scattering and Fourier Transform Infrared spectroscopy, it is demonstrated that aluminum nitride consists of pure wurtzite phase. Transmission electron microscopy showed the formation of nanoparticles and in some cases nanotubes of AlN.

  14. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  15. Investigation of the Kinetic Energy Characterization of Advanced Ceramics

    DTIC Science & Technology

    2015-04-01

    of Science, under a US Army International Technology Center contract. These ceramic formulations were compared with standard armor-grade boron ...Experimental Methodology 1 3. Results and Discussion 4 3.1 Aluminum Performance Baseline 4 3.2 Ceramic Inspection 6 3.3 Boron Carbide 6 3.4 Silicon...Carbide 7 3.5 Boron Carbide–Aluminum Nitride 7 3.6 Boron Carbide–Vanadium Diboride 7 3.7 Titanium Nitride–Aluminum Nitride 8 3.8 Comparative

  16. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1989-01-01

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  17. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1989-10-31

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  18. Shock-induced Plasticity and Brittle Cracks in Aluminum Nitride

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo; Kalia, Rajiv

    2005-03-01

    Two hundred and nine million atom molecular-dynamics simulation of hypervelocity projectile impact in aluminum nitride reveals strong interplay between shock-induced structural phase transformation, plastic deformation and brittle cracks. The shock wave splits into an elastic precursor and a wurtzite-to-rocksalt structural transformation wave. When the elastic wave reflected from the boundary of the sample interacts with the transformation wave front, nanocavities are generated along the penetration path of the projectile and dislocations in adjacent regions. The nanocavities coalesce to form mode I brittle cracks while dislocations generate kink bands that give rise to mode II cracks. These simulations provide a microscopic view of defects associated with simultaneous tensile and shear cracking at the structural phase transformation boundary due to shock impact in high-strength ceramics.

  19. Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride

    DTIC Science & Technology

    2012-01-05

    Hutchinson, Adv. Appl . Mech. 29 (1992). [34] H. Ming-Yuan, J.W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053. [35] J. Salem , L. Ghosn, Int. J...Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride

  20. Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics

    DOEpatents

    Becher, Paul F [Oak Ridge, TN; Lin, Hua-Tay [Oak Ridge, TN

    2011-06-28

    A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.

  1. FT-IR characterization of the acidic and basic sites on a nanostructured aluminum nitride surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baraton, M.I.; Chen, X.; Gonsalves, K.E.

    1997-12-31

    A nanostructured aluminum nitride powder prepared by sol-gel type chemical synthesis is analyzed by Fourier transform infrared spectrometry. The surface acidic and basic sites are probed out by adsorption of several organic molecules. Resulting from the unavoidable presence of oxygen, the aluminum nitride surface is an oxinitride layer in fact, and its surface chemistry should present some analogies with alumina. Therefore, a thorough comparison between the acido-basicity of aluminum nitride and aluminum oxide is discussed. The remaining nitrogen atoms in the first atomic layer modify the acidity-basicity relative balance and reveals the specificity of the aluminum nitride surface.

  2. Process for strengthening aluminum based ceramics and material

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.

  3. Superplastic forging nitride ceramics

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  4. Red-emitting manganese-doped aluminum nitride phosphor

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Åberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; Drobshoff, Alexander D.; Srivastava, Alok M.; Camardello, Samuel J.; Comanzo, Holly A.; Schlagel, Deborah L.; Lograsso, Thomas A.

    2016-04-01

    We report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter to improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.

  5. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  6. Effects of various additives on sintering of aluminum nitride

    NASA Technical Reports Server (NTRS)

    Komeya, K.; Inoue, H.; Tsuge, A.

    1982-01-01

    Effects of thirty additives on sintering A/N were investigated. The addition of alkali earth oxides and rare earth oxides gave fully densified aluminum nitride. This is due to the formation of nitrogen-containing aluminate liquid in the system aluminum nitride-alkali earth oxides or rare earth oxides. Microstructural studies of the sintered specimens with the above two types of additives suggested that the densification was due to the liquid phase sintering. Additions of silicon compounds resulted in poor densification by the formation of highly refractory compounds such as A/N polytypes.

  7. Red-emitting manganese-doped aluminum nitride phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.

    2016-02-10

    Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less

  8. Ceramic material suitable for repair of a space vehicle component in a microgravity and vacuum environment, method of making same, and method of repairing a space vehicle component

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2009-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  9. Computational Study of a Functionally Graded Ceramic-Metallic Armor

    DTIC Science & Technology

    2006-12-15

    UNCLAS –Dist. A - Approved for public release Computational Study of a Functionally Graded Ceramic-Metallic Armor Douglas W. Templeton1, Tara J...efficiency of a postulated FGM ceramic-metallic armor system composed of aluminum nitride (AlN) and aluminum. The study had two primary...2006 2. REPORT TYPE N/ A 3. DATES COVERED - 4. TITLE AND SUBTITLE Computational Study of a Functionally Graded Ceramic-Metallic Armor 5a

  10. Silicon nitride ceramic having high fatigue life and high toughness

    DOEpatents

    Yeckley, Russell L.

    1996-01-01

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  11. Penetration Resistance of Armor Ceramics: Dimensional Analysis and Property Correlations

    DTIC Science & Technology

    2015-08-01

    been reported in experimental studies. Particular ceramics analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon...analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon carbide, and titanium diboride. Data for penetration depth...include high hardness, high elastic stiffness, high strengths (static/dynamic compressive, shear, and bending), and low density relative to armor steels

  12. Thin films of aluminum nitride and aluminum gallium nitride for cold cathode applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowers, A.T.; Christman, J.A.; Bremser, M.D.

    1997-10-01

    Cold cathode structures have been fabricated using AlN and graded AlGaN structures (deposited on n-type 6H-SiC) as the thin film emitting layer. The cathodes consist of an aluminum grid layer separated from the nitride layer by a SiO{sub 2} layer and etched to form arrays of either 1, 3, or 5 {mu}m holes through which the emitting nitride surface is exposed. After fabrication, a hydrogen plasma exposure was employed to activate the cathodes. Cathode devices with 5 {mu}m holes displayed emission for up to 30 min before failing. Maximum emission currents ranged from 10{endash}100 nA and required grid voltages rangingmore » from 20{endash}110 V. The grid currents were typically 1 to 10{sup 4} times the collector currents. {copyright} {ital 1997 American Institute of Physics.}« less

  13. Process for producing ceramic nitrides anc carbonitrides and their precursors

    DOEpatents

    Brown, G.M.; Maya, L.

    1987-02-25

    A process for preparing ceramic nitrides and carbon nitrides in the form of very pure, fine particulate powder. Appropriate precursors is prepared by reaching a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.

  14. Conductive aluminum line formation on aluminum nitride surface by infrared nanosecond laser

    NASA Astrophysics Data System (ADS)

    Kozioł, Paweł E.; Antończak, Arkadiusz J.; Szymczyk, Patrycja; Stępak, Bogusz; Abramski, Krzysztof M.

    2013-12-01

    In this paper the fabrication of conductive aluminum paths on AlN ceramic's surface due to the interaction of laser radiation Nd:YAG (1.064 μm) is presented. The metallization process produces an appropriate power value on the ceramics surface to ensure the correct temperature (2200 °C) for which aluminum and nitrogen bonds are broken. Studies have been undertaken on creating low-ohmic structures depending on the parameters such as radiation power, scanning speed, the coverage of subsequent pulses and the environmental impact of the process (air, nitrogen, argon). Furthermore, with regards to the application of this method, it was significant to determine the thickness of the functional layer. A structure of the resistivity of ρ = 0.64 × 10-6 Ω m and aluminum layer thickness of 10 μm was achieved for the process carried out on the inert gas, argon. In addition, a quantitative analysis of nitrogen and aluminum for laser-treated structures was conducted. The performed tests confirmed that the highest amount of aluminum was produced on the surface treated by laser radiation in the environment of the process gas, argon.

  15. Features of the phase composition and morphology of the particles of sialon synthesized from silicon and aluminum nitrides

    NASA Astrophysics Data System (ADS)

    Ivicheva, S. N.; Lysenkov, A. S.; Ovsyannikov, N. A.; Titov, D. D.; Kargin, Yu F.

    2018-04-01

    The phase composition and morphological features of sialons were studied under the same conditions of firing (duration, temperature) using different initial components, silicon nitride, aluminum nitride, and a mixture of silicon nitrides and aluminum with the application of nitrides of the corresponding oxide (aluminum or silicon) sol-gel method. The effect of the initial reagents composition on the phase composition of the final product and the morphological features of the sialon powders obtained in a single firing step in a nitrogen atmosphere is shown.

  16. Laser processing of ceramics for microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Sposili, Robert S.; Bovatsek, James; Patel, Rajesh

    2017-03-01

    Ceramic materials are used extensively in the microelectronics, semiconductor, and LED lighting industries because of their electrically insulating and thermally conductive properties, as well as for their high-temperature-service capabilities. However, their brittleness presents significant challenges for conventional machining processes. In this paper we report on a series of experiments that demonstrate and characterize the efficacy of pulsed nanosecond UV and green lasers in machining ceramics commonly used in microelectronics manufacturing, such as aluminum oxide (alumina) and aluminum nitride. With a series of laser pocket milling experiments, fundamental volume ablation rate and ablation efficiency data were generated. In addition, techniques for various industrial machining processes, such as shallow scribing and deep scribing, were developed and demonstrated. We demonstrate that lasers with higher average powers offer higher processing rates with the one exception of deep scribes in aluminum nitride, where a lower average power but higher pulse energy source outperformed a higher average power laser.

  17. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    DOEpatents

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  18. Evaluation and ranking of candidate ceramic wafer engine seal materials

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1991-01-01

    Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN-251) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.

  19. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  20. Adhesion enhancement of titanium nitride coating on aluminum casting alloy by intrinsic microstructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong L.; Preston, Andrew; Tran, Anh T. T.; Dickinson, Michelle; Metson, James B.

    2016-07-01

    Aluminum casting alloys have excellent castability, high strength and good corrosion resistance. However, the presence of silicon in these alloys prevents surface finishing with conventional methods such as anodizing. Hard coating with titanium nitride can provide wear and corrosion resistances, as well as the aesthetic finish. A critical factor for a durable hard coating is its bonding with the underlying substrate. In this study, a titanium nitride layer was coated on LM25 casting alloy and a reference high purity aluminum substrate using Ion Assisted Deposition. Characterization of the coating and the critical interface was carried out by a range of complementing techniques, including SIMS, XPS, TEM, SEM/EDS and nano-indentation. It was observed that the coating on the aluminum alloy is stronger compared to that on the pure aluminum counterpart. Silicon particles in the alloy offers the reinforcement though mechanical interlocking at microscopic level, even with nano-scale height difference. This reinforcement overcomes the adverse effect caused by surface segregation of magnesium in aluminum casting alloys.

  1. Studies on Tribological Behavior of Aluminum Nitride-Coated Steel

    NASA Astrophysics Data System (ADS)

    Ionescu, G. C.; Nae, I.; Ripeanu, R. G.; Dinita, A.; Stan, G.

    2017-02-01

    The new opportunities introduced by the large development of the IoT (internet of things) are increasing the demand for sensors to be located as close as possible to the supervised process. The Aluminum Nitride (AIN) is one of the most promising materials for sensors due to its piezoelectric, excellent mechanical properties, chemical inertness and high melting point. Due to these material properties, the AlN sensors are suitable to operate in high temperature and harsh environment conditions and therefore are very promising to be employed in industrial applications. In this article are presented the studies conducted on several Aluminum Nitride-Coated Steel structures with the goal of producing sensors embedded in the ball bearings, bearings and other mobile parts of machine tools. The experiments were conducted on simple coatings structures without lubricating materials and the obtained results are promising, demonstrating that, with some limitations the AIN could be used in such applications. This paper was accepted for publication in Proceedings after double peer reviewing process but was not presented at the Conference ROTRIB’16

  2. Preparation and mechanical properties of carbon nanotube-silicon nitride nano-ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Tian, C. Y.; Jiang, H.

    2018-01-01

    Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.

  3. Wettability of Pyrolytic Boron Nitride by Aluminum

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Rosenthal, Bruce N.

    1991-01-01

    The wetting of pyrolytic boron nitride by molten 99.9999 percent pure aluminum was investigated by using the sessile drop method in a vacuum operating at approximately 660 micro-Pa at temperatures ranging from 700 to 1000 C. The equilibrium contact angle decreased with an increase in temperature. For temperatures at 900 C or less, the equilibrium contact angle was greater than 90 deg. At 1000 C a nonwetting-to-wetting transition occurred and the contact angle stabilized at 49 deg.

  4. Dispersion toughened silicon carbon ceramics

    DOEpatents

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  5. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  6. Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices

    NASA Astrophysics Data System (ADS)

    Alleyne, Fatima Sierre

    One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective

  7. Process for producing ceramic nitrides and carbonitrides and their precursors

    DOEpatents

    Brown, Gilbert M.; Maya, Leon

    1988-01-01

    A process for preparing ceramic nitrides and carbonitrides in the form of very pure, fine particulate powder. Appropriate precursor is prepared by reacting a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.

  8. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. Parks; Bernhard R. Tittmann

    2014-07-01

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5more » pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.« less

  9. Progress in efficient doping of high aluminum-containing group III-nitrides

    NASA Astrophysics Data System (ADS)

    Liang, Y.-H.; Towe, E.

    2018-03-01

    The group III-nitride (InN, GaN, and AlN) class of semiconductors has become one of two that are critical to a number of technologies in modern life—the other being silicon. Light-emitting diodes made from (In,Ga)N, for example, dominate recent innovations in general illumination and signaling. Even though the (In,Ga)N materials system is fairly well established and widely used in advanced devices, challenges continue to impede development of devices that include aluminum-containing nitride films such as (Al,Ga)N. The main difficulty is efficient doping of films with aluminum-rich compositions; the problem is particularly severe for p-type doping, which is essential for Ohmic contacts to bipolar device structures. This review briefly summarizes the fundamental issues related to p-type doping, and then discusses a number of approaches that are being pursued to resolve the doping problem or for circumventing the need for p-type doping. Finally, we discuss an approach to doping under liquid-metal-enabled growth by molecular beam epitaxy. Recent results from a number of groups appear to indicate that p-type doping of nitride films under liquid-metal-enabled growth conditions might offer a solution to the doping problem—at least for materials grown by molecular beam epitaxy.

  10. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input

  11. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair.

    PubMed

    Gao, Chengde; Feng, Pei; Peng, Shuping; Shuai, Cijun

    2017-10-01

    The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review

  12. Aluminum alloy/alumina-based ceramic interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebeau, T.; Strom-Olsen, J.O.; Gruzleski, J.E.

    1995-07-01

    Wetting experiments were performed on eutectic ZrO{sub 2}/Al{sub 2}O{sub 3} (ZA), ZrO{sub 2}/Al{sub 2}O{sub 3}/TiO{sub 2} (ZAT), and ZrO{sub 2}/Al{sub 2}O{sub 3}/SiO{sub 2} (ZAS) ceramic substrates with different Al alloys. Four major variables were tested to study the wetting behavior of the different ceramic-metal systems. Variable include holding time, melt temperature, ally, and ceramic compositions. An experimental setup was designed to measure in situ contact angles using the sessile drop method. For any ceramic substrate, a temperature over 950 C was necessary to observe an equilibrium wetting angle of less than 90{degree} with pure Al; by alloying the aluminum, wettingmore » could be observed at lower temperatures ({theta} = 76--86{degree} at 900 C for Al-10 wt. % Si, {theta} {approximately}72{degree} at 850 C for Al-2.4 wt. % Mg) forming clean interfaces. Finally, ZAS specimens reacted with molten Al alloys over 900 C to produce Zr-Al based intermetallics at the metal-ceramic interface.« less

  13. Low-volume aluminum and aluminum / titanium nitride bilayer lumped-element kinetic inductance detectors for far-infrared astronomy

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; Fyhrie, Adalyn; Wheeler, Jordan; Day, Peter K.; Eom, Byeong H.; Leduc, Henry G.

    2016-07-01

    We present the design and characterization of low-volume, lumped-element aluminum kinetic inductance de- tectors for sensitive far-infrared astronomy observations. The lumped-element kinetic inductance detectors are comprised of meandered inductors that serve as radiation absorbers in parallel with interdigitated capacitors, forming high quality factor resonators. Low inductor volumes lead to low noise equivalent powers by raising quasiparticles densities, and hence responsivities, with respect to larger volumes. Low volumes are achieved with thin (20 nm), narrow (150 nm) inductors. The interdigitated capacitor architecture is designed to mitigate two-level system noise by lowering electric fields in the silicon substrate. Resonance frequencies are in the range of 190 to 500 MHz, with measured internal quality factors in excess of 1 x 105. In a prior incarnation, a titanium nitride layer on top of the aluminum served as a protective layer, but complicated the superconducting proper- ties. These results were reported previously. In the current incarnation, the aluminum layer is left bare with no titanium nitride over-layer. The results for these bare aluminum devices include a yield of 88%, frequency responsivity of 109 W-1, and noise equivalent power of 1 x 10-17 W Hz-1/2 for a 350μm array. There is no evidence for 1=f noise down to at least 200 mHz. The sensitivity is currently limited by white noise, very likely from stray light in the testbed; for this detector design, sensitivities limited by generation-recombination noise in a lower-background environment should be several orders of magnitude lower.

  14. Ceramic Transactions. Volume 21. Proceedings of the Symposium on Microwave Theory and Application in Materials Processing Annual Meeting of the American Ceramic Society (23rd) Held in Cincinnati, Ohio on April 29-May 3 1991

    DTIC Science & Technology

    1992-04-27

    spectrum analysis . 4. CONCLUSIONS * The nonthermal synthesis of crystalline nanoparticles of aluminum nitride, silicon carbide and silicon nitride is...51 R.E. Newnham, S.J. Jang, M. Xu, and F. Jones Theory of Microwave Interactions with Ceramic Mz terials .... 69 V.M. Kenkre An Analysis of the...the Performance of Microwave Process Systems Which Utilize High Q Cavities ............ 667 J.F. Gerling and G. Fournier Microwave Thermogravimetric

  15. Superplastic forging nitride ceramics

    DOEpatents

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  16. Fabrication of porous silicon nitride ceramics using binder jetting technology

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.

    2016-07-01

    This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.

  17. Engineering of III-Nitride Semiconductors on Low Temperature Co-fired Ceramics.

    PubMed

    Mánuel, J M; Jiménez, J J; Morales, F M; Lacroix, B; Santos, A J; García, R; Blanco, E; Domínguez, M; Ramírez, M; Beltrán, A M; Alexandrov, D; Tot, J; Dubreuil, R; Videkov, V; Andreev, S; Tzaneva, B; Bartsch, H; Breiling, J; Pezoldt, J; Fischer, M; Müller, J

    2018-05-02

    This work presents results in the field of advanced substrate solutions in order to achieve high crystalline quality group-III nitrides based heterostructures for high frequency and power devices or for sensor applications. With that objective, Low Temperature Co-fired Ceramics has been used, as a non-crystalline substrate. Structures like these have never been developed before, and for economic reasons will represent a groundbreaking material in these fields of Electronic. In this sense, the report presents the characterization through various techniques of three series of specimens where GaN was deposited on this ceramic composite, using different buffer layers, and a singular metal-organic chemical vapor deposition related technique for low temperature deposition. Other single crystalline ceramic-based templates were also utilized as substrate materials, for comparison purposes.

  18. Processing and testing of high toughness silicon nitride ceramics

    NASA Technical Reports Server (NTRS)

    Tikare, Veena; Sanders, William A.; Choi, Sung R.

    1993-01-01

    High toughness silicon nitride ceramics were processed with the addition of small quantities of beta-Si3N4 whiskers in a commercially available alpha-Si3N4 powder. These whiskers grew preferentially during sintering resulting in large, elongated beta-grains, which acted to toughen the matrix by crack deflection and grain pullout. The fracture toughness of these samples seeded with beta-Si3N4 whiskers ranged from 8.7 to 9.5 MPa m(exp 0.5) depending on the sintering additives.

  19. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.

    2015-10-01

    We present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3-AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600 °C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. The potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.

  20. [Osteosynthesis in facial bones: silicon nitride ceramic as material].

    PubMed

    Neumann, A; Unkel, C; Werry, C; Herborn, C U; Maier, H R; Ragoss, C; Jahnke, K

    2006-12-01

    The favorable properties of silicon nitride (Si3N4) ceramic, such as high stability and biocompatibility suggest its biomedical use as an implant material. The aim of this study was to test its suitability for osteosynthesis. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in three minipigs. After 3 months, histological sections, CT and MRI scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfactory intraoperative workability. There was no implant loss, displacement or fracture. Bone healing was complete in all animals and formation of new bone was observed in direct contact to the implants. Si3N4 ceramic showed a good biocompatibility outcome both in vitro and in vivo. This ceramic may serve as biomaterial for osteosynthesis, e.g. of the midface including reconstruction of the floor of the orbit and the skull base. Advantages compared to titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, no interference with radiological imaging.

  1. Influence of temporary organic bond nature on the properties of compacts and ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditts, A., E-mail: ditts@tpu.ru; Revva, I., E-mail: revva@tpu.ru; Pogrebenkov, V.

    2016-01-15

    This work contains results of investigation of obtaining high thermally conductive ceramics from commercial powders of aluminum nitride and yttrium oxide by the method of monoaxial compaction of granulate. The principal scheme of preparation is proposed and technological properties of granulate are defined. Compaction conditions for simple items to use as heat removal in microelectronics and power electrical engineering have been established. Investigations of thermophysical properties of obtained ceramics and its structure by the XRD and SEM methods have been carried out. Ceramics with thermal conductivity from 172 to 174 W/m·K has been obtained as result of this work.

  2. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  3. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    DOE PAGES

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; ...

    2015-06-29

    In this paper, we present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al 2O 3 targets. However, Al 2O 3 is not an ideal source material because it does not form a prolific beam of Al - required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al 2O 3), aluminum nitride (AlN), mixed Al 2O 3–AlN as well as aluminum fluoride (AlF 3) weremore » tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al 2O 3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al 2O 3 with graphite powder at 1600°C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. In conclusion, the potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.« less

  4. Aluminum Coating Influence on Nitride Layer Performance Deposited by MO-CVD in Fluidized Bed on Austenitic Stainless Steel Substrate

    NASA Astrophysics Data System (ADS)

    Găluşcă, D. G.; Perju, M. C.; Nejneru, C.; Burduhos Nergiş, D. D.; Lăzărescu, I. E.

    2018-06-01

    The modification of surface properties by duplex treatments, involving the overlapping of two surface treatment techniques, has been established as an intelligent solution to create new applications for the substrate metallic material. There are driveline components operating under very tough wear and corrosion conditions, with high temperature and humidity variations. Such components are usually made of high Cr and Ni stainless steel and for the hardening of surfaces it is recommended a thermo chemical treatment. Since stainless steels, especially austenitic stainless steels, are difficult to nitride, experimental studies focus on increasing the depth of the nitride layer and surface hardness. Achieving the goal involves changing active layer chemical composition by introducing aluminum in the surface layer. In order to find a solution, a new surface treatment technique is produced by combining aluminum thin films by MO-CVD in a fluidized bed using a triisobutylaluminum precursor with a thermo chemical nitriding treatment.

  5. Methods of repairing a substrate

    NASA Technical Reports Server (NTRS)

    Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)

    2011-01-01

    A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.

  6. Clusterization Effects in III-V Nitrides: Nitrogen Vacancies, and Si and Mg Impurities in Aluminum Nitride and Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.

    1997-03-01

    We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.

  7. Aluminum nitride coatings using response surface methodology to optimize the thermal dissipated performance of light-emitting diode modules

    NASA Astrophysics Data System (ADS)

    Jean, Ming-Der; Lei, Peng-Da; Kong, Ling-Hua; Liu, Cheng-Wu

    2018-05-01

    This study optimizes the thermal dissipation ability of aluminum nitride (AlN) ceramics to increase the thermal performance of light-emitting diode (LED) modulus. AlN powders are deposited on heat sink as a heat interface material, using an electrostatic spraying process. The junction temperature of the heat sink is developed by response surface methodology based on Taguchi methods. In addition, the structure and properties of the AlN coating are examined using X-ray photoelectron spectroscopy (XPS). In the XPS analysis, the AlN sub-peaks are observed at 72.79 eV for Al2p and 398.88 eV for N1s, and an N1s sub-peak is assigned to N-O at 398.60eV and Al-N bonding at 395.95eV, which allows good thermal properties. The results have shown that the use of AlN ceramic material on a heat sink can enhance the thermal performance of LED modules. In addition, the percentage error between the predicted and experimental results compared the quadric model with between the linear and he interaction models was found to be within 7.89%, indicating that it was a good predictor. Accordingly, RSM can effectively enhance the thermal performance of an LED, and the beneficial heat dissipation effects for AlN are improved by electrostatic spraying.

  8. Interlayer interaction and mechanical properties in multi-layer graphene, Boron-Nitride, Aluminum-Nitride and Gallium-Nitride graphene-like structure: A quantum-mechanical DFT study

    NASA Astrophysics Data System (ADS)

    Ghorbanzadeh Ahangari, Morteza; Fereidoon, A.; Hamed Mashhadzadeh, Amin

    2017-12-01

    In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and Gallium-Nitride (Ga-N) graphene sheets and compared these results with results obtained from carbonic graphenes (C-graphenes). For reaching this purpose, first we optimized the geometrical parameters of these graphenes by using density functional theory (DFT) method. Then we calculated Young's modulus of graphene sheet by compressing and then elongating these sheets in small increment. Our results indicates that Young's modulus of graphenes didn't changed obviously by increasing the number of layer sheet. We also found that carbonic graphene has greatest Young's modulus among another mentioned sheets because of smallest equilibrium distance between its elements. Next we modeled the van der Waals interfacial interaction exist between two sheets with classical spring model by using general form of Lennard-Jones (L-J) potential for all of mentioned graphenes. For calculating L-J parameters (ε and σ), the potential energy between layers of mentioned graphene as a function of the separation distance was plotted. Moreover, the density of states (DOS) are calculated to understand the electronic properties of these systems better.

  9. A computational NMR study on zigzag aluminum nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Bodaghi, Ali; Mirzaei, Mahmoud; Seif, Ahmad; Giahi, Masoud

    2008-12-01

    A computational nuclear magnetic resonance (NMR) study is performed to investigate the electronic structure properties of the single-walled zigzag aluminum nitride nanotubes (AlNNTs). The chemical-shielding (CS) tensors are calculated at the sites of Al-27 and N-15 nuclei in three structural forms of AlNNT including H-saturated, Al-terminated, and N-terminated ones. The structural forms are firstly optimized and then the calculated CS tensors in the optimized structures are converted to chemical-shielding isotropic (CSI) and chemical-shielding anisotropic (CSA) parameters. The calculated parameters reveal that various Al-27 and N-15 nuclei are divided into some layers with equivalent electrostatic properties; furthermore, Al and N can act as Lewis base and acid, respectively. In the Al-terminated and N-terminated forms of AlNNT, in which one mouth of the nanotube is terminated by aluminum and nitrogen nuclei, respectively, just the CS tensors of the nearest nuclei to the mouth of the nanotube are significantly changed due to removal of saturating hydrogen atoms. Density functional theory (DFT) calculations are performed using GAUSSIAN 98 package of program.

  10. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  11. Manual modification and plasma exposure of boron nitride ceramic to study Hall effect thruster plasma channel material erosion

    NASA Astrophysics Data System (ADS)

    Satonik, Alexander J.

    Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.

  12. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  13. High temperature alkali corrosion of ceramics in coal gas: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and highmore » efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.« less

  14. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites

    PubMed Central

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m-2 and 0.9±0.1 C m-2, for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported. PMID:26193701

  15. Dynamic properties of ceramic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis ofmore » shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.« less

  16. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions.

    PubMed

    Shibata, Naoya; Pennycook, Stephen J; Gosnell, Tim R; Painter, Gayle S; Shelton, William A; Becher, Paul F

    2004-04-15

    Silicon nitride (Si3N4) ceramics are used in numerous applications because of their superior mechanical properties. Their intrinsically brittle nature is a critical issue, but can be overcome by introducing whisker-like microstructural features. However, the formation of such anisotropic grains is very sensitive to the type of cations used as the sintering additives. Understanding the origin of dopant effects, central to the design of high-performance Si3N4 ceramics, has been sought for many years. Here we show direct images of dopant atoms (La) within the nanometre-scale intergranular amorphous films typically found at grain boundaries, using aberration corrected Z-contrast scanning transmission electron microscopy. It is clearly shown that the La atoms preferentially segregate to the amorphous/crystal interfaces. First-principles calculations confirm the strong preference of La for the crystalline surfaces, which is essential for forming elongated grains and a toughened microstructure. Whereas principles of micrometre-scale structural design are currently used to improve the mechanical properties of ceramics, this work represents a step towards the atomic-level structural engineering required for the next generation of ceramics.

  17. Improved performance of silicon nitride-based high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Ashbrook, R. L.

    1977-01-01

    Recent progress in the production of Si3N4 based ceramics is reviewed: (1) high temperature strength and toughness of hot pressed Si3N4 were improved by using high purity powder and a stabilized ZrO2 additive, (2) impact resistance of hot pressed Si3N4 was increased by the use of a crushable energy absorbing layer, (3) the oxidation resistance and strength of reaction sintered Si3N4 were increased by impregnating reaction sintered silicon nitride with solutions that oxidize to Al2O3 or ZrO2, (4) beta prime SiA1ON compositions and sintering aids were developed for improved oxidation resistance or improved high temperature strength.

  18. Sensors for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Koller, A. C.; Bennethum, W. H.; Burkholder, S. D.; Brackett, R. R.; Harris, J. P.

    1995-01-01

    This report includes: (1) a survey of the current methods for the measurement of surface temperature of ceramic materials suitable for use as hot section flowpath components in aircraft gas turbine engines; (2) analysis and selection of three sensing techniques with potential to extend surface temperature measurement capability beyond current limits; and (3) design, manufacture, and evaluation of the three selected techniques which include the following: platinum rhodium thin film thermocouple on alumina and mullite substrates; doped silicon carbide thin film thermocouple on silicon carbide, silicon nitride, and aluminum nitride substrates; and long and short wavelength radiation pyrometry on the substrates listed above plus yttria stabilized zirconia. Measurement of surface emittance of these materials at elevated temperature was included as part of this effort.

  19. The thermal power of aluminum nitride at temperatures between 1350 and 1650 deg C in argon and nitrogen atmospheres. Ph.D. Thesis - Rhine-Westphalia High School at Aachen

    NASA Technical Reports Server (NTRS)

    Fischer, W. A.; Schuh, B.

    1978-01-01

    The test apparatus for measuring the thermal voltage of aluminum nitride for temperature differences of up to + or - 60 C between 1350 and 1650 C is described. The thermal power and its homogeneous proportion are determined and the heat transfer of the migration ions resulting from the homogeneous thermal power is calculated. The conduction mechanism in aluminum nitride is discussed.

  20. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  1. Waste conversion into high-value ceramics: Carbothermal nitridation synthesis of titanium nitride nanoparticles using automotive shredder waste.

    PubMed

    Mayyas, Mohannad; Pahlevani, Farshid; Maroufi, Samane; Liu, Zhao; Sahajwalla, Veena

    2017-03-01

    Environmental concern about automotive shredder residue (ASR) has increased in recent years due to its harmful content of heavy metals. Although several approaches of ASR management have been suggested, these approaches remain commercially unproven. This study presents an alternative approach for ASR management where advanced materials can be generated as a by-product. In this approach, titanium nitride (TiN) has been thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) and titanium oxide (TiO 2 ). Interactions between TiO 2 and ASR at non-isothermal conditions were primarily investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry. Results indicated that TiO 2 influences and catalyses degradation reactions of ASR, and the temperature, at which reduction starts, was determined around 980 °C. The interaction between TiO 2 and ASR at isothermal conditions in the temperature range between 1200 and 1550 °C was also studied. The pressed mixture of both materials resulted in titanium nitride (TiN) ceramic at all given temperatures. Formation kinetics were extracted using several models for product layer diffusion-controlled solid-solid and solid-fluid reactions. The effect of reactants ratio and temperature on the degree of conversion and morphology was investigated. The effect of reactants ratio was found to have considerable effect on the morphology of the resulting material, while temperature had a lesser impact. Several unique structures of TiN (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) were obtained by simply tuning the ratio of TiO 2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Analysis of Aluminum-Nitride SOI for High-Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Osman, Mohamed A.; Yu, Zhiping

    2000-01-01

    We use numerical simulation to investigate the high-temperature (up to 500K) operation of SOI MOSFETs with Aluminum-Nitride (AIN) buried insulators, rather than the conventional silicon-dioxide (SiO2). Because the thermal conductivity of AIN is about 100 times that of SiO2, AIN SOI should greatly reduce the often severe self-heating problem of conventional SOI, making SOI potentially suitable for high-temperature applications. A detailed electrothermal transport model is used in the simulations, and solved with a PDE solver called PROPHET In this work, we compare the performance of AIN-based SOI with that of SiO2-based SOI and conventional MOSFETs. We find that AIN SOI does indeed remove the self-heating penalty of SOL However, several device design trade-offs remain, which our simulations highlight.

  3. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junlang, E-mail: lijunlangx@163.com; Xu, Jian, E-mail: xu.jian.57z@st.kyoto-u.ac.jp; Graduate School of Human and Environmental Studies, Division of Materials Function, Kyoto University, Kyoto 606-8501

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in thismore » paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.« less

  4. Boron nitride housing cools transistors

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Boron nitride ceramic heat sink cools transistors in r-f transmitter and receiver circuits. Heat dissipated by the transistor is conducted by the boron nitride housing to the metal chassis on which it is mounted.

  5. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum.

    PubMed

    Lu, Tsung-Ju; Fanto, Michael; Choi, Hyeongrak; Thomas, Paul; Steidle, Jeffrey; Mouradian, Sara; Kong, Wei; Zhu, Di; Moon, Hyowon; Berggren, Karl; Kim, Jeehwan; Soltani, Mohammad; Preble, Stefan; Englund, Dirk

    2018-04-30

    We demonstrate a wide-bandgap semiconductor photonics platform based on nanocrystalline aluminum nitride (AlN) on sapphire. This photonics platform guides light at low loss from the ultraviolet (UV) to the visible spectrum. We measure ring resonators with intrinsic quality factor (Q) exceeding 170,000 at 638 nm and Q >20,000 down to 369.5 nm, which shows a promising path for low-loss integrated photonics in UV and visible spectrum. This platform opens up new possibilities in integrated quantum optics with trapped ions or atom-like color centers in solids, as well as classical applications including nonlinear optics and on-chip UV-spectroscopy.

  6. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    NASA Astrophysics Data System (ADS)

    Wananuruksawong, R.; Jinawath, S.; Padipatvuthikul, P.; Wasanapiarnpong, T.

    2011-10-01

    Silicon nitride (Si3N4) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si3N4 ceramic as a dental core material. The white Si3N4 was prepared by pressureless sintering at relative low sintering temperature of 1650 °C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si3N4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si3N4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y2O3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si3N4 specimens, the firing was performed in electric tube furnace between 1000-1200°C. The veneered specimens fired at 1100°C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98×10-6 °C-1, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  7. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  8. A new class of boron nitride fibers with tunable properties by combining an electrospinning process and the polymer-derived ceramics route

    NASA Astrophysics Data System (ADS)

    Salles, Vincent; Bernard, Samuel; Brioude, Arnaud; Cornu, David; Miele, Philippe

    2010-02-01

    Novel boron nitride (BN) fibers have been developed with diameters ranging from the nano- to microscale by thermal conversion of as-electrospun fibers from polyacrylonitrile and poly[B-(methylamino)borazine] blend solutions. Such a new class of ceramic fibers is seen as potential candidate for thermal management applications and filtration systems in harsh environments.Novel boron nitride (BN) fibers have been developed with diameters ranging from the nano- to microscale by thermal conversion of as-electrospun fibers from polyacrylonitrile and poly[B-(methylamino)borazine] blend solutions. Such a new class of ceramic fibers is seen as potential candidate for thermal management applications and filtration systems in harsh environments. Electronic supplementary information (ESI) available: Experimental details and EDX results. See DOI: 10.1039/b9nr00185a

  9. Silicon nitride ceramic development in Thales Alenia Space : qualification achievement and further developments for future applications

    NASA Astrophysics Data System (ADS)

    Cornillon, L.; Devilliers, C.; Behar-Lafenetre, S.; Ait-Zaid, S.; Berroth, K.; Bravo, A. C.

    2017-11-01

    Dealing with ceramic materials for more than two decades, Thales Alenia Space - France has identified Silicon Nitride Si3N4 as a high potential material for the manufacturing of stiff, stable and lightweight truss structure for future large telescopes. Indeed, for earth observation or astronomic observation, space mission requires more and more telescopes with high spatial resolution, which leads to the use of large primary mirrors, and a long distance between primary and secondary mirrors. Therefore current and future large space telescopes require a huge truss structure to hold and locate precisely the mirrors. Such large structure requires very strong materials with high specific stiffness and a low coefficient of thermal expansion (CTE). Based on the silicon nitride performances and on the know how of FCT Ingenieurkeramik to manufacture complex parts, Thales Alenia Space (TAS) has engaged, in cooperation with FCT, activities to develop and qualify silicon nitride parts for other applications for space projects.

  10. Silicon nitride ceramic development in Thales Alenia Space: qualification achiement and further developments for future applications

    NASA Astrophysics Data System (ADS)

    Cornillon, L.; Devilliers, C.; Behar-Lafenetre, S.; Ait-Zaid, S.; Berroth, K.; Bravo, A. C.

    2017-11-01

    Dealing with ceramic materials for more than two decades, Thales Alenia Space - France has identified Silicon Nitride Si3N4 as a high potential material for the manufacturing of stiff, stable and lightweight truss structure for future large telescopes. Indeed, for earth observation or astronomic observation, space mission requires more and more telescopes with high spatial resolution, which leads to the use of large primary mirrors, and a long distance between primary and secondary mirrors. Therefore current and future large space telescopes require a huge truss structure to hold and locate precisely the mirrors. Such large structure requires very strong materials with high specific stiffness and a low coefficient of thermal expansion (CTE). Based on the silicon nitride performances and on the know how of FCT Ingenieurkeramik to manufacture complex parts, Thales Alenia Space (TAS) has engaged, in cooperation with FCT, activities to develop and qualify silicon nitride parts for other applications for space projects.

  11. Substitution of ceramics for high temperature alloys. [advantages of using silicon carbides and silicon nitrides in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1978-01-01

    The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.

  12. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOEpatents

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  13. Joining and Integration of Silicon Nitride Ceramics for Aerospace and Energy Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2009-01-01

    Light-weight, creep-resistant silicon nitride ceramics possess excellent high-temperature strength and are projected to significantly raise engine efficiency and performance when used as turbine components in the next-generation turbo-shaft engines without the extensive cooling that is needed for metallic parts. One key aspect of Si3N4 utilization in such applications is its joining response to diverse materials. In an ongoing research program, the joining and integration of Si3N4 ceramics with metallic, ceramic, and composite materials using braze interlayers with the liquidus temperature in the range 750-1240C is being explored. In this paper, the self-joining behavior of Kyocera Si3N4 and St. Gobain Si3N4 using a ductile Cu-based active braze (Cu-ABA) containing Ti will be presented. Joint microstructure, composition, hardness, and strength as revealed by optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Knoop microhardness test, and offset compression shear test will be presented. Additionally, microstructure, composition, and joint strength of Si3N4/Inconel 625 joints made using Cu-ABA, will be presented. The results will be discussed with reference to the role of chemical reactions, wetting behavior, and residual stresses in joints.

  14. High strength particulate ceramics

    DOEpatents

    Liles, Kenneth J.; Hoyer, Jesse L.; Mlynarski, Kenneth W.

    1991-01-01

    This invention relates to new and useful hard, dense, composite materials made from metallic nitrides such as titanium nitride when combined with aluminum oxide and aluminum nitride and a process comprising the steps of: (1) mixing constituent materials using kerosene as a mixing medium; (2) screening, settling, filtering, and washing the mixture in acetone; (3) filling and sealing said materials in a latex mold; (4) isostatically pressing the material into a compacted powder; and (5) sintering the compacted powder in a gas atmosphere at 1,850.degree. C. for two hours.

  15. Spectral response characteristics of the transmission-mode aluminum gallium nitride photocathode with varying aluminum composition.

    PubMed

    Hao, Guanghui; Liu, Junle; Ke, Senlin

    2017-12-10

    In order to research spectral response characteristics of transmission-mode nanostructure aluminum gallium nitride (AlGaN) photocathodes, the AlGaN photocathodes materials with varied aluminum (Al) composition were grown by metalorganic chemical vapor deposition (MOCVD) and its optical properties were measured. The Al compositions of each AlGaN film of the photocathodes were analyzed from their adsorption properties curves; their thickness was also calculated by the matrix formula of thin-film optics. The nanostructure AlGaN photocathodes were activated with the Caesium-Oxygen (Cs-O) alternation, and after the photocathode was packaged in vacuum, their spectrum responses were measured. The experimental results showed that the trend of spectrum response curves first increased and then decreased along with the increasing of the incident light wavelength. The peak spectrum response value was 17.5 mA/W at 255 nm, and its quantum efficiency was 8.5%. The lattice defects near the interface of the AlGaN heterostructure could impede the electron motion crossing this region and moving toward the photocathode surface; this was a factor that reduces the electron emission performance of the photocathodes. Also, the experimental result showed that the thickness of each AlGaN layer affected the electron diffusion characteristics; this was a key factor that influenced the spectrum response performance.

  16. Micromechanical and Electrical Properties of Monolithic Aluminum Nitride at High Temperatures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2000-01-01

    Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background internal friction at less than 1x10(exp-4) logarithmic decrement (log dec) from 20 to 1200 T. Two mechanical loss peaks were observed, the first at 350 C approximating a single Debye peak with a peak height of 60x10(exp-4) log dec. The second peak was seen at 950 'C with a peak height of 20x 10' log dec and extended from 200 to over 1200 C. These micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally activated processes, with activation energies of 0.78 and 1.32 eV respectively.

  17. Tension-Compression Fatigue of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature in Air and Steam Environments

    DTIC Science & Technology

    2015-03-26

    method has been successfully used with several materials such as silicon carbide fiber - silicon carbide matrix ( SiC / SiC ) CMCs with carbon and boron...elements [14]. These advanced ceramics include oxides, nitrides and carbides of silicon , aluminum, titanium, and zirconium [12]. One of the most...oxides over silicon carbide and other non-oxide materials. In fact, it is the inherent stability of oxides in oxidizing environments which originally

  18. Feasibility study of silicon nitride regenerators

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rao, V. D. N.

    1979-01-01

    The feasibility of silicon nitride as a regenerator matrix material for applications requiring inlet temperatures above 1000 C is examined. The present generation oxide ceramics are used as a reference to examine silicon nitride from a material characteristics, manufacturing, thermal stress and aerothermodynamic viewpoint.

  19. Quantifying the Effects of the Influence of a Tungsten Long-rod Projectile into Confined Ceramics at High-velocity Impact

    DTIC Science & Technology

    2008-01-29

    be conducted to demonstrate how the confined, brittle samples behave. The study shows that silicon carbide and boron carbide are the optimal...Exposition on Advanced Ceramics and Composites - 27 JAN to 1 FEB 2008, Daytona Beach, FL, The original document contains color images. 14. ABSTRACT 15...specimens investigated were aluminum nitride, boron carbide, 9606 pyroceram, and silicon carbide. The confining sleeve was modeled with RHA and had a

  20. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  1. The Compressive Failure of Aluminum Nitride Considered as a Model Advanced Ceramic

    DTIC Science & Technology

    2012-06-01

    and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Materialia 52 (2), 355–367. Xia, Q., Xia, H., Ruoff, A.L., 1993...Orphal et al., 1996) both as a standalone material and as part of ceramic composites (particularly with SiC ). Much of the literature on bulk...compression experiments. Tungsten carbide platens jacketed by the Ti-6Al-4V titanium alloy were used to protect the loading surfaces of the testing

  2. Effect of sintering methods and temperatures on porosity of the ceramics from aluminum oxinitride

    NASA Astrophysics Data System (ADS)

    Prosvirnin, D. V.; Kolmakov, A. G.; Larionov, M. D.; Prutskov, M. E.; Alikhanyan, A. S.; Samokhin, A. V.; Lysenkov, A. S.; Titov, D. D.

    2018-04-01

    The paper presents the results of studies of the effect of temperature regimes and time on porosity in ceramic samples made of aluminum oxynitride. Getting rid of the porous structure allows reducing the scattering of rays and, as a result, achieving the required optical characteristics.

  3. Micromechanical and Electrical Properties of Monolithic Aluminum Nitride at High Temperatures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2001-01-01

    Micromechanical spectroscopy of aluminum nitride reveals it to possess extremely low background internal friction at less than 1 x 10 (exp -4) logarithmic decrement (log dec.) from 20 to 1200 C. Two mechanical loss peaks were observed, the first at 350 C approximating a single Debye peak with a peak height of 60 x 10 (exp -4) log dec. The second peak was seen at 950 C with a peak height of 20 x 10 (exp -4) log dec. and extended from 200 to over 1200 C. These micromechanical observations manifested themselves in the electrical behavior of these materials. Electrical conduction processes were predominately intrinsic. Both mechanical and electrical relaxations appear to be thermally activated processes, with activation energies of 0.78 and 1.32 eV respectively.

  4. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  5. Prototype of a silicon nitride ceramic-based miniplate osteofixation system for the midface.

    PubMed

    Neumann, Andreas; Unkel, Claus; Werry, Christoph; Herborn, Christoh U; Maier, Horst R; Ragoss, Christian; Jahnke, Klaus

    2006-06-01

    The favorable properties of silicon nitride (Si3N4) ceramics, such as high mean strength level and fracture toughness, suggest biomedical use as an implant material. Minor reservations about the biocompatibility of Si3N4 ceramics were cleared up by previous in vitro and in vivo investigations. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in 3 minipigs. After 3 months, histological sections, computed tomography (CT) scans, and magnetic resonance imaging (MRI) scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfying intraoperative workability. There was no implant loss, displacement, or fracture. Bone healing was complete in all animals. The formation of new bone was observed in direct contact to the implants. The implants showed no artifacts on CT and MRI scanning. FEM simulation confirmed the mechanical reliability of the screws, whereas simulated plate geometries regarding pullout forces at maximum load showed limited safety in a bending situation. Si3N4 ceramics show a good biocompatibility outcome both in vitro and in vivo. In ENT surgery, this ceramic may serve as a biomaterial for osteosynthesis (eg, of the midface including reconstruction the floor of the orbit and the skull base). To our knowledge, this is the first introduction of a ceramic-based miniplate-osteofixation system. Advantages compared with titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, and no interference with radiologic imaging. Disadvantages include the impossibility of individual bending of the miniplates.

  6. Boron Nitride Obtained from Molecular Precursors: Aminoboranes Used as a BN Source for Coatings, Matrix, and Si 3N 4-BN Composite Ceramic Preparation

    NASA Astrophysics Data System (ADS)

    Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.

    1997-10-01

    Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.

  7. Spotting 2D atomic layers on aluminum nitride thin films.

    PubMed

    Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan

    2015-10-23

    Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.

  8. [Optical and spectral parameters in Ce3+ -doped gadolinium gallium aluminum garnet glass-ceramics].

    PubMed

    Gong, Hua; Zhao, Xin; Yu, Xiao-bo; Setsuhisa, Tanabe; Lin, Hai

    2010-01-01

    The crystalline phases of Ce3+ -doped gadolinium gallium aluminum garnet (GGAG) glass-ceramics were investigated by X-ray diffraction, and the fluorescence spectra were recorded under the pumping of blue light-emitting diode (LED) using an integrating sphere of 10-inch in diameter, which connected to a CCD detector. The spectral power distribution of the glass-ceramics was obtained from the measured spectra first, and then the quantum yield was derived based on the photon distribution. The quantum yield of Ce3+ emission in GGAG glass-ceramics is 29.2%, meanwhile, the color coordinates and the correlated color temperature (CCT) of combined white light were proved to be x = 0.319, y = 0.349 and 6086 K, respectively. Although the quantum yield is a little smaller than the value in Ce3+ -doped YAG glass-ceramics, the CCT of the combined white light is much smaller than that in the latter. The optical behavior of GGAG glass-ceramics provides new vision for developing comfortable LED lighting devices.

  9. A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.

    2018-02-01

    The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.

  10. Methods for improved growth of group III nitride buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphologymore » of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).« less

  11. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  12. Environmental Effects on Non-oxide Ceramics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.

    1997-01-01

    Non-oxide ceramics such as silicon carbide (SiC) and silicon nitride (Si3N4) are promising materials for a wide range of high temperature applications. These include such diverse applications as components for heat engines, high temperature electronics, and re-entry shields for space vehicles. Table I lists a number of selected applications. Most of the emphasis here will be on SiC and Si3N4. Where appropriate, other non-oxide materials such as aluminum nitride (AlN) and boron nitride (BN) will be discussed. Proposed materials include both monolithic ceramics and composites. Composites are treated in more detail elsewhere in this volume, however, many of the oxidation/corrosion reactions discussed here can be extended to composites. In application these materials will be exposed to a wide variety of environments. Table I also lists reactive components of these environments.It is well-known that SiC and Si3N4 retain their strength to high temperatures. Thus these materials have been proposed for a variety of hot-gas-path components in combustion applications. These include heat exchanger tubes, combustor liners, and porous filters for coal combustion products. All combustion gases contain CO2, CO, H2, H2O, O2, and N2. The exact gas composition is dependent on the fuel to air ratio or equivalence ratio. (Equivalence ratio (EQ) is a fuel-to-air ratio, with total hydrocarbon content normalized to the amount of O2 and defined by EQ=1 for complete combustion to CO2 and H2O). Figure 1 is a plot of equilibrium gas composition vs. equivalence ratio. Note that as a general rule, all combustion atmospheres are about 10% water vapor and 10% CO2. The amounts of CO, H2, and O2 are highly dependent on equivalence ratio.

  13. Nd:AlN polycrystalline ceramics: A candidate media for tunable, high energy, near IR lasers

    NASA Astrophysics Data System (ADS)

    Wieg, A. T.; Grossnickle, M. J.; Kodera, Y.; Gabor, N. M.; Garay, J. E.

    2016-09-01

    We present processing and characterization of Nd-doped aluminum nitride (Nd:AlN) polycrystalline ceramics. We compare ceramics with significant segregation of Nd to those exhibiting minimal segregation. Spatially resolved photoluminescence maps reveal a strong correlation between homogeneous Nd doping and spatially homogeneous light emission. The spectroscopically resolved light emission lines show excellent agreement with the expected Nd electronic transitions. Notably, the lines are significantly broadened, producing near IR emission (˜1077 nm) with a remarkable ˜100 nm bandwidth at room temperature. We attribute the broadened lines to a combination of effects: multiple Nd-sites, anisotropy of AlN and phonon broadening. These broadened, overlapping lines in a media with excellent thermal conductivity have potential for Nd-based, tunable lasers with high average power.

  14. Copper stabilization via spinel formation during the sintering of simulated copper-laden sludge with aluminum-rich ceramic precursors.

    PubMed

    Tang, Yuanyuan; Chui, Stephen Sin-Yin; Shih, Kaimin; Zhang, Lingru

    2011-04-15

    The feasibility of incorporating copper-laden sludge into low-cost ceramic products, such as construction ceramics, was investigated by sintering simulated copper-laden sludge with four aluminum-rich ceramic precursors. The results indicated that all of these precursors (γ-Al(2)O(3), corundum, kaolinite, mullite) could crystallochemically stabilize the hazardous copper in the more durable copper aluminate spinel (CuAl(2)O(4)) structure. To simulate the process of copper transformation into a spinel structure, CuO was mixed with the four aluminum-rich precursors, and fired at 650-1150 °C for 3 h. The products were examined using powder X-ray diffraction (XRD) and scanning electron microscopic techniques. The efficiency of copper transformation among crystalline phases was quantitatively determined through Rietveld refinement analysis of the XRD data. The sintering experiment revealed that the optimal sintering temperature for CuAl(2)O(4) formation was around 1000 °C and that the efficiency of copper incorporation into the crystalline CuAl(2)O(4) structure after 3 h of sintering ranged from 40 to 95%, depending on the type of aluminum precursor used. Prolonged leaching tests were carried out by using acetic acid with an initial pH value of 2.9 to leach CuO and CuAl(2)O(4) samples for 22 d. The sample leachability analysis revealed that the CuAl(2)O(4) spinel structure was more superior to stabilize copper, and suggested a promising and reliable technique for incorporating copper-laden sludge or its incineration ash into usable ceramic products. Such results also demonstrated the potential of a waste-to-resource strategy by using waste materials as part of the raw materials with the attainable temperature range used in the production of ceramics.

  15. Alumina-based ceramic composite

    DOEpatents

    Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.

    1996-01-01

    An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.

  16. Low-loss binder for hot pressing boron nitride

    DOEpatents

    Maya, Leon

    1991-01-01

    Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.

  17. A new active solder for joining electronic components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SMITH,RONALD W.; VIANCO,PAUL T.; HERNANDEZ,CYNTHIA L.

    Electronic components and micro-sensors utilize ceramic substrates, copper and aluminum interconnect and silicon. The joining of these combinations require pre-metallization such that solders with fluxes can wet such combinations of metals and ceramics. The paper will present a new solder alloy that can bond metals, ceramics and composites. The alloy directly wets and bonds in air without the use flux or premetallized layers. The paper will present typical processing steps and joint microstructures in copper, aluminum, aluminum oxide, aluminum nitride, and silicon joints.

  18. Thin film thermocouples for high temperature measurement on ceramic materials

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond

    1992-01-01

    Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high-heating-rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.

  19. Sandblasting nozzle

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.; Pawlik, E. V.; Phillips, W. M. (Inventor)

    1981-01-01

    A nozzle for use with abrasive and/or corrosive materials is formed of sintered ceramic compositions having high temperature oxidation resistance, high hardness and high abrasion and corrosion resistance. The ceramic may be a binary solid solution of a ceramic oxide and silicon nitride, and preferably a ternary solid solution of a ceramic oxide, silicon nitride and aluminum nitride. The ceramic oxide is selected from a group consisting of Al2O3, Y2O3 and Cr2O3, or mixtures of those compounds. Titanium carbide particles are dispersed in the ceramic mixture before sintering. The nozzles are encased for protection from external forces while in use by a metal or plastic casing.

  20. Alumina-based ceramic composite

    DOEpatents

    Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.

    1996-07-23

    An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite. 5 figs.

  1. Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy

    DOE PAGES

    Choi, Sukwon; Griffin, Benjamin A.

    2016-01-06

    Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Thus, across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertaintiesmore » for predicting the impact of AlN residual stress on the device performance.« less

  2. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, Vimal K.; Tracey, Dennis M.; Foley, Michael R.; Paille, Norman I.; Pelletier, Paul J.; Sales, Lenny C.; Willkens, Craig A.; Yeckley, Russell L.

    1996-01-01

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  3. Property Screening and Evaluation of Ceramic Turbine Materials

    DTIC Science & Technology

    1984-04-01

    Unless otherwise indicated, the upper and lower spans were 0.875 and 1.750 in., respectively. For room-temperature tests, a stainless steel fixture...Silicon Nitride High Temperature Properties Silicon Carbide Silicon Ceramics Transformation-Toughened Zirconia Structural Ceramics Mechanical Properties...3ilicon carbide and silicon nitride, that have potential as structural components in"advanced gas turbine engines, were evaluated. Thermal and

  4. Ceramic Parts for Turbines

    NASA Technical Reports Server (NTRS)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  5. Ultrafast third-harmonic generation from textured aluminum nitride-sapphire interfaces

    NASA Astrophysics Data System (ADS)

    Stoker, D. S.; Baek, J.; Wang, W.; Kovar, D.; Becker, M. F.; Keto, J. W.

    2006-05-01

    We measured and modeled third-harmonic generation (THG) from an AlN thin film on sapphire using a time-domain approach appropriate for ultrafast lasers. Second-harmonic measurements indicated that polycrystalline AlN contains long-range crystal texture. An interface model for third-harmonic generation enabled an analytical representation of scanning THG ( z -scan) experiments. Using it and accounting for Fresnel reflections, we measured the AlN -sapphire susceptibility ratio and estimated the susceptibility for aluminum nitride, χxxxx(3)(3ω;ω,ω,ω)=1.52±0.25×10-13esu . The third-harmonic (TH) spectrum strongly depended on the laser focus position and sample thickness. The amplitude and phase of the frequency-domain interference were fit to the Fourier transform of the calculated time-domain field to improve the accuracy of several experimental parameters. We verified that the model works well for explaining TH signal amplitudes and spectral phase. Some anomalous features in the TH spectrum were observed, which we attributed to nonparaxial effects.

  6. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  7. Low temperature joining of ceramic composites

    DOEpatents

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  8. Low temperature joining of ceramic composites

    DOEpatents

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  9. Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives

    PubMed Central

    Bernard, Samuel; Miele, Philippe

    2014-01-01

    Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e., borazine and trichloroborazine, and their polymeric derivatives i.e., polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest. PMID:28788257

  10. Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives.

    PubMed

    Bernard, Samuel; Miele, Philippe

    2014-11-21

    Boron nitride (BN) is a III-V compound which is the focus of important research since its discovery in the early 19th century. BN is electronic to carbon and thus, in the same way that carbon exists as graphite, BN exists in the hexagonal phase. The latter offers an unusual combination of properties that cannot be found in any other ceramics. However, these properties closely depend on the synthesis processes. This review states the recent developments in the preparation of BN through the chemistry, shaping and ceramic conversion of borazine derivatives. This concept denoted as Polymer-Derived Ceramics (PDCs) route allows tailoring the chemistry of precursors to elaborate complex BN shapes which cannot be obtained by conventional process. The effect of the chemistry of the molecular precursors, i.e. , borazine and trichloroborazine, and their polymeric derivatives i.e. , polyborazylene and poly[tri(methylamino)borazine], in which the specific functional groups and structural motifs determine the shaping potential by conventional liquid-phase process and plastic-forming techniques is discussed. Nanotubes, nano-fibers, coatings, monoliths and fiber-reinforced matrix composites are especially described. This leads to materials which are of significant engineering interest.

  11. Evaluation of microcrack thermal shock damage in ceramics: Modeling and experiment

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.

    1992-01-01

    In this paper we present an experimental and theoretical study of the effect of microcrack damage on ceramic properties. For the experimental investigation, ceramic samples of aluminum oxide and reaction bonded silicon nitride (RBSN) are used. Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Both surface and bulk ultrasonic wave methods are used to correlate the change of elastic constants to microstructural degradation and to determine the change in elastic anisotropy induced by microcrack damage. For the theoretical investigation, damage mechanics, which relates microstructural damage to material service life and mechanical failure, is used. The change in elastic properties due to microcrack damage calculated from the theoretical model is compared with the experimental results for determination of the applicability of damage theory. It is shown that two independent experimental methods (bulk wave and surface wave) give the same results for shear moduli of damaged ceramics. The experimental results aagree reasonably well with the moduli predicted from the cracked solid model.

  12. Electrostatic Self-Assembly of Diamond Nanoparticles onto Al- and N-Polar Sputtered Aluminum Nitride Surfaces.

    PubMed

    Yoshikawa, Taro; Reusch, Markus; Zuerbig, Verena; Cimalla, Volker; Lee, Kee-Han; Kurzyp, Magdalena; Arnault, Jean-Charles; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim

    2016-11-17

    Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c -axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions.

  13. Electrostatic Self-Assembly of Diamond Nanoparticles onto Al- and N-Polar Sputtered Aluminum Nitride Surfaces

    PubMed Central

    Yoshikawa, Taro; Reusch, Markus; Zuerbig, Verena; Cimalla, Volker; Lee, Kee-Han; Kurzyp, Magdalena; Arnault, Jean-Charles; Nebel, Christoph E.; Ambacher, Oliver; Lebedev, Vadim

    2016-01-01

    Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c-axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions. PMID:28335345

  14. Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation.

    PubMed

    Zhang, Ji-Yun; Luo, Zhao-Hua; Jiang, Hao-Chuan; Jiang, Jun; Chen, Chun-Hua; Zhang, Jing-Xian; Gui, Zhen-Zhen; Xiao, Na

    2017-11-01

    Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Method of sintering ceramic materials

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  16. Method of sintering ceramic materials

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.

    1992-11-17

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.

  17. Fabrication of sinterable silicon nitride by injection molding

    NASA Technical Reports Server (NTRS)

    Quackenbush, C. L.; French, K.; Neil, J. T.

    1982-01-01

    Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.

  18. Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics

    PubMed Central

    Abels, Claudio; Mastronardi, Vincenzo Mariano; Guido, Francesco; Dattoma, Tommaso; Qualtieri, Antonio; Megill, William M.; De Vittorio, Massimo; Rizzi, Francesco

    2017-01-01

    The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, SixNy/Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described. PMID:28489040

  19. Advanced ceramic material for high temperature turbine tip seals

    NASA Technical Reports Server (NTRS)

    Solomon, N. G.; Vogan, J. W.

    1978-01-01

    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.

  20. A review: aluminum nitride MEMS contour-mode resonator

    NASA Astrophysics Data System (ADS)

    Yunhong, Hou; Meng, Zhang; Guowei, Han; Chaowei, Si; Yongmei, Zhao; Jin, Ning

    2016-10-01

    Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR. Project supported by National Natural Science Foundation (Nos. 61274001, 61234007, 61504130), the Nurturing and Development Special Projects of Beijing Science and Technology Innovation Base's Financial Support (No. Z131103002813070), and the National Defense Science and Technology Innovation Fund of CAS (No. CXJJ-14-M32).

  1. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    NASA Astrophysics Data System (ADS)

    Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling

    2016-05-01

    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  2. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1996-11-05

    A silicon nitride ceramic is disclosed comprising: (a) inclusions no greater than 25 microns in length, (b) agglomerates no greater than 20 microns in diameter, and (c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa. 4 figs.

  3. Effect of Ceramic Particle Velocity on Cold Spray Deposition of Metal-Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Sova, A.; Kosarev, V. F.; Papyrin, A.; Smurov, I.

    2011-01-01

    In this paper, metal-ceramic coatings are cold sprayed taking into account the spray parameters of both metal and ceramic particles. The effect of the ceramic particle velocity on the process of metal-ceramic coating formation and the coating properties is analyzed. Copper and aluminum powders are used as metal components. Two fractions of aluminum oxide and silicon carbide are sprayed in the tests. The ceramic particle velocity is varied by the particle injection into different zones of the gas flow: the subsonic and supersonic parts of the nozzle and the free jet after the nozzle exit. The experiments demonstrated the importance of the ceramic particle velocity for the stability of the process: Ceramic particles accelerated to a high enough velocity penetrate into the coating, while low-velocity ceramic particles rebound from its surface.

  4. Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Z.; Dekel, E.; Hohler, V.

    1998-07-10

    A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.

  5. Sintering silicon nitride

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Levine, Stanley R. (Inventor); Sanders, William A. (Inventor)

    1993-01-01

    Oxides having a composition of (Ba(1-x)Sr(x))O-Al2O3-2SiO2 are used as sintering aids for producing an improved silicon nitride ceramic material. The x must be greater than 0 to insure the formation of the stable monoclinic celsian glass phase.

  6. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  7. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  8. Low temperature joining of ceramic composites

    DOEpatents

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    2001-04-10

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  9. Erbium doped aluminum nitride nanoparticles for nano-thermometer applications

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha G.; Kordesch, Martin E.

    2015-06-01

    We have synthesized nanoparticles (NPs) of aluminum nitride (AlN) doped in situ with erbium (Er) using the inert gas condensation technique. These NPs have optical properties that make them good candidates for nanoscale temperature sensors. The photoluminescence (PL) spectrum of Er3+ in these NPs shows two emission peaks in the green region at around 540 and 560 nm. The ratio of the intensities of these luminescence peaks is related to temperature. Using Boltzmann’s distribution, the temperature of the NP and its surrounding can be calculated. The NPs were directly deposited on (111) p-type silicon wafers, transmission electron microscope grids and glass cover slips. XRD and HRTEM study indicates that most of the NPs have crystalline hexagonal AlN structure. An enhancement of the luminescence from these NPs was observed after heating in-air at 770 K for 3 h. The sample was then heated in air using a scanning optical microscope laser. The corresponding change in PL peak intensities of the NPs was recorded for laser powers ranging from 0.2 to 15.1 mW. Temperature calculated using the Boltzmann’s distribution was in the range of 300-470 K. This temperature range is of interest for semiconductor device heating and for thermal treatment of cancerous cells, for example.

  10. Synthesis and Thermal Conductivity of Exfoliated Hexagonal Boron Nitride/Alumina Ceramic Composite

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Lizcano, Maricela; Kelly, Marisabel

    2017-01-01

    Exfoliated hexagonal boron nitride (hBN)/alumina composite can be fabricated by following the process of (1) heating a mixture of hBN, AlCl3, and NaF in nitrogen for intercalation; (2) heating the intercalated product in air for exfoliation and at the same time converting the intercalate (AlCl3) into Al2O3, (3) rinsing the oxidized product, (4) coating individual exfoliated hBN platelets that contain Al2O3 with new layers of aluminum oxide, and finally, (5) hot pressing the product into the composite. The composite thus obtained has a composition of approximately 60 percent by weight hBN and 40 percent by weight alumina. Its in-plane and through-plane thermal conductivity were measured to be 86 and 18 watts per meter Kelvin, respectively, at room temperature.

  11. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    NASA Astrophysics Data System (ADS)

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  12. Desorption and sublimation kinetics for fluorinated aluminum nitride surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F.; Nemanich, Robert J.

    2014-09-01

    The adsorption and desorption of halogen and other gaseous species from surfaces is a key fundamental process for both wet chemical and dry plasma etch and clean processes utilized in nanoelectronic fabrication processes. Therefore, to increase the fundamental understanding of these processes with regard to aluminum nitride (AlN) surfaces, temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) have been utilized to investigate the desorption kinetics of water (H{sub 2}O), fluorine (F{sub 2}), hydrogen (H{sub 2}), hydrogen fluoride (HF), and other related species from aluminum nitride thin film surfaces treated with an aqueous solution of buffered hydrogen fluoride (BHF) dilutedmore » in methanol (CH{sub 3}OH). Pre-TPD XPS measurements of the CH{sub 3}OH:BHF treated AlN surfaces showed the presence of a variety of Al-F, N-F, Al-O, Al-OH, C-H, and C-O surfaces species in addition to Al-N bonding from the AlN thin film. The primary species observed desorbing from these same surfaces during TPD measurements included H{sub 2}, H{sub 2}O, HF, F{sub 2}, and CH{sub 3}OH with some evidence for nitrogen (N{sub 2}) and ammonia (NH{sub 3}) desorption as well. For H{sub 2}O, two desorption peaks with second order kinetics were observed at 195 and 460 °C with activation energies (E{sub d}) of 51 ± 3 and 87 ± 5 kJ/mol, respectively. Desorption of HF similarly exhibited second order kinetics with a peak temperature of 475 °C and E{sub d} of 110 ± 5 kJ/mol. The TPD spectra for F{sub 2} exhibited two peaks at 485 and 585 °C with second order kinetics and E{sub d} of 62 ± 3 and 270 ± 10 kJ/mol, respectively. These values are in excellent agreement with previous E{sub d} measurements for desorption of H{sub 2}O from SiO{sub 2} and AlF{sub x} from AlN surfaces, respectively. The F{sub 2} desorption is therefore attributed to fragmentation of AlF{sub x} species in the mass spectrometer ionizer. H{sub 2} desorption

  13. Development of Thin Film Thermocouples on Ceramic Materials for Advanced Propulsion System Applications

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1992-01-01

    Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 c. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperature of 1500 C depending on the stability of the particular ceramic substrate.

  14. Development of thin film thermocouples on ceramic materials for advanced propulsion system applications

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond

    1993-01-01

    Thin film thermocouples were developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hr or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate.

  15. Low-temperature formation of c-axis-oriented aluminum nitride thin films by plasma-assisted reactive pulsed-DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Takenaka, Kosuke; Satake, Yoshikatsu; Uchida, Giichiro; Setsuhara, Yuichi

    2018-01-01

    The low-temperature formation of c-axis-oriented aluminum nitride thin films was demonstrated by plasma-assisted reactive pulsed-DC magnetron sputtering. The effects of the duty cycle at the pulsed-DC voltage applied to the Al target on the properties of AlN films formed via inductively coupled plasma (ICP)-enhanced pulsed-DC magnetron sputtering deposition were investigated. With decreasing duty cycle at the target voltage, the peak intensity of AlN(0002) increased linearly. The surface roughness of AlN films decreased since there was an increase in film density owing to the impact of energetic ions on the films together with the enhancement of nitriding associated with the relative increase in N radical flux. The improvement of both the crystallinity and surface morphology of AlN films at low temperatures is considered to be caused by the difference between the relative flux values of ions and sputtered atoms.

  16. Raman and Infrared Spectroscopy of Yttrium Aluminum Borate Glasses and Glass-ceramics

    NASA Technical Reports Server (NTRS)

    Bradley, J.; Brooks, M.; Crenshaw, T.; Morris, A.; Chattopadhyay, K.; Morgan, S.

    1998-01-01

    Raman spectra of glasses and glass-ceramics in the Y2O3-Al2O3-B2O3 system are reported. Glasses with B2O3 contents ranging from 40 to 60 mole percent were prepared by melting 20 g of the appropriate oxide or carbonate powders in alumina crucibles at 1400 C for 45 minutes. Subsequent heat treatments of the glasses at temperatures ranging from 600 to 800 C were performed in order to induce nucleation and crystallization. It was found that Na2CO3 added to the melt served as a nucleating agent and resulted in uniform bulk crystallization. The Raman spectra of the glasses are interpreted primarily in terms of vibrations of boron - oxygen structural groups. Comparison of the Raman spectra of the glass-ceramic samples with spectra of aluminate and borate crystalline materials reveal that these glasses crystallize primarily as yttrium aluminum borate, YAl3(BO3)4.

  17. Corrosion of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  18. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  19. The elevated temperature mechanical properties of silicon nitride/boron nitride fibrous monoliths

    NASA Astrophysics Data System (ADS)

    Trice, Rodney Wayne

    A unique, all-ceramic material capable of non-brittle fracture via crack deflection has been characterized from 25sp°C through 1400sp°C. This material, called fibrous monoliths (FMs), was comprised of unidirectionally aligned 250 mum diameter cells of silicon nitride surrounded by 10 mum thick cell boundaries of boron nitride. Six weight percent yttria and two weight percent alumina were added to the silicon nitride to aid in densification. TEM experiments revealed that the sintering aids used to densify the silicon nitride cells were migrating into the boron nitride cell boundary during hot-pressing and that a fine network of micro-cracks existed between basal planes of boron nitride. Elevated temperature four point bending tests were performed on fibrous monolith ceramics from room temperature through 1400sp°C. Peak strengths of FMs averaged 510 MPa for specimens tested at room temperature through 176 MPa at 1400sp°C. Work of fractures ranged from 7300 J/msp2 to 3200 J/msp2 under the same temperature conditions. The interfacial fracture energy of boron nitride, GammasbBN, as a function of temperature has been determined using the Charalambides method. The fracture energy of boron nitride is approximately 40 J/msp2 and remained constant from 25sp°C through 950sp°C. A sharp increase in GammasbBN, to about 60 J/msp2, was observed at 1000sp°C-1050sp°C. This increase in GammasbBN was attributed to interactions of the crack tip with the cell boundary glassy phase. Subsequent measurements at 1075sp°C indicated a marked decrease in GammasbBN to near 40 J/msp2 before plateauing at 17-20 J/msp2 in the 1200sp°C-1300sp°C regime. The Mode I fracture toughness of silicon nitride was also determined using the single edge precracked beam method as a function of temperature. The He and Hutchinson model relating crack deflection at an interface to the Dundurs' parameter was applied to the current data set using the temperature dependent fracture energies of the boron

  20. Colloidal characterization of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  1. Atomic Layer Epitaxy of Aluminum Nitride: Unraveling the Connection between Hydrogen Plasma and Carbon Contamination.

    PubMed

    Erwin, Steven C; Lyons, John L

    2018-06-13

    Atomistic control over the growth of semiconductor thin films, such as aluminum nitride, is a long-sought goal in materials physics. One promising approach is plasma-assisted atomic layer epitaxy, in which separate reactant precursors are employed to grow the cation and anion layers in alternating deposition steps. The use of a plasma during the growth-most often a hydrogen plasma-is now routine and generally considered critical, but the precise role of the plasma is not well-understood. We propose a theoretical atomistic model and elucidate its consequences using analytical rate equations, density functional theory, and kinetic Monte Carlo statistical simulations. We show that using a plasma has two important consequences, one beneficial and one detrimental. The plasma produces atomic hydrogen in the gas phase, which is important for removing methyl radicals left over from the aluminum precursor molecules. However, atomic hydrogen also leads to atomic carbon on the surface and, moreover, opens a channel for trapping these carbon atoms as impurities in the subsurface region, where they remain as unwanted contaminants. Understanding this dual role leads us to propose a solution for the carbon contamination problem which leaves the main benefit of the plasma largely unaffected.

  2. Joining engineering ceramics

    NASA Astrophysics Data System (ADS)

    Loehman, Ronald E.

    Methods for joining ceramics are outlined with attention given to their fundamental properties, and some examples of ceramic bonding in engineering ceramic systems are presented. Ceramic-ceramic bonds using no filler material include diffusion and electric-field bonding and ceramic welding, and bonds with filler materials can be provided by Mo-Mn brazing, microwave joining, and reactive nonmetallic liquid bonding. Ceramic-metal joints can be effected with filler material by means of the same ceramic-ceramic processes and without filler material by means of use of molten glass or diffusion bonding. Key properties of the bonding processes include: bonds with discontinuous material properties, energies that are positive relative to the bulk material, and unique chemical and mechanical properties. The processes and properties are outlined for ceramic-metal joints and for joining silicon nitride, and the factors that control wetting, adhesion, and reaction on the atomic scale are critical for establishing successful joints.

  3. Feasibility Assessment for Pressure Casting of Ceramic-Aluminum Composites for NASA's Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    Feasibility assessment of pressure casting of ceramic-aluminum composites for NASA% propulsion applications is summarized. A combination of several demonstration projects to produce three unique components for liquid hydrogen-oxygen rocket engine% flanges, valves and turbo-pump housing are conducted. These components are made from boron carbide, silicon carbide and alumina powders fabricated into complex net shaped parts using dry green powder compaction, slip casting or a novel 3D ink-jet printing process, followed by sintering to produce performs that can be pressure cast by infiltration with molten aluminum. I n addition, joining techniques are also explored to insure that these components can be assembled into a structure without degrading their highly tailored properties. The feasibility assessment was made to determine if these new materials could provide a significant weight savings, thereby reducing vehicle launch costs, while being durable materials to increase safety and performance for propulsion system.

  4. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    NASA Astrophysics Data System (ADS)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  5. Magnetoresistance measurements of superconducting molybdenum nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskaran, R., E-mail: baskaran@igcar.gov.in; Arasu, A. V. Thanikai; Amaladass, E. P.

    2016-05-23

    Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc{sub 2}(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.

  6. Synthesis of Continuous Boron Nitride Nanofibers by Electrospinning

    NASA Astrophysics Data System (ADS)

    Li, Xia; Wen, G.; Zhang, Tao; Xia, Long; Zhong, Bo; Fan, Shaoyu

    Continuous boron nitride nanofibers (BNNFs) have been gotten by electrospinning. The appropriate precursor of BNNFs was electrospinned to green born nitride nanofibers (GBNNFs) with temperatures from 80°C to 100°C in the protection of N2. By successive heat treatments in N2, the organics in GBNNFs disappeared and BN ceramics nanofibers came into being. The average diameters of BNNFs by electrospinning are less than 10 μm

  7. Development of plane strain fracture toughness test for ceramics using Chevron notched specimens

    NASA Technical Reports Server (NTRS)

    Bubsey, R. T.; Shannon, J. L., Jr.; Munz, D.

    1983-01-01

    Chevron-notched four-point-bend and short-bar specimens have been used to determine the fracture toughness of sintered aluminum oxide and hot-pressed silicon nitride ceramics. The fracture toughness for Si3N4 is found to be essentially independent of the specimen size and chevron notch configuration, with values ranging from 4.6 to 4.9 MNm exp -3/2. In contrast, significant specimen size and notch geometry effects have been observed for Al2O3, with the fracture toughness ranging from 3.1 to 4.7 MNm exp -3/2. These effects are attributed to a rising crack growth resistance curve for the Al2O3 tested.

  8. High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

    NASA Astrophysics Data System (ADS)

    Yu, Byoung-Soo; Ha, Tae-Jun

    2018-04-01

    The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

  9. Micromachined ultrasonic transducers with piezoelectric aluminum nitride thin films

    NASA Astrophysics Data System (ADS)

    Wang, Qianghua

    In this research, a laboratory prototype of micromachined ultrasonic transducer (MUT) has been designed and fabricated with the application of piezoelectric aluminum nitride (AlN) thin films. The fabrication process of MUT device, especially the deposition of AlN thin film, is compatible with a standard integrated circuits (IC) technology. Preliminary results have demonstrated the feasibility of AlN thin film applied in MUT for medical ultrasonic detection. AlN thin film was grown on aluminum metal layer by plasma source molecular beam epitaxy (PSMBE) system. X-ray diffraction (XRD) shows the films exhibit a high c-axis texture for a thickness of 1.2 mum grown at a temperature of 450°C. For the AlN film of 1.20 mum, residual stress was a compressive stress of 883 Mpa, which reduced with increasing thickness of the film. Based on the fundamentals of vibration and piezoelectricity, MUT device including silicon resonator and AlN sandwich structure has been designed. A prototype of 8 x 8 devices on a 3″ silicon (100) wafer has been fabricated. A series of experiments were conducted to find the process flow and the optimum process parameters. MUT devices were characterized by optical, electrical, and acoustic measurements. The measured resonant frequencies AlN MUT and PVDF MUT devices were larger than the calculated value in order of 5% to 12%. The ratios of the flexural frequencies to the fundamental frequency were much close to the MUT design model within a 3% error for AlN MUT devices. Resonant frequencies of AlN MUT devices were also verified by the reflection coefficient with a network analyzer and the electrical impedance with an impendence analyzer. Effective coupling factors of AlN MUT devices were determined to be 0.18 from the resonant frequency and the antiresonant frequency. Fractional bandwidth of an AlN MUT was 8.30% at the center frequency of 2.65 MHz. Pressure sensitivity was stable between 14 mV/MPa and 18 mV/MPa independent on the pressure intensity

  10. Process for preparing transition metal nitrides and transition metal carbonitrides and their reaction intermediates

    DOEpatents

    Maya, Leon

    1988-05-24

    A process for making ammonolytic precursors to nitride and carbonitride ceramics. Extreme reaction conditions are not required and the precursor is a powder-like substance that produces ceramics of improved purity and morphology upon pyrolysis.

  11. Compliant sleeve for ceramic turbine blades

    DOEpatents

    Cai, Hongda; Narasimhan, Dave; Strangman, Thomas E.; Easley, Michael L.; Schenk, Bjoern

    2000-01-01

    A compliant sleeve for attaching a ceramic member to a metal member is comprised of a superalloy substrate having a metal contacting side and a ceramic contacting side. The ceramic contacting side is plated with a layer of nickel followed by a layer of platinum. The substrate is then oxidized to form nickel oxide scale on the ceramic contacting side and a cobalt oxide scale on the metal contacting side. A lubricious coating of boron nitride is then applied over the metal contacting side, and a shear-stress limiting gold coating is applied over the ceramic contacting side.

  12. Method of making porous ceramic fluoride

    DOEpatents

    Reiner, Robert H.; Holcombe, Cressie E.

    1990-01-01

    A process for making a porous ceramic composite where fumed silica particles are coated with a nitrate, preferably aluminum nitrate. Next the nitrate is converted to an oxide and formed into a desired configuration. This configuration is heated to convert the oxide to an oxide silicate which is then react with HF, resulting in the fluoride ceramic, preferably aluminum fluoride.

  13. Rolling-element fatigue life of silicon nitride balls: Preliminary test results

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    Hot pressed silicon nitride was evaluated as a rolling element bearing material. The five-ball fatigue tester was used to test 12.7 mm (0.500 in.) diameter balls at a maximum Hertz stress of 800,000 psi at a race temperature of 130 F. The fatigue spalls in the silicon nitride resembled those in typical bearing steels. The ten-percent fatigue life of the silicon nitride balls was approximately one-eighth to one-fifth that of typical bearing steels (52100 and M-50). The load capacity of the silicon nitride was approximately one-third that of typical bearing steels. The load capacity of the silicon nitride was significantly higher than previously tested ceramic materials for rolling element bearings.

  14. Silicon-nitride and metal composite

    DOEpatents

    Landingham, R.L.; Huffsmith, S.A.

    A composite and a method for bonding the composite are described. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi/sub 2/ indirectly bonding the composite together. The method includes contacting the layer of MoSi/sub 2/ with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400/sup 0/C; and, simultaneously, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  15. Silicon-nitride and metal composite

    DOEpatents

    Landingham, Richard L.; Huffsmith, Sarah A.

    1981-01-01

    A composite and a method for bonding the composite. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi.sub.2 indirectly bonding the composite together. The method includes contacting the layer of MoSi.sub.2 with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400.degree. C.; and, simultaneously with the heating, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.

  16. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Cho, Sang June; Park, Jeongpil; Seo, Jung-Hun; Dalmau, Rafael; Zhao, Deyin; Kim, Kwangeun; Gong, Jiarui; Kim, Munho; Lee, In-Kyu; Albrecht, John D.; Zhou, Weidong; Moody, Baxter; Ma, Zhenqiang

    2018-02-01

    AlGaN based 229 nm light emitting diodes (LEDs), employing p-type Si to significantly increase hole injection, were fabricated on single crystal bulk aluminum nitride (AlN) substrates. Nitride heterostructures were epitaxially deposited by organometallic vapor phase epitaxy and inherit the low dislocation density of the native substrate. Following epitaxy, a p-Si layer is bonded to the heterostructure. LEDs were characterized both electrically and optically. Owing to the low defect density films, large concentration of holes from p-Si, and efficient hole injection, no efficiency droop was observed up to a current density of 76 A/cm2 under continuous wave operation and without external thermal management. An optical output power of 160 μW was obtained with the corresponding external quantum efficiency of 0.03%. This study demonstrates that by adopting p-type Si nanomembrane contacts as a hole injector, practical levels of hole injection can be realized in UV light-emitting diodes with very high Al composition AlGaN quantum wells, enabling emission wavelengths and power levels that were previously inaccessible using traditional p-i-n structures with poor hole injection efficiency.

  17. Silver-hafnium braze alloy

    DOEpatents

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  18. A steady-state high-temperature apparatus for measuring thermal conductivity of ceramics

    NASA Astrophysics Data System (ADS)

    Filla, B. James

    1997-07-01

    A one-sided very-high-temperature guarded hot plate has been built to measure thermal conductivity of monolithic ceramics, ceramic composites, thermal barrier coatings, functional graded materials, and high-temperature metal alloys. It is an absolute, steady-state measurement device with an operational temperature range of 400-1400 K. Measurements are made in an atmosphere of low-pressure helium. Specimens examined in this apparatus are 70 mm in diameter, with thicknesses ranging between 1 and 8 mm. Optimal specimen thermal conductivities fall in the range of 0.5-30 W/(mK). Internal heated components are composed entirely of high-purity aluminum oxide, boron nitride, beryllium oxide, and fibrous alumina insulation board. Pure nickel and thermocouple-grade platinum-based alloys are the only metals used in the system. Apparatus design, modeling, and operation are described, along with the methods of data analysis that are unique to this system. An analysis of measurement uncertainty yields a combined measurement uncertainty of ±5%. Experimental measurements on several materials are presented to illustrate the precision and bias of the apparatus.

  19. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    DOE PAGES

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-15

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states maymore » be harnessed for the realization of qubits. As a result, the strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.« less

  20. Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    2001-01-01

    Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without

  1. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    PubMed

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (p<0.0001) and fracture toughness (p<0.0001) were affected by the ceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (p<0.05) but it showed significantly higher fracture toughness (6.0+/-0.2MPam(1/2)) values when compared to the

  2. Manufacture of high-density ceramic sinters

    NASA Technical Reports Server (NTRS)

    Hibata, Y.

    1986-01-01

    High density ceramic sinters are manufactured by coating premolded or presintered porous ceramics with a sealing material of high SiO2 porous glass or nitride glass and then sintering by hot isostatic pressing. The ceramics have excellent abrasion and corrosion resistances. Thus LC-10 (Si3N2 powder) and Y2O3-Al2O3 type sintering were mixed and molded to give a premolded porous ceramic (porosity 37%, relative bulk density 63%). The ceramic was dipped in a slurry containing high SiO2 porous glass and an alcohol solution of cellulose acetate and dried. The coated ceramic was treated in a nitrogen atmosphere and then sintered by hot isostatic pressing to give a dense ceramic sinter.

  3. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez Rossy, Andres E.; Armstrong, Beth L.; Elliott, Amy M.

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to anmore » azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.« less

  4. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  5. Precursors in the preparation of transition metal nitrides and transition metal carbonitrides and their reaction intermediates

    DOEpatents

    Maya, Leon

    1991-01-01

    A process for making ammonolytic precursors to nitride and carbonitride ceramics. Extreme reaction conditions are not required and the precursor is a powder-like substance that produces ceramics of improved purity and morphology upon pyrolysis.

  6. Crystallization of the glassy grain boundary phase in silicon nitride ceramics

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III

    1991-01-01

    The role was studied of the intergranular glassy phase in silicon nitride as-processed with yttria as a sintering aid. The microstructure, crystallization, and viscosity of the glassy phase were areas studied. Crystallization of the intergranular glassy phase to more refractory crystalline phases should improve the high temperature mechanical properties of the silicon nitride. The addition of a nucleating agent will increase the rate of crystallization. The measurement of the viscosity of the glassy phase will permit the estimation of the high temperature deformation of the silicon nitride.

  7. Use of silicon in liquid sintered silicon nitrides and sialons

    DOEpatents

    Raj, R.; Baik, S.

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  8. Use of silicon in liquid sintered silicon nitrides and sialons

    DOEpatents

    Raj, Rishi; Baik, Sunggi

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  9. Mechanical and tribological properties of crystalline aluminum nitride coatings deposited on stainless steel by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Choudhary, R. K.; Mishra, S. C.; Mishra, P.; Limaye, P. K.; Singh, K.

    2015-11-01

    Aluminum nitride (AlN) coating is a potential candidate for addressing the problems of MHD pressure drop, tritium permeation and liquid metal corrosion of the test blanket module of fusion reactor. In this work, AlN coatings were grown on stainless steel by magnetron sputtering. Grazing incidence X-ray diffraction measurement revealed that formation of mixed phase (wurtzite and rock salt) AlN was favored at low discharge power and substrate negative biasing. However, at sufficiently high discharge power and substrate bias, (100) oriented wurtzite AlN was obtained. Secondary ion mass spectroscopy showed presence of oxygen in the coatings. The highest value of hardness and Young's modulus were 14.1 GPa and 215 GPa, respectively. Scratch test showed adhesive failure at a load of about 20 N. Wear test showed improved wear resistance of the coatings obtained at higher substrate bias.

  10. JPRS Report, Science and Technology Japan, 3rd Microelectronics Symposium

    DTIC Science & Technology

    1990-04-20

    Electric Power Insulating Substrate; Degree of Sintering, Thermal Conductivity of Aluminum Nitride Ultrafine Particles ; Effect of Baking Pressure on AlN Sintering; Thick Film Resistor for Use in AlN Ceramics.

  11. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration.

    PubMed

    Cui, Bencang; Li, Jing; Wang, Huining; Lin, Yuanhua; Shen, Yang; Li, Ming; Deng, Xuliang; Nan, Cewen

    2017-07-01

    To fabricate indirect restorative composites for CAD/CAM applications and evaluate the mechanical properties. Polymer-infiltrated-ceramic composites were prepared through infiltrating polymer into partially sintered sodium aluminum silicate ceramic blocks and curing. The corresponding samples were fabricated according to standard ISO-4049 using for mechanical properties measurement. The flexural strength and fracture toughness were measured using a mechanical property testing machine. The Vickers hardness and elastic modulus were calculated from the results of nano-indentation. The microstructures were investigated using secondary electron detector. The density of the porous ceramic blocks was obtained through TG-DTA. The conversion degrees were calculated from the results of mid-infrared spectroscopy. The obtained polymer infiltrated composites have a maximum flexural strength value of 214±6.5MPa, Vickers hardness of 1.76-2.30GPa, elastic modulus of 22.63-27.31GPa, fracture toughness of 1.76-2.35MPam 1/2 and brittleness index of 0.75-1.32μm -1/2 . These results were compared with those of commercial CAD/CAM blocks. Our results suggest that these materials with good mechanical properties are comparable to two commercial CAD/CAM blocks. The sintering temperature could dramatically influence the mechanical properties. Restorative composites with superior mechanical properties were produced. These materials mimic the properties of natural dentin and could be a promising candidate for CAD/CAM applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Improved design and durability of aluminum die casting horizontal shot sleeves

    NASA Astrophysics Data System (ADS)

    Birceanu, Sebastian

    The design and performance of shot sleeves is critical in meeting the engineering requirements of aluminum die cast parts. Improvement in shot sleeve materials have a major impact on dimensional stability, reproducibility and quality of the product. This investigation was undertaken in order to improve the life of aluminum die casting horizontal shot sleeves. Preliminary pin tests were run to evaluate the soldering, wash-out and thermal fatigue behavior of commercially available materials and coatings. An experimental rig was designed and constructed for shot sleeve configuration evaluation. Fabrication and testing of experimental shot sleeves was based upon preliminary results and manufacturing costs. Three shot sleeve designs and materials were compared to a reference nitrided H13 sleeve. Nitrided H13 is the preferred material for aluminum die casting shot sleeves because of wear resistance, strength and relative good soldering and wash-out resistance. The study was directed towards damage evaluation on the area under the pouring hole. This area is the most susceptible to damage because of high temperatures and impingement of molten aluminum. The results of this study showed that tungsten and molybdenum had the least amount of soldering and wash-out damage, and the best thermal fatigue resistance. Low solubility in molten aluminum and stability of intermetallic layers are main factors that determine the soldering and wash-out behavior. Thermal conductivity and thermal expansion coefficient directly influence thermal fatigue behavior. TiAlN nanolayered coating was chosen as the material with the best damage resistance among several commercial PVD coatings, because of relatively large thickness and simple deposition conditions. The results show that molybdenum thermal sprayed coating provided the best protection against damage under the pouring hole. Improved bonding is however required for life extension of the coating. TiAlN PVD coating applied on H13 nitrided

  13. Cu3Mo2O9: An Ultralow-Firing Microwave Dielectric Ceramic with Good Temperature Stability and Chemical Compatibility with Aluminum

    NASA Astrophysics Data System (ADS)

    Wen, Wangxi; Li, Chunchun; Sun, Yihua; Tang, Ying; Fang, Liang

    2018-02-01

    An ultralow-firing microwave dielectric ceramic Cu3Mo2O9 with orthorhombic structure has been fabricated via a solid-state reaction method. X-ray diffraction analysis, Rietveld refinement, Raman spectroscopy, energy-dispersive spectrometry, and scanning electron microscopy were employed to explore the phase purity, crystal structure, and microstructure. Pure and dense Cu3Mo2O9 ceramics could be obtained in the sintering temperature range from 580°C to 680°C. The sample sintered at 660°C for 4 h exhibited the highest relative density (˜ 97.2%) and best microwave dielectric properties with ɛ r = 7.2, Q × f = 19,300 GHz, and τ f = - 7.8 ppm/°C. Chemical compatibility with aluminum electrodes was also confirmed. All the results suggest that Cu3Mo2O9 ceramic is a promising candidate for use in ultralow-temperature cofired ceramic applications.

  14. Ceramic Laser Materials

    PubMed Central

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  15. Low temperature aluminum nitride thin films for sensory applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarar, E.; Zamponi, C.; Piorra, A.

    2016-07-15

    A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d{sub 33,f}) increased from 2.30 ± 0.32 pm/Vmore » up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε{sub r}) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e{sub 31,f}|) of 1.39 ± 0.01 C/m{sup 2} was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.« less

  16. New Oxide Ceramic Developed for Superior High-Temperature Wear Resistance

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Miyoshi, Kazuhisa; Farmer, Serene C.

    2003-01-01

    Ceramics, for the most part, do not have inherently good tribological properties. For example friction coefficients in excess of 0.7 have been reported for silicon nitride sliding on silicon nitride or on bearing steel (ref. 1). High friction is always accompanied by considerable wear. Despite their inherently poor tribological properties, the high strength and high toughness of silicon nitride (Si3N4) ceramics has led to their successful use in tribological applications (refs. 1 to 4). The upper temperature limit for the application of Si3N4 as wear-resistant material is limited by reaction with the tribological environment (ref. 3). Silicon nitride is known to produce a thin silicon dioxide film with easy shear capability that results in low friction and low wear in a moist environment (ref. 5). At elevated temperatures, the removal of the reaction product that acts as lubricant causes the friction coefficient to increase and, consequently, the wear performance to become poor. New materials are sought that will have wear resistance superior to that of Si3N4 at elevated temperatures and in harsh environments. A new class of oxide ceramic materials has been developed with potential for excellent high-temperature wear resistance. The new material consists of a multicomponent oxide with a two-phase microstructure, in which the wear resistance of the mixed oxide is significantly higher than that of the individual constituents. This is attributed to the strong constraining effects provided by the interlocking microstructures at different length scales, to the large aspect ratio of the phases, to the strong interphase bonding, and to the residual stresses. Fretting wear tests were conducted by rubbing the new ceramic material against boron carbide (B4C). The new ceramic material produced a wear track groove on B4C, suggesting significantly higher wear resistance for the oxide ceramic. The new material did not suffer from any microstructural degradation after the wear

  17. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.

  18. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    NASA Astrophysics Data System (ADS)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  19. Evaluation of an innovative high temperature ceramic wafer seal for hypersonic engine applications. Ph.D. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1992-01-01

    A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the design, development, analytical and experimental evaluation of a new ceramic wafer seal that shows promise of meeting these demands will be addressed. A high temperature seal test fixture was designed and fabricated to measure static seal leakage performance under engine simulated conditions. Ceramic wafer seal leakage rates are presented for engine-simulated air pressure differentials (up to 100 psi), and temperature (up to 1350 F), sealing both flat and distorted wall conditions, where distortions can be as large as 0.15 inches in only an 18 inch span. Seal leakage rates are low, meeting an industry-established tentative leakage limit for all combinations of temperature, pressure and wall conditions considered. A seal leakage model developed from externally-pressurized gas film bearing theory is also presented. Predicted leakage rates agree favorably with the measured data for nearly all conditions of temperature and pressure. Discrepancies noted at high engine pressure and temperature are attributed to thermally-induced, non-uniform changes in the size and shape of the leakage gap condition. The challenging thermal environment the seal must operate in places considerable demands on the seal concept and material selection. Of the many high temperature materials considered in the design, ceramics were the only materials that met the many challenging seal material design requirements. Of the aluminum oxide, silicon carbide, and silicon nitride ceramics considered in the material ranking scheme developed herein, the silicon nitride

  20. Stable Boron Nitride Interphases for Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Ceramic matrix composites (CMC's) require strong fibers for good toughness and weak interphases so that cracks which are formed in the matrix debond and deflect around the fibers. If the fibers are strongly bonded to the matrix, CMC's behave like monolithic ceramics (e.g., a ceramic coffee cup), and when subjected to mechanical loads that induce cracking, such CMC's fail catastrophically. Since CMC's are being developed for high temperature corrosive environments such as the combustor liner for advanced High Speed Civil Transport aircraft, the interphases need to be able to withstand the environment when the matrix cracks.

  1. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: Elementary source vapor phase epitaxy

    PubMed Central

    Wu, PeiTsen; Funato, Mitsuru; Kawakami, Yoichi

    2015-01-01

    Aluminum nitride (AlN) has attracted increasing interest as an optoelectronic material in the deep ultraviolet spectral range due to its wide bandgap of 6.0 eV (207 nm wavelength) at room temperature. Because AlN bulk single crystals are ideal device substrates for such applications, the crystal growth of bulky AlN has been extensively studied. Two growth methods seem especially promising: hydride vapor phase epitaxy (HVPE) and sublimation. However, the former requires hazardous gases such as hydrochloric acid and ammonia, while the latter needs extremely high growth temperatures around 2000 °C. Herein we propose a novel vapor-phase-epitaxy-based growth method for AlN that does not use toxic materials; the source precursors are elementary aluminum and nitrogen gas. To prepare our AlN, we constructed a new growth apparatus, which realizes growth of AlN single crystals at a rate of ~18 μm/h at 1550 °C using argon as the source transfer via the simple reaction Al + 1/2N2 → AlN. This growth rate is comparable to that by HVPE, and the growth temperature is much lower than that in sublimation. Thus, this study opens up a novel route to achieve environmentally friendly growth of AlN. PMID:26616203

  2. New nano-sized Al2O3-BN coating 3Y-TZP ceramic composites for CAD/CAM-produced all-ceramic dental restorations. Part I. Fabrication of powders.

    PubMed

    Yang, Se Fei; Yang, Li Qiang; Jin, Zhi Hao; Guo, Tian Wen; Wang, Lei; Liu, Hong Chen

    2009-06-01

    Partially sintered 3 mol % yttria-stabilized tetragonal zirconium dioxide (ZrO(2), zirconia) polycrystal (3Y-TZP) ceramics are used in dental posterior restorations with computer-aided design-computer-aided manufacturing (CAD/CAM) techniques. High strength is acquired after sintering, but shape distortion of preshaped compacts during their sintering is inevitable. The aim of this study is to fabricate new machinable ceramic composites with strong mechanical properties that are fit for all-ceramic dental restorations. Aluminum oxide (Al(2)O(3))-coated 3Y-TZP powders were first prepared by the heterogeneous precipitation method starting with 3Y-TZP, Al(NO(3))(3) . 9H(2)O, and ammonia, then amorphous boron nitride (BN) was produced and the as-received composite powders were coated via in situ reaction with boric acid and urea. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to analyze the status of Al(2)O(3)-BN on the surface of the 3Y-TZP particles. TEM micrographs show an abundance of Al(2)O(3) particles and amorphous BN appearing uniformly on the surface of the 3Y-TZP particles after the coating process. The size of the Al(2)O(3) particles is about 20 nm. The XRD pattern shows clearly the peak of amorphous BN among the peaks of ZrO(2).

  3. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Baaklini, G. Y.; Rokhlin, S.I.

    1993-01-01

    This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  4. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    NASA Astrophysics Data System (ADS)

    Wieg, A. T.; Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Garay, J. E.

    2016-12-01

    We introduce high thermal conductivity aluminum nitride (AlN) as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL) emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l'Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  5. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation

    NASA Astrophysics Data System (ADS)

    Ghatge, Mayur; Tabrizian, Roozbeh

    2018-03-01

    A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.

  6. Aluminum phosphate ceramics for waste storage

    DOEpatents

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  7. An optical and magnetic resonance study of point defects in silicon, diamond, and aluminum nitride

    NASA Astrophysics Data System (ADS)

    Mason, Philip Wayne

    1998-12-01

    Optical and magnetic resonance studies of point defects in silicon, diamond, and aluminum nitride semiconducting crystals are described in this dissertation. In silicon, an optically detected magnetic resonance (ODMR) study of a sulfur-related defect with two stable configurations, Ssb{A} and Ssb{B}, each with its own photoluminescence (PL) band and associated ODMR spectrum, is discussed. Through ODMR and related linear polarization studies, the Ssb{A} configuration is conclusively determined to have Csb1 (triclinic) symmetry (which is also the tentative finding for Ssb{B}), a controversial issue in the literature. A conversion study comparing the PL and PLODMR shows a one-to-one conversion between the two configurations for each type of signal. Related findings also tentatively suggest that the Ssb{B} configuration is metastable in both the neutral and single positive charge states of the defect. In addition, an independent analysis presented of uniaxial stress data obtained at King's College, London, shows evidence that an inverted energy-level ordering of the excited electronic effective mass states (Asb1 above E) explains the data better than the opposite ordering which is usually observed for effective mass systems. The mechanism responsible for inversion is currently not known. In diamond, a 1.4 eV Ni-related band with very sharp zero-phonon lines is studied using magnetic circular dichroism in absorption (MCDA). A tunable laser was used to directly measure circular polarization properties of transitions between individual Zeeman-split spin states. The Zeeman study also provided a determination of their associated g-values. A comparison with a theoretical model involving intra-d-shell transitions of Ni indicates that a transition from a ground state of Gammasb{5,6}(sp2E) symmetry to a Gammasb4(sp2Asb1) excited state explains the experimental MCDA findings and agrees with results from a previous uniaxial stress polarization study of luminescence associated

  8. Development of a statistically proven injection molding method for reaction bonded silicon nitride, sintering reaction bonded silicon nitride, and sintered silicon nitride

    NASA Astrophysics Data System (ADS)

    Steiner, Matthias

    A statistically proven, series injection molding technique for ceramic components was developed for the construction of engines and gas turbines. The flow behavior of silicon injection-molding materials was characterized and improved. Hot-isostatic-pressing reaction bonded silicon nitride (HIPRBSN) was developed. A nondestructive component evaluation method was developed. An injection molding line for HIPRBSN engine components precombustion chamber, flame spreader, and valve guide was developed. This line allows the production of small series for engine tests.

  9. Effects of Electric Discharge Plasma Treatment on the Thermal Conductivity of Polymer-Metal Nitride/Carbide Composites

    NASA Astrophysics Data System (ADS)

    Parali, Levent; Kurbanov, Mirza A.; Bayramov, Azad A.; Tatardar, Farida N.; Sultanakhmedova, Ramazanova I.; Xanlar, Huseynova Gulnara

    2015-11-01

    High-density polymer composites with semiconductor or dielectric fillers such as aluminum nitride (AIN), aluminum oxide (Al2O3), titanium carbide (TiC), titanium nitride (TiN), boron nitride (BN), silicon nitride (Si3N4), and titanium carbonitride (TiCN) were prepared by the hot pressing method. Each powder phase of the composites was exposed to an electric discharge plasma process before composite formation. The effects of the electric discharge plasma process and the filler content (volume fraction) on the thermal conductivity, volt-ampere characteristics, thermally stimulated depolarization current, as well as electrical and mechanical strength were investigated. The results of the study indicate that, with increasing filler volume fraction, the thermal conductivity of the samples also increased. Furthermore, the thermal conductivity, and electrophysical and mechanical properties of the high-density polyethylene + 70% BN composite modified using the electric discharge plasma showed improvement when compared with that without electric discharge plasma treatment.

  10. Performance of Chevron-notch short bar specimen in determining the fracture toughness of silicon nitride and aluminum oxide

    NASA Technical Reports Server (NTRS)

    Munz, D.; Bubsey, R. T.; Shannon, J. L., Jr.

    1980-01-01

    Ease of preparation and testing are advantages unique to the chevron-notch specimen used for the determination of the plane strain fracture toughness of extremely brittle materials. During testing, a crack develops at the notch tip and extends stably as the load is increased. For a given specimen and notch configuration, maximum load always occurs at the same relative crack length independent of the material. Fracture toughness is determined from the maximum load with no need for crack length measurement. Chevron notch acuity is relatively unimportant since a crack is produced during specimen loading. In this paper, the authors use their previously determined stress intensity factor relationship for the chevron-notch short bar specimen to examine the performance of that specimen in determining the plane strain fracture toughness of silicon nitride and aluminum oxide.

  11. Ceramic technology for solar thermal receivers

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Smoak, R. H.

    1981-01-01

    The high-temperature capability, resistance to corrosive environments and non-strategic nature of ceramics have prompted applications in the solar thermal field whose advantages over metallic devices of comparable performance may begin to be assessed. It is shown by a survey of point-focusing receiver designs employing a variety of ceramic compositions and fabrication methods that the state-of-the-art in structural ceramics is not sufficiently advanced to fully realize the promised benefits of higher temperature capabilities at lower cost than metallic alternatives. The ceramics considered include alumina, berylia, magnesia, stabilized zirconia, fused silica, silicon nitride, silicon carbide, mullite and cordierite, processed by such methods as isostatic pressing, dry pressing, slip casting, extrusion, calendaring and injection molding.

  12. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillinger, M.; Schneider, M.; Bittner, A.

    2015-02-14

    Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 hmore » in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.« less

  13. Composite Reinforcement using Boron Nitride Nanotubes

    DTIC Science & Technology

    2014-05-09

    while retaining the nanotube structure. This project involves the use of computational quantum chemistry to study interactions of aluminium (Al...small clusters of 1–4 metal atoms. The effect of varying the radius of the nanotubes and the size of aluminium and titanium clusters was considered...15. SUBJECT TERMS Boron Nitride Nanotubes, composite materials, Aluminum Alloys , Titanium Alloy , Theoretical Chemistry 16. SECURITY

  14. Process for the synthesis of nanophase dispersion-strengthened aluminum alloy

    DOEpatents

    Barbour, John C.; Knapp, James Arthur; Follstaedt, David Martin; Myers, Samuel Maxwell

    1998-12-15

    A process for fabricating dispersion-strengthened ceramic-metal composites is claimed. The process comprises in-situ interaction and chemical reaction of a metal in gaseous form with a ceramic producer in plasma form. Such composites can be fabricated with macroscopic dimensions. Special emphasis is placed on fabrication of dispersion-strengthened aluminum oxide-aluminum composites, which can exhibit flow stresses more characteristic of high strength steel.

  15. Ultrasonic Welding of Thin Alumina and Aluminum Using Inserts

    NASA Astrophysics Data System (ADS)

    Ishikuro, Tomoaki; Matsuoka, Shin-Ichi

    This paper describes an experimental study of ultrasonic welding of thin ceramics and metals using inserts. Ultrasonic welding has enable the joining of various thick ceramics, such as Al2O3 and ZrO2, to aluminum at room temperature quickly and easily as compared to other welding methods. However, for thin ceramics, which are brittle, welding is difficult to perform without causing damage. In this study, aluminum anodized oxide with different anodizing time was used as thin alumina ceramic. Vapor deposition of aluminum alloys was used to create an effective binder layer for welding at a low pressure and within a short duration in order to prevent damage to the anodic oxide film formed with a short anodizing time. For example, ultrasonic welding of thin Al2O3/Al was accomplished under the following conditions: ultrasonic horn tip amplitude of 30µm, welding pressure of 5MPa, and required duration of 0.1s. However, since the vapor deposition film tends to exfoliate as observed in the anodic oxide film formed with a long anodizing time, welding was difficult.

  16. Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2015-09-01

    13. ABSTRACT (maximum 200 words) Gallium nitride/aluminum gallium nitride high electron mobility transistors with nickel/ gold (Ni/Au) and...platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath the gate finger of the...nickel/ gold (Ni/Au) and platinum/ gold (Pt/Au) gating are irradiated with 2 MeV protons. Destructive physical analysis revealed material voids underneath

  17. Magnetic properties of the ammonolysis product of α-Fe powder containing a small amount of aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsugawa, Yuta; Maubuchi, Yuji; Motohashi, Teruki

    2015-02-15

    Magnetite was prepared containing a small amount of aluminum and its nitride was generated through low temperature ammonolysis following reduction under hydrogen. The nitrided product was determined by XRD to be a mixture of “α″-Fe{sub 16}N{sub 2}” having a slightly deformed crystal structure from α″-Fe{sub 16}N{sub 2} and the residual α-Fe. Magnetic coercivity of the mixture was decreased from the value of 150 mT obtained for the nitride product made without aluminum, due to the precipitation of nonmagnetic amorphous alumina in the low temperature nitrided bcc (Fe{sub 1−x}Al{sub x}) with x≤0.03. The aluminum-doped nitride product in which the “α″-Fe{sub 16}N{submore » 2}” fraction was 30 at% exhibited magnetization at 1.5 T of approximately 200 Am{sup 2}kg{sup −1} at room temperature and its magnetic coercivity was 20 mT. - Graphical abstract: Magnetic iron nitride particles were separated by nonmagnetic amorphous γ-alumina. Magnetic coercivity was decreased by reducing the magnetic interaction between the particles. - Highlights: • Magnetic coercivity decreased in α”-Fe{sub 16}N{sub 2} like compound as a soft magnet. • Small amount of Al addition was effective in its preparation. • Magnetic interaction decreased between the “α”-Fe{sub 16}N{sub 2}” particles.« less

  18. Crack healing behavior of hot pressed silicon nitride due to oxidation

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Tikare, V.

    1992-01-01

    It is shown that limited oxidation of an MgO-containing, hot-pressed silicon nitride ceramic at 800 deg C and above results in increased strength due to crack healing. Slight oxidation of the surface produces enstatite and cristobalite which fills in cracks. More extensive oxidation leads to strength degradation due to the formation of new flaws by the evolution of N2 gas at the surface. The apparent fracture toughness also increased at 800 deg C and above due to oxidation. Bonds formed between the two surfaces of the crack during oxidation leads to a reduction in stress intensity at the crack tip, suggesting that valid high-temperature toughness values cannot be obtained in an air environment. The increase in strength due to crack healing by oxidation can be achieved without compromising the fatigue properties of the silicon nitride ceramic.

  19. Modeling of Lithium Niobate (LiNbO3) and Aluminum Nitride (AlN) Nanowires Using Comsol Multiphysics Software: The Case of Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Ahmad, A. A.; Alsaad, A.; Al-Bataineh, Q. M.; Al-Naafa, M. A.

    2018-02-01

    In this study, Lithium niobate (LiNbO3) and Aluminum nitride (AlN) nanostructures were designed and investigated using the COMSOL Multiphysics software for pressure sensing applications. The Finite Element Method (FEM) was used for solving the differential equations with various parameters such as size, length, force, etc. The variation of the total maximum displacement as a function of applied force for various NWs lengths and the variation of the voltage as a function of applied force were plotted and discussed. AlN nanowires exhibit a better piezoelectric response than LiNbO3 nanowires do.

  20. Fatigue life of high-speed ball bearings with silicon nitride balls

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    Hot-pressed silicon nitride was evaluated as a rolling-element bearing material. The five-ball fatigue tester was used to test 12.7-mm- diameter silicon nitride balls at maximum Hertz stresses ranging from 4.27 x 10 to the 9th power n/sq m to 6.21 x 10 to the 9th power n/sq m at a race temperature of 328K. The fatigue life of NC-132 hot-pressed silicon nitride was found to be equal to typical bearing steels and much greater than other ceramic or cermet materials at the same stress levels. A digital computer program was used to predict the fatigue life of 120-mm- bore angular-contact ball bearings containing either steel or silicon nitride balls. The analysis indicates that there is no improvement in the lives of bearings of the same geometry operating at DN values from 2 to 4 million where silicon nitride balls are used in place of steel balls.

  1. Method of forming aluminum oxynitride material and bodies formed by such methods

    DOEpatents

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  2. Molybdenum nitride fibers or tubes via ammonolysis of polysulfide precursor

    NASA Astrophysics Data System (ADS)

    Wang, Shutao; Zhang, Zude; Zhang, Yange; Qian, Yitai

    2004-08-01

    Millimeter-sized molybdenum nitride (MoN), in the forms of fiber-like prisms or hollow tubes, has been successfully synthesized via thermal ammonolysis of molybdenum polysulfide precursor. The initial morphology of the precursor is well preserved in the final product. This method could be expanded to preparation of other fiber-like nonmetal ceramics without addition of template. The polysulfide precursor (abbreviated to PS), hydrothermally prepared at 30°C (PS1) or 150°C (PS2), was characterized by various methods for better comprehension of the sulfide-nitride topotactic conversion model.

  3. Nanopillar arrays of amorphous carbon nitride

    NASA Astrophysics Data System (ADS)

    Sai Krishna, Katla; Pavan Kumar, B. V. V. S.; Eswaramoorthy, Muthusamy

    2011-07-01

    Nanopillar arrays of amorphous carbon nitride have been prepared using anodic aluminum oxide (AAO) membrane as a template. The amine groups present on the surface of these nanopillars were exploited for functionalization with oleic acid in order to stabilize the nanostructure at the aqueous-organic interface and also for the immobilization of metal nanoparticles and protein. These immobilised nanoparticles were found to have good catalytic activity.

  4. Boron Nitride Nanotubes Synthesized by Pressurized Reactive Milling Process

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    2004-01-01

    Nanotubes, because of their very high strength, are attractive as reinforcement materials for ceramic matrix composites (CMCs). Recently there has been considerable interest in developing and applying carbon nanotubes for both electronic and structural applications. Although carbon nanotubes can be used to reinforce composites, they oxidize at high temperatures and, therefore, may not be suitable for ceramic composites. Boron nitride, because it has a higher oxidation resistance than carbon, could be a potential reinforcement material for ceramic composites. Although boron nitride nanotubes (BNnT) are known to be structurally similar to carbon nanotubes, they have not undergone the same extensive scrutiny that carbon nanotubes have experienced in recent years. This has been due to the difficulty in synthesizing this material rather than lack of interest in the material. We expect that BNnTs will maintain the high strength of carbon nanotubes while offering superior performance for the high-temperature and/or corrosive applications of interest to NASA. At the NASA Glenn Research of preparing BN-nTs were investigated and compared. These include the arc jet process, the reactive milling process, and chemical vapor deposition. The most successful was a pressurized reactive milling process that synthesizes BN-nTs of reasonable quantities.

  5. Molecular dynamic simulations of the intergranular films between alumina and silicon nitride crystal grains

    NASA Astrophysics Data System (ADS)

    Zhang, Shenghong

    The intergranular films (IGFs) between the ceramics grains have very important effects on the structure and mechanical properties on the whole ceramics and have been studied for many decades. In the thesis, molecular dynamic (MD) computer simulations were applied to study the IGFs between the alumina and silicon nitride ceramic grains. Preferential adsorption of specific ions from the IGFs to the contacting surfaces of the alumina crystals was observed in the study of calcium-alumino-silicate glassy (CAS) IGFs formed between the combined basal and prism orientations of alpha-Al2O3 crystals. This segregation of specific ions to the interface enables formation of localized, ordered structures between the IGF and the crystals. However, the segregation behavior of the ions is anisotropic, depending on the orientation of the alpha-Al2O 3 crystals. Self-diffusion of calcium ions between these CAS IGFs was also carried out by MD simulations. The results show that the diffusion coefficients adjacent to the interfaces are smaller and the activation energies are much higher than those in the interior of the IGF and in bulk glasses. It was also suggested that Ca transport is mainly though the interior of the IGF and implies that diffusion would be significantly inhibited by sufficiently thin IGFs. The growth of the alumina ceramic grains was simulated in the contacting with IGFs containing high concentrations of aluminum ions. Five different compositions in the IGFs were studied. Results show preferential growth along the [1120] of the (1120) surface in comparison to growth along the [0001] direction on the (0001) surface for compositions near a Ca/Al ratio of 0.5. The simulations also show the mechanism by which Ca ions in the IGF inhibit growth on the basal surface. The simulations provide an atomistic view of attachment onto crystal surfaces, affecting grain growth in alumina. The dissolution of the alumina crystal grains in the silicate melts is another important issue in

  6. Materials Analysis of Transient Plasma-Wall Interactions

    DTIC Science & Technology

    2014-05-13

    such as copper, aluminum, zirconium, titanium, and tungsten) and ceramics (beryllia, aluminum nitride, silicon carbide , etc.). These materials were...formation of silicon carbide . Therefore, a flat Macor disk was polished, and prepared for deuterium exposure by sonicating the sample in both methanol...of silicon constituents whereas the exposed sample clearly shows the addition of carbide and silicon segregation on the surface. 10 AFOSR

  7. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOEpatents

    Raj, R.; Baik, S.

    1985-11-12

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  8. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOEpatents

    Raj, Rishi; Baik, Sunggi

    1985-11-12

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  9. Enhanced c-axis orientation of aluminum nitride thin films by plasma-based pre-conditioning of sapphire substrates for SAW applications

    NASA Astrophysics Data System (ADS)

    Gillinger, M.; Shaposhnikov, K.; Knobloch, T.; Stöger-Pollach, M.; Artner, W.; Hradil, K.; Schneider, M.; Kaltenbacher, M.; Schmid, U.

    2018-03-01

    Aluminum nitride (AlN) on sapphire has been investigated with two different pretreatments prior to sputter deposition of the AlN layer to improve the orientation and homogeneity of the thin film. An inverse sputter etching of the substrate in argon atmosphere results in an improvement of the uniformity of the alignment of the AlN grains and hence, in enhanced electro-mechanical AlN film properties. This effect is demonstrated in the raw measurements of SAW test devices. Additionally, the impulse response of several devices shows that a poor AlN thin film layer quality leads to a higher signal damping during the transduction of energy in the inter-digital transducers. As a result, the triple-transit signal cannot be detected at the receiver.

  10. Sealing ceramic material in low melting point glass

    NASA Technical Reports Server (NTRS)

    Moritoki, M.; Fujikawa, T.; Miyanaga, J.

    1984-01-01

    A structured device placed in an aerated crucible to pack ceramics molding substance that is to be processed was designed. The structure is wrapped by sealing material made of pyrex glass and graphite foil or sheet with a weight attached on top of it. The crucible is made of carbon; the ceramics material to be treated through heat intervenient press process is molding substance consisting mainly of silicon nitride.

  11. Technology for High Pure Aluminum Oxide Production from Aluminum Scrap

    NASA Astrophysics Data System (ADS)

    Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2017-10-01

    In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.

  12. Li.sub.2 O-Al.sub.2 O.sub.3 -SiO.sub.2 glass ceramic-aluminum containing austenitic stainless steel composite body and a method of producing the same

    DOEpatents

    Cassidy, Roger T.

    1990-05-01

    The present invention relates to a hermetically sealed Li.sub.2 O-Al.sub.2 O.sub.3 -SiO.sub.2 glass ceramic-aluminum containing stainless steel composite body and a method of producing the body. The composite body includes an oxide interfacial region between the glass ceramic and metal, wherein the interfacial region consists essentially of an Al.sub.2 O.sub.3 layer. The interfacial Al.sub.2 O.sub.3 region includes constituents of both the metal and glass ceramic.

  13. Silicon Nitride Ceramic Fibers from Preceramic Polymers.

    DTIC Science & Technology

    1987-06-01

    the preceramic fibers into high strength Si3 N and silicon carbide nitride (SiCN) fibers. In the past year, we have learned to prepare polysilazanes...INTHELOY, Given the Empirical Formula for a Material, It Should be Possible to Prepare a Chemical Analog CERAMC CHMIAL MONOMERIC UNIT MONOMERIC UNIT SI3 N4...e a d e nf u ible B y. POLYSILAZANE PRECURSORS TO Si3 Nj IN PRACTICE: It Is Difficult to Synthesize Even Simple, High Molecular Weight Preceramic

  14. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1992-04-28

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  15. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J. Birch; Kingman, deceased, Donald D.; Bianchini, Gregory M.

    1992-01-01

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  16. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Park, Cheol (Inventor); Bryant, Robert George (Inventor); Lowther, Sharon E. (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  17. Foreign Object Damage in a Gas-Turbine Grade Silicon Nitride by Spherical Projectiles of Various Materials

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.

    2006-01-01

    Assessments of foreign object damage (FOD) of a commercial, gas-turbine grade, in situ toughened silicon nitride ceramic (AS800, Honeywell Ceramics Components) were made using four different projectile materials at ambient temperature. AS800 flexure target specimens rigidly supported were impacted at their centers in a velocity range from 50 to 450 m/s by spherical projectiles with a diameter of 1.59 mm. Four different projectile materials were used including hardened steel, annealed steel, silicon nitride ceramic, and brass. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to appraise the severity of local impact damage. For a given impact velocity, the degree of strength degradation was greatest for ceramic balls, least for brass balls, and intermediate for annealed and hardened steel balls. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles. Impact load as a function of impact velocity was quasi-statically estimated based on both impact and static indentation associated data.

  18. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics.

    PubMed

    Borges, Gilberto Antonio; Sophr, Ana Maria; de Goes, Mario Fernando; Sobrinho, Lourenço Correr; Chan, Daniel C N

    2003-05-01

    The ceramic composition and microstructure surface of all-ceramic restorations are important components of an effective bonding substrate. Both hydrofluoric acid etching and airborne aluminum oxide particle abrasion produce irregular surfaces necessary for micromechanical bonding. Although surface treatments of feldspathic and leucite porcelains have been studied previously, the high alumina-containing and lithium disilicate ceramics have not been fully investigated. The purpose of this study was to assess the surface topography of 6 different ceramics after treatment with either hydrofluoric acid etching or airborne aluminum oxide particle abrasion. Five copings each of IPS Empress, IPS Empress 2 (0.8 mm thick), Cergogold (0.7 mm thick), In-Ceram Alumina, In-Ceram Zirconia, and Procera (0.8 mm thick) were fabricated following the manufacturer's instructions. Each coping was longitudinally sectioned into 4 equal parts by a diamond disk. The resulting sections were then randomly divided into 3 groups depending on subsequent surface treatments: Group 1, specimens without additional surface treatments, as received from the laboratory (control); Group 2, specimens treated by use of airborne particle abrasion with 50-microm aluminum oxide; and Group 3, specimens treated with 10% hydrofluoric acid etching (20 seconds for IPS Empress 2; 60 seconds for IPS Empress and Cergogold; and 2 minutes for In-Ceram Alumina, In-Ceram Zirconia, and Procera). Airborne particle abrasion changed the morphologic surface of IPS Empress, IPS Empress 2, and Cergogold ceramics. The surface topography of these ceramics exhibited shallow irregularities not evident in the control group. For Procera, the 50-microm aluminum oxide airborne particle abrasion produced a flattened surface. Airborne particle abrasion of In-Ceram Alumina and In-Ceram Zirconia did not change the morphologic characteristics and the same shallows pits found in the control group remained. For IPS Empress 2, 10% hydrofluoric

  19. Transient liquid phase ceramic bonding

    DOEpatents

    Glaeser, Andreas M.

    1994-01-01

    Ceramics are joined to themselves or to metals using a transient liquid phase method employing three layers, one of which is a refractory metal, ceramic or alloy. The refractory layer is placed between two metal layers, each of which has a lower melting point than the refractory layer. The three layers are pressed between the two articles to be bonded to form an assembly. The assembly is heated to a bonding temperature at which the refractory layer remains solid, but the two metal layers melt to form a liquid. The refractory layer reacts with the surrounding liquid and a single solid bonding layer is eventually formed. The layers may be designed to react completely with each other and form refractory intermetallic bonding layers. Impurities incorporated into the refractory metal may react with the metal layers to form refractory compounds. Another method for joining ceramic articles employs a ceramic interlayer sandwiched between two metal layers. In alternative embodiments, the metal layers may include sublayers. A method is also provided for joining two ceramic articles using a single interlayer. An alternate bonding method provides a refractory-metal oxide interlayer placed adjacent to a strong oxide former. Aluminum or aluminum alloys are joined together using metal interlayers.

  20. Comment on ``Equation of state of aluminum nitride and its shock response'' [J. Appl. Phys. 76, 4077 (1994)

    NASA Astrophysics Data System (ADS)

    Rosenberg, Z.; Brar, N. S.

    1995-11-01

    A recent article by Dandekar, Abbate, and Frankel [J. Appl. Phys. 76, 4077 (1994)] reviews existing data on high-pressure properties of aluminum nitride (AlN) in an effort to build an equation of state for this material. A rather large portion of that article is devoted to the shear strength of AlN and, in particular, to our data of 1991 with longitudinal and lateral stress gauges [Z. Rosenberg, N. S. Brar, and S. J. Bless, J. Appl. Phys. 70, 167 (1991)]. Since our highest data point has an error of 1 GPa, much of the discussion and conclusions of Dandekar and co-workers are not relevant once this error in data reduction is corrected. We also discuss the relevance of our shear strength data for various issues, such as the phase transformation of AlN at 20 GPa and the general shape of Hugoniot curves for brittle solids.

  1. Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack

    NASA Technical Reports Server (NTRS)

    Strangmen, Thomas E.; Fox, Dennis S.

    1994-01-01

    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine

  2. Metal-ceramic joint assembly

    DOEpatents

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  3. Reliability Factors for Electronic Components in a Storage Environment

    DTIC Science & Technology

    1977-09-01

    Other moisture-induced failure mechanisms include crack propagation in brittle materials such as ceramic seals, glass passivation layers, nitride ...for Aluminum -Gold .... .............. ... 80 4-5 Fatigue S-N Curve Typical for Most Metals and Polymers . 85 4-6 Comparison of Surface Damageý Within...8 Aluminum -Silicon Phase Diagram ...... ............... 96 5-1 Evaluation of Gases from Microcircuit Package .... ....... 121 6-1 Plot of Resistivity

  4. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  5. Helical Growth of Aluminum Nitride: New Insights into Its Growth Habit from Nanostructures to Single Crystals

    PubMed Central

    Zhang, Xing-Hong; Shao, Rui-Wen; Jin, Lei; Wang, Jian-Yu; Zheng, Kun; Zhao, Chao-Liang; Han, Jie-Cai; Chen, Bin; Sekiguchi, Takashi; Zhang, Zhi; Zou, Jin; Song, Bo

    2015-01-01

    By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model. PMID:25976071

  6. Stability and rheology of dispersions of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1987-01-01

    The relationship between the surface and colloid chemistry of commercial ultra-fine silicon carbide and silicon nitride powders was examined by a variety of standard characterization techniques and by methodologies especially developed for ceramic dispersions. These include electrokinetic measurement, surface titration, and surface spectroscopies. The effects of powder pretreatment and modification strategies, which can be utilized to augment control of processing characteristics, were monitored with these technologies. Both silicon carbide and nitride were found to exhibit silica-like surface chemistries, but silicon nitride powders possess an additional amine surface functionality. Colloidal characteristics of the various nitride powders in aqueous suspension is believed to be highly dependent on the relative amounts of the two types of surface groups, which in turn is determined by the powder synthesis route. The differences in the apparent colloidal characteristics for silicon nitride powders cannot be attributed to the specific absorption of ammonium ions. Development of a model for the prediction of double-layer characteristics of materials with a hybrid site interface facilitated understanding and prediction of the behavior of both surface charge and surface potential for these materials. The utility of the model in application to silicon nitride powders was demonstrated.

  7. Ceramic Near-Net Shaped Processing Using Highly-Loaded Aqueous Suspensions

    NASA Astrophysics Data System (ADS)

    Rueschhoff, Lisa

    Ceramic materials offer great advantages over their metal counterparts, due to their lower density, higher hardness and wear resistance, and higher melting temperatures. However, the use of ceramics in applications where their properties would offer tremendous advantages are often limited due to the difficulty of forming them into complex and near-net shaped parts. Methods that have been developed to injection-mold or cast ceramics into more complicated shapes often use significant volume fractions of a carrier (often greater than 35 vol.% polymer), elevated temperature processing, or less-than-environmentally friendly chemicals where a complex chemical synthesis reaction must be timed perfectly for the approach to work. Furthermore, the continuing maturation of additive manufacturing methods requires a new approach for flowing/placing ceramic powders into useful designs. This thesis addresses the limitations of the current ceramic forming approaches by developing highly-stabilized and therefore high solids loading ceramic suspensions, with the requisite rheology for a variety of complex and near-net shaped forming techniques. Silicon nitride was chosen as a material of focus due to its high fracture toughness compared to other ceramic materials. Designing ceramic suspensions that are flowable at room temperature greatly simplifies processing as neither heating nor cooling are required during forming. Highly-loaded suspensions (>40 vol.%) are desired because all formed ceramic bodies have to be sintered to remove pores. Finally, using aqueous-based suspensions reduces any detrimental effect on the environment and tooling. The preparation of highly-loaded suspensions requires the development of a suitable dispersant through which particle-particle interactions are controlled. However, silicon nitride is difficult to stabilize in water due to complex surface and solution chemistry. In this study, aqueous silicon nitride suspensions up to 45 vol.% solids loading were

  8. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources

    PubMed Central

    Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.

    2015-01-01

    Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 – 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335

  9. Corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments

    NASA Astrophysics Data System (ADS)

    Kusada, Kentaro

    The objective of this study is to evaluate corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments. Al5052-H3 and Al6061-T6 were selected as substrates, and HCLCoat11 and HCLCoat13 developed in the Hawaii Corrosion Laboratory were selected for the siloxane ceramic/polymer coatings. The HCLCoat11 is a quasi-ceramic coating that has little to no hydrocarbons in its structure. The HCLCoat13 is formulated to incorporate more hydrocarbons to improve adhesion to substrate surfaces with less active functionalities. In this study, two major corrosion evaluation methods were used, which were the polarization test and the immersion test. The polarization tests provided theoretical corrosion rates (mg/dm 2/day) of bare, HCLCoat11-coated, and HCLCoat13-coated aluminum alloys in aerated 3.15wt% sodium chloride solution. From these results, the HCLCoat13-coated Al5052-H3 was found to have the lowest corrosion rate which was 0.073mdd. The next lowest corrosion rate was 0.166mdd of the HCLCoat11-coated Al5052-H3. Corrosion initiation was found to occur at preexisting breaches (pores) in the films by optical microscopy and SEM analysis. The HCLCoat11 film had many preexisting breaches of 1-2microm in diameter, while the HCLCoat13 film had much fewer preexisting breaches of less than 1microm in diameter. However, the immersion tests showed that the seawater immersion made HCLCoat13 film break away while the HCLCoat11 film did not apparently degrade, indicating that the HCLCoat11 film is more durable against seawater than the HCLCoat13. Raman spectroscopy revealed that there was some degradation of HCLCoat11 and HCLCoat13. For the HCLCoat11 film, the structure relaxation of Si-O-Si linkages was observed. On the other hand, seawater generated C-H-S bonds in the HCLCoat13 film resulting in the degradation of the film. In addition, it was found that the HCLCoat11 coating had anti-fouling properties due to its high water contact

  10. Spacecraft ceramic protective shield

    NASA Technical Reports Server (NTRS)

    Larriva, Rene F. (Inventor); Nelson, Anne (M.); Czechanski, James G. (Inventor); Poff, Ray E. (Inventor)

    1995-01-01

    A low areal density protective shield apparatus, and method for making same, for protecting spacecraft structures from impact with hypervelocity objects, including a bumper member comprising a bumper ceramic layer, a bumper shock attenuator layer, and a bumper confining layer. The bumper ceramic layer can be SiC or B.sub.4 C; the bumper shock attenuator layer can be zirconia felt; and the bumper confining layer can be aluminum. A base armor member can be spaced from the bumper member and a ceramic fiber-based curtain can be positioned between the bumper and base armor members.

  11. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  12. Magnetic-Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for Extreme Environments

    DTIC Science & Technology

    2016-04-01

    SUBJECT TERMS carbon nanotubes, composite, electromagnetic shielding , extreme environments, magnetism , fibers, woven composite, boron nitride...AFRL-AFOSR-VA-TR-2016-0158 Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for Extreme Environments Konstantin...From - To) 15 Sep 2012 to 14 Nov 2017 4. TITLE AND SUBTITLE Magnetic -Field-Assisted Assembly of Ordered Multifunctional Ceramic Nanocomposites for

  13. Effects of Nano-Aluminum Nitride on the Performance of an Ultrahigh-Temperature Inorganic Phosphate Adhesive Cured at Room Temperature

    PubMed Central

    Ma, Chengkun; Chen, Hailong; Wang, Chao; Zhang, Jifeng; Qi, Hui; Zhou, Limin

    2017-01-01

    Based on the optimal proportion of resin and curing agent, an ultrahigh-temperature inorganic phosphate adhesive was prepared with aluminum dihydric phosphate, aluminium oxide (α-Al2O3), etc. and cured at room temperature (RT). Then, nano-aluminum nitride (nano-AlN), nano-Cupric oxide (nano-CuO), and nano-titanium oxide (nano-TiO2) were added into the adhesive. Differential scanning calorimetry was conducted using the inorganic phosphate adhesive to analyze the phosphate reactions during heat treatment, and it was found that 15 wt % nano-AlN could clearly decrease the curing temperature. Scanning electron microscopy was used to observe the microphenomenon of the modified adhesive at ultrahigh-temperature. The differential thermal analysis of the inorganic phosphate adhesive showed that the weight loss was approximately 6.5 wt % when the mass ratio of resin to curing agent was 1:1.5. An X-ray diffraction analysis of the adhesive with 10% nano-AlN showed that the phase structure changed from AlPO4(11-0500) to the more stable AlPO4(10-0423) structure after heat treatment. The shear strength of the adhesive containing 10% nano-AlN reached 7.3 MPa at RT due to the addition of nano-AlN, which promoted the formation of phosphate and increased the Al3+. PMID:29099812

  14. Ceramic-metal composite article and joining method

    DOEpatents

    Kang, Shinhoo; Selverian, John H.; Kim, Hans J.; Dunn, Edmund M.; Kim, Kyung S.

    1992-01-01

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof.

  15. Ceramic-metal composite article and joining method

    DOEpatents

    Kang, S.; Selverian, J.H.; Kim, H.J.; Dunn, E.M.; Kim, K.S.

    1992-04-28

    A ceramic-metal article including a ceramic rod, a metal rod, and a braze joining the ceramic and metal rods at a braze area of a coaxial bore in the metal rod is described. The bore gradually decreases in diameter, having an inward seat area sized for close sliding fit about the ceramic, a larger brazing area near the joint end, and a void area intermediate the braze and seat areas. The ceramic is seated without brazing in the bore seat area. The side wall between the brazing area and the metal outer surface is about 0.030-0.080 inch. The braze includes an inner braze layer, an outer braze layer, and an interlayer about 0.030-0.090 inch thick. A shoulder between the brazing and void areas supports the interlayer during bonding while preventing bonding between the void area and the ceramic member, leaving a void space between the void area and the ceramic member. A venting orifice extends generally radially through the metal member from the outer surface to the void space. The braze layers are palladium, platinum, gold, silver, copper, nickel, indium, chromium, molybdenum, niobium, iron, aluminum, or alloys thereof. Preferred is a gold-palladium-nickel brazing alloy. The interlayer is nickel, molybdenum, copper, tantalum, tungsten, niobium, aluminum, cobalt, iron, or an alloy thereof. 4 figs.

  16. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOEpatents

    Landingham, R.L.; Shell, T.E.

    1985-05-20

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  17. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOEpatents

    Landingham, Richard L.; Shell, Thomas E.

    1987-01-01

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  18. Performance Evaluations of Ceramic Wafer Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; DeMange, Jeffrey J.; Steinetz, Bruce M.

    2006-01-01

    Future hypersonic vehicles will require high temperature, dynamic seals in advanced ramjet/scramjet engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Seal temperatures in these locations can exceed 2000 F, especially when the seals are in contact with hot ceramic matrix composite sealing surfaces. NASA Glenn Research Center is developing advanced ceramic wafer seals to meet the needs of these applications. High temperature scrub tests performed between silicon nitride wafers and carbon-silicon carbide rub surfaces revealed high friction forces and evidence of material transfer from the rub surfaces to the wafer seals. Stickage between adjacent wafers was also observed after testing. Several design changes to the wafer seals were evaluated as possible solutions to these concerns. Wafers with recessed sides were evaluated as a potential means of reducing friction between adjacent wafers. Alternative wafer materials are also being considered as a means of reducing friction between the seals and their sealing surfaces and because the baseline silicon nitride wafer material (AS800) is no longer commercially available.

  19. Design, fabrication and spin testing of ceramic blade metal disk attachment

    NASA Technical Reports Server (NTRS)

    Calvert, G.

    1979-01-01

    A ceramic turbine blade-metal disk attachment was designed for small, non man-rated turbine engine applications. The selected design consisted of a hot pressed silicon nitride blade having a skewed dovetail attachment with a compliant interlayer between the disk and the blade. Two-dimensional and three-dimensional analyses predicted that life goals could be achieved, considering both NDE limitations and crack growth rates for the ceramic material. Twenty ceramic blades were fabricated to closely-held manufacturing tolerances. New fracture mechanics data at elevated temperature are presented.

  20. Positron annihilation in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  1. Thermodynamics of inversion-domain boundaries in aluminum nitride: Interplay between interface energy and electric dipole potential energy

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Xie, Y. P.; Guo, H. B.; Chen, Y. G.

    2018-05-01

    Aluminum nitride (AlN) has a polar crystal structure that is susceptible to electric dipolar interactions. The inversion domains in AlN, similar to those in GaN and other wurtzite-structure materials, decrease the energy associated with the electric dipolar interactions at the expense of inversion-domain boundaries, whose interface energy has not been quantified. We study the atomic structures of six different inversion-domain boundaries in AlN, and compare their interface energies from density functional theory calculations. The low-energy interfaces have atomic structures with similar bonding geometry as those in the bulk phase, while the high-energy interfaces contain N-N wrong bonds. We calculate the formation energy of an inversion domain using the interface energy and dipoles' electric-field energy, and find that the distribution of the inversion domains is an important parameter for the microstructures of AlN films. Using this thermodynamic model, it is possible to control the polarity and microstructure of AlN films by tuning the distribution of an inversion-domain nucleus and by selecting the low-energy synthesis methods.

  2. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  3. Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride

    PubMed Central

    Knapp, Marius; Hoffmann, René; Cimalla, Volker; Ambacher, Oliver

    2017-01-01

    The two-dimensional and virtually massless character of graphene attracts great interest for radio frequency devices, such as surface and bulk acoustic wave resonators. Due to its good electric conductivity, graphene might be an alternative as a virtually massless electrode by improving resonator performance regarding mass-loading effects. We report on an optimization of the commonly used wet transfer technique for large-area graphene, grown via chemical vapor deposition, onto aluminum nitride (AlN), which is mainly used as an active, piezoelectric material for acoustic devices. Today, graphene wet transfer is well-engineered for silicon dioxide (SiO2). Investigations on AlN substrates reveal highly different surface properties compared to SiO2 regarding wettability, which strongly influences the quality of transferred graphene monolayers. Both physical and chemical effects of a plasma treatment of AlN surfaces change wettability and avoid large-scale cracks in the transferred graphene sheet during desiccation. Spatially-resolved Raman spectroscopy reveals a strong strain and doping dependence on AlN plasma pretreatments correlating with the electrical conductivity of graphene. In our work, we achieved transferred crack-free large-area (40 × 40 mm2) graphene monolayers with sheet resistances down to 350 Ω/sq. These achievements make graphene more powerful as an eco-friendly and cheaper replacement for conventional electrode materials used in radio frequency resonator devices. PMID:28820462

  4. Aluminum nanoparticles burning - still a puzzle?

    NASA Astrophysics Data System (ADS)

    Gromov, A. A.; Popenko, E. M.

    2009-09-01

    The experimental data on the aluminum nanopowders (nAl) combustion in oxidizing media (air, propellants AP/HTPB/Al/HMX, and energetic compositions) assuming the phenomenon of nitrides formation with the high yield is generalized. In the present work, the nAl produced by electrical explosion of wires was studied. The temperature, burning rate, and radiation were measured at combustion and the actual burning process was recorded by a videocamera. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and chemical analysis were performed on the both initial powders and final condensed products. It was experimentally proved that the combustion process of aluminum nanoparticles was two staged independently of burning conditions in nitrogen-containing media. The formation of nitrides in presence of molecular nitrogen is the determining stage in the particles combustion. A qualitative discussion is given on the kinetic limitation for AlN (AlON) oxidation due to rapid condensation and encapsulation of solid AlN (AlON).

  5. Ceramic Life Prediction Methodology.

    DTIC Science & Technology

    1986-03-01

    stress rupture data were collected on two materials, a sintered silicon nitride and a lithium-aluminum-silicate. The fast fracture data was presented...graphically in the form of Weibull plots of percent failed versus failure stress . The stress rupture results were presented in tabular form. Photo...micrographs were presented to illustrate the fracture surfaces of fast fracture and stress rupture failures. A program of specimen development was coaducted

  6. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films.

    PubMed

    Hees, J; Heidrich, N; Pletschen, W; Sah, R E; Wolfer, M; Williams, O A; Lebedev, V; Nebel, C E; Ambacher, O

    2013-01-18

    Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water. Thereby, the nucleation density for the initial growth of diamond on AlN can be varied from very low (10(8) cm(-2)), in the case of hydrogen-treated ND seeding particles, to very high values of 10(11) cm(-2) for oxidized ND particles. Our approach yielding high nucleation densities allows the growth of very thin NCD films on AlN with thicknesses as low as 40 nm for applications such as microelectromechanical beam resonators. Fabricated piezo-actuated micro-resonators exhibit enhanced mechanical properties due to the incorporation of boron-doped NCD films. Highly boron-doped NCD thin films which replace the metal top electrode offer Young's moduli of more than 1000 GPa.

  7. Ceramic fibers from Si-B-C polymer precursors

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.

    1993-01-01

    Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.

  8. Batch compositions for cordierite ceramics

    DOEpatents

    Hickman, David L.

    1994-07-26

    Ceramic products consisting principally of cordierite and a method for making them are provided, the method employing batches comprising a mineral component and a chemical component, the mineral component comprising clay and talc and the chemical component consisting essentially of a combination of the powdered oxides, hydroxides, or hydrous oxides of magnesium, aluminum and silicon. Ceramics made by extrusion and firing of the batches can exhibit low porosity, high strength and low thermal expansion coefficients.

  9. Tribological properties of structural ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Miyoshi, K.

    1985-01-01

    The tribological and lubricated behavior of both oxide and nonoxide ceramics are reviewed in this chapter. Ceramics are examined in contact with themselves, other harder materials and metals. Elastic, plastic and fracture behavior of ceramics in solid state contact is discussed. The contact load necessary to initiate fracture in ceramics is shown to be appreciably reduced with tangential motion. Both friction and wear of ceramics are anisotropic and relate to crystal structure as has been observed with metals. Grit size effects in two and three body abrasive wear are observed for ceramics. Both free energy of oxide formation and the d valence bond character of metals are related to the friction and wear characteristics for metals in contact with ceramics. Surface contaminants affect friction and adhesive wear. For example, carbon on silicon carbide and chlorine on aluminum oxide reduce friction while oxygen on metal surfaces in contact with ceramics increases friction. Lubrication increases the critical load necessary to initiate fracture of ceramics both in indentation and with sliding or rubbing. Ceramics compositions both as coatings and in composites are described for the high temperature lubrication of both alloys and ceramics.

  10. Soviet Developments in High Temperature Ceramics No. 1, January-December 1975

    DTIC Science & Technology

    1976-02-25

    in microstructure and granulometric composition of silicon nitride in the process of hot pressing were studied by optical and electron micrographic...and on the laboratory-made a-alumina specimens^have shown that densely- sintered ceramics can be produced by a simplified process using a- Al -O...dusting of the powdered ceramic materials, spinel slurry deposition and subsequent fusion by a plasma jet traveling along the coated surface at

  11. Reduction of Defects on Microstructure Aluminium Nitride Using High Temperature Annealing Heat Treatment

    NASA Astrophysics Data System (ADS)

    Tanasta, Z.; Muhamad, P.; Kuwano, N.; Norfazrina, H. M. Y.; Unuh, M. H.

    2018-03-01

    Aluminium Nitride (AlN) is a ceramic 111-nitride material that is used widely as components in functional devices. Besides good thermal conductivity, it also has a high band gap in emitting light which is 6 eV. AlN thin film is grown on the sapphire substrate (0001). However, lattice mismatch between both materials has caused defects to exist along the microstructure of AlN thin films. The defects have affected the properties of Aluminium Nitride. Annealing heat treatment has been proved by the previous researcher to be the best method to improve the microstructure of Aluminium Nitride thin films. Hence, this method is applied at four different temperatures for two hour. The changes of Aluminium Nitride microstructures before and after annealing is observed using Transmission Electron Microscope. It is observed that inversion domains start to occur at temperature of 1500 °C. Convergent Beam Electron Diffraction pattern simulation has confirmed the defects as inversion domain. Therefore, this paper is about to extract the matters occurred during the process of producing high quality Aluminium Nitride thin films and the ways to overcome this problem.

  12. Static Fatigue Behavior of Structural Ceramics in a Corrosive Environment

    DTIC Science & Technology

    1990-06-01

    R. E., MEISER, M. D., and YONUSHONIS, T. Molten Salt Corrosion of SiC and Si3N4 Ceramics. J. Am. Ceram. Soc., v. 59, no. 5-6, 1976, p. 278-279. 7...Engineering Materials 1I, NASA TM-89820, April 13-15, 1987. 10. JACOBSON, N. S., and FOX, D. S. Molten Salt Corrosion of Silicon Nitride: II, Sodium...Sulfate. J. Am. Ceram. Soc.. v. 71. no. 2., 198,. p. 139-148. 11. JACOBSON, N. S., SMIALEK, J. L., and FOX, D. S. Molten Salt Corrosion of SiC and Si3N4

  13. Ceramic impregnated superabrasives

    DOEpatents

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  14. Advanced ceramic material for high temperature turbine tip seals

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Solomon, N. G.; Stetson, A. R.

    1980-01-01

    Forty-one material systems were evaluated for potential use in turbine blade tip seal applications at 1370 C. Both ceramic blade tip inserts and abradable ceramic tip shoes were tested. Hot gas erosion, impact resistance, thermal stability, and dynamic rub performance were the criteria used in rating the various materials. Silicon carbide and silicon nitride were used, both as blade tips and abradables. The blade tip inserts were fabricated by hot pressing while low density and honeycomb abradables were sintered or reaction bonded.

  15. Ceramic-to-metal bonding for pressure transducers

    NASA Technical Reports Server (NTRS)

    Mackenzie, J. D.

    1984-01-01

    A solid-state diffusion technique involving the placement of a gold foil between INCONEL X-750 and a machinable glass-ceramic "MACOR" was shown to be successful in bonding these two materials. This technique was selected after an exhaustive literature search on ceramic-metal bonding methods. Small expansion mismatch between the Inconel and the MACOR resulted in fracture of the MACOR when the bonded body was subjected to tensile stress of 535 psi. The bonded parts were submitted to a cyclic loading test in an air atmosphere at 1 Hz from 0 to 60 KPa. Failure was observed after 700,000 cycles at 650 C. Ceramic-Inconel bonding was not achieved with this method for boron nitride and silica glass.

  16. Fracture Behavior of Ceramics Under Displacement Controlled Loading

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Brewer, David; Ghosn, Louis

    1994-01-01

    A Mode I fracture specimen and loading method has been developed which permits the observation of stable crack extension in monolithic and in situ toughened ceramics. The developed technique was used to conduct room temperature tests on commercial grade alumina (Coors' AD-995) and silicon nitride (Norton NC-132). The results of these tests are reported. Crack growth for the alumina remained subcritical throughout testing revealing possible effects of environmental stress corrosion. The crack growth resistance curve for the alumina is presented. The silicon nitride tests displayed a series of stable (slow) crack growth segments interrupted by dynamic (rapid) crack extension. Crack initiation and arrest stress intensity factors, K(sub Ic) and K(sub Ia), for silicon nitride are reported. The evolution of the specimen design through testing is briefly discussed.

  17. Metal-Ceramic composites via “in situ” methods

    NASA Astrophysics Data System (ADS)

    Florea, R. M.

    2017-08-01

    Several “in situ” methods for obtaining composite materials with ceramic particles were developed in order to overcome some of the inherent problems associated with conventional processes. This paper reviews the obtaining processes of composite materials with a greater emphasis on nitriding and oxidation by directed melting. These obtaining methods provide microstructures with different combinations of metal-ceramic. Metal matrix composites with controlled amounts of dispersed ceramic particles are obtained by “in situ” processes. The composite materials obtained are having different properties by controlling various processing variables such as temperature, time, the reactant phases and the reinforcing material. The properties of the “in situ” obtained materials depend mainly on the matrix and volume fraction of constituent phase. Briefly are reviewed the mechanical properties, hardness mechanisms and possible applications of these composite materials. Nitridation is much more attractive because with the variation of process parameters is obtained a wider range of microstructures and properties. The activation energy for the formation of AlN (A1N ˜ 100 kJ/mole) is smaller than that of oxidation (Al2O3 ˜ 400 kJ/mole) and growth rates (3 × 10-2 gm/cm2/s) are at least three times higher for oxidation.

  18. Ceramic bearings for use in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1988-01-01

    Three decades of research by U.S. industry and government laboratories have produced a vast body of data related to the use of ceramic rolling element bearings and bearing components for aircraft gas turbine engines. Materials such as alumina, silicon carbide, titanium carbide, silicon nitride, and a crystallized glass ceramic have been investigated. Rolling-element endurance tests and analysis of full-complement bearings have been performed. Materials and bearing design methods have continuously improved over the years. This paper reviews a wide range of data and analyses with emphasis on how early NASA contributions as well as more recent data can enable the engineer or metallurgist to determine just where ceramic bearings are most applicable for gas turbines.

  19. Silicon Nitride Equation of State

    NASA Astrophysics Data System (ADS)

    Swaminathan, Pazhayannur; Brown, Robert

    2015-06-01

    This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.

  20. Method of preparing fiber reinforced ceramic material

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T. (Inventor)

    1987-01-01

    Alternate layers of mats of specially coated SiC fibers and silicon monotapes are hot pressed in two stages to form a fiber reinforced ceramic material. In the first stage a die is heated to about 600 C in a vacuum furnace and maintained at this temperature for about one-half hour to remove fugitive binder. In the second stage the die temperature is raised to about 1000 C and the layers are pressed at between 35 and 138 MPa. The resulting preform is placed in a reactor tube where a nitriding gas is flowed past the preform at 1100 to 1400 C to nitride the same.

  1. Performance of Ceramics in Severe Environments

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.

    2005-01-01

    Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.

  2. High-temperature ceramics for automobile gas turbines

    NASA Technical Reports Server (NTRS)

    Walzer, P.

    1978-01-01

    The employment of the high operational temperatures makes it necessary to use, for the construction of the turbines, ceramic materials such as silicon nitride or silicon carbide. Investigations concerning the development of turbine components made of such materials are conducted by a German automobile manufacturer and the ceramics industry. The current status of these investigations is reviewed. Flame tubes and guide-vane rings have successfully passed tests lasting 20 hours. Prototype turbine wheels have withstood the effects of peripheral speeds of 450 m/s. They also showed resistance to thermal shocks which were as high as 6-0 K/s.

  3. Wear of Selected Oxide Ceramics and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Sayir, A.; Farmer, S. C.

    2005-01-01

    The use of oxide ceramics and coatings for moving mechanical components operating in high-temperature, oxidizing environments creates a need to define the tribological performance and durability of these materials. Results of research focusing on the wear behavior and properties of Al2O3/ZrO2 (Y2O3) eutectics and coatings under dry sliding conditions are discussed. The importance of microstructure and composition on wear properties of directionally solidified oxide eutectics is illustrated. Wear data of selected oxide-, nitride-, and carbide-based ceramics and coatings are given for temperatures up to 973K in air.

  4. AIN-Coated Al(2)O(3) Substrates For Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Kolawa, Elzbieta; Lowry, Lynn; Herman, Martin; Lee, Karen

    1996-01-01

    Type of improved ceramic substrate for high-frequency, high-power electronic circuits combines relatively high thermal conductivity of aluminum nitride with surface smoothness of alumina. Consists of 15-micrometer layer of AIN deposited on highly polished alumina. Used for packaging millimeter-wave gallium arsenide transmitter chips, power silicon chips, and like.

  5. Evaluation of Silicon Nitride for Brayton Turbine Wheel Application

    NASA Technical Reports Server (NTRS)

    Freedman, Marc R.

    2008-01-01

    Silicon nitride (Si3N4) is being evaluated as a risk-reduction alternative for a Jupiter Icy Moons Orbiter Brayton turbine wheel in the event that the Prometheus program design requirements exceed the creep strength of the baseline metallic superalloys. Five Si3N4 ceramics, each processed by a different method, were screened based on the Weibull distribution of bend strength at 1700 F (927 C). Three of the Si3N4 ceramics, Honeywell AS800, Kyocera SN282, and Saint-Gobain NT154, had bend strengths in excess of 87 ksi (600 MPa) at 1700 F (927 C). These were chosen for further assessment and consideration for future subcomponent and component fabrication and testing.

  6. Corrosion Issues for Ceramics in Gas Turbines

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Opila, Elizabeth J.; Tortorelli, Peter F.; More, Karren L.; Nickel, Klaus G.; Hirata, Takehiko; Yoshida, Makoto; Yuri, Isao

    2000-01-01

    The requirements for hot-gas-path materials in gas turbine engines are demanding. These materials must maintain high strength and creep resistance in a particularly aggressive environment. A typical gas turbine environment involves high temperatures, rapid gas flow rates, high pressures, and a complex mixture of aggressive gases. Figure 26.1 illustrates the requirements for components of an aircraft engine and critical issues [1]. Currently, heat engines are constructed of metal alloys, which meet these requirements within strict temperature limits. In order to extend these temperature limits, ceramic materials have been considered as potential engine materials, due to their high melting points and stability at high temperatures. These materials include oxides, carbides, borides, and nitrides. Interest in using these materials in engines appears to have begun in the 1940s with BeO-based porcelains [2]. During the 1950s, the efforts shifted to cermets. These were carbide-based materials intended to exploit the best properties of metals and ceramics. During the 1960s and 1970s, the silicon-based ceramics silicon carbide (SiC) and silicon nitride (Si3N4) were extensively developed. Although the desirable high-temperature properties of SiC and Si3N4 had long been known, consolidation of powders into component-sized bodies required the development of a series of specialized processing routes [3]. For SiC, the major consolidation routes are reaction bonding, hot-pressing, and sintering. The use of boron and carbon as additives which enable sintering was a particularly noteworthy advance [4]. For Si3N4 the major consolidation routes are reaction bonding and hot pressing [5]. Reaction-bonding involves nitridation of silicon powder. Hot pressing involves addition of various refractory oxides, such as magnesia (MgO), alumina (Al2O3), and yttria (y2O3). Variations on these processes include a number of routes including Hot Isostatic Pressing (HIP), gas-pressure sintering

  7. Improved reaction sintered silicon nitride. [protective coatings to improve oxidation resistance

    NASA Technical Reports Server (NTRS)

    Baumgartner, H. R.

    1978-01-01

    Processing treatments were applied to as-nitrided reaction sintered silicon nitride (RSSN) with the purposes of improving strength after processing to above 350 MN/m2 and improving strength after oxidation exposure. The experimental approaches are divided into three broad classifications: sintering of surface-applied powders; impregnation of solution followed by further thermal processing; and infiltration of molten silicon and subsequent carburization or nitridation of the silicon. The impregnation of RSSN with solutions of aluminum nitrate and zirconyl chloride, followed by heating at 1400-1500 C in a nitrogen atmosphere containing silicon monoxide, improved RSSN strength and oxidation resistance. The room temperature bend strength of RSSN was increased nearly fifty percent above the untreated strength with mean absolute strengths up to 420 MN/m2. Strengths of treated samples that were measured after a 12 hour oxidation exposure in air were up to 90 percent of the original as-nitrided strength, as compared to retained strengths in the range of 35 to 60 percent for untreated RSSN after the same oxidation exposure.

  8. Silicon nitride films deposited with an electron beam created plasma

    NASA Technical Reports Server (NTRS)

    Bishop, D. C.; Emery, K. A.; Rocca, J. J.; Thompson, L. R.; Zamani, H.; Collins, G. J.

    1984-01-01

    The electron beam assisted chemical vapor deposition (EBCVD) of silicon nitride films using NH3, N2, and SiH4 as the reactant gases is reported. The films have been deposited on aluminum, SiO2, and polysilicon film substrates as well as on crystalline silicon substrates. The range of experimental conditions under which silicon nitrides have been deposited includes substrate temperatures from 50 to 400 C, electron beam currents of 2-40 mA, electron beam energies of 1-5 keV, total ambient pressures of 0.1-0.4 Torr, and NH3/SiH4 mass flow ratios of 1-80. The physical, electrical, and chemical properties of the EBCVD films are discussed.

  9. Effect of hydrogen on the strength and microstructure of selected ceramics

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Eckel, Andrew J.; Hull, David R.; Misra, Ajay K.

    1990-01-01

    Ceramics in monolithic form and as composite constituents in the form of fibers, matrices, and coatings are currently being considered for a variety of high-temperature applications in aeronautics and space. Many of these applications involve exposure to a hydrogen-containing environment. The compatibility of selected ceramics in gaseous high-temperature hydrogen is assessed. Environmental stability regimes for the long term use of ceramic materials are defined by the parameters of temperature, pressure, and moisture content. Thermodynamically predicted reactions between hydrogen and several monolithic ceramics are compared with actual performance in a controlled environment. Morphology of hydrogen attack and the corresponding strength degradation is reported for silicon carbide, silicon nitride, alumina, magnesia, and mullite.

  10. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    NASA Astrophysics Data System (ADS)

    Che, Franklin; Grabtchak, Serge; Whelan, William M.; Ponomarenko, Sergey A.; Cada, Michael

    We have experimentally measured the surface second-harmonic generation (SHG) of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver.

  11. A chemical and fluid dynamic study of the chemical vapor deposition of aluminum nitride in a vertical reactor

    NASA Astrophysics Data System (ADS)

    Bather, Wayne Anthony

    The metalorganic chemical vapor deposition (MOCVD) growth of compound semiconductors has become important in producing many high performance electronic and optoelectronic devices from the wide bandgaps III-V nitrides, for example, aluminum nitride (AlN). A systematic theoretical and experimental investigation of the chemistry and mass transport process in a MOCVD system can yield predictive models of the deposition process. The chemistries and fluid dynamics of the MOCVD growth of AlN in a vertical reactor is analyzed and characterized in order to parameterize and model the deposition process. A Fourier Transform Infrared (FTIR) spectroscopic study of the predeposition reactions between trimethylaluminum (TMAl) and ammonia (NHsb3) is carried out in a static gas cell to examine the primary homogeneous gas phase reactions, pyrolysis of the reactants, and adduct formation, possibly accompanied by elimination reactions. A series of reactions, based on laboratory studies and literature review, is then proposed to model the deposition process. All pertinent kinetic, thermochemical, and transport properties were obtained. Utilizing a mass transport model, we performed computational fluid dynamics calculations using the FLUENT software package. We determined temperature, velocity, and concentration profiles, along with deposition rates inside the experimental vertical CVD reactor in the Howard University Material Science Research Center of Excellence. Experimental deposition rate data were found to be in good agreement with those predicted from the simulations, thus validating the proposed model. The control of the homogeneous gas phase reaction leading to the formation and subsequent decomposition of the adduct is critical to the formation of device-grade AlN films. Many basic processes occurring during MOCVD of AlN are still not completely understood, and none of the detailed surface reaction mechanisms are known.

  12. The microstructural characterization of an in situ grown Si{sub 3}N{sub 4} whisker-reinforced BAS glass-ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Feng; Ortiz-Longo, C.R.; White, K.W.

    The microstructure of barium aluminum silicate (BAS)/silicon nitride in situ whisker reinforced ceramic matrix composite was examined by X-ray diffraction, transmission electron microscopy, electron diffraction and energy-dispersive X-ray microanalysis. Although the authors can not conclusively exclude the presence of orthorhombic BAS, hexagonal BAS and both {alpha}-Si{sub 3}N{sub 4} and {beta}-Si{sub 3}N{sub 4} were identified in this material. The {beta}-Si{sub 3}N{sub 4} whiskers nucleate and grow in random directions in the nearly continuous matrix of metastable hexacelsian. The crystallization process of the glass phase can be taken almost to completion but a small proportion of residual glass phase is present atmore » the interface and grains-junction. Both whisker-like and equiaxed {beta}-Si{sub 3}N{sub 4} exist in this material.« less

  13. Coating and dispersion of ceramic nanoparticles by UV-ozone etching assisted surface-initiated living radical polymerization.

    PubMed

    Arita, Toshihiko

    2010-10-01

    Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.

  14. Protective coating for ceramic materials

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Churchward, Rex A. (Inventor); Lowe, David M. (Inventor)

    1994-01-01

    A protective coating for ceramic materials such as those made of silicon carbide, aluminum oxide, zirconium oxide, aluminoborosilicate and silicon dioxide, and a thermal control structure comprising a ceramic material having coated thereon the protective coating. The protective coating contains, in admixture, silicon dioxide powder, colloidal silicon dioxide, water, and one or more emittance agents selected from silicon tetraboride, silicon hexaboride, silicon carbide, molybdenum disilicide, tungsten disilicide and zirconium diboride. In another aspect, the protective coating is coated on a flexible ceramic fabric which is the outer cover of a composite insulation. In yet another aspect, a metallic foil is bonded to the outer surface of a ceramic fabric outer cover of a composite insulation via the protective coating. A primary application of this invention is as a protective coating for ceramic materials used in a heat shield for space vehicles subjected to very high aero-convective heating environments.

  15. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure

    PubMed Central

    Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Stan, George E.

    2017-01-01

    Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c-axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials. PMID:29149061

  16. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure.

    PubMed

    Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Kołodziejczyk, Łukasz; Luculescu, Catalin-Romeo; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Vladescu, Alina; Stan, George E

    2017-11-17

    Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c -axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  17. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.

    1991-01-01

    A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.

  18. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOEpatents

    Copley, S.M.; Tao, H.; Todd-Copley, J.A.

    1991-06-11

    A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.

  19. Comparison of the surface charge behavior of commercial silicon nitride and silicon carbide powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1988-01-01

    The adsorption and desorption of protons from aqueous solution onto the surfaces of a variety of commercial silicon carbide and silicon nitride powders has been examined using a surface titration methodology. This method provides information on some colloidal characteristics, such as the point of zero charge (pzc) and the variation of proton adsorption with dispersion pH, useful for the prediction of optimal ceramic-processing conditions. Qualitatively, the magnitude of the proton adsorption from solution reveals small differences among all of the materials studied. However, the results show that the pzc for the various silicon nitride powders is affected by the powder synthesis route. Complementary investigations have shown that milling can also act to shift the pzc exhibited by silicon nitride powder. Also, studies of the role of the electrolyte in the development of surface charge have indicated no evidence of specific adsorption of ammonium ion on either silicon nitride or silicon carbide powders.

  20. Ceramic regenerator systems development program. [for automobile gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1977-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  1. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    PubMed

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Viscoelastic Behavior of PDMS Filled with Boron Nitrides

    NASA Astrophysics Data System (ADS)

    Bian, J. F.; Weinkauf, D. H.; Jeon, H. S.

    2004-03-01

    The addition of high thermal conductive filler particles such as boron nitride, aluminum nitride, or carbon fiber is an effective way to increase the thermal conductivity of polymeric materials for the industrial applications such as electronic packaging materials, encapsulants, and thermal fluids among others. The effects of particle dispersions, concentrations, and the interactions between BN and polymer matrix on the viscoelastic properties of the boron nitride (BN)/polydimethylsiloxane (PDMS) composites prepared by mechanical mixing are investigated using oscillatory shear rheology. Both untreated and plasma treated boron nitride (BNP) particles with hexafluoropropylene oxide monomers have been used in this study. The addition of the plasma treated BN particles to the PDMS matrix decrease significantly the complex viscosity as well as storage and loss modulus of the composites due to the reduced interfacial energy between the surface of BNP and PDMS chains. For the PDMS/BN and PDMS/BNP composites, the maximum volume packing fraction ( ˜0.4) of the particles has been determined from the complex viscosity as a function of the frequency. Additionally, the shear-induced alignment of the BN particles dispersed in the PDMS matrix decreases the viscoelastic properties of the composites with the irregular oscillations which is related to the network formation of dispersed BN particles at the higher volume fractions (> ˜0.2).

  3. Silicon nitride equation of state

    NASA Astrophysics Data System (ADS)

    Brown, Robert C.; Swaminathan, Pazhayannur K.

    2017-01-01

    This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.

  4. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  5. Composite treatment of ceramic tile armor

    DOEpatents

    Hansen, James G. R. [Oak Ridge, TN; Frame, Barbara J [Oak Ridge, TN

    2010-12-14

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  6. Composite treatment of ceramic tile armor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, James G. R.; Frame, Barbara J

    An improved ceramic tile armor has a core of boron nitride and a polymer matrix composite (PMC) facing of carbon fibers fused directly to the impact face of the tile. A polyethylene fiber composite backing and spall cover are preferred. The carbon fiber layers are cured directly onto the tile, not adhered using a separate adhesive so that they are integral with the tile, not a separate layer.

  7. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  8. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  9. Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    2004-01-01

    The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.

  10. Characterization of Subsurface Defects in Ceramic Rods by Laser Scattering and Fractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J. M.; Sun, J. G.; Andrews, M. J.

    2006-03-06

    Silicon nitride ceramics are leading materials being evaluated for valve train components in diesel engine applications. The surface and subsurface defects and damage induced by surface machining can significantly affect component strength and lifetime. In this study, a nondestructive evaluation (NDE) technique based upon laser scattering has been utilized to analyze eight transversely ground silicon nitride cylindrical rods before fracture tests. The fracture origins (machining cracks or material-inherent flaws) identified by fractography after fracture testing were correlated with laser scattering images. The results indicate that laser scattering is able to identify possible fracture origin in the silicon nitride subsurface withoutmore » the need for destructive fracture tests.« less

  11. Containerless Liquid-Phase Processing of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard (Principal Investigator); Nordine, Paul C.

    1996-01-01

    The present project builds on the results of research supported under a previous NASA grant to investigate containerless liquid-phase processing of molten ceramic materials. The research used an aero-acoustic levitator in combination with cw CO2 laser beam heating to achieve containerless melting, superheating, undercooling, and solidification of poorly-conducting solids and liquids. Experiments were performed on aluminum oxide, binary aluminum oxide-silicon dioxide materials, and oxide superconductors.

  12. Experimental study of trimethyl aluminum decomposition

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Pan, Yang; Yang, Jiuzhong; Jiang, Zhiming; Fang, Haisheng

    2017-09-01

    Trimethyl aluminum (TMA) is an important precursor used for metal-organic chemical vapor deposition (MOCVD) of most Al-containing structures, in particular of nitride structures. The reaction mechanism of TMA with ammonia is neither clear nor certain due to its complexity. Pyrolysis of trimethyl metal is the start of series of reactions, thus significantly affecting the growth. Experimental study of TMA pyrolysis, however, has not yet been conducted in detail. In this paper, a reflectron time-of-flight mass spectrometer is adopted to measure the TMA decomposition from room temperature to 800 °C in a special pyrolysis furnace, activated by soft X-ray from the synchrotron radiation. The results show that generation of methyl, ethane and monomethyl aluminum (MMA) indicates the start of the pyrolysis process. In the low temperature range from 25 °C to 700 °C, the main product is dimethyl aluminum (DMA) from decomposition of TMA. For temperatures larger than 700 °C, the main products are MMA, DMA, methyl and ethane.

  13. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    NASA Technical Reports Server (NTRS)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  14. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  15. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  16. A Thermodynamic Model to Estimate the Formation of Complex Nitrides of Al x Mg(1- x)N in Silicon Steel

    NASA Astrophysics Data System (ADS)

    Luo, Yan; Zhang, Lifeng; Li, Ming; Sridhar, Seetharaman

    2018-06-01

    A complex nitride of Al x Mg(1- x)N was observed in silicon steels. A thermodynamic model was developed to predict the ferrite/nitride equilibrium in the Fe-Al-Mg-N alloy system, using published binary solubility products for stoichiometric phases. The model was used to estimate the solubility product of nitride compound, equilibrium ferrite, and nitride compositions, and the amounts of each phase, as a function of steel composition and temperature. In the current model, the molar ratio Al/(Al + Mg) in the complex nitride was great due to the low dissolved magnesium in steel. For a steel containing 0.52 wt pct Als, 10 ppm T.Mg., and 20 ppm T.N. at 1100 K (827 °C), the complex nitride was expressed by Al0.99496Mg0.00504N and the solubility product of this complex nitride was 2.95 × 10-7. In addition, the solution temperature of the complex nitride increased with increasing the nitrogen and aluminum in steel. The good agreement between the prediction and the detected precipitate compositions validated the current model.

  17. Microstructure and properties of ceramic coatings prepared by micro-arc oxidation on 7075 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Cao, G. P.; Song, R. G.

    2018-02-01

    Micro-arc oxidation (MAO) ceramic coatings were prepared in silicate-based electrolyte on 7075 aluminum alloy. The effects of current density on microstructure and properties of the MAO coatings were studied by scanning electron microscopy (SEM), stereoscopic microscopy, x-ray diffraction (XRD), electrochemical tests as well as tribological and wear tests. The results showed that the current density plays an important role in affecting the quality of the MAO coatings. XRD results showed that the α-Al2O3 phase first increased then decreased with increasing the current density, which matched well with the micro-hardness test and the wearing test results. On the other hand, the coalescent strength measurements revealed that the coating prepared at the current density of 12 A dm-2 is of the highest adhesion force. The potentiodynamic polarization test proved that the coating obtained under 10 A dm-2 exhibits the best corrosion resistance, which is directly related to the morphology of coating.

  18. Making Ceramic Components For Advanced Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Franklin, J. E.; Ezis, A.

    1994-01-01

    Lightweight, oxidation-resistant silicon nitride components containing intricate internal cooling and hydraulic passages and capable of withstanding high operating temperatures made by ceramic-platelet technology. Used to fabricate silicon nitride test articles of two types: components of methane-cooled regenerator for air turbo ramjet engine and components of bipropellant injector for rocket engine. Procedures for development of more complex and intricate components established. Technology has commercial utility in automotive, aircraft, and environmental industries for manufacture of high-temperature components for use in regeneration of fuels, treatment of emissions, high-temperature combustion devices, and application in which other high-temperature and/or lightweight components needed. Potential use in fabrication of combustors and high-temperature acoustic panels for suppression of noise in future high-speed aircraft.

  19. Improved superconducting qubit coherence using titanium nitride

    NASA Astrophysics Data System (ADS)

    Chang, Josephine B.; Vissers, Michael R.; Córcoles, Antonio D.; Sandberg, Martin; Gao, Jiansong; Abraham, David W.; Chow, Jerry M.; Gambetta, Jay M.; Beth Rothwell, Mary; Keefe, George A.; Steffen, Matthias; Pappas, David P.

    2013-07-01

    We demonstrate enhanced relaxation and dephasing times of transmon qubits, up to ˜60 μs, by fabricating the interdigitated shunting capacitors using titanium nitride (TiN). Compared to qubits made with lift-off aluminum deposited simultaneously with the Josephson junction, this represents as much as a six-fold improvement and provides evidence that surface losses from two-level system (TLS) defects residing at or near interfaces contribute to decoherence. Concurrently, we observe an anomalous temperature dependent frequency shift of TiN resonators, which is inconsistent with the predicted TLS model.

  20. Ceramic applications in turbine engines. [for improved component performance and reduced fuel usage

    NASA Technical Reports Server (NTRS)

    Hudson, M. S.; Janovicz, M. A.; Rockwood, F. A.

    1980-01-01

    Ceramic material characterization and testing of ceramic nozzle vanes, turbine tip shrouds, and regenerators disks at 36 C above the baseline engine TIT and the design, analysis, fabrication and development activities are described. The design of ceramic components for the next generation engine to be operated at 2070 F was completed. Coupons simulating the critical 2070 F rotor blade was hot spin tested for failure with sufficient margin to quality sintered silicon nitride and sintered silicon carbide, validating both the attachment design and finite element strength. Progress made in increasing strength, minimizing variability, and developing nondestructive evaluation techniques is reported.

  1. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, E. G., E-mail: emerdemelo@usp.br; Alvarado, M. A.; Carreño, M. N. P.

    2016-01-14

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials.more » Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.« less

  2. Texturing effects in molybdenum and aluminum nitride films correlated to energetic bombardment during sputter deposition

    NASA Astrophysics Data System (ADS)

    Drüsedau, T. P.; Koppenhagen, K.; Bläsing, J.; John, T.-M.

    Molybdenum films sputter-deposited at low pressure show a (110) to (211) texture turnover with increasing film thickness, which is accompanied by a transition from a fiber texture to a mosaic-like texture. The degree of (002) texturing of sputtered aluminum nitride (AlN) films strongly depends on nitrogen pressure in Ar/N2 or in a pure N2 atmosphere. For the understanding of these phenomena, the power density at the substrate during sputter deposition was measured by a calorimetric method and normalized to the flux of deposited atoms. For the deposition of Mo films and various other elemental films, the results of the calorimetric measurements are well described by a model. This model takes into account the contributions of plasma irradiation, the heat of condensation and the kinetic energy of sputtered atoms and reflected Ar neutrals. The latter two were calculated by TRIM.SP Monte Carlo simulations. An empirical rule is established showing that the total energy input during sputter deposition is proportional to the ratio of target atomic mass to sputtering yield. For the special case of a circular planar magnetron the radial dependence of the Mo and Ar fluxes and related momentum components at the substrate were calculated. It is concluded that mainly the lateral inhomogeneous radial momentum component of the Mo atoms is the cause of the in-plane texturing. For AlN films, maximum (002) texturing appears at about 250 eV per atom energy input.

  3. The effect of stem design on the prevalence of squeaking following ceramic-on-ceramic bearing total hip arthroplasty.

    PubMed

    Restrepo, Camilo; Post, Zachary D; Kai, Brandon; Hozack, William J

    2010-03-01

    The ceramic-on-ceramic bearing for total hip arthroplasty has an extremely low wear rate and demonstrates minimal inflammatory response in comparison with other bearing choices. However, acoustic emissions such as squeaking and clicking are being reported as annoying complications related to its use. The cause or causes of this phenomenon have not been determined. The purpose of the present study was to evaluate the possibility that design aspects of the femoral component may be a contributing factor to the etiology of squeaking associated with the ceramic-on-ceramic bearing total hip arthroplasty. We retrospectively reviewed 266 consecutive patients (304 hips) who had undergone total hip arthroplasty with use of ceramic-on-ceramic bearings. The first 131 consecutive patients (152 hips) (Group 1) received a hydroxyapatite-coated stem composed of titanium-aluminum-vanadium alloy with a C-taper neck geometry and robust midsection with an anteroposterior diameter of 13 mm. The second 135 consecutive patients (152 hips) (Group 2) also received a hydroxyapatite-coated stem, but in that group the stem was composed of titanium-molybdenum-zirconium-iron alloy, with a V-40 neck geometry and a midsection with an anteroposterior thickness of only 10 mm. All 304 hips received the same cup, composed of titanium-aluminum-vanadium alloy. Demographic characteristics, such as age, sex, height, weight, and body mass index, were similar in both groups. Data regarding the presence of squeaking were obtained prospectively. Patients who were seen for clinical follow-up either expressed the squeaking phenomenon themselves or were asked about it by the physician. Patients who were not seen at a recent clinical follow-up visit were contacted by telephone and were asked specifically about squeaking that might be associated with the hip replacement. Only patients with confirmed squeaking noise were included in the present study. Postoperative radiographs, the Short Form-36 health survey, the

  4. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    DTIC Science & Technology

    2015-08-01

    exhibit many distinctive physical and mechanical properties, compared to metallic and polymeric materials, but the propensity toward brittle fracture ...micromechanism for the plastic deformation of ductile metals while the mechanical performance of high-strength ceramics is often dominated by brittle fracture at...SUPPLEMENTARY NOTES A reprint from Acta Materialia 88 (2015) 252–259 14. ABSTRACT Ceramics are known to be mechanically hard, chemically inert and

  5. High-energy electron beams for ceramic joining

    NASA Astrophysics Data System (ADS)

    Turman, Bob N.; Glass, S. J.; Halbleib, J. A.; Helmich, D. R.; Loehman, Ron E.; Clifford, Jerome R.

    1995-03-01

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride (Si3N4) to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si3N4 - Si3N4 with gold-nickel braze. The bonding mechanism appears to be formation of a thin silicide layer. Beam damage to the Si3N4 was also assessed.

  6. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  7. Crack Branching and Fracture Mirror Data of Glasses and Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    1998-01-01

    The fracture mirror and crack branching constants were determined from three glasses and nine advanced ceramics tested under various loading and specimen configurations in an attempt to use the constants as a data base for fractography. The ratios of fracture mirror or crack branching constant to fracture toughness were found to be approximately two for most ceramic materials tested. A demonstration of how to use the two constants as a tool for verifying stress measurements was presented for silicon nitride disk specimens subjected to high-temperature, constant stress-rate biaxial flexure testing.

  8. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  9. Heat flux measurements on ceramics with thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  10. Methylhydridopolysilazane and its Pyrolytic Conversion to Si3N4/SiC Ceramics

    DTIC Science & Technology

    1993-04-20

    development of inorganic and organometallic polymers as preceramic materials for the synthesis of silicon carbide ( SiC ) and silicon nitride (Si 3N 4...disproportionation in the pyrolysis of preceramic polymers . The lack of a -50 ppm resonance in the CP-MAS NMR spectra of the MHPS systems is 12...1992); Chem. Abstr. 1992, 116, 220226g. 6. (a) Semen, J.; Loop, J.G., "A Preceramic Polymer Route to Molded SiC Ceramic Parts," Ceram. Eng. Sci. Proc

  11. A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure

    NASA Astrophysics Data System (ADS)

    McCullough, R. R.; Jordon, J. B.; Brammer, A. T.; Manigandan, K.; Srivatsan, T. S.; Allison, P. G.; Rushing, T. W.

    2014-01-01

    In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.

  12. On the design and development of a miniature ceramic gimbal bearing

    NASA Technical Reports Server (NTRS)

    Hanson, Robert A.; Odwyer, Barry; Gordon, Keith M.; Jarvis, Edward W.

    1990-01-01

    A review is made of a program to develop ceramic gimbal bearings for a miniaturized missile guidance system requiring nonmagnetic properties and higher load capacity than possible with conventional AISI 440C stainless steel bearings. A new gimbal design concept is described which utilizes the compressive strength and nonmagnetic properties of silicon nitride (Si3N4) ceramics for the gimbal bearing. Considerable manufacturing development has occurred in the last 5 years making ceramic bearings a viable option in the gimbal design phase. A preliminary study into the feasibility of the proposed design is summarized. Finite element analysis of the brittle ceramic bearing components under thermal stress and high acceleration loading were conducted to ensure the components will not fail catastrophically in service. Finite element analysis was also used to optimize the adhesive joint design. Bearing torque tests run at various axial loads indicate that the average running torque of ceramic bearings varies with load similarly to that of conventional steel bearings.

  13. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  14. Semi-rechargeable Aluminum-Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

    NASA Astrophysics Data System (ADS)

    Mori, Ryohei

    2016-07-01

    To develop a semi-rechargeable aluminum-air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation-reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum-air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

  15. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    PubMed

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  16. Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials

    NASA Technical Reports Server (NTRS)

    Mcgill, Preston B.; Mount, Angela R.

    1992-01-01

    The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.

  17. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  18. Strengthening of oxidation resistant materials for gas turbine applications. [treatment of silicon ceramics for increased flexural strength and impact resistance

    NASA Technical Reports Server (NTRS)

    Kirchner, H. P.

    1974-01-01

    Silicon nitride and silicon carbide ceramics were treated to form compressive surface layers. On the silicon carbide, quenching and thermal exposure treatments were used, and on the silicon nitride, quenching, carburizing, and a combination of quenching and carburizing were used. In some cases substantial improvements in impact resistance and/or flexural strength were observed. The presence of compressive surface stresses was demonstrated by slotted rod tests.

  19. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass-ceramics having different Li 2O/Al 2O 3 ratio

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-01-01

    Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi 2O-71.7SiO 2-(17.7- x)Al 2O 3-4.9K 2O-3.2B 2O 3-2.5P 2O 5 (5.1≤ x≤12.6) upon heat treatment were studied. 29Si, 27Al, 31P and 11B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO 3 and BO 4 units. 27Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, 11B (high field 18.8 T) and 29Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi 2O 6, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li 2Si 2O 5), lithium metasilicate (Li 2SiO 3) and quartz (SiO 2) were identified in the 29Si NMR spectra of the glass-ceramics. 31P NMR spectra of the glass-ceramics revealed the presence of Li 3PO 4 and a mixed phase (Li,K) 3PO 4 at low alkali concentrations.

  20. Fracture toughness of advanced ceramics at room temperature

    NASA Technical Reports Server (NTRS)

    Quinn, George D.; Salem, Jonathan; Bar-On, Isa; Cho, Kyu; Foley, Michael; Fang, HO

    1992-01-01

    Results of round-robin fracture toughness tests on advanced ceramics are reported. A gas-pressure silicon nitride and a zirconia-toughened alumina were tested using three test methods: indentation fracture, indentation strength, and single-edge precracked beam. The latter two methods have produced consistent results. The interpretation of fracture toughness test results for the zirconia alumina composite is shown to be complicated by R-curve and environmentally assisted crack growth phenomena.

  1. Advanced Ceramics for NASA's Current and Future Needs

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    2006-01-01

    Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.

  2. A fundamental review of the friction and wear behavior of ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1972-01-01

    The basic concepts associated with the friction and wear of materials are discussed as they relate to ceramics. Properties of ceramics such as crystal structure, crystallographic orientation, mechanical deformation, and surface chemistry are reviewed as they influence friction and wear. Both adhesive and abrasive wear of ceramics are discussed. The friction and wear of ceramics are examined in contact with themselves and when in contact with metals. The influences of environmental constituents such as water and hydrocarbons on friction and wear are reviewed. Materials discussed, by way of example, include aluminum oxide, rutile, calcium fluoride, and lithium fluoride.

  3. Comparative study of elastic constantd of α-, β- and Cubic- silicon nitride

    NASA Astrophysics Data System (ADS)

    Yao, Hongzhi; Ouyang, Lizhi; Ching, Wai-Yim

    2003-03-01

    Silicon nitride is an important structural ceramic and dielectric insulator. Recently, the new high pressure cubic phase of silicon nitride in spinel structure has attracted a lot of attention.^[1] We have carried out a detailed ab-initio calculation of all independent elastic constants for all three phases of Si_3N4 by using the Vienna Ab-initio Simulation Package (VASP) in both LDA and GGA approxmations. The results for β-Si_3N4 are in reasonable agreement with a experimental measurement on single crystal samples.^[2] For cubic-Si_3N4 , The three independent elastic constants are predicted to be C_11 = 504.16 GPa, C_12 = 176.66 GPa, C_44 = 326.65 GPa and a bulk modulus B = 286 GPa. This value is very close to the experimental value of 300 GPa.^[1] All these results will be compared with those obtained by using the OLCAO method based on localized orbital approach.^[3] [1]. Wai-Yim Ching, Yong-Nian Xu, Jukian D. Gale, and Manfred Ruhle, J. Am. Ceram. Soc. 81, 3189 (1998) [2]. R. Vogelgesang, M. Grimsditch, and J. S. Wallace, Appl. Phys. Lett. 76, 8 (2000) [3]. W.Y.Ching, Lizhi Ouyang, and Julian D. Gale, Phys. Rev. B61, 13, (2000)

  4. Characterization of Ceramic Vane Materials for 10KW Turboalternator.

    DTIC Science & Technology

    1983-04-01

    eide if necessary end identify by block number) Silicon nitride Gas turbine engine Failure analysis Silicon carbide Mechanical properties Ceramics...silicon carbide, and sil- iconized silicon carbide, being considered for use in a small turbine engine . Chemistry, phase content, and room-temperature...sponsored by USAMERADCOK, Ft. Belvoir, Va., and the engine testing and development was done by Solar Turbines International, San Diego, Calif. ANMHRC

  5. Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation

    NASA Astrophysics Data System (ADS)

    Best, James P.; Zechner, Johannes; Wheeler, Jeffrey M.; Schoeppner, Rachel; Morstein, Marcus; Michler, Johann

    2016-12-01

    For the implementation of thin ceramic hard coatings into intensive application environments, the fracture toughness is a particularly important material design parameter. Characterisation of the fracture toughness of small-scale specimens has been a topic of great debate, due to size effects, plasticity, residual stress effects and the influence of ion penetration from the sample fabrication process. In this work, several different small-scale fracture toughness geometries (single-beam cantilever, double-beam cantilever and micro-pillar splitting) were compared, fabricated from a thin physical vapour-deposited ceramic film using a focused ion beam source, and then the effect of the gallium-milled notch on mode I toughness quantification investigated. It was found that notching using a focused gallium source influences small-scale toughness measurements and can lead to an overestimation of the fracture toughness values for chromium nitride (CrN) thin films. The effects of gallium ion irradiation were further studied by performing the first small-scale high-temperature toughness measurements within the scanning electron microscope, with the consequence that annealing at high temperatures allows for diffusion of the gallium to grain boundaries promoting embrittlement in small-scale CrN samples. This work highlights the sensitivity of some materials to gallium ion penetration effects, and the profound effect that it can have on fracture toughness evaluation.

  6. Preparation and evaluation of silicon nitride matrices for silicon nitride-SiC fiber composites. M.S. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Axelson, Scott R.

    1988-01-01

    Continuous silicon carbide (SiC) fiber was added to three types of silicon nitride (Si3N4) matrices. Efforts were aimed at producing a dense Si3N4 matrix from reaction-bonded silicon nitride (RBSN) by hot-isostatic-pressing (HIP) and pressureless sintering, and from Si3N4 powder by hot-pressing. The sintering additives utilized were chosen to allow for densification, while not causing severe degradation of the fiber. The ceramic microstructures were evaluated using scanning optical microscopy. Vickers indentation was used to determine the microhardness and fracture toughness values of the matrices. The RBSN matrices in this study did not reach more than 80 percent of theoretical density after sintering at various temperatures, pressures, and additive levels. Hot-pressing Si3N4 powder produced the highest density matrices; hardness and toughness values were within an order of magnitude of the best literature values. The best sintering aid composition chosen included Y2O3, SiO2, and Al2O3 or AlN. Photomicrographs demonstrate a significant reduction of fiber attack by this additive composition.

  7. Field testing of a ceramic heat exchanger for heat recovery application

    NASA Astrophysics Data System (ADS)

    Sohal, M. S.

    1988-06-01

    AiResearch Company, Torrance, California, developed a 5 MMBtu/hr ceramic-metallic hybrid High Temperature Burner-Duct-Recuperator (HTBDR) system to recover energy from hot (up to 2500 F), dirty, and corrosive glue gas streams and preheat combustion air up to 2000 F. To reduce the cost and size of the ceramic recuperator, ceramic tubes with internal cruciform baffles were developed. The HTBDR system was tested on a 20 MMBtu/hr rotary forging furnace for about 2000 hours. To facilitate tube replacements, final design configuration uses horizontally mounted tubes. A maximum air preheat temperature of about 1916 F was achieved with a flue gas temperature of 2122 F. This represents fuel savings of about 30 to 50 percent (depending upon the amount of excess air) compared with an unrecuperated furnace. The overall design and operation of the recuperator proved to be successful up to the time of material failure. X ray diffraction of some failed components indicated that there was some residual Silicon in the interior regions and complete nitriding did not occur during the fabrication process. Degradation of failed components was probably caused by oxidation of residual silicon and by the stresses caused due to different coefficient of thermal expansion of various compounds during thermal cycling. A combination of severe and numerous thermal cycling coupled with incomplete nitriding was the most likely cause of material failure.

  8. Nondestructive evaluation of structural ceramics by photoacoustic microscopy

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1987-01-01

    A photoacoustic microscopy (PAM) digital imaging system was developed and utilized to characterize silicon nitride material at the various stages of the ceramic fabrication process. Correlation studies revealed that photoacoustic microscopy detected failure initiating defects in substantially more specimens than microradiography and ultrasonic techniques. Photoacoustic microscopy detected 10 to 100 micron size surface and subsurface pores and inclusions, respectively, up to 80 microns below the interrogating surface in machined sintered silicon nitride. Microradiography detected 50 micron diameter fracture controlling pores and inclusions. Subsurface holes were detected up to a depth of 570 microns and 1.00 mm in sintered silicon nitride and silicon carbide, respectively. Seeded voids of 20 to 30 micron diameters at the surface and 50 microns below the interrogating surface were detected by photoacoustic microscopy and microradiography with 1 percent X-ray thickness sensitivity. Tight surface cracks of 96 micron length x 48 micron depth were detected by photoacoustic microscopy. PAM volatilized and removed material in the green state which resulted in linear shallow microcracks after sintering. This significantly limits the use of PAM as an in-process NDE technique.

  9. Creation of a ceramics handbook

    NASA Technical Reports Server (NTRS)

    Craft, W. J.

    1976-01-01

    A group of common ceramic materials (alumina, magnesium oxide, silicon nitride, and silicon carbide) were characterized through literature searches according to their physical properties. The files used were the NASA file, DDC/GRA File, Engineering Index File and standard library searches. The results of these searches are arranged by material properties including mechanical, electrical, electromagnetic, where applicable, and fracture; and the entries are arranged in chronological order by candidate. A list, by author, follows where tabular information including charts and figures of results is given along with a brief statement of the results and conclusions. In both cases, information on the independent variables along with their range is given. The results of an extensive industry survey asking for names of other candidates on which information is lacking and also what type of service, if any, is desired in keeping a current information file on general ceramic materials.

  10. Verification of Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  11. Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Stevens, Lorin E.

    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both

  12. Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanmaire, G., E-mail: guillaume.jeanmaire@univ-lorraine.fr; Aubert and Duval, BP1, 63770 Les Ancizes; Dehmas, M.

    2014-12-15

    In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc® simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were themore » subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 μm) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra® software. - Highlights: • Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force • Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation • Size of AlN precipitates can be reduced by quenching prior isothermal holding. • Fine precipitation of AlN related to the α → γ transformation.« less

  13. Nitriding kinetics of Si-SiC powder mixtures as simulations of reaction bonded Si3N4-SiC composites

    NASA Technical Reports Server (NTRS)

    Lightfoot, A.; Sheldon, B. W.; Flint, J. H.; Haggerty, J. S.

    1989-01-01

    The nitriding kinetics of Si and Si plus SiC powder mixtures were studied to simulate the fabrication of RBSN-SiC ceramic matrix composites. Very clean, assynthesized, and solvent-exposed powders were studied; C-rich and Si-rich SiC 0.04-0.05 micron diameter powders were mixed in varying concentrations with SiH4-derived 0.2-0.3 micron diameter Si powder. Complete nitridation is achieved with C-rich SiC powders in 140 min at 1250 C, and in the centers of Si-rich SiC powders in 15 min. The effects on the incubation periods, fast reaction periods, and slow reaction periods that characterize these nitriding processes were studied to explain unusual reverse reaction gradients and other effects of contamination.

  14. Ternary ceramic thermal spraying powder and method of manufacturing thermal sprayed coating using said powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.

    The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance againstmore » corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.« less

  15. Strength evaluation test of pressureless-sintered silicon nitride at room temperature

    NASA Technical Reports Server (NTRS)

    Matsusue, K.; Takahara, K.; Hashimoto, R.

    1984-01-01

    In order to study strength characteristics at room temperature and the strength evaluating method of ceramic materials, the following tests were conducted on pressureless sintered silicon nitride specimens: bending tests, the three tensile tests of rectangular plates, holed plates, and notched plates, and spin tests of centrally holed disks. The relationship between the mean strength of specimens and the effective volume of specimens are examined using Weibull's theory. The effect of surface grinding on the strength of specimens is discussed.

  16. Nitriding of titanium and titanium: 8 percent aluminum, 1 percent molybdenum, 1 percent vanadium alloy with an ion-beam source

    NASA Technical Reports Server (NTRS)

    Gill, A.

    1983-01-01

    Titanium and Ti-8Al-1Mo-1V alloy were nitrided with an ion-beam source of nitrogen or argon and nitrogen at a total pressure of 2 x 10 to the minus 4th power to 10 x 10 to the minus 4th power torr. The treated surface was characterized by surface profilometry, X-ray diffractometry, Auger electron spectroscopy and microhardness measurements. The tetragonal Ti2N phase formed in pure titanium and Ti-8Al-1Mo-1V alloy with traces of AlN in the alloy. Two opposite processes competed during the ion-beam-nitriding process: (1) formation of nitrides in the surface layer and (2) sputtering of the nitrided layers by the ion beam. The highest surface hardnesses, about 500 kg/sq mm in titanium and 800 kg/sq mm in Ti-8Al-1Mo-1V, were obtained by ion nitriding with an ion beam of pure nitrogen at 4.2 x 10 to the minus 4th power torr at a beam voltage of 1000 V.

  17. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.

    2016-06-06

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotatingmore » the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.« less

  18. Origin and effective reduction of inversion domains in aluminum nitride grown by a sublimation method

    NASA Astrophysics Data System (ADS)

    Shigetoh, Keisuke; Horibuchi, Kayo; Nakamura, Daisuke

    2017-11-01

    Owing to the large differences in the chemical properties between Al and N polarities in aluminum nitride (AlN), the choice of the polar direction for crystal growth strongly affects not only the quality but also the shape (facet formation) of the grown crystal. In particular, N-polar (0 0 0 -1) has been considered to be a more preferable direction than Al-polar (0 0 0 1) for sublimation growth because compared to Al-polar (0 0 0 1), N-polar (0 0 0 -1) exhibits better stability at high growth rate (high supersaturation) conditions and enables easier lateral enlargement of the crystal. However, some critical growth conditions induce polarity inversion and hinder stable N-polar growth. Furthermore, the origin of the polarity inversion in AlN growth by the sublimation method is still unclear. To ensure stable N-polar growth without polarity inversion, the formation mechanism of the inversion domain during AlN sublimation growth must be elucidated. Therefore, herein, we demonstrate homoepitaxial growth on an N-polar seed and carefully investigate the obtained crystal that shows polarity inversion. Annular bright-field scanning transmission electron microscopy reveals that polarity is completely converted to the Al polarity via the formation of a 30 nm thick mixed polar layer (MPL) just above the seed. Moreover, three-dimensional atom probe tomography shows the segregation of the oxygen impurities in the MPL with a high concentration of about 3 atom%. Finally, by avoiding the incorporation of oxygen impurity into the crystal at the initial stage of the growth, we demonstrate an effective reduction (seven orders of magnitude) of the inversion domain boundary formation.

  19. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  20. Caracterisation of Titanium Nitride Layers Deposited by Reactive Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Roşu, Radu Alexandru; Şerban, Viorel-Aurel; Bucur, Alexandra Ioana; Popescu, Mihaela; Uţu, Dragoş

    2011-01-01

    Forming and cutting tools are subjected to the intense wear solicitations. Usually, they are either subject to superficial heat treatments or are covered with various materials with high mechanical properties. In recent years, thermal spraying is used increasingly in engineering area because of the large range of materials that can be used for the coatings. Titanium nitride is a ceramic material with high hardness which is used to cover the cutting tools increasing their lifetime. The paper presents the results obtained after deposition of titanium nitride layers by reactive plasma spraying (RPS). As deposition material was used titanium powder and as substratum was used titanium alloy (Ti6Al4V). Macroscopic and microscopic (scanning electron microscopy) images of the deposited layers and the X ray diffraction of the coatings are presented. Demonstration program with layers deposited with thickness between 68,5 and 81,4 μm has been achieved and presented.

  1. Effects of sol-gel processed silica coating on bond strength of resin cements to glass-infiltrated alumina ceramic.

    PubMed

    Xie, Haifeng; Wang, Xiaozu; Wang, Yu; Zhang, Feimin; Chen, Chen; Xia, Yang

    2009-02-01

    The aim of this study was to verify the effects of sol-gel processed silica coating on the bond strength between resin cement and glass-infiltrated aluminum oxide ceramic. Silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surface via the sol-gel process. Atomic Force Microscope (AFM), Fourier Transmission Infrared spectrum (FTIR), and Energy Dispersive X-ray Spectroscopy (EDS) were used for coating characterization. Forty-eight blocks of glass-infiltrated aluminum oxide ceramic were fabricated. The ceramic surfaces were polished following sandblasting. Three groups of specimens (16 for each group) with different surface treatment were prepared. Group P: no treatment; group PO: treated with silane solution; group PTO: silica coating via sol-gel process, followed by silane application. Composite cylinders were luted with resin cement to the test specimens. Half of the specimens in each group were stored in distilled water for 24 h and the other half were stored in distilled water for 30 days before shear loading in a universal testing machine until failure. Selected ceramic surfaces were analyzed to identify the failure mode using a scanning electron microscopy (SEM). Nanostructured silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surfaces by the sol-gel process. The silicon element on the ceramic surface increased significantly after the coating process. The mean shear bond strength values (standard deviation) before artificial aging were: group P: 1.882 +/- 0.156 MPa; group PO: 2.177 +/- 0.226 MPa; group PTO: 3.574 +/- 0.671 MPa. Statistically significant differences existed between group PTO and group P, and group PTO and groups PO. The failure mode for group P and group PO was adhesive, while group PTO was mixed. The mean shear bond strength values (standard deviation) after artificial aging were: group P: 1.594 +/- 0.111 MPa; group PO: 2.120 +/- 0.339 MPa; group PTO: 2.955 +/- 0.113 MPa. Statistically significant

  2. Ceramic valve development for heavy-duty low heat rejection diesel engines

    NASA Technical Reports Server (NTRS)

    Weber, K. E.; Micu, C. J.

    1989-01-01

    Monolithic ceramic valves can be successfully operated in a heavy-duty diesel engine, even under extreme low heat rejection operating conditions. This paper describes the development of a silicon nitride valve from the initial design stage to actual engine testing. Supplier involvement, finite element analysis, and preliminary proof of concept demonstration testing played a significant role in this project's success.

  3. Fabrication of highly dense SiN4 ceramics without additives by high pressure sintering

    NASA Technical Reports Server (NTRS)

    Takatori, K.; Shimade, M.; Koizumi, M.

    1984-01-01

    Silicon nitride (Si3N4) is one of candidate materials for the engineering ceramics which is used at high temperatures. The mechanical strengths of hot pressed or sintered Si2N4 ceramics containing some amount of additives, however, are deteriorated at elevated temperatures. To improve the high temperature strength of Si3N4 ceramics, an attempt to consolidate Si3N4 without additives was made by high pressure sintering technique. Scanning electron micrographs of fracture surfaces of the sintered bodies showed the bodies had finely grained and fully self-bonded sintered bodies were 310N sq m at room temperature and 174N/sq m at 1200 C.

  4. Methods for improved growth of group III nitride semiconductor compounds

    DOEpatents

    Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro

    2015-03-17

    Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.

  5. Impact of Alternative Processes for Aluminum Production on Energy Requirements

    NASA Astrophysics Data System (ADS)

    Grjotheim, Kai; Welch, Barry

    1981-09-01

    Increasing prices and the shortage of large blocks of electrical energy have given greater impetus to the search for viable alternative processes for aluminum production. These include electrolysis of aluminum chloride, sulfide, and nitride; carbothermal reduction of either the ore or alumina; and disproportioning reactions of either aluminum sulfide or the monochloride route. Common to all these processes are the starting material—an ore containing aluminum oxide—and the final product—the metal. Thus, the thermodynamic cycle will invariably dictate similar theoretical energy requirements for the three processes. In practice, however, the achievable efficiencies and, more noticeably, the proportion of electrical to carbothermal energy required for the various stages of operation can vary. The present status of these alternative processes indicates that while alternative routes, such as the Alcoa-AlCl3-Smelting Process, show distinct potential for reducing electrical energy requirements, they offer little chance of reducing overall energy requirements. Furthermore, because of more stringent purity requirements, any gains made may be at the expense of production costs.

  6. Galvanic high energy cells with molten salt electrolytes

    NASA Astrophysics Data System (ADS)

    Borger, W.; Kappus, W.; Kunze, D.; Laig-Hoerstebrock, H.; Panesar, H.; Sterr, G.

    1981-02-01

    Engineering scale LiAl/LiCl Kcl/FeS electrochemical storage cells were developed for electric vehicle propulsion and peak current compensation. More than 300 deep cycles and 50 Whr/kg in 100 Ahr cells and up to 100 deep cycles and more than 80 Whr/kg in 200 Ahr cells were demonstrated. Separator development for LiAl/FeS cells was focused on ceramic powders. The aluminum nitride powder separator is promising for LiAl/FeS cells. The further development of these cells includes the enhancement of energy density and lifetime as well as ceramic powder separators.

  7. Transparent garnet ceramic scintillators for gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen

    2012-10-01

    Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.

  8. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  9. Implantable devices having ceramic coating applied via an atomic layer deposition method

    DOEpatents

    Liang, Xinhua; Weimer, Alan W.; Bryant, Stephanie J.

    2016-03-08

    Substrates coated with films of a ceramic material such as aluminum oxides and titanium oxides are biocompatible, and can be used in a variety of applications in which they are implanted in a living body. The substrate is preferably a porous polymer, and may be biodegradable. An important application for the ceramic-coated substrates is as a tissue engineering scaffold for forming artificial tissue.

  10. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2001-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  11. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2000-01-01

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  12. High temperature insulation for ceramic matrix composites

    DOEpatents

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  13. Nitride alloy layer formation of duplex stainless steel using nitriding process

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  14. Fracture toughness of brittle materials determined with chevron notch specimens

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Bubsey, R. T.; Pierce, W. S.; Munz, D.

    1981-01-01

    Short bar, short rod, and four-point-bend chevron-notch specimens were used to determine the plane strain fracture toughness of hot-pressed silicon nitride and sintered aluminum oxide brittle ceramics. The unique advantages of this specimen type are: (1) the production of a sharp natural crack during the early stage of test loading, so that no precracking is required, and (2) the load passes through a maximum at a constant, material-independent crack length-to-width ratio for a specific geometry, so that no post-test crack measurement is required. The plane strain fracture toughness is proportional to the maximum test load and functions of the specimen geometry and elastic compliance. Although results obtained for silicon nitride are in good mutual agreement and relatively free of geometry and size effects, aluminum oxide results were affected in both these respects by the rising crack growth resistance curve of the material.

  15. Assessments of Fracture Toughness of Monolithic Ceramics-SEPB Versus SEVNB Methods

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2006-01-01

    Fracture toughness of a total of 13 advanced monolithic ceramics including silicon nitrides, silicon carbide, aluminas, and glass ceramic was determined at ambient temperature by using both single edge precracked beam (SEPB) and single edge v-notched beam (SEVNB) methods. Relatively good agreement in fracture toughness between the two methods was observed for advanced ceramics with flat R-curves; whereas, poor agreement in fracture toughness was seen for materials with rising R-curves. The discrepancy in fracture toughness between the two methods was due to stable crack growth with crack closure forces acting in the wake region of cracks even in SEVNB test specimens. The effect of discrepancy in fracture toughness was analyzed in terms of microstructural feature (grain size and shape), toughening exponent in R-curve, and stable crack growth determined using back-face strain gaging.

  16. Recent Observations on the Performance of Hybrid Ceramic Tribo-Contacts

    NASA Astrophysics Data System (ADS)

    Buttery, M.; Cropper, M.; Wardzinski, B.; Lewis, S.; McLaren, S.; Kreuser, J.

    2015-09-01

    Hybrid ceramic ball bearings offer great promise in space applications but have not been rapidly adopted by industry perhaps partly due to the relatively low amount of published data on specific in-vacuum performance. Such bearings, having, typically, silicon nitride balls and 440C or high nitrogen steel (e.g. X30) raceways offer the potential for long life and low torque noise due a combination of chemical inertness, high hardness and the extremely smooth surfaces produced in ceramic balls. Though initial benefits were foreseen for high speed applications, the potential for reduced adhesive forces and wear in conditions of marginal lubrication, and for improvements in lubricant lifetime in long life applications limited by oil tribo-degradation render hybrid ceramic bearings more generally attractive.This paper draws together a number of experimental studies carried out at Pin-on-Disc (POD), Spiral Orbit Tribometer (SOT) and bearing-level recently at ESTL.

  17. Industrial Application of Open Pore Ceramic Foam for Molten Metal Filtration

    NASA Astrophysics Data System (ADS)

    Gauckler, L. J.; Waeber, M. M.; Conti, C.; Jacob-Dulière, M.

    Ceramic foam filters were used for industrial filtration of aluminum. Results are compared with laboratory experiments which are in good agreement with trajectory analyses of deep bed filtration for the early stage of filtration.

  18. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    PubMed

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Organometallic Precursor Routes to Si-C-Al-O-N Ceramics

    DTIC Science & Technology

    1991-05-15

    Pyrolysis Chemistry of Polymeric Precursors to SiC and Si3 N 4", Kluwer Academic Publishers, Dordrecht, NATO Workshop or Organometallic Polymers with Special...the polymer to a preceramic SiC . Thus the IR and H CRAMPS spectra confirm the decreasing concentration of hydrogen with increasing pyrolysis ...generality of this polymer pyrolysis route to nanocrystalline composites of refractory nitride and carbide ceramics. Investigation of AlN Precursors Our

  20. Production Process for Strong, Light Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Holmquist, G. R.; Cordia, E. R.; Tomer, R. S.

    1985-01-01

    Proportions of ingredients and sintering time/temperature schedule changed. Production process for lightweight, high-strength ceramic insulating tiles for Space Shuttle more than just scaled-up version of laboratory process for making small tiles. Boron in aluminum borosilicate fibers allows fusion at points where fibers contact each other during sintering, thereby greatly strengthening tiles structure.

  1. Experimental study of void formation during aluminum solidification in reduced gravity. Ph.D. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis Paul, III

    1993-01-01

    Void formation due to volumetric shrinkage and liquid/vapor reorientation during aluminum solidification was observed in real time by using a radiographic viewing system in normal and reduced gravity. An end-chill directional solidification furnace with water quench was designed and constructed to solidify aluminum samples during the approximately 16 sec of reduced gravity (+/-0.02g) achieved by flying an aircraft through a parabolic trajectory. In the first series of tests the aluminum was contained in a vacuum sealed, pyrolytic boron nitride crucible. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and the crucible lid. The void formation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case during reduced gravity surface tension caused two voids to form in the top corners of the crucible, but during normal gravity only one large void formed across the top. In the second series of tests the aluminum was contained in a pyrolytic boron nitride crucible that was placed in a stainless steel container and sealed in an environment of argon plus 4 percent hydrogen. An ullage space was present during each test. Void formation was recorded for two cases: a nonwetting system, and a wetting system where wetting occurred between the aluminum and one side wall and the lid. The void for nation in the nonwetting case was similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible, although the meniscus became more convex in reduced gravity. In the wetting case the aluminum did not climb up the corners in 1g, and one large symmetric void resulted at the top when the aluminum had solidified. In the wetting case during reduced gravity the molten aluminum was drawn up the wetted wall and partially across the lid by a

  2. Reaction layer characterization of the braze joint of silicon nitride to stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, R.; Indacochea, J. E.

    1994-10-01

    This investigation studies the role of titanium in the development of the reaction layer in braze joining silicon nitride to stainless steel using titanium-active copper-silver filler metals. This reaction layer formed as a result of titanium diffusing to the filler metal/silicon nitride interface and reacting with the silicon nitride to form the intermetallics, titanium nitride (TiN) and titanium suicide (Ti 5Si3). This reaction layer, as recognized in the literature, allows wetting of the ceramic substrate by the molten filler metal. The reaction layer thickness increases with temperature and time. Its growth rate obeys the parabolic relationship. Activation energies of 220.1 and 210.9 kj/mol were calculated for growth of the reaction layer for the two filler metals used. These values are close to the activation energy of nitrogen in TiN (217.6 kj/mol). Two filler metals were used in this study, Ticusil (68.8 wt% Ag, 26.7 wt% Cu, 4.5 wt% Ti) and CB4 (70.5 wt% Ag, 26.5 wt% Cu, 3.0 wt% Ti). The joints were processed in vacuum at temperatures of 840 to 900 °C at various times. Bonding strength is affected by reaction layer thickness in the absence of Ti-Cu intermetallics in the filler metal matrix.

  3. Transmission of Er:YAG laser through different dental ceramics.

    PubMed

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (p<0.05). Ceramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  4. Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)

    DTIC Science & Technology

    2006-03-29

    Final Report (Technical) 3. DATES COVERED 29-03-2005 to 29-05-2006 4. TITLE AND SUBTITLE Indium Gallium Nitride/ Gallium Nitride (InGaN/GaN...Institution: Quantum functional Semiconductor Research Center (QSRC), Dongguk University - Title of project: Indium Gallium Nitride/ Gallium Nitride...Accepted with minor revision Indium Gallium Nitride / Gallium Nitride (InGaN/ GaN) Nanorods Superlattice (SL) Abstract The growth condition, electrical

  5. The Effect of Interface Treatment on Ceramic Performance and Modeling Dyneema Subjected to Ballistic Impact

    DTIC Science & Technology

    2018-01-23

    aluminum plate; and the time history of the aluminum back surface displacement located directly under the sphere. Figures 2-4 present the computed results... displacements as a function of time. It is clear that the computed results using no bond produce more damage in the ceramic plate and much more... displacement of the aluminum back plate. Figures 5-7 present the computed results for boron carbide (using the TR model), for impact velocities of V

  6. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOEpatents

    Besmann, T.M.; Lowden, R.A.

    1990-05-29

    An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.

  7. Titanium diboride ceramic fiber composites for Hall-Heroult cells

    DOEpatents

    Besmann, Theodore M.; Lowden, Richard A.

    1990-01-01

    An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.

  8. Environmental Barrier Coatings for Ceramics and Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Fox, Dennis; Eldridge, Jeffrey; Robinson, R. Craig; Bansal, Narottam

    2004-01-01

    One key factor that limits the performance of current gas turbine engines is the temperature capability of hot section structural components. Silicon-based ceramics, such as SiC/SiC composites and monolithic Si3N4, are leading candidates to replace superalloy hot section components in the next generation gas turbine engines due to their excellent high temperature properties. A major stumbling block to realizing Si-based ceramic hot section components is the recession of Si-based ceramics in combustion environments due to the volatilization of silica scale by water vapor. An external environmental barrier coating (EBC) is the most promising approach to preventing the recession. Current EBCs are based on silicon, mullite (3A12O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit the durability and temperature capability of current EBCs. Research is underway to develop EBCs with longer life and enhanced temperature capability. Understanding key issues affecting the performance of current EBCs is necessary for successful development of advanced EBCs. These issues include stress, chemical compatibility, adherence, and water vapor stability. Factors that affect stress are thermal expansion mismatch, phase stability, chemical stability, elastic modulus, etc. The current understanding on these issues will be discussed.

  9. Some developments on ceramic-to-metal and glass-ceramics-to-metal seals and related studies

    NASA Astrophysics Data System (ADS)

    Kothiyal, G. P.; Goswami, M.; Shrikhande, V. K.

    2008-05-01

    Seals and coatings based on ceramics and glass-ceramics find numerous applications in different disciplines of science and technology including space, accelerators, nuclear energy, chemical industry. Ceramic-to-metal (CM) seals based on conventional design (using brazing alloys) and glass-ceramics have been prepared. While Ag-Cu brazing alloy has been used in conventional CM seal, we have employed lithium zinc silicate (LZS) and lithium aluminum silicate (LAS) glass-ceramics for glass-ceramics-to-metal (GCM) seals. LZS glass-ceramics based on two different compositions; (a) LZSL composition (wt.%)- Li2O: 12.65, ZnO: 1.85, SiO2: 74.4, Al2O3: 3.8, K2O: 2.95, P2O5: 3.15, and B2O3: 1.2 (low ZnO) and (b) LZSH composition (wt.%)- Li2O: 8.9, ZnO: 24.03, SiO2: 53.7, Na2O: 5.42, P2O5: 2.95, and B2O3: 5.0 (high ZnO) were prepared with desired sealing characteristics for matched type seals. In addition, (wt.%) 12.6Li2O-71.7SiO2-5.1Al2O3-4.9K2O-3.2B2O3-2.5P2O5 (LAS-GC) was investigated for compressive type of seal. LZS glass-ceramics-to-Cu as well as SS-321 seals were found to withstand a vacuum of 10-6 Torr with leak rate 10-9 Torr. 1/s and LAS GC-to-SS304 seal showed high pressure endurance of 12000psi. In order to understand the mechanism of sealing, glass-ceramics-to-metal interface study has also been carried out.

  10. Topping cycle for coal-fueled electric power plants using the ceramic helical expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, B.; Landingham, R.; Mohr, P.

    Ceramic helical expanders are advocated as the work output element in a 2500/sup 0/F direct coal-fired Brayton topping cycle for central power station application. When combined with a standard steam electric power plant cycle, such a cycle could result in an overall thermal conversion efficiency in excess of 50 percent. The performance, coal tolerance, and system-development-time advantages of the ceramic helical expander approach are enumerated. A perspective on the choice of design and materials is provided. A preliminary consideration of physical properties, economic questions, and service experience has led us to a preference for the silicon nitride and silicon carbidemore » family of materials. A program to confirm the performance and coal tolerance aspects of a ceramic helical expander system is planned.« less

  11. Materials development and evaluation for the ceramic helical expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landingham, R.L.; Taylor, R.W.

    The supporting role of the materials program for the ceramic helical expander program is described. The materials problems for this rotory expander in an extremely severe environment-a direct coal-fired Brayton topping cycle is defined. Readily available materials and methods for possible solution to these material problems as well as initiating some longer-range studies to improve reliability were evaluated. A preliminary screening of materials in hot coal-fired environments to select candidate materials and coating was made. More detailed evaluations of these candidate materials-reaction-bonded silicon nitride (RBSN) and Si--Al--O--N (Sialon) system- and coatings-chemical-vapor-deposited silicon nitride (CVD-Si/sub 3/N/sub 4/) and CVD-Sialon need tomore » be performed. Termination of the helical expander program abruptly stopped the materials program during this evaluation.« less

  12. Materials development and evaluation for the ceramic helical expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landingham, R.L.; Taylor, R.W.

    The supporting role of the materials program for the ceramic helical expander program is described. The materials problems for this rotory expander in an extremely severe environment - a direct coal-fired Brayton topping cycle is defined. Readily available materials and methods are evaluated for possible solution to these material problems as well as initiating some longer-range studies to improve reliability. A preliminary screening of materials in hot coal-fired environments to select candidate materials and coating, was made, but there is a need to perform more detailed evaluations of these candidate materials-reaction-bonded silicon nitride (RBSN) and Si--Al--O--N (Sialon) system- and coatings-chemical-vapor-depositedmore » silicon nitride (CVD-Si/sub 3/N/sub 4/) and CVD-Sialon. Termination of the helical expander program abruptly stopped the materials program during this evaluation.« less

  13. Friction and wear behaviour of ion beam modified ceramics

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.; Kossowsky, R.

    1987-01-01

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temperature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides.

  14. Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance

    DTIC Science & Technology

    2013-09-09

    targets with .30cal AP M2 projectile using SPH elements. -Model validation runs were conducted based on the DoP experiments described in reference...effect of material properties on DoP 15. SUBJECT TERMS .30cal AP M2 Projectile, 762x39 PS Projectile, SPH , Aluminum 5083, SiC, DoP Expeminets...and ceramic-faced aluminum targets with „30cal AP M2 projectile using SPH elements. □ Model validation runs were conducted based on the DoP

  15. Method of preparing porous, rigid ceramic separators for an electrochemical cell

    DOEpatents

    Bandyopadhyay, Gautam; Dusek, Joseph T.

    1981-01-01

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200.degree. C. for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide and magnesium-aluminum oxide have advantageously been used to form separators by this method.

  16. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  17. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  18. Enhancement of toughness and wear resistance in boron nitride nanoplatelet (BNNP) reinforced Si3N4 nanocomposites

    PubMed Central

    Lee, Bin; Lee, Dongju; Lee, Jun Ho; Ryu, Ho Jin; Hong, Soon Hyung

    2016-01-01

    Ceramics have superior hardness, strength and corrosion resistance, but are also associated with poor toughness. Here, we propose the boron nitride nanoplatelet (BNNP) as a novel toughening reinforcement component to ceramics with outstanding mechanical properties and high-temperature stability. We used a planetary ball-milling process to exfoliate BNNPs in a scalable manner and functionalizes them with polystyrene sulfonate. Non-covalently functionalized BNNPs were homogeneously dispersed with Si3N4 powders using a surfactant and then consolidated by hot pressing. The fracture toughness of the BNNP/Si3N4 nanocomposite increased by as much as 24.7% with 2 vol.% of BNNPs. Furthermore, BNNPs enhanced strength (9.4%) and the tribological properties (26.7%) of the ceramic matrix. Microstructural analyzes have shown that the toughening mechanisms are combinations of the pull-out, crack bridging, branching and blunting mechanisms. PMID:27271465

  19. Stability of Ceramics in Hydrogen between 4000 and 4500 F

    NASA Technical Reports Server (NTRS)

    May, Charles E.; Koneval, Donald; Fryburg, George C.

    1959-01-01

    The various reactions that are possible between hydrogen and certain ceramic materials are discussed as well as the means of measuring the extent of such reactions. Powdered carbides, nitrides, borides, and oxides were tested. These materials were heated inductively in a tungsten cup between 4000 and 4500 F for two 1-hour periods under a static hydrogen atmosphere. Weight, pressure, and diffraction pattern changes were observed, and these served to indicate the extent of reaction. Most of the ceramics, HfC, ZrC, TiC, TaC, NbC, WC, MO2C, HfN, ZrN, NbN, ZrB2, NbB2, and WB, showed less reaction than the minimum detectable value. However, the ceramics, TiN, TaN, HfB2, TiB2, ZrO2, and Cr2O3, apparently reacted to a measurable extent with hydrogen. Reactions of SiC, VC, and TaB2 with hydrogen were not determinable because of their incompatibility with the tungsten container.

  20. Methods of forming boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boronmore » nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.« less

  1. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  2. Development of a New Ferrous Aluminosilicate Refractory Material for Investment Casting of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Yuan, Chen; Jones, Sam; Blackburn, Stuart

    2012-12-01

    Investment casting is a time-consuming, labour intensive process, which produces complex, high value-added components for a variety of specialised industries. Current environmental and economic pressures have resulted in a need for the industry to improve current casting quality, reduce manufacturing costs and explore new markets for the process. Alumino-silicate based refractories are commonly used as both filler and stucco materials for ceramic shell production. A new ceramic material, norite, is now being produced based on ferrous aluminosilicate chemistry, having many potential advantages when used for the production of shell molds for casting aluminum alloy. This paper details the results of a direct comparison made between the properties of a ceramic shell system produced with norite refractories and a typical standard refractory shell system commonly used in casting industry. A range of mechanical and physical properties of the systems was measured, and a full-scale industrial casting trial was also carried out. The unique properties of the norite shell system make it a promising alternative for casting aluminum based alloys in the investment foundry.

  3. Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.

    2018-02-01

    The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.

  4. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  5. Synthesis of boron nitride powders

    NASA Astrophysics Data System (ADS)

    Dreissig, Dirk Horst

    2002-09-01

    In the materials science community there is much interest in the development of new, efficient approaches for preparing ceramic powders having properties or performance characteristics not found with powders produced by traditional metallurgical synthesis methods. In this regard, aerosol-based syntheses are finding general acceptance for the preparation of non-metal and metal oxide powders. In contrast, much less effort has been given to aerosol-type syntheses for non-oxide powders despite potentially useful benefits. This dissertation describes the application of two chemical systems in aerosol assisted vapor phase synthesis (AAVS) for the preparation of spherical morphology boron oxynitride, BNxOy, powders that are subsequently converted to spherical morphology boron nitride in a second nitridation step. Chapter 1 describes the AAVS synthesis of BNxOy powders using a reaction of an aqueous boric acid containing aerosol with ammonia at 1000°C. The effect of reactor tube material, total gas flow rate, ammonia concentration, boric acid concentration, and urea addition to the boric acid aerosol on the percent oxygen composition is described. The resulting BNxOy powders contain significant amounts of oxygen that require replacement in a second stage nitridation reaction at elevated temperature under ammonia. The influences of the reaction temperature profile, crucible geometry and transformation additive on final oxygen composition and powder crystallinity are described. Chapter 2 outlines the formation of BNxOy powders from an AAVS reaction between the boron precursor (MeO)3B and ammonia. The formation of the powders is studied as a function of total gas flow rate and ammonia concentration. In all cases the resulting powders contain lower levels of oxygen compared to powders produced from aqueous boric acid aerosols. The conversion of the BNxOy powders in the second stage nitridation reaction with ammonia is examined as a function of crucible geometry, temperature

  6. Tests of NASA ceramic thermal barrier coating for gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.

    1979-01-01

    A two-layer thermal barrier coating system with a bond coating of nickel-chromium-aluminum-yttrium and a ceramic coating of yttria-stabilized zirconia was tested for corrosion protection, thermal protection and durability. Full-scale gas-turbine engine tests demonstrated that this coating eliminated burning, melting, and warping of uncoated parts. During cyclic corrosion resistance tests made in marine diesel fuel products of combustion in a burner rig, the ceramic cracked on some specimens. Metallographic examination showed no base metal deterioration.

  7. The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation

    PubMed Central

    Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-ping

    2014-01-01

    Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications. PMID:24759082

  8. Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar

    2012-12-01

    In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy. Published by Elsevier B.V.

  9. Mineral phases and metals in baghouse dust from secondary aluminum production.

    PubMed

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). Published by Elsevier Ltd.

  10. Assessment of the State of the Art of Ultra High Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.

  11. Metal/ceramic composites via infiltration of an interconnected wood-derived ceramic

    NASA Astrophysics Data System (ADS)

    Wilkes, Thomas E.

    The use of composites is increasing as they afford scientists and engineers the ability to combine the advantageous properties of each constituent phase, e.g. metal ductility and ceramic stiffness. With respect to materials design, biomimetics is garnering increasing attention due to the complex, yet efficient, natural microstructures. One such biomimetic, or in this case 'bio-derived,' curiosity is wood-derived ceramic, which is made by either replicating or converting wood into a ceramic. The resulting porous and anisotropic material retains the precursor microstructure. The wide variety of precursors can yield materials with a range of pore sizes and distribution of pores. The purpose of this work was to study the processing, microstructure, and properties of aluminum/silicon carbide composites. The composites were made by infiltrating molten aluminum into porous wood-derived SIC, which was produced by the reactive melt-infiltration of silicon into pyrolyzed wood. The composite microstructure consisted of interconnected SiC surrounding Al-alloy 'fibers.' The strength, modulus, and toughness were measured in both longitudinal and transverse orientations. The Al → SiC load transfer was investigated with high-energy X-ray diffraction in combination with in-situ compressive loading. The properties in flexure were found to decrease with increasing temperature. Despite the complex microstructure, predictions of the composite flexural modulus and longitudinal fracture toughness were obtained using simple models: Halpin-Tsai bounds and the Ashby et al. model of the effect of ductile particle-reinforcements on the toughness of brittle materials (Ashby et al. 1989), respectively. In addition, the Al/SiC research inspired the investigation of carbon-reinforced copper composites. The goal was to explore the feasibility of making a high-thermal conductivity composite by infiltrating copper into wood-derived carbon. Results indicated that Cu/C composites could be made with

  12. Modeling of stress/strain behavior of fiber-reinforced ceramic matrix composites including stress redistribution

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1994-01-01

    A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.

  13. Fracture Toughness of Advanced Ceramics at Room Temperature

    PubMed Central

    Quinn, George D.; Salem, Jonathan; Bar-on, Isa; Cho, Kyu; Foley, Michael; Fang, Ho

    1992-01-01

    This report presents the results obtained by the five U.S. participating laboratories in the Versailles Advanced Materials and Standards (VAMAS) round-robin for fracture toughness of advanced ceramics. Three test methods were used: indentation fracture, indentation strength, and single-edge pre-cracked beam. Two materials were tested: a gas-pressure sintered silicon nitride and a zirconia toughened alumina. Consistent results were obtained with the latter two test methods. Interpretation of fracture toughness in the zirconia alumina composite was complicated by R-curve and environmentally-assisted crack growth phenomena. PMID:28053447

  14. Preparation of ceramic materials using liquid metal carboxylate precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, E.H.; Apblett, A.W.

    We have recently discovered a novel class of metal carboxylates which are liquids at room temperature. These metal salts bear polyether organic residues and their physical properties make them highly conducive to the preparation of ceramic films and fibers. Furthermore, the liquid salts are excellent solvents for other metal salts such as nitrates. The resultant solutions are readily converted upon pyrolysis to multi-metallic oxide phases at fairly low temperatures due to the high homogeneity of the cation distribution in the liquid. The preparation of a variety of aluminum, titanium, and iron-containing ceramics in this manner will be reported.

  15. Crystalline boron nitride aerogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.

    This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxidemore » and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.« less

  16. Ceramic Coatings for Clad (The C 3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickafus, Kurt E.; Wirth, Brian; Miller, Larry

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectivesmore » of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as

  17. Development and evaluation of magnesium oxide-based ceramics for chamber parts in mass-production plasma etching equipment

    NASA Astrophysics Data System (ADS)

    Kasashima, Yuji; Tsutsumi, Kota; Mitomi, Shinzo; Uesugi, Fumihiko

    2017-06-01

    In mass-production plasma etching equipment, the corrosion of ceramic chamber parts reduces the production yield of LSI and overall equipment effectiveness (OEE) owing to contamination, short useful life, and particle generation. Novel ceramics that can improve the production yield and OEE are highly required. We develop magnesium oxide (MgO)-based ceramics and evaluate them under mass-production plasma etching conditions. The results of this study indicate that the developed MgO-based ceramics with high mechanical properties and low electric resistivity have a higher resistance to corrosion in plasma etching using CF4 gas than Si and conventional ceramic materials such as aluminum oxide and yttrium oxide.

  18. Flexible Ceramic-Metal Insulation Composite and Method of Making

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J. (Inventor); Sawko, Paul M. (Inventor); Kilodziej, Paul (Inventor); Kourtides, Demetrius A. (Inventor)

    1998-01-01

    A method for joining a woven flexible ceramic fabric and a thin metal sheet creating an integral metal surfaced flexible thermal protection article, which methods compress: placing multiple dots of high temperature metallic or fabric and the thin metal sheet in a random or organized pattern, with the proviso that the brazing material covers about 10% or less of the surface of one flat side of the metal sheet; heating the flexible ceramic fabric, brazing material and thin metal sheet for a predetermined period of time to integrally connect the same; and cooling the formed flexible article to ambient temperature. Preferably the flexible ceramic is selected from fibers comprising atoms of silicon, carbon, nitrogen, boron, oxygen or combinations thereof. The flexible thermal protection article produced is also part of the present invention. The thin metal sheet is comprised of titanium, aluminum, chromium, niobium or alloys or combinations thereof. The brazing material is selected from copper/silver or copper/gold or is a ceramic brazing or adhesive material.

  19. SiAlON COATINGS OF SILICON NITRIDE AND SILICON CARBIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan W. Nowok; John P. Hurley; John P. Kay

    2000-06-01

    The need for new engineering materials in aerospace applications and in stationary power turbine blades for high-efficiency energy-generating equipment has led to a rapid development of ceramic coatings. They can be tailored to have superior physical (high specific strength and stiffness, enhanced high-temperature performance) and chemical (high-temperature corrosion resistance in more aggressive fuel environments) properties than those of monolithic ceramic materials. Among the major chemical properties of SiAlON-Y ceramics are their good corrosion resistance against aggressive media combined with good thermal shock behavior. The good corrosion resistance results from the yttria-alumina-garnet (YAG), Al{sub 5}Y{sub 3}O{sub 12}, formed during the corrosionmore » process of SiAlON-Y ceramics in combustion gases at 1300 C. The interfacial chemical precipitation of the YAG phase is beneficial. This phase may crystallize in cubic and/or tetragonal modifications and if formed in SiAlON-Y ceramic may simultaneously generate residual stress. Also, this phase can contain a large number of point defects, which is a consequence of the large unit cell and complexity of the YAG structure because it has no close-packed oxygen planes. Therefore, the need exists to elucidate the corrosion mechanism of a multilayered barrier with respect to using SiAlON-YAG as a corrosion-protective coating. Stress corrosion cracking in the grain boundary of a silicon nitride (Si{sub 3}N{sub 4}) ceramic enriched in a glassy phase such as SiAlON can significantly affect its mechanical properties. It has been suggested that the increased resistance of the oxynitride glass to stress corrosion is related to the increased surface potential of the fracture surface created in the more durable and highly cross-linked oxynitride glass network structure. We expect that either increased or decreased surface potential of the intergranular glassy phase is brought about by changes in the residual stress of

  20. Silicon nitride: A ceramic material with outstanding resistance to thermal shock and corrosion

    NASA Technical Reports Server (NTRS)

    Huebner, K. H.; Saure, F.

    1983-01-01

    The known physical, mechanical and chemical properties of reaction-sintered silicon nitride are summarized. This material deserves interest especially because of its unusually good resistance to thermal shock and corrosion at high temperatures. Two types are distinguished: reaction-sintered (porous) and hot-pressed (dense) Si3N4. Only the reaction-sintered material which is being produced today in large scale as crucibles, pipes, nozzles and tiles is considered.

  1. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    DOEpatents

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  2. Crystalline boron nitride aerogels

    DOEpatents

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  3. Demonstration of a silicon nitride attrition mill for production of fine pure Si and Si3N4 powders

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.; Orth, N. W.

    1984-01-01

    To avoid metallic impurities normally introduced by milling ceramic powders in conventional steel hardware, an attrition mill (high-energy stirred ball mill) was constructed with the wearing parts (mill body, stirring arms, and media) made from silicon nitride. Commercial silicon and Si3N4 powders were milled to fine uniform particles with only minimal contamination - primarily from wear of the sintered Si3N4 media.

  4. Preparation of Mesoporous Ceramics from Polymer Nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Dian; Park, Soojin; Chen, Jiun-Tai; Redston, Emily; Russell, Thomas

    2009-03-01

    Poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) nanotubes were prepared by placing polymer solution into the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. The PS-b-P4VP nanotubes within the AAO membranes were exposed to tetrahydrofuran vapor to produce uniform spherical micelles along the tube. The tubes were removed from the membranes, then suspended in ethylene glycol, a preferential solvent for P4VP. At 95^ oC, near the glass transition temperature (Tg) of PS, nanotubes with uniform nanopores were obtained by a reconstruction of the nanotubes. As the temperature was increased, mesoporous polymer structures were obtained. Tetraethyl orthosilicate or titanium tetraethoxide, ceramic precursors, were introduced into the 4VP microdomains. After exposure to an oxygen plasma or high temperature, the copolymer was removed and the precursor converted to a mesoporous ceramic. This process offers a simple route for the fabrication of tunable mesoporous ceramic or metallic structures by changing molecular weight of copolymers.

  5. Improving impact resistance of ceramic materials by energy absorbing surface layers

    NASA Technical Reports Server (NTRS)

    Kirchner, H. P.; Seretsky, J.

    1974-01-01

    Energy absorbing surface layers were used to improve the impact resistance of silicon nitride and silicon carbide ceramics. Low elastic modulus materials were used. In some cases, the low elastic modulus was achieved using materials that form localized microcracks as a result of thermal expansion anisotropy, thermal expansion differences between phases, or phase transformations. In other cases, semi-vitreous or vitreous materials were used. Substantial improvements in impact resistance were observed at room and elevated temperatures.

  6. Solution properties and spectroscopic characterization of polymeric precursors to SiNCB and BN ceramic materials

    NASA Astrophysics Data System (ADS)

    Cortez, E.; Remsen, E.; Chlanda, V.; Wideman, T.; Zank, G.; Carrol, P.; Sneddon, L.

    1998-06-01

    Boron Nitride, BN, and composite SiNCB ceramic fibers are important structural materials because of their excellent thermal and oxidative stabilities. Consequently, polymeric materials as precursors to ceramic composites are receiving increasing attention. Characterization of these materials requires the ability to evaluate simultaneous molecular weight and compositional heterogeneity within the polymer. Size exclusion chromatography equipped with viscometric and refractive index detection as well as coupled to a LC-transform device for infrared absorption analysis has been employed to examine these heterogeneities. Using these combined approaches, the solution properties and the relative amounts of individual functional groups distributed through the molecular weight distribution of SiNCB and BN polymeric precursors were characterized.

  7. The Effects of an Unexpected Ceramic Coating Phase at the Head of a Pipe on Joining and Postprocessing of a Ceramic-Lined Composite Pipe

    NASA Astrophysics Data System (ADS)

    Mahmoodian, R.; Rahbari, R. G.; Hamdi, M.; Hassan, M. A.; Sparham, Mahdi

    2013-01-01

    Produced ceramic-lined steel pipe using the self-propagating high-temperature synthesis (SHS) method has found uses in many applications. A SHS-centrifugal machine was designed to produce a ceramic-lined steel pipe from ferric oxide and aluminum powder (thermite mixture) under high centrifugal acceleration. The obtained products are expected to be Al2O3 ceramic in the innermost layer and a Fe layer in a region between the outer steel pipes. In the present work, specific regions of a pipe was particularly observed to investigate the stuck (dead) spaces at the pipe head because of its importance in further processes (joining, welding, etc.) which may affect the quality of the next operations. In this article, the product's composition, phase separation, microhardness, and surface finish were studied on three zones of the pipe.

  8. Application of scanning acoustic microscopy to advanced structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1987-01-01

    A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.

  9. Reliability analysis of structural ceramics subjected to biaxial flexure

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1991-01-01

    The reliability of alumina disks subjected to biaxial flexure is predicted on the basis of statistical fracture theory using a critical strain energy release rate fracture criterion. Results on a sintered silicon nitride are consistent with reliability predictions based on pore-initiated penny-shaped cracks with preferred orientation normal to the maximum principal stress. Assumptions with regard to flaw types and their orientations in each ceramic can be justified by fractography. It is shown that there are no universal guidelines for selecting fracture criteria or assuming flaw orientations in reliability analyses.

  10. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  11. Nitride stabilized core/shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  12. Structures and properties of alumina-based ceramic for reconstructive oncology

    NASA Astrophysics Data System (ADS)

    Grigoriev, M. V.; Kulkov, S. N.

    2016-08-01

    The microstructure of alumina ceramics based on powders with a varying grain size has been investigated. Both commercial alumina powders and those fabricated by denitration of aluminum salts in high-frequency discharge plasma were used. It is shown that the variation of the sintering temperature and morphology of the initial powders of the particles leads to a change of the pore structure of ceramics from pore isolated clusters to a structure consisting of a ceramic skeleton and a large pore space. Changing the type of pore structure occurs at about 50% of porosity. The ceramic pore size distribution is bimodal. Dependencies final density vs initial density are linear; at the same time with increasing temperature, inclination of changes from positive to negative, indicating the change of sealing mechanisms. Extrapolation of these curves showed that they intersect with the values of density of about 2 g/cm3, which indicates the possibility of producing non-shrink ceramics. It is shown that the strength increases with increasing nanocrystalline alumina content in powder mixture. A change in the character the pore structure is accompanied by a sharp decrease in strength, which corresponds to the percolation transition in ceramics. These results showed that it is possible to obtain ceramic materials with the structure and properties similar to natural bone.

  13. Selected fretting-wear-resistant coatings for titanium - 6-percent-aluminum - 4-percent-vanadium alloy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1976-01-01

    A titanium - 6-percent-aluminum - 4-percent-vanadium alloy (Ti-6Al-4V) was subjected to fretting-wear exposures against uncoated Ti-6Al-4V as a baseline and against various coatings and surface treatments applied to Ti-6Al-4V. The coatings evaluated included plasma-sprayed tungsten carbide with 12 percent cobalt, aluminum oxide with 13 percent titanium oxide, chromium oxide, and aluminum bronze with 10 percent aromatic polyester; polymer-bonded polyimide, polyimide with graphite fluoride, polyimide with molybdenum disulfide (MoS2), and methyl phenyl silicone bonded MoS2, preoxidation surface treatment, a nitride surface treatment, and a sputtered MoS2 coating. Results of wear measurements on both the coated and uncoated surfaces after 300,000 fretting cycles indicated that the polyimide coating was the most wear resistant and caused the least wear to the uncoated mating surface.

  14. NDE of structural ceramics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Vary, A.

    1986-01-01

    Radiographic, ultrasonic, scanning laser acoustic microscopy (SLAM), and thermo-acoustic microscopy techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was also capable of detecting voids, inclusions and cracks in finished test bars. Consideration is given to the potential for applying thermo-acoustic microscopy techniques to green and densified ceramics. The detection probability statistics and some limitations of radiography and SLAM also are discussed.

  15. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  16. Considerations on Dop (Depth Of Penetration) Test for Evaluation of Ceramics Materials Used in Ballistic Protection

    NASA Astrophysics Data System (ADS)

    Popa, Ioan-Dan; Dobriţa, Florin

    2017-12-01

    Tremendous amount of funds and other resorces were invested in studying the response of ceramic materials under ballistic impact, the main goal being to find a way to increase the protection of soldiers and the vehicles used in the modern battlespace. Using of ceramic materials especially carbon based (carbides), nitrogen based (nitrides) and oxygen based (oxides) ceramics in order to increase the protection level of ballistic equipment could be, sometimes, a big challenge when trying to use the proper test in order to evaluate and compare their performances. The role of the tests is to provide a better understanding of their response in different situations and, as a consequence, to make them more efficient as armour components through future improvements. The paper presents shortly the main tests which are used and eventually standardised for evaluating the ballistic behaviour of the ceramics and other armour components, with a special focus to DOP (Depth of Penetration) Tests.

  17. A Nonlinear Thermomechanical Model of Spinel Ceramics Applied to Aluminum Oxynitride (AlON)

    DTIC Science & Technology

    2011-01-01

    ceramics 9: C i = bD 19 where for most materials lies between 0.1 and 1.0 9. The area per unit volume of twin boundaries obtained from...Above a threshold pressure, pores may collapse irreversibly. This phenomenon, common in brittle ceram - ics, minerals, and geologic materials 18,22, is...appears to be the first documented study of AlON using arge deformation crystal plasticity theory. A number of physically elevant material properties

  18. Reactive processing and mechanical properties of polymer derived silicon nitride matrix composites and their use in coating and joining ceramics and ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Stackpoole, Margaret Mary

    Use of preceramic polymers offers many advantages over conventional ceramic processing routes. Advantages include being able to plastically form the part, form a pyrolized ceramic material at lower temperatures and form high purity microstructures which are tailorable depending on property requirements. To date preceramic polymers are mostly utilized in the production of low dimensional products such as fibers since loss of volatiles during pyrolysis leads to porosity and large shrinkage (in excess of 30%). These problems have been partially solved by use of active fillers (e.g. Ti, Cr, B). The reactive filler converts to a ceramic material with a volume expansion and this increases the density and reduces shrinkage and porosity. The expansion of the reactive filler thus compensates for the polymer shrinkage if the appropriate volume fraction of filler is present in a reactive atmosphere (e.g. N2 or NH3). This approach has resulted in structural composites with limited success. The present research investigates the possibility of using filled preceramic polymers to form net shaped ceramic composite materials and to investigate the use of these unique composite materials to join and coat ceramics and ceramic composites. The initial research focused on phase and microstructural development of bulk composites from the filled polymer/ceramic systems. A processing technique was developed to insure consistency between different samples and the most promising filler/polymer choices for this application have been determined. The processing temperatures and atmospheres have also been optimized. The work covers processing and characterization of bulk composites, joints and coatings. With careful control of processing near net shape bulk composites were fabricated. Both ambient and high temperature strength and fracture toughness was obtained for these composite systems. The potential of using reactively filled preceramic polymers to process joints and coatings was also

  19. Processing of In-Situ Al-AlN Metal Matrix Composites via Direct Nitridation Method

    DTIC Science & Technology

    1998-04-01

    to prepare the aluminum melts with desired chemical compositions. Table 1. Chemical compositions of the starting materials. Alloy Mg Fe Cr Si Ni Al...Al 0.001 0.11 0.001 0.04 0.005 bal. Alloy Al Fe Cr Si Ni Mg Mg 0.01 0.12 0.001 0.03 0.006 bal. The ingots were initially cut to chunks with...hours. Figure 26 shows the optical micrographs obtained from the ingots after nitridation reaction of the alloys initially containing Al- 5wt .% Si

  20. PECVD silicon-rich nitride and low stress nitride films mechanical characterization using membrane point load deflection

    NASA Astrophysics Data System (ADS)

    Bagolini, Alvise; Picciotto, Antonino; Crivellari, Michele; Conci, Paolo; Bellutti, Pierluigi

    2016-02-01

    An analysis of the mechanical properties of plasma enhanced chemical vapor (PECVD) silicon nitrides is presented, using micro fabricated silicon nitride membranes under point load deflection. The membranes are made of PECVD silicon-rich nitride and low stress nitride films. The mechanical performance of the bended membranes is examined both with analytical models and finite element simulation in order to extract the elastic modulus and residual stress values. The elastic modulus of low stress silicon nitride is calculated using stress free analytical models, while for silicon-rich silicon nitride and annealed low stress silicon nitride it is estimated with a pre-stressed model of point-load deflection. The effect of annealing both in nitrogen and hydrogen atmosphere is evaluated in terms of residual stress, refractive index and thickness variation. It is demonstrated that a hydrogen rich annealing atmosphere induces very little change in low stress silicon nitride. Nitrogen annealing effects are measured and shown to be much higher in silicon-rich nitride than in low stress silicon nitride. An estimate of PECVD silicon-rich nitride elastic modulus is obtained in the range between 240-320 GPa for deposited samples and 390 GPa for samples annealed in nitrogen atmosphere. PECVD low stress silicon nitride elastic modulus is estimated to be 88 GPa as deposited and 320 GPa after nitrogen annealing.

  1. Chemical precursors to non-oxide ceramics: Macro to nanoscale materials

    NASA Astrophysics Data System (ADS)

    Forsthoefel, Kersten M.

    Non-oxide ceramics exhibit a number of important properties that make them ideal for technologically important applications (thermal and chemical stability, high strength and hardness, wear-resistance, light weight, and a range of electronic and optical properties). Unfortunately, traditional methodologies to these types of materials are limited to fairly simple shapes and complex processed forms cannot be attained through these methods. The establishment of the polymeric precursor approach has allowed for the generation of advanced materials, such as refractory non-oxide ceramics, with controlled compositions, under moderate conditions, and in processed forms. The goal of the work described in this dissertation was both to develop new processible precursors to technologically important ceramics and to achieve the formation of advanced materials in processed forms. One aspect of this research exploited previously developed preceramic precursors to boron carbide, boron nitride and silicon carbide for the generation of a wide variety of advanced materials: (1) ultra-high temperature ceramic (UHTC) structural materials composed of hafnium boride and related composite materials, (2) the quaternary borocarbide superconductors, and (3) on the nanoscale, non-oxide ceramic nanotubules. The generation of the UHTC and the quaternary borocarbide materials was achieved through a method that employs a processible polymer/metal(s) dispersion followed by subsequent pyrolyses. In the case of the UHTC, hafnium oxide, hafnium, or hafnium boride powders were dispersed in a suitable precursor to afford hafnium borides or related composite materials (HfB2/HfC, HfB2/HfN, HfB2/SiC) in high yields and purities. The quaternary borocarbide superconducting materials were produced from pyrolyses of dispersions containing appropriate stoichiometric amounts of transition metal, lanthanide metal, and the polyhexenyldecaborane polymer. Both chemical vapor deposition (CVD) based routes employing a

  2. Triso coating development progress for uranium nitride kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.

    2015-08-01

    In support of fully ceramic matrix (FCM) fuel development [1-2], coating development work is ongoing at the Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with UN kernels [3]. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere [4]. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels [5]. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions weremore » required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels (Table 1).« less

  3. 3500-hour durability testing of ceramic materials for automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carruthers, W. D.; Richerson, D. W.; Benn, K. W.

    1980-01-01

    A two-year durability program was performed by AiResearch Phoenix to evaluate four commercially available ceramic materials under simulated automotive gas turbine combustor discharge conditions. These conditions included extended cyclic thermal exposures up to 2500 F and 3500 hr. The four materials selected for evaluation were Norton NCX-34 hot pressed silicon nitride, AiResearch RBN 101 reaction bonded silicon nitride, Carborundum pressureless sintered alpha-SiC and Pure Carbon Co. (British Nuclear Fuels, Ltd.) Refel reaction sintered silicon carbide. These materials were initially exposed to 350 hr/1750 cycles at 1200 and 1370 C. Subsequent exposures to 1050, 2100 and 3500 hr were performed on those materials maintaining 50% of baseline strength after the initial exposure. Additional evaluations of exposed bars included dimensional and weight changes, dye penetrant, specific damping capacity changes, SEM fractography, and X-ray diffraction.

  4. Modeling the mechanical behavior of ceramic and heterophase structures manufactured using selective laser sintering and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.

    A model for predicting mechanical properties of ultra-high temperature ceramics and composites manufactured by selective laser sintering (SLS) and spark plasma sintering (SPS) under shock loading is presented. The model takes into account the porous structure, the specific volume and average sizes of phases, and the temperature of sintering. Residual stresses in ceramic composites reinforced with particles of refractory borides, carbides and nitrides after SLS or SPS were calculated. It is shown that the spall strength of diboride-zirconium matrix composites can be increased by the decreasing of porosity and the introduction of inclusions of specially selected refractory strengthening phases.

  5. Lithium purification technique

    DOEpatents

    Keough, Robert F.; Meadows, George E.

    1985-01-01

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  6. Lithium purification technique

    DOEpatents

    Keough, R.F.; Meadows, G.E.

    1984-01-10

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  7. Addition of a pontic to all-ceramic Turkom-Cera fixed partial denture restorations.

    PubMed

    Uludag, Bulent; Tokar, Emre; Polat, Serdar

    2013-04-01

    High-strength all-ceramic materials are commonly used in dentistry. When complications occur in an all-ceramic restoration, the restoration is usually replaced. This article describes the time-saving ability and cost-effectiveness of this novel technique for the addition of a pontic in two complicated clinical cases. Turkom-Cera(™) [Turkom-Ceramic (M) Sdn. Bhd.] with aluminum oxide (99.98%) is an all-ceramic system that offers the option of addition of a new pontic to the sintered framework. The new pontic was cut off from an alumina blank [Turkom-Ceramic (M) Sdn. Bhd.], moistened, and attached to the framework using alumina gel [Turkom-Ceramic (M) Sdn. Bhd.]. The framework was veneered with veneering porcelain (Vita VM 7; VITA Zahnfabrik). The two cases presented here involving the addition of a pontic to sintered framework were followed up for at least 1 year. No complication was detected or reported by the patients. Alumina- and zirconia-based ceramics are particularly suitable for for all-ceramic restorations in high-stress bearing areas. However, replacement of a failed all-ceramic restoration is not the most practical solution, considering both cost and tooth-related factors. This attractive feature of the Turkom-Cera allows the repair of a fractured ceramic coping or the addition of a new pontic to restorations.

  8. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  9. Towards the development of micromechanics equations for ceramic matrix composites via fiber substructuring

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1992-01-01

    A generic unit cell model which includes a unique fiber substructuring concept is proposed for the development of micromechanics equations for continuous fiber reinforcement ceramic composites. The unit cell consists of three constituents: fiber, matrix, and an interphase. In the present approach, the unit cell is further subdivided into several slices and the equations of micromechanics are derived for each slice. These are subsequently integrated to obtain ply level properties. A stand alone computer code containing the micromechanics model as a module is currently being developed specifically for the analysis of ceramic matrix composites. Towards this development, equivalent ply property results for a SiC/Ti-15-3 composite with 0.5 fiber volume ratio are presented and compared with those obtained from customary micromechanics models to illustrate the concept. Also, comparisons with limited experimental data for the ceramic matrix composite, SiC/RBSN (Reaction Bonded Silicon Nitride) with a 0.3 fiber volume ratio are given to validate the concepts.

  10. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  11. Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons

    PubMed Central

    2013-01-01

    Multiwalled boron nitride nanotubes (BNNTs) have very attractive mechanical and thermal properties, e.g., elasticity, tensile strength, and high resistance to oxidation, and may be considered as ideal reinforcing agents in lightweight metal matrix composites. Herein, for the first time, Al-BNNT ribbons with various BNNT contents (up to 3 wt.%) were fabricated via melt spinning in an argon atmosphere. BNNTs were randomly dispersed within a microcrystalline Al matrix under ribbon casting and led to more than doubling of room-temperature ultimate tensile strength of the composites compared to pure Al ribbons produced at the similar conditions. PMID:23279813

  12. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOEpatents

    Pugar, Eloise A.; Morgan, Peter E. D.

    1990-01-01

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N.sub.n H.sub.(n+m) wherein: n=1-4 and m=2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si-N-H intermediate enables chemical pathways to be explored previously unavailable in conventional solid state approaches to silicon-nitrogen ceramics.

  13. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOEpatents

    Pugar, E.A.; Morgan, P.E.D.

    1987-09-15

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N/sub n/H/sub (n+m)/ wherein: n = 1--4 and m = 2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200--1700/degree/C for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si/endash/N/endash/H intermediate enables chemical pathways to be explored previously unavailable in conventional solid-state approaches to silicon-nitrogen ceramics

  14. High-temperature ultrasonic characterization of the mechanical and microstructural behavior of a fibrous composite with a magnesium lithium aluminum silicate glass-ceramic matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutard, T.; Huger, M.; Fargeot, D.

    The mechanical behavior and the microstructural modifications of a SiC-fiber-reinforced magnesium lithium aluminum silicate glass-ceramic (SiC/MASL) have been characterized by ultrasonic measurement of uniaxial Young`s modulus at high temperature. Under vacuum, long isothermal agings in the 750--1,000 C temperature range have shown matrix modifications in terms of crystallization of residual glassy phases, and of phase transformations in the Li{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2} system. In air, long isothermal agings performed under the same conditions have led to the same matrix transformations but in competition with oxidation mechanisms of the carbon fiber-matrix interphase. All of these matrix and/or interface transformations havemore » been confirmed by X-ray diffraction analysis, scanning electron microscopy, scanning acoustic microscopy, and microindentation tests.« less

  15. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  16. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A., E-mail: aelmusta@odu.edu; Taus, Rhys

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  17. TiN coated aluminum electrodes for DC high voltage electron guns

    DOE PAGES

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; ...

    2015-05-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less

  18. The Preparation of Silicon-Containing Ceramics by Organosilicon Polymer Pyrolysis

    DTIC Science & Technology

    1988-06-25

    polymer , of composition [(CH3SiHNH)a(CH3SiNb]m, gives a black solid, a mixture of SiC , Si3N4, and some free carbon, on pyrolysis ...nitride (eq. 1) [7] is a possibility. 5 Si3N 4(s) + C (s) , 3 SiC (s) +2 N2(g) (1) The study of the pyrolysis products of preceramic polymers is not...approximately one, pyrolysis of the product polymer gave a black ceramic solid in 84% yield which analysis showed to have a formal composition (1 SiC +

  19. A Porous Ceramic Interphase for SiC/Si(sub 3)N(sub 4) Composites

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.

    1995-01-01

    A suitable interphase material for non-oxide ceramic-matrix composites must be resistant to oxidation. This means it must exhibit a slow rate of oxidation, and its oxidation product must be such as to ensure that the system survives oxidation when it does occur. Because the current benchmark interphase materials, carbon and boron nitride, lack these qualities, a porous fiber coating was developed to satisfy both the mechanical and oxidative requirements of an interphase for the SiC/SiC and SiC/Si2N4 composites that are of interest to NASA. This report presents the interphase microstructure achieved and the resulting characteristics of fiber push-out from a matrix of reaction-bonded silicon nitride (RBSN), both as-fabricated and after substantial annealing and oxidation treatments.

  20. Fractography and the Surface Crack in Flexure (SCF) method for evaluating fracture toughness of ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, G.D.; Gettings, R.J.; Kuebler, J.J.

    1996-12-31

    The surface crack in flexure (SCF) method, also known as the controlled surface flaw method, has been used to measure fracture toughness of ceramics and glasses for almost 20 years. New fracture toughness results for a range of ceramics and glasses including alumina, boron carbide, silicon carbide, silicon nitride, titanium diboride, zirconia, glass ceramic, borosilicate crown glass, and a whisker-reinforced alumina are presented in this paper. Some materials are conducive to precrack measurements, while others are not. New techniques for detecting the precracks are presented. A surprising outcome from a recently concluded Versailles Advanced Materials and Standards (VAMAS) round robinmore » project was that the computed toughness is often not sensitive to the exact precrack size measurement. Consistent results were obtained by many laboratories despite different viewing modes and magnifications. The reasons for this consistency and why toughness is insensitive to precrack size is presented.« less

  1. Thickness limitations in carbon nanotube reinforced silicon nitride coatings synthesized by vapor infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eres, Gyula

    Chemical vapor infiltration is a convenient method for synthesizing carbon nanotube (CNT)-reinforced ceramic coatings. The thickness over which infiltration is relatively uniform is limited by gas phase diffusion in the pore structure. These effects were investigated in two types of silicon nitride matrix composites. With CNTs that were distributed uniformly on the substrate surface dense coatings were limited to thicknesses of several microns. With dual structured CNT arrays produced by photolithography coatings up to 400 gm thick were obtained with minimal residual porosity. Gas transport into these dual structured materials was facilitated by creating micron sized channels between "CNT pillars"more » (i.e. each pillar consisted of a large number of individual CNTs). The experimental results are consistent with basic comparisons between the rates of gas diffusion and silicon nitride growth in porous structures. This analysis also provides a general insight into optimizing infiltration conditions during the fabrication of thick CNT-reinforced composite coatings. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less

  2. Investigation of Saturation Effects in Ceramic Phosphors for Laser Lighting

    PubMed Central

    Krasnoshchoka, Anastasiia; Dam-Hansen, Carsten; Corell, Dennis Dan; Petersen, Paul Michael

    2017-01-01

    We report observations of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion. It is shown that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on the incident power and spot size diameter of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser-based lighting systems. PMID:29292770

  3. Titanium Nitride: An Oxidizable Coating for the High-Temperature Protection of Graphite

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1961-01-01

    A titanium nitride coating for graphite, prepared by deposition process, protected test specimens for 60 seconds the vapors in a supersonic ceramic-heated air jet with a stagnation temperature of approximately 2,250 K. For the same test conditions, coated specimens showed no damage to the graphite body for the 60-second test, whereas uncoated specimens were very severely damaged after 20 seconds and were destroyed toward the end of the test. A discussion of the coating of these graphite specimens and of some of the conditions necessary for the utilization of oxidizable substances as oxidation-protective coatings for bodies facing high convective heat transfer in the atmosphere is presented.

  4. FOREWORD: The physics of III-V nitrides The physics of III-V nitrides

    NASA Astrophysics Data System (ADS)

    Ridley, B. K.

    2009-04-01

    thought to be associated with the coupling of plasma and phonon modes, and this is discussed by Dyson. The intrinsic cause of phonon decay is the anharmonic interaction involving three phonons, and this process is described for zinc blende BN and hexagonal AlN, GaN and InN by Srivastava. The principal electron scattering mechanism at room temperature is associated with the interaction with polar optical modes. At high fields, transfer to the upper conduction-band valleys can take place and this involves the deformation-potential interaction. Deformation potentials have been derived by Yamakawa et al for GaN, and they have been incorporated into a cellular Monte Carlo simulation to describe high-field transport. In high-power devices, thermal as well as electronic transport is important. The thermal conductivity of the substrate of devices is a vital factor, and the possible use of AlN ceramics is discussed by AlShaikhi and Srivastarva. A striking device based on a zinc blende superlattice is the quantum cascade laser. Exploiting intersubband transitions in the AlN/GaN superlattice for the high-speed detection of infrared light is described by Hofstetter et al, clearly a first step towards a nitride based quantum cascade laser. In bulk material the displacement of As by N that transforms GaAs to GaN produces a huge change in properties. Adding a small amount of N to GaAs might be expected to produce a gradual more-or-less linear shift towards the properties of GaN, but this turns out to be far from the case. The strange properties of dilute nitrides have intrigued many workers in recent years. Its curious bandstructure suggested that hot-electron transport could exhibit a negative differential resistance, and a report on this topic can be found in the article by Patane et al A comprehensive study of transport of electrons and holes in dilute nitride/GaAs quantum wells is reported by Sun et al. An unusual new device—a spin filter—is presaged by the work of Zhao et al on

  5. Silicon Nitride Plates for Turbine Blade Application: FEA and NDE Assessment

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Engine manufacturers are continually attempting to improve the performance and the overall efficiency of internal combustion engines. The thermal efficiency is typically improved by raising the operating temperature of essential engine components in the combustion area. This reduces the heat loss to a cooling system and allows a greater portion of the heat to be used for propulsion. Further improvements can be achieved by diverting part of the air from the compressor, which would have been used in the combustor for combustion purposes, into the turbine components. Such a process is called active cooling. Increasing the operating temperature, decreasing the cooling air, or both can improve the efficiency of the engine. Furthermore, lightweight, strong, tough hightemperature materials are required to complement efficiency improvement for nextgeneration gas turbine engines that can operate with minimum cooling. Because of their low-density, high-temperature strength, and thermal conductivity, ceramics are being investigated as potential materials for replacing ordinary metals that are currently used for engine hot section components. Ceramic structures can withstand higher operating temperatures and other harsh environmental factors. In addition, their low densities relative to metals helps condense component mass (ref. 1). The objectives of this program at the NASA Glenn Research Center are to develop manufacturing technology, a thermal barrier coating/environmental barrier coating (TBC/EBC), and an analytical modeling capability to predict thermomechanical stresses, and to do minimal burner rig tests of silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Furthermore, and in support of the latter objectives, an optimization exercise using finite element analysis and nondestructive evaluation (NDE) was carried out to characterize and evaluate silicon nitride plates with cooling channels.

  6. Preparation and characterization of ceramic sensors for use at elevated temperatures

    NASA Astrophysics Data System (ADS)

    You, Tao

    Ceramic ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures. The thickness of the active ITO strain elements played a significant role in the high temperature stability and piezoresistive properties, specifically, these results indicated that both gauge factor and drift rate were affected by the thickness of ITO films comprising the active strain elements. The influence of nitrogen in the reactive sputtered ITO films on the microstructure and the high temperature piezoresistive properties was also investigated. Scanning electron microscopy (SEM) revealed a partially sintered microstructure consisting of a contiguous network of sub-micron ITO particles with well-defined necks and isolated nanoporosity. Sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established. Aluminum doped indium tin oxide thin film exhibited an enhanced high temperature stability compared with undoped ITO thin film. The effect of aluminum doped ITO was investigated under various preparation and testing environments. Electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum increased the stability of ITO at elevated temperatures. These binding energies of indium-indium are significantly higher than those associated with stoichiometric indium oxide. A robust ceramic temperature sensor was fabricated by two different ITO elements, each with substantially different charge carrier concentrations. Thermal cycling of ITO thin films in a varied of partial oxygen pressures conditions showed that temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure. A thermoelectric power of 6.0muV/°C and a linear voltage-temperature response were measured for an ITO thin film ceramic thermocouple over the temperature range 25--1250°C.

  7. Preparation and Characteristics of Porous Ceramics by a foaming Technology at Low Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, H. Q.; Wang, S. P.; Wen, J.; Wu, N.; Xu, S. H.

    2017-12-01

    Recycling and converting coal gangue and red mud into porous ceramics with good performance is a feasible disposal route. In this present work, porous foam ceramics was prepared using coal gangue and red mud as main raw materials at low sintering temperature, The amount of coal gangue and red mud were up to 70 wt%. To regulate the forming and sintering performance of the product, quartz sands and clay material were added to the formula. The green body was formed by a foaming technology using aluminum powders as foaming agents at room temperature. After foamed, the specimens were dried at 60-80 °C, and then calcined at 1060°C. Effects of concentration of NaOH and amount of aluminum powders on the phase, mechanical properties and microstructure were investigated here. Such study is expected to provide a new utilization route of the coal gangue and red mud, and brings both intensive environmental and economic benefits.

  8. Production of Ultrafine, High-purity Ceramic Powders Using the US Bureau of Mines Developed Turbomill

    NASA Technical Reports Server (NTRS)

    Hoyer, Jesse L.

    1993-01-01

    Turbomilling, an innovative grinding technology developed by the U.S. Bureau of Mines in the early 1960's for delaminating filler-grade kaolinitic clays, has been expanded into the areas of particle size reduction, material mixing, and process reaction kinetics. The turbomill, originally called an attrition grinder, has been used for particle size reduction of many minerals, including natural and synthetic mica, pyrophyllite, talc, and marble. In recent years, an all-polymer version of the turbomill has been used to produce ultrafine, high-purity, advanced ceramic powders such as SiC, Si3N4, TiB2, and ZrO2. In addition to particle size reduction, the turbomill has been used to produce intimate mixtures of high surface area powders and whiskers. Raw materials, TiN, AlN, and Al2O3, used to produce a titanium nitride/aluminum oxynitride (TiN/AlON) composite, were mixed in the turbomill, resulting in strength increases over samples prepared by dry ball milling. Using the turbomill as a leach vessel, it was found that 90.4 pct of the copper was extracted from the chalcopyrite during a 4-hour leach test in ferric sulfate versus conventional processing which involves either roasting of the ore for Cu recovery or leaching of the ore for several days.

  9. Addition of a pontic to all-ceramic Turkom-Cera fixed partial denture restorations

    PubMed Central

    Uludag, Bulent; Tokar, Emre; Polat, Serdar

    2013-01-01

    High-strength all-ceramic materials are commonly used in dentistry. When complications occur in an all-ceramic restoration, the restoration is usually replaced. This article describes the time-saving ability and cost-effectiveness of this novel technique for the addition of a pontic in two complicated clinical cases. Turkom-Cera™ [Turkom-Ceramic (M) Sdn. Bhd.] with aluminum oxide (99.98%) is an all-ceramic system that offers the option of addition of a new pontic to the sintered framework. The new pontic was cut off from an alumina blank [Turkom-Ceramic (M) Sdn. Bhd.], moistened, and attached to the framework using alumina gel [Turkom-Ceramic (M) Sdn. Bhd.]. The framework was veneered with veneering porcelain (Vita VM 7; VITA Zahnfabrik). The two cases presented here involving the addition of a pontic to sintered framework were followed up for at least 1 year. No complication was detected or reported by the patients. Alumina- and zirconia-based ceramics are particularly suitable for for all-ceramic restorations in high-stress bearing areas. However, replacement of a failed all-ceramic restoration is not the most practical solution, considering both cost and tooth-related factors. This attractive feature of the Turkom-Cera allows the repair of a fractured ceramic coping or the addition of a new pontic to restorations. PMID:24883033

  10. Fabrication and Physical Properties of Titanium Nitride/Hydroxyapatite Composites on Polyether Ether Ketone by RF Magnetron Sputtering Technique

    NASA Astrophysics Data System (ADS)

    Nupangtha, W.; Boonyawan, D.

    2017-09-01

    Titanium nitride (TiN) coatings have been used very successfully in a variety of applications because of their excellent properties, such as the high hardness meaning good wear resistance and also used for covering medical implants. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters. This paper aims to explain how to optimize deposition conditions for films synthesis on PEEK by varying sputtering parameters such as nitrogen flow rate and direction, deposition time, d-s (target-to-substrate distance) and 13.56 MHz RF power. The plasma conditions used to deposit films were monitored by the optical emission spectroscopy (OES). Titanium nitride/Hydroxyapatite composite films were performed by gas mixture with nitrogen and argon ratio of 1:3 and target-to-substrate distance at 8 cm. The gold colour, as-deposited film was found on PEEK with high hardness and higher surface energy than uncoated PEEK. X-ray diffraction characterization study was carried to study the crystal structural properties of these composites.

  11. Strength and fatigue of NT551 silicon nitride and NT551 diesel exhaust valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.J.; Werezczak, A.A.; Kirkland, T.P.

    2000-02-01

    The content of this report is excerpted from Mark Andrew's Ph.D. Thesis (Andrews, 1999), which was funded by a DOE/OTT High Temperature Materials Laboratory Graduate Fellowship. It involves the characterization of NT551 and valves fabricated with it. The motivations behind using silicon nitride (Si{sub 3}N{sub 4}) as an exhaust valve for a diesel engine are presented in this section. There are several economic factors that have encouraged the design and implementation of ceramic components for internal combustion (IC) engines. The reasons for selecting the diesel engine valve for this are also presented.

  12. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  13. Ceramic heat pipe wick

    NASA Technical Reports Server (NTRS)

    Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)

    1989-01-01

    A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.

  14. Bond strength between a polymer-infiltrated ceramic network and a composite for repair: effect of several ceramic surface treatments.

    PubMed

    Silva, Pollyanna Nogueira Ferreira da; Martinelli-Lobo, Carolina Machado; Bottino, Marco Antonio; Melo, Renata Marques de; Valandro, Luiz Felipe

    2018-01-01

    The effects of several ceramic surface treatments on bond strength of a polymer-infiltrated ceramic network and resin composite as repair material were evaluated. CAD-CAM blocks of a polymer-infiltrated ceramic network (Vita Enamic) were sliced and subjected to aging process, followed by embedding in acrylic resin. The bonding/repair area was treated as follows (n = 30): C- without treatment; UA- universal adhesive application; FM- 10% hydrofluoric acid and silane application; OM-airborne-particle abrasion with aluminum oxide and silane application; RP- tribochemical silica coating; and CA- surface grinding and application of universal adhesive. Composite resin cylinders were made on the treated surface. Specimens from each group were assigned randomly to two subgroups (n = 15) considering storage condition: Baseline (shear tests after 48 hours) or Storage (tests after 6 months under distilled water). The treated surfaces were analyzed by goniometry, roughness, and SEM. Two-way ANOVA and 1-way ANOVA were applied to analyze the bond data and roughness / contact angle data, respectively, followed by Tukey's test (α = 5%). Surface treatments and storage conditions affected bond strengths (p < 0.01). Surface grinding (CA) followed by universal adhesive promoted the highest value of bond strength (14.5 ± 4.8 MPa for baseline, 8.5 ± 3.4 MPa for storage) and the roughest ceramic surface. Grinding with silicon carbide paper (simulating diamond bur) followed by the application of a universal adhesive system is the best option for repairing fractures of the polymer-infiltrated ceramic network.

  15. Microhardness evaluations of CAD/CAM ceramics irradiated with CO2 or Nd:YAP laser

    PubMed Central

    Rocca, Jean Paul; Fornaini, Carlo; Medioni, Etienne; Brulat-Bouchard, Nathalie

    2017-01-01

    Background and aims The aim of this study was to measure the microhardness values of irradiated computer-aided design/computer-aided manufacturing (CAD/CAM) ceramics surfaces before and after thermal treatment. Materials and Methods Sixty CAD/CAM ceramic discs were prepared and grouped by material, i.e. lithium disilicate ceramic (Emax CAD) and zirconia ceramic (Emax ZirCAD). Laser irradiation at the material surface was performed with a carbon dioxide laser at 5 Watt (W) or 10 W power in continuous mode (CW mode), or with a neodymium:yttrium aluminum perovskite (Nd:YAP) laser at 10 W on graphite and non-graphite surfaces. Vickers hardness was tested at 0.3 kgf for lithium disilicate and 1 kgf for zirconia. Results Emax CAD irradiated with CO2 at 5 W increased microhardness by 6.32 GPa whereas Emax ZirCAD irradiated with Nd:YAP decreased microhardness by 17.46 GPa. Conclusion CO2 laser effectively increases the microhardness of lithium disilicate ceramics (Emax CAD). PMID:28740324

  16. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    PubMed Central

    Jin, Wei; Liu, Jiaan; Wang, Zhili; Wang, Yonghua; Cao, Zheng; Liu, Yaohui; Zhu, Xianyong

    2015-01-01

    Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent. PMID:28793653

  17. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  18. Summary of aluminum nitrate tests at the F/H-ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D.J.; Wiggins, A.W.

    1992-05-01

    Biofouling of the Norton ceramic filters in the F/H Effluent Treatment Facility (ETF) has been minimized by bacterial control strategies on the influent streams. However, enough bacteria still exists in the routine influent to impact the filter performance. One method of remediating biofouling in routine influent, initially observed in laboratory tests on simulant solutions, involves addition of aluminum nitrate to the influent wastewater. Tests on actual feed at the ETF using aluminum nitrate showed significantly improved performance, with increases in filter permeability of up to four-fold compared to the baseline case. These improvements were only realized after modifications to themore » pH adjustment system were completed which minimized upsets in the pH of the feed solutions.« less

  19. Ceramic Technology Project data base: September 1992 summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, B.L.P.

    Data presented in this report represent an intense effort to improve processing methods, testing methods, and general mechanical properties (rupture modulus, tensile, creep, stress-rupture, dynamic and cyclic fatigue, fracture toughness) of candidate ceramics for use in advanced heat engines. This work was performed by many facilities and represents only a small part of the data generated by the Ceramic Technology Project (CTP) since 1986. Materials discussed include GTE PY6, GN-10, NT-154, NT-164, SN-260, SN-251, SN-252, AY6, silicon nitride combined with rare-earth oxides, Y-TZP, ZTA, NC-433, NT-230, Hexoloy SA, MgO-PSZ-to-MgO-PSZ joints, MgO-PSZ-to-cast iron, and a few whisker/fiber-reinforced ceramics. Information in thismore » report was taken from the project`s semiannual and bimonthly progress reports and from final reports summarizing the results of individual studies. Test results are presented in tabular form and in graphs. All data, including test rig descriptions and material characterizations, are stored in the CTP data base and are available to all project participants on request. The objective of this report is to make available the test results from these studies but not to draw conclusions from those data.« less

  20. Ceramic materials of low-temperature synthesis for dielectric coating applied by 3D aerosol printing used in nano- and microelectronics, lighting engineering, and spacecraft control devices

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Tuev, V. I.; Nisan, A. V.; Potapov, G. N.

    2016-11-01

    A synthesis technique of low-temperature ceramic material based on aluminosilicates of dendrimer morphology capable to contain up to 80 wt % of nitrides and oxides of high-melting compounds as filler has been developed. The synthesis is based on a sol-gel method followed by mechanochemical treatment and ultrasonic dispersing. Dielectric ceramic layers with the layer thickness in the nanometer range and high thermal conductivity have been obtained for the first time by 3D aerosol printing of the synthesized material. The study of the obtained ceramic coating on the metal surface (Al) has proved its use prospects in microelectronics, light engineering, and devices for special purposes.

  1. Study program to develop and evaluate die and container materials for the growth of silicon ribbons. [for development of low cost solar cells

    NASA Technical Reports Server (NTRS)

    Addington, L. A.; Ownby, P. D.; Yu, B. B.; Barsoum, M. W.; Romero, H. V.; Zealer, B. G.

    1979-01-01

    The development and evaluation of proprietary coatings of pure silicon carbide, silicon nitride, and aluminum nitride on less pure hot pressed substrates of the respective ceramic materials, is described. Silicon sessile drop experiments were performed on coated test specimens under controlled oxygen partial pressure. Prior to testing, X-ray diffraction and SEM characterization was performed. The reaction interfaces were characterized after testing with optical and scanning electron microscopy and Auger electron spectroscopy. Increasing the oxygen partial pressure was found to increase the molten silicon contact angle, apparently because adsorbed oxygen lowers the solid-vapor interfacial free energy. It was also found that adsorbed oxygen increased the degree of attack of molten silicon upon the chemical vapor deposited coatings. Cost projections show that reasonably priced, coated, molten silicon resistant refractory material shapes are obtainable.

  2. Life prediction and mechanical reliability of NT551 silicon nitride

    NASA Astrophysics Data System (ADS)

    Andrews, Mark Jay

    The inert strength and fatigue performance of a diesel engine exhaust valve made from silicon nitride (Si3N4) ceramic were assessed. The Si3N4 characterized in this study was manufactured by Saint Gobain/Norton Industrial Ceramics and was designated as NT551. The evaluation was made utilizing a probabilistic life prediction algorithm that combined censored test specimen strength data with a Weibull distribution function and the stress field of the ceramic valve obtained from finite element analysis. The major assumptions of the life prediction algorithm are that the bulk ceramic material is isotropic and homogeneous and that the strength-limiting flaws are uniformly distributed. The results from mechanical testing indicated that NT551 was not a homogeneous ceramic and that its strength were functions of temperature, loading rate, and machining orientation. Fractographic analysis identified four different failure modes; 2 were identified as inhomogeneities that were located throughout the bulk of NT551 and were due to processing operations. The fractographic analysis concluded that the strength degradation of NT551 observed from the temperature and loading rate test parameters was due to a change of state that occurred in its secondary phase. Pristine and engine-tested valves made from NT551 were loaded to failure and the inert strengths were obtained. Fractographic analysis of the valves identified the same four failure mechanisms as found with the test specimens. The fatigue performance and the inert strength of the Si3N 4 valves were assessed from censored and uncensored test specimen strength data, respectively. The inert strength failure probability predictions were compared to the inert strength of the Si3N4 valves. The inert strength failure probability predictions were more conservative than the strength of the valves. The lack of correlation between predicted and actual valve strength was due to the nonuniform distribution of inhomogeneities present in NT

  3. Formation of calcium in the products of iron oxide-aluminum thermite combustion in air

    NASA Astrophysics Data System (ADS)

    Gromov, A. A.; Gromov, A. M.; Popenko, E. M.; Sergienko, A. V.; Sabinskaya, O. G.; Raab, B.; Teipel, U.

    2016-10-01

    The composition of condensed products resulting from the combustion of thermite mixtures (Al + Fe2O3) in air is studied by precise methods. It is shown that during combustion, calcium is formed and stabilized in amounts of maximal 0.55 wt %, while is missing from reactants of 99.7 wt % purity. To explain this, it is hypothesized that a low-energy nuclear reaction takes place alongside the reactions of aluminum oxidation and nitridation, resulting in the formation of calcium (Kervran-Bolotov reaction).

  4. Durability characterization of ceramic materials for gas turbines

    NASA Technical Reports Server (NTRS)

    Carruthers, W. D.; Lindberg, L. J.

    1987-01-01

    The strength retention of ceramic materials during extended high-temperature cyclic exposure is critical to their widespread application in gas turbine engines. During a continuing NASA funded program initated in 1979, reaction bonded silicon nitride (RBSN), sintered silicon carbide (SSC), reaction sintered silicon carbide (RSSC), and sintered silicon nitride (SSN) materials were evaluated following simulated gas turbine engine exposures. Exposures were performed by cycling specimens five times per hour between a high velocity burner discharge and a rapid air quench. The retained flexural strengths were determined following up to 3500 hours of exposure at temperatures up to 1370 C. Post-exposure strengths have been correlated with fractography and surface examination using SEM. Results illustrate excellent strength retention of SSC materials after 3500 hours of exposure to 1370 C. At 1200 C, RBSN and RSSC also demonstrate significant strength retention. Although SSN materials typically suffer significant strength losses during exposures at 1200 C, a new composition, which has improved high-temperature strength, also shows improved durability. In the majority of the materials, strength loss is typically associated with flaw formation in the protective SiO2 layer.

  5. Evaluation of ceramics for stator applications: Gas turbine engines interim report. Stator fabrication and evaluation

    NASA Technical Reports Server (NTRS)

    Arnon, N.; Trela, W.

    1983-01-01

    The objective was to assess current ceramic materials, fabrication processes, reliability prediction, and stator durability when subjected to simulated automotive gas turbine engine operating conditions. Ceramic one-piece stators were fabricated of two materials, silicon nitride and silicon carbide, using two near-net-shape processes, slip casting and injection molding. Non-destructive evaluation tests were conducted on all stators identifying irregularities which could contribute to failures under durability testing. Development of the test rig and automatic control system for repeatably controlling air flow rate and temperature over a highly transient durability duty cycle is discussed. Durability results are presented for repeated thermal cycle testing of the ceramic one-piece stators. Two duty cycles were used, encompassing the temperature ranges of 704 to 1204 C (1300 to 2200 F) and 871 to 1371 C (1600 to 2500 F). Tests were conducted on 28 stators, accumulating 135,551 cycles in 2441 hours of hot testing. Cyclic durability for the ceramic one-piece stator was demonstrated to be in excess of 500 hours, accumulating over 28,850 thermal cycles. Ceramic interface forces were found to be the significant factor in limiting stator life rather than the scatter in material strength properties or the variation in component defects encountered.

  6. High energy resolution with transparent ceramic garnet scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.

    2014-09-01

    Breakthrough energy resolution, R(662keV) < 4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.

  7. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramicmore » exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.« less

  8. Electrospinning of ceramic nanofibers

    NASA Astrophysics Data System (ADS)

    Eick, Benjamin M.

    Silicon Carbide (SiC) nanofibers of diameters as low as 20 nm are fabricated. The fibers were produced through the electrostatic spinning of the preceramic poly(carbomethylsilane) with pyrolysis to ceramic. A new technique was used where the preceramic was blended with polystyrene (PS) and, subsequent to electrospinning, was exposed to UV to crosslink the PS and prevent fibers flowing during pyrolysis. Electrospun SiC fibers were characterized by FTIR, TGA-DTA, SEM, TEM, XRD, and SAED. Fibers were shown to be polycrystalline and nanograined with alpha-SiC 15R polytype being dominant, where commercial fiber production methods form beta-SiC 3C. Pyrolysis of the bulk polymer blend to SiC produced alpha-SiC 15R as the dominant polytype with larger grains showing that electrospinning nanofibers affects resultant crystallinity. Fibers produced were shown to have a core-shell structure of an oxide scale that was variable by pyrolysis conditions. Metal oxide powders (chromium oxide, cobalt oxide, iron oxide, silicon oxide, tantalum oxide, titanium oxide, tungsten oxide, vanadium oxide, and zirconium oxide), were converted to metal carbide powders and metal nitride powders by the process of carbothermal reduction (CTR). Synthetic pitch was explored as an alternative to graphite which is a common carbon source for CTR. It was shown via characterization with XRD that pitch performs as well and in some cases better than graphite and is therefore a viable alternative in CTR. Conversion of metal oxide powders with pitch led to conversion of sol-gel based metal oxide nanofibers produced by electrospinning. Pitch was soluble in the solutions xv that were electrospun allowing for intimate contact between the sol-gel and the carbon source for CTR. This method became a two step processing method to produce metal carbide and nitride nanofibers: first electrospin sol-gel based metal oxide nanofibers and subsequently pyrolize them in the manner of CTR to transform them. Results indicate

  9. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    NASA Technical Reports Server (NTRS)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  10. Development of III-nitride semiconductors by molecular beam epitaxy and cluster beam epitaxy and fabrication of LEDs based on indium gallium nitride MQWs

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Chou Papo

    The family of III-Nitrides (the binaries InN, GaN, AIN, and their alloys) is one of the most important classes of semiconductor materials. Of the three, Indium Nitride (InN) and Aluminum Nitride (AIN) have been investigated much less than Gallium Nitride (GaN). However, both of these materials are important for optoelectronic infrared and ultraviolet devices. In particular, since InN was found recently to be a narrow gap semiconductor (Eg=0.7eV), its development should extend the applications of nitride semiconductors to the spectral region appropriate to fiber optics communication and photovoltaic applications. Similarly, the development of AIN should lead to deep UV light emitting diodes (LEDs). The first part of this work addresses the evaluation of structural, optical and transport properties of InN films grown by two different deposition methods. In one method, active nitrogen was produced in the form of nitrogen radicals by a radio frequency (RF) plasma-assisted source. In an alternative method, active nitrogen was produced in the form of clusters containing approximately 2000 nitrogen molecules. These clusters were produced by adiabatic expansion from high stagnation pressure through a narrow nozzle into vacuum. The clusters were singly or doubly ionized with positive charge by electron impact and accelerated up to approximately 20 to 25 KV prior to their disintegration on the substrate. Due to the high local temperature produced during the impact of clusters with the substrate, this method is suitable for the deposition of InN at very low temperatures. The films are auto-doped n-type with carrier concentrations varying from 3 x 1018 to 1020 cm-3 and the electron effective mass of these films was determined to be 0.09m0. The majority of the AIN films was grown by the cluster beam epitaxy method and was doped n- and p- type by incorporating silicon (Si) and magnesium (Mg) during the film deposition. All films were grown under Al-rich conditions at relatively

  11. Site Directed Nucleation and Growth of Ceramic Films on Metallic Surfaces

    DTIC Science & Technology

    2009-04-30

    ceramics and other nanoscale composite materials research with the ultimate goal being the cell-free, nanocrystalline assembly of adaptive bioceramic...for high temperature or high wear environments. Other applications/technology developments for this research include adaptive materials, wear...bound vesicles that form the surface membrane of gastropod nacre. 19 Folia formation was observed by recovering titanium and aluminum disc implants

  12. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  13. Effects of Hot Corrosion on the Room Temperature Strength of Structural Ceramics

    DTIC Science & Technology

    1989-07-01

    Melts. J. Elccrochni. Soc., v. 132, no. 10. 1985, p. 2502-2507. 6. TRESSLER, R. E., MEISER, M. D., and YONUSHONIS, T. Molten Salt Corrosion of SiC and...FOX. D. S. Molten Salt Corrosion ofSilicon Nitride: II. Sodium Sulfate. J. Am. Ceram. Soc., v. 71. no. 2. ]’,;-. p. 139-14R. 11. JACOBSON, N. S...SMIALEK..’. L, and FOX, D. S. Molten Salt Corrosion of SiC and SiN Prepared for NASA-i.cwis Rccarch C,, ter, NASA TM-101346, November 1988. 12. DAVIES G

  14. Assessment of DNA damage in ceramic workers.

    PubMed

    Anlar, Hatice Gul; Taner, Gokce; Bacanli, Merve; Iritas, Servet; Kurt, Turker; Tutkun, Engin; Yilmaz, Omer Hinc; Basaran, Nursen

    2018-02-24

    It is known that ceramic workers are potentially exposed to complex mixture of chemicals such as silica, inorganic lead, lime, beryllium and aluminum that can be associated with an increased risk of several diseases. All operations in the ceramic industries such as mixing, moulding, casting, shaking out and finishing jobs, have been associated with the higher exposure levels and in most of the silica-related industries, average overall exposure exceeded permissible exposure levels for respirable crystalline silica. The aim of this study was to evaluate the possible genotoxic damage in ceramic workers exposed to complex mixture of chemicals mainly crystalline silica. For this purpose, the blood and buccal epithelial cell samples were taken from the ceramic workers (n = 99) and their controls (n = 81). The genotoxicity was assessed by the alkaline comet assay in isolated lymphocytes and whole blood. Micronucleus (MN), binucleated (BN), pyknotic (PYC), condensed chromatin (CC), karyolytic (KYL), karyorrhectic (KHC) and nuclear bud (NBUD) frequencies in buccal epithelial cells and plasma 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) levels were also evaluated. In the study, 38 workers were diagnosed with silicosis, 9 workers were suspected to have silicosis, whereas 52 workers were found to be healthy. DNA damage in blood and lymphocytes; MN, CC + KHC, PYC frequencies in buccal epithelial cells and 8-oxodG levels in plasma were increased in workers compared to their controls. These results showed that occupational chemical mixture exposure in ceramic industry may cause genotoxic damage that can lead to important health problems in the workers.

  15. Aluminum gallium nitride-cladding-free nonpolar m-plane gallium nitride-based laser diodes

    NASA Astrophysics Data System (ADS)

    Schmidt, Mathew Corey

    The recent demonstration of nonpolar GaN laser diode operation along with rapid device improvements signal a paradigm shift in GaN-based optoelectronic technology. Up until now, GaN optoelectronics have been trapped on the c-plane facet, where built-in polarization fields place limitations on device design and performance. The advent of bulk GaN substrates has allowed for the full exploration of not only the nonpolar m-plane facet, but all crystal orientations of GaN. This dissertation focuses on the development of some of the world's first nonpolar m-plane GaN laser diodes as well as on the AlGaN-cladding-free concept invented at UCSB. The absence of built-in electric fields allows for thicker quantum wells (≥8 nm) than those allowed on c-plane which improves the optical waveguiding characteristics and eliminates the need for AlGaN cladding layers. The benefits of this design include more uniform growth, more reproducible growth, no tensile cracking, lower operating voltages and currents, and higher yields. The first iteration of device design optimization is presented. Design and growth aspects investigated include quantum well number, quantum well thickness, Mg doping of the p-GaN cladding, aluminum composition of the AlGaN cladding layer and the implementation of an InGaN separate confined heterostructure. These optimizations led to threshold current densities as low as 2.4 kA/cm2.

  16. Thermal Response of Cooled Silicon Nitride Plate Due to Thermal Conductivity Effects Analyzed

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Abdul-Aziz, Ali; Bhatt, Ramakrishna

    2003-01-01

    Lightweight, strong, tough high-temperature materials are required to complement efficiency improvements for next-generation gas turbine engines that can operate with minimum cooling. Because of their low density, high-temperature strength, and high thermal conductivity, ceramics are being investigated as materials to replace the nickelbase superalloys that are currently used for engine hot-section components. Ceramic structures can withstand higher operating temperatures and a harsh combustion environment. In addition, their low densities relative to metals help reduce component mass (ref. 1). To complement the effectiveness of the ceramics and their applicability for turbine engine applications, a parametric study using the finite element method is being carried out. The NASA Glenn Research Center remains very active in conducting and supporting a variety of research activities related to ceramic matrix composites through both experimental and analytical efforts (ref. 1). The objectives of this work are to develop manufacturing technology, develop a thermal and environmental barrier coating (TBC/EBC), develop an analytical modeling capability to predict thermomechanical stresses, and perform a minimal burner rig test on silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Moreover, we intend to generate a detailed database of the material s property characteristics and their effects on structural response. We expect to offer a wide range of data since the modeling will account for other variables, such as cooling channel geometry and spacing. Comprehensive analyses have begun on a plate specimen with Si3N4 cooling holes.

  17. Polishing of silicon based advanced ceramics

    NASA Astrophysics Data System (ADS)

    Klocke, Fritz; Dambon, Olaf; Zunke, Richard; Waechter, D.

    2009-05-01

    Silicon based advanced ceramics show advantages in comparison to other materials due to their extreme hardness, wear and creep resistance, low density and low coefficient of thermal expansion. As a matter of course, machining requires high efforts. In order to reach demanded low roughness for optical or tribological applications a defect free surface is indispensable. In this paper, polishing of silicon nitride and silicon carbide is investigated. The objective is to elaborate scientific understanding of the process interactions. Based on this knowledge, the optimization of removal rate, surface quality and form accuracy can be realized. For this purpose, fundamental investigations of polishing silicon based ceramics are undertaken and evaluated. Former scientific publications discuss removal mechanisms and wear behavior, but the scientific insight is mainly based on investigations in grinding and lapping. The removal mechanisms in polishing are not fully understood due to complexity of interactions. The role of, e.g., process parameters, slurry and abrasives, and their influence on the output parameters is still uncertain. Extensive technological investigations demonstrate the influence of the polishing system and the machining parameters on the stability and the reproducibility. It is shown that the interactions between the advanced ceramics and the polishing systems is of great relevance. Depending on the kind of slurry and polishing agent the material removal mechanisms differ. The observed effects can be explained by dominating mechanical or chemo-mechanical removal mechanisms. Therefore, hypotheses to state adequate explanations are presented and validated by advanced metrology devices, such as SEM, AFM and TEM.

  18. Reducing the Surface Degradation of Aluminum Extrusion Dies During Preheating

    NASA Astrophysics Data System (ADS)

    Stratton, Paul

    2010-07-01

    Aluminum extrusion dies are usually made from H13 steel that is ferritically nitrocarburized to minimize wear and pick-up. Before being placed in the extrusion press, the dies are preheated to minimize thermal shock at the start of the extrusion cycle. During the preheating time, the nitrocarburized layer oxidizes. Some of this layer can break away during extrusion leaving marks on the product. Although inerting the preheat furnaces with nitrogen has been found to reduce the oxidation, it does not solve the problem completely. Experiments have shown that a small addition of ammonia to the preheating protective atmosphere could eliminate oxidation and prevent nitrogen loss from the surface nitride layer.

  19. Corrosion/Erosion Behavior of Silicon Nitride and Silicon Carbide Ceramics - Gas Turbine Experience

    DTIC Science & Technology

    1979-04-01

    C-0138. As part of a program to utilize ceramics in helical expander Brayton cycle turbomachines for coal-fired topping cycles, Myers el a1.7 have...Meyers et al., Reference 7). 7. MEYERS, B., LANDINGHAM, R., MOHR, P., and TAYLOR , K. An Adiabatic Coal-Fired 1350 C Expander in Proceedings: Workshop on

  20. Slow crack growth versus creep cavity coalescence: Competing failure mechanisms during high-temperature deformation of advanced ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, M.G.; Kohles, S.S.; Stevens, T.L.

    1996-12-31

    Duality of failure mechanisms (slow crack growth from pre-existing defects versus cumulative creep damage) is examined in a silicon nitride advanced ceramic recently tested at elevated-temperatures. Static (constant stress over time), dynamic (monotonically-increasing stress over time), and cyclic (fluctuating stress over time) fatigue behaviors were evaluated in tension in ambient air at temperatures of 1150, 1260, and 1370{degrees}C for a hot-isostatically pressed monolithic {beta}-silicon nitride. At 1150{degrees}C, all three types of fatigue results showed the similar failure mechanism of slow crack growth (SCG). At 1260 and 1370{degrees}C the failure mechanism was more complex. Failure under static fatigue was dominated bymore » the accumulation of creep damage via diffusion-controlled cavities. In dynamic fatigue, failure occurred by SCG at high stress rates (>10{sup {minus}2}MPa/s) and by creep damage at low stress rates ({le}10{sup {minus}2} MPa/s). For cyclic fatigue, such rate effects influenced the stress rupture results in which times to failure were greater for dynamic and cyclic fatigue than for static fatigue. Elucidation of failure mechanisms is necessary for accurate prediction of long-term survivability and reliability of structural ceramics.« less