Science.gov

Sample records for aluminum reduction cell

  1. A Virtual Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  2. Aluminum reduction cell electrode

    DOEpatents

    Goodnow, Warren H.; Payne, John R.

    1982-01-01

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB.sub.2, for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints.

  3. Aluminum reduction cell electrode

    DOEpatents

    Goodnow, W.H.; Payne, J.R.

    1982-09-14

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

  4. Aluminum reduction cell electrode

    DOEpatents

    Payne, John R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces.

  5. Aluminum reduction cell electrode

    DOEpatents

    Payne, J.R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

  6. Process simulation of aluminum reduction cells

    SciTech Connect

    Tabsh, I.; Dupuis, M.; Gomes, A.

    1996-10-01

    A program was developed to model the dynamic behavior of an aluminum reduction cell. The program simulates the physical process by solving the heat and mass balance equations that characterize the behavior of eleven chemical species in the system. It also models operational events (such as metal tapping, anode change, etc.) and the process control logic including various alumina feeding policies and anode effect quenching. The program is a PC based Windows{reg_sign} application that takes full advantage of the Windows user interface. This paper describes the implementation of the process model and the control logic. Various results using the simulation are compared to measured data.

  7. Recent Advances in Electrical Resistance Preheating of Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Mahmoud; Kvande, Halvor

    2016-06-01

    ABSTRACT There are two mainpreheating methods that are used nowadays for aluminum reduction cells. One is based on electrical resistance preheating with a thin bed of small coke and/or graphite particles between the anodes and the cathode carbon blocks. The other is flame preheating, where two or more gas or oil burners are used. Electrical resistance preheating is the oldest method, but is still frequently used by different aluminum producers. Many improvements have been made to this method by different companies over the last decade. In this paper, important points pertaining to the preparation and preheating of these cells, as well as measurements made during the preheating process and evaluation of the performance of the preheating, are illustrated. The preheating times of these cells were found to be between 36 h and 96 h for cell currents between 176 kA and 406 kA, while the resistance bed thickness was between 13 mm and 60 mm. The average cathode surface temperature at the end of the preheating was usually between 800°C and 950°C. The effect of the preheating methods on cell life is unclear and no quantifiable conclusions can be drawn. Some works carried out in the mathematical modeling area are also discussed. It is concluded that there is a need for more studies with real situations for preheated cells on the basis of actual measurements. The expected development in electrical resistance preheating of aluminum reduction cells is also summarized.

  8. Testing and Characterization of Anode Current in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Wang, Yongliang; Tie, Jun; Sun, Shuchen; Tu, Ganfeng; Zhang, Zhifang; Zhao, Rentao

    2016-06-01

    Anode current is an important parameter in the aluminum reduction process, but to test the anode current accurately is difficult at present. This study tested the individual anode current using the fiber-optic current sensor. The testing results show that this method can effectively avoid the interference of the electromagnetic field, and the current is measured with high precision which error is less than 1 pct. In the paper, the test currents under different cell conditions, including anode changing, metal tapping, abnormal current, and anode effect, are investigated using the method of time-domain and frequency-domain analysis, and the simulation method is also combined to investigate the cell conditions. The results prove that different cell conditions will show different anode current characteristics, and the individual current can monitor the cell conditions, especially the localized cell conditions. Some abnormal cell conditions can be found through anode current rather than cell voltage. The anode current can also be used for early detection of anode effect.

  9. Low temperature aluminum reduction cell using hollow cathode

    DOEpatents

    Brown, Craig W.; Frizzle, Patrick B.

    2002-08-20

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.

  10. Final report on DSA methods for monitoring alumina in aluminum reduction cells with cermet anodes

    SciTech Connect

    Windisch, C.F. Jr.

    1992-04-01

    The Sensors Development Program was conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy, Office of Industrial Processes. The work was performed in conjunction with the Inert Electrodes Program at PNL. The objective of the Sensors Development Program in FY 1990 through FY 1992 was to determine whether methods based on digital signal analysis (DSA) could be used to measure alumina concentration in aluminum reduction cells. Specifically, this work was performed to determine whether useful correlations exist between alumina concentration and various DSA-derived quantification parameters, calculated for current and voltage signals from laboratory and field aluminum reduction cells. If appropriate correlations could be found, then the quantification parameters might be used to monitor and, consequently, help control the alumina concentration in commercial reduction cells. The control of alumina concentration is especially important for cermet anodes, which have exhibited instability and excessive wear at alumina concentrations removed from saturation.

  11. Reduction in Young`s modulus of aluminum foams due to cell wall curvature and corrugation

    SciTech Connect

    Sanders, W.; Gibson, L.J.

    1998-12-31

    Measurements of the Young`s modulus and compressive strength of several closed-cell aluminum foams indicate that they are lower than expected from models for foam behavior. Microstructural characterization has revealed that there are a number of defects in the cell structure which may contribute to the reduction in mechanical properties. These include: cell wall curvature, cell wall corrugations, density variations and non-equiaxed cell shape. Finite element analysis of a closed-cell tetrakaidecahedral unit cell with idealized curved or corrugated cell walls indicates that these two types of defects can reduce the Young`s modulus and compressive strength by up to 70%. In this paper the authors report the results of measurements of the curvature of the cell walls and of the amplitude and frequency of corrugations in the cell walls and use simple bounds to estimate the reduction in modulus that they are responsible for.

  12. Non-consumable anode and lining for aluminum electrolytic reduction cell

    DOEpatents

    Beck, Theodore R.; Brooks, Richard J.

    1994-01-01

    An oxidation resistant, non-consumable anode, for use in the electrolytic reduction of alumina to aluminum, has a composition comprising copper, nickel and iron. The anode is part of an electrolytic reduction cell comprising a vessel having an interior lined with metal which has the same composition as the anode. The electrolyte is preferably composed of a eutectic of AlF.sub.3 and either (a) NaF or (b) primarily NaF with some of the NaF replaced by an equivalent molar amount of KF or KF and LiF.

  13. A Review of Alumina Feeding and Dissolution Factors in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Lavoie, Pascal; Taylor, Mark P.; Metson, James B.

    2016-08-01

    Modern aluminum reduction cells use point feeding technology to replenish alumina as it is consumed by the electrolytic process. The dissolution of alumina has become increasingly difficult to control as the cell sizes and electrolysis intensity have increased. The mass of alumina added per unit time is now much higher than a decade ago, and must take place within a smaller electrolyte mixing volume. In order to replenish the alumina concentration evenly, the alumina needs to be delivered, dispersed, dissolved, and distributed throughout the reduction cell. The dissolution itself follows a 4-step process that can be limited by a multitude of factors. The status of the research on each of these factors is reviewed in the present paper. Although research in laboratory cells has been conducted many times, and the impact of many factors on dissolution has been measured, published observations of alumina feeding on industrial cells are very sparse, especially regarding the dissolution dynamics in the space-time domain and the impact of the feeder hole condition. The present paper therefore presents a qualitative model of the factors governing alumina dissolution in industrial cells and offers the hypothesis that maintenance of the feeder hole condition is central to ensuring alumina dissolution and prevention of sludging.

  14. A cylindrical model for rotational MHD instabilities in aluminum reduction cells

    NASA Astrophysics Data System (ADS)

    Munger, David; Vincent, Alain

    2008-08-01

    Large-scale horizontal vortices associated with deformations of the aluminum-electrolyte interface have been observed in operating aluminum reduction cells as well as in physical and numerical models. To expose their importance, we analyze a particular class of magnetohydrodynamic (MHD) interfacial instabilities which are induced by rotation. As we focus on a single vortex, a cylindrical geometry is preferred. Two analytical models are proposed. In a first model based on the MHD shallow-water approximation, we consider a vortex that has a solid rotation profile to obtain a wave equation and a dispersion relation. A more realistic second model includes a viscous rotation profile and the treatment of the base-state interface deformation. Energetics of the flow gives further insight on how an initial perturbation evolves as an oscillatory or a non-oscillatory instability, depending on the direction of rotation. We find that the mechanism at the very origin of these instabilities is neither due to a shear between the two layers—and are therefore not Kelvin Helmholtz instabilities—nor simply due to magnetic force alone, but rather to the indirect action of the centripetal pressure due to the rotation induced by magnetic force.

  15. Final report on DSA methods for monitoring alumina in aluminum reduction cells with cermet anodes. Inert Electrodes Program

    SciTech Connect

    Windisch, C.F. Jr.

    1992-04-01

    The Sensors Development Program was conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy, Office of Industrial Processes. The work was performed in conjunction with the Inert Electrodes Program at PNL. The objective of the Sensors Development Program in FY 1990 through FY 1992 was to determine whether methods based on digital signal analysis (DSA) could be used to measure alumina concentration in aluminum reduction cells. Specifically, this work was performed to determine whether useful correlations exist between alumina concentration and various DSA-derived quantification parameters, calculated for current and voltage signals from laboratory and field aluminum reduction cells. If appropriate correlations could be found, then the quantification parameters might be used to monitor and, consequently, help control the alumina concentration in commercial reduction cells. The control of alumina concentration is especially important for cermet anodes, which have exhibited instability and excessive wear at alumina concentrations removed from saturation.

  16. Final report on the application of chaos theory to an alumina sensor for aluminum reduction cells

    SciTech Connect

    Williford, R.E.; Windisch, C.F. Jr.

    1992-03-01

    Four chaos-related digital signal analysis (DSA) methods were applied to the analysis of voltage and current signals collected from aluminum electrolysis cells. Two separate data bases were analyzed: bench-scale laboratory experiments and a pilot-scale test. The objective was to assess the feasibility of using these types of data and analysis methods as the basis for a non-intrusive sensor to measure the alumina content in the electrolysis bath. This was the first time chaos theory approaches have been employed to analyze aluminum electrolysis cells.

  17. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  18. Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Li, Baokuan; Fafard, Mario

    2016-02-01

    In order to explore the impact of anode replacement on heat transfer and magneto-hydrodynamic flow in aluminum smelting cells, a transient three-dimensional coupled mathematical model has been developed. With a steady state magnetic field, an electrical potential approach was used to obtain electromagnetic fields. Joule heating and Lorentz force, which were the source terms in the energy and momentum equations, were updated at each iteration. The phase change of molten electrolyte (bath) was modeled by an enthalpy-based technique in which the mushy zone was treated as a porous medium with porosity equal to the liquid fraction. A reasonable agreement between the test data and simulated results was achieved. Under normal conditions, the bath at the middle of the cell is hotter, while becoming colder at the four corners. Due to the heat extracted from the bath, the temperature of the new cold anode increases over time. The temperature of the bath under the new cold anode therefore quickly drops, resulting in a decrease of the electrical conductivity. More Joule effect is created. In addition, the bath under the new cold anode gradually freezes and flows more slowly. The temperature of the new anode located at the middle of the cell rises faster because of the warmer bath. It is easier to eliminate the effect of anode change when it occurs in the middle of the cell.

  19. In Situ Synthesis Aluminum Borate Whiskers Reinforced TiB2 Matrix Composites for Application in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Yang, Jianhong

    2013-11-01

    The TiB2 matrix ceramics reinforced by aluminum borate whiskers (Al18B4O33 w) had been prepared by the pressureless sintering method. The mechanical properties and densification behavior of the TiB2 matrix ceramics were investigated. The results showed that Al18B4O33 w was in situ synthesized by the reaction of boehmite (AlOOH) and TiB2 powders during the sintering process. Increasing the sintering temperature had benefited for densification of the TiB2 matrix ceramics. Al18B4O33 w could increase the flexural strength and Vicker's hardness. It is obtained that the maximum value Vicker's hardness with 1.81 GPa and flexural strength with 82 MPa for samples sintered at 1600°C.

  20. Performance analysis of ORC power generation system with low-temperature waste heat of aluminum reduction cell

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqi; Zhou, Naijun; Jing, Guo

    Performance of organic Rankine cycle (ORC) system to recover low-temperature waste heat from aluminum reduction cell was analyzed. The temperature of waste heat is 80°C-200°C and the flow rate is 3×105m3/h. The pinch temperature difference between waste heat and working fluids is 10°C. The results show that there is optimal evaporating temperature for maximum net power under the same pinch point. For heat source temperature range of 80°C-140°C and 150°C-170°C, the working fluid given biggest net power is R227ea and R236fa, respectively. When the temperature is higher than 180°C, R236ea generates the biggest net power. The variation of heat source temperature has important effect on net power. When the temperature decreases 10%, the net power will deviate 30% from the maximum value.

  1. Final report on the application of chaos theory to an alumina sensor for aluminum reduction cells. Inert Electrodes Program

    SciTech Connect

    Williford, R.E.; Windisch, C.F. Jr.

    1992-03-01

    Four chaos-related digital signal analysis (DSA) methods were applied to the analysis of voltage and current signals collected from aluminum electrolysis cells. Two separate data bases were analyzed: bench-scale laboratory experiments and a pilot-scale test. The objective was to assess the feasibility of using these types of data and analysis methods as the basis for a non-intrusive sensor to measure the alumina content in the electrolysis bath. This was the first time chaos theory approaches have been employed to analyze aluminum electrolysis cells.

  2. Reduction of porosity in aluminum weldments

    NASA Technical Reports Server (NTRS)

    Lee, W. S.

    1972-01-01

    Method is described for elimination of porosity of aluminum weldments by replacing polyvinyl chloride tubing (used to connect welder to gas source, and is permeable to moisture at high humidity) with copper tubing. In addition liquid argon gas is used at weld stations.

  3. Effects of aluminum on the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in the dentate gyrus of D-galactose-treated mice via increasing oxidative stress

    PubMed Central

    Nam, Sung Min; Kim, Jong Whi; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Choi, Jung Hoon; Hwang, In Koo; Seong, Je Kyung

    2016-01-01

    Aluminum (Al) accumulation increases with aging, and long-term exposure to Al is regarded as a risk factor for Alzheimer's disease. In this study, we investigated the effects of Al and/or D-galactose on neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons in the hippocampal dentate gyrus. AlCl3 (40 mg/kg/day) was intraperitoneally administered to C57BL/6J mice for 4 weeks. In addition, vehicle (physiological saline) or D-galactose (100 mg/kg) was subcutaneously injected to these mice immediately after AlCl3 treatment. Neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons were detected using the relevant marker for each cell type, including nestin, Ki67, doublecortin, and NeuN, respectively, via immunohistochemistry. Subchronic (4 weeks) exposure to Al in mice reduced neural stem cells, proliferating cells, and differentiating neuroblasts without causing any changes to mature neurons. This Al-induced reduction effect was exacerbated in D-galactose-treated mice compared to vehicle-treated adult mice. Moreover, exposure to Al enhanced lipid peroxidation in the hippocampus and expression of antioxidants such as Cu, Zn- and Mn-superoxide dismutase in D-galactose-treated mice. These results suggest that Al accelerates the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in D-galactose-treated mice via oxidative stress, without inducing loss in mature neurons. PMID:26243606

  4. Method And Reactor For Production Of Aluminum By Carbothermic Reduction Of Alumina

    DOEpatents

    Aune, Jan Arthur; Johansen, Kai

    2004-10-19

    A hollow partition wall is employed to feed carbon material to an underflow of a carbothermic reduction furnace used to make aluminum. The partition wall divides a low temperature reaction zone where aluminum oxide is reacted with carbon to form aluminum carbide and a high temperature reaction zone where the aluminum carbide and remaining aluminum oxide are reacted to form aluminum and carbon monoxide.

  5. Cancer Risks in Aluminum Reduction Plant Workers

    PubMed Central

    Labrèche, France

    2014-01-01

    Objective and Methods: This review examines epidemiological evidence relating to cancers in the primary aluminum industry where most of what is known relates to Söderberg operations or to mixed Söderberg/prebake operations. Results and Conclusions: Increased lung and bladder cancer risks have been reported in Söderberg workers from several countries, but not in all. After adjustment for smoking, these cancer risks still increase with cumulative exposure to benzo(a)pyrene, used as an index of coal tar pitch volatiles exposure. Limited evidence has been gathered in several cohorts for an increased risk of tumors at other sites, including stomach, pancreas, rectum/rectosigmoid junction, larynx, buccal cavity/pharynx, kidney, brain/nervous system, prostate, and lymphatic/hematopoietic tissues (in particular non-Hodgkin lymphoma, Hodgkin disease, and leukemia). Nevertheless, for most of these tumor sites, the relationship with specific exposures has not been demonstrated clearly and further follow-up of workers is warranted. PMID:24806725

  6. Reduction of Viologen Bisphosphonate Dihalide with Aluminum Foil

    NASA Astrophysics Data System (ADS)

    Abeta Iyere, Peter

    1996-05-01

    An elegant undergraduate experiment similar to the popular "Iodine Clock Reaction" employs the reduction of methyl viologen by hydroxide ion. A major problem with the hydroxide reduction demonstration is that the mechanism is complicated by the existence of competing reaction pathways. It has been suggested that layered metal viologen phosphonates could be used in the design and construction of molecular materials. The active unit in the reversible photocoloration of these layered materials is the viologen bisphosphonate dihalide (VPX). During our study of these phoshponate systems, we discovered the reduction of viologen bisphosphonate dihalide by aluminum foil, mossy zinc, or magnesium turnings in dilute aqueous hydrofluoric acid solution. When we demonstrated this phenomenon with aluminum foil and VPBr in the classroom, the response of our students was enthusiastic. This demonstration can be used as prelaboratory discussion for an undergraduate kinetic experiment based on the same phenomenon.

  7. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  8. Aluminum low temperature smelting cell metal collection

    DOEpatents

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  9. Surface complexation of aluminum on isolated fish gill cells

    SciTech Connect

    Wilkinson, K.J. Campbell, G.C.; Bertsch, P.M.; Jagoe, C.H.

    1993-06-01

    Cells from the gills of largemouth bass (Micropterus salmoides) were isolated and exposed to dilute solutions of Al, Al in the presence of fluoride, or Al plus dissolved organic matter (DOM) to determine the cells` metal binding potential in an acidic medium. Microelectrophoresis was employed to monitor the extent of aluminum sorption to cells in the presence of added ligand. In the absence of Al, the gill cells exhibit an appreciable negative charge; Al binding to the cell surface increases the electric potential at the shear plane and leads to a reduction in the cell`s (negative) electrophoretic mobility. In the presence of both Al and F, aluminum complexation at the gill surface is only marginally reduced; the formation of a mixed ligand complex, [F-Al-L-cell], is proposed to account for the observed results. The presence of such ternary complexes was subsequently verified by {sup 19}F nuclear magnetic resonance spectroscopy and by potentiometry. Addition of DOM increased the negative electrophoretic mobility of the isolated gill cells both in the presence and absence of aluminum (7.4 {mu}M). 45 refs., 7 figs., 1 tab.

  10. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  11. High energy density aluminum-oxygen cell

    NASA Technical Reports Server (NTRS)

    Rudd, E. J.; Gibbons, D. W.

    1993-01-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  12. High energy density aluminum-oxygen cell

    NASA Astrophysics Data System (ADS)

    Rudd, E. J.; Gibbons, D. W.

    1993-11-01

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.

  13. High Energy Density aluminum/oxygen cell

    NASA Astrophysics Data System (ADS)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  14. Fabrication and characterization of aluminum nitride/boron nitride nanocomposites by carbothermal reduction and nitridation of aluminum borate powders.

    PubMed

    Kusunose, Takafumi; Sakayanagi, Nobuaki; Sekino, Tohru; Ando, Yoichi

    2008-11-01

    In order to fabricate aluminum nitride/boron nitride (AIN/BN) nanocomposites by pressureless sintering, the present study investigated the synthesis of AIN-BN nanocomposite powders by carbothermal reduction and nitridation of aluminum borate powders. Homogeneous mixtures of alumina (Al2O3), boric acid (H3BO3), and carbon powder were used to synthesize AIN/BN nanocomposite powders containing 10 and 20 vol% BN. Aluminum borate was produced by reacting Al2O3 and B2O3 above 800 degrees C, and AIN and turbostratic BN (t-BN) were produced by reacting aluminum borate with carbon powder and nitrogen gas at 1500 degrees C. Carbothermal reduction followed by nitridation yielded an AIN/BN nanocomposite powder composed of nanosized AIN and t-BN. By pressureless sintering nanocomposite AIN/BN powders containing 5 wt% Y22O3, AIN/BN nanocomposites were obtained without compromising the high thermal conductivity and high hardness.

  15. 77 FR 2677 - National Emission Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants'' is being extended for 12 days. DATES: Comments. The public comment period for the proposed rule published December 6, 2011, (76 FR... Aluminum Reduction Plants; Extension of Comment Period AGENCY: Environmental Protection Agency...

  16. Nonisothermal gravimetric investigation on kinetics of reduction of magnesia by aluminum

    SciTech Connect

    Hong, L.; Okumura, Keiji; Sano, Masamichi

    1999-12-01

    An investigation of the reduction of magnesia by aluminum was carried out using a nonisothermal gravimetric technique under an argon atmosphere, in the temperature range from 1,273 to 1,873 K. The mixture of magnesia and aluminum powders was formed into a pellet under various isostatic pressures. It was found that magnesia is reduced by aluminum to form magnesium and spinel at first, and then the excess aluminum reacts with spinel slowly. The temperature at which the reaction starts increases with an increasing heating rate. The reaction rate is also affected by pellet-forming conditions. A kinetic model is proposed to explain the experimental results. The activation energy of the reduction of magnesia by aluminum is 151.2 kJ/mol. Good agreement between calculated and experimental results is obtained.

  17. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    SciTech Connect

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  18. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  19. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  20. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    SciTech Connect

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  1. Reduction of Annealing Times for Energy Conservation in Aluminum

    SciTech Connect

    Anthony D. Rollett; Hasso Weiland; Mohammed Alvi; Abhijit Brahme

    2005-08-31

    Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that will provide a scientific basis for shortening processing times and consuming less energy during annealing.

  2. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    SciTech Connect

    Dawless, R.K.; Ray, S.P.; Hosler, R.B.; Kozarek, R.L.; LaCamera, A.F.

    2000-02-29

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900--950 C lowers corrosion on the inert anode constituents.

  3. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    SciTech Connect

    Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  4. Aluminum chloride and membrane potentials of barley root cells

    SciTech Connect

    Etherton, B.; Shane, M.

    1986-04-01

    Aluminum chloride at pH 4 hyperpolarizes the membrane potentials of barley root epidermal cells. The authors tested to see whether this hyperpolarization could be caused by an aluminum induced alteration of the permeability of the membrane to potassium or sodium ions by measuring the effect of .04 mM aluminum ions (the Ca/sup + +/ conc. was 0.1 mM) on the membrane potential changes induced by changing the potassium or sodium concentrations in the medium bathing the roots. Aluminum ions did not change the magnitude of potassium or sodium induced changes in membrane potentials but significantly altered the rates of potassium and sodium induced changes of the potential. The results indicate that aluminum ions did not change sodium or potassium ion permeabilities of barley root cells.

  5. Aluminum and aluminum alloys as sources of hydrogen for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Soler, Lluís; Macanás, Jorge; Muñoz, Maria; Casado, Juan

    Production of hydrogen using aluminum and aluminum alloys with aqueous alkaline solutions is studied. This process is based on aluminum corrosion, consuming only water and aluminum which are cheaper raw materials than other compounds used for in situ hydrogen generation, such as chemical hydrides. In principle, this method does not consume alkali because the aluminate salts produced in the hydrogen generation undergo a decomposition reaction that regenerates the alkali. As a consequence, this process could be a feasible alternative for hydrogen production to supply fuel cells. Preliminary results showed that an increase of base concentration and working solution temperature produced an increase of hydrogen production rate using pure aluminum. Furthermore, an improvement of hydrogen production rates and yields was observed varying aluminum alloys composition and increasing their reactive surface, with interesting results for Al/Si and Al/Co alloys. The development of this idea could improve yields and reduce costs in power units based on fuel cells which use hydrides as raw material for hydrogen production.

  6. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  7. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  8. Mortality studies of aluminum reduction plant workers: potroom and carbon department

    SciTech Connect

    Rockette, H.E.; Arena, V.C.

    1983-07-01

    The purpose of this study was to investigate mortality patterns of aluminum reduction plant workers. A cohort was formed of 21,829 workers with five or more years employment in 14 reduction plants. Progress of the study was reported quarterly to a Tripartite Committee consisting of representatives from labor, management and government. Although the results of other studies relative to an excess of lung cancer in aluminum workers were not confirmed, there were indications of a higher than expected mortality in pancreatic cancer, lymphohematopoietic cancers, genitourinary cancer, nonmalignant respiratory disease and benign and unspecified neoplasms.

  9. Mortality of aluminum reduction plant workers, 1950 through 1977

    SciTech Connect

    Gibbs, G.W.

    1985-10-01

    The mortality experience of 5,406 men (cohort I) employed at one aluminum smelter on Jan. 1, 1950, and 485 men employed at a second plant (cohort II) on January 1, 1951, is reported. For each man, the total number of years of exposure to tars, the number of years since first exposure to tars, and an index of exposure to tars expressed in tar-years were calculated. More than 99% of the men in the first cohort and 98% of the men in the second cohort were traced. Of the 1539 men in cohort I who were deceased as of December 31, 1977, death certificates were obtained for 1432 (93%). Of the 92 men in cohort II who were deceased as of December 31, 1977, death certificates were obtained for 80 (87%). The results showed that men in cohort I died of the following causes at approximately the same rate as or less frequently than men of similar age in the Province of Quebec: tuberculosis; circulatory disease; hypertensive heart disease; trauma; leukemia and aleukemia; and malignant neoplasms of the pancreas, genital organs, brain, intestine, and rectum and other abdominal areas. There were no deaths from pneumoconiosis or Alzheimer's disease. Although the observed and expected numbers of deaths in some of the cause-of-death categories were small, men in cohort I died of the following causes more frequently than did men of similar age in the Province of Quebec: respiratory disease; pneumonia and bronchitis; malignant neoplasms (all sites); malignant neoplasms of the stomach and esophagus, bladder, and lung; other malignant neoplasms; Hodgkin's disease; and other hypertensive disease. Mortality from malignant neoplasms of the bladder and lung was meaningfully related to numbers of tar-years and of years of exposure. Exposure-response relationships were less clear for malignant neoplasms of the esophagus and stomach and for other malignancies.

  10. An investigation of the reduction in tensile strength and fatigue life of pre-corroded 7075-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Obert, B.; Ngo, K.; Hashemi, J.; Ekwaro-Osire, S.; Sivam, T. P.

    2000-08-01

    In aging aircraft, the synergetic interaction between corrosion and fatigue has been shown to reduce the life expectancy of aluminum alloys. The objective of this study was to quantify the effects of corrosion, in terms of mass loss per unit area, on the static strength and fatigue life of 7075-T6 aluminum alloy. This was an experimental study in which test specimens were corroded in a laboratory environment. The corrosion process was accelerated by use of a corrosion cell. Test specimens were cut from flat sheets of aluminum and covered with masking material to restrict corrosion to a confined area. After testing, the fatigue life, ultimate tensile strength (UTS), and hardness of the specimens were observed to drop significantly with small amounts of corrosion. After the initial decrease, the UTS was observed to decrease linearly with increasing corrosion levels. The fatigue life of the specimens decreased in an inverse exponential fashion as mass loss per unit area increased. The hardness values of the corroded surfaces were also observed to drop. The topology of the pits and the related subsurface damage produced areas of high stress concentration resulting in the immediate reduction of UTS and fatigue life of the specimens. Subsurface corrosion damage was responsible for the reduction in hardness.

  11. Reduction of CO2 to methanol using aluminum ester FLPs

    DOE PAGES

    Smythe, Nathan C.; Dixon, David A.; Garner, III, Edward B.; Rickard, Meredith M.; Mendez, Mariano; Scott, Brian Lindley; Zelenay, Barbara; Sutton, Andrew D.

    2015-10-09

    Herein we report the synthesis of Al-based esters containing halogenated benzene rings. These Lewis acids were paired with phosphines to form frustrated Lewis pairs (FLPs) which could subsequently bind CO2. While these FLPs were not sufficiently water-stable to catalyze the reduction of CO2 to MeOH using NH3BH3 as the reductant, we examine the effect of varying Lewis acid strength. Frustrated Lewis pairs (FLPs) are combinations of Lewis acids and Lewis bases where the acid and base are either sterically or geometrically restricted from interacting as strongly as their electronic structures would allow. This effect leads to enhanced reactivity towards smallmore » molecules and, consequently, interest in their potential as metal-free catalysts [1], [2], [3], [4] and [5]. Furthermore, to-date, the biggest success has been based around the ability of a myriad of systems to heterolytically cleave H2 and perform catalytic hydrogenations [2] and [3].« less

  12. Aluminum-air power cell research and development

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.

    1984-02-01

    An aluminum-air battery is under development with the objective of providing an electric vehicle with the range, acceleration and rapid refueling capability of common automobiles. From tested refuelable cell designs, a wedge-shaped cell was chosen for mechanical simplicity and for its capability of full anode utilization and rapid partial- or full-recharge. The cell uses tin-plated copper tracks to maintain a constant interelectrode separation and to collect anodic current. Rectangular slabs of aluminum enter the cell under gravity feed and gradually assume the wedge shape during dissolution. The feed is constant and continuous and tin/aluminum junction losses are 7 mV at 2 kA/m(2). A second generation wedge cell was developed which incorporates air- and electrolyte-manifolding into individually-replaceable air-cathode cassettes. A prototype wedge cell using replaceable cassettes was operated simultaneously with a crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between cell and fluidized-bed crystallizer, and particles of sizes greater than 0.015 mm were retained within the crystallizer using a hydrocyclone.

  13. Aluminum-air power cell research and development progress report

    SciTech Connect

    Cooper, J.F.

    1984-12-01

    The wedge-shaped cell design, of the aluminum-air battery being developed, is mechanically simple and capable of full anode utilization and rapid full or partial recharge. To maintain constant interelectrode separation and to collect anodic current, the cell uses tin-coated copper tracks mounted on removable cassettes. Under gravity feed, slabs of aluminum enter the cell at a continuous and constant rate and gradually assume the wedge shape as they dissolve. Voltage losses at this tin-aluminum junction are 7 mV at 2 kA/m/sup 2/. A second-generation wedge cell incorporates air and electrolyte manifolding into individually replaceable air-cathode cassettes. Prototype wedge cells of one design were operated simultaneously with a fluidized-bed crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between the cell and crystallizer, and a hydrocyclone was used to retain particles larger than 0.015 mm within the crystallizer. Air electrodes were tested over simulated vehicle drive systems that include a standby phase in cold, supersaturated electrolyte. Electrodes using advanced sintering and wet-proofing techniques and catalyzed with a nonnoble metal catalyst have been operated over 1500 cycles (a two-year drive life). The fuel costs of aluminum were estimated on the basis of model alloy production and distribution costs, leading to a projected operating cost of 8 to 10 cents per mile, depending on alloy and vehicle drive-train efficiencies. While unalloyed aluminum has a peak electrical energy consumption of 4.5 kWh/kg, the Hall and Alcoa processes consume 11.3 and 8.3 kWh/kg, respectively. The significance of these and other energy-use estimates for the 1990s and beyond is discussed.

  14. Changes in litter near an aluminum reduction plant

    USGS Publications Warehouse

    Beyer, W.N.; Fleming, W.J.; Swineford, D.

    1987-01-01

    Litter was collected from eight sites at distances as far as 33 km from an AI reduction plant in western Tennessee. As a result of an accumulation of fine litter (< 4.75 mm) the weight of the litter per unit area was abnormally high at the two sites within 2 km of the plant. Compared to litter collected far from the plant, it had a lower fiber content, was more sapric, and was less acid. Fluoride emissions from the plant were suggested as the probable cause of litter changes. Concentrations of water-extractable and acid-extractable F- in the litter, the 0- to 5-cm soil layer, and the 5- to 15-cm soil layer were strongly correlated with distance from the plant. Total acid-extractable F- in the litter and upper 15 cm of soil was about 41 times as much at the closest site (700 mg/kg) as at the most distant sites (12 and 16 mg/kg). In a bioassay of litter from our study sites, woodlice (Porcellio scaber Latr.) had an abnormally high mortality in litter that contained 440 mg/kg or more of acid-extractable F-. However, when F- was added as NaF to litter, a significant increase in mortality was observed only in treatments exceeding 800 mg/kg. The decrease in the rate of decomposition of the litter might eventually induce a deficiency of soil macronutrients, but none was detected.

  15. Statistical approach to evaluating active reduction of crack propagation in aluminum panels with piezoelectric actuator patches

    NASA Astrophysics Data System (ADS)

    Platz, R.; Stapp, C.; Hanselka, H.

    2011-08-01

    Fatigue cracks in light-weight shell or panel structures may lead to major failures when used for sealing or load-carrying purposes. This paper describes investigations into the potential of piezoelectric actuator patches that are applied to the surface of an already cracked thin aluminum panel to actively reduce the propagation of fatigue cracks. With active reduction of fatigue crack propagation, uncertainties in the cracked structure's strength, which always remain present even when the structure is used under damage tolerance conditions, e.g. airplane fuselages, could be lowered. The main idea is to lower the cyclic stress intensity factor near the crack tip with actively induced mechanical compression forces using thin low voltage piezoelectric actuator patches applied to the panel's surface. With lowering of the cyclic stress intensity, the rate of crack propagation in an already cracked thin aluminum panel will be reduced significantly. First, this paper discusses the proper placement and alignment of thin piezoelectric actuator patches near the crack tip to induce the mechanical compression forces necessary for reduction of crack propagation by numerical simulations. Second, the potential for crack propagation reduction will be investigated statistically by an experimental sample test examining three cases: a cracked aluminum host structure (i) without, (ii) with but passive, and (iii) with activated piezoelectric actuator patches. It will be seen that activated piezoelectric actuator patches lead to a significant reduction in crack propagation.

  16. Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2004-10-05

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

  17. Aluminum-air power cell research and development

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.

    1984-12-01

    The wedge-shaped design, of the aluminum-air battery being developed, is mechanically simple and capable of full anode utilization and rapid full or partial recharge. To maintain constant interelectrode separation and to collect anodic current, the cell uses tin-coated copper tracks mounted on removable cassettes. Under gravity feed, slabs of aluminum enter the cell at a continuous and constant rate and gradually assume the wedge shape as they dissolve. Voltage losses at this tin-aluminum junction are 7 mV at 2 kA/m(2). A second-generation wedge cell incorporates air and electrolyte manifolding into individually replaceable air-cathode cassettes. Prototype wedge cells of one design were operated simultaneously with a fluidized-bed crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between the cell and crystallizer, and a hydrocyclone was used to retain particles larger than 0.015 mm within the crystallizer. Air electrodes were tested over simulated vehicle drive systems that include a standby phase in cold, supersaturated electrolyte.

  18. Aluminum-air power cell research and development. Progress report

    SciTech Connect

    Cooper, J.F.

    1984-02-22

    An aluminum-air battery is under development with the objective of providing an electric vehicle with the range, acceleration and rapid refueling capability of common automobiles. From tested refuelable cell designs, a wedge-shaped cell was chosen for mechanical simplicity and for its capability of full anode utilization and rapid partial- or full-recharge. The cell uses tin-plated copper tracks to maintain a constant interelectrode separation and to collect anodic current. Rectangular slabs of aluminum enter the cell under gravity feed and gradually assume the wedge shape during dissolution. The feed is constant and continuous and tin/aluminum junction losses are 7 mV at 2 kA/m/sup 2/. A second generation wedge cell has been developed which incorporates air- and electrolyte-manifolding into individually-replaceable air-cathode cassettes. A prototype wedge cell using replaceable cassettes was operated simultaneously with a crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between cell and fluidized-bed crystallizer, and particles of sizes greater than 0.015 mm were retained within the crystallizer using a hydrocyclone. Air electrodes have been tested over simulated vehicle drive cycles. Electrodes using advanced sintering and wet-proofing techniques and catalyzed with a non-noble metal catalyst (CoTMPP) have been operated for over 1400 drive-cycles. Fuel costs of $1.72/kg-Al (installed) were estimated on the basis of model alloy production and distribution costs, leading to a projected operating cost of 8-10 cents/mile, depending on alloy and vehicle drive-train efficiencies. Unalloyed aluminum yields a peak of 4.5 kWh/kg, while an advanced industrial Hall Process and the pilot-plant Alcoa Smelting Process have electrical energy consumptions of 11.3- and 8.3 kWh/kg, respectively.

  19. Silicon diffusion in aluminum for rear passivated solar cells

    SciTech Connect

    Urrejola, Elias; Peter, Kristian; Plagwitz, Heiko; Schubert, Gunnar

    2011-04-11

    We show that the lateral spread of silicon in a screen-printed aluminum layer increases by (1.50{+-}0.06) {mu}m/ deg. C, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.

  20. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    PubMed

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. PMID:27028104

  1. Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Yin, Liang; Liu, Xiaowei; Weng, Rui; Wang, Yang; Wu, Zhiwen

    2016-09-01

    We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165 ± 2°. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20-30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.

  2. Aluminum-air power cell, a progress report

    SciTech Connect

    Maimoni, A.

    1985-03-01

    We are developing the Aluminum-Air Power Cell as a power source for general purpose electric vehicles. Program developments since the 1983 IECEC meeting and more recent reviews are summarized. Estimates of its energy efficiency, using coal as the primary energy source, indicate it is substantially better than the internal combustion engine using synthetic fuels derived from coal. With improved materials it is likely to approach the overall energy efficiency of rechargeable battery systems. Three experiments involving a 600-cm/sup 2/ wedge cell coupled to a crystallizer and a hydrocyclone are described. Substantial progress has been made in the development of the air cathode and aluminum anode materials. The status of various system components is summarized. Crystallization experiments indicate secondary nucleation of small particles can be controlled by operation of the crystallizer at 80/sup 0/C and agglomeration of fine particles occurs readily under low shear conditions.

  3. New electroplated aluminum bipolar plate for PEM fuel cell

    NASA Astrophysics Data System (ADS)

    El-Enin, Sanaa A. Abo; Abdel-Salam, Omar E.; El-Abd, Hammam; Amin, Ashraf M.

    Further improvement in the performance of the polymer electrolyte membrane fuel cells as a power source for automotive applications may be achieved by the use of a new material in the manufacture of the bipolar plate. Several nickel alloys were applied on the aluminum substrate, the use of aluminum as a bipolar plate instead of graphite is to reduce the bipolar plate cost and weight and the ease of machining. The electroplated nickel alloys on aluminum substrate produced a new metallic bipolar plate for PEM fuel cell with a higher efficiency and longer lifetime than the graphite bipolar plate due to its higher electrical conductivity and its lower corrosion rate. Different pretreatment methods were tested; the optimum method for pretreatment consists of dipping the specimen in a 12.5% NaOH for 3 min followed by electroless zinc plating for 2 min, then the specimen is dipped quickly in the electroplating bath after rinsing with distilled water. The produced electroplate was tested with different measurement techniques, chosen based on the requirement for a PEM fuel cell bipolar plate, including X-ray diffraction, EDAX, SEM, corrosion resistance, thickness measurement, microhardness, and electrical conductivity.

  4. A well-defined monomeric aluminum complex as an efficient and general catalyst in the Meerwein-Ponndorf-Verley reduction.

    PubMed

    McNerney, Brian; Whittlesey, Bruce; Cordes, David B; Krempner, Clemens

    2014-11-10

    The metal-catalyzed Meerwein-Ponndorf-Verley (MPV) reduction allows for the mild and sustainable reduction of aldehydes and ketones but has not found widespread application in organic synthesis due to the high catalyst loading often required to obtain satisfactory yields of the reduced product. We report here on the synthesis and structure of a sterically extremely overloaded siloxide-supported aluminum isopropoxide capable of catalytically reducing a wide range of aldehydes and ketones (52 examples) in excellent yields under mild conditions and with low catalyst loadings. The unseen activity of the developed catalyst system in MPV reductions is due to its unique monomeric nature and the neutral donor isopropanol weakly coordinating to the aluminum center. The present work implies that monomeric aluminum alkoxide catalysts may be attractive alternatives to transition-metal-based systems for the selective reduction of aldehydes and ketones to primary and secondary alcohols.

  5. Modeling and Analysis of Aluminum/Air Fuel Cell

    NASA Astrophysics Data System (ADS)

    Leon, Armando J.

    The technical and scientific challenges to provide reliable sources energy for US and global economy are enormous tasks, and especially so when combined with strategic and recent economic concerns of the last five years. It is clear that as part of the mix of energy sources necessary to deal with these challenges, fuel cells technology will play critical or even a central role. The US Department of Energy, as well as a number of the national laboratories and academic institutions have been aware of the importance such technology for some time. Recently, car manufacturers, transportation experts, and even utilities are paying attention to this vital source of energy for the future. In this thesis, a review of the main fuel cell technologies is presented with the focus on the modeling, and control of one particular and promising fuel cell technology, aluminum air fuel cells. The basic principles of this fuel cell technology are presented. A major part of the study consists of a description of the electrochemistry of the process, modeling, and simulations of aluminum air FC using Matlab Simulink(TM). The controller design of the proposed model is also presented. In sequel, a power management unit is designed and analyzed as an alternative source of power. Thus, the system commutes between the fuel cell output and the alternative power source in order to fulfill a changing power load demand. Finally, a cost analysis and assessment of this technology for portable devices, conclusions and future recommendations are presented.

  6. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading

    SciTech Connect

    Mukai, T.; Kanahashi, H.; Higashi, K.; Miyoshi, T.; Mabuchi, M.; Nieh, T.G.

    1999-03-19

    Recently, there is a high interest in using light-weight metallic foams (e.g., Al and Mg) for automotive, railway and aerospace applications where weight reduction and improvement in comfort are needed. Metallic foams also have a potential for absorbing impact energy during the crashing of a vehicle either against another vehicle or a pedestrian. To effectively absorb the impact energy, a material is required to exhibit an extended stress plateau. In order to evaluate the impact energy absorption, the relation between the compressive stress and strain at a dynamic strain rate must be characterized. The stress-strain behavior at dynamic strain rates is often characterized by using the split Hopkinson pressure bar (SHPB) method. A previous study suggested that, to evaluate reliably the mechanical properties of cellular materials, the height of a specimen should be ten or twenty times larger than the cell diameter to minimize the scatter of measurements. In the present study, therefore, the authors first determined the minimum height of aluminum foam specimens for compression test at a quasi-static strain rate by comparing the specific yield stress (i.e., yield stress per (relative density){sup 3/2}) of the foam with the other data previously reported. The relative stress of the aluminum foam as a function of relative density was also calculated and compared with those of other aluminum foams, along with the plot of Gibson and Ashby.

  7. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies. PMID:27280255

  8. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies.

  9. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    SciTech Connect

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  10. Aluminum induces inflammatory and proteolytic alterations in human monocytic cell line.

    PubMed

    Ligi, D; Santi, M; Croce, L; Mannello, F

    2015-11-01

    The increasing exposure to aluminum has been linked with the development of different human pathologies (e.g., breast cancer, myofasciitis, neurodegenerative diseases), probably due to the consistent presence of aluminum salts in widely diffused cosmetic products and vaccines. However, the mechanisms underlying immunologic and proliferative alterations still remain unknown. In the present study we investigated the ability of different aluminum compounds (i.e., aluminum chloride vs Imject® Alum, a mixture of aluminum and magnesium hydroxide) to trigger both inflammatory and proteolytic responses in U-937 human monocytic cell line. We demonstrated, by multiplex immunoassay analyses, that monocytic cells treated with both Imject Alum and aluminum chloride showed different and peculiar expression profiles of 27 inflammatory mediators and 5 matrix metalloproteinases, with respect to untreated control cells. In particular, we found dose-dependent significantly increased levels of pro-inflammatory cytokines, growth factors, and chemoattractant chemokines; whereas among metalloproteinases, only collagenolytic protease showed a significant dose-dependent increase in Imject-treated cells with respect to controls and Al-chloride treated cells. Noteworthy, we found only in Imject Alum-treated cells the significant positive correlations among collagenolytic metalloproteinase and increased expression of pro-inflammatory chemokines, suggesting a possible involvement of aluminum in regulating the acute inflammatory responses. In agreement to emerging evidences, for the first time we demonstrated that the treatment of monocyte cells with aluminum-based adjuvant is able to induce an inflammatory status and a proteolytic cascade activation. In fact, the cell treatment with Imject Alum induced increased levels of several cytokines and proteinases, suggesting these monocyte mediators as possible biomarkers for aluminum-linked diseases. The identification of the biochemical pathways

  11. The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells

    NASA Astrophysics Data System (ADS)

    Leroux, Xavier; Ottewill, Gerry A.; Walsh, Frank C.

    1996-08-01

    An experimental program designed to convey, to students aged 16 through undergraduate, the principles of battery electrochemistry through a comparative study of two different systems, the lead acid cell and aluminum air cell, is described.

  12. Corrosion reduction of aluminum alloys in flowing high-temperature water

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Ruther, W. E.

    1969-01-01

    Report describes a technique for reducing the corrosion rate of aluminum by adding colloidal substances in a closed-loop system. Experimental work shows that the addition of graphite and colloidal hydrated aluminum oxide significantly reduces the corrosion rate in flowing high-temperature water.

  13. Crushing Strength of Aluminum Honeycomb with Thinning Cell Wall

    NASA Astrophysics Data System (ADS)

    Ogasawara, Nagahisa; Chiba, Norimasa; Kobayashi, Eiji; Kikuchi, Yuji

    To evaluate the crash safety of automobiles, various collision tests are performed by the auto industry. In the offset frontal collision test and the side collision test, the target is an aluminum honeycomb material which has thinning cell walls. In this study, based on the analyses of the shock absorption mechanism, a new crushing strength formula is proposed. First, load-displacement curves obtained from compression tests in quasi-static condition showed an almost linear relation between a thinning rate of cell walls and a crushing strength. Second, based on Wierzbicki's theory, a new formula was proposed, which can estimate a crushing strength of a honeycomb material with thinning wall. In addition, a correcting equation which considered an elastic deformation was also proposed. Third, parametric analyses were carried out with a FE model which can simulate a delamination between cell walls. The results obtained from the theory and FEM almost corresponded to each other for a wide range of the thinning rate. Fourth, impact tests were carried out, in which the weight was dropped freely at the speed used for the automobile tests. Those results almost agreed well with the sum of the theoretical crush strength and the inside air pressure.

  14. Cathode for a hall-heroult type electrolytic cell for producing aluminum

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum from alumina in an electrolytic cell including using a cathode comprised of a base material having low electrical conductivity and wettable with molten aluminum to form a reaction layer having a high electrical conductivity on said base layer and a cathode bar extending from said reaction layer through said base material to conduct electrical current from said reaction layer.

  15. Influence of pulsed mechanical activation of hematite-graphite-aluminum powder mixtures on the reduction of iron oxides

    NASA Astrophysics Data System (ADS)

    Bodrova, L. E.; Vatolin, N. A.; Pastukhov, E. A.; Petrova, S. A.; Popova, E. A.; Zakharov, R. G.

    2011-11-01

    To decrease the temperature of direct iron reduction by carbon and aluminum, short-term pulsed mechanical activation (PMA) of an Fe2O3 + Cgr + Al powder mixture is perfumed during sound-frequency shock loading by a flat activating plunger. The PMA efficiency for powders in comparable with mechanical activation in high-energy ball mills in a decrease in the activation time and retaining the chemical purity of a powder composition.

  16. The investigation on the stratification phenomenon of aluminum rear alloyed layer in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Xi, Xi; Chen, Xiaojing; Zhang, Song; Shi, Zhengrong; Li, Guohua

    2015-06-01

    A stratification phenomenon of aluminum rear alloyed layer was found in the study of aluminum rear emitter N-type solar cells. It is related to the composition of the paste. The outer aluminum alloyed layer can be called as aluminum doped emitter, and it gives the contribution to the junction formation. The inner layer is only the Al/Si mixed layer. The aluminum atoms in this layer are not bonded with silicon atoms. This inner layer will ruin the quality of the rear junction. The shunt resistance, reverse current density and the junction electric leakage value are getting worse when the thickness of the inner layer increases. The thickness of the inner Al/Si mixed layer increases with the increasing of firing temperature, while the depth of the aluminum doped emitter almost does not change. From the analyses, the inner Al/Si mixed layer is redundant and deleterious. Only a single deep aluminum doped rear emitter is needed for N-type solar cells. The highest power conversion efficiency of 19.93% for aluminum rear emitter N-type cells without the stratification phenomenon has been obtained.

  17. Open-Cell Aluminum Foams Filled With Phase Change Materials as Compact Heat Sinks

    SciTech Connect

    Hong, Sung-tae; Herling, Darrell R.

    2006-11-01

    In many engineering applications, thermal management of electrical devices under cyclic temperature variations can be important for proper operation of the devices and for thermal safety. Open-cell aluminum foams filled with phase change materials (PCM) can be used as effective heat sinks through the use of the thermal conductivity of the foams and the latent heat of the PCM. The effects of geometric parameters of open-cell aluminum foams on the performance of aluminum foam-PCM heat sinks are investigated by experiments. Three types of open-cell aluminum 6061 foams with similar relative densities and different cell sizes are used as specimens. Paraffin is selected as the PCM due to its excellent thermal stability and ease of handling. During the experiment, a copper block, which simulates an electrical device under thermal load, is attached to the bottom surface of the specimen and heated by a hot plate until the temperature of the copper block reaches 100 C. Then the whole experimental set-up is removed from the hot plate and cooled. The temperature history of the copper block is measured as a function of time. The experimental results show that the aluminum foam-PCM heat sinks increase both the heating and cooling times of the copper block. Also, as the surface area per unit volume of the aluminum foam increases, both the heating and cooling times increase due to better utilization of the latent heat of the PCM. Finally, the experimental results indicate that the effect of the surface area per unit volume is more pronounced on the cooling time than on the heating time. The results of this investigation suggest that the surface area per unit volume of aluminum foams can be a major parameter in the design of aluminum foam-PCM heat sinks made of open-cell aluminum foams with similar relative densities.

  18. Aluminum fluoride affects the structure and functions of cell membranes.

    PubMed

    Suwalsky, M; Norris, B; Villena, F; Cuevas, F; Sotomayor, P; Zatta, P

    2004-06-01

    No useful biological function for aluminum has been found. To the contrary, it might play an important role in several pathologies, which could be related to its interactions with cell membranes. On the other hand, fluoride is a normal component of body fluids, soft tissues, bones and teeth. Its sodium salt is frequently added to drinking water to prevent dental caries. However, large doses cause severe pathological alterations. In view of the toxicity of Al(3+) and F(-) ions, it was thought of interest to explore the damaging effects that AlF(3) might induce in cell membranes. With this aim, it was incubated with human erythrocytes, which were examined by phase contrast and scanning electron microscopy, and molecular models of biomembranes. The latter consisted of large unilamellar vesicles (LUV) of dimyristoylphosphatidylcholine (DMPC) and bilayers of DMPC and dimyristoylphosphatidylethanolamine (DMPE) which were studied by fluorescence spectroscopy and X-ray diffraction, respectively. In order to understand the effects of AlF(3) on ion transport (principally sodium and chloride) we used the isolated toad skin to which electrophysiological measurements were applied. It was found that AlF(3) altered the shape of erythrocytes inducing the formation of echinocytes. This effect was explained by X-ray diffraction which revealed that AlF(3) perturbed the structure of DMPC, class of lipids located in the outer monolayer of the erythrocyte membrane. This result was confirmed by fluorescence spectroscopy on DMPC LUV. The biphasic (stimulatory followed by inhibitory) effects on the isolated skin suggested changes in apical Cl(-) secretion and moderate ATPase inactivation. PMID:15110101

  19. Composite propellant aluminum agglomeration reduction using tailored Al/PTFE particles

    NASA Astrophysics Data System (ADS)

    Sippel, Travis R.

    Micron aluminum is widely used in propellants; however, performance could be significantly improved if ignition barriers could be disrupted and combustion tailored. In solid propellants for example, aluminum increases theoretical specific impulse performance, yet theoretical levels cannot be achieved largely because of two-phase flow losses. These losses could be reduced if particles quickly ignited, more gaseous products were produced, and if particle breakup occurred during combustion. To achieve altered aluminum ignition and particle combustion, this work explores the use of low level (10-30 wt.%) fluorocarbon (polytetrafluoroethylene (PTFE) or poly(carbon monofluoride) (PMF)) inclusion inside of aluminum via low or high energy mechanical activation. Aluminum/PTFE particles are found to be amenable to use in binder based energetics, having average particle sizes ranging from 15 to 78 μm, ~2-7 m2/g, specific surface area, and combustion enthalpies as high as 20.2 kJ/g. Differential scanning calorimetry (DSC) experiments indicate high energy MA reduces both reaction and oxidation onset to ~440 °C that is far below aluminum alone. Safety testing shows these particles have high electrostatic discharge (ESD) (89.9-108 mJ), impact (> 213 cm), and friction (> 360 N) ignition thresholds. The idea of further increasing reactivity and increasing particle combustion enthalpy is explored by reducing fluorocarbon inclusion content to 10 wt.% and through the use of the strained fluorocarbon PMF. Combustion enthalpy and average particle size range from 18.9 to 28.5 kJ/g and 23.0 to 67.5 μm, respectively and depend on MA intensity, duration, and inclusion level. Specific surface areas are high (5.3 to 34.8 m2/g) and as such, Al/PMF particles are appropriate for energetic applications not requiring a curable liquid binder. Mechanical activation reduces oxidation onset (DSC) from 555 to 480 °C (70/30 wt.%). Aluminum/PMF particles are sensitive to ESD (11.5-47.5 mJ) and some

  20. Aluminum penetration and fracture of titanium diboride

    SciTech Connect

    Dorward, R.C.

    1982-01-01

    Relatively porous titanium diboride (/approximately equals/96% dense) is penetrated with aluminum metal when used as a cathode in aluminum reduction cells operating at 970/sup 0/C. Metal penetration changes the predominant fracture mode from transgranular to intergranular, and has potentially important ramifications on mechanical properties. 3 refs.

  1. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    SciTech Connect

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  2. The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells.

    ERIC Educational Resources Information Center

    LeRoux, Xavier; And Others

    1996-01-01

    Describes a teaching program that shows how electrochemical principles can be conveyed by means of hands-on experiences of student-centered teaching experiments. Employs the readily available lead-acid cell and the simple aluminum-air cell. Discusses the batteries, equilibrium cell potential, performance comparison, current, electrode separation,…

  3. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    SciTech Connect

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  4. Aluminum industry applications for OTEC

    SciTech Connect

    Jones, M.S.; Leshaw, D.; Sathyanarayana, K.; Sprouse, A.M.; Thiagarajan, V.

    1980-12-01

    The objective of the program is to study the integration issues which must be resolved to realize the market potential of ocean thermal energy conversion (OTEC) power for the aluminum industry. The study established, as a baseline, an OTEC plant with an electrical output of 100 MWe which would power an aluminum reduction plant. The reduction plant would have a nominal annual output of about 60,000 metric tons of aluminum metal. Three modes of operation were studied, viz: 1. A reduction plant on shore and a floating OTEC power plant moored offshore supplying energy by cable. 2. A reduction plant on shore and a floating OTEC power plant at sea supplying energy by means of an ''energy bridge.'' 3. A floating reduction plant on the same platform as the OTEC power plant. For the floating OTEC/aluminum plantship, three reduction processes were examined. 1. The conventional Hall process with prebaked anodes. 2. The drained cathode Hall cell process. 3. The aluminum chloride reduction process.

  5. In vitro photodynamic effect of aluminum tetrasulfophthalocyanines on melanoma skin cancer and healthy normal skin cells.

    PubMed

    Maduray, K; Odhav, B; Nyokong, T

    2012-03-01

    Photodynamic therapy is a medical treatment that uses an inactive dye/drug and lasers as a light source to activate the dye/drug to produce a toxic form of oxygen that destroys the cancer cells. This study aimed at investigating the cytotoxic effects of different concentrations of aluminum tetrasulfophthalocyanines in its inactive and active state (laser induced) on melanoma skin cancer cells, healthy normal skin fibroblast and keratinocyte cells. Experimentally, 3 × 10⁴ cells/ml were seeded in 24-well plates before treatment with different concentrations of aluminum tetrasulfophthalocyanines. After 2h, cells were irradiated with a light dose of 4.5 J/cm². Post-irradiated cells were incubated for 24h before cell viability was measured using the CellTiter-Blue Viability Assay. Results showed that aluminum tetrasulfophthalocyanines at high concentrations were cytotoxic to melanoma cells in the absence of laser activation. In the presence of laser activation of aluminum tetrasulfophthalocyanines at a concentration of 40 μg/ml decreased cell viability of melanoma cells to 45%, fibroblasts to 78% and keratinocytes to 73%. At this photosensitizing concentration of aluminum tetrasulfophthalocyanines the efficacy of the treatment light dose 4.5 J/cm² and the cell death mechanism induced by photoactivated aluminum tetrasulfophthalocyanines was evaluated. A light dose of 4.5 J/cm² was more efficient in killing a higher number of melanoma cells and a lower number of fibroblast and keratinocyte cells than the other light doses of 2.5 J/cm², 7.5 J/cm² and 10.5 J/cm². Apoptosis features such as blebbing, nucleus condensation, nucleus fragmentation and the formation of apoptotic bodies were seen in the photodynamic therapy treated melanoma skin cancer cells. This in vitro photodynamic therapy study concludes that using aluminum tetrasulfophthalocyanines at a photosensitizing concentration of 40 μg/ml in combination with a laser dose of 4.5 J/cm² was potentially lethal

  6. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  7. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells

    SciTech Connect

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P. . E-mail: Bressler@kennedykrieger.org

    2007-05-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin.

  8. Novel application of aluminum salt for cost-effective fabrication of a highly creep-resistant nickel-aluminum anode for a molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Hoonhee; Lee, Insung; Lee, Dokyol; Lim, Heechun

    A one-step sintering process using aluminum acetate as an aluminum source is used to fabricate a nickel-based anode for a molten carbonate fuel cell (MCFC). The process is designed to replace existing partial or full oxidation and reduction processes, which are quite complicated and expensive. The aim is to simplify the fabrication process of a highly creep-resistant Ni-Al anode and eventually to contribute to the commercialization of a MCFC. Considering the solubility limit of Al in Ni, two types of anodes, Ni-2.5 wt.%Al and Ni-5 wt.%Al, are fabricated by sintering at either 1000 or 1100 °C for 2 h in a 99.5% H 2 atmosphere. After characterizing the resulting material by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, it is confirmed that among the anodes fabricated, the Ni-5 wt.%Al sample sintered at 1100 °C contained the most suitable Al 2O 3 in a dispersed form. A 100-h creep test reveals that the creep strain of the anode has the lowest value of 1.3% compared with the other anodes. This value is superior to the creep strain of 2.3% obtained from a Ni-5 wt.%Al anode using Al powder as a fine Al 2O 3 dispersion source in a Ni-base anode matrix. A single cell using the Ni-5 wt.%Al anode fabricated in this study shows a stable closed-circuit voltage of 0.795 V for 1000 h at 150 mA cm -2.

  9. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  10. Studies of a granular aluminum anode in an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Popovich, Neil A.; Govind, Rakesh

    A granular aluminum anode was investigated for use in an alkaline aluminum/hydrogen peroxide fuel cell. The fuel cell utilizes granules of aluminum (8-12 mm in diameter) as an anode, potassium hydroxide (KOH) as an anolyte and hydrogen peroxide as a catholyte. Granular anodes have a significantly higher surface area than planar surfaces, thereby resulting in higher utilization of the anode material. Polarization experiments were performed as well as closed circuit power production experiments. KOH concentrations were varied in the experiments. Polarization experiments achieved a current density of 10.02 mA/cm 2 using 2 M KOH and granular aluminum with a surface area of 205.6 cm 2. Power production experiments sustained a current density of 0.05 mA/cm 2 using 1.5 M KOH and granular aluminum with a surface area of 59.8 cm 2. Results indicate that granular metal anodes have potential for use in high energy density fuel cells.

  11. Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II

    SciTech Connect

    R. A. Christini

    1999-12-30

    A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

  12. Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Kim, Daeyong; Lee, Myoung-Gyu; Lee, Jong Kook

    2016-09-01

    The energy-absorbing characteristics of crash members in automotive collision play an important role in controlling the amount of damage to the passenger compartment. Aluminum foams have high strength-to-weight ratio and high deformability, thus good crashworthiness is expected while maintaining or even saving weights when foams are implemented in crash members. In order to investigate the effect of the open-cell aluminum foam fillers on impact performance and weight saving, a multiscale framework for evaluating the crashworthiness of aluminum foam-filled members is used. To circumvent the difficulties of mechanical tests on foams, a micromechanical model of the aluminum foam is constructed using the x-ray micro tomography and virtual tests are conducted for the micromechanical model to characterize the behavior of the foam. In the macroscale, the aluminum foam is represented by the crushable foam constitutive model, which is then incorporated into the impact test simulation of the foam-filled crash member. The multiscale foam-filled crash member model was validated for the high-speed impact test, which confirms that the material model characterized by the micromechanical approach represents the behavior of the open-cell foam under impact loading well. Finally, the crash member design for maximizing the energy absorption is discussed by investigating various designs from the foam-only structure to the hollow tube structure. It was found that the foam structure absorbs more energy than the hollow tube or foam-filled structure with the same weight.

  13. Cell Structure Evolution of Aluminum Foams Under Reduced Pressure Foaming

    NASA Astrophysics Data System (ADS)

    Cao, Zhuokun; Yu, Yang; Li, Min; Luo, Hongjie

    2016-09-01

    Ti-H particles are used to increase the gas content in aluminum melts for reduced pressure foaming. This paper reports on the RPF process of AlCa alloy by adding TiH2, but in smaller amounts compared to traditional process. TiH2 is completely decomposed by stirring the melt, following which reduced pressure is applied. TiH2 is not added as the blowing agent; instead, it is added for increasing the H2 concentration in the liquid AlCa melt. It is shown that pressure change induces further release of hydrogen from Ti phase. It is also found that foam collapse is caused by the fast bubble coalescing during pressure reducing procedure, and the instability of liquid film is related to the significant increase in critical thickness of film rupture. A combination of lower amounts of TiH2, coupled with reduced pressure, is another way of increasing hydrogen content in the liquid aluminum. A key benefit of this process is that it provides time to transfer the molten metal to a mold and then apply the reduced pressure to produce net shape foam parts.

  14. Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint

    SciTech Connect

    Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

    2008-05-01

    We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

  15. Aluminum-air power cell: The M4-cell assembly and initial tests

    NASA Astrophysics Data System (ADS)

    Maimoni, A.; Muelder, S. A.; Hui, W. C.

    1985-10-01

    We fabricated, assembled, and tested the modular, wedge-shaped M4 Aluminum-Air Power Cell in a system with a fluidized-bed crystallizer and hydrocyclone separator. Two M4-cell experiments validated the design premises and indicated predictable performance. The combined duration of the M4-1 and M4-2 experiments was almost 9 h. Conductive epoxy bonds are inadequate for bonding the air-cathode metal screen to current collectors; soldered joints using low melting (93C) Indium solder performed satisfactorily. Both experiments were terminated because of problems directly traceable to metallic tin deposited by the stannate corrosion inhibitor. Apart from problems caused by metallic tin, the M4-2 test system performed very satisfactorily. Individual cell pods are readily assembled into single or multicell stacks; it is easy to disassemble the cells after a run to determine cell condition. Air-cathode assembly is the most cumbersome aspect of the M4 cell. We obtained valuable information regarding the evolution of particle-size distribution. We did not observe substantial agglomeration of the smaller crystals. A simple model of secondary nucleation gave a reasonably good fit to the secondary nucleation observed in the M3-3 experiment.

  16. The Pivotal Role of Alumina Pore Structure in HF Capture and Fluoride Return in Aluminum Reduction

    NASA Astrophysics Data System (ADS)

    McIntosh, Grant J.; Agbenyegah, Gordon E. K.; Hyland, Margaret M.; Metson, James B.

    2016-09-01

    Fluoride emissions during primary aluminum production are mitigated by dry scrubbing on alumina which, as the metal feedstock, also returns fluoride to the pots. This ensures stable pot operation and maintains process efficiency but requires careful optimization of alumina for both fluoride capture and solubility. The Brunauer-Emmett-Teller (BET) surface area of 70-80 m2 g-1 is currently accepted. However, this does not account for pore accessibility. We demonstrate using industry-sourced data that pores <3.5 nm are not correlated with fluoride return. Reconstructing alumina pore size distributions (PSDs) following hydrogen fluoride (HF) adsorption shows surface area is not lost by pore diameter shrinkage, but by blocking the internal porosity. However, this alone cannot explain this 3.5 nm threshold. We show this is a consequence of surface diffusion-based inhibition with surface chemistry probably playing an integral role. We advocate new surface area estimates for alumina which account for pore accessibility by explicitly ignoring <3.5 nm pores.

  17. The Pivotal Role of Alumina Pore Structure in HF Capture and Fluoride Return in Aluminum Reduction

    NASA Astrophysics Data System (ADS)

    McIntosh, Grant J.; Agbenyegah, Gordon E. K.; Hyland, Margaret M.; Metson, James B.

    2016-07-01

    Fluoride emissions during primary aluminum production are mitigated by dry scrubbing on alumina which, as the metal feedstock, also returns fluoride to the pots. This ensures stable pot operation and maintains process efficiency but requires careful optimization of alumina for both fluoride capture and solubility. The Brunauer-Emmett-Teller (BET) surface area of 70-80 m2 g-1 is currently accepted. However, this does not account for pore accessibility. We demonstrate using industry-sourced data that pores <3.5 nm are not correlated with fluoride return. Reconstructing alumina pore size distributions (PSDs) following hydrogen fluoride (HF) adsorption shows surface area is not lost by pore diameter shrinkage, but by blocking the internal porosity. However, this alone cannot explain this 3.5 nm threshold. We show this is a consequence of surface diffusion-based inhibition with surface chemistry probably playing an integral role. We advocate new surface area estimates for alumina which account for pore accessibility by explicitly ignoring <3.5 nm pores.

  18. Role of Exogenous Melatonin on Cell Proliferation and Oxidant/Antioxidant System in Aluminum-Induced Renal Toxicity.

    PubMed

    Karabulut-Bulan, Omur; Bayrak, Bertan Boran; Arda-Pirincci, Pelin; Sarikaya-Unal, Guner; Us, Huseyin; Yanardag, Refiye

    2015-11-01

    Aluminum has toxic potential on humans and animals when it accumulates in various tissues. It was shown in a number of studies that aluminum causes oxidative stress by free radical formation and lipid peroxidation in tissues and thus may cause damage in target organs. Although there are numerous studies investigating aluminum toxicity, biochemical mechanisms of the damage caused by aluminum have yet to be explained. Melatonin produced by pineal gland was shown to be an effective antioxidant. Since kidneys are target organs for aluminum accumulation and toxicity, we have studied the role of melatonin against aluminum-induced renal toxicity in rats. Wistar albino rats were divided into five groups. Group I served as control, and received only physiological saline; group II served as positive control for melatonin, and received ethanol and physiological saline; group III received melatonin (10 mg/kg); group IV received aluminum sulfate (5 mg/kg) and group V received aluminum sulfate and melatonin (in the same dose), injected three times a week for 1 month. Administration of aluminum caused degenerative changes in renal tissues, such as increase in metallothionein immunoreactivity and decrease in cell proliferation. Moreover, uric acid and lipid peroxidation levels and xanthine oxidase activity increased, while glutathione, catalase, superoxide dismutase, paraoxonase 1, glucose-6-phosphate dehydrogenase, and sodium potassium ATPase activities decreased. Administration of melatonin mostly prevented these symptoms. Results showed that melatonin is a potential beneficial agent for reducing damage in aluminum-induced renal toxicity.

  19. Novel Aluminum (Al)-Carbon Nanotube (CNT) Open-Cell Foams

    NASA Astrophysics Data System (ADS)

    Morsi, K.; Krommenhoek, Max; Shamma, Mohamed

    2016-06-01

    This paper presents for the first time the processing of aluminum (Al)-carbon nanotube (CNT) open-cell foams. Al-2wt pct CNT and Al foams were successfully produced using a spark plasma sintering and dissolution process. Al-CNT foams with porosity levels of ~78 pct were produced. The mechanical response of the open-cell foams reveals initial evidence of enhanced damage tolerance of Al-CNT foams over Al foams produced in this study.

  20. Study of the reconstruction of fractal structure of closed-cell aluminum foam and its thermal conductivity

    NASA Astrophysics Data System (ADS)

    Xia, Dehong; Guo, Shanshan; Ren, Ling

    2012-02-01

    Based on the characteristics of the internal structure of closed-cell aluminum foam, this paper attempts to illustrate the process of reconstructing the internal structures of closed-cell aluminum foam in Monte-Carlo method and the fractal characteristics of the reconstructed model. Furthermore, Binary Array Method is proposed by analyzing the reconstructed model and the thermal conductivity model of closed-cell aluminum foam is established. At the same time, the thermal conductivity of the foam materials with different porosity is calculated by Binary Array Method, and the calculated value coincides with the experimental results in the reference, which proves the correctness of these methods.

  1. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  2. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  3. Reduction of CO2 to methanol using aluminum ester FLPs

    SciTech Connect

    Smythe, Nathan C.; Dixon, David A.; Garner, III, Edward B.; Rickard, Meredith M.; Mendez, Mariano; Scott, Brian Lindley; Zelenay, Barbara; Sutton, Andrew D.

    2015-10-09

    Herein we report the synthesis of Al-based esters containing halogenated benzene rings. These Lewis acids were paired with phosphines to form frustrated Lewis pairs (FLPs) which could subsequently bind CO2. While these FLPs were not sufficiently water-stable to catalyze the reduction of CO2 to MeOH using NH3BH3 as the reductant, we examine the effect of varying Lewis acid strength. Frustrated Lewis pairs (FLPs) are combinations of Lewis acids and Lewis bases where the acid and base are either sterically or geometrically restricted from interacting as strongly as their electronic structures would allow. This effect leads to enhanced reactivity towards small molecules and, consequently, interest in their potential as metal-free catalysts [1], [2], [3], [4] and [5]. Furthermore, to-date, the biggest success has been based around the ability of a myriad of systems to heterolytically cleave H2 and perform catalytic hydrogenations [2] and [3].

  4. Transformation products of submicron-sized aluminum-substituted magnetite: Color and reductant solubility

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Lauer, H. V., Jr.

    1991-01-01

    Magnetite, when present as fine particles, is soluble in acid ammonium oxalate (pH equals 3). However, the commonly used extractant for free iron oxides (i.e., citrate dithionite-bicarbonate (CDB) is not very effective in dissolving magnetite in soils and geologic materials. Upon oxidation, magnetite transforms to maghemite; at elevated temperatures, maghemite inverts to hematite. This transformation causes a change in color from black to red and may affect the reductant solubility as well. The objectives here were to examine the color and reflectance spectral characteristics of products during the transformation of magnetite to maghemite to hematite and to study the effect of Al-substitution in magnetite on the above process. Reductant solubility of Al-substituted magnetite, maghemite, and hematite was also studied. In summary, the transformation of magnetite to maghemite was accompanied by a change in color from black to red because of the oxidation of Fe2(+) to Fe3(+). The phase change maghemite to hematite had a relatively minor effect on the color and the reflectance spectra.

  5. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  6. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  7. Aluminum-Induced Rapid Root Inhibition and Changes in Cell-Wall Components of Squash Seedlings.

    PubMed Central

    Van, H. L.; Kuraishi, S.; Sakurai, N.

    1994-01-01

    Growth of squash (Cucurbita maxima Duch.) roots was significantly inhibited by 1 mM AlCl3 as early as 1 h after the treatment. The growth inhibition was confined to the elongating zone (1-6 mm from the root tip). Chemical analysis of cell-wall polysaccharides from roots revealed that aluminum increased pectin, hemi-cellulose, and cellulose contents after 3 h of treatment. The effect of aluminum on pectin content was found in the elongating zone including the root tip, whereas change in cellulose content was confined to only nonelongating zones. Hemicellulose content increased in all of the regions along the root axis. The increase in the pectin fraction was due to the increases in uronic acids, galactose, and arabinose constituents, whereas hemicellulose content changed due to increases in glucose, xylose, galactose, and arabinose. The results clearly indicate that aluminum rapidly reduced squash root growth by inhibiting cell elongation and altering metabolism of cell-wall polysaccharides in the nonelongating zone as well as in the elongating zone. PMID:12232377

  8. Anodic Bubble Behavior and Voltage Drop in a Laboratory Transparent Aluminum Electrolytic Cell

    NASA Astrophysics Data System (ADS)

    Zhao, Zhibin; Wang, Zhaowen; Gao, Bingliang; Feng, Yuqing; Shi, Zhongning; Hu, Xianwei

    2016-06-01

    The anodic bubbles generated in aluminum electrolytic cells play a complex role to bath flow, alumina mixing, cell voltage, heat transfer, etc., and eventually affect cell performance. In this paper, the bubble dynamics beneath the anode were observed for the first time from bottom view directly in a similar industrial electrolytic environment, using a laboratory-scale transparent aluminum electrolytic cell. The corresponding cell voltage was measured simultaneously for quantitatively investigating its relevance to bubble dynamics. It was found that the bubbles generated in many spots that increased in number with the increase of current density; the bubbles grew through gas diffusion and various types of coalescences; when bubbles grew to a certain size with their surface reaching to the anode edge, they escaped from the anode bottom suddenly; with the increase of current density, the release frequency increases, and the size of these bubbles decreases. The cell voltage was very consistent with bubble coverage, with a high bubble coverage corresponding to a higher cell voltage. At low current density, the curves of voltage and coverage fluctuated in a regularly periodical pattern, while the curves became more irregular at high current density. The magnitude of voltage fluctuation increased with current density first and reached a maximum value at current density of 0.9 A/cm2, and decreased when the current density was further increased. The extra resistance induced by bubbles was found to increase with the bubble coverage, showing a similar trend with published equations.

  9. Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells

    SciTech Connect

    Cudzinovic, M.; Sopori, B.

    1996-05-01

    A process for forming highly reflective aluminum back contacts with low contact resistance to silicon solar cells is described. By controlling the process conditions, it is possible to vary the silicon/aluminum interface from a specular to a diffuse reflector while maintaining a high interface reflectance. The specular interface is found to be a uniform silicon/aluminum alloy layer a few angstroms thick that has epitaxially regrown on the silicon. The diffuse interface consists of randomly distributed (111) pyramids produced by crystallographic out-diffusion of the bulk silicon. The light trapping ability of the diffuse contact is found to be close to the theoretical limit. Both types of contacts are found to have specific contact resistivities of 10{sup {minus}5} {Omega}-cm{sup 2}. The process for forming the contacts involves illuminating the devices with tungsten halogen lamps. The process is rapid (under 100 s) and low temperature (peak temperature < 580{degrees}C), making it favorable for commercial solar cell fabrication.

  10. ALUMINUM STIMULATES UPTAKE OF NON-TRANSFERRIN BOUND IRON AND TRANSFERRIN BOUND IRON IN HUMAN GLIAL CELLS

    PubMed Central

    Kim, Yongbae; Olivi, Luisa; Cheong, Jae Hoon; Maertens, Alex; Bressler, Joseph P.

    2011-01-01

    Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer’s Disease, and findings of higher levels of iron in Alzheimer’s disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in the brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin. PMID:17376497

  11. Investigation of materials for inert electrodes in aluminum electrodeposition cells

    SciTech Connect

    Haggerty, J. S.; Sadoway, D. R.

    1987-09-14

    Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. The third major topic was Non Consumable Anode (Data Base, Candidate Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented. 162 refs., 39 figs., 18 tabs.

  12. The photodynamic therapy effect of aluminum and zinc tetrasulfophthalocyanines on melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Maduray, K.; Karsten, A.; Odhav, B.; Nyokong, T.

    2010-11-01

    Photodynamic therapy (PDT) represents a novel treatment that uses a photosensitizer (PS), light source (laser) of an appropriate wavelength and oxygen to induce cell death in cancer cells. The aim of this study was to investigate the photodynamic effects of aluminum tetrasulfophthalocyanines (AlTSPc) and zinc (ZnTSPc) tetrasulfophthalocyanines activated with a 672nm wavelength laser on melanoma cancer, dermal fibroblast and epidermal keratinocyte cells. Each cell line was photosensitized with either AlTSPc or ZnTSPc for 2 h before using a diode laser with a wavelength of 672nm to deliver a light dose of 4.5 J/cm2 to the cells. The cell viability of melanoma cells were decreased to approximately 50% with concentrations of 40 μg/ml for AlTSPc and 50 μg/ml for ZnTSPc. These PS concentrations caused a slight decrease in the cell viability of fibroblast and keratinocyte cells. Both photosensitizers in the presence of high concentrations (60 μg/ml-100 μg/ml) showed cytotoxicity effects on melanoma cells in its inactive state. This was not observed in fibroblast and keratinocyte cells. Cell death in PDT treated melanoma cells was induced by apoptosis. Therefore, AlTSPc and ZnTSPc exhibit the potential to be used as a PS in PDT for the treatment of melanoma cancer.

  13. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    SciTech Connect

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focus of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has

  14. REPORT ON QUALITATIVE VALIDATION EXPERIMENTS USING LITHIUM-ALUMINUM LAYERED DOUBLE-HYDROXIDES FOR THE REDUCTION OF ALUMINUM FROM THE WASTE TREATMENT PLANT FEEDSTOCK

    SciTech Connect

    HUBER HJ; DUNCAN JB; COOKE GA

    2010-05-11

    A process for removing aluminum from tank waste simulants by adding lithium and precipitating Li-Al-dihydroxide (Lithiumhydrotalcite, [LiAl{sub 2}(OH){sub 6}]{sup +}X{sup -}) has been verified. The tests involved a double-shell tank (DST) simulant and a single-shell tank (SST) simulant. In the case of the DST simulant, the product was the anticipated Li-hydrotalcite. For the SST simulant, the product formed was primarily Li-phosphate. However, adding excess Li to the solution did result in the formation of traces of Li-hydrotalcite. The Li-hydrotalcite from the DST supernate was an easily filterable solid. After four water washes the filter cake was a fluffy white material made of < 100 {micro}m particles made of smaller spheres. These spheres are agglomerates of {approx} 5 {micro}m diameter platelets with < 1 {micro}m thickness. Chemical and mineralogical analyses of the filtrate, filter cake, and wash waters indicate a removal of 90+ wt% of the dissolved Al for the DST simulant. For the SST simulant, the main competing reaction to the formation of lithium hydrotalcite appears to be the formation of lithium phosphate. In case of the DST simulant, phosphorus co-precipitated with the hydrotalcite. This would imply the added benefit of the removal of phosphorus along with aluminum in the pre-treatment part of the waste treatment and immobilization plant (WTP). For this endeavor to be successful, a serious effort toward process parameter optimization is necessary. Among the major issues to be addressed are the dependency of the reaction yield on the solution chemistry, as well as residence times, temperatures, and an understanding of particle growth.

  15. Production of aluminum-silicon alloy and ferrosilicon and commercial-purity aluminum by the direct-reduction process. Third annual technical report, 1980 January 1-1980 December 31

    SciTech Connect

    Bruno, M.J.

    1981-01-01

    Progress on the program to demonstrate the technical feasibility of a pilot-sized Direct Reduction Process for producing aluminium and aluminium-silicon alloy is reported for Phase C. Progress is reported on reduction including the following tasks: supply burden material; burden beneficiation; effects of pilot operating parameters; pilot modifications; reactor scale-up design; calculating heat and mass balance; processing mathematical modeling; effects of process variables; information on supportive analytical, phase identification, and mechanical engineering data. Progress on alloy purification is reported in the following tasks: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; and supportive mechanical engineering. Progress on purification to commercial grade aluminum is reported on: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; support pilot operations; and supportive expended man-hours. Plans for Phase D are noted. (MCW)

  16. Influence of aluminum salt addition on in situ sintering of electrolyte matrices for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Insung; Kim, Wonsun; Moon, Youngjoon; Lim, Heechun; Lee, Dokyol

    Three aluminum salts are investigated as a sintering aid for the in situ sintering of electrolyte matrices for molten carbonate fuel cells (MCFCs). Only aluminum acetylacetonate shows a potential. At or above 420°C, aluminum acetylacetonate changes to Al 2O 3 and reacts with Li 2CO 3 in the electrolyte to produce γ-LiAlO 2. This reaction product forms necks between matrix particles. Necks grow with increasing sintering time and correspondingly, the mechanical strength of the electrolyte matrix shows an abrupt increase, starting at a sintering time of about 100 h until it levels off at about 250 h. The porosity of the matrices fabricated with aluminum acetylacetonate is in the range acceptable for use in MCFCs.

  17. An analytical procedure for the determination of aluminum used in antiperspirants on human skin in Franz™ diffusion cell.

    PubMed

    Guillard, Olivier; Fauconneau, Bernard; Favreau, Frédéric; Marrauld, Annie; Pineau, Alain

    2012-04-01

    A local case report of hyperaluminemia (aluminum concentration: 3.88 µmol/L) in a woman using an aluminum-containing antiperspirant for 4 years raises the question of possible transdermal uptake of aluminum salt as a future public health problem. Prior to studying the transdermal uptake of three commercialized cosmetic formulas, an analytical assay of aluminum (Al) in chlorohydrate form (ACH) by Zeeman Electrothermal Atomic Absorption Spectrophotometer (ZEAAS) in a clean room was optimized and validated. This analysis was performed with different media on human skin using a Franz(™) diffusion cell. The detection and quantification limits were set at ≤ 3 µg/L. Precision analysis as within-run (n = 12) and between-run (n = 15-68 days) yield CV ≤ 6%. The high analytic sensitivity (2-3 µg/L) and low variability should allow an in vitro study of the transdermal uptake of ACH.

  18. Luminescent down shifting effect of Ce-doped yttrium aluminum garnet thin films on solar cells

    SciTech Connect

    Shao, Guojian; Lou, Chaogang; Kang, Jian; Zhang, Hao

    2015-12-21

    Ce-doped yttrium aluminum garnet (YAG:Ce) thin films as luminescent down shifting (LDS) materials are introduced into the module of crystalline silicon solar cells. The films are deposited by RF magnetron sputtering on the lower surface of the quartz glass. They convert ultraviolet and blue light into yellow light. Experiments show that the introduction of YAG:Ce films improves the conversion efficiency from 18.45% of the cells to 19.27% of the module. The increasing efficiency is attributed to LDS effect of YAG:Ce films and the reduced reflection of short wavelength photons. Two intentionally selected samples with similar reflectivities are used to evaluate roughly the effect of LDS alone on the solar cells, which leads to a relative increase by 2.68% in the conversion efficiency.

  19. Microtomography-based CFD Analysis of Transport in Open-Cell Aluminum Metal Foams

    NASA Astrophysics Data System (ADS)

    Ranut, Paola; Nobile, Enrico; Mancini, Lucia

    2014-04-01

    Nowadays, the need for developing more effective heat exchange technologies and innovative materials, capable of increasing performances while keeping power consumption, size and cost at reasonable levels, is well recognized. Under this perspective, metal foams have a great potential for enhancing the thermal efficiency of heat transfer devices, while allowing for the use of smaller and lighter equipments. However, for practical applications, it is necessary to compromise between the augmented heat transfer rate and the increased pressure drop induced by the tortuous flow passages. For design purposes, the estimation of the flow permeability and the thermal conductivity of the foam is fundamental, but far from simple. From this perspective, besides classical transport models and correlations, computational fluid dynamics (CFD) at the pore scale, although challenging, is becoming a promising approach, especially if coupled with a realistic description of the foam structure. For precisely recovering the microstructure of the foams, a 3D X-ray computed microtomography (μ-CT) can be adopted. In this work, the results of μ-CT-based CFD simulations performed on different open-cell aluminum foams samples, for laminar flow regime, will be discussed. The results demonstrate that open-cell aluminum foams are effective means for enhancing heat transfer.

  20. Development of Silver-Free Silicon Photovoltaic Solar Cells with All-Aluminum Electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Cheng

    To date, the most popular and dominant material for commercial solar cells is crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out of all commercial solar cells. Although the potential of crystalline-Si solar cells in supplying energy demands is enormous, their future growth will likely be constrained by two major bottlenecks. The first is the high electricity input to produce crystalline-Si solar cells and modules, and the second is the limited supply of silver (Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching terawatt-scale deployment, which means the electricity produced by crystalline-Si solar cells would never fulfill a noticeable portion of our energy demands in the future. In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al) electroplating has been developed as an alternative metallization technique in the fabrication of crystalline-Si solar cells. The plating is carried out in a near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been found that dense, adherent Al deposits with resistivity in the high 10--6 Ω-cm range can be reproducibly obtained directly on Si substrates and nickel seed layers. An all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al back electrode, has been successfully demonstrated based on commercial p-type monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further optimization of the cell fabrication process, in particular a suitable patterning technique for the front silicon nitride layer, is expected to increase the efficiency of the cell to ~18%. This shows the potential of Al electroplating in cell metallization is promising and replacing Ag with Al as the front finger electrode is feasible.

  1. Aluminum Activates PERK-EIF2α Signaling and Inflammatory Proteins in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Rizvi, Syed Husain Mustafa; Parveen, Arshiya; Ahmad, Israr; Ahmad, Iqbal; Verma, Anoop K; Arshad, Md; Mahdi, Abbas Ali

    2016-07-01

    Aluminum is the third most abundant element present in the earth's crust and human exposure to it is possible due to industrialization, utensils, medicines, antiperspirants, etc. Evidences suggest involvement of aluminum in a variety of neurodegenerative disorders including Alzheimer's disease. Endoplasmic reticulum (ER) stress has been implicated in various neurological disorders. ER stress may be a result of impaired calcium homeostasis due to perturbed redox balance and is known to elicit inflammation through the activation of unfolded protein response (UPR). In the present study, we aimed to investigate the role of aluminum in ER stress-mediated activation of inflammatory responses in neuroblastoma cells. Lactate dehydrogenase (LDH) release assay revealed that aluminum compromised the membrane integrity of neuroblastoma cells, probably due to membrane damage, as indicated by enhanced levels of lipid peroxidation (LPO). Besides this, our results clearly demonstrated elevated reactive oxygen species (ROS) levels and a weakened antioxidant defence system manifested by decrease in catalase (CAT) activity and cellular glutathione (GSH). Moreover, we studied the expression of key apoptosis-related proteins, ER stress-mediated activation of UPR, and its downstream inflammatory pathway. It was observed that aluminum potentially enhanced protein levels of PERK, EIF2α, caspase 9, caspase 3, and inflammatory markers like NF-κB, NLRP3, HMGB1, and nitric oxide (NO). Furthermore, aluminum altered TNFα, IL1β, IL6, and IL10 mRNA levels as well. The overall findings indicated that aluminum mediates UPR activation through ER stress, which results in induction of inflammatory pathway and apoptotic proteins in neuronal cells. PMID:26546554

  2. Possible role of root border cells in detection and avoidance of aluminum toxicity.

    PubMed

    Miyasaka, S C; Hawes, M C

    2001-04-01

    Root border cells are living cells that surround root apices of most plant species and are involved in production of root exudates. We tested predictions of the hypothesis that they participate in detection and avoidance of aluminum (Al) toxicity by comparing responses of two snapbean (Phaseolus vulgaris) cultivars (cv Dade and cv Romano) known to differ in Al resistance at the whole-root level. Root border cells of these cultivars were killed by excess Al in agarose gels or in simple salt solutions. Percent viability of Al-sensitive cv Romano border cells exposed in situ for 96 h to 200 microM total Al in an agarose gel was significantly less than that of cv Dade border cells; similarly, relative viability of harvested cv Romano border cells was significantly less than that of cv Dade cells after 24 h in 25 microM total Al in a simple salt solution. These results indicate that Al-resistance mechanisms that operate at the level of whole roots also operate at the cellular level in border cells. Al induced a thicker mucilage layer around detached border cells of both cultivars. Cultivar Dade border cells produced a thicker mucilage layer in response to 25 microM Al compared with that of cv Romano cells after 8 h of treatment and this phenomenon preceded that of observed cultivar differences in relative cell viability. Release of an Al-binding mucilage by border cells could play a role in protecting root tips from Al-induced cellular damage.

  3. Possible Role of Root Border Cells in Detection and Avoidance of Aluminum Toxicity1

    PubMed Central

    Miyasaka, Susan C.; Hawes, Martha C.

    2001-01-01

    Root border cells are living cells that surround root apices of most plant species and are involved in production of root exudates. We tested predictions of the hypothesis that they participate in detection and avoidance of aluminum (Al) toxicity by comparing responses of two snapbean (Phaseolus vulgaris) cultivars (cv Dade and cv Romano) known to differ in Al resistance at the whole-root level. Root border cells of these cultivars were killed by excess Al in agarose gels or in simple salt solutions. Percent viability of Al-sensitive cv Romano border cells exposed in situ for 96 h to 200 μm total Al in an agarose gel was significantly less than that of cv Dade border cells; similarly, relative viability of harvested cv Romano border cells was significantly less than that of cv Dade cells after 24 h in 25 μm total Al in a simple salt solution. These results indicate that Al-resistance mechanisms that operate at the level of whole roots also operate at the cellular level in border cells. Al induced a thicker mucilage layer around detached border cells of both cultivars. Cultivar Dade border cells produced a thicker mucilage layer in response to 25 μM Al compared with that of cv Romano cells after 8 h of treatment and this phenomenon preceded that of observed cultivar differences in relative cell viability. Release of an Al-binding mucilage by border cells could play a role in protecting root tips from Al-induced cellular damage. PMID:11299377

  4. Aluminum-air battery cell hardware development. Period covered 1 January 1982-30 April 1982

    SciTech Connect

    Not Available

    1982-04-30

    Air cathodes were evaluated to determine polarization characteristics and the effect of aluminate, stannate and carbonate concentration. Tests confirmed prior measurements by Electromedia Corporation (EMC) that polarization is about 30 mV/kAm/sup -2/ at the electrode surface. Air cathodes from another vendor exhibited comparable performance. Variation in electrolyte composition caused on only small changes (<10%) in cathode performance. The rapidly-refuelable, subscale Mark 1-2 Aluminum-Air battery (moving cathode) was evaluated. Peak power density was measured at 2.7 and 3.1 kW/m/sup 2/ which is similar to performance of the Mark 1-1 cell. Fabrication of the rapidly-refuelable, 6-cell module with 200-cm/sup 2/ moving anodes was partially completed.

  5. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  6. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  7. Several new catalysts for reduction of oxygen in fuel cells

    NASA Technical Reports Server (NTRS)

    Cattabriga, R. A.; Cohn, E. M.; Giner, J. D.; Makrides, A. C.; Swette, L. L.

    1970-01-01

    Test results prove nickel carbide or nitride, nickel-cobalt carbide, titanium carbide or nitride, and intermetallic compounds of the transition or noble metals to be efficient electrocatalysts for oxygen reduction in alkaline electrolytes in low temperature fuel cells.

  8. Reduction of Europium in a Redox Flow Cell

    NASA Astrophysics Data System (ADS)

    Lu, Daluh; Horng, Jiin-Shiung; Tung, Chia-Pao

    1988-05-01

    An electrolytic cell similar to the iron I chromium redox flow cell was used to investigate the reduction of europium. The cell contains two compartments partitioned by an anion exchange membrane, which is permeable to chloride ions. The anolyte is ferrous chloride which is oxidized to ferric form at the anode. Rare-earth chloride prepared from Taiwan black monazite is fed as the catholyte. The reduction of europium was tested in two connected cells at 20 and 45°C. All of Eu3+ can be reduced at 45°C, and 72% of the europium can be recovered in sulfate form. In oxide form, purity is about 84%.

  9. Natural Killer Cell Reduction and Uteroplacental Vasculopathy.

    PubMed

    Golic, Michaela; Haase, Nadine; Herse, Florian; Wehner, Anika; Vercruysse, Lisbeth; Pijnenborg, Robert; Balogh, Andras; Saether, Per Christian; Dissen, Erik; Luft, Friedrich C; Przybyl, Lukasz; Park, Joon-Keun; Alnaes-Katjavivi, Patji; Staff, Anne Cathrine; Verlohren, Stefan; Henrich, Wolfgang; Muller, Dominik N; Dechend, Ralf

    2016-10-01

    Uterine natural killer cells are important for uteroplacental development and pregnancy maintenance. Their role in pregnancy disorders, such as preeclampsia, is unknown. We reduced the number of natural killer cells by administering rabbit anti-asialo GM1 antiserum in an established rat preeclamptic model (female human angiotensinogen×male human renin) and evaluated the effects at the end of pregnancy (day 21), compared with preeclamptic control rats receiving normal rabbit serum. In 100% of the antiserum-treated, preeclamptic rats (7/7), we observed highly degenerated vessel cross sections in the mesometrial triangle at the end of pregnancy. This maternal uterine vasculopathy was characterized by a total absence of nucleated/living cells in the vessel wall and perivascularly and prominent presence of fibrosis. Furthermore, there were no endovascular trophoblast cells within the vessel lumen. In the control, normal rabbit serum-treated, preeclamptic rats, only 20% (1/5) of the animals displayed such vasculopathy. We confirmed the results in healthy pregnant wild-type rats: after anti-asialo GM1 treatment, 67% of maternal rats displayed vasculopathy at the end of pregnancy compared with 0% in rabbit serum-treated control rats. This vasculopathy was associated with a significantly lower fetal weight in wild-type rats and deterioration of fetal brain/liver weight ratio in preeclamptic rats. Anti-asialo GM1 application had no influence on maternal hypertension and albuminuria during pregnancy. Our results show a new role of natural killer cells during hypertensive pregnancy in maintaining vascular integrity. In normotensive pregnancy, this integrity seems important for fetal growth.

  10. Natural Killer Cell Reduction and Uteroplacental Vasculopathy.

    PubMed

    Golic, Michaela; Haase, Nadine; Herse, Florian; Wehner, Anika; Vercruysse, Lisbeth; Pijnenborg, Robert; Balogh, Andras; Saether, Per Christian; Dissen, Erik; Luft, Friedrich C; Przybyl, Lukasz; Park, Joon-Keun; Alnaes-Katjavivi, Patji; Staff, Anne Cathrine; Verlohren, Stefan; Henrich, Wolfgang; Muller, Dominik N; Dechend, Ralf

    2016-10-01

    Uterine natural killer cells are important for uteroplacental development and pregnancy maintenance. Their role in pregnancy disorders, such as preeclampsia, is unknown. We reduced the number of natural killer cells by administering rabbit anti-asialo GM1 antiserum in an established rat preeclamptic model (female human angiotensinogen×male human renin) and evaluated the effects at the end of pregnancy (day 21), compared with preeclamptic control rats receiving normal rabbit serum. In 100% of the antiserum-treated, preeclamptic rats (7/7), we observed highly degenerated vessel cross sections in the mesometrial triangle at the end of pregnancy. This maternal uterine vasculopathy was characterized by a total absence of nucleated/living cells in the vessel wall and perivascularly and prominent presence of fibrosis. Furthermore, there were no endovascular trophoblast cells within the vessel lumen. In the control, normal rabbit serum-treated, preeclamptic rats, only 20% (1/5) of the animals displayed such vasculopathy. We confirmed the results in healthy pregnant wild-type rats: after anti-asialo GM1 treatment, 67% of maternal rats displayed vasculopathy at the end of pregnancy compared with 0% in rabbit serum-treated control rats. This vasculopathy was associated with a significantly lower fetal weight in wild-type rats and deterioration of fetal brain/liver weight ratio in preeclamptic rats. Anti-asialo GM1 application had no influence on maternal hypertension and albuminuria during pregnancy. Our results show a new role of natural killer cells during hypertensive pregnancy in maintaining vascular integrity. In normotensive pregnancy, this integrity seems important for fetal growth. PMID:27550919

  11. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect

    Fasoyinu, Yemi; Griffin, John A.

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  12. WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING POST ALUMINUM DISSOLUTION TANK 51 SLUDGE SLURRY

    SciTech Connect

    Pareizs, J; Cj Bannochie, C; Damon Click, D; Erich Hansen, E; Dan Lambert, D; Michael Stone, M

    2008-04-28

    The remaining contents of Tank 51 from Sludge Batch 4 will be blended with Purex sludge from Tank 7 to constitute Sludge Batch 5 (SB5). The Savannah River Site (SRS) Liquid Waste Organization (LWO) has completed caustic addition to Tank 51 to perform low temperature Al dissolution on the H-Modified (HM) sludge material to reduce the total mass of sludge solids and Al being fed to the Defense Waste Processing Facility (DWPF). The Savannah River National Lab (SRNL) has also completed aluminum dissolution tests using a 3-L sample of Tank 51 sludge slurry through funding by DOE EM-21. This report documents assessment of downstream impacts of the aluminum dissolved sludge, which were investigated so technical issues could be identified before the start of SB5 processing. This assessment included washing the aluminum dissolved sludge to a Tank Farm projected sodium concentration and weight percent insoluble solids content and DWPF Chemical Process Cell (CPC) processing using the washed sludge. Based on the limited testing, the impact of aluminum dissolution on sludge settling is not clear. Settling was not predictable for the 3-L sample. Compared to the post aluminum dissolution sample, settling after the first wash was slower, but settling after the second wash was faster. For example, post aluminum dissolution sludge took six days to settle to 60% of the original sludge slurry height, while Wash 1 took nearly eight days, and Wash 2 only took two days. Aluminum dissolution did impact sludge rheology. A comparison between the as-received, post aluminum dissolution and washed samples indicate that the downstream materials were more viscous and the concentration of insoluble solids less than that of the starting material. This increase in viscosity may impact Tank 51 transfers to Tank 40. The impact of aluminum dissolution on DWPF CPC processing cannot be determined because acid addition for the Sludge Receipt and Adjustment Tank (SRAT) cycle was under-calculated and thus

  13. Nerve cell response to inhibitors recorded with an aluminum-galliumnitride/galliumnitride field-effect transistor.

    PubMed

    Gebinoga, Michael; Mai, Patrick; Donahue, Mary; Kittler, Mario; Cimalla, Irina; Lübbers, Benedikt; Klett, Maren; Lebedev, Vadim; Silveira, Liele; Singh, Sukhdeep; Schober, Andreas

    2012-01-01

    Experiments based on neuronal cell-transistor couplings were made from some groups during the last years. Pioneering work in this field was carried out by Fromherz and his group (Fromherz, 2003; Schmidtner and Fromherz, 2006). We were interested of the interaction of nerve cells to serine hydrolase inhibitor diisopropylfluorophosphate (DFP), monitored by using an aluminum-galliumnitride/galliumnitride (AlGaN/GaN) electrolyte gate field effect transistor (EGFET). The biocompatibility study of our sensor materials with nerve cells shows a proliferation rate of at least 95%. The inhibitors were added to the medium and the source-drain current of the EGFET was recorded as a function of time. The inhibitor was added to the NG108-15 nerve cells growing directly on the sensor surface, resulting in a fast decrease in the drain current, I(DS). Control measurements show that this response is associated with cationic fluxes pumped through ionic channels present in the cellular membrane. The sensor enables analysis of the ion channel activity without cell destruction and simultaneously allows visual observation due to the optical transparency of the sensor material.

  14. The response of high and low polyamine-producing cell lines to aluminum and calcium stress.

    PubMed

    Mohapatra, Sridev; Cherry, Smita; Minocha, Rakesh; Majumdar, Rajtilak; Thangavel, Palaniswamy; Long, Stephanie; Minocha, Subhash C

    2010-07-01

    The diamine putrescine (Put) has been shown to accumulate in tree leaves in response to high Al and low Ca in the soil, leading to the suggestion that this response may provide a physiological advantage to leaf cells under conditions of Al stress. The increase in Put is reversed by Ca supplementation in the soil. Using two cell lines of poplar (Populus nigra x maximowiczii), one with constitutively high Put (resulting from transgenic expression of a mouse ornithine decarboxylase--called HP cells) and the other with low Put (control cells), we investigated the effects of reduced Ca (0.2-0.8 mM vs. 4 mM) and treatment with 0.1 mM Al on several biochemical parameters of cells. We found that in the presence of reduced Ca concentration, the HP cells were at a disadvantage as compared to control cells in that they showed greater reduction in mitochondrial activity and a reduction in the yield of cell mass. Upon addition of Al to the medium, the HP cells, however, showed a reversal of low-Ca effects. We conclude that due to increased ROS production in the HP cells, their tolerance to low Ca is compromised. Contrary to the expectation of deleterious effects, the HP cells showed an apparent advantage in the presence of Al in the medium, which could have come from reduced uptake of Al, enhanced extrusion of Al following its accumulation, and perhaps a reduction in Put catabolism as a result of a reduction in its biosynthesis.

  15. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  16. The aluminum smelting process.

    PubMed

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  17. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. First interim technical report, Phase D, January 1-March 31, 1981

    SciTech Connect

    Bruno, M.J.

    1981-04-01

    Operation of the bench AF-reactor on burden with all reducing carbon exterior to the ore pellet resulted in low metal alloy product yields and prematurely terminated runs, indicating the need for intimate contact between alumina and carbon to produce oxycarbide liquid prior to reaction with solid silicon carbide. Carbon solubility tests made on 60Al-40Si alloys at 2200/sup 0/C in graphite crucibles indicated continued reaction to form SiC for one hour. Efficiency of reduction to SiC ranged from 68 to 100%. The A-C two-electrode submerged arc reactor pilot, SAR-II, was successfully operated on both alumina-clay-coke and alumina-silicon carbide-coke (from the VSR prereduction) burdens. Metal alloy was produced and tapped in each of four runs. The pilot crystallizer was operated to evalute the two-stage (stop and go) crystallization technique on obtaining high yields of Al in Al-Si eutectic, with a limit of 1.0% Fe and 0.1% Ti in the alloy product. 18 figures, 19 tables. (DLC)

  18. Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Elam, David; Ayon, Arturo A.

    2013-06-01

    We report radial, p-n junction, sub-micrometre, pillar array textured solar cells, fabricated on an n-type Czochralski silicon wafer. Relatively simple processing schemes such as metal-assisted chemical etching and spin on dopant techniques were employed for the fabrication of the proposed solar cells. Atomic layer deposition (ALD) grown aluminum oxide (Al2O3) was employed as a surface passivation layer on the B-doped emitter surface. In spite of the fact that the sub-micrometre pillar array textured surface has a relatively high surface-to-volume ratio, we observed an open circuit voltage (VOC) and a short circuit current density (JSC) as high as 572 mV and 29.9 mA cm-2, respectively, which leads to a power conversion efficiency in excess of 11.30%, for the optimized structure of the solar cell described herein. Broadband omnidirectional antireflection effects along with the light trapping property of the sub-micrometre, pillar array textured surface and the excellent passivation quality of the ALD-grown Al2O3 on the B-doped emitter surface were responsible for the enhanced electrical performance of the proposed solar cells.

  19. Response and tolerance of root border cells to aluminum toxicity in soybean seedlings.

    PubMed

    Cai, Miao-Zhen; Wang, Fang-Mei; Li, Rong-Feng; Zhang, Shu-Na; Wang, Ning; Xu, Gen-Di

    2011-07-01

    Root border cells (RBCs) and their secreted mucilage are suggested to participate in the resistance against toxic metal cations, including aluminum (Al), in the rhizosphere. However, the mechanisms by which the individual cell populations respond to Al and their role in Al resistance still remain unclear. In this research, the response and tolerance of RBCs to Al toxicity were investigated in the root tips of two soybean cultivars [Zhechun No. 2 (Al-tolerant cultivar) and Huachun No. 18 (Al-sensitive cultivar)]. Al inhibited root elongation and increased pectin methylesterase (PME) activity in the root tip. Removal of RBCs from the root tips resulted in a more severe inhibition of root elongation, especially in Huachun No. 18. Increasing Al levels and treatment time decreased the relative percent viability of RBCs in situ and in vitro in both soybean cultivars. Al application significantly increased mucilage layer thickness around the detached RBCs of both cultivars. Additionally, a significantly higher relative percent cell viability of attached and detached RBCs and thicker mucilage layers were observed in Zhechun No. 2. The higher viability of attached and detached RBCs, as well as the thickening of the mucilage layer in separated RBCs, suggest that RBCs play an important role in protecting root apices from Al toxicity.

  20. Photoelectric properties of ITO/CdS/surfactant aluminum phthalocyanine/Au solar cells

    NASA Astrophysics Data System (ADS)

    Lawrence, M. F.; Dodelet, J. P.; Dao, L. H.

    1984-12-01

    A heterojunction solar cell made by sequential electrodeposition of CdS and a surfactant aluminum phthalocyanine, (SAlPc), onto ITO (Nesatron) conductive glass, has been analyzed. Barrier formation occurs upon light absorption and is related to doping of the organic pigment by trapped electrons. When the cell is illuminated with white light, all the band bending occurs in the phthalocyanine, and two mechanisms are at work in relation to current production. The optimum thickness for the CdS and SAlPc layers was found to be 4000 and 2500A, respectively. The photovoltaic characteristics ofo the optimized cell, under an illumination of 50 mW/sq cm, were: J(sc) = 0.33 mA/sq cm, V(sc) = 0.46, ff = 0.3 and eta = 0.09 percent. From capacitance measurements a density of N of about 3 x 10 to the 17th charge carriers/cu cm was calculated, and the barrier parameters were: w(o) about 300 A and V(o) about 0.5V. To illustrate how the junction changes with doping of the organic layer by photogenerated electrons, an energy-level diagram of the proposed model is presented.

  1. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells.

    PubMed

    Zhao, Xingyue; Shen, Heping; Zhang, Ye; Li, Xin; Zhao, Xiaochong; Tai, Meiqian; Li, Jingfeng; Li, Jianbao; Li, Xin; Lin, Hong

    2016-03-01

    Although low-temperature, solution-processed zinc oxide (ZnO) has been widely adopted as the electron collection layer (ECL) in perovskite solar cells (PSCs) because of its simple synthesis and excellent electrical properties such as high charge mobility, the thermal stability of the perovskite films deposited atop ZnO layer remains as a major issue. Herein, we addressed this problem by employing aluminum-doped zinc oxide (AZO) as the ECL and obtained extraordinarily thermally stable perovskite layers. The improvement of the thermal stability was ascribed to diminish of the Lewis acid-base chemical reaction between perovskite and ECL. Notably, the outstanding transmittance and conductivity also render AZO layer as an ideal candidate for transparent conductive electrodes, which enables a simplified cell structure featuring glass/AZO/perovskite/Spiro-OMeTAD/Au. Optimization of the perovskite layer leads to an excellent and repeatable photovoltaic performance, with the champion cell exhibiting an open-circuit voltage (Voc) of 0.94 V, a short-circuit current (Jsc) of 20.2 mA cm(-2), a fill factor (FF) of 0.67, and an overall power conversion efficiency (PCE) of 12.6% under standard 1 sun illumination. It was also revealed by steady-state and time-resolved photoluminescence that the AZO/perovskite interface resulted in less quenching than that between perovskite and hole transport material. PMID:26960451

  2. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells.

    PubMed

    Zhao, Xingyue; Shen, Heping; Zhang, Ye; Li, Xin; Zhao, Xiaochong; Tai, Meiqian; Li, Jingfeng; Li, Jianbao; Li, Xin; Lin, Hong

    2016-03-01

    Although low-temperature, solution-processed zinc oxide (ZnO) has been widely adopted as the electron collection layer (ECL) in perovskite solar cells (PSCs) because of its simple synthesis and excellent electrical properties such as high charge mobility, the thermal stability of the perovskite films deposited atop ZnO layer remains as a major issue. Herein, we addressed this problem by employing aluminum-doped zinc oxide (AZO) as the ECL and obtained extraordinarily thermally stable perovskite layers. The improvement of the thermal stability was ascribed to diminish of the Lewis acid-base chemical reaction between perovskite and ECL. Notably, the outstanding transmittance and conductivity also render AZO layer as an ideal candidate for transparent conductive electrodes, which enables a simplified cell structure featuring glass/AZO/perovskite/Spiro-OMeTAD/Au. Optimization of the perovskite layer leads to an excellent and repeatable photovoltaic performance, with the champion cell exhibiting an open-circuit voltage (Voc) of 0.94 V, a short-circuit current (Jsc) of 20.2 mA cm(-2), a fill factor (FF) of 0.67, and an overall power conversion efficiency (PCE) of 12.6% under standard 1 sun illumination. It was also revealed by steady-state and time-resolved photoluminescence that the AZO/perovskite interface resulted in less quenching than that between perovskite and hole transport material.

  3. External quantum efficiency and photovoltaic performance of silicon cells deposited with aluminum, indium, and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ho, Wen-Jeng; Hu, Chia-Hua; Yeh, Chien-Wu; Lee, Yi-Yu

    2016-08-01

    In this study, the plasmonic light scattering of aluminum (Al), indium (In), and sliver (Ag) nanoparticles (NPs) deposited on silicon solar cells was demonstrated. For comparison, the dimensions of all NPs were maintained at 17–25 nm with a coverage of approximately 30–40% through the control of film deposition and thermal annealing conditions. Absorbance and surface plasmon Raman scattering were used to examine the different localized surface plasmon resonances (LSPRs) of the proposed NPs. Optical reflectance, external quantum efficiency (EQE) response, and photovoltaic current density–voltage characteristics under AM 1.5G illumination were used to confirm the contribution of the plasmonic light scattering of the NPs. The conversion efficiencies of the solar cells with Al, In, and Ag NPs increased 1.21-, 1.23-, and 1.17-fold, respectively, compared with that of the reference bare Si solar cell. The EQE response and photovoltaic performance revealed that Al and In NPs produced broadband plasmonic light scattering and increased efficiency, far exceeding the results obtained using Ag NPs.

  4. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    SciTech Connect

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  5. Neurotransmitters and neuronal apoptotic cell death of chronically aluminum intoxicated Nile catfish (Clarias gariepinus) in response to ascorbic acid supplementation.

    PubMed

    Khalil, Samah R; Hussein, Mohamed M A

    2015-12-01

    Few studies have been carried out to assess the neurotoxic effect of aluminum (Al) on the aquatic creatures. This study aims to evaluate the neurotoxic effects of long term Al exposure on the Nile catfish (Clarias gariepinus) and the potential ameliorative influence of ascorbic acid (ASA) over a 180 days exposure period. Forty eight Nile catfish were divided into four groups: control group, placed in clean water, ASA exposed group (5mg/l), AlCl3 received group (28.96 μg/l; 1/20 LC50), and group received AlCl3 concomitantly with ASA. Brain tissue was examined by using flow cytometry to monitor the apoptotic cell population, HPLC analysis for the quantitative estimation of brain monoamine neurotransmitters [serotonin (5-HT), dopamine (DA), norepinephrine (NE)]. The amino acid neurotransmitters [serum taurine, glycine, aspartate and glutamine and brain gamma aminobutyric acid (GABA)] levels were assessed, plus changes in brain tissue structure using light microscopy. The concentration of Al in both brain tissue and serum was determined by using atomic absorption spectrophotometery. The Al content in serum and brain tissue were both elevated and Al exposure induced an increase in the number of apoptotic cells, a marked reduction of the monoamine and amino acids neurotransmitters levels and changes in tissue morphology. ASA supplementation partially abolished the effects of AL on the reduced neurotransmitter, the degree of apoptosis and restored the morphological changes to the brain. Overall, our results indicate that, ASA is a promising neuroprotective agent against for Al-induced neurotoxicity in the Nile catfish.

  6. Neurotransmitters and neuronal apoptotic cell death of chronically aluminum intoxicated Nile catfish (Clarias gariepinus) in response to ascorbic acid supplementation.

    PubMed

    Khalil, Samah R; Hussein, Mohamed M A

    2015-12-01

    Few studies have been carried out to assess the neurotoxic effect of aluminum (Al) on the aquatic creatures. This study aims to evaluate the neurotoxic effects of long term Al exposure on the Nile catfish (Clarias gariepinus) and the potential ameliorative influence of ascorbic acid (ASA) over a 180 days exposure period. Forty eight Nile catfish were divided into four groups: control group, placed in clean water, ASA exposed group (5mg/l), AlCl3 received group (28.96 μg/l; 1/20 LC50), and group received AlCl3 concomitantly with ASA. Brain tissue was examined by using flow cytometry to monitor the apoptotic cell population, HPLC analysis for the quantitative estimation of brain monoamine neurotransmitters [serotonin (5-HT), dopamine (DA), norepinephrine (NE)]. The amino acid neurotransmitters [serum taurine, glycine, aspartate and glutamine and brain gamma aminobutyric acid (GABA)] levels were assessed, plus changes in brain tissue structure using light microscopy. The concentration of Al in both brain tissue and serum was determined by using atomic absorption spectrophotometery. The Al content in serum and brain tissue were both elevated and Al exposure induced an increase in the number of apoptotic cells, a marked reduction of the monoamine and amino acids neurotransmitters levels and changes in tissue morphology. ASA supplementation partially abolished the effects of AL on the reduced neurotransmitter, the degree of apoptosis and restored the morphological changes to the brain. Overall, our results indicate that, ASA is a promising neuroprotective agent against for Al-induced neurotoxicity in the Nile catfish. PMID:26459186

  7. Reduction of Ribosome Level Triggers Flocculation of Fission Yeast Cells

    PubMed Central

    Li, Rongpeng; Li, Xuesong; Sun, Lei; Chen, Feifei; Liu, Zhenxing; Gu, Yuyu; Gong, Xiaoyan; Liu, Zhonghua; Wei, Hua; Huang, Ying

    2013-01-01

    Deletion of ribosomal protein L32 genes resulted in a nonsexual flocculation of fission yeast. Nonsexual flocculation also occurred when two other ribosomal protein genes, rpl21-2 and rpl9-2, were deleted. However, deletion of two nonribosomal protein genes, mpg and fbp, did not cause flocculation. Overall transcript levels of rpl32 in rpl32-1Δ and rpl32-2Δ cells were reduced by 35.9% and 46.9%, respectively, and overall ribosome levels in rpl32-1Δ and rpl32-2Δ cells dropped 31.1% and 27.8%, respectively, compared to wild-type cells. Interestingly, ribosome protein expression levels and ribosome levels were also reduced greatly in sexually flocculating diploid YHL6381/WT (h+/h−) cells compared to a mixture of YHL6381 (h+) and WT (h−) nonflocculating haploid cells. Transcriptome analysis indicated that the reduction of ribosomal levels in sexual flocculating cells was caused by more-extensive suppression of ribosomal biosynthesis gene expression, while the reduction of ribosomal levels caused by deleting ribosomal protein genes in nonsexual flocculating cells was due to an imbalance between ribosomal proteins. We propose that once the reduction of ribosomal levels is below a certain threshold value, flocculation is triggered. PMID:23355005

  8. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    PubMed Central

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-01-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties. PMID:26948248

  9. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements

    NASA Astrophysics Data System (ADS)

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-Eun; Seo, Jung Hwan

    2016-03-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  10. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements.

    PubMed

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-01-01

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties. PMID:26948248

  11. Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements.

    PubMed

    Bae, Sung-Kuk; Choi, Beomjoon; Chung, Haseung; Shin, Seungwon; Song, Hee-eun; Seo, Jung Hwan

    2016-03-07

    This article presents a novel technique to estimate the mechanical properties of the aluminum composite layer on silicon solar cells by using a hybrid 3-dimensional laser scanning force measurement (3-D LSFM) system. The 3-D LSFM system measures the material properties of sub-layers constituting a solar cell. This measurement is critical for realizing high-efficient ultra-thin solar cells. The screen-printed aluminum layer, which significantly affects the bowing phenomenon, is separated from the complete solar cell by removing the silicon (Si) layer with deep reactive ion etching. An elastic modulus of ~15.1 GPa and a yield strength of ~35.0 MPa for the aluminum (Al) composite layer were obtained by the 3-D LSFM system. In experiments performed for 6-inch Si solar cells, the bowing distances decreased from 12.02 to 1.18 mm while the Si layer thicknesses increased from 90 to 190 μm. These results are in excellent agreement with the theoretical predictions for ultra-thin Si thickness (90 μm) based on the obtained Al composite layer properties.

  12. Measurement of DNA damage and cell killing in Chinese hamster V79 cells irradiated with aluminum characteristic ultrasoft X rays

    SciTech Connect

    Prise, K.M.; Folkard, M.; Davies, S.; Michael, B.D.

    1989-03-01

    Chinese hamster V79 cells were irradiated with 1.487 keV aluminum characteristic X rays produced using a cold-cathode discharge tube. Under aerobic conditions a relative biological effectiveness (RBE) of 2.18 for cell killing in comparison to 250-kVp X rays was measured using cells grown in suspension and irradiated on membrane filters. DNA damage in the form of single-strand (ssb) and double-strand breaks (dsb) was measured using the filter elution technique. The aerobic RBEs are 1.64 for dsb induction and 0.49 for ssb induction, consistent with the view that dsb are more closely related to cell kill than ssb. A reduced oxygen enhancement ratio (OER) for cell killing was measured for Al-K X rays, but the OER for dsb induction was similar to that measured for 250-kVp X rays. A curvilinear relationship between dsb induction and dose is observed, similar to that seen for 250-kVp X rays. This agrees with the concept that ultrasoft X rays produce critical lesions similar to hard X rays but with a greater efficiency per unit dose.

  13. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Lu, Lingli; Lin, Xianyong

    2015-12-15

    Aluminum (Al) stress induces putrescine (Put) accumulation in several plants and this response is proposed to alleviate Al toxicity. However, the mechanisms underlying this alleviation remain largely unknown. Here, we show that exposure to Al clearly increases Put accumulation in the roots of wheat plants (Triticum aestivum L. 'Xi Aimai-1') and that this was accompanied by significant increase in the activity of arginine decarboxylase (ADC), a Put producing enzyme. Application of an ADC inhibitor (d-arginine) terminated the Al-induced Put accumulation, indicating that increased ADC activity may be responsible for the increase in Put accumulation in response to Al. The d-arginine treatment also increased the Al-induced accumulation of cell wall polysaccharides and the degree of pectin demethylation in wheat roots. Thus, it elevated Al retention in cell walls and exacerbated Al accumulation in roots, both of which aggravate Al toxicity in wheat plants. The opposite effects were true for exogenous Put application. These results suggest that ADC-dependent Put accumulation plays important roles in providing protection against Al toxicity in wheat plants through decreasing cell wall polysaccharides and increasing the degree of pectin methylation, thus decreasing Al retention in the cell walls.

  14. Aluminum induces oxidative burst, cell wall NADH peroxidase activity, and DNA damage in root cells of Allium cepa L.

    PubMed

    Achary, V Mohan M; Parinandi, Narasimham L; Panda, Brahma B

    2012-08-01

    Plants under stress incur an oxidative burst that involves a rapid and transient overproduction of reactive oxygen species (ROS: O(2) (•-) , H(2) O(2) , (•) OH). We hypothesized that aluminum (Al), an established soil pollutant that causes plant stress, would induce an oxidative burst through the activation of cell wall-NADH peroxidase (NADH-PX) and/or plasma membrane-associated NADPH oxidase (NADPH-OX), leading to DNA damage in the root cells of Allium cepa L. Growing roots of A. cepa were treated with Al(3+) (800 μM of AlCl(3) ) for 3 or 6 hr without or with the pretreatment of inhibitors specific to NADH-PX and NADPH-OX for 2 hr. At the end of the treatment, the extent of ROS generation, cell death, and DNA damage were determined. The cell wall-bound protein (CWP) fractions extracted from the untreated control and the Al-treated roots under the aforementioned experimental conditions were also subjected to in vitro studies, which measured the extent of activation of peroxidase/oxidase, generation of (•) OH, and DNA damage. Overall, the present study demonstrates that the cell wall-bound NADH-PX contributes to the Al-induced oxidative burst through the generation of ROS that lead to cell death and DNA damage in the root cells of A. cepa. Furthermore, the in vitro studies revealed that the CWP fraction by itself caused DNA damage in the presence of NADH, supporting a role for NADH-PX in the stress response. Altogether, this study underscores the crucial function of the cell wall-bound NADH-PX in the oxidative burst-mediated cell death and DNA damage in plants under Al stress.

  15. Perchlorate reduction in microbial electrolysis cell with polyaniline modified cathode.

    PubMed

    Li, Jia-Jia; Gao, Ming-Ming; Zhang, Gang; Wang, Xin-Hua; Wang, Shu-Guang; Song, Chao; Xu, Yan-Yan

    2015-02-01

    Excellent perchlorate reduction was obtained under various initial concentrations in a non-membrane microbial electrolysis cell with polyaniline (PANI) modified graphite cathode as sole electron donor. PANI modification is conducive to the formation of biofilm due to its porous structure and good electrocatalytic performance. Compared with cathode without biofilm, over 12% higher reduction rates were acquired in the presence of biocathode. The study demonstrates that, instead of perchlorate reduction, the main contribution of biofilm is involved in facilitate electron transfer from cathode to electrolyte. Interestingly, hairlike structure, referred as to pili-like, was observed in the biofilm as well as in the electrolyte. Additionally, the results show that pili were prone to formation under the condition of external electron field as sole electron donor. Analysis of microbial community suggests that perchlorate reduction bacteria community was most consistent with Azospiraoryzae strain DSM 13638 in the subdivision of the class Proteobacteria. PMID:25479396

  16. Reactive oxygen species burst induced by aluminum stress triggers mitochondria-dependent programmed cell death in peanut root tip cells.

    PubMed

    Huang, Wenjing; Yang, Xudong; Yao, Shaochang; LwinOo, Thet; He, Huyi; Wang, Aiqin; Li, Chuangzhen; He, Longfei

    2014-09-01

    Recent studies had certified that aluminum (Al) induced ROS production and programmed cell death (PCD) in higher plants. The relationship between ROS production and PCD occurrence under Al stress is uncovered. The results showed that root elongation inhibition and PCD occurrence was induced by 100 μM AlCl3. Al stress induced ROS burst, up-regulated Rboh and COX gene expression, increased mitochondrial permeability transition pore (MPTP) opening, decreased inner mitochondrial membrane potential (ΔΨm), released cytochrome c from mitochondria to cytoplasm, activated caspase 3-like protease activity. Exogenous H2O2 aggravated the changes caused by Al and accelerated PCD occurrence, but ROS scavenger CAT and AsA reversed the changes caused by Al and inhibited PCD production. A potential cascade of cellular events during Al induced PCD via mitochondria dependent pathway and the mechanism of ROS on regulating PCD induced by Al is proposed.

  17. Apoptosis induction by aluminum phthalocyanine tetrasulfonate-based sonodynamic therapy in HL-60 cells

    NASA Astrophysics Data System (ADS)

    Iwase, Yumiko; Yumita, Nagahiko; Nishi, Koji; Kuwahara, Hiroyuki; Fukai, Toshio; Ikeda, Toshihiko; Chen, Fu-shih; Momose, Yasunori; Umemura, Shin-ichiro

    2015-07-01

    The present study aims to investigate sonodynamically-induced apoptosis using the phthalocyanine, chloroaluminum phthalocyanine tetrasulfonate (AlPcTS). HL-60 cells were exposed to ultrasound for up to 3 min in the absence and presence of AlPcTS. Apoptosis was analyzed by cell morphology, DNA fragmentation, and caspase-3 activity. Electron spin resonance was used to measure reactive oxygen species. The number of apoptotic cells showing membrane blebbing and cell shrinkage after combined treatment (ultrasound and AlPcTS) was significantly higher than following other treatments, including ultrasound alone and AlPcTS alone. Furthermore, DNA ladder formation, caspase-3 activation and enhanced nitroxide generation were observed in cells treated with ultrasound and AlPcTS. Sonodynamically induced apoptosis, caspase-3 activation, and nitroxide generation were significantly suppressed by histidine. The significant reduction by histidine indicated that ultrasonically generated reactive oxygen species, such as singlet oxygen, is an important mediator of sonodynamically-induced apoptosis.

  18. Occurrence of aluminum in chloride cells of Perla marginata (Plecoptera) after exposure to low pH and elevated aluminum concentration

    SciTech Connect

    Guerold, F.; Giamberini, L.; Pihan, J.C.; Tourmann, J.L.; Kaufmann, R.

    1995-04-01

    As a consequence of acid depositions on poorly buffered catchments underlain by hard rocks, aluminum is mobilized and transported from terrestrial systems to the aquatic environment. Loss of fishes has been related to low pH and elevated aluminum concentrations in surface waters which present a low ionic content especially during acid stress such as snowmelt and heavy rainfalls. Among the causes of fish population decline in acid waters, aluminum is considered a toxic cofactor. Different studies have clearly shown that aluminum is accumulated in different organs such as kidneys, liver and gills. Research on fish has demonstrated that aluminum may be toxic, but the toxicity is markedly influenced by the pH, organic compounds and calcium content of the water. Field surveys have shown clearly that macroinvertebrates are also affected by surface-water acidification. However, little is know about the possible effects of aluminum on aquatic invertebrates and, particularly, on aquatic insects exposed to acidic conditions. Hall et al. have shown that the whole-body concentration of aluminum decreases in blackflies and mayflies transplated from neutral water to acid water. Similar results have been reported for Daphnia and chironomid. On the contrary, Ormerod et al. demonstrated the absence of relationship between water pH and insect aluminum concentrations. When aluminum occurs in aquatic insects, it has been shown that it is primarily adsorbed on the external surface and/or accumulates in gut contents. To our knowledge, the subcellular location as well as the toxicity of aluminum to acid-sensitive aquatic insects remains unclear and existing hypotheses are often based on research on fish. In this content the purpose of this study was to investigate the presence of aluminum at a subcellular level in the acid-sensitive species of stonefly, Perla marginata, after exposure to low pH and elevated aluminum concentrations. 18 refs., 1 fig., 1 tab.

  19. Novel aqueous dual-channel aluminum-hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarization losses of 0.9 mV cm(exp 2) mA(exp -1), and power densities of 1 W/cm(exp 2). Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H2O2 + 2OH(-) yields 2AlO2(-) + 4H2O E = 2.3 V. The search for electrical propulsion sources which fit the requirements for electrically powered vehicles has blurred the standard characteristics associated with electrochemical storage systems. Presently, electrochemical systems comprised of mechanically rechargeable primary batteries, secondary batteries, and fuel cells are candidates for electrochemical propulsion sources. While important advances in energy and power density continue for nonaqueous and molten electrolytes, aqueous electrolyte batteries often have an advantage in simplicity, conductivity, cost effectiveness, and environmental impact. Systems coupling aluminum anodes and aqueous electrolytes have been investigated. These systems include: aluminum/silver oxide, aluminum/manganese dioxide, aluminum air, aluminum/hydrogen peroxide aqueous batteries, and the recently introduced aluminum/ferricyanide and aluminum sulfur aqueous batteries. Conventional aqueous systems such as the nickel cadmium and lead-acid batteries are characterized by their relatively low energy densities and adverse environmental impact. Other systems have substantially higher theoretical energy capacities. While aluminum-silver oxide has demonstrated the highest steady-state power density, its high cost is an impediment for widespread utilization for electric propulsion.

  20. Mortality and cancer experience of Quebec aluminum reduction plant workers. Part I: The reduction plants and coal tar pitch volatile (CTPV) exposure assessment

    SciTech Connect

    Lavoue, J.; Gerin, M.; Cote, J.; Lapointe, R.

    2007-09-15

    This paper presents the exposure assessment and job-exposure matrix (JEM) used to estimate coal tar pitch volatile (CTPV) exposure for a study of mortality and cancer incidence in aluminum smelter workers in Quebec, Canada. Historical CTPV exposure was assessed by estimating benzene-soluble material (BSM) and benzo(a)pyrene (B(a)P) levels for combinations of job and time period. Estimates were derived by using several procedures including averaging measurement data, a deterministic mathematical model using process-related correction factors, and expert-based extrapolation. The JEM comprised 28,910 jobs, covering 7 facilities from 1916 to 1999. Estimated exposures ranged from 0.01 {mu} g/m{sup 3} to 68.08 {mu} g/m{sup 3} (B(a)P) and 0.01 mg/m{sup 3} to 3.64 mg/m{sup 3} (BSW) and were lowest before 1940 and after 1980. This methodology constitutes an improvement compared with methods used for previous studies of the Quebec cohort.

  1. Signal transduction events in aluminum-induced cell death in tomato suspension cells.

    PubMed

    Yakimova, Elena T; Kapchina-Toteva, Veneta M; Woltering, Ernst J

    2007-06-01

    In this study, some of the signal transduction events involved in AlCl(3)-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 microM AlCl(3) showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation. Cell death was effectively inhibited by protease and human caspase inhibitors indicating a cell death execution mechanism with similarities to animal apoptosis. Cell death was suppressed by application of antoxidants and by inhibitors of phospholipase C (PLC), phospholipase D (PLD) and ethylene signalling pathways. The results suggest that low concentrations of heavy metal ions stimulate both PLC and PLD signalling pathways leading to the production of reactive oxygen species (ROS) and subsequent cell death executed by caspase-like proteases.

  2. Cell oxidation-reduction imbalance after modulated radiofrequency radiation.

    PubMed

    Marjanovic, Ana Marija; Pavicic, Ivan; Trosic, Ivancica

    2015-01-01

    Aim of this study was to evaluate an influence of modulated radiofrequency field (RF) of 1800 MHz, strength of 30 V/m on oxidation-reduction processes within the cell. The assigned RF field was generated within Gigahertz Transversal Electromagnetic Mode cell equipped by signal generator, modulator, and amplifier. Cell line V79, was irradiated for 10, 30, and 60 min, specific absorption rate was calculated to be 1.6 W/kg. Cell metabolic activity and viability was determined by MTT assay. In order to define total protein content, colorimetric method was used. Concentration of oxidised proteins was evaluated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) marked with fluorescent probe 2',7'-dichlorofluorescin diacetate were measured by means of plate reader device. In comparison with control cell samples, metabolic activity and total protein content in exposed cells did not differ significantly. Concentrations of carbonyl derivates, a product of protein oxidation, insignificantly but continuously increase with duration of exposure. In exposed samples, ROS level significantly (p < 0.05) increased after 10 min of exposure. Decrease in ROS level was observed after 30-min treatment indicating antioxidant defence mechanism activation. In conclusion, under the given laboratory conditions, modulated RF radiation might cause impairment in cell oxidation-reduction equilibrium within the growing cells. PMID:25119294

  3. Cell oxidation-reduction imbalance after modulated radiofrequency radiation.

    PubMed

    Marjanovic, Ana Marija; Pavicic, Ivan; Trosic, Ivancica

    2015-01-01

    Aim of this study was to evaluate an influence of modulated radiofrequency field (RF) of 1800 MHz, strength of 30 V/m on oxidation-reduction processes within the cell. The assigned RF field was generated within Gigahertz Transversal Electromagnetic Mode cell equipped by signal generator, modulator, and amplifier. Cell line V79, was irradiated for 10, 30, and 60 min, specific absorption rate was calculated to be 1.6 W/kg. Cell metabolic activity and viability was determined by MTT assay. In order to define total protein content, colorimetric method was used. Concentration of oxidised proteins was evaluated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) marked with fluorescent probe 2',7'-dichlorofluorescin diacetate were measured by means of plate reader device. In comparison with control cell samples, metabolic activity and total protein content in exposed cells did not differ significantly. Concentrations of carbonyl derivates, a product of protein oxidation, insignificantly but continuously increase with duration of exposure. In exposed samples, ROS level significantly (p < 0.05) increased after 10 min of exposure. Decrease in ROS level was observed after 30-min treatment indicating antioxidant defence mechanism activation. In conclusion, under the given laboratory conditions, modulated RF radiation might cause impairment in cell oxidation-reduction equilibrium within the growing cells.

  4. Semitransparent polymer-based solar cells with aluminum-doped zinc oxide electrodes.

    PubMed

    Wilken, Sebastian; Wilkens, Verena; Scheunemann, Dorothea; Nowak, Regina-Elisabeth; von Maydell, Karsten; Parisi, Jürgen; Borchert, Holger

    2015-01-14

    With the use of two transparent electrodes, organic polymer-fullerene solar cells are semitransparent and may be combined to parallel-connected multijunction devices or used for innovative applications like power-generating windows. A challenging issue is the optimization of the electrodes, to combine high transparency with adequate electric properties. In the present work, we study the potential of sputter-deposited aluminum-doped zinc oxide as an alternative to the widely used but relatively expensive indium tin oxide (ITO) as cathode material in semitransparent polymer-fullerene solar cells. Concerning the anode, we utilized an insulator-metal-insulator structure based on ultrathin Au films embedded between two evaporated MoO3 layers, with the outer MoO3 film (capping layer) serving as a light coupling layer. The performance of the ITO-free semitransparent polymer-fullerene solar cells was systematically studied as dependent on the thickness of the capping layer and the active layer as well as the illumination direction. These variations were found to have strong impact on the obtained photocurrent densities. We performed optical simulations of the electric field distribution within the devices using the transfer-matrix method, to analyze the origin of the current density variations in detail and provide deep insight into the device physics. With the conventional absorber materials studied here, optimized ITO-free and semitransparent devices reached 2.0% power conversion efficiency and a maximum optical transmission of 60%, with the device concept being potentially transferable to other absorber materials.

  5. Astaxanthin ameliorates aluminum chloride-induced spatial memory impairment and neuronal oxidative stress in mice.

    PubMed

    Al-Amin, Md Mamun; Reza, Hasan Mahmud; Saadi, Hasan Mahmud; Mahmud, Waich; Ibrahim, Abdirahman Adam; Alam, Musrura Mefta; Kabir, Nadia; Saifullah, A R M; Tropa, Sarjana Tarannum; Quddus, A H M Ruhul

    2016-04-15

    Aluminum chloride induces neurodegenerative disease in animal model. Evidence suggests that aluminum intake results in the activation of glial cells and generation of reactive oxygen species. By contrast, astaxanthin is an antioxidant having potential neuroprotective activity. In this study, we investigate the effect of astaxanthin on aluminum chloride-exposed behavioral brain function and neuronal oxidative stress (OS). Male Swiss albino mice (4 months old) were divided into 4 groups: (i) control (distilled water), (ii) aluminum chloride, (iii) astaxanthin+aluminum chloride, and (iv) astaxanthin. Two behavioral tests; radial arm maze and open field test were conducted, and OS markers were assayed from the brain and liver tissues following 42 days of treatment. Aluminum exposed group showed a significant reduction in spatial memory performance and anxiety-like behavior. Moreover, aluminum group exhibited a marked deterioration of oxidative markers; lipid peroxidation (MDA), nitric oxide (NO), glutathione (GSH) and advanced oxidation of protein products (AOPP) in the brain. To the contrary, co-administration of astaxanthin and aluminum has shown improved spatial memory, locomotor activity, and OS. These results indicate that astaxanthin improves aluminum-induced impaired memory performances presumably by the reduction of OS in the distinct brain regions. We suggest a future study to determine the underlying mechanism of astaxanthin in improving aluminum-exposed behavioral deficits.

  6. Wettable Ceramic-Based Drained Cathode Technology for Aluminum Electrolysis

    SciTech Connect

    J.N. Bruggeman; T.R. Alcorn; R. Jeltsch; T. Mroz

    2003-01-09

    The goal of the project was to develop the ceramic based materials, technology, and necessary engineering packages to retrofit existing aluminum reduction cells in order to reduce energy consumption required for making primary aluminum. The ceramic materials would be used in a drained cathode configuration which would provide a stable, molten aluminum wetted cathode surface, allowing the reduction of the anode-cathode distance, thereby reducing the energy consumption. This multi-tasked project was divided into three major tasks: (1) Manufacturing and laboratory scale testing/evaluation of the ceramic materials, (2) Pilot scale testing of qualified compositions from the first task, and (3) Designing, retrofitting, and testing the ceramic materials in industrial cells at Kaiser Mead plant in Spokane, Washington. Specific description of these major tasks can be found in Appendix A - Project Scope. Due to the power situation in the northwest, the Mead facility was closed, thus preventing the industrial cell testing.

  7. In vitro study of percutaneous absorption of aluminum from antiperspirants through human skin in the Franz™ diffusion cell.

    PubMed

    Pineau, Alain; Guillard, Olivier; Favreau, Frédéric; Marty, Marie-Hélène; Gaudin, Angeline; Vincent, Claire Marie; Marrauld, Annie; Fauconneau, Bernard; Marty, Jean-Paul

    2012-05-01

    Aluminum salts such as aluminum chlorohydrate (ACH) are known for use as an active antiperspirant agent that blocks the secretion of sweat. A local case report of hyperaluminemia in a woman using an aluminum-containing antiperspirant for 4 years raises the problem of transdermal absorption of aluminum (Al). Only a very limited number of studies have shown that the skin is an effective barrier to transdermal uptake of Al. In accordance with our analytical procedure, the aim of this study with an in vitro Franz™ diffusion cell was to measure aluminum uptake from three cosmetic formulations of antiperspirant: the base for an "aerosol" (38.5% of ACH), a "roll-on" emulsion (14.5% ACH), and a "stick" (21.2%), by samples of intact and stripped human skin (5 donors). The Al assays were performed by Zeeman Electrothermal Atomic Absorption Spectrophotometry (ZEAAS). Following contacts lasting 6, 12 and 24h, the Al assays showed only insignificant transdermal absorption of Al (≤0.07% of the quantity of Al deposited) and particularly low cutaneous quantities that varied according to the formulations (1.8 μg/cm² for "aerosol base" and "stick" - 0.5 μg/cm² for the "roll-on"). On stripped skin, for which only the "stick" formulation was tested, the measured uptake was significantly higher (11.50 μg/cm² versus 1.81 μg/cm² for normal skin). These results offer reassurance as regards to the use of antiperspirants for topical application of ACH-containing cosmetic formulations on healthy skin over a limited time span (24h). On the other hand, high transdermal Al uptake on stripped skin should compel antiperspirant manufacturers to proceed with the utmost caution.

  8. Role of aluminum and growth rate on changes in cell size and silica content of silica-limited populations of Asterionella ralfsii var. Americana (bacillariophyceae)

    SciTech Connect

    Gensemer, R.W. )

    1990-06-01

    Changes in cell size and silica content were examined in response to aluminum additions in cultures of the acidophilic diatom Asterionella ralfsii var. americana Koern at pH 6.0. The effects of Al were examined over a range of steady-state growth rates using silica-limited semicontinuous cultures (Si:P = 8.0). Additions of {ge}2.8 {mu}mol{center dot}L{sup {minus}1} total Al decreased mean cell length, total surface area, and biovolume up to 40-50%. The effects of Al were dependent on growth rate with the magnitude of size reduction increasing at higher growth rates. The proportion of small (approximately 15-20 {mu}m) cell length classes increased relative to large (approximately 50 {mu}m length) cell length classes when total Al exceeded 2.8 {mu}mol{center dot}L{sup {minus}1}, particularly at higher growth rates. The relationship between cell quota and steady-state growth rate fit a Droop relationship at 0 and 2.8 {mu}mol{center dot}L{sup {minus}1} total Al, but this fit was highly variable in the presence of Al. Cell quotas in the 6.22 {mu}mol{center dot}L{sup {minus}1} total Al treatment were highest at low growth rates; therefore, a Droop relationship was an inappropriate descriptor of growth rate. Cells also became 30-40% more heavily silicified per unit surface area in the presence of Al and at growth rates {ge}0.22 day{sup {minus}1}. Although the mechanisms responsible for size reductions in response to Al additions are unclear, the relationship between metal concentration and frustule morphology may be useful as an indicator of Al loading to acidified lakes.

  9. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells.

    PubMed

    Ligaba, Ayalew; Katsuhara, Maki; Ryan, Peter R; Shibasaka, Mineo; Matsumoto, Hideaki

    2006-11-01

    The release of organic anions from roots can protect plants from aluminum (Al) toxicity and help them overcome phosphorus (P) deficiency. Our previous findings showed that Al treatment induced malate and citrate efflux from rape (Brassica napus) roots, and that P deficiency did not induce the efflux. Since this response is similar to the malate efflux from wheat (Triticum aestivum) that is controlled by the TaALMT1 gene, we investigated whether homologs of TaALMT1 are present in rape and whether they are involved in the release of organic anions. We isolated two TaALMT1 homologs from rape designated BnALMT1 and BnALMT2 (B. napus Al-activated malate transporter). The expression of these genes was induced in roots, but not shoots, by Al treatment but P deficiency had no effect. Several other cations (lanthanum, ytterbium, and erbium) also increased BnALMT1 and BnALMT2 expression in the roots. The function of the BnALMT1 and BnALMT2 proteins was investigated by heterologous expression in cultured tobacco (Nicotiana tabacum) cells and in Xenopus laevis oocytes. Both transfection systems showed an enhanced capacity for malate efflux but not citrate efflux, when exposed to Al. Smaller malate fluxes were also activated by ytterbium and erbium treatment. Transgenic tobacco cells grew significantly better than control cells following an 18 h treatment with Al, indicating that the expression of BnALMT1 and BnALMT2 increased the resistance of these plant cells to Al stress. This report demonstrates that homologs of the TaALMT1 gene from wheat perform similar functions in other species.

  10. Aluminum induces changes in oxidative burst scavenging enzymes in Coffea arabica L. suspension cells with differential Al tolerance.

    PubMed

    Ramírez-Benítez, José Efraín; Muñoz-Sánchez, J Armando; Becerril-Chi, Karen M; Miranda-Ham, María de Lourdes; Castro-Concha, Lizbeth A; Hernández-Sotomayor, S M Teresa

    2011-11-01

    The accumulation of reactive oxygen species (ROS) and concomitant oxidative stress have been considered deleterious consequences of aluminum toxicity. However, several lines of evidence suggest that ROS can function as important signaling molecules in the plant defense system for protection from abiotic stress and the acquisition of tolerance. The role of ROS-scavenging enzymes was assayed in two different coffee cell suspension lines. We treated L2 (Al-sensitive) and LAMt (Al-tolerant) Coffea arabica suspension cells with 100 μM AlCl(3) and observed significant differences in catalase activity between the two cell lines. However, we did not observe any differences in superoxide dismutase or glutathione reductase activity in either cell line following Al treatment. ROS production was diminished in the LAMt cell line. Taken together, these results indicate that aluminum treatment may impair the oxidative stress response in L2 cells but not in LAMt cells. We suggest a possible role for Al-induced oxidative bursts in the signaling pathways that lead to Al resistance and protection from Al toxicity.

  11. Molecular enzymology of the reductive bioactivation of hypoxic cell cytotoxins

    SciTech Connect

    Walton, M.I.; Wolf, C.R.; Workman, P.

    1989-04-01

    The hypoxic cell cytotoxins SR 4233, benznidazole (Benzo), and CB 1954 were readily reduced by anaerobic mouse liver microsomes in vitro to their respective amino or single N-oxide derivatives. The reactions were inhibited in air and required reduced cofactors, particularly NADPH. The rates of reductive bioactivation were markedly different for each drug, with SR 4233 much greater than CB 1954 greater than Benzo. Using purified cytochrome P-450 reductase (P-450 reductase) and an inhibitory antibody to this enzyme, we demonstrated that P-450 reductase was involved in the reductive bioactivation of all 3 compounds. It had a minor role in SR 4233 reduction, but a more important involvement in CB 1954 metabolism to its 4-amino metabolite. Using carbon monoxide, a specific inhibitor of cytochrome P-450 (P-450), we demonstrated that P-450 was involved in both SR 4233 and Benzo reduction. P-450 had a major role both in SR 4233 conversion to SR 4317 and in the latter steps of Benzo amine formation. Purified xanthine oxidase was shown to reduce SR 4233 and Benzo in vitro, but cytosolic aldehyde oxidase activity was only detectable with Benzo as substrate. Characterizing the relative participation of the various reductases in tumor versus normal tissues may allow a more rational selection and application of hypoxic cell cytotoxins in cancer therapy.

  12. Molten carbonate fuel cell reduction of nickel deposits

    DOEpatents

    Smith, James L.; Zwick, Stanley A.

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  13. Effect of Bath ph on Electroless Ni-P Coating Deposited on Open-Cell Aluminum Foams

    NASA Astrophysics Data System (ADS)

    Liu, Jiaan; Si, Fujian; Li, Dong; Liu, Yan; Cao, Zheng; Wang, Guoyong

    2015-09-01

    Different electroless Ni-P coatings were deposited on open-cell aluminum foams at various bath pH. The effect of bath pH on the morphology, structure, components, phases and corrosion resistance of the Ni-P coating was studied by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), immersion test and electrochemical polarization measurement, respectively. The experimental results show that the bath pH not only changed the reactivity of the bath, but also had a influence on the microstructure and anticorrosive property of electroless Ni-P coating. The high pH bath raises the thickness of Ni-P coating but decreases the content of phosphorus element in the Ni-P coating. The corrosion resistance of the coated aluminum foams increases when the bath pH rises.

  14. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  15. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    SciTech Connect

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain the largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).

  16. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.

    PubMed

    Yagur-Kroll, Sharon; Schreuder, Erik; Ingham, Colin J; Heideman, René; Rosen, Rachel; Belkin, Shimshon

    2015-02-15

    The use of live bacterial reporters as sensing entities in whole-cell biosensors allows the investigation of the biological effects of a tested sample, as well as the bioavailability of its components. Here we present a proof of concept for a new design for online continuous water monitoring flow-cell biosensor, incorporating recombinant reporter bacteria, engineered to generate an optical signal (fluorescent or bioluminescent) in the presence of the target compound(s). At the heart of the flow-cell is a disposable chip made of porous aluminum oxide (PAO), which retains the sensor microorganisms on its rigid planar surface, while its high porosity allows an undisturbed access both to the sample and to essential nutrients. The ability of the bacterial reporters to detect model toxic chemicals was first demonstrated using a "naked" PAO chip placed on solid agar, and later in a chip encased in a specially designed flow-through configuration which enables continuous on-line monitoring. The applicability of the PAO chip to simultaneous online detection of diverse groups of chemicals was demonstrated by the incorporation of a 6-member sensor array into the flow-through chip. The selective response of the array was also confirmed in spiked municipal wastewater effluents. Sensing activity was retained by the bacteria after 12-weeks storage of freeze-dried biochips, demonstrating the biochip potential as a simple minimal maintenance "plug-in" cartridge. This low-cost and easy to handle PAO-based flow-cell biosensor may serve as a basis for a future platform for water quality monitoring.

  17. Final Report on Materials Characterization for the Wetted Cathodes for Low-Temperature Aluminum Smelting Program

    SciTech Connect

    Windisch, Charles F.

    2002-10-30

    This report is a summary of materials characterization results on twenty cathode samples that were used in a novel aluminum reduction cell at the Northwest Aluminum Technologies laboratory. Most of these cathodes were based on the TiB2 composition and showed very little corrosion as a result of testing. Most of the samples also showed good wetting by Al metal that formed during cell operation.

  18. Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L.

    PubMed

    Cai, Miaozhen; Wang, Ning; Xing, Chenghua; Wang, Fangmei; Wu, Kun; Du, Xing

    2013-12-01

    The root cap and root border cells (RBCs) of most plant species produced pectinaceous mucilage, which can bind metal cations. In order to evaluate the potential role of root mucilage on aluminum (Al) resistance, two soybean cultivars differing in Al resistance were aeroponic cultured, the effects of Al on root mucilage secretion, root growth, contents of mucilage-bound Al and root tip Al, and the capability of mucilage to bind Al were investigated. Increasing Al concentration and exposure time significantly enhanced mucilage excretion from both root caps and RBCs, decreased RBCs viability and relative root elongation except roots exposed to 400 μM Al for 48 h in Al-resistant cultivar. Removal of root mucilage from root tips resulted in a more severe inhibition of root elongation. Of the total Al accumulated in root, mucilage accounted 48-72 and 12-27 %, while root tip accounted 22-52 and 73-88 % in Al-resistant and Al-sensitive cultivars, respectively. A (27)Al nuclear magnetic resonance spectrum of the Al-adsorbed mucilage showed Al tightly bound to mucilage. Higher capacity to exclude Al in Al-resistant soybean cultivar is related to the immobilization and detoxification of Al by the mucilage secreted from root cap and RBCs.

  19. Microarray Analysis on Human Neuroblastoma Cells Exposed to Aluminum, β1–42-Amyloid or the β1–42-Amyloid Aluminum Complex

    PubMed Central

    Fincati, Karina; Valenti, Maria Teresa; Dalle Carbonare, Luca; Sensi, Stefano L.; Zatta, Paolo

    2011-01-01

    Background A typical pathological feature of Alzheimer's disease (AD) is the appearance in the brain of senile plaques made up of β-amyloid (Aβ) and neurofibrillary tangles. AD is also associated with an abnormal accumulation of some metal ions, and we have recently shown that one of these, aluminum (Al), plays a relevant role in affecting Aβ aggregation and neurotoxicity. Methodology In this study, employing a microarray analysis of 35,129 genes, we investigated the effects induced by the exposure to the Aβ1–42-Al (Aβ-Al) complex on the gene expression profile of the neuronal-like cell line, SH-SY5Y. Principal Findings The microarray assay indicated that, compared to Aβ or Al alone, exposure to Aβ-Al complex produced selective changes in gene expression. Some of the genes selectively over or underexpressed are directly related to AD. A further evaluation performed with Ingenuity Pathway analysis revealed that these genes are nodes of networks and pathways that are involved in the modulation of Ca2+ homeostasis as well as in the regulation of glutamatergic transmission and synaptic plasticity. Conclusions and Significance Aβ-Al appears to be largely involved in the molecular machinery that regulates neuronal as well as synaptic dysfunction and loss. Aβ-Al seems critical in modulating key AD-related pathways such as glutamatergic transmission, Ca2+ homeostasis, oxidative stress, inflammation, and neuronal apoptosis. PMID:21298039

  20. Uniaxial deformation of open-cell aluminum foam: the role of internal damage

    SciTech Connect

    San Marchi, C.; Despois, J.-F.; Mortensen, A

    2004-06-07

    Internal damage accumulation is measured and shown to play a role in the mechanical response of replicated pure Al and Al-12Si open-cell foams. This internal damage is quantified by measuring the reduction in the foam's stiffness with strain. The brittle Si second phase fractures during deformation of Al-12Si foam, resulting in damage accumulation rates an order of magnitude greater than for pure Al foam. Elementary damage mechanics is used to relate the measured rate of damage accumulation to the foam's tensile failure strain. The analysis and experimental results highlight in particular the strong embrittling influence of brittle second phases within the foam, such as Si.

  1. Cathodic phenomena in aluminum electrowinning

    NASA Astrophysics Data System (ADS)

    Bouteillon, J.; Poignet, J. C.; Rameau, J. J.

    1993-02-01

    Although aluminum is one of the world's highest production-volume primary metals, it is particularly costly to produce for a variety of factors, not the least of which are the expenses associated with electrolytic reduction. Based on the scale of global aluminum processing, even minor improvements in the electrowinning technology can result in significant savings of resources. Thus, from this perspective, the following reviews recent studies of cathodic phenomena in aluminum electrowinning.

  2. Wilder Bancroft's Study of Oxidant-Reductant Cells

    NASA Astrophysics Data System (ADS)

    Stock, John T.

    1998-07-01

    Wilder Dwight Bancroft (1867 -1953), a Harvard graduate, entered Ostwald's Leipzig laboratory in 1890. Bancroft made a systematic study of potentiometric cells in which one half contained an oxidant solution, the other half a reductant solution. He stressed the importance of the equilibration of the platinum electrodes, examined the effects of acidity and of concentration on the emf of a cell, and demonstrated that this emf was the algebraic sum of the potentials of the half-cells. After receipt of his Ph.D. in 1892, Bancroft continued his potentiometric studies in Amsterdam. Following a brief return to Harvard, Bancroft moved to Cornell, and remained there until his retirement in 1937. He founded and edited the Journal of Physical Chemistry, and was President of the American Chemical Society in 1910. He was also twice President of the Electrochemical Society.

  3. Brain lesions comprised of aluminum-rich cells that lack microtubules may be associated with the cognitive deficit of Alzheimer's disease.

    PubMed

    Walton, J R

    2009-11-01

    A recent longitudinal study described an inducible rodent model for age-related cognitive deterioration. This model was produced by chronically feeding rats aluminum, from age 12 months onwards, in measured amounts equivalent to total aluminum levels ingested by Americans from their food, beverages and aluminum additives. The rats performed a hippocampal-dependent spatial memory discrimination task weekly throughout middle age and old age. One-third of the rats attained significantly lower mean performance scores in old age than middle age, in an aluminum dose-dependent manner, and exhibited behavioral signs observed in dementia. The present study used histological and immunohistochemical techniques to identify neuropathological difference between brains of rats that showed cognitive deterioration and the cognitively intact controls. Most aged rat brains had large numbers of aluminum-loaded pyramidal cells in their entorhinal cortex and temporal association cortex but the cognitively deteriorated rats had threefold more such cells than controls (p<0.01). A distinguishing feature was that all brains of the cognitively deteriorated rats, and none of controls, had at least one substantial hippocampal lesion that consisted of aluminum-rich microtubule-depleted pyramidal cells with shriveled processes, and loss of synapse density. Corticolimbic sections from brains of humans with Alzheimer's disease also showed neuropathology consistent with this type of damage. The evidence suggests bioavailable aluminum gradually accumulates in cortical and limbic regions of susceptible subjects' brains, eventually producing hippocampal lesions consisting of dysfunctional aluminum-rich microtubule-depleted pyramidal cells with damaged neurites and synapse loss. These lesions expand over time, disrupting afferent and efferent hippocampal circuitry with the development of clinically overt dementia.

  4. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    NASA Astrophysics Data System (ADS)

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The

  5. Pressure mediated reduction of ultrasonically-induced cell lysis

    SciTech Connect

    Ciaravino, V.; Miller, M.W.; Carstensen, E.L.

    1981-01-01

    Chinese hamster V-79 cells, exposed in polystyrene tubes for 5 min to 1 MHz continous wave ultrasound, were lysed more by a 10W/cm/sup 2/ than a 5W/cm/sup 2/ intensity. Higher atmospheric pressure was needed to eliminate lysis with the former relative to the latter intensity, but lysis by 10W/cm/sup 2/ was completely eliminated with 2 atmospheres of hydrostatic pressure. The reduction in lysis per unit increase in atomspheric pressure was comparable for both ultrasound intensities.

  6. Self-organization and entropy reduction in a living cell

    PubMed Central

    Davies, Paul C.W.; Rieper, Elisabeth; Tuszynski, Jack A.

    2012-01-01

    In this paper we discuss the entropy and information aspects of a living cell. Particular attention is paid to the information gain on assembling and maintaining a living state. Numerical estimates of the information and entropy reduction are given and discussed in the context of the cell’s metabolic activity. We discuss a solution to an apparent paradox that there is less information content in DNA than in the proteins that are assembled based on the genetic code encrypted in DNA. When energy input required for protein synthesis is accounted for, the paradox is clearly resolved. Finally, differences between biological information and instruction are discussed. PMID:23159919

  7. Carbon Nanowalls for oxygen reduction reaction in Bio Fuel Cells

    NASA Astrophysics Data System (ADS)

    Lehmann, K.; Yurchenko, O.; Urban, G.

    2014-11-01

    We report on the usage of Carbon Nanowalls (CNW) synthesized by a PECVD process as electrode material for oxygen reduction reaction (ORR). In order to substitute the platinum based catalysts in fuel cells, graphene is a promising candidate. Carbon Nanowalls are a graphene modification with good accessibility and a controllable morphology. By controlling height and pore size, they can be optimized for different applications. A ID/IG ratio around 2.5 and the SEM images indicate vertical nanocrystallin graphene sheets. Tests with ferrocene as electroactive compound verify CNW suitability as electrode material. Cyclic voltammetry measurements in oxygen saturated PBS prove the catalytic activity of CNW towards ORR. The results support the feasibility of CNW as cathode in Bio Fuel Cells.

  8. Catalytic reduction of carbon dioxide with a hydrogen fuel cell

    SciTech Connect

    Ogura, K.; Migita, C.T.; Imura, H. )

    1990-06-01

    This paper reports the catalytic reduction of carbon dioxide to methanol achieved with a hydrogen fuel cell. This process involves a homogeneous and a heterogeneous catalysis. In the former, the catalyst consisting of a metal complex and methanol were applied, and in the latter Everitt's salt (K{sub 2}Fe{sup II}(Fe{sup II}(CN{sub 6}))) which functions as an electron relay was used. The initial {ital p}H of the catholyte was fixed at 2, and the {ital p}H of the anolyte was required to be higher than 1.75 for the hydrogen fuel cell with CO{sub 2} as oxidant to be feasible thermodynamically.

  9. Formulation of a killed whole cell pneumococcus vaccine - effect of aluminum adjuvants on the antibody and IL-17 response

    PubMed Central

    2011-01-01

    Background Streptococcus pneumoniae causes widespread morbidity and mortality. Current vaccines contain free polysaccharides or protein-polysaccharide conjugates, and do not induce protection against serotypes that are not included in the vaccines. An affordable and broadly protective vaccine is very desirable. The goal of this study was to determine the optimal formulation of a killed whole cell pneumococcal vaccine with aluminum-containing adjuvants for intramuscular injection. Methods Four aluminium-containing adjuvants were prepared with different levels of surface phosphate groups resulting in different adsorptive capacities and affinities for the vaccine antigens. Mice were immunized three times and the antigen-specific antibody titers and IL-17 responses in blood were analyzed. Results Although all adjuvants induced significantly higher antibody titers than antigen without adjuvant, the vaccine containing aluminum phosphate adjuvant (AP) produced the highest antibody response when low doses of antigen were used. Aluminum hydroxide adjuvant (AH) induced an equal or better antibody response at high doses compared with AP. Vaccines formulated with AH, but not with AP, induced an IL-17 response. The vaccine formulated with AH was stable and retained full immunogenicity when stored at 4°C for 4 months. Conclusions Antibodies are important for protection against systemic streptococcal disease and IL-17 is critical in the prevention of nasopharyngeal colonization by S. pneumoniae in the mouse model. The formulation of the whole killed bacterial cells with AH resulted in a stable vaccine that induced both antibodies and an IL-17 response. These experiments underscore the importance of formulation studies with aluminium containing adjuvants for the development of stable and effective vaccines. PMID:21801401

  10. Strategies for the selection and characterization of aluminum-resistant variants from cell cultures of Nicotiana plumbaginifolia.

    PubMed

    Conner, A J; Meredith, C P

    1985-12-01

    The development of strategies for selecting and characterizing aluminum-resistant variants from Nicotiana plumbaginifolia Viv. cell cultures is described. Plated cells, smeared callus, in-vitro-grown shoots, and seedlings of wild-type N. plumbaginifolia all showed similar responses to Al, with total growth inhibition at or above 600 μM Al. The strict control of both cell density and aggregate size is important in selection experiments for total inhibition of the growth of wild-type cells. Two approaches for the selection of Al-resistant variants were used. In a direct method, cells were plated onto medium containing 600 μM Al which inhibited growth and chlorophyll synthesis in wildtype cells. A double selection strategy based on both cell growth and greening was used to isolate 29 Al-resistant variants. In the other approach, a rescue method, suspensions were cultured for 10 d in medium containing 600 μM Al, then plated onto standard medium for recovery of survivors. Using this strategy, 217 Al-resistant variants were selected. After six to twelve weeks of growth in the absence of Al, each variant was cloned and reselected from single cells. Al resistance was retained in 31% and 51% of the variants selected by the direct and rescue strategies, respectively. Seedling segregation data are presented for the progeny (selfed and backcrossed) of plants regenerated from one of the variants and are consistent with those expected for a single dominant mutation.

  11. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    SciTech Connect

    Weiss, David C.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  12. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells.

    PubMed

    Rabaey, Korneel; Read, Suzanne T; Clauwaert, Peter; Freguia, Stefano; Bond, Philip L; Blackall, Linda L; Keller, Jurg

    2008-05-01

    Microbial fuel cells (MFCs) have the potential to combine wastewater treatment efficiency with energetic efficiency. One of the major impediments to MFC implementation is the operation of the cathode compartment, as it employs environmentally unfriendly catalysts such as platinum. As recently shown, bacteria can facilitate sustainable and cost-effective cathode catalysis for nitrate and also oxygen. Here we describe a carbon cathode open to the air, on which attached bacteria catalyzed oxygen reduction. The bacteria present were able to reduce oxygen as the ultimate electron acceptor using electrons provided by the solid-phase cathode. Current densities of up to 2.2 A m(-2) cathode projected surface were obtained (0.303+/-0.017 W m(-2), 15 W m(-3) total reactor volume). The cathodic microbial community was dominated by Sphingobacterium, Acinetobacter and Acidovorax sp., according to 16S rRNA gene clone library analysis. Isolates of Sphingobacterium sp. and Acinetobacter sp. were obtained using H(2)/O(2) mixtures. Some of the pure culture isolates obtained from the cathode showed an increase in the power output of up to three-fold compared to a non-inoculated control, that is, from 0.015+/-0.001 to 0.049+/-0.025 W m(-2) cathode projected surface. The strong decrease in activation losses indicates that bacteria function as true catalysts for oxygen reduction. Owing to the high overpotential for non-catalyzed reduction, oxygen is only to a limited extent competitive toward the electron donor, that is, the cathode. Further research to refine the operational parameters and increase the current density by modifying the electrode surface and elucidating the bacterial metabolism is warranted. PMID:18288216

  13. Waste reduction options for manufacturers of copper indium diselenide photovoltaic cells

    SciTech Connect

    DePhillips, M.P.; Fthenakis, V.M.; Moskowitz, P.D.

    1994-03-01

    This paper identifies general waste reduction concepts and specific waste reduction options to be used in the production of copper indium diselenide (CIS) photovoltaic cells. A general discussion of manufacturing processes used for the production of photovoltaic cells is followed by a description of the US Environmental Protection Agency (EPA) guidelines for waste reduction (i.e., waste minimization through pollution prevention). A more specific discussion of manufacturing CIS cells is accompanied by detailed suggestions regarding waste minimization options for both inputs and outputs for ten stages of this process. Waste reduction from inputs focuses on source reduction and process changes, and reduction from outputs focuses on material reuse and recycling.

  14. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  15. Regeneration of aluminum hydride

    DOEpatents

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  16. Platinum monolayer electrocatalysts for oxygen reduction in fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Junliang

    Fuel cells are expected to be one of the major clean energy sources in the near future. However, the slow kinetics of electrocatalytic oxygen reduction reaction (ORR) and the high loading of Pt for the cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this study, a new approach was developed for designing electrocatalysts for the ORR in fuel cells. These electrocatalysts consist of only one Pt monolayer, or mixed transition metal-Pt monolayer, on suitable carbon-supported metal, or alloy nanoparticles. The synthesis involved depositing a monolayer of Cu on a suitable transition metal or metal alloy surface at underpotentials, followed by galvanic displacement of the Cu monolayer with Pt or mixed metal-Pt. It was found that the electronic properties of Pt monolayer could be fine-tuned by the electronic and geometric effects introduced by the substrate metal (or alloy) and the lateral effects of the neighboring metal atoms. The role of substrates was found reflected in a "volcano" plot of the monolayer activity for the ORR as a function of their calculated d-band centers. The Pt mass-specific activity of the new Pt monolayer electrocatalysts was up to twenty times higher than the state-of-the-art commercial Pt/C catalysts. The enhancement of the activity is caused mainly by decreased formation of PtOH (the blocking species for ORR), and to a lesser degree by the electronic effects. Fuel cell tests showed a very good long term stability of the new electrocatalysts. Our results demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issues facing the commercialization of fuel cells---the costs of electrocatalysts and their efficiency.

  17. Measurements of material properties for solar cells. [aluminum film and KAPTON

    NASA Technical Reports Server (NTRS)

    Castle, J. G., Jr.

    1978-01-01

    Measurements on two candidate materials for space flight are reported. The observed optical transmittance of aluminum films vapor deposited on fused quartz showed anomalously high transmittance thru 400 A and 600 A and showed an effective skin depth of 110 A in the latter part of the 1000 A thickness. KAPTON films are shown by their optical transmission spectra to have an energy gap for electron excitation of approximately 2.5 eV, which value depends on the thickness as manufactured. The resistance of KAPTON film to ionizing radiation is described by their optical spectra and their electron spin resonance spectra.

  18. Numerical Investigation on the Impact of Anode Change on Heat Transfer and Fluid Flow in Aluminum Smelting Cells

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Gosselin, Louis; Fafard, Mario; Peng, Jianping; Li, Baokuan

    2016-04-01

    In order to understand the impact of anode change on heat transfer and magnetohydrodynamic flow in aluminum smelting cells, a transient three-dimensional (3D) coupled mathematical model has been developed. The solutions of the mass, momentum, and energy conservation equations were simultaneously implemented by the finite volume method with full coupling of the Joule heating and Lorentz force through solving the electrical potential equation. The volume of fluid approach was employed to describe the two-phase flow. The phase change of molten electrolyte (bath) as well as molten aluminum (metal) was modeled by an enthalpy-based technique, where the mushy zone is treated as a porous medium with a porosity equal to the liquid fraction. The effect of the new anode temperature on recovery time was also analyzed. A reasonable agreement between the test data and simulated results is obtained. The results indicate that the temperature of the bath under cold anodes first decreases reaching the minimal value and rises under the effect of increasing Joule heating, and finally returns to steady state. The colder bath decays the velocity, and the around ledge becomes thicker. The lowest temperature of the bath below new anodes increases from 1118 K to 1143 K (845 °C to 870 °C) with the new anode temperature ranging from 298 K to 498 K (25°C to 225°C), and the recovery time reduces from 22.5 to 20 hours.

  19. Low-level (gallium-aluminum-arsenide) laser irradiation of Par-C10 cells and acinar cells of rat parotid gland.

    PubMed

    Onizawa, Katsuhiro; Muramatsu, Takashi; Matsuki, Miwako; Ohta, Kazumasa; Matsuzaka, Kenichi; Oda, Yutaka; Shimono, Masaki

    2009-03-01

    We investigated cell response, including cell proliferation and expression of heat stress protein and bcl-2, to clarify the influence of low-level [gallium-aluminum-arsenide (Ga-Al-As) diode] laser irradiation on Par-C10 cells derived from the acinar cells of rat parotid glands. Furthermore, we also investigated amylase release and cell death from irradiation in acinar cells from rat parotid glands. The number of Par-C10 cells in the laser-irradiated groups was higher than that in the non-irradiated group at days 5 and 7, and the difference was statistically significant (P < 0.01). Greater expression of heat shock protein (HSP)25 and bcl-2 was seen on days 1 and 3 in the irradiated group. Assay of the released amylase showed no significant difference statistically between the irradiated group and the non-irradiated group. Trypan blue exclusion assay revealed that there was no difference in the ratio of dead to live cells between the irradiated and the non-irradiated groups. These results suggest that low-level laser irradiation promotes cell proliferation and expression of anti-apoptosis proteins in Par-C10 cells, but it does not significantly affect amylase secretion and does not induce rapid cell death in isolated acinar cells from rat parotid glands.

  20. Compressive properties of a closed-cell aluminum foam as a function of strain-rate and temperature

    SciTech Connect

    Cady, Carl M; Gray, Ill, George T; Liu, Cheng; Lovato, Manuel L; Mukai, T

    2008-01-01

    The compressive constitutive behavior of a closed-cell aluminum foam (ALPORAS) manufactured by Shinko Wire Co. in Japan was evaluated under static and dynamic loading conditions as a function of temperature. High-strain-rate tests (1000-2000 s{sup -1}) were conducted using a split-Hopkinson pressure bar (SHPB). Quasi-static and intermediate-strain-rate tests were conducted on a hydraulic load frame. A small but discernable change in the flow stress behavior as a function of strain rate was measured. The deformation behavior of the Al-foam was however found to be strongly temperature dependent under both quasi-static and dynamic loading. Localized deformation and stress state instability during testing of metal foams is discussed in detail since the mechanical behavior over the entire range of strain rates indicates non-uniform deformation. Additionally, investigation of the effect of residual stresses created during manufacturing on the mechanical behavior was investigated.

  1. Compressive Properties of a Closed-Cell Aluminum Foam as a Function of Strain-Rate and Temperature.

    SciTech Connect

    Gray, G. T. , III; Liu, C.; Trujillo, C. P.; Jacquez, B.; Mukai, T.; Cady, C. M.

    2001-01-01

    The compressive deformation behavior of a closed-cell Aluminum foam (ALPORAS) manufactured by Shinko Wire. Co. in Japan was evaluated under static and dynamic loading conditions as a function of temperature. High strain rate tests (1000 - 2000/s) were conducted using a split-Hopkinson pressure bar(SHPB). Quasi-static and intermediate strain rate tests were conducted on a hydraulic load frame. Little change in the flow stress behavior as a function of strain rate was measured. The deformation behavior of the Al-foam was however found to be strongly temperature dependent under both quasistatic and dynamic loading. Localized deformation and stress state instability during testing of metal foams will be discussed in detail since the behavior over the entire range of strain rates indicates nonuniform deformation.

  2. Confocal microscopy to guide erbium:yttrium aluminum garnet laser ablation of basal cell carcinoma: an ex vivo feasibility study.

    PubMed

    Sierra, Heidy; Larson, Bjorg A; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2013-09-01

    For the removal of superficial and nodular basal cell carcinomas (BCCs), laser ablation provides certain advantages relative to other treatment modalities. However, efficacy and reliability tend to be variable because tissue is vaporized such that none is available for subsequent histopathological examination for residual BCC (and to confirm complete removal of tumor). Intra-operative reflectance confocal microscopy (RCM) may provide a means to detect residual tumor directly on the patient and guide ablation. However, optimization of ablation parameters will be necessary to control collateral thermal damage and preserve sufficient viability in the underlying layer of tissue, so as to subsequently allow labeling of nuclear morphology with a contrast agent and imaging of residual BCC. We report the results of a preliminary study of two key parameters (fluence, number of passes) vis-à-vis the feasibility of labeling and RCM imaging in human skin ex vivo, following ablation with an erbium:yttrium aluminum garnet laser.

  3. Aluminum Analysis.

    ERIC Educational Resources Information Center

    Sumrall, William J.

    1998-01-01

    Presents three problems based on the price of aluminum designed to encourage students to be cooperative and to use an investigative approach to learning. Students collect and synthesize information, analyze results, and draw conclusions. (AIM)

  4. Demonstration Project for Energy Conservation in Aluminum Smelting.

    SciTech Connect

    Cooke, A.V.; Buchta, W.M.; Boxall, Larry G.

    1986-05-01

    A new durable, carbon/TiB/sub 2/ material has been tested and proven in a VSS aluminum reduction plant trial at the Martin Marietta reduction smelter at the Dalles, OR. Uniform, slow coating wear was found, dominated by the rate of TiB/sub 2/ dissolution in molten aluminum. Significant energy efficiency benefits were also noted for the TiB/sub 2/-coated cells compared to the rest of the plant. A fully controlled and monitored 12-cell experiment was set up at the Commonwealth Aluminum VSS smelter at Goldendale, WA, to investigate the improved energy efficiency. After 18 months in service, these test cells have also shown energy efficiency benefits relative to the control cells and the plant. Results of the 12-cell plant trial of the proprietary carbon/TiB/sub 2/ coating have reinforced many of the preliminary conclusions drawn in the earlier 6-cell test. The operating personnel at the plant reported a definite preference for the TiB/sub 2/-coated cells, because the cathode surface was always cleaner and when muck accumulated, it dispersed more rapidly because it did not adhere to the cell bottom. The cathode current distribution was consistently more uniform in the test group than in the control group. A 5- to 7-year coating life is predicted depending on the TiB/sub 2/ type and the original coating thickness.

  5. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects

    PubMed Central

    Mullen, Andrew R.; Hu, Zeping; Shi, Xiaolei; Jiang, Lei; Boroughs, Lindsey K.; Kovacs, Zoltan; Boriack, Richard; Rakheja, Dinesh; Sullivan, Lucas B.; Linehan, W. Marston; Chandel, Navdeep S.; DeBerardinis, Ralph J.

    2014-01-01

    Summary Mammalian cells generate citrate by decarboxylating pyruvate in the mitochondria to supply the tricarboxylic acid (TCA) cycle. In contrast, hypoxia and other impairments of mitochondrial function induce an alternative pathway that produces citrate by reductively carboxylating α-ketoglutarate (AKG) via NADPH-dependent isocitrate dehydrogenase (IDH). It is unknown how cells generate reducing equivalents necessary to supply reductive carboxylation in the setting of mitochondrial impairment. Here we identified shared metabolic features in cells using reductive carboxylation. Paradoxically, reductive carboxylation was accompanied by concomitant AKG oxidation in the TCA cycle. Inhibiting AKG oxidation decreased reducing equivalent availability and suppressed reductive carboxylation. Interrupting transfer of reducing equivalents from NADH to NADPH by nicotinamide nucleotide transhydrogenase increased NADH abundance and decreased NADPH abundance while suppressing reductive carboxylation. The data demonstrate that reductive carboxylation requires bidirectional AKG metabolism along oxidative and reductive pathways, with the oxidative pathway producing reducing equivalents used to operate IDH in reverse. PMID:24857658

  6. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  7. Exploring the cell: Sodium (beta-alumina) cupric chloride - Aluminum chloride - Sodium chloride between 136 and 200 C

    NASA Technical Reports Server (NTRS)

    Miller, R. O.

    1975-01-01

    Experiments were done with a molten-salt catholyte (initially CuCl2 in AlCl3-NaCl) separated from molten Na by beta alumina. The open-circuit reduction potentials were 4.3 and 3 volts for Cu++ and Cu+, respectively. High polarization and nonrechargeability characterized the cell's operation. The cell's ohmic resistance during discharge was higher than what would be expected from only the ionic resistance of the beta-alumina.

  8. Aluminum permanganate battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-30

    A battery is provided comprising an aluminum anode, an aqueous solution of permanganate as the cathodic species and a second electrode capable of reducing permanganate. Such a battery system is characterized by its high energy density and low polarization losses when operating at high temperatures in a strong caustic electrolyte, i.e., high concentration of hydroxyl ions. A variety of anode and electrocatalyst materials are suitable for the efficient oxidation-reduction process and are elucidated.

  9. Engineering Development Program of a Closed Aluminum-Oxygen Semi-cell System for an Unmanned Underwater Vehicle: An Update

    NASA Technical Reports Server (NTRS)

    Gregg, Dane W.; Hall, Susan E.

    1996-01-01

    Most emerging unmanned undersea vehicle (UUV) missions require significantly longer range and endurance than is achievable with existing battery technology. The Aluminum-Oxygen (Al-O2) semi-cell is a candidate technology capable of providing a significant improvement in endurance compared to the silver-zinc battery technology currently in use in UUVs and compares favorably to other proposed UUV power systems not only in performance, but also in safety and logistics. An Al-O2 semi-cell system is under development, consisting of a cell stack, gas management, oxygen storage, electrolyte management coolant and controller subsystems. It is designed to replace the existing silver-zinc battery and meet existing weight, volume, electrical and thermal requirements, therefore minimizing modification to the UUV. A detailed system design is complete. A component and material endurance test to evaluate compatibility and reliability of various materials and components is complete. Sub=scale (short stack) system testing is complete. A full-scale demonstration unit is now under construction for testing in the second half of 1995. The full scale demonstration test will simulate environmental conditions of the operational system. This paper summarizes the results of the extensive short stack and endurance test programs, describes the plan for full-scale testing, and concludes with a brief discussion of future directions for this technology.

  10. Double-layer anti-reflection coating containing a nanoporous anodic aluminum oxide layer for GaAs solar cells.

    PubMed

    Yang, Tianshu; Wang, Xiaodong; Liu, Wen; Shi, Yanpeng; Yang, Fuhua

    2013-07-29

    Multilayer anti-reflection (AR) coatings can be used to improve the efficiency of Gallium Arsenide (GaAs) solar cells. We propose an alternate method to obtain optical thin films with specified refractive indices, which is using a self-assembled nanoporous anodic aluminum oxide (AAO) template as an optical thin film whose effective refractive index can be tuned by pore-widening. Different kinds of double-layer AR coatings each containing an AAO layer were designed and investigated by finite difference time domain (FDTD) method. We demonstrate that a λ /4n - λ /4n AR coating consisting of a TiO(2) layer and an AAO layer whose effective refractive index is 1.32 realizes a 96.8% light absorption efficiency of the GaAs solar cell under AM1.5 solar spectrum (400 nm-860 nm). We also have concluded some design principles of the double-layer AR coating containing an AAO layer for GaAs solar cells.

  11. Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells.

    PubMed

    Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A

    2013-07-01

    The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value.

  12. Folic Acid Protected Neural Cells Against Aluminum-Maltolate-Induced Apoptosis by Preventing miR-19 Downregulation.

    PubMed

    Zhu, Mingming; Li, Bingfei; Ma, Xiao; Huang, Cong; Wu, Rui; Zhu, Weiwei; Li, Xiaoting; Liang, Zhaofeng; Deng, Feifei; Zhu, Jianyun; Xie, Wei; Yang, Xue; Jiang, Ye; Wang, Shijia; Wu, Jieshu; Geng, Shanshan; Xie, Chunfeng; Zhong, Caiyun; Liu, Haiyan

    2016-08-01

    Aluminum (Al)-induced apoptosis is considered as the major cause of its neurotoxicity. Folic acid possesses neuroprotective function by preventing neural cell apoptosis. microRNAs (miRNAs) are important regulators of gene expression participating in cellular processes. As a key component of the miR-17-92 cluster, miR-19 is implicated in regulating apoptotic process, while its role in the neuroprotective effect of folic acid has not been investigated. The present study aimed to investigate the potential involvement and function of miR-19 in the protective action of folic acid against Al-induced neural cell apoptosis. Human SH-SY5Y cells were treated with Al-maltolate (Al-malt) in the presence or absence of folic acid. Results showed that Al-malt-induced apoptosis of SH-SY5Y cells was effectively prevented by folic acid. Al-malt suppressed the expression of miR-19a/19b, along with alterations of miR-19 related apoptotic proteins including PTEN, p-AKT, p53, Bax, Bcl-2, caspase 9 and caspase 3; and these effects were ameliorated by folic acid. miR-19 inhibitor alone induced apoptosis of SH-SY5Y cells. Combination treatment of folic acid and miR-19 inhibitor diminished the neuroprotective effect of folic acid. These findings demonstrated that folic acid protected neuronal cells against Al-malt-induced apoptosis by preventing the downregulation of miR-19 and modulation of miR-19 related downstream PTEN/AKT/p53 pathway.

  13. Water quality limits for Atlantic salmon (Salmo salar L.) exposed to short term reductions in pH and increased aluminum simulating episodes

    NASA Astrophysics Data System (ADS)

    Kroglund, F.; Rosseland, B. O.; Teien, H.-C.; Salbu, B.; Kristensen, T.; Finstad, B.

    2008-03-01

    Acidification has caused the loss or reduction of numerous Atlantic salmon (Salmo salar L.) populations on both sides of the North Atlantic. Acid deposition peaked in the 1980's and resulted in both chronically and episodically acidified rivers. At present, water quality is improving in all affected rivers due to reduced acid deposition. However, spring snow melt, heavy rainfall and sea salt episodes can still cause short term drops in pH and elevated concentrations of bioavailable aluminum. Technical malfunction in lime dozers will cause short termed episodic spates in the limed rivers. The current situation has prompted a need for dose-response relationships based on short term exposures of Atlantic salmon to assess the potential population effects of episodic acidification. Water quality guidelines for salmon have been lacking, despite a large number of experiments, all demonstrating dose-response relationships between water chemistry and fish health. We have summarized results from 347 short-term (<14 days) exposures of salmon parr and smolt performed between 1990 and 2003 in Norway. The experiments have been performed as bioassays, where fish have been exposed in tanks fed river water, in tanks where the river water quality has been manipulated (added H+ and Al) and as Carlin-tagged smolt releases after preexposure to moderately acidic waters. The results from the various bioassays are compared to water quality limits proposed on basis of the relationship between water quality and population status/health in Norwegian rivers. The focus of this article is placed on chemical-biological interactions that can be drawn across experiments and exposure protocols. We propose dose-response relationships for acid neutralizing capacity (ANC), pH, cationic Al and gill accumulated Al, versus mortality in freshwater, effects on hypo-osmoregulatory capacity in seawater challenge tests and on smolt to adult survival in release experiments. The "no effect" dose depends on the

  14. Water quality limits for Atlantic salmon (Salmo salar L.) exposed to short term reductions in pH and increased aluminum simulating episodes

    NASA Astrophysics Data System (ADS)

    Kroglund, F.; Rosseland, B. O.; Teien, H.-C.; Salbu, B.; Kristensen, T.; Finstad, B.

    2007-09-01

    Acidification has caused the loss or reduction of numerous Atlantic salmon (Salmo salar L.) populations on both sides of the North Atlantic. Acid deposition peaked in the 1980's and resulted in both chronically and episodically acidified rivers. At present, water quality is improving in all affected rivers due to reduced acid deposition. However, spring snow melt, heavy rainfall and sea salt episodes can still cause short term drops in pH and elevated concentrations of bioavailable aluminum. Technical malfunction in lime dozers will cause short termed episodic spates in the limed rivers. The current situation has prompted a need for dose-response relationships based on short term exposures of Atlantic salmon to assess the potential population effects of episodic acidification. Water quality guidelines for salmon have been lacking, despite a large number of experiments, all demonstrating dose-response relationships between water chemistry and fish health. We have summarized results from 347 short-term (<14 days) exposures of salmon parr and smolt performed between 1990 and 2003 in Norway. The experiments have been performed as bioassays, where fish have been exposed in tanks fed river water, in tanks where the river water quality has been manipulated (added H+ and Al) and as Carlin-tagged smolt releases after preexposure to moderately acidic waters. The results from the various bioassays are compared to water quality limits proposed on basis of the relationship between water quality and population status/health in Norwegian rivers. The focus of this article is placed on chemical-biological interactions that can be drawn across experiments and exposure protocols. We propose dose-response relationships for acid neutralizing capacity (ANC), pH, cationic Al and gill accumulated Al, versus mortality in freshwater, effects on hypo-osmoregulatory capacity in seawater challenge tests and on smolt to adult survival in release experiments. The "no effect" dose depends on the

  15. Passivation properties of aluminum oxide films deposited by mist chemical vapor deposition for solar cell applications

    NASA Astrophysics Data System (ADS)

    Miki, Shohei; Iguchi, Koji; Kitano, Sho; Hayakashi, Koki; Hotta, Yasushi; Yoshida, Haruhiko; Ogura, Atsushi; Satoh, Shin-ichi; Arafune, Koji

    2015-08-01

    Aluminum oxide (AlOx) films were deposited by mist chemical vapor deposition (MCVD) in air for p-type crystalline silicon, and the effects of the deposition temperature (Tdep) and AlOx film thickness on the maximum surface recombination velocities (Smax) were evaluated. It was found that Smax was improved with increasing Tdep. The AlOx film deposited at 400 °C exhibited the best Smax value of 2.8 cm/s, and the passivation quality was comparable to that of AlOx deposited by other vacuum-based techniques. Smax was also improved with increasing film thickness. When the film thickness was above 10 nm, Smax was approximately 10 cm/s. From the Fourier transform infrared spectra, it was found that the AlOx films deposited by MCVD consisted of an AlOx layer and a Si-diffused AlOx layer. In addition, it is important for the layers to be thick enough to obtain high-quality passivation.

  16. Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Bindi, A.B.; Dowdle, P.R.; Herbel, M.; Stolz, J.F.

    1999-01-01

    Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was ~11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate- grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high- affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with 75Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.

  17. Aluminum-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production.

    PubMed

    Tamás, L; Budíková, S; Huttová, J; Mistrík, I; Simonovicová, M; Siroká, B

    2005-06-01

    The function of root border cells (RBC) during aluminum (Al) stress and the involvement of oxalate oxidase, peroxidase and H(2)O(2) generation in Al toxicity were studied in barley roots. Our results suggest that RBC effectively protect the barley root tip from Al relative to the situation in roots cultivated in hydroponics where RBC are not sustained in the area surrounding the root tip. The removal of RBC from Al-treated roots increased root growth inhibition, Al and Evans blue uptake, inhibition of RBC production, the level of dead RBC, peroxidase and oxalate oxidase activity and the production of H(2)O(2). Our results suggest that even though RBC actively produce active oxygen species during Al stress, their role in the protection of root tips against Al toxicity is to chelate Al in their dead cell body.

  18. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  19. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  20. Influence of different parameter profiles on the formation of aluminum back surface field (Al-BSF) using for HIT solar cell

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangbin; Zeng, Yu; AL-Naser, Qusay Assim Hanna; Zhou, Chunlan; Zhang, Xiao; Chen, Qiankun; Yang, Yanyan; Liu, Luo

    2009-08-01

    The aluminum back surface field used in p-type substrate hetero-junction with intrinsic thin film (HIT) solar cell is studied in this paper. The enhancement of material quality and the decrease of wafer thickness will make it necessary to passivate the back surface. It simply states the principle and formation process of aluminum back surface field, and studies the evenness of back surface field because it is necessary for high efficiency solar cell. Screen-printing and rapid thermal annealing were used to make aluminum back surface field to gain low recombination on the backside of solar cells. In this experiment, we analyze Al-BSF formed by taking different times and temperatures in which the temperature varied in the range between 620°C and 940 °C step 80°C and the time varied from 60 seconds to 180 seconds with a step of 30 seconds. Minority carrier lifetime with the back surface field was measured by microwave photoconductive decay (μ-PCD) device, analyze and get the optimal parameters of forming Al-BSF and further improve conversion efficiency of silicon solar cell.

  1. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra

    SciTech Connect

    Junping Chen; Sucoff, E.I.; Stadelmann, E.J. )

    1991-06-01

    Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipid partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.

  2. Engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle: An update

    NASA Astrophysics Data System (ADS)

    Gregg, Dane W.; Hall, Susan E.

    1995-04-01

    Most emerging unmanned undersea vehicle (UUV) missions require significantly longer range and endurance than is achievable with existing battery technology. The Aluminum-Oxygen (Al-O2) semi-cell is a candidate technology capable of providing a significant improvement in endurance compared to the silver-zinc battery technology currently used in UUVs and compares favorably to other proposed UUV power systems not only in performance, but also in safety and logistics. An Al-O2 semi-cell system is under development by Loral Defense Systems-Akron (Loral) for the ARPA/Navy 44 in. diameter UUV test vehicle. The power plant consists of a cell stack, gas management, oxygen storage, electrolyte management, coolant and controller subsystems, designed to replace the existing silver-zinc battery and meet existing weight, volume, electrical and thermal requirements, therefore minimizing modifications to the UUV. A detailed system design is complete. A component and material endurance test to evaluate compatibility and reliability of various material arid components is complete. Sub scale (Short stack) system testing is completed. A full-scale demonstration unit is now under construction in the second half of 1995. The full scale demonstration test will simulate environmental conditions of the operational system. This paper summarizes the results of the extensive short stack and endurance test programs, describes the plan for full-scale testing, and concludes with a brief discussions of future directions for this technology. This program is sponsored by ARPA Maritime Systems Technology Office under NASA contract NAS3-26715.

  3. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA

    SciTech Connect

    Hu, Haiyan; Lin, Hui; Zheng, Wang; Feng, Xinbin; Liang, Liyuan; Elias, Dwayne A; Gu, Baohua

    2013-01-01

    Both reduction and surface adsorption of mercuric mercury [Hg(II)] are found to occur simultaneously on G. sulfurreducens PCA cells under dark, anaerobic conditions. Reduction of Hg(II) to elemental Hg(0) initially follows a pseudo-first order kinetics with a half-life of < 2 h in the presence of 50 nM Hg(II) and 1011 cells L-1 in a phosphate buffer (pH 7.4). Multiple gene deletions of the outer membrane cytochromes in this organism resulted in decrease in reduction rate from ~ 0.3 to 0.05 h-1, and reduction was nearly absent with heat-killed cells or in the cell filtrate. Adsorption of Hg(II) by cells is found to compete with, and thus inhibit, Hg(II) reduction. Depending on the Hg to cell ratio, maximum Hg(II) reduction was observed at about 5 10-19 mol Hg cell-1, but reduction terminated at a low Hg to cell ratio (< 10-20 mol Hg cell-1). This inhibitory effect is attributed to strong binding between Hg(II) and the thiol ( SH) functional groups on cells and validated by experiments in which the sorbed Hg(II) was readily exchanged by thiols (e.g., glutathione) but not by carboxylic ligands such as ethylenediaminetetraacetate (EDTA). We suggest that coupled Hg(II)-cell interactions, i.e., reduction and surface binding, could be important in controlling Hg species transformation and bioavailability and should therefore be considered in microbial Hg(II) uptake and methylation studies.

  4. Methanol-Resistant Oxygen-Reduction Catalysts for Direct Methanol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Shukla, A. K.; Raman, R. K.

    2003-08-01

    Methanol oxidation in the cathode compartment of the fuel cell, which occurs during the oxygen-reduction reaction on Pt-based cathodes, constitutes a significant performance loss in the direct methanol fuel cells. Over the past decade, four types of methanol-resistant oxygen-reduction catalysts have been developed to circumvent this problem. Among these, transition-metal chalcogenides, and in particular RuSe, have shown effective selectivity to oxygen-reduction reaction in the presence of methanol. These catalysts not only can enhance the performance of the conventional direct methanol fuel cells but also could provide a route to develop mixed-reactants direct methanol fuel cells, which could be highly cost-effective in comparison with the conventional direct methanol fuel cells. This article is a brief update on the preparation, characterization, and implications of methanol-resistant oxygen-reduction catalysts.

  5. An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte

    NASA Astrophysics Data System (ADS)

    Gifford, P. R.; Palmisano, J. B.

    1988-03-01

    A novel Al/Cl2 rechargeable electrochemical cell is decribed which employs an Al negative and graphtie positive electrode in a room temperature molten salt electrolyte of 1.5:1 AlCl3:1,2-dimethyl-3-propylimidazolium chloride. The graphite positive electrode functions as a reversible intercalation electrode for chlorine, eliminating the need for separate anolyte and catholyte compartments. The cell possesses an average discharge voltage of 1.7V for currents of 1-10 mA/g graphite, and over 150 cycles at 100 percent depth-of-discharge for positive electrode limited cells have been demonstrated. Improvements in the chlorine storage capacity of the positive electrode are needed to obtain satisfactory energy densities.

  6. Air sparging for prevention of antibody disulfide bond reduction in harvested CHO cell culture fluid.

    PubMed

    Mun, Melissa; Khoo, Stefanie; Do Minh, Aline; Dvornicky, James; Trexler-Schmidt, Melody; Kao, Yung-Hsiang; Laird, Michael W

    2015-04-01

    During the scale-up of several Chinese Hamster Ovary (CHO) cell monoclonal antibody production processes, significant reduction of the antibody interchain disulfide bonds was observed. The reduction was correlated with excessive mechanical cell shear during the harvest operations. These antibody reduction events resulted in failed product specifications and the subsequent loss of the drug substance batches. Several methods were recently developed to prevent antibody reduction, including modifying the cell culture media, using pre- and post-harvest chemical additions to the cell culture fluid (CCF), lowering the pH, and air sparging of the harvested CCF (HCCF). The work described in this paper further explores the option of HCCF air sparging for preventing antibody reduction. Here, a small-scale model was developed using a 3-L bioreactor to mimic the conditions of a manufacturing-scale harvest vessel and was subsequently employed to evaluate several air sparging strategies. In addition, these studies enabled further understanding of the relationships between cell lysis levels, oxygen consumption, and antibody reduction. Finally, the effectiveness of air sparging for several CHO cell lines and the potential impact on product quality were assessed to demonstrate that air sparging is an effective method in preventing antibody reduction.

  7. Closed-cell foams produced from sputter-deposited aluminum. [experiments on earth and in space environment

    NASA Technical Reports Server (NTRS)

    Patten, J. W.; Greenwell, E. N.

    1977-01-01

    Sputter deposited aluminum containing argon was melted to produce foam, both in the earth's gravitational field and in a zero-gravity space environment. Experiments leading to trapping of up to 270 ppm argon sputtering gas in pure aluminum during high-rate dc triode sputter deposition are discussed. Conduct of the melting experiments and design of the furnace used are described. Metallography; an analysis of bubble size, distribution, and morphology; and a preliminary description of the kinetics are also presented.

  8. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells.

    PubMed

    Yamamoto, Yoko; Kobayashi, Yukiko; Devi, S Rama; Rikiishi, Sanae; Matsumoto, Hideaki

    2002-01-01

    Potential mechanisms of Al toxicity measured as Al-induced inhibition of growth in cultured tobacco cells (Nicotiana tabacum, nonchlorophyllic cell line SL) and pea (Pisum sativum) roots were investigated. Compared with the control treatment without Al, the accumulation of Al in tobacco cells caused instantaneously the repression of mitochondrial activities [monitored by the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and the uptake of Rhodamine 123] and, after a lag of about 12 h, triggered reactive oxygen species (ROS) production, respiration inhibition, ATP depletion, and the loss of growth capability almost simultaneously. The presence of an antioxidant, butylated hydroxyanisol, during Al treatment of SL cells prevented not only ROS production but also ATP depletion and the loss of growth capability, suggesting that the Al-triggered ROS production seems to be a cause of ATP depletion and the loss of growth capability. Furthermore, these three late events were similarly repressed in an Al-tolerant cell line (ALT301) isolated from SL cells, suggesting that the acquisition of antioxidant functions mimicking butylated hydroxyanisol can be a mechanism of Al tolerance. In the pea root, Al also triggered ROS production, respiration inhibition, and ATP depletion, which were all correlated with inhibition of root elongation. Taken together, we conclude that Al affects mitochondrial functions, which leads to ROS production, probably the key critical event in Al inhibition of cell growth.

  9. Increasing the Thermal Stability of Aluminum Titanate for Solid Oxide Fuel Cell Anodes

    NASA Technical Reports Server (NTRS)

    Bender, Jeffrey B.

    2004-01-01

    Solid-oxide fuel cells (SOFCs) show great potential as a power source for future space exploration missions. Because SOFCs operate at temperatures significantly higher than other types of fuel cells, they can reach overall efficiencies of up to 60% and are able to utilize fossil fuels. The SOFC team at GRC is leading NASA's effort to develop a solid oxide fuel cell with a power density high enough to be used for aeronautics and space applications, which is approximately ten times higher than ground transport targets. layers must be able to operate as a single unit at temperatures upwards of 900'C for at least 40,000 hours with less than ten percent degradation. One key challenge to meeting this goal arises from the thermal expansion mismatch between different layers. The amount a material expands upon heating is expressed by its coefficient of thermal expansion (CTE). If the CTEs of adjacent layers are substantially different, thermal stresses will arise during the cell's fabrication and operation. These stresses, accompanied by thermal cycling, can fracture and destroy the cell. While this is not an issue at the electrolyte-cathode interface, it is a major concern at the electrolyte-anode interface, especially in high power anode-supported systems. electrolyte are nearly identical. Conventionally, this has been accomplished by varying the composition of the anode to match the CTE of the yittria-stabilized zirconia (YSZ) electrolyte (approx.10.8x10(exp -6/degC). A Ni/YSZ composite is typically used as a base material for the anode due to its excellent electrochemical properties, but its CTE is about 13.4x10(exp -6/degC). One potential way to lower the CTE of this anode is to add a small percentage of polycrystalline Al2TiO5, with a CTE of 0.68x10(exp -6/degC, to the Ni/YSZ base. However, Al2TiO5 is thermally unstable and loses its effectiveness as it decomposes to Al2O3 and TiO2 between 750 C and 1280 C. be used as additives to increase the thermal stability of Al2

  10. Aluminum-air power cell: The M3-3 experiment

    NASA Astrophysics Data System (ADS)

    Maimoni, A.; Muelder, S. A.

    1985-03-01

    The M3-3 experiment was a test of the M3 cell coupled to a crystallizer and hydrocyclone for separation of coarse solids before return of electrolyte to the cell. It was essentially a repeat of the M3-2 experiment, but with increased emphasis to understand the sources of experimental error and the evolution of the particle size distributions during the course of the experiment. A new hydrocyclone, scaled to operation with 1 to 5 cells, was tested in conjunction with peristaltic pumps. The test ran at 14 A for 101 min, followed by 122 A for 269 min at 60 C. The main operational problem was failure of the rubber tubing in the peristaltic pump feeding the hydrocyclone. Primary results include reasonable agreement in the material balances and with the calculated crystallization rates, the 50% cut point of the new hydrocyclone at about 8 (MU)m, and the aluminate concentration decreased from 2.4 M to 1.4 M in 21 h at 30 C in a subsequent batch crystallization experiment. The particle size distributions do not change significantly on aging de-ionized water.

  11. Materials Science Constraints on the Development of Aluminium Reduction Cells

    NASA Astrophysics Data System (ADS)

    Metson, James; McIntosh, Grant; Etzion, Ronny

    The Hall-Heroult process for the production of Aluminium metal is some 125 years old. The process is energy constrained by the need to shed around half of the (electrical) energy supplied to the cell as waste heat. The molten cryolite electrolyte is sufficiently aggressive that the only reliable method of protecting the side wall of the cell is to maintain a frozen layer of electrolyte at the hot face of the sidewall. Thus the lack of a cryolite resistant sidewall is but one of several materials science constraints which still limit the energy efficiency of the process. An inert anode and non-consumable cathode are also significant challenges which limit cell life and energy efficiency. Thus there are major challenges in both materials development and new conceptual cell designs to improve the efficiency of this process.

  12. Theoretical study on the effects of nitrogen and methyl substitution on tris-(8-hydroxyquinoline) aluminum: an efficient exciton blocking layer for organic photovoltaic cells.

    PubMed

    Lee, Hyunbok; Jeong, Kwangho; Cho, Sang Wan; Yi, Yeonjin

    2012-07-21

    We studied the effect of nitrogen and methyl substitution on tris-(8-hydroxyquinoline) aluminum (Alq(3)) with density functional theory, which has been adopted as an exciton blocking layer (EBL) in organic photovoltaic cells (OPVCs). The substitution of electron withdrawing nitrogen on the phenoxide moiety of Alq(3) lowers the highest molecular orbital (HOMO) level, thus photogenerated excitons can be effectively blocked in OPVC. Additional substitution of methyl on the pyridine moiety makes that Alq(3) has a smaller electron reorganization energy, which results in higher electron mobility with keeping HOMO level almost intact. Therefore, nitrogen and methyl simultaneous substitution shows high performance both in exciton blocking and electron mobility. This is the origins of the short circuit current enhancement in OPVC with 4-hydroxy-8-methyl-1,5-naphthyridine aluminum chelate (Alq(3) with the substitution of both nitrogen and methyl group) EBL.

  13. A "turn-on" fluorescent chemosensor for aluminum ion and cell imaging application

    NASA Astrophysics Data System (ADS)

    Guo, Ailing; Zhu, Ruitao; Ren, Yuehong; Dong, Jinlong; Feng, Liheng

    2016-01-01

    A simple and efficient fluorescent chemosensor for Al3 + is reported in the paper. The chemosensor is obtained by dehydration reaction of 2-hydroxy-1-naphthaldehyde and 2-aminophenol. The chemosensor has high selectivity and sensitivity for Al3 + and displays fluorescence "off-on" switch signal. The detection limit of the chemosensor for Al3 + can reach 1.0 × 10- 7 M in DMSO/H2O (1:9, v/v) solution. The mass spectra and Job's plot analysis confirm the 1:1 stoichiometry between chemosensor and Al3 +. Potential utilization of the probe as an intracellular sensor of Al3 + in human cancer (HiSa) cells is also examined by confocal fluorescence microscopy.

  14. Whole cells in enantioselective reduction of benzyl acetoacetate

    PubMed Central

    Ribeiro, Joyce Benzaquem; Ramos, Aline de Souza; Lopes, Raquel de Oliveira; da Silva, Gabriela Veloso Vieira; de Souza, Rodrigo Octavio Mendonça Alves

    2014-01-01

    The β-ketoester benzyl acetoacetate was enantioselectively reduced to benzyl (S)-3-hydroxybutanoate by seven microorganism species. The best result using free cells was obtained with the yeast Hansenula sp., which furnished 97% ee and 85% of conversion within 24 h. After immobilization in calcium alginate spheres, K.marxianus showed to be more stable after 2 cycles of reaction. PMID:25477927

  15. Scaleable Clean Aluminum Melting Systems

    SciTech Connect

    Han, Q.; Das, S.K.

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  16. Aluminum Carbothermic Technology

    SciTech Connect

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major

  17. Developmental characteristics and aluminum resistance of root border cells in rice seedlings.

    PubMed

    Cai, MiaoZhen; Zhang, ShuNa; Xing, ChengHua; Wang, FangMei; Ning, Wang; Lei, Zhu

    2011-05-01

    The developmental characteristics of root border cells (RBCs) and their role in protection of root apices of rice seedling from Al toxicity were evaluated in two rice (Oryza sativa L.) cultivars differing in Al tolerance. Root elongation and RBCs viability were used as indicators for Al effects. The formation of RBCs and the emergence of the root tip occurred almost simultaneously. Treatment of the root with Al inhibited root elongation and increased Al accumulation in the root tips. Physical removal of RBCs from root tips resulted in a more severe inhibition of root elongation and a higher Al accumulation in the root tips. These effects were more pronounced in the Al-sensitive rice cultivar (II You 6216) than that in the Al-tolerant rice cultivar (II You 838). The relative viability of attached and detached RBCs decreased with increasing Al concentrations. Al also induced a thicker mucilage layer surrounding attached RBCs of both cultivars, and detached RBCs did not. Maintaining the abundant live RBCs encapsulated root tip and enhancing their mucilage secretion, appear to be important in alleviating Al toxicity and in allowing exclusion of Al from the rice root apex.

  18. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    PubMed Central

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  19. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates.

    PubMed

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-20

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation.

  20. DNA damage in the kidney tissue cells of the fish Rhamdia quelen after trophic contamination with aluminum sulfate

    PubMed Central

    Klingelfus, Tatiane; da Costa, Paula Moiana; Scherer, Marcos; Cestari, Marta Margarete

    2015-01-01

    Abstract Even though aluminum is the third most common element present in the earth's crust, information regarding its toxicity remains scarce. It is known that in certain cases, aluminum is neurotoxic, but its effect in other tissues is unknown. The aim of this work was to analyze the genotoxic potential of aluminum sulfate in kidney tissue of the fish Rhamdia quelen after trophic contamination for 60 days. Sixty four fish were subdivided into the following groups: negative control, 5 mg, 50 mg and 500 mg of aluminum sulfate per kg of fish. Samples of the posterior kidney were taken and prepared to obtain mitotic metaphase, as well as the comet assay. The three types of chromosomal abnormalities (CA) found were categorized as chromatid breaks, decondensation of telomeric region, and early separation of sister chromatids. The tests for CA showed that the 5 mg/kg and 50 mg/kg doses of aluminum sulfate had genotoxic potential. Under these treatments, early separation of the sister chromatids was observed more frequently and decondensation of the telomeric region tended to increase in frequency. We suggest that structural changes in the proteins involved in DNA compaction may have led to the decondensation of the telomeric region, making the DNA susceptible to breaks. Moreover, early separation of the sister chromatids may have occurred due to changes in the mobility of chromosomes or proteins that keep the sister chromatids together. The comet assay confirmed the genotoxicity of aluminum sulfate in the kidney tissue of Rhamdia quelen at the three doses of exposure. PMID:26692157

  1. Nanomolar aluminum induces expression of the inflammatory systemic biomarker C-reactive protein (CRP) in human brain microvessel endothelial cells (hBMECs).

    PubMed

    Alexandrov, Peter N; Kruck, Theodore P A; Lukiw, Walter J

    2015-11-01

    C-reactive protein (CRP; also known as pentraxin 1, PTX1), a 224 amino acid soluble serum protein organized into a novel pentameric ring-shaped structure, is a highly sensitive pathogenic biomarker for systemic inflammation. High CRP levels are found in practically every known inflammatory state, and elevated CRP levels indicate an increased risk for several common age-related human degenerative disorders, including cardiovascular disease, cancer, diabetes, and Alzheimer's disease (AD). While the majority of CRP is synthesized in the liver for secretion into the systemic circulation, it has recently been discovered that an appreciable amount of CRP is synthesized in highly specialized endothelial cells that line the vasculature of the brain and central nervous system (CNS). These highly specialized cells, the major cell type lining the human CNS vasculature, are known as human brain microvessel endothelial cells (hBMECs). In the current pilot study we examined (i) CRP levels in human serum obtained from AD and age-matched control patients; and (ii) analyzed the effects of nanomolar aluminum sulfate on CRP expression in primary hBMECs. The three major findings in this short communication are: (i) that CRP is up-regulated in AD serum; (ii) that CRP serum levels increased in parallel with AD progression; and (iii) for the first time show that nanomolar aluminum potently up-regulates CRP expression in hBMECs to many times its 'basal abundance'. The results suggest that aluminum-induced CRP may in part contribute to a pathophysiological state associated with a chronic systemic inflammation of the human vasculature.

  2. Reduction of prion infectivity in packed red blood cells

    SciTech Connect

    Morales, Rodrigo; Buytaert-Hoefen, Kimberley A.; Gonzalez-Romero, Dennisse; Castilla, Joaquin; Hansen, Eric T.; Hlavinka, Dennis; Goodrich, Raymond P.; Soto, Claudio

    2008-12-12

    The link between a new variant form of Creutzfeldt-Jakob disease (vCJD) and the consumption of prion contaminated cattle meat as well as recent findings showing that vCJD can be transmitted by blood transfusion have raised public health concerns. Currently, a reliable test to identify prions in blood samples is not available. The purpose of this study was to evaluate the possibility to remove scrapie prion protein (PrP{sup Sc}) and infectivity from red blood cell (RBC) suspensions by a simple washing procedure using a cell separation and washing device. The extent of prion removal was assessed by Western blot, PMCA and infectivity bioassays. Our results revealed a substantial removal of infectious prions ({>=}3 logs of infectivity) by all techniques used. These data suggest that a significant amount of infectivity present in RBC preparations can be removed by a simple washing procedure. This technology may lead to increased safety of blood products and reduce the risk of further propagation of prion diseases.

  3. Study of integration issues to realize the market potential of OTEC energy in the aluminum industry. Final report

    SciTech Connect

    Jones, Jr., M. S.; Thiagarajan, V.; Sathyanarayana, K.; Markel, A. L.; Snyder, III, J. E.; Sprouse, A. M.; Leshaw, D.

    1980-09-01

    The various integration issues are studied which must be considered to realize the market potential for the use of OTEC by the aluminum industry. The chloride reduction process has been identified as an attractive candidate for use with OTEC systems, and drained-cathode Hall cells and two alternative chloride reduction processes are considered. OTEC power system and plantships for the different processes are described. Aluminum industry characteristics important for OTEC considerations are given, including economic models and case history analyses. Appended are supporting cost estimates and energy bridge concepts for getting OTEC energy to shore. (LEW)

  4. Al adjuvants can be tracked in viable cells by lumogallion staining.

    PubMed

    Mile, Irene; Svensson, Andreas; Darabi, Anna; Mold, Matthew; Siesjö, Peter; Eriksson, Håkan

    2015-07-01

    The mechanism behind the adjuvant effect of aluminum salts is poorly understood notwithstanding that aluminum salts have been used for decades in clinical vaccines. In an aqueous environment and at a nearly neutral pH, the aluminum salts form particulate aggregates, and one plausible explanation of the lack of information regarding the mechanisms could be the absence of an efficient method of tracking phagocytosed aluminum adjuvants and thereby the intracellular location of the adjuvant. In this paper, we want to report upon the use of lumogallion staining enabling the detection of phagocytosed aluminum adjuvants inside viable cells. Including micromolar concentrations of lumogallion in the culture medium resulted in a strong fluorescence signal from cells that had phagocytosed the aluminum adjuvant. The fluorescence appeared as spots in the cytoplasm and by confocal microscopy and co-staining with probes presenting fluorescence in the far-red region of the spectrum, aluminum adjuvants could to a certain extent be identified as localized in acidic vesicles, i.e., lysosomes. Staining and detection of intracellular aluminum adjuvants was achieved not only by diffusion of lumogallion into the cytoplasm, thereby highlighting the presence of the adjuvant, but also by pre-staining the aluminum adjuvant prior to incubation with cells. Pre-staining of aluminum adjuvants resulted in bright fluorescent particulate aggregates that remained fluorescent for weeks and with only a minor reduction of fluorescence upon extensive washing or incubation with cells. Both aluminum oxyhydroxide and aluminum hydroxyphosphate, two of the most commonly used aluminum adjuvants in clinical vaccines, could be pre-stained with lumogallion and were easily tracked intracellularly after incubation with phagocytosing cells. Staining of viable cells using lumogallion will be a useful method in investigations of the mechanisms behind aluminum adjuvants' differentiation of antigen-presenting cells

  5. Coupled mercury-cell sorption, reduction, and oxidation on methylmercury production by Geobacter sulfurreducens PCA.

    PubMed

    Lin, Hui; Morrell-Falvey, Jennifer L; Rao, Balaji; Liang, Liyuan; Gu, Baohua

    2014-10-21

    G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62). These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell-SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10(-19) to 25 × 10(-19) moles-Hg/cell (equivalent to Hg/cell-SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn(2+) leads to increased Hg reduction and decreased methylation. These results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.

  6. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Fox, P. L.

    1998-01-01

    Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.

  7. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  8. Coupled Mercury–Cell Sorption, Reduction, and Oxidation on Methylmercury Production by Geobacter sulfurreducens PCA

    DOE PAGES

    Lin, Hui; Morrell-Falvey, Jennifer L.; Rao, Balaji; Liang, Liyuan; Gu, Baohua

    2014-09-30

    G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), in this paper we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62).more » These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell–SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10–19 to 25 × 10–19 moles-Hg/cell (equivalent to Hg/cell–SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn2+ leads to increased Hg reduction and decreased methylation. Finally, these results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.« less

  9. Coupled Mercury–Cell Sorption, Reduction, and Oxidation on Methylmercury Production by Geobacter sulfurreducens PCA

    SciTech Connect

    Lin, Hui; Morrell-Falvey, Jennifer L.; Rao, Balaji; Liang, Liyuan; Gu, Baohua

    2014-09-30

    G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), in this paper we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62). These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell–SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10–19 to 25 × 10–19 moles-Hg/cell (equivalent to Hg/cell–SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn2+ leads to increased Hg reduction and decreased methylation. Finally, these results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.

  10. Influence of sorption processes on aluminum determinations in acidic waters

    SciTech Connect

    Goenaga, X.; Bryant, R.; Williams, D.J.A.

    1987-11-15

    Progressive removal of particles from freshwater samples by filtration using various pore diameter polycarbonate capillary membranes (0.4, 0.1, 0.05, and 0.015 ..mu..m) caused a reduction in the levels of labile aluminum (0-23%), as detected with pyrocatechol violet (PCV), in the filtrates. Removal of aluminum adsorbed onto suspended solids and aluminum losses through adsorption onto the membranes are thought to be responsible for these observations. Losses of aluminum during filtration of freshwater samples were evaluated by filtration of particle-free synthetic solutions and found to be <10%. Experiments with a sample of Na-illite showed that aluminum adsorbed thereon is partially labile and detectable with PCV in synthetic and natural solutions. It appears that for freshwater samples with high solid surface to aluminum ratios, a significant fraction of the experimentally determined monomeric or inorganic monomeric aluminum may actually be adsorbed aluminum.

  11. Interaction of aluminum projectiles with quartz sand in impact experiments: Formation of khatyrkite (CuAl2) and reduction of SiO2 to Si

    NASA Astrophysics Data System (ADS)

    Hamann, Christopher; Stöffler, Dieter; Reimold, Wolf Uwe

    2016-11-01

    We analyzed the interaction of spherical, 6.36-mm-diameter, Cu-bearing aluminum projectiles with quartz sand targets in hypervelocity impact experiments performed at NASA Ames Vertical Gun Range. Impact velocities and inferred peak shock pressures varied between 5.9 and 6.5 km/s and ∼41 and 48 GPa, respectively. Shocked particles ("impact melt particles") coated with thin crusts of molten projectile material were recovered from the floors of the ca. 33-cm-diameter craters and the respective ejecta blankets. Through petrographic and chemical (optical microscopy, FE-EMPA, SEM-EDX, and XRF) analysis we show that these particles have a layered structure manifested in distinct layers of decreasing shock metamorphism. These can be characterized by the following physical and chemical reactions and alteration products: (i) complete melting and subsequent recrystallization of the projectile, forming a distinct crystallization texture in the fused metal crust; (ii) projectile-target mixing, involving a redox reaction between Cu-bearing Al alloy und SiO2, leading to formation of khatyrkite (CuAl2), Al2O3 melt, euhedral silicon crystals, and spherical droplets of silicon; (iii) melting of quartz to lechatelierite and formation of planar deformation features in relic quartz grains; and (iv) shock lithification of quartz grains with fracturing of grains, grain-boundary melting, planar deformation features, and complete loss of porosity. To our knowledge, this is the first report of khatyrkite formed experimentally in hypervelocity impact experiments. These results have implications for the understanding of a similar redox reaction between Al-Cu metal and siliceous impact melt recently postulated for the Khatyrka CV3 carbonaceous chondrite. Moreover, these results bear on the processes that lead to layers of regolith on the surfaces of planetary bodies without atmospheres, such as asteroids in the main belt (e.g., 4 Vesta), and on the Moon. Specifically, impacts of mm

  12. Study on Fuel Cell Network System Considering Reduction in Fuel Cell Capacity Using Load Leveling and Heat Release Loss

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Kudo, Kazuhiko

    Reduction in fuel cell capacity linked to a fuel cell network system is considered. When the power demand of the whole network is small, some of the electric power generated by the fuel cell is supplied to a water electrolysis device, and hydrogen and oxygen gases are generated. Both gases are compressed with each compressor and they are stored in cylinders. When the electric demand of the whole network is large, both gases are supplied to the network, and fuel cells are operated by these hydrogen and oxygen gases. Furthermore, an optimization plan is made to minimize the quantity of heat release of the hot water piping that connects each building. Such an energy network is analyzed assuming connection of individual houses, a hospital, a hotel, a convenience store, an office building, and a factory. Consequently, compared with the conventional system, a reduction of 46% of fuel cell capacity is expected.

  13. In situ codoping of a CuO absorber layer with aluminum and titanium: the impact of codoping and interface engineering on the performance of a CuO-based heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Masudy-Panah, Saeid; Radhakrishnan, K.; Ru, Tan Hui; Yi, Ren; Wong, Ten It; Dalapati, Goutam Kumar

    2016-09-01

    Aluminum-doped cupric oxide (CuO:Al) was prepared via an out-diffusion process of Al from an Al-coated substrate into the deposited CuO thin film upon thermal treatment. The effect of the annealing temperature on the structural and optical properties of CuO:Al was investigated in detail. The influence of Al incorporation on the photovoltaic properties was then investigated by preparing a p-CuO:Al/n-Si heterojunction solar cell. A significant improvement in the performance of the solar cell was achieved by controlling the out-diffusion of Al. A novel in situ method to co-dope CuO with Al and titanium (Ti) has been proposed to demonstrate CuO-based solar cells with the front surface field (FSF) design. The FSF design was created by depositing a CuO:Al layer followed by a Ti-doped CuO (CuO:Ti) layer. This is the first successful experimental demonstration of the codoping of a CuO thin film and CuO thin film solar cells with the FSF design. The open circuit voltage (V oc), short circuit current density (J sc) and fill factor (FF) of the fabricated solar cells were significantly higher for the FSF device compared to devices without FSF. The FF of this device improved by 68% through the FSF design and a record efficiency ɳ of 2% was achieved. The improvement of the solar cell properties is mainly attributed to the reduction of surface recombination, which influences the charge carrier collection.

  14. Reduction of radiation-induced cell cycle blocks by caffeine does not necessarily lead to increased cell killing

    SciTech Connect

    Musk, S.R. )

    1991-03-01

    The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.

  15. Transient Proliferation of Proanthocyanidin-Accumulating Cells on the Epidermal Apex Contributes to Highly Aluminum-Resistant Root Elongation in Camphor Tree1[W

    PubMed Central

    Osawa, Hiroki; Endo, Izuki; Hara, Yukari; Matsushima, Yuki; Tange, Takeshi

    2011-01-01

    Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree. PMID:21045123

  16. Aluminum-based metal-air batteries

    DOEpatents

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  17. Inert anodes for aluminum smelting

    SciTech Connect

    Weyand, J.D.; Ray, S.P.; Baker, F.W.; DeYoung, D.H.; Tarcy, G.P.

    1986-02-01

    The use of nonconsumable or inert anodes for replacement of consumable carbon anodes in Hall electrolysis cells for the production of aluminum has been a technical and commercial goal of the aluminum industry for many decades. This report summarizes the technical success realized in the development of an inert anode that can be used to produce aluminum of acceptable metal purity in small scale Hall electrolysis cells. The inert anode material developed consists of a cermet composition containing the phases: copper, nickel ferrite and nickel oxide. This anode material has an electrical conductivity comparable to anode carbon used in Hall cells, i.e., 150 ohm {sup {minus}1}cm{sup {minus}1}. Metal purity of 99.5 percent aluminum has been produced using this material. The copper metal alloy present in the anode is not removed by anodic dissolution as does occur with cermet anodes containing a metallic nickel alloy. Solubility of the oxide phases in the cryolite electrolyte is reduced by: (1) saturated concentration of alumina, (2) high nickel oxide content in the NiO-NiFe{sub 2}O{sub 4} composition, (3) lowest possible cell operating temperature, (4) additions of alkaline or alkaline earth fluorides to the bath to reduce solubilities of the anode components, and (5) avoiding bath contaminants such as silica. Dissolution rate measurements indicate first-order kinetics and that the rate limiting step for dissolution is mass transport controlled. 105 refs., 234 figs., 73 tabs.

  18. [Atomic layer deposited aluminum oxide on SnO2 particles and its impact on dye-sensitized solar cells performance].

    PubMed

    Dong, Wan; Meng, Tao; Chen, Qiang

    2014-01-01

    An ultra-thin deposition of alumina covered the SnO2 photoelectrode surface by atomic layer deposition for dye sensitized cell. Trimethyl aluminum (TMA) and water were used as precursor. The influence of alumina on dye-sensitized cells photoelectric conversion efficiency was discussed. The results showed that atomic layer deposition rate per cycle was about 0.12 nm by use of elliptic polarization apparatus (SE). The SnO2 crystal structure and surface morphology were not changed by deposited alumina as observed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The dye adsorption capacity increased with the deposition alumina cycles as found by ultraviolet-visible spectra (UV-Vis). Finally, the mechanism of the effect of deposited alumina using atomic layer deposition was discussed. PMID:24783555

  19. Semi-rechargeable Aluminum-Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

    NASA Astrophysics Data System (ADS)

    Mori, Ryohei

    2016-07-01

    To develop a semi-rechargeable aluminum-air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation-reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum-air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

  20. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    SciTech Connect

    Pike, J; Jeffrey Gillam, J

    2008-12-17

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  1. A novel aqueous dual-channel aluminum-hydrogen peroxide battery

    SciTech Connect

    Marsh, C. . Electric Propulsion); Licht, S. . Dept. of Chemistry)

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarized losses of 0.9 mV cm[sup 2]/mA, and power densities of 1 W/cm[sup 2]. Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H[sub 2]O[sub 2] + 2 OH[sup [minus

  2. Reduction of cytokine release of blood and bronchoalveolar mononuclear cells by ambroxol.

    PubMed

    Pfeifer, S; Zissel, G; Kienast, K; Müller-Quernheim, J

    1997-03-24

    Ambroxol is a mucolytic agent frequently used in the treatment of chronic bronchitis. It has been reported, following clinical and in-vitro studies, that ambroxol exhibits an anti-inflammatory action. This capability was investigated by activating bronchoalveolar lavage cells and peripheral blood mononuclear cells in-vitro to elicit the release of tumor necrosis factor alpha, interleukin-2 and interferon gamma, whilst simultaneously exposing them to varying pharmacological concentrations of ambroxol (10, 1, and 0.1 microM). After 24 h it was observed that the isolated tissue-culture supernatants showed a dose-dependent reduction in the concentration of the tested cytokines; 10 microM (12 to 37% reduction) and 1 microM to (6 to 27% reduction). At 0.1 microM, a significant reduction could only be observed in the release of interleukin-2 by bronchoalveolar lavage cells. These results demonstrate, that ambroxol exhibits anti-inflammatory actions in concentrations achievable in vivo.

  3. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    SciTech Connect

    Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.; Fredrickson, Jim K.; Shi, Liang; Lu, H. Peter

    2013-01-22

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.

  4. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    PubMed Central

    Wang, Yuanmin; Sevinc, Papatya C.; Balchik, Sara M.; Fridrickson, Jim; Shi, Liang; Lu, H. Peter

    2013-01-01

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant ΔmtrC or mutant ΔomcA > double mutant (ΔomcA-ΔmtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes. PMID:23249294

  5. Aluminum air battery for electric vehicle propulsion

    SciTech Connect

    Cooper, J.F.; Homsy, R.V.; Landrum, J.H.

    1980-01-01

    The status of aluminum-air battery development and the use of aluminum as a recyclable electrochemical fuel are discussed. The battery combines high specific energy (above 300 Wh/kg) and specific power (150 to 200 W/kg) with the capability of rapid refueling by addition of reactants. The objective is a commercially-feasible, general-purpose electric vehicle. Progress is reported in the scale-up of aluminum-air single cells to the automotive scale (0.1 m/sup 2/-anodes) and in the development of a hydrargillite crystallizer, which is required to control electrolyte composition. Major technical problems and development strategy are discussed. The total cost and energy required to produce aluminum, and projected consumption by electric vehicles indicates that the aluminum-air powered electric vehicle is potentially competitive with advanced automobiles using synthetic liquid fuels.

  6. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.

    PubMed

    Wu, Xiayuan; Zhu, Xujun; Song, Tianshun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2015-03-01

    A simple acclimatization method for the reduction of hexavalent chromium (Cr(VI)) at a biocathode by first enriching an exoelectrogenic biofilm on a microbial fuel cell (MFC) anode, followed by direct inversion of the anode to function as the biocathode, has been established. This novel method significantly enhanced the Cr(VI) reduction efficiency of the MFC, which was mainly attributed to the higher microbial density and less resistive Cr(III) precipitates on the cathode when compared with a common biocathode acclimatization method (control). The biocathode acclimatization period was shortened by 19days and the Cr(VI) reduction rate was increased by a factor of 2.9. Microbial community analyses of biocathodes acclimatized using different methods further verified the feasibility of this electrode inversion method, indicating similar dominant bacteria species in biofilms, which mainly consist of Gamma-proteobacteria and Bacteria.

  7. PB/PANI-modified electrode used as a novel oxygen reduction cathode in microbial fuel cell.

    PubMed

    Fu, Lei; You, Shi-Jie; Zhang, Guo-Quan; Yang, Feng-Lin; Fang, Xiao-Hong; Gong, Zheng

    2011-01-15

    This study focuses on the preparation of a new type of Prussian Blue/polyaniline (PB/PANI)-modified electrode as oxygen reduction cathode, and its availability in microbial fuel cell (MFC) for biological power generation. The PB/PANI-modified electrode was prepared by electrochemical and chemical methods, both of which exhibited good electrocatalytical reactivity for oxygen reduction in acidic electrolyte. The MFC with PB/PANI-modified cathode aerated by either oxygen or air was shown to yield a maximum power density being the same with that of the MFC with liquid-state ferricyanide cathode, and have an excellent duration as indicated by stable cathode potential for more than eight operating circles. This study suggests a promising potential to utilize this novel electrode as an effective alternative to platinum for oxygen reduction in MFC system without losing sustainability.

  8. BRAF inhibition decreases cellular glucose uptake in melanoma in association with reduction in cell volume

    PubMed Central

    Theodosakis, Nicholas; Held, Matthew A.; Marzuka-Alcala, Alexander; Meeth, Katrina M.; Micevic, Goran; Long, Georgina V.; Scolyer, Richard A.; Stern, David F.; Bosenberg, Marcus W.

    2015-01-01

    BRAF kinase inhibitors have dramatically impacted treatment of BRAFV600E/K-driven metastatic melanoma. Early responses assessed using [18F]fluorodeoxyglucose uptake-positron emission tomography (FDG-PET) have shown dramatic reduction of radiotracer signal within two weeks of treatment. Despite high response rates, relapse occurs in nearly all cases, frequently at sites of treated metastatic disease. It remains unclear whether initial loss of 18FDG uptake is due to tumor cell death or other reasons. Here we provide evidence of melanoma cell volume reduction in a patient cohort treated with BRAF inhibitors. We present data demonstrating that BRAF inhibition reduces melanoma glucose uptake per cell, but that this change is no longer significant following normalization for cell volume changes. We also demonstrate that volume normalization greatly reduces differences in transmembrane glucose transport and hexokinase-mediated phosphorylation. Mechanistic studies suggest that this loss of cell volume is due in large part to decreases in new protein translation as a consequence of vemurafenib treatment. Ultimately, our findings suggest that cell volume regulation constitutes an important physiologic parameter that may significantly contribute to radiographic changes observed in clinic. PMID:25948295

  9. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  10. Laser-induced photodynamic therapy with aluminum phthalocyanine tetrasulfonate as the photosensitizer: Differential phototoxicity in normal and malignant human cells in vitro

    SciTech Connect

    Glassberg, E.; Lewandowski, L.; Lask, G.; Uitto, J. )

    1990-05-01

    Photodynamic therapy (PDT) involves the use of laser or noncoherent light energy with photosensitizing dyes to induce a cytotoxic reaction in the target cells, resulting in cell injury and/or death. In this study, we have examined laser-induced phototoxicity in normal human skin fibroblasts and HT-1080 fibrosarcoma cells incubated with aluminum phthalocyanine tetrasulfonate (AlPcS) in vitro. The culture, laser, and photosensitizer parameters were varied in attempts to establish the conditions for differential cytotoxicity between normal and malignant human fibroblasts. Biochemical assays, as a measure of cytotoxicity, included (3H)thymidine incorporation (an index of DNA replication), (35S)methionine incorporation (a measure of protein synthetic activity), and the MTT assay (an indirect index of mitochondrial activity). In the absence of laser irradiation, AlPcS was non-toxic to both cell lines in concentrations up to 25 micrograms/ml. Laser light alone at 675 nm (the absorption maximum of AlPcS) had no effect on the cells at energy densities up to 16 J/cm2. In the presence of 3 or 10 micrograms/ml of AlPcS, both cell lines demonstrated marked energy-dependent toxicity. If an 8-h or a 24-h efflux period in AlPcS-free medium was allowed to take place prior to laser irradiation, normal fibroblasts were much less sensitive to PDT, whereas fibrosarcoma cells still exhibited a marked degree of toxicity. The results indicate that, under appropriate treatment conditions, AlPcS is capable of preferentially sensitizing a malignant mesenchymal cell line, while sparing its non-malignant normal cell counterpart.

  11. A graphite based STT-RAM cell with reduction in switching current

    NASA Astrophysics Data System (ADS)

    Varghani, Ali; Peiravi, Ali

    2015-10-01

    Spin Transfer Torque Random Access Memory (STT-RAM) is a serious candidate for "universal memory" because of its non-volatility, fast access time, high density, good scalability, high endurance and relatively low power dissipation. However, problems with low write speed and large write current are important existing challenges in STT-RAM design and there is a tradeoff between them and data retention time. In this study, a novel STT-RAM cell structure which uses perfect graphite based Magnetic Tunnel Junction (MTJ) is proposed. First, the cross-section of the structure is selected to be an ellipse of 45 nm and 180 nm dimensions and a six-layer graphite is used as tunnel barrier. By passing a lateral current with a short pulse width (before applying STT current and independent of it) through four middle graphene layers of the tunnel barrier, a 27% reduction in the amplitude of the switching current (for fast switching time of 2 ns) or a 58% reduction in its pulse width is achieved without any reduction in data retention time. Finally, the effect of downscaling of technology on the proposed structure is evaluated. A reduction of 31.6% and 9% in switching current is achieved for 90 and 22 nm cell width respectively by passing sufficient current (100 μA with 0.1 ns pulse width) through the tunnel barrier. Simulations are done using Object Oriented Micro Magnetic Framework (OOMMF).

  12. Reduction in placental growth factor impaired gestational beta-cell proliferation through crosstalk between beta-cells and islet endothelial cells

    PubMed Central

    Xu, Xiaosheng; Shen, Jian

    2016-01-01

    Reduced placental growth factor (PLGF) during pregnancy is known to be a reason for developing preeclampsia (PE) and gestational diabetes mellitus (GDM), but the underlying mechanisms remain unclear. Recently, it has been shown that reduced PLGF may induce GDM through suppressing beta-cell mass growth in a PI3k/Akt signalling-dependent manner. Here, we dissected the interaction between beta-cells and islet endothelial cells in this model. We analysed proliferation of beta-cells and islet endothelial cells at different time points of gestation in mice. We cultured mouse islet endothelial cells (MS1), with or without PLGF. We cultured primary mouse beta-cells in conditioned media from PLGF-treated MS1. We cultured MS1 cells in conditioned media from proliferating beta-cells that were activated with conditioned media from PLGF-treated MS1 cells. We analysed cell proliferation by BrdU incorporation. We analysed cell growth by a MTT assay. We found that during mouse gestation, the increases in cell proliferation occurred earlier in beta-cells than in islet endothelial cells. In vitro, PLGF itself failed to induce proliferation of MS1 cells. However, conditioned media from the PLGF-treated MS1 cells induced beta-cell proliferation, resulting in increases in beta-cell number. Moreover, proliferation of MS1 cells significantly increased when MS1 cells were cultured in conditioned media from proliferating beta-cells activated with conditioned media from PLGF-treated MS1 cells. Thus, our data suggest that gestational PLGF may stimulate islet endothelial cells to release growth factors to promote beta-cell proliferation, and proliferating beta-cells in turn release endothelial cell growth factor to increase proliferation of endothelial cells. PE-associated reduction in PLGF impairs these processes to result in islet growth impairment, and subsequently the onset of GDM. PMID:27725870

  13. Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Deyab, M. A.

    2014-12-01

    The effect of addition of carbon nanotubes (CNTs) on the corrosion resistance of conductive polymer coating (polyaniline) that coated aluminum bipolar plates in acidic environment inside the PEM fuel cell (0.1 M H2SO4) was investigated using electrical conductivity, polarization and electrochemical impedance spectroscopy (EIS) measurements. Scanning electron microscopy (SEM) was used to characterize the coating morphology. The results show that the addition of CNTs to polyaniline coating enhanced the electrical conductivity and the corrosion resistance of polyaniline polymer. The inhibition efficiency of polyaniline polymer increased with increasing CNTs concentration. The best inhibition was generally obtained at 0.8% CNTs concentration in the acidic medium. This was further confirmed by decreasing the oxygen and water permeability and increasing coating adhesion in the presence of CNTs. EIS measurements indicated that the incorporation of CNTs in coating increased both the charge transfer and pore resistances while reducing the double layer capacitance.

  14. The low current domain of the aluminum/sulfur battery

    SciTech Connect

    Licht, S.; Hwang, J.; Light, T.S.; Dillon, R.

    1997-03-01

    A variety of factors including solution-phase modification, aluminum composition, temperature, and anolyte volume, modify anodic behavior in the approach to the low current density domain of the aluminum/sulfur battery. A relatively low level [0.4% Hg(NO{sub 3}){sub 2} by weight in the anolyte] of mercury provides an amalgam film on the aluminum anode which minimizes the parasitic chemical consumption of aluminum anode which aluminum, providing anodic faradaic efficiencies in excess of 80%. Anodic overpotential losses are high for aluminum immersed in mercury-containing electrolytes. However, at lower current densities, their absolute magnitude is several hundred millivolts or smaller and does not substantially impair the cell potential. Aluminum/sulfur battery discharge times up to several hundred hours are demonstrated for 0.2 mA/cm{sup 2} current density cells.

  15. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, Robert K.; Bowman, Kenneth A.; Mazgaj, Robert M.; Cochran, C. Norman

    1983-10-25

    A method for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm.

  16. Process of electrolysis and fractional crystallization for aluminum purification

    DOEpatents

    Dawless, R.K.; Bowman, K.A.; Mazgaj, R.M.; Cochran, C.N.

    1983-10-25

    A method is described for purifying aluminum that contains impurities, the method including the step of introducing such aluminum containing impurities to a charging and melting chamber located in an electrolytic cell of the type having a porous diaphragm permeable by the electrolyte of the cell and impermeable to molten aluminum. The method includes further the steps of supplying impure aluminum from the chamber to the anode area of the cell and electrolytically transferring aluminum from the anode area to the cathode through the diaphragm while leaving impurities in the anode area, thereby purifying the aluminum introduced into the chamber. The method includes the further steps of collecting the purified aluminum at the cathode, and lowering the level of impurities concentrated in the anode area by subjecting molten aluminum and impurities in said chamber to a fractional crystallization treatment wherein eutectic-type impurities crystallize and precipitate out of the aluminum. The eutectic impurities that have crystallized are physically removed from the chamber. The aluminum in the chamber is now suited for further purification as provided in the above step of electrolytically transferring aluminum through the diaphragm. 2 figs.

  17. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    SciTech Connect

    Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E.

    2015-08-14

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.

  18. Reduction of solar cell efficiency by bulk defects across the back-surface-field junction

    NASA Technical Reports Server (NTRS)

    Sah, C. T.; Yamakawa, K. A.; Lutwack, R.

    1982-01-01

    The degradation of solar cell performance due to bulk defects distributed across the back-surface field junction is analyzed in terms of a three-region developed-perimeter model. Families of curves are computed and their physical significance is discussed in detail with reference to three parameters used to characterize the defects: defect area, defect density, and defect surface recombination velocity. A reduction in the open-circuit voltage due to the presence of a defect is expressed as a function of the defect area, density, cell thickness, and defect surface recombination velocity. Numerical examples are presented to illustrate the importance of the particular defect parameters.

  19. Low-temperature charging of lithium-ion cells Part II: Model reduction and application

    NASA Astrophysics Data System (ADS)

    Remmlinger, Jürgen; Tippmann, Simon; Buchholz, Michael; Dietmayer, Klaus

    2014-05-01

    Lithium-ion cells, especially when used in electric vehicles at varying operation conditions, require a sophisticated battery management to ensure an optimal operation regarding operation limits, performance, and maximum lifetime. In some cases, the best trade-off between these conflictive goals can only be reached by considering internal, non-measurable cell characteristics. This article presents a data-driven model-reduction method for a strict electrochemical model. The model describes the charging process of a lithium-ion cell and possibly occurring degradation effects in a large temperature range and is presented in Part I of this contribution. The model-reduction process is explained in detail, and the gained model is compared to the original electrochemical model showing a very high approximation quality. This reduced model offers a very low computation complexity and is therefore suitable for the implementation in a battery management system (BMS). Based on this model, an advanced charging strategy is presented and evaluated for possible reductions in charging times especially at low temperatures.

  20. Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.

    SciTech Connect

    Hudak, Nicholas S.; Huber, Dale L.

    2010-12-01

    Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

  1. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism

    PubMed Central

    Fendt, Sarah-Maria; Bell, Eric L.; Keibler, Mark A.; Davidson, Shawn M.; Wirth, Gregory J.; Fiske, Brian; Mayers, Jared R.; Schwab, Matthias; Bellinger, Gary; Csibi, Alfredo; Patnaik, Akash; Jose Blouin, Marie; Cantley, Lewis C.; Guarente, Leonard; Blenis, John; Pollak, Michael N.; Olumi, Aria F.

    2013-01-01

    Metformin inhibits cancer cell proliferation and epidemiology studies suggest an association with increased survival in cancer patients taking metformin, however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation while increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer. PMID:23687346

  2. Thin-film a-Si:H solar cells processed on aluminum-induced texture (AIT) glass superstrates: prediction of light absorption enhancement.

    PubMed

    Sahraei, Nasim; Peters, Marius; Venkataraj, Selvaraj; Aberle, Armin G; Calnan, Sonya; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger; Stangl, Rolf

    2015-05-10

    Light scattering superstrates are important for thin-film a-Si:H solar cells. In this work, aluminum-induced texture (AIT) glass, covered with nonetched Al-doped ZnO (AZO), is investigated as an alternative to the commonly used planar glass with texture-etched AZO superstrate. Four different AIT glasses with different surface roughnesses and different lateral feature sizes are investigated for their effects on light trapping in a-Si:H solar cells. For comparison, two reference superstrates are investigated as well: planar glass covered with nonetched AZO and planar glass covered with texture-etched AZO. Single-junction a-Si:H solar cells are deposited onto each superstrate, and the scattering properties (haze and angular resolved scattering) as well as the solar cell characteristics (current-voltage and external quantum efficiency) are measured and compared. The results indicate that AIT glass superstrates with nonetched AZO provide similar, or even superior, light trapping than the standard reference superstrate, which is demonstrated by a higher short-circuit current Jsc and a higher external quantum efficiency. Using the trapped light fraction δ, a quantity based on the integrated light scattering at the AZO/a-Si:H interface, we show that Jsc linearly increases with δ in the scattering regime of the samples, regardless of the type of superstrate used. PMID:25967490

  3. Respiratory Disorders in Aluminum Smelter Workers

    PubMed Central

    Søyseth, Vidar

    2014-01-01

    Objectives: Summarizing the knowledge status, including the morphology, possible etiological factors, and clinical expression of aluminum potroom asthma and chronic obstructive pulmonary disease related to aluminum potroom exposure. Methods: A review of the literature from the last two decades as it appears in PubMed. Results: There is substantial evidence for the existence of potroom asthma, although the incidence seems to decline over the last 10 years. Increased mortality from chronic obstructive pulmonary disease and longitudinal decline in forced expiratory volume in the first second of expiration has been shown in aluminum potroom workers. Morphological manifestations in bronchial biopsies and the inflammatory markers NO and eosinophils in airway tissue and blood are consistent with asthma in general. The causative agent(s) is (are) not known. Conclusions: Reduction of exposure and cessation of smoking seem to be the major preventive measures to avoid respiratory disorders in the aluminum industry. PMID:24806727

  4. Characterization of different grades of aluminum anodes for aluminum/air batteries

    NASA Astrophysics Data System (ADS)

    Doche, M. L.; Novel-Cattin, F.; Durand, R.; Rameau, J. J.

    Aluminum/air batteries have received much attention during the last decade because of their possible application in the field of electric vehicle propulsion. Although this system presents good theoretical characteristics, its major problem is the low practical coulombic efficiency of aluminum in strong alkaline media, resulting from its high corrosion rate. Using a grade of high purity aluminum helps to reduce corrosion but increases the material cost. Moreover, aluminum dissolves while discharging the battery, leading to an enrichment of the electrolyte in soluble aluminate species, which has a detrimental effect on the cell performance, so the electrolyte should be continuously treated by the means of a crystallizer coupled to the battery. In this context, the aim of the study is to find experimental conditions which could permit the use of a lower-cost grade of aluminum with respect to the cell and regenerator performances.

  5. The anisotropy of aluminum and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Hosford, William F.

    2006-05-01

    The anisotropy of textured aluminum is approximated by a yield criterion with an exponent of eight. The use of this criterion in metal-forming analyses has improved the understanding of the formability of aluminum and other metals. The effect of anisotropy on the limiting drawing ratio in cupping is less than that expected from the quadratic Hill yield criterion and the effect of texture on forming limit diagrams is negligible. A method of predicting the effect of strain-path changes on forming limit curves of aluminum alloy sheets has proven to agree with experiments.

  6. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  7. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  8. Use of low-cost aluminum in electric energy production

    NASA Astrophysics Data System (ADS)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  9. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Yamamoto, K.; Majjigi, R. K.; Brausch, J. F.

    1984-01-01

    Six scale-model nozzles were tested in an anechoic facility to evauate the effectiveness of convergent-divergent (C-D) terminations in reducing shock-cell noise of unsuppressed and mechanically suppressed coannular plug nozzles. One hundred fifty-three acoustic test points with inverted velocity profiles were conducted under static and simulated flight conditions. Diagnostic flow visualization with a shadowgraph and velocity measurements with a laser velocimeter were performed on selected plumes. Shock-cells were identified on the plug and downstream of the plug of the unsuppressed convergent coannular nozzle with truncated plug. Broadband peak frequencies predicted with the two shock-cell structures were correlated with the observed spectra using the measured shock-cell spacings. Relative to a convergent circular nozzle, the perceived noise level (PNL) data at an observer angle of 60 deg relative to inlet, indicated a reduction of (1) 6.5 dB and 9.2 dB with unsuppressed C-D coannular nozzle with truncated plug and (2) 7.7 dB and 8.3 dB with suppressed C-D coannular nozzle under static and simulated flight conditions, espectively. The unsuppressed C-D coannular nozzle with truncated plug, operating at the C-D design condition, had shock-cells downstream of the plug with no shock-cells on the plug. The downstream shock-cells were eliminated by replacing the truncated plug with a smooth extension to obtain an additional 2.4 dB and 3 dB front quadrant PNL reduction, under static and simulated flight conditions, respectively. Other results are discussed.

  10. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells.

    PubMed

    Park, Dong Jun; Sekhon, Simranjeet Singh; Yoon, Jihee; Kim, Yang-Hoon; Min, Jiho

    2016-02-01

    Lysosomes and peroxisomes are organelles with many functions in all eukaryotic cells. Lysosomes contain hydrolytic enzymes (lysozyme) that degrade molecules, whereas peroxisomes contain enzymes such as catalase that convert hydrogen peroxide (H2O2) to water and oxygen and neutralize toxicity. In contrast, melanin is known as a helpful element to protect the skin against harmful ultraviolet rays. However, a high quantity of melanin leads to hyperpigmentation or skin cancer in human. New materials have already been discovered to inhibit tyrosinase in melanogenesis; however, melanin reduction does not suggest their preparation. In this study, we report that the color intensity because of melanin decreased by the cellular activation of lysosomes and peroxisomes. An increase in the superficial intensity of lysosome and peroxisome activities of HeLa cells was observed. In addition, a decrease in the amount of melanin has also been observed in mammalian cells without using any other chemical, showing that the process can work in vivo for treating melanin. Therefore, the results of this study indicate that the amount of melanin decreases by the lysosome and peroxisome activity after entering the cells, and functional organelles are effective in color reduction. This mechanism can be used in vivo for treating melanin.

  11. Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells.

    PubMed

    Hohensinner, P J; Kaun, C; Buchberger, E; Ebenbauer, B; Demyanets, S; Huk, I; Eppel, W; Maurer, G; Huber, K; Wojta, J

    2016-02-01

    Aging is a major factor predisposing for multiple diseases. Telomeres at the ends of chromosomes protect the integrity of chromosomal DNA. A specialized six-protein complex termed shelterin protects the telomere from unwanted interaction with DNA damage pathways. The aim of our study was to evaluate the integrity of telomeres and the stability of telomere protection during aging in endothelial cells (EC). We describe that aging EC can be characterized by an increased cell size (40%, p=0.02) and increased expression of PAI 1 (4 fold, p=0.02), MCP1 (10 fold, p=0.001) and GMCSF (15 fold, p=0.004). Telomeric state in aging cells is defined by an increased telomere oxidation (27%, p=0.01), reduced telomere length (62%, p=0.02), and increased DNA damage foci formation (5% in young EC versus 16% in aged EC, p=0.003). This telomeric dysfunction is accompanied by a reduction in the shelterin component TRF1 (33% mRNA, p=0.001; 24% protein, p=0.007). Overexpression of TRF1 in aging EC reduced telomere-associated DNA damage foci to 5% (p=0.02) and reduced expression levels of MCP1 (18% reduction, p=0.008). Aged EC have increased telomere damage and an intrinsic loss of telomere protection. Reestablishing telomere integrity could therefore be a target for rejuvenating endothelial cell function.

  12. Keynote address: cellular reduction of nitroimidazole drugs: potential for selective chemotherapy and diagnosis of hypoxic cells.

    PubMed

    Chapman, J D; Lee, J; Meeker, B E

    1989-04-01

    Nitroimidazole drugs were initially developed as selective radiosensitizers of hypoxic cells and, consequently, as adjuvants to improve the local control probabilities of current radiotherapies. Misonidazole (MISO), the prototype radiosensitizing drug, was found in Phase I clinical studies to cause dose-limiting neurotoxicities (mainly peripheral neuropathies). MISO was also found to be cytotoxic in the absence of radiation and to covalently bind to cellular molecules, both processes demonstrating rates much higher in hypoxic compared with oxygenated cells. It is likely that neurotoxicity, cellular cytotoxicity and adduct formation results from reactions between reduction intermediates of MISO and cellular target molecules. Spin-offs from radiosensitizer research include the synthesis and characterization of more potent hypoxic cytotoxins and the exploitation of sensitizer-adducts as probes for measuring cellular and tissue oxygen levels. Current developments in hypoxic cell cytotoxin and hypoxic cell marker research are reviewed with specific examples from studies which characterize the cellular reduction of TF-MISO, (1-(2-nitro-1-imidazolyl)-3[2,2,2-trifluoroethoxy]-2-propanol).

  13. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    DOEpatents

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  14. Significant reduction in arc frequency biased solar cells: Observations, diagnostics, and mitigation technique(s)

    NASA Technical Reports Server (NTRS)

    Upschulte, B. L.; Weyl, G. M.; Marinelli, W. J.; Aifer, E.; Hastings, D.; Snyder, D.

    1991-01-01

    A variety of experiments were performed which identify key factors contributing to the arcing of negatively biased high voltage solar cells. These efforts have led to reduction of greater than a factor of 100 in the arc frequency of a single cell following proper remediation procedures. Experiments naturally lead to and focussed on the adhesive/encapsulant that is used to bond the protective cover slip to the solar cell. An image-intensified charge coupled device (CCD) camera system recorded UV emission from arc events which occurred exclusively along the interfacial edge between the cover slip and the solar cell. Microscopic inspection of this interfacial region showed a bead of encapsulant along this entire edge. Elimination of this encapsulant bead reduced the arc frequency by two orders of magnitude. Water contamination was also identified as a key contributor which enhances arcing of the encapsulant bead along the solar cell edge. Spectrally resolved measurements of the observable UV light shows a feature assignable to OH(A-X) electronic emission, which is common for water contaminated discharges. Experiments in which the solar cell temperature was raised to 85 C showed a reduced arcing frequency, suggesting desorption of H2O. Exposing the solar cell to water vapor was shown to increase the arcing frequency. Clean dry gases such as O2, N2, and Ar show no enhancement of the arcing rate. Elimination of the exposed encapsulant eliminates any measurable sensitivity to H2O vapor.

  15. Reduction of Myeloid-derived Suppressor Cells and Lymphoma Growth by a Natural Triterpenoid

    PubMed Central

    Radwan, Faisal F. Y.; Hossain, Azim; God, Jason M.; Leaphart, Nathan; Elvington, Michelle; Nagarkatti, Mitzi; Tomlinson, Stephen; Haque, Azizul

    2016-01-01

    Lymphoma is a potentially life threatening disease. The goal of this study was to investigate the therapeutic potential of a natural triterpenoid, Ganoderic acid A (GA-A) in controlling lymphoma growth both in vitro and in vivo. Here, we show that GA-A treatment induces caspase-dependent apoptotic cell death characterized by a dose-dependent increase in active caspases 9 and 3, up-regulation of pro-apoptotic BIM and BAX proteins, and a subsequent loss of mitochondrial membrane potential with release of cytochrome c. In addition to GA-A’s anti-growth activity, we show that lower doses of GA-A enhance HLA class II-mediated antigen presentation and CD4+ T cell recognition of lymphoma in vitro. The therapeutic relevance of GA-A treatment was also tested in vivo using the EL4 syngeneic mouse model of metastatic lymphoma. GA-A-treatment significantly prolonged survival of EL4 challenged mice and decreased tumor metastasis to the liver, an outcome accompanied by a marked down-regulation of STAT3 phosphorylation, reduction myeloid-derived suppressor cells (MDSCs), and enhancement of cytotoxic CD8+ T cells in the host. Thus, GA-A not only selectively induces apoptosis in lymphoma cells, but also enhances cell-mediated immune responses by attenuating MDSCs, and elevating Ag presentation and T cell recognition. The demonstrated therapeutic benefit indicates that GA-A is a candidate for future drug design for the treatment of lymphoma. PMID:25142864

  16. Accelerated creep in solid oxide fuel cell anode supports during reduction

    NASA Astrophysics Data System (ADS)

    Frandsen, H. L.; Makowska, M.; Greco, F.; Chatzichristodoulou, C.; Ni, D. W.; Curran, D. J.; Strobl, M.; Kuhn, L. T.; Hendriksen, P. V.

    2016-08-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼×104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation of the stress field in a stack based on anode supported SOFCs.

  17. TEM Cell Testing of Cable Noise Reduction Techniques from 2 MHz to 200 MHz -- Part 2

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Evans, William C.; Reed, Joshua L.; Shimp, Samuel K., III; Fitzpatrick, Fred D.

    2008-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated in a TEM cell operating with radiated fields from 2 - 200 MHz. It is the second part of a two-paper series. The first paper discussed cable types and shield connections. In this second paper, the effects of load and source resistances and chassis connections are examined. For each topic, well established theories are compared to data from a real-world physical system. Finally, recommendations for minimizing cable susceptibility (and thus cable emissions) are presented. There are numerous papers and textbooks that present theoretical analyses of cable noise reduction techniques. However, empirical data is often targeted to low frequencies (e.g. <50 KHz) or high frequencies (>100 MHz). Additionally, a comprehensive study showing the relative effects of various noise reduction techniques is needed. These include the use of dedicated return wires, twisted wiring, cable shielding, shield connections, changing load or source impedances, and implementing load- or source-to-chassis isolation. We have created an experimental setup that emulates a real-world electrical system, while still allowing us to independently vary a host of parameters. The goal of the experiment was to determine the relative effectiveness of various noise reduction techniques when the cable is in the presence of radiated emissions from 2 MHz to 200 MHz.

  18. Aluminum toxicity. Hematological effects.

    PubMed

    Mahieu, S; del Carmen Contini, M; Gonzalez, M; Millen, N; Elias, M M

    2000-01-01

    Sequential effects of intoxication with aluminum hydroxide (Al) (80 mg/Kg body weight, i.p., three times a week), were studied on rats from weaning and up to 28 weeks. The study was carried out on hematological and iron metabolism-related parameters on peripheral blood, at the end of the 1st, 2nd, 3rd, 4th, 5th and 6th months of exposure. As it was described that hematotoxic effects of Al are mainly seen together with high levels of uremia, renal function was measured at the same periods. The animals treated developed a microcytosis and was accompanied by a decrease in mean corpuscular hemoglobin (MCH). Significantly lower red blood cell counts (RBC million/microl) were found in rats treated during the 1st month. These values matched those obtained for control rats during the 2nd month. From the 3rd month onwards, a significant increase was observed as compared to control groups, and the following values were obtained by the 6th month: (T) 10.0 +/- 0.3 versus (C) 8.7 +/- 0.2 (million/microl). Both MCH and mean corpuscular volume (MCV) were found to be significantly lower in groups treated from the 2nd month. At the end of the 6th month the following values were found: MCH (T) 13.3 +/- 0.1 versus (C) 16.9 +/- 0.3 (pg); MCV (T) 42.1 +/- 0.7 versus (C) 51.8 +/- 0.9 (fl). Al was found responsible for lower serum iron concentration levels and in the percentage of transferrin saturation. Thus, although microcytic anemia constitutes an evidence of chronic aluminum exposure, prolonged exposure could lead to a recovery of hematocrit and hemoglobin concentration values with an increase in red cell number. Nevertheless, both microcytosis and the decrease of MCH would persist. These modifications took place without changes being observed in the renal function during the observation period. PMID:10643868

  19. Aluminum toxicity. Hematological effects.

    PubMed

    Mahieu, S; del Carmen Contini, M; Gonzalez, M; Millen, N; Elias, M M

    2000-01-01

    Sequential effects of intoxication with aluminum hydroxide (Al) (80 mg/Kg body weight, i.p., three times a week), were studied on rats from weaning and up to 28 weeks. The study was carried out on hematological and iron metabolism-related parameters on peripheral blood, at the end of the 1st, 2nd, 3rd, 4th, 5th and 6th months of exposure. As it was described that hematotoxic effects of Al are mainly seen together with high levels of uremia, renal function was measured at the same periods. The animals treated developed a microcytosis and was accompanied by a decrease in mean corpuscular hemoglobin (MCH). Significantly lower red blood cell counts (RBC million/microl) were found in rats treated during the 1st month. These values matched those obtained for control rats during the 2nd month. From the 3rd month onwards, a significant increase was observed as compared to control groups, and the following values were obtained by the 6th month: (T) 10.0 +/- 0.3 versus (C) 8.7 +/- 0.2 (million/microl). Both MCH and mean corpuscular volume (MCV) were found to be significantly lower in groups treated from the 2nd month. At the end of the 6th month the following values were found: MCH (T) 13.3 +/- 0.1 versus (C) 16.9 +/- 0.3 (pg); MCV (T) 42.1 +/- 0.7 versus (C) 51.8 +/- 0.9 (fl). Al was found responsible for lower serum iron concentration levels and in the percentage of transferrin saturation. Thus, although microcytic anemia constitutes an evidence of chronic aluminum exposure, prolonged exposure could lead to a recovery of hematocrit and hemoglobin concentration values with an increase in red cell number. Nevertheless, both microcytosis and the decrease of MCH would persist. These modifications took place without changes being observed in the renal function during the observation period.

  20. Influence of calorie reduction on DNA repair capacity of human peripheral blood mononuclear cells.

    PubMed

    Matt, Katja; Burger, Katharina; Gebhard, Daniel; Bergemann, Jörg

    2016-03-01

    Caloric restrictive feeding prolongs the lifespan of a variety of model organisms like rodents and invertebrates. It has been shown that caloric restriction reduces age-related as well as overall-mortality, reduces oxidative stress and influences DNA repair ability positively. There are numerous studies underlining this, but fewer studies involving humans exist. To contribute to a better understanding of the correlation of calorie reduction and DNA repair in humans, we adapted the host cell reactivation assay to an application with human peripheral blood mononuclear cells. Furthermore, we used this reliable and reproducible assay to research the influence of a special kind of calorie reduction, namely F. X. Mayr therapy, on DNA repair capacity. We found a positive effect in all persons with low pre-existing DNA repair capacity. In individuals with normal pre-existing DNA repair capacity, no effect on DNA repair capacity was detectable. Decline of DNA repair, accumulation of oxidative DNA damages, mitochondrial dysfunction, telomere shortening as well as caloric intake are widely thought to contribute to aging. With regard to that, our results can be considered as a strong indication that calorie reduction may support DNA repair processes and thus contribute to a healthier aging.

  1. Aluminum Toxicity in Roots 1

    PubMed Central

    Ryan, Peter R.; Shaff, Jon E.; Kochian, Leon V.

    1992-01-01

    The inhibition of root growth by aluminum (Al) is well established, yet a unifying mechanism for Al toxicity remains unclear. The association between cell growth and endogenously generated ionic currents measured in many different systems, including plant roots, suggests that these currents may be directing growth. A vibrating voltage microelectrode system was used to measure the net ionic currents at the apex of wheat (Triticum aestivum L.) roots from Al-tolerant and Al-sensitive cultivars. We examined the relationship between these currents and Al-induced inhibition of root growth. In the Al-sensitive cultivar, Scout 66, 10 micromolar Al (pH 4.5) began to inhibit the net current and root elongation within 1 to 3 hours. These changes occurred concurrently in 75% of experiments. A significant correlation was found between current magnitude and the rate of root growth when data were pooled. No changes in either current magnitude or growth rate were observed in similar experiments using the Al-tolerant cultivar Atlas 66. Measurements with ion-selective microelectrodes suggested that H+ influx was responsible for most of the current at the apex, with smaller contributions from Ca2+ and Cl− fluxes. In 50% of experiments, Al began to inhibit the net H+ influx in Scott 66 roots at the same time that growth was affected. However, in more than 25% of cases, Al-induced inhibition of growth rate occurred before any sustained decrease in the current or H+ flux. Although showing a correlation between growth and current or H+ fluxes, these data do not suggest a mechanistic association between these processes. We conclude that the inhibition of root growth by Al is not caused by the reduction in current or H+ influx at the root apex. PMID:16668988

  2. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    PubMed

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  3. Reduction of human immunodeficiency virus-infected cells from donor blood by leukocyte filtration.

    PubMed

    Rawal, B D; Busch, M P; Endow, R; Garcia-de-Lomas, J; Perkins, H A; Schwadron, R; Vyas, G N

    1989-06-01

    Several filters for leukocyte removal were evaluated in terms of their ability to reduce the cell-associated human immunodeficiency virus (HIV) load in units of blood either inoculated in vitro with lymphocytes from a chronically infected cell line or collected directly from seropositive donors. Filtration of the experimentally inoculated units of blood resulted in a 5.9 log 10 mean reduction (95% confidence interval:7.4-4.5) of tissue culture infectious units (TCIU) as assayed by end-point titration using the coculture assay. Filtration of the units of blood from anti-HIV positive donors lowered the infectivity by over 2 logs, as detected by the coculture and polymerase chain reaction (PCR) techniques. However, residual cell-associated virus was detected in the majority of experiments. Clinical studies are warranted to determine if leukocyte filtration of blood will reduce the risk of transfusion transmitted viral infections.

  4. Combined in situ PM-IRRAS/QCM studies of water adsorption on plasma modified aluminum oxide/aluminum substrates

    NASA Astrophysics Data System (ADS)

    Giner, Ignacio; Maxisch, Michael; Kunze, Christian; Grundmeier, Guido

    2013-10-01

    Water adsorption on plasma modified oxyhydroxide covered aluminum surfaces was analyzed by means of a set-up combining in situ photoelastic modulated infrared reflection absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance (QCM) in a low-temperature plasma cell. The chemical structure of the surface before and after the plasma treatment was moreover characterized by means of X-ray photoelectron spectroscopy (XPS) analysis. The surface chemistry of oxide covered aluminum was modified by oxidative and reductive low-temperature plasma pre-treatments. The Ar-plasma treatment reduced the surface hydroxyl density and effectively removed adsorbed organic contaminations. Surface modification by means of a water plasma treatment led to an increased surface hydroxyl density as well as an increase of the thickness of the native oxide film. The adsorption of water at atmospheric pressures on plasma modified aluminum surfaces led to a superimposition of reversible water layer adsorption and a simultaneous increase of the oxyhydroxide film thickness as a result of a chemisorption process. The amount of physisorbed water increased with the surface hydroxyl density whereas the chemisorption process was most significant for the surface after Ar-plasma treatment and almost negligible for the already water plasma treated surface.

  5. Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation in microbial fuel cells.

    PubMed

    Zhang, Baogang; Tian, Caixing; Liu, Ying; Hao, Liting; Liu, Ye; Feng, Chuanping; Liu, Yuqian; Wang, Zhongli

    2015-03-01

    Simultaneous microbial and electrochemical reductions of vanadium (V) with bioelectricity generation were realized in microbial fuel cells (MFCs). With initial V(V) concentrations of 75 mg/l and 150 mg/l in anolyte and catholyte, respectively, stable power output of 419±11 mW/m(2) was achieved. After 12h operation, V(V) concentration in the catholyte decreased to the value similar to that of the initial one in the anolyte, meanwhile it was nearly reduced completely in the anolyte. V(IV) was the main reduction product, which subsequently precipitated, acquiring total vanadium removal efficiencies of 76.8±2.9%. Microbial community analysis revealed the emergence of the new species of Deltaproteobacteria and Bacteroidetes as well as the enhanced Spirochaetes mainly functioned in the anode. This study opens new pathways to successful remediation of vanadium contamination.

  6. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  7. Rituximab induces sustained reduction of pathogenic B cells in patients with peripheral nervous system autoimmunity

    PubMed Central

    Maurer, Michael A.; Rakocevic, Goran; Leung, Carol S.; Quast, Isaak; Lukačišin, Martin; Goebels, Norbert; Münz, Christian; Wardemann, Hedda; Dalakas, Marinos; Lünemann, Jan D.

    2012-01-01

    The B cell–depleting IgG1 monoclonal antibody rituximab can persistently suppress disease progression in some patients with autoimmune diseases. However, the mechanism underlying these long-term beneficial effects has remained unclear. Here, we evaluated Ig gene usage in patients with anti–myelin-associated glycoprotein (anti-MAG) neuropathy, an autoimmune disease of the peripheral nervous system that is mediated by IgM autoantibodies binding to MAG antigen. Patients with anti-MAG neuropathy showed substantial clonal expansions of blood IgM memory B cells that recognized MAG antigen. The group of patients showing no clinical improvement after rituximab therapy were distinguished from clinical responders by a higher load of clonal IgM memory B cell expansions before and after therapy, by persistence of clonal expansions despite efficient peripheral B cell depletion, and by a lack of substantial changes in somatic hypermutation frequencies of IgM memory B cells. We infer from these data that the effectiveness of rituximab therapy depends on efficient depletion of noncirculating B cells and is associated with qualitative immunological changes that indicate reconfiguration of B cell memory through sustained reduction of autoreactive clonal expansions. These findings support the continued development of B cell–depleting therapies for autoimmune diseases. PMID:22426210

  8. Mitochondrial dysfunction, impaired oxidative-reduction activity, degeneration, and death in human neuronal and fetal cells induced by low-level exposure to thimerosal and other metal compounds

    PubMed Central

    Geier, D.A.; King, P.G.; Geier, M.R.

    2009-01-01

    Thimerosal (ethylmercurithiosalicylic acid), an ethylmercury (EtHg)-releasing compound (49.55% mercury (Hg)), was used in a range of medical products for more than 70 years. Of particular recent concern, routine administering of Thimerosal-containing biologics/childhood vaccines have become significant sources of Hg exposure for some fetuses/infants. This study was undertaken to investigate cellular damage among in vitro human neuronal (SH-SY-5Y neuroblastoma and 1321N1 astrocytoma) and fetal (nontransformed) model systems using cell vitality assays and microscope-based digital image capture techniques to assess potential damage induced by Thimerosal and other metal compounds (aluminum (Al) sulfate, lead (Pb)(II) acetate, methylmercury (MeHg) hydroxide, and mercury (Hg)(II) chloride) where the cation was reported to exert adverse effects on developing cells. Thimerosal-associated cellular damage was also evaluated for similarity to pathophysiological findings observed in patients diagnosed with autistic disorders (ADs). Thimerosal-induced cellular damage as evidenced by concentration- and time-dependent mitochondrial damage, reduced oxidative–reduction activity, cellular degeneration, and cell death in the in vitro human neuronal and fetal model systems studied. Thimerosal at low nanomolar (nM) concentrations induced significant cellular toxicity in human neuronal and fetal cells. Thimerosal-induced cytoxicity is similar to that observed in AD pathophysiologic studies. Thimerosal was found to be significantly more toxic than the other metal compounds examined. Future studies need to be conducted to evaluate additional mechanisms underlying Thimerosal-induced cellular damage and assess potential co-exposures to other compounds that may increase or decrease Thimerosal-mediated toxicity. PMID:24532866

  9. Back-junction back-contact n-type silicon solar cells with screen-printed aluminum-alloyed emitter

    NASA Astrophysics Data System (ADS)

    Bock, Robert; Mau, Susanne; Schmidt, Jan; Brendel, Rolf

    2010-06-01

    We introduce an n-type Si back-junction back-contact solar cell based on an Al-doped p+ rear emitter fabricated by means of screen-printing and firing instead of the commonly applied high-temperature boron diffusion. In order to demonstrate the applicability of this easy-to-fabricate p+ emitter to a back-junction back-contact solar cell we present experimental results showing 19.0% cell efficiency. The structuring of the cell is performed by laser processing omitting any photolithography. Using two-dimensional device simulation we determine a realistic efficiency limit of 21.6% for this cell type.

  10. Aspects of aluminum toxicity

    SciTech Connect

    Hewitt, C.D.; Savory, J.; Wills, M.R. )

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  11. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  12. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  13. Nitrogen Isotope Fractionation Increases with the Cell-Specific Dissimilatory Nitrate Reduction Rate

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Sigman, D. M.; Granger, J.

    2009-12-01

    The use of the nitrogen (N) isotopes to estimate the impacts and rates of different N transformations depends on knowledge of their extent of isotope fractionation under environmentally relevant physico-chemical conditions. Though the extent of N isotope fractionation during denitrification by pure cultures of bacteria has been determined in the past, relatively large variation in the isotope effect during apparently replicate experiments has been perplexing and the values that should be most relevant for environmental applications have not been clear. We measured the extent of N and O isotope fractionation during nitrate reduction by two bacterial denitrifiers, Pseudomonas chlororaphis ATCC 43928 and Paracoccus denitrificans ATCC 19367 that were grown in 1L batch reactors in the presence of differing carbon sources that included complex organic (e.g, bactopeptone and casein) or defined (e.g., glucose and acetate) carbon compounds and varying concentrations of dissolved oxygen (0 - 4 mM) and nitrate (25 - 800 mM) in the assay medium. For P. denitrificans and P. Chlororaphis , the total range of the N isotope effect (15ɛ) varied from 22.3 to 9.3 ‰ and 34.3 to 15.6 ‰, respectively. Despite this large variation, the O-to-N isotope effect ratio centered around 1, consistent with our previous work. A systematic pattern that has emerged from these studies is that the N and O isotope effect during denitrification increases with increasing cell specific nitrate reduction (CSNR) rate. This sense of variation runs counter to expectations from studies of carbon and sulfur isotope effects during methanogenesis and sulfate reduction, respectively, in which higher substrate consumption rates are associated with lower isotope effects. As with many multi-step microbial processes, variability in the dissimilatory nitrate reduction isotope effect may arise from variation in the “relative” rate and reversibility of (1) nitrate uptake into the denitrifying cell, and/or (2

  14. Pressure pyrolysed non-precious oxygen reduction catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Nallathambi, Vijayadurga

    2011-12-01

    Worldwide energy demand has driven long-term efforts towards developing a clean, hydrogen-based energy economy. Polymer electrolyte membrane fuel cells (PEMFC) are low emissions and high efficiency devices that utilize the power of hydrogen and are a key enabling technology for the hydrogen economy. Carbon supported platinum-black is the state-of the art catalyst for oxygen reduction in a PEMFC because it can withstand the acidic environment. However, the high cost and low abundance of this precious metal has limited large-scale commercialization of PEMFCs. Current efforts focus on developing alternative inexpensive, non-noble metal-based catalysts for oxygen reduction with performance comparable to conventional platinum based electrocatalysts. In this work, inexpensive metal-nitrogen-carbon (MNC) catalysts have been synthesized by pyrolyzing transition metal and nitrogen precursors together with high surface area carbon materials in a closed, constant-volume quartz tube. High pressure generated due to nitrogen precursor evaporation lead to increased surface nitrogen content in the catalysts post-pyrolysis. Electrochemical oxygen reduction activity of MNC catalysts was analyzed using half-cell Rotating Ring Disc Electrode (RRDE) studies. The effect of nitrogen precursor morphology on the generation of active sites has been explored in detail. By increasing the Nitrogen/Carbon ratio of the nitrogen precursor, the accessible active site density increased by reducing carbon deposition in the pores of the carbon support during pyrolysis. The most active catalysts were obtained using melamine, having a N/C ratio of 2. Single PEMFC measurements employing MNC catalysts as cathodes indicated kinetic current density as high as 15 A cm-3 at 0.8 ViR-free and over 100 h of stable current at 0.5 V were observed. Effects of carbon free ammonia generating solid nitrogen precursors such as urea and ammonium carbamate were also studied. These precursors etched the carbon support

  15. Zinc-Bismuth and Aluminum-Indium Monotectic Alloy-Based Fixed-Point Cells with Double Phase Transition for In Situ Calibration of Thermocouples

    NASA Astrophysics Data System (ADS)

    Lowe, Dave; Kodwani, Darsh

    2015-11-01

    Re-calibration of a thermocouple after it has been installed in a process is often not practical. In situ monitoring of performance is desirable and can be done with built-in reference standards based on melting or freezing phase transitions. Binary alloys with a monotectic reaction frequently have two invariant melt/freeze phase transitions taking place in the same material over a range of compositions. This makes them potentially well suited to be in situ temperature calibration artifacts, enabling correction for thermocouple drift without the need to disturb the thermocouple. A zinc-bismuth fixed-point cell was constructed and has been shown to be stable with two well-defined melting plateaus at nominally 255°C and 415°C. Two miniature fixed-point cells (each designed to be permanently installed with a thermocouple) based on zinc-bismuth and aluminum-indium alloys were made. Measurements have shown that the phase transitions can be identified despite the small quantity of metals used and that the alloys were sufficiently stable to have the potential to provide improved long-term confidence in process control and monitoring.

  16. Curcuminoid Binding to Embryonal Carcinoma Cells: Reductive Metabolism, Induction of Apoptosis, Senescence, and Inhibition of Cell Proliferation

    PubMed Central

    Quitschke, Wolfgang W.

    2012-01-01

    Curcumin preparations typically contain a mixture of polyphenols, collectively referred to as curcuminoids. In addition to the primary component curcumin, they also contain smaller amounts of the co-extracted derivatives demethoxycurcumin and bisdemethoxycurcumin. Curcuminoids can be differentially solubilized in serum, which allows for the systematic analysis of concentration-dependent cellular binding, biological effects, and metabolism. Technical grade curcumin was solubilized in fetal calf serum by two alternative methods yielding saturated preparations containing either predominantly curcumin (60%) or bisdemethoxycurcumin (55%). Continual exposure of NT2/D1 cells for 4–6 days to either preparation in cell culture media reduced cell division (1–5 µM), induced senescence (6–7 µM) or comprehensive cell death (8–10 µM) in a concentration-dependent manner. Some of these effects could also be elicited in cells transiently exposed to higher concentrations of curcuminoids (47 µM) for 0.5–4 h. Curcuminoids induced apoptosis by generalized activation of caspases but without nucleosomal fragmentation. The equilibrium binding of serum-solubilized curcuminoids to NT2/D1 cells incubated with increasing amounts of curcuminoid-saturated serum occurred with apparent overall dissociation constants in the 6–10 µM range. However, the presence of excess free serum decreased cellular binding in a hyperbolic manner. Cellular binding was overwhelmingly associated with membrane fractions and bound curcuminoids were metabolized in NT2/D1 cells via a previously unidentified reduction pathway. Both the binding affinities for curcuminoids and their reductive metabolic pathways varied in other cell lines. These results suggest that curcuminoids interact with cellular binding sites, thereby activating signal transduction pathways that initiate a variety of biological responses. The dose-dependent effects of these responses further imply that distinct cellular pathways are

  17. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    NASA Astrophysics Data System (ADS)

    Leadbetter, Kirt C.

    Aluminum plating is of considerable technical and economic interest because it provides an eco-friendly substitute for cadmium coatings used on many military systems. However, cadmium has been determined to be a significant environmental safety and occupational health (ESOH) hazard because of its toxicity and carcinogenic nature. Furthermore, the cost of treating and disposing of generated wastes, which often contain cyanide, is costly and is becoming prohibitive in the face of increasingly stringent regulatory standards. The non-toxic alternative aluminum is equivalent or superior in performance to cadmium. In addition, it could serve to provide an alternative to hexavalent chromium coatings used on military systems for similar reasons to that of cadmium. Aluminum is a beneficial alternative in that it demonstrates self-healing corrosion resistance in the form of a tightly-bound, impervious oxide layer. A successfully plated layer would be serviceable over a wider temperature range, 925 °F for aluminum compared to 450 oF for cadmium. In addition, an aluminum layer can be anodized to make it non-conducting and colorable. In consideration of the plating process, aluminum cannot be deposited from aqueous solutions because of its reduction potential. Therefore, nonaqueous electrolytes are required for deposition. Currently, aluminum can be electrodeposited in nonaqueous processes that use hazardous chemicals such as toluene and pyrophoric aluminum alkyls. Electrodeposition from ionic liquids provides the potential for a safer method that could be easily scaled up for industrial application. The plating process could be performed at a lower temperature and higher current density than other commercially available aluminum electrodeposition processes; thus a reduced process cost could be possible. The current ionic liquid based electrolytes are more expensive; however production on a larger scale and a long electrolyte lifetime are associated with a reduction in price

  18. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    PubMed

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.

  19. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  20. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells.

    PubMed

    Li, Dongguo; Lv, Haifeng; Kang, Yijin; Markovic, Nenad M; Stamenkovic, Vojislav R

    2016-06-01

    We present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important role in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Understanding how the doped elements interact with each other and/or carbon is challenging and necessary in the design of robust fuel cell catalysts.

  1. Zinc-Dependent Protection of Tobacco and Rice Cells From Aluminum-Induced Superoxide-Mediated Cytotoxicity

    PubMed Central

    Lin, Cun; Hara, Ayaka; Comparini, Diego; Bouteau, François; Kawano, Tomonori

    2015-01-01

    Al3+ toxicity in growing plants is considered as one of the major factors limiting the production of crops on acidic soils worldwide. In the last 15 years, it has been proposed that Al3+ toxicity are mediated with distortion of the cellular signaling mechanisms such as calcium signaling pathways, and production of cytotoxic reactive oxygen species (ROS) causing oxidative damages. On the other hand, zinc is normally present in plants at high concentrations and its deficiency is one of the most widespread micronutrient deficiencies in plants. Earlier studies suggested that lack of zinc often results in ROS-mediated oxidative damage to plant cells. Previously, inhibitory action of Zn2+ against lanthanide-induced superoxide generation in tobacco cells have been reported, suggesting that Zn2+ interferes with the cation-induced ROS production via stimulation of NADPH oxidase. In the present study, the effect of Zn2+ on Al3+-induced superoxide generation in the cell suspension cultures of tobacco (Nicotiana tabacum L., cell-line, BY-2) and rice (Oryza sativa L., cv. Nipponbare), was examined. The Zn2+-dependent inhibition of the Al3+-induced oxidative burst was observed in both model cells selected from the monocots and dicots (rice and tobacco), suggesting that this phenomenon (Al3+/Zn2+ interaction) can be preserved in higher plants. Subsequently induced cell death in tobacco cells was analyzed by lethal cell staining with Evans blue. Obtained results indicated that presence of Zn2+ at physiological concentrations can protect the cells by preventing the Al3+-induced superoxide generation and cell death. Furthermore, the regulation of the Ca2+ signaling, i.e., change in the cytosolic Ca2+ ion concentration, and the cross-talks among the elements which participate in the pathway were further explored. PMID:26648960

  2. High energy density aluminum battery

    DOEpatents

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  3. Biological Selenite Reduction and Biofilm Growth in a Microfluidic Flow Cell

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Valocchi, A. J.; Werth, C. J.; Liu, W. T.; Sanford, R. A.; Singh, R.; Nobu, M.; Michelson, K.; Xue, Z.

    2014-12-01

    Selenite-contaminated groundwater can be biologically remediated in-situ by supplying an electron donor to promote the growth of selenite-reducing bacteria. We studied the fate of selenite during in-situ bioremediation using a microfluidic flow cell containing a homogeneous distribution of pores. The flow cell had two inlets: one for selenite supply, and the other for propionate (electron donor) supply. The media contained sulfate, which is common in groundwater and can affect selenite reduction. During the 5-month operation, biomass and selenite reduction products were periodically imaged using a phase contrast microscope and an environmental scanning electron microscope. Selenite reduction products were further characterized using Raman spectroscopy and energy-dispersive X-ray spectroscopy. Three types of crystals were detected in the mixing zone between selenite and propionate, and they occurred in different locations of the mixing zone. On the selenite side, selenite was biologically reduced to elemental selenium in the monoclinic form. Along the centerline, sulfate was biologically reduced to sulfide, which chemically reacted with selenite to form the second type of crystal (selenium sulfide). On the propionate side, selenium sulfide was biologically reduced to elemental selenium in the trigonal form. A mathematical model was developed to explain the segregation of the three crystals. On the selenite side, bacteria preferred selenite to sulfate since selenite can provide more energy for bacteria growth according to thermodynamics. On the propionate side, selenite was limiting; thus bacteria used selenium sulfide as their electron acceptor. Understanding this segregation can help to predict in-situ bioremediation of selenite-contaminated groundwater. Conventional prediction models consider the reaction on the selenite side as the only path of selenite removal, while a model considering the three paths of selenite removal would increase the prediction accuracy.

  4. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  5. Experimental Investigation of Shock-Cell Noise Reduction for Single Stream Nozzles in Simulated Flight

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Brausch, J. F.; Balsa, T. F.; Janardan, B. A.; Knott, P. R.

    1984-01-01

    Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug.

  6. Single Unit Cell Bismuth Tungstate Layers Realizing Robust Solar CO2 Reduction to Methanol.

    PubMed

    Liang, Liang; Lei, Fengcai; Gao, Shan; Sun, Yongfu; Jiao, Xingchen; Wu, Ju; Qamar, Shaista; Xie, Yi

    2015-11-16

    Solar CO2 reduction into hydrocarbons helps to solve the global warming and energy crisis. However, conventional semiconductors usually suffer from low photoactivity and poor photostability. Here, atomically-thin oxide-based semiconductors are proposed as excellent platforms to overcome this drawback. As a prototype, single-unit-cell Bi2WO6 layers are first synthesized by virtue of a lamellar Bi-oleate intermediate. The single-unit-cell thickness allows 3-times larger CO2 adsorption capacity and higher photoabsorption than bulk Bi2WO6. Also, the increased conductivity, verified by density functional theory calculations and temperature-dependent resistivities, favors fast carrier transport. The carrier lifetime increased from 14.7 to 83.2 ns, revealed by time-resolved fluorescence spectroscopy, which accounts for the improved electron-hole separation efficacy. As a result, the single-unit-cell Bi2WO6 layers achieve a methanol formation rate of 75 μmol g(-1) h(-1), 125-times higher than that of bulk Bi2WO6. The catalytic activity of the single-unit-cell layers proceeds without deactivation even after 2 days. This work will shed light on designing efficient and robust photoreduction CO2 catalysts.

  7. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  8. Is the Aluminum Hypothesis dead?

    PubMed

    Lidsky, Theodore I

    2014-05-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust.

  9. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are also…

  10. Aluminum space frame technology

    SciTech Connect

    Birch, S.

    1994-01-01

    This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.

  11. Oxidation-reduction reactions in Ehrlich cells treated with copper-neocuproine.

    PubMed

    Byrnes, R W; Antholine, W E; Petering, D H

    1992-11-01

    The interaction of 2,9-dimethyl-1,10-phenanthroline (neocuproine or NC) and its copper complex with Ehrlich ascites tumor cells was studied. NC is frequently used as a negative control in studies of in vitro DNA degradation by copper phenanthroline and has also found use as a potential inhibitor of damage from oxidative stress in biological systems. NC inhibited Ehrlich cell growth in monolayer culture over 48 h treatment by 50% at 0.05 nmol/10(5) cells. Addition of 5- to 100-fold ratios of CuCl2 to NC (at 0.035 nmol NC/10(5) cells) produced progressively more growth inhibition. Addition of 1:0.5 ratios of NC to CuCl2 over the range of NC concentrations 0.08-0.2 nmol/10(5) cells/mL resulted in DNA single-strand breakage during 1-h treatments as measured by DNA alkaline elution. Concomitant addition of catalase or dimethyl sulfoxide (DMSO) inhibited DNA strand scission, while superoxide dismutase enhanced breakage. Catalase and DMSO also inhibited induction of membrane permeability by the copper complex of NC. These cellular effects apparently result from the intracellular generation of hydroxyl radical from H2O2. NC facilitated the uptake of copper into cells, though it was initially bound as a copper-histidine-like complex. The internalized copper was reduced to Cu(I), bound mostly as (NC)2Cu(I). To explain the (NC)2Cu-dependent generation of hydroxyl radical, it is hypothesized that glutathione successfully competes for Cu(I), converting it to a redox-active form that can catalyze the reduction of molecular oxygen to .OH. Model studies support this view. Radical scavengers did not reverse growth inhibition produced by NC or NC + CuCl2.

  12. Aluminum structural applications

    SciTech Connect

    Lucas, G.

    1996-05-01

    Extensive research by aluminum producers and automakers in the 1980s resulted in the development of technologies that enable building of aluminum cars that meet and exceed all the expectations of today`s drivers and passengers, yet weigh several hundred pounds less than their steel counterparts. The Acura NSX sports car, the Audi A8, and the Jaguar XJ220 have all been introduced. Ford has built 40 aluminum-intensive automobiles based on the Taurus/Sable for test purposes, and General Motors recently announced an aluminum-structured electric vehicle. The design flexibility that aluminum allows is shown by these examples. Each uses a somewhat different technology that is particularly suited to the vehicle and its market.

  13. Understanding and development of cost-effective industrial aluminum back surface field (Al-BSF) silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Nian

    For the long-term strategy of gradual decarbonization of the world's energy supply, high penetration of PV electricity is critical in the future world energy landscape. In order to achieve this, solar electricity with competitive cost to fossil fuel energy is necessary. To be able to obtain high efficiency solar cells, many advanced cell architectures have been developed commercially by PV industry. However, the fabrication of these cells necessitates complex processing steps and high requirements on semiconductor materials, which make it not as cost-effective as the state-of-the-art conventional Al-BSF structure. In order to keep the cost of PV cell low and improve on the efficiency with fewer processing steps, this thesis work focuses on the understanding of the conventional Al-BSF solar cell structure. The research work therefore, focuses on the (i) design, and modeling of front metal electrodes including the use of multi-bus-bar capable of decreasing the gridline resistance, (ii) fine-line printing and (iii) metal contact co-firing using high belt speed that is not common to the solar industry to achieve ~20% efficient industrial Al-BSF silicon solar cells. In order to achieve the objectives of this thesis work, firstly, the appropriate Al paste was investigated for lowest back surface recombination velocity (BSRV), which gives high open circuit voltage (Voc). Secondly, the impact of emitter sheet resistance on solar cell performance was modeled to determine the optimal sheet resistance, and the uniformity of emitter was also investigated. Thirdly, modeling on the front metal electrodes was carried out to investigate the optimal number of busbars, and determine the optimum number of gridlines and gridline geometries that would result in low series resistance (Rs), high fill factor (FF) and hence high efficiency. Fourthly, the modeled results were experimentally validated through fine-line printing and optimized contact co-firing. By combining each layer to make

  14. TEM Cell Testing of Cable Noise Reduction Techniques From 2 MHz to 200 MHz - Part 1

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Evans, William C.; Reed, Joshua L.; Shimp, Samuel K.; Fitzpatrick, Fred D.

    2008-01-01

    This paper presents empirical results of cable noise reduction techniques as demonstrated in a TEM cell operating with radiated fields from 2 - 200 MHz. It is the first part of a two-paper series. This first paper discusses cable types and shield connections. In the second paper, the effects of load and source resistances and chassis connections are examined. For each topic, well established theories are compared to data from a real-world physical system. Finally, recommendations for minimizing cable susceptibility (and thus cable emissions) are presented. There are numerous papers and textbooks that present theoretical analyses of cable noise reduction techniques. However, empirical data is often targeted to low frequencies (e.g. <50 KHz) or high frequencies (>100 MHz). Additionally, a comprehensive study showing the relative effects of various noise reduction techniques is needed. These include the use of dedicated return wires, twisted wiring, cable shielding, shield connections, changing load or source impedances, and implementing load- or source-to-chassis isolation. We have created an experimental setup that emulates a real-world electrical system, while still allowing us to independently vary a host of parameters. The goal of the experiment was to determine the relative effectiveness of various noise reduction techniques when the cable is in the presence of radiated emissions from 2 MHz to 200 MHz. The electronic system (Fig. 1) consisted of two Hammond shielded electrical enclosures, one containing the source resistance, and the other containing the load resistance. The boxes were mounted on a large aluminium plate acting as the chassis. Cables connecting the two boxes measured 81 cm in length and were attached to the boxes using standard D38999 military-style connectors. The test setup is shown in Fig. 2. Electromagnetic fields were created using an HP8657B signal generator, MiniCircuits ZHL-42W-SMA amplifier, and an EMCO 5103 TEM cell. Measurements were

  15. Rapid Uptake of Aluminum into Cells of Intact Soybean Root Tips (A Microanalytical Study Using Secondary Ion Mass Spectrometry).

    PubMed Central

    Lazof, D. B.; Goldsmith, J. G.; Rufty, T. W.; Linton, R. W.

    1994-01-01

    A wide range of physiological disorders has been reported within the first few hours of exposing intact plant roots to moderate levels of Al3+. Past microanalytic studies, largely limited to electron probe x-ray microanalysis, have been unable to detect intracellular Al in this time frame. This has led to the suggestion that Al exerts its effect solely from extracellular or remote tissue sites. Here, freeze-dried cryosections (10 [mu]m thick) collected from the soybean (Glycine max) primary root tip (0.3-0.8 mm from the apex) were analyzed using secondary ion mass spectrometry (SIMS). The high sensitivity of SIMS for Al permitted the first direct evidence of early entry of Al into root cells. Al was found in cells of the root tip after a 30-min exposure of intact roots to 38 [mu]M Al3+. The accumulation of Al was greatest in the first 30 [mu]m, i.e. two to three cell layers, but elevated Al levels extended at least 150 [mu]m inward from the root edge. Intracellular Al concentrations at the root periphery were estimated to be about 70 nmol g-1 fresh weight. After 18 h of exposure, Al was evident throughout the root cross-section, although the rate of accumulation had slowed considerably from that during the initial 30 min. These results are consistent with the hypothesis that early effects of Al toxicity at the root apex, such as those on cell division, cell extension, or nutrient transport, involve the direct intervention of Al on cell function. PMID:12232392

  16. Efficient and ultraviolet durable inverted organic solar cells based on an aluminum-doped zinc oxide transparent cathode

    NASA Astrophysics Data System (ADS)

    Liu, Hanxiao; Wu, Zhenghui; Hu, Jianqiao; Song, Qunliang; Wu, Bo; Lam Tam, Hoi; Yang, Qingyi; Hong Choi, Wing; Zhu, Furong

    2013-07-01

    High performance inverted bulk heterojunction organic solar cells (OSCs), based on the blend of poly[[4,8-bis[(2-ethylhexyl)oxy] benzo [1,2-b:4,5-b'] dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  17. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction.

    PubMed

    Bing, Yonghong; Liu, Hansan; Zhang, Lei; Ghosh, Dave; Zhang, Jiujun

    2010-06-01

    In this critical review, we present the current technological advances in proton exchange membrane (PEM) fuel cell catalysis, with a focus on strategies for developing nanostructured Pt-alloys as electrocatalysts for the oxygen reduction reaction (ORR). The achievements are reviewed and the major challenges, including high cost, insufficient activity and low stability, are addressed and discussed. The nanostructured Pt-alloy catalysts can be grouped into different clusters: (i) Pt-alloy nanoparticles, (ii) Pt-alloy nanotextures such as Pt-skins/monolayers on top of base metals, and (iii) branched or anisotropic elongated Pt or Pt-alloy nanostructures. Although some Pt-alloy catalysts with advanced nanostructures have shown remarkable activity levels, the dissolution of metals, including Pt and alloyed base metals, in a fuel cell operating environment could cause catalyst degradation, and still remains an issue. Another concern may be low retention of the nanostructure of the active catalyst during fuel cell operation. To facilitate further efforts in new catalyst development, several research directions are also proposed in this paper (130 references).

  18. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments

    USGS Publications Warehouse

    Zehr, J.P.; Oremland, R.S.

    1987-01-01

    Washed cell suspension of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of selenate to selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was ???0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace qunatitites of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed

  19. Clinical biochemistry of aluminum

    SciTech Connect

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  20. Hybrid binuclear-cobalt-phthalocyanine as oxygen reduction reaction catalyst in single chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Baitao; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun

    2014-12-01

    A novel hybrid binuclear-cobalt-phthalocyanine (Bi-CoPc) is developed as the cathode catalyst to replace the costly platinum (Pt) in single chamber microbial fuel cells (SCMFCs). Bi-CoPc/C is integrated with metal oxides (NiO and CoO) to form macrocyclic complex for enhanced oxygen reduction rate (ORR). The characteristics of hybrid catalysts (Bi-CoPc/C-CoO and Bi-CoPc/C-NiO) are compared with Co-contained catalysts (CoPc/C and Bi-CoPc/C) and metal oxide catalysts (NiO and CoO). The increase in O and N functional groups indicates the benefits of NiO and CoO to the cathode catalysts. The cyclic voltammetry (CV) shows the reduction peak for Bi-CoPc/C-NiO and Bi-CoPc/C-CoO at -0.12 V and -0.22 V, respectively. The power densities (368 mW m-2 and 400 mW m-2) of SCMFCs with Bi-CoPc/C-CoO and Bi-CoPc-NiO/C are the highest among the cathodes tested, and close to that of Pt (450 mW m-2). This study demonstrates that hybrid Bi-CoPc/C with metal oxides has a great potential as a cost-effective catalyst in MFCs.

  1. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  2. O2 reduction at the IFC orbiter fuel cell O2 electrode

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1990-01-01

    O2 reduction Tafel data were obtained for the IFC Orbiter fuel cell O2 electrode (Au-10 percent Pt catalyst) at temperatures between 24 and 81 C. BET measurements gave an electrode surface area of about 2040 sq cm per sq cm of geometric area. The Tafel data could be fitted to three straight line regions. For current densities less than 0.001 A/sq cm, the slope was essentially independent of temperature with a value of about 0.032 V/decade. Above 0.001 A/sq cm, the two regions, designated in the present study as the 0.04 and 0.12 V/decate regions, were temperature dependent. The apparent energies of activation for these two regions were about 9.3 and 6.5 kcal/mol, respectively. Tafel data (1 atmosphere O2) were extrapolated to 120 C for predicting changes in overpotential with increasing temperature. A mechanism is presented for O2 reduction.

  3. Spontaneous electrochemical treatment for sulfur recovery by a sulfide oxidation/vanadium(V) reduction galvanic cell.

    PubMed

    Kijjanapanich, Pimluck; Kijjanapanich, Pairoje; Annachhatre, Ajit P; Esposito, Giovanni; Lens, Piet N L

    2015-02-01

    Sulfide is the product of the biological sulfate reduction process which gives toxicity and odor problems. Wastewaters or bioreactor effluents containing sulfide can cause severe environmental impacts. Electrochemical treatment can be an alternative approach for sulfide removal and sulfur recovery from such sulfide rich solutions. This study aims to develop a spontaneous electrochemical sulfide oxidation/vanadium(V) reduction cell with a graphite electrode system to recover sulfide as elemental sulfur. The effects of the internal and external resistance on the sulfide removal efficiency and electrical current produced were investigated at different pH. A high surface area of the graphite electrode is required in order to have as less internal resistance as possible. In this study, graphite powder was added (contact area >633 cm(2)) in order to reduce the internal resistance. A sulfide removal efficiency up to 91% and electrical charge of more than 400 C were achieved when using five graphite rods supplemented with graphite powder as the electrode at an external resistance of 30 Ω and a sulfide concentration of 250 mg L(-1).

  4. The O2 reduction at the IFC modified O2 fuel cell electrode

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph; Baldwin, Richard S.; Johnson, Richard E.

    1992-01-01

    The International Fuel Corporation (IFC) state of the art (SOA) O2 electrode (Au-10 percent Pt electrocatalyst by weight) is currently being used in the alkaline H2-O2 fuel cell in the NASA Space Shuttle. Recently, IFC modified O2 electrode, as a possible replacement for the SOA electrode. In the present study, O2 reduction data were obtained for the modified electrode at temperatures between 23.3 and 91.7 C. BET measurements gave an electrode BET surface area of about 2070 sq. cm/sq. cm of geometric surface area. The Tafel data could be fitted to two straight line regions. The slope for the lower region, designated as the 0.04 V/decade region, was temperature dependent, and the transfer coefficient was about 1.5. The 'apparent' energy of activation for this region was about 19 kcal/mol. An O2 reduction mechanism for this 0.04 region is presented. In the upper region, designated as the 0.08 V/decade region, diffusion may be the controlling process. Tafel data are presented to illustrate the increase in performance with increasing temperature.

  5. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.

    PubMed

    Gangadharan, Praveena; Nambi, Indumathi M

    2015-01-01

    Microbial fuel cell (MFC) technology is utilized to treat hexavalent chromium (Cr(VI)) from wastewater and to generate electricity simultaneously. The Cr(VI) is bioelectrochemically reduced to non-toxic Cr(III) form in the presence of an organic electron donor in a dual-chambered MFC. The Cr(VI) as catholyte and artificial wastewater inoculated with anaerobic sludge as anolyte, Cr(VI) at 100 mg/L was completely removed within 48 h (initial pH value 2.0). The total amount of Cr recovered was 99.87% by the precipitation of Cr(III) on the surface of the cathode. In addition to that 78.4% of total organic carbon reduction was achieved at the anode chamber within 13 days of operation. Furthermore, the maximum power density of 767.01 mW/m² (2.08 mA/m²) was achieved by MFCs at ambient conditions. The present work has successfully demonstrated the feasibility of using MFCs for simultaneous energy production from wastewater and reduction of toxic Cr(VI) to non-toxic Cr(III).

  6. Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells.

    PubMed

    Narayanamoorthy, B; Datta, K K R; Eswaramoorthy, M; Balaji, S

    2012-07-25

    A novel Pt nanoparticle (Pt NP) embedded aminoclay/Nafion (Pt/AC/N) nanocomposite catalyst film was prepared for oxygen reduction reaction by sol-gel method. The prepared nanocomposite films were surface characterized using XRD and TEM and thermal stability was studied by TGA. The prepared film has firmly bound Pt NP and could exhibit an improved electro-reduction activity compared to vulcan carbon/Nafion supported Pt NP (Pt/VC/N). Moreover, the Pt/AC/N film possessed good stability in the acidic environment. The limiting current density of the Pt/AC/N film with 35.4 μg/cm(2) of Pt loading was found to be 4.2 mA/cm(2), which is 30% higher than that of the Pt/VC/N. The maximum H2O2 intermediate formation was found to be ∼1.6% and the reaction found to follow a four electron transfer mechanism. Accelerated durability test for 2000 potential cycles showed that ca. 78% of initial limiting current was retained. The results are encouraging for possible use of the Pt/AC/N as the free-standing electrocatalyst layer for polymer electrolyte membrane fuel cells.

  7. The Dye Sensitized Photoelectrosynthesis Cell (DSPEC) for Solar Water Splitting and CO2 Reduction

    NASA Astrophysics Data System (ADS)

    Meyer, Thomas; Alibabaei, Leila; Sherman, Benjamin; Sheridan, Matthew; Ashford, Dennis; Lapides, Alex; Brennaman, Kyle; Nayak, Animesh; Roy, Subhangi; Wee, Kyung-Ryang; Gish, Melissa; Meyer, Jerry; Papanikolas, John

    The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates molecular level light absorption and catalysis with the bandgap properties of stable oxide materials such as TiO2 and NiO. Excitation of surface-bound chromophores leads to excited state formation and rapid electron or hole injection into the conduction or valence bands of n or p-type oxides. Addition of thin layers of TiO2 or NiO on the surfaces of mesoscopic, nanoparticle films of semiconductor or transparent conducting oxides to give core/shell structures provides a basis for accumulating multiple redox equivalents at catalysts for water oxidation or CO2 reduction. UNC EFRC Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011.

  8. Rational design of competitive electrocatalysts for the oxygen reduction reaction in hydrogen fuel cells

    NASA Astrophysics Data System (ADS)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2012-02-01

    The large-scale application of one of the most promising clean and renewable sources of energy, hydrogen fuel cells, still awaits efficient and cost-effective electrocatalysts for the oxygen reduction reaction (ORR) occurring on the cathode. We demonstrate that truly rational design renders electrocatalysts possessing both qualities. By unifying the knowledge on surface morphology, composition, electronic structure and reactivity, we solve that sandwich-like structures are an excellent choice for optimization. Their constituting species couple synergistically yielding reaction-environment stability, cost-effectiveness and tunable reactivity. This cooperative-action concept enabled us to predict two advantageous ORR electrocatalysts. Density functional theory calculations of the reaction free-energy diagrams confirm that these materials are more active toward ORR than the so far best Pt-based catalysts. Our designing concept advances also a general approach for engineering materials in heterogeneous catalysis.

  9. Fuel savings and emissions reductions from light duty fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Mark, J.; Ohi, J. M.; Hudson, D. V., Jr.

    1994-04-01

    Fuel cell vehicles (FCV's) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCV's has the potential to lessen U.S. dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCV's and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCV's will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCV's, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  10. Fuel savings and emissions reductions from light duty fuel cell vehicles

    SciTech Connect

    Mark, J; Ohi, J M; Hudson, Jr, D V

    1994-04-01

    Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  11. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum).

    PubMed

    Yang, Jin; Qu, Mei; Fang, Jing; Shen, Ren Fang; Feng, Ying Ming; Liu, Jia You; Bian, Jian Feng; Wu, Li Shu; He, Yong Ming; Yu, Min

    2016-01-01

    We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. 'Zhongwan no. 6') were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (10(4) RBCs) was approximately 24.5% of the total Al in the root apex (0-2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity.

  12. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum)

    PubMed Central

    Yang, Jin; Qu, Mei; Fang, Jing; Shen, Ren Fang; Feng, Ying Ming; Liu, Jia You; Bian, Jian Feng; Wu, Li Shu; He, Yong Ming; Yu, Min

    2016-01-01

    We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. ‘Zhongwan no. 6’) were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (104 RBCs) was approximately 24.5% of the total Al in the root apex (0–2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity. PMID:27679639

  13. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum).

    PubMed

    Yang, Jin; Qu, Mei; Fang, Jing; Shen, Ren Fang; Feng, Ying Ming; Liu, Jia You; Bian, Jian Feng; Wu, Li Shu; He, Yong Ming; Yu, Min

    2016-01-01

    We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. 'Zhongwan no. 6') were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (10(4) RBCs) was approximately 24.5% of the total Al in the root apex (0-2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity. PMID:27679639

  14. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum)

    PubMed Central

    Yang, Jin; Qu, Mei; Fang, Jing; Shen, Ren Fang; Feng, Ying Ming; Liu, Jia You; Bian, Jian Feng; Wu, Li Shu; He, Yong Ming; Yu, Min

    2016-01-01

    We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. ‘Zhongwan no. 6’) were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (104 RBCs) was approximately 24.5% of the total Al in the root apex (0–2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity.

  15. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  16. Anodic Oxide Films on Aluminum: Their Significance for Corrosion Protection and Micro- and Nano-Technologies

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideaki; Sakairi, Masatoshi; Kikuchi, Tatsuya

    It was only 120 years ago that humans became able to obtain aluminum metal industrially by applying electricity to reduce bauxite ore. Hence, aluminum is much newer than other metals such as copper, iron, and gold, which have been used since pre-historical times. This is surprising since aluminum comprises 7.56 % of all elements near the surface of the earth, and is found in abundant amounts, next to only oxygen and silicon. The reason why aluminum metal only became available fairly recently is that aluminum has a strong chemical affinity to oxygen, and this prevents reduction of aluminum oxide by chemical reaction with carbon at high temperatures, unlike iron- and copper-oxides. Reduction of aluminum oxide was first realized by H. Davy in 1807, using Voltaic piles, which had been invented in 1800 by the Italian scientist, A. Volta.

  17. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOEpatents

    Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  18. Metabolic Engineering of an Aerobic Sulfate Reduction Pathway and Its Application to Precipitation of Cadmium on the Cell Surface

    PubMed Central

    Wang, Clifford L.; Maratukulam, Priya D.; Lum, Amy M.; Clark, Douglas S.; Keasling, J. D.

    2000-01-01

    The conversion of sulfate to an excess of free sulfide requires stringent reductive conditions. Dissimilatory sulfate reduction is used in nature by sulfate-reducing bacteria for respiration and results in the conversion of sulfate to sulfide. However, this dissimilatory sulfate reduction pathway is inhibited by oxygen and is thus limited to anaerobic environments. As an alternative, we have metabolically engineered a novel aerobic sulfate reduction pathway for the secretion of sulfides. The assimilatory sulfate reduction pathway was redirected to overproduce cysteine, and excess cysteine was converted to sulfide by cysteine desulfhydrase. As a potential application for this pathway, a bacterium was engineered with this pathway and was used to aerobically precipitate cadmium as cadmium sulfide, which was deposited on the cell surface. To maximize sulfide production and cadmium precipitation, the production of cysteine desulfhydrase was modulated to achieve an optimal balance between the production and degradation of cysteine. PMID:11010904

  19. Characteristics of aluminum-reinforced γ-LiAlO2 matrices for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Jin; Choi, Hyun-Jong; Hyun, Sang-Hoon; Im, Hee-Chun

    2008-05-01

    A key component in molten carbonate fuel cells (MCFCs) is the electrolyte matrix, which provides both ionic conduction and gas sealing. During initial MCFC stack start-up and operation (650 °C), the matrix experiences both mechanical and thermal stresses as a result of the difference in thermal expansion coefficients between the LiAlO2 ceramic particles and the carbonate electrolyte that causes cracking of the matrix. A pure γ-LiAlO2 matrix, however, has poor mechanical strength and low thermal expansion coefficients. In this study, fine γ-LiAlO2 powders and pure Al (3/20/50 μm)/Li2CO3 particles are used as a matrix and as reinforcing materials, respectively. The Al phase transforms completely into γ-LiAlO2 at 650 °C within 10 h. The mechanical strength of these matrices (283.48 gf mm-2) increases nearly threefold relative to that of a pure γ-LiAlO2 matrix (104.01 gf mm-2). The mismatch of the thermal expansion coefficient between the matrix and electrolyte phases can be controlled by adding Al particles, which results in improved thermal stability in the initial heating-up step. In unit-cell and thermal-cycling tests, the optimized matrix demonstrates superior performance over pure γ-LiAlO2 matrices.

  20. Aluminum-induced programmed cell death promoted by AhSAG, a senescence-associated gene in Arachis hypoganea L.

    PubMed

    Zhan, Jie; He, Hu-Yi; Wang, Tian-Ju; Wang, Ai-Qin; Li, Chuang-Zhen; He, Long-Fei

    2013-09-01

    Programmed cell death (PCD) is a foundational cellular process in plant development and elimination of damaged cells under environmental stresses. In this study, Al induced PCD in two peanut (Arachis hypoganea L.) cultivars Zhonghua 2 (Al-sensitive) and 99-1507 (Al-tolerant) using DNA ladder, TUNEL detection and electron microscopy. The concentration of Al-induced PCD was lower in Zhonghua 2 than in 99-1507. AhSAG, a senescence-associated gene was isolated from cDNA library of Al-stressed peanut with PCD. Open reading frame (ORF) of AhSAG was 474bp, encoding a SAG protein composed of 157 amino acids. Compared to the control and the antisense transgenic tobacco plants, the fast development and blossom of the sense transgenic plants happened to promote senescence. The ability of Al tolerance in sense transgenic tobacco was lower than in antisense transgenic tobacco according to root elongation and Al content analysis. The expression of AhSAG-GFP was higher in sense transgenic tobacco than in antisense transgenic tobacco. Altogether, these results indicated that there was a negative relationship between Al-induced PCD and Al-resistance in peanut, and the AhSAG could induce or promote the occurrence of PCD in plants. PMID:23849118

  1. Lithium-aluminum-magnesium electrode composition

    DOEpatents

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  2. Mechanism of Immunopotentiation and Safety of Aluminum Adjuvants

    PubMed Central

    HogenEsch, Harm

    2013-01-01

    Aluminum-containing adjuvants are widely used in preventive vaccines against infectious diseases and in preparations for allergy immunotherapy. The mechanism by which they enhance the immune response remains poorly understood. Aluminum adjuvants selectively stimulate a Th2 immune response upon injection of mice and a mixed response in human beings. They support activation of CD8 T cells, but these cells do not undergo terminal differentiation to cytotoxic T cells. Adsorption of antigens to aluminum adjuvants enhances the immune response by facilitating phagocytosis and slowing the diffusion of antigens from the injection site which allows time for inflammatory cells to accumulate. The adsorptive strength is important as high affinity interactions interfere with the immune response. Adsorption can also affect the physical and chemical stability of antigens. Aluminum adjuvants activate dendritic cells via direct and indirect mechanisms. Phagocytosis of aluminum adjuvants followed by disruption of the phagolysosome activates NLRP3-inflammasomes resulting in the release of active IL-1β and IL-18. Aluminum adjuvants also activate dendritic cells by binding to membrane lipid rafts. Injection of aluminum-adjuvanted vaccines causes the release of uric acid, DNA, and ATP from damaged cells which in turn activate dendritic cells. The use of aluminum adjuvant is limited by weak stimulation of cell-mediated immunity. This can be enhanced by addition of other immunomodulatory molecules. Adsorption of these molecules is determined by the same mechanisms that control adsorption of antigens and can affect the efficacy of such combination adjuvants. The widespread use of aluminum adjuvants can be attributed in part to the excellent safety record based on a 70-year history of use. They cause local inflammation at the injection site, but also reduce the severity of systemic and local reactions by binding biologically active molecules in vaccines. PMID:23335921

  3. Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode.

    PubMed

    Ma, Wenqiang; Chen, Fuyi; Zhang, Nan; Wu, Xiaoqiang

    2014-10-01

    The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the catalytic activity can accelerate the search for highly active and abundant bimetallic catalysts to replace platinum. Here, we present a first-principles study of ORR on Ag12Cu cluster in alkaline environment. The adsorptions of O2, OOH, and OH on Cu-doped Ag13 are stronger than on Ag13. The d-band centers of adsorption sites show the Cu-doping makes d-electrons transferred to higher energy state, and improves O2 dissociation. ORR processes on Ag12Cu and Ag13 indicate Cu-doping can strongly promote ORR, and ORR process can be better preformed on Ag12Cu than on Ag13. For four-electron transfer, the effective reversible potential is 0.401 V/RHE on Ag12Cu in alkaline medium. PMID:25227449

  4. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  5. Walnut Hulls Clean Aluminum

    NASA Technical Reports Server (NTRS)

    Colberg, W. R.; Gordon, G. H.; Jackson, C. H.

    1984-01-01

    Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.

  6. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  7. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  8. Light weight aluminum optics

    NASA Astrophysics Data System (ADS)

    Catura, R. C.; Vieira, J. R.

    1985-09-01

    Light weight mirror blanks were fabricated by dip-brazing a core of low mass aluminum foam material to thin face sheets of solid aluminum. The blanks weigh 40% of an equivalent size solid mirror and were diamond turned to provide reflective surfaces. Optical interferometry was used to assess their dimensional stability over 7 months. No changes in flatness are observed (to the sensitivity of the measurements of a half wavelength of red light).

  9. Activation of Aluminum as an Effective Reducing Agent by Pitting Corrosion for Wet-chemical Synthesis

    PubMed Central

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F−, Cl−, and Br− in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu2Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent. PMID:23390579

  10. Activation of aluminum as an effective reducing agent by pitting corrosion for wet-chemical synthesis.

    PubMed

    Li, Wei; Cochell, Thomas; Manthiram, Arumugam

    2013-01-01

    Metallic aluminum (Al) is of interest as a reducing agent because of its low standard reduction potential. However, its surface is invariably covered with a dense aluminum oxide film, which prevents its effective use as a reducing agent in wet-chemical synthesis. Pitting corrosion, known as an undesired reaction destroying Al and is enhanced by anions such as F⁻, Cl⁻, and Br⁻ in aqueous solutions, is applied here for the first time to activate Al as a reducing agent for wet-chemical synthesis of a diverse array of metals and alloys. Specifically, we demonstrate the synthesis of highly dispersed palladium nanoparticles on carbon black with stabilizers and the intermetallic Cu₂Sb/C, which are promising candidates, respectively, for fuel cell catalysts and lithium-ion battery anodes. Atomic hydrogen, an intermediate during the pitting corrosion of Al in protonic solvents (e.g., water and ethylene glycol), is validated as the actual reducing agent.

  11. Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery.

    PubMed

    Chiku, Masanobu; Takeda, Hiroki; Matsumura, Shota; Higuchi, Eiji; Inoue, Hiroshi

    2015-11-11

    Amorphous vanadium oxide/carbon composite (V2O5/C) was first applied to the positive electrode active material for rechargeable aluminum batteries. Electrochemical properties of V2O5/C were investigated by cyclic voltammetry and charge-discharge tests. Reversible reduction/oxidation peaks were observed for the V2O5/C electrode and the rechargeable aluminum cell showed the maximum discharge capacity over 200 mAh g(-1) in the first discharging. The XPS analyses after discharging and the following charging exhibited that the redox of vanadium ion in the V2O5/C active material occurred during discharging and charging, and the average valence of V changed between 4.14 and 4.85.

  12. Audit and review for evidence-based red cell wastage reduction measures.

    PubMed

    Smith, G A; Gopal-Patel, J; Joseph, J V; Hobson, A; Clarke, K

    2015-01-01

    Stocks of red blood cells (RBC) are held to ideally match supply and demand; hold too great a stock and unnecessary wastage occurs; too low a stock results in delay or lack of blood for the patient. Blood is a precious resource and its supply needs to be managed effectively. The aim was to identify how RBC units are wasted and propose laboratory-based reduction measures that would not compromise the clinical requirements of the patient. Wastage of RBC was investigated using a 'dashboard' query of a laboratory information management system. By employing service improvement tools, proposals were made to reduce unnecessary RBC waste while ensuring an adequate supply to the patient. The efficacy of those proposals was examined using the same dashboard to compare similar periods before and after their introduction. The reduction in RBC wastage for all groups during an eight month period (December to July) was from 6.4% (5.3% non-AB or B RhD-positive) pre-implementation to 4.4% (2.5% non-AB/B RhD-positive) post-implementation. Group O RhD-negative wastage reduced from 10.4% to 4.4% after introduction of waste-saving proposals. However, there was an increase in staff time required to introduce the changes and in associated Group and Screen testing (3.4 to 3.8 per unit issued). RBC wastage was significantly reduced (P<0.0001) by 32.8% (52%, non-AB/B RhD-positive), saving approximately 225 RBC units per annum. Financially, increased associated costs did not negate the savings made by the measures introduced. PMID:26738401

  13. Chronic aluminum intake causes Alzheimer's disease: applying Sir Austin Bradford Hill's causality criteria.

    PubMed

    Walton, J R

    2014-01-01

    Industrialized societies produce many convenience foods with aluminum additives that enhance various food properties and use alum (aluminum sulfate or aluminum potassium sulfate) in water treatment to enable delivery of large volumes of drinking water to millions of urban consumers. The present causality analysis evaluates the extent to which the routine, life-long intake, and metabolism of aluminum compounds can account for Alzheimer's disease (AD), using Austin Bradford Hill's nine epidemiological and experimental causality criteria, including strength of the relationship, consistency, specificity, temporality, dose-dependent response, biological rationale, coherence with existing knowledge, experimental evidence, and analogy. Mechanisms that underlie the risk of low concentrations of aluminum relate to (1) aluminum's absorption rates, allowing the impression that aluminum is safe to ingest and as an additive in food and drinking water treatment, (2) aluminum's slow progressive uptake into the brain over a long prodromal phase, and (3) aluminum's similarity to iron, in terms of ionic size, allows aluminum to use iron-evolved mechanisms to enter the highly-active, iron-dependent cells responsible for memory processing. Aluminum particularly accumulates in these iron-dependent cells to toxic levels, dysregulating iron homeostasis and causing microtubule depletion, eventually producing changes that result in disconnection of neuronal afferents and efferents, loss of function and regional atrophy consistent with MRI findings in AD brains. AD is a human form of chronic aluminum neurotoxicity. The causality analysis demonstrates that chronic aluminum intake causes AD.

  14. Rivastigmine reverses aluminum-induced behavioral changes in rats.

    PubMed

    Abdel-Aal, Raafat A; Assi, Abdel-Azim A; Kostandy, Botros B

    2011-06-01

    Aluminum, a known neurotoxin, has long been implicated in the pathogenesis of Alzheimer's disease. Its exposure is associated with impairment in the cholinergic system in the brain. In this study we investigated the behavioral effects of aluminum in rats and the possible effect of rivastigmine, a cholinesterase inhibitor, on the aluminum-induced behavioral changes. Rats were exposed to aluminum chloride (100 mg/kg/day i.p.) for 60 days before the start of behavioral tests. Rivastigmine was given in doses of 0.5, 1, 1.5 and 2.5 mg/kg i.p. 60 min before the behavioral tests. Five tests were investigated; open field test, Morris water maze, radial arm maze, passive avoidance test and rota-rod test. Results showed that aluminum exposure was associated with significant reductions in spontaneous locomotor and exploratory activities in open field test and significant impairments in learning and memory in Morris water maze, radial arm maze and passive avoidance tests. The behavioral impairments caused by aluminum were significantly improved by rivastigmine. Neither aluminum alone nor co-treatment with rivastigmine caused any significant alteration of the animals' performance in rota-rod test. The improvements in activity, learning and memory caused by rivastigmine were found to be dose-dependent, and the maximal improvement was encountered with its large dose (2.5 mg/kg). From these results we can conclude that rivastigmine can reverse behavioral deficits caused by aluminum intoxication.

  15. Aluminum fluoride inhibition of glucocorticoid receptor inactivation and transformation

    SciTech Connect

    Housley, P.R. )

    1990-04-10

    Fluoride, in the presence of aluminum ions, reversibly inhibits the temperature-mediated inactivation of unoccupied glucocorticoid receptors in cytosol preparations from mouse L cells. The effect is concentration-dependent, with virtually complete stabilization of specific glucocorticoid-binding capacity at 2 mM fluoride and 100 microM aluminum. These concentrations of aluminum and fluoride are ineffective when used separately. Aluminum fluoride also stabilizes receptors toward inactivation by gel filtration and ammonium sulfate precipitation. Aluminum fluoride prevents temperature-dependent transformation of steroid-receptor complexes to the DNA-binding state. Aluminum fluoride does not inhibit calf intestine alkaline phosphatase, and unoccupied receptors inactivated by this enzyme in the presence of aluminum fluoride can be completely reactivated by dithiothreitol. The effects of aluminum fluoride are due to stabilization of the complex between the glucocorticoid receptor and the 90-kDa mammalian heat-shock protein hsp90, which suggests that aluminum fluoride interacts directly with the receptor. Endogenous thermal inactivation of receptors in cytosol is not accompanied by receptor dephosphorylation. However, inactivation is correlated with dissociation of hsp90 from the unoccupied receptor. These results support the proposal that hsp90 is required for the receptor to bind steroid and dissociation of hsp90 is sufficient to inactivate the unoccupied receptor.

  16. TP53-dependent chromosome instability is associated with transient reductions in telomere length in immortal telomerase-positive cell lines

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Liber, H.; Murnane, J. P.; Evans, H. H.

    2001-01-01

    Telomere shortening in telomerase-negative somatic cells leads to the activation of the TP53 protein and the elimination of potentially unstable cells. We examined the effect of TP53 gene expression on both telomere metabolism and chromosome stability in immortal, telomerase-positive cell lines. Telomere length, telomerase activity, and chromosome instability were measured in multiple clones isolated from three related human B-lymphoblast cell lines that vary in TP53 expression; TK6 cells express wild-type TP53, WTK1 cells overexpress a mutant form of TP53, and NH32 cells express no TP53 protein. Clonal variations in both telomere length and chromosome stability were observed, and shorter telomeres were associated with higher levels of chromosome instability. The shortest telomeres were found in WTK1- and NH32-derived cells, and these cells had 5- to 10-fold higher levels of chromosome instability. The primary marker of instability was the presence of dicentric chromosomes. Aneuploidy and other stable chromosome alterations were also found in clones showing high levels of dicentrics. Polyploidy was found only in WTK1-derived cells. Both telomere length and chromosome instability fluctuated in the different cell populations with time in culture, presumably as unstable cells and cells with short telomeres were eliminated from the growing population. Our results suggest that transient reductions in telomere lengths may be common in immortal cell lines and that these alterations in telomere metabolism can have a profound effect on chromosome stability. Copyright 2000 Wiley-Liss, Inc.

  17. Reactive oxygen species-mediated synergistic and preferential induction of cell death and reduction of clonogenic resistance in breast cancer cells by combined cisplatin and FK228.

    PubMed

    Pluchino, Lenora Ann; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2016-10-10

    Safe and effective combination chemotherapy regimens against breast cancer are lacking. We used our cellular system, consisting of the non-cancerous human breast epithelial MCF10A cell line and its derived tumorigenic, oncogenic H-Ras-expressing, MCF10A-Ras cell line, to investigate the effectiveness of a combination chemotherapy regimen in treating breast cancer cells using two FDA-approved agents, cisplatin and FK228. Cisplatin and FK228 significantly, synergistically, and preferentially induced death and reduced drug resistance of MCF10A-Ras versus MCF10A cells. The ERK-Nox-ROS pathway played a major role in both synergistic cell death induction and GSH-level reduction, which contributed to the synergistic suppression of drug resistance in cells. Enhancement of the Ras-ERK-Nox pathway by combined cisplatin and FK228 significantly increased ROS levels, leading to induction of death, reduction of drug resistance, and induction of DNA damage and oxidation in cancerous MCF10A-Ras cells. Furthermore, synergistic induction of cell death and reduction of drug resistance by combined cisplatin and FK228 in breast cells is independent of their estrogen receptor status. Our study suggests that combined cisplatin and FK228 should be considered in clinical trials as a new regimen for therapeutic control of breast cancers. PMID:27477899

  18. MICRURGICAL STUDIES IN CELL PHYSIOLOGY : II. THE ACTION OF THE CHLORIDES OF LEAD, MERCURY, COPPER, IRON, AND ALUMINUM ON THE PROTOPLASM OF AMOEBA PROTEUS.

    PubMed

    Reznikoff, P

    1926-09-20

    I. Plasmalemma. 1. The order of toxicity of the salts used in these experiments on the surface membrane of a cell, taking as a criterion viability of amebae immersed in solutions for 1 day, is HgCl(2), FeCl(3)> AlCl(3)> CuCl(2)> PbCl(2)> FeCl(2). Using viability for 5 days as a criterion, the order of toxicity is PbCl(2)> CuCl(2)> HgCl(2)> AlCl(3)> FeCl(3)> FeCl(2). 2. The rate of toxicity is in the order FeCl(3)> HgCl(2)> AlCl(3)> FeCl(2)> CuCl(2)> PbCl(2). 3. The ability of amebae to recover from a marked tear of the plasmalemma in the solutions of the salts occurred in the following order: AlCl(3)> PbCl(2)> FeCl(2)> CuCl(2)> FeCl(3)> HgCl(2). II. Internal Protoplasm. 4. The relative toxicity of the salts on the internal protoplasm, judged by the recovery of the amebae from large injections and the range over which these salts can cause coagulation of the internal protoplasm, is in the following order: PbCl(2)> CuCl(2)> FeCl(3)> HgCl(2)> FeCl(2)> AlCl(3). 5. AlCl(3) in concentrations between M/32 and M/250 causes a marked temporary enlargement of the contractile vacuole. FeCl(2), FeCl(3), and CuCl(3) produce a slight enlargement of the vacuole. 6. PbCl(2), in concentrations used in these experiments, appears to form a different type of combination with the internal protoplasm than do the other salts. III. Permeability. 7. Using the similarity in appearance of the internal protoplasm after injection and after immersion to indicate that the surface is permeable to a substance in which the ameba is immersed, it is concluded that AlCl(3) can easily penetrate the intact plasmalemma. CuCl(2) also seems to have some penetrating power. None of the other salts studied give visible internal evidence of penetrability into the ameba. IV. Toxicity. 8. The toxic action of the chlorides of the heavy metals used in these experiments, and of aluminum, is exerted principally upon the surface of the cell and is due not only to the action of the metal cation but also to acid which

  19. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOEpatents

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  20. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    SciTech Connect

    Gilbert, M.; Kaun, Th. D.

    1984-12-18

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  1. Aluminum, parathyroid hormone, and osteomalacia

    SciTech Connect

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  2. Calcium-dependent volume reduction in regenerating ganglion cell axons in vitro.

    PubMed

    Edmonds, B T; Koenig, E

    1990-06-01

    The effects of increasing [Ca2+]i on volume regulatory behavior was investigated by phase-contrast videomicroscopy in immature axons regenerating from goldfish retinal explants in vitro. Elevating [Ca2+]i by using EGTA-buffered, ionomycin-containing bathing media with either greater than or equal to 100 microM [Ca2+]o or 1 microM [Ca2+]o with N-methylglucamine substituted for Na+ caused axons to undergo a "syneresis." The syneresis was characterized by a marked loss in volume and condensation of axoplasm, accompanied by a proliferation of lateral processes, which resulted ultimately in an arrest of visible particle transport. The random appearance of dynamic phase-lucent axial protrusions in the distal axon, apparently caused by microtubules, was a frequent early manifestation. Syneresis was also produced by increasing the tonicity of the Cortland saline with sorbitol or treating axons with either valinomycin or with permeant cyclic AMP analogs in normal Cortland saline. In the latter case, extracellular Ca2+ was required. Preterminal axons showed an increase in phalloidin fluorescence after syneresis, suggesting polymerization and/or rearrangement of the actin cytoskeleton. Digitonin-permeabilized axonal field models, which maintained good morphology and particle transport, failed to develop a syneresis even when [Ca2+]o was increased to 250 microM. Cytochalasin D did not interfere with the development of a syneresis, but did suppress the proliferation of lateral processes. Syneresis could be blocked by high [K+]o, putative antagonists of Ca2(+)-activated K+ channels, or by calmidazolium, a calmodulin antagonist. The experimental findings suggest that cytoskeletal changes associated with volume reduction in growing retinal ganglion cell axons are secondary to a loss of cell water and that calcium/calmodulin-activated K+ channels very likely play a primary role in dehydration through the loss of K+ and osmotically obligated water.

  3. Inducing somatic meiosis-like reduction at high frequency by caffeine in root-tip cells of Vicia faba.

    PubMed

    Chen, Y; Zhang, L; Zhou, Y; Geng, Y; Chen, Z

    2000-07-20

    Germinated seeds of Vicia faba were treated in caffeine solutions of different concentration for different durations to establish the inducing system of somatic meiosis-like reduction. The highest frequency of somatic meiosis-like reduction could reach up to 54.0% by treating the root tips in 70 mmol/l caffeine solution for 2 h and restoring for 24 h. Two types of somatic meiosis-like reduction were observed. One was reductional grouping, in which the chromosomes in a cell usually separated into two groups, and the role of spindle fibers did not show. The other type was somatic meiosis, which was analogous to meiosis presenting in gametogenesis, and chromosome pairing and chiasmata were visualized.

  4. PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells.

    PubMed

    Guerrini, Edoardo; Grattieri, Matteo; Faggianelli, Alessio; Cristiani, Pierangela; Trasatti, Stefano

    2015-12-01

    Influence of PTFE in the external Gas Diffusion Layer (GDL) of open-air cathodes applied to membraneless microbial fuel cells (MFCs) is investigated in this work. Electrochemical measurements on cathodes with different PTFE contents (200%, 100%, 80% and 60%) were carried out to characterize cathodic oxygen reduction reaction, to study the reaction kinetics. It is demonstrated that ORR is not under diffusion-limiting conditions in the tested systems. Based on cyclic voltammetry, an increase of the cathodic electrochemical active area took place with the decrease of PTFE content. This was not directly related to MFC productivity, but to the cathode wettability and the biocathode development. Low electrodic interface resistances (from 1 to 1.5 Ω at the start, to near 0.1 Ω at day 61) indicated a negligible ohmic drop. A decrease of the Tafel slopes from 120 to 80 mV during productive periods of MFCs followed the biological activity in the whole MFC system. A high PTFE content in the cathode showed a detrimental effect on the MFC productivity, acting as an inhibitor of ORR electrocatalysis in the triple contact zone. PMID:26045153

  5. Clinically meaningful reduction in pruritus in patients with cutaneous T-cell lymphoma treated with romidepsin.

    PubMed

    Kim, Youn H; Demierre, Marie-France; Kim, Ellen J; Lerner, Adam; Rook, Alain H; Duvic, Madeleine; Robak, Tadeusz; Samtsov, Alexey; McCulloch, William; Chen, Suephy C; Waksman, Joel; Nichols, Jean; Whittaker, Sean

    2013-02-01

    Patients with cutaneous T-cell lymphoma (CTCL) frequently experience severe pruritus that can significantly impact their quality of life. Romidepsin is approved by the US Food and Drug Administration (FDA) for the treatment of patients with CTCL who have received at least one prior systemic therapy, with a reported objective response rate of 34%. In a phase 2 study of romidepsin in patients with CTCL (GPI-04-0001), clinically meaningful reduction in pruritus (CMRP) was evaluated as an indicator of clinical benefit by using a patient-assessed visual analog scale. To determine the effect of romidepsin alone, confounding pruritus treatments including steroids and antihistamines were prohibited. At baseline, 76% of patients reported moderate-to-severe pruritus; 43% of these patients experienced CMRP, including 11 who did not achieve an objective response. Median time to CMRP was 1.8 months, and median duration of CMRP was 5.6 months. Study results suggest that the clinical benefit of romidepsin may extend beyond objective responses.

  6. Quantification of protein isoforms in mesenchymal stem cells by reductive dimethylation of lysines in intact proteins.

    PubMed

    She, Yi-Min; Rosu-Myles, Michael; Walrond, Lisa; Cyr, Terry D

    2012-02-01

    Mass spectrometry (MS)-based quantification of highly homologous proteins in complex samples has proven difficult due to subtle sequence variations and the wide dynamic range of protein isoforms present. Herein, we report the use of reductive dimethylation on intact proteins to quantitatively compare protein isoform expression in the nucleus and cytoplasm of mesenchymal stem cells (MSC) and normal stroma. By coupling fixed-charge MS/MS scanning, high-resolution UPLC FT-MS data-dependent acquisition and MASCOT-based data mining, hydrogen/deuterium-labeled dimethyl-lysine peptides were simultaneously captured allowing the accurate comparison of 123 protein isoforms in parallel LC MS/MS runs. Thirty-four isoforms were identified that had expression levels specific to MSC. Where possible, proteomic analyses were verified by Western blotting and were demonstrated to be divergent from the level of gene transcription detected for certain proteins. Our analysis provides a protein isoform signature specific to MSC and demonstrates the suitability of dimethyl-lysine labeling on intact proteins for quantifying highly homologous proteins on a proteome-wide scale.

  7. Pyrolyzed binuclear-cobalt-phthalocyanine as electrocatalyst for oxygen reduction reaction in microbial fuel cells.

    PubMed

    Li, Baitao; Wang, Mian; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun

    2015-10-01

    A novel platinum (Pt)-free cathodic materials binuclear-cobalt-phthalocyanine (Bi-CoPc) pyrolyzed at different temperatures (300-1000 °C) were examined as the oxygen reduction reaction (ORR) catalysts, and compared with unpyrolyzed Bi-CoPc/C and Pt cathode in single chamber microbial fuel cells (SCMFCs). The results showed that the pyrolysis process increased the nitrogen abundance on Bi-CoPc and changed the nitrogen types. The Bi-CoPc pyrolyzed at 800 °C contained a significant amount of pyrrolic-N, and exhibited a high electrochemical catalytic activity. The power density and current density increased with temperature: Bi-CoPc/C-800 > Bi-CoPc/C-1000 > Bi-CoPc/C-600 > Bi-CoPc/C-300 > Bi-CoPc/C. The SCMFC with Bi-CoPc/C-800 cathode had a maximum power density of 604 mW m(-2). The low cost Bi-CoPc compounds developed in this study showed a potential in air-breathing MFC systems, with the proper pyrolysis temperature being chosen.

  8. Nanostructured Catalyst Systems for Fuel Cells: Synthesis and Characterization of Low Platinum Content Electrocatalysts for O{sub 2} Reduction

    SciTech Connect

    Adzic, Radoslav

    2007-02-01

    The objective of this project is to synthesize and characterize new O{sub 2} reduction catalysts with enhanced activity and ultra low Pt loading, and to test them in membrane electrode assemblies (MEAs) to determine their performance under fuel cell cathode operating conditions.

  9. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    PubMed

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  10. An experimental aluminum-fueled power plant

    NASA Astrophysics Data System (ADS)

    Vlaskin, M. S.; Shkolnikov, E. I.; Bersh, A. V.; Zhuk, A. Z.; Lisicyn, A. V.; Sorokovikov, A. I.; Pankina, Yu. V.

    2011-10-01

    An experimental co-generation power plant (CGPP-10) using aluminum micron powder (with average particle size up to 70 μm) as primary fuel and water as primary oxidant was developed and tested. Power plant can work in autonomous (unconnected from industrial network) nonstop regime producing hydrogen, electrical energy and heat. One of the key components of experimental plant is aluminum-water high-pressure reactor projected for hydrogen production rate of ∼10 nm3 h-1. Hydrogen from the reactor goes through condenser and dehumidifier and with -25 °C dew-point temperature enters into the air-hydrogen fuel cell 16 kW-battery. From 1 kg of aluminum the experimental plant produces 1 kWh of electrical energy and 5-7 kWh of heat. Power consumer gets about 10 kW of electrical power. Plant electrical and total efficiencies are 12% and 72%, respectively.

  11. Safety evaluation of dietary aluminum.

    PubMed

    Soni, M G; White, S M; Flamm, W G; Burdock, G A

    2001-02-01

    Aluminum is a nonessential metal to which humans are frequently exposed. Aluminum in the food supply comes from natural sources, water used in food preparation, food ingredients, and utensils used during food preparations. The amount of aluminum in the diet is small, compared with the amount of aluminum in antacids and some buffered analgesics. The healthy human body has effective barriers (skin, lungs, gastrointestinal tract) to reduce the systemic absorption of aluminum ingested from water, foods, drugs, and air. The small amount of aluminum (<1%) that is systemically absorbed is excreted principally in the urine and, to a lesser extent, in the feces. No reports of dietary aluminum toxicity to healthy individuals exist in the literature. Aluminum can be neurotoxic, when injected directly into the brains of animals and when accidentally introduced into human brains (by dialysis or shrapnel). A study from Canada reports cognitive and other neurological deficits among groups of workers occupationally exposed to dust containing high levels of aluminum. While the precise pathogenic role of aluminum in Alzheimer's disease (AD) remains to be defined, present data do not support a causative role for aluminum in AD. High intake of aluminum from antacid for gastrointestinal ailments has not been reported to cause any adverse effects and has not been correlated with neurotoxicity or AD. Foods and food ingredients are generally the major dietary sources of aluminum in the United States. Cooking in aluminum utensils often results in statistically significant, but relatively small, increases in aluminum content of food. Common aluminum-containing food ingredients are used mainly as preservatives, coloring agents, leavening agents, anticaking agents, etc. Safety evaluation and approval of these ingredients by the Food and Drug Administration indicate that these aluminum-containing compounds are safe for use in foods.

  12. The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling

    PubMed Central

    Jünger, Martin A; Rintelen, Felix; Stocker, Hugo; Wasserman, Jonathan D; Végh, Mátyás; Radimerski, Thomas; Greenberg, Michael E; Hafen, Ernst

    2003-01-01

    Background Forkhead transcription factors belonging to the FOXO subfamily are negatively regulated by protein kinase B (PKB) in response to signaling by insulin and insulin-like growth factor in Caenorhabditis elegans and mammals. In Drosophila, the insulin-signaling pathway regulates the size of cells, organs, and the entire body in response to nutrient availability, by controlling both cell size and cell number. In this study, we present a genetic characterization of dFOXO, the only Drosophila FOXO ortholog. Results Ectopic expression of dFOXO and human FOXO3a induced organ-size reduction and cell death in a manner dependent on phosphoinositide (PI) 3-kinase and nutrient levels. Surprisingly, flies homozygous for dFOXO null alleles are viable and of normal size. They are, however, more sensitive to oxidative stress. Furthermore, dFOXO function is required for growth inhibition associated with reduced insulin signaling. Loss of dFOXO suppresses the reduction in cell number but not the cell-size reduction elicited by mutations in the insulin-signaling pathway. By microarray analysis and subsequent genetic validation, we have identified d4E-BP, which encodes a translation inhibitor, as a relevant dFOXO target gene. Conclusion Our results show that dFOXO is a crucial mediator of insulin signaling in Drosophila, mediating the reduction in cell number in insulin-signaling mutants. We propose that in response to cellular stresses, such as nutrient deprivation or increased levels of reactive oxygen species, dFOXO is activated and inhibits growth through the action of target genes such as d4E-BP. PMID:12908874

  13. In vivo reduction of cell-free methemoglobin to oxyhemoglobin results in vasoconstriction in canines

    PubMed Central

    Wang, Dong; Piknova, Barbora; Solomon, Steven B.; Cortes-Puch, Irene; Kern, Steven J.; Sun, Junfeng; Kanias, Tamir; Gladwin, Mark T.; Helms, Christine; Kim-Shapiro, Daniel B.; Schechter, Alan. N; Natanson, Charles

    2013-01-01

    BACKGROUND Cell-free hemoglobin (Hb) in the vasculature leads to vasoconstriction and injury. Proposed mechanisms have been based on nitric oxide (NO) scavenging by oxyhemoglobin (oxyHb) or processes mediated by oxidative reactions of methemoglobin (metHb). To clarify this, we tested the vascular effect and fate of oxyHb or metHb infusions. STUDY DESIGN AND METHODS Twenty beagles were challenged with 1 h similar infusions of (200uM) metHb (n=5), oxyHb (n=5), albumin (n=5), or saline (n=5). Measurements were taken over 3 h. RESULTS Infusions of the two pure Hb species resulted in increases in mean arterial blood pressure (MAP), systemic vascular resistance index, and NO consumption capacity of plasma (all p<0.05) with the effects of oxyHb being greater than that from metHb (MAP; increase 0 to 3h; 27±6 % vs.7±2 %, respectively) (all p<0.05). The significant vasoconstrictive response of metHb (vs. albumin and saline controls) was related to in vivo auto-reduction of metHb to oxyHb, and the vasoactive Hb species that significantly correlated with MAP was always oxyHb, either from direct infusion or after in vivo reduction from metHb. Clearance of total Hb from plasma was faster after metHb than oxyHb infusion (p<0.0001). CONCLUSION These findings indicate that greater NO consumption capacity makes oxyHb more vasoactive than metHb. Additionally, metHb is reduced to oxyHb post-infusion and cleared faster or is less stable than oxyHb. Although we found no direct evidence that metHb itself is involved in acute vascular effects, in aggregate, these studies suggest that metHb is not inert and its mechanism of vasoconstriction is due to its delayed conversion to oxyHb by plasma-reducing agents. PMID:23488474

  14. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    SciTech Connect

    Gopalan, Srikanth

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  15. Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells

    PubMed Central

    Fendt, Sarah-Maria; Bell, Eric L.; Keibler, Mark A.; Olenchock, Benjamin A.; Mayers, Jared R.; Wasylenko, Thomas M.; Vokes, Natalie I.; Guarente, Leonard; Vander Heiden, Matthew G.; Stephanopoulos, Gregory

    2014-01-01

    Reductively metabolized glutamine is a major cellular carbon source for fatty acid synthesis during hypoxia or when mitochondrial respiration is impaired. Yet, a mechanistic understanding of what determines reductive metabolism is missing. Here we identify several cellular conditions where the α-ketoglutarate/citrate ratio is changed due to altered acetyl-CoA to citrate conversion, and demonstrate that reductive glutamine metabolism is initiated in response to perturbations that results in an increase in the α-ketoglutarate/citrate ratio. Thus, targeting reductive glutamine conversion for a therapeutic benefit might require distinct modulations of metabolite concentrations rather than targeting the upstream signaling, which only indirectly affects the process. PMID:23900562

  16. Reductive amination by recombinant Escherichia coli: whole cell biotransformation of 2-keto-3-methylvalerate to L-isoleucine.

    PubMed

    Lorenz, Elisabeth; Klatte, Stephanie; Wendisch, Volker F

    2013-11-01

    A whole cell biotransformation system for reductive amination has been studied in recombinant Escherichia coli cells. Reductive amination of 2-keto-3-methylvalerate to L-isoleucine by a two-enzyme-cascade was achieved by overproduction of endogenous L-alanine dependent transaminase AvtA and heterologous L-alanine dehydrogenase from Bacillus subtilis in recombinant E. coli. Up to 100 mM L-isoleucine were produced from 100 mM 2-keto-3-methylvalerate and 100 mM ammonium sulfate. Regeneration of NADH as cofactor in the whole cell system was driven by glucose catabolism. The effects of defined gene deletions in the central carbon metabolism on biotransformation were tested. Strains lacking the NuoG subunit of NADH:ubiquinone oxidoreductase (complex I) or aceA encoding the glyoxylate cycle enzyme isocitrate lyase exhibited increased biotransformation rates.

  17. Aluminum Hydroxide and Magnesium Hydroxide

    MedlinePlus

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  18. R&D on fuel cells in Japan and possible contributions of fuel cells to the Global Reduction of CO{sub 2} emissions

    SciTech Connect

    Takenaka, Hiroyasu

    1993-12-31

    Fuel cells can generate electricity equivalent to 40-60% of the energy contained In the fuel consumed, and an overall efficiency as high as 80% is not impossible to achieve through utilization of the exhaust heat. In addition, emissions of pollutants such as NOx and SOx from fuel cells are low. Since various reformed gases derived from natural gas, methanol and coal can be used as fuel for fuel cells, the wide range of applications for fuel cells is expected to contribute to the reduction of petroleum dependence in Japan.

  19. Electrometallurgical treatment of aluminum-matrix fuels

    SciTech Connect

    Willit, J.L.; Gay, E.C.; Miller, W.E.; McPheeters, C.C.; Laidler, J.J.

    1996-08-01

    The electrometallurgical treatment process described in this paper builds on our experience in treating spent fuel from the Experimental Breeder Reactor (EBR-II). The work is also to some degree, a spin-off from applying electrometallurgical treatment to spent fuel from the Hanford single pass reactors (SPRs) and fuel and flush salt from the Molten Salt Reactor Experiment (MSRE) in treating EBR-II fuel, we recover the actinides from a uranium-zirconium fuel by electrorefining the uranium out of the chopped fuel. With SPR fuel, uranium is electrorefined out of the aluminum cladding. Both of these processes are conducted in a LiCl-KCl molten-salt electrolyte. In the case of the MSRE, which used a fluoride salt-based fuel, uranium in this salt is recovered through a series of electrochemical reductions. Recovering high-purity uranium from an aluminum-matrix fuel is more challenging than treating SPR or EBR-II fuel because the aluminum- matrix fuel is typically -90% (volume basis) aluminum.

  20. Polymer Electrolyte Fuel Cells Employing Heteropolyacids as Redox Mediators for Oxygen Reduction Reactions: Pt-Free Cathode Systems.

    PubMed

    Matsui, Toshiaki; Morikawa, Eri; Nakada, Shintaro; Okanishi, Takeou; Muroyama, Hiroki; Hirao, Yoshifumi; Takahashi, Tsuyoshi; Eguchi, Koichi

    2016-07-20

    In this study, the heteropolyacids of H3+xPVxMO12-xO40 (x = 0, 2, and 3) were applied as redox mediators for the oxygen reduction reaction in polymer electrolyte fuel cells, of which the cathode is free from the usage of noble metals such as Pt/C. In this system, the electrochemical reduction of heteropolyacid over the carbon cathode and the subsequent reoxidation of the partially reduced heteropolyacid by exposure to the dissolved oxygen in the regenerator are important processes for continuous power generation. Thus, the redox properties of catholytes containing these heteropolyacids were investigated in detail. The substitution quantity of V in the heteropolyacid affected the onset reduction potential as well as the reduction current density, resulting in a difference in cell performance. The chemical composition of heteropolyacid also had a significant impact on the reoxidation property. Among the three compounds, H6PV3Mo9O40 was the most suitable redox mediator. Furthermore, the pH of the catholyte was found to be the crucial factor in determining the reoxidation rate of partially reduced heteropolyacid as well as cell performance.

  1. Polymer Electrolyte Fuel Cells Employing Heteropolyacids as Redox Mediators for Oxygen Reduction Reactions: Pt-Free Cathode Systems.

    PubMed

    Matsui, Toshiaki; Morikawa, Eri; Nakada, Shintaro; Okanishi, Takeou; Muroyama, Hiroki; Hirao, Yoshifumi; Takahashi, Tsuyoshi; Eguchi, Koichi

    2016-07-20

    In this study, the heteropolyacids of H3+xPVxMO12-xO40 (x = 0, 2, and 3) were applied as redox mediators for the oxygen reduction reaction in polymer electrolyte fuel cells, of which the cathode is free from the usage of noble metals such as Pt/C. In this system, the electrochemical reduction of heteropolyacid over the carbon cathode and the subsequent reoxidation of the partially reduced heteropolyacid by exposure to the dissolved oxygen in the regenerator are important processes for continuous power generation. Thus, the redox properties of catholytes containing these heteropolyacids were investigated in detail. The substitution quantity of V in the heteropolyacid affected the onset reduction potential as well as the reduction current density, resulting in a difference in cell performance. The chemical composition of heteropolyacid also had a significant impact on the reoxidation property. Among the three compounds, H6PV3Mo9O40 was the most suitable redox mediator. Furthermore, the pH of the catholyte was found to be the crucial factor in determining the reoxidation rate of partially reduced heteropolyacid as well as cell performance. PMID:27348019

  2. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  3. Drinking water aluminum and bioavailability

    SciTech Connect

    Reiber, S.H.; Kukull, W.; Standish-Lee, P.

    1995-05-01

    This article discusses chemical considerations relative to aluminum uptake in the body and reviews aluminum concentrations, species, and distribution in natural and treated waters. The issues of bioavailability and the likelihood that aluminum in drinking water is more readily assimilated than other forms of aluminum is reviewed and rejected based on issues of solubility and likely chemical transformations that take place in the human gut.

  4. Toward understanding the mechanism underlying the strong adjuvant activity of aluminum salt nanoparticles.

    PubMed

    Ruwona, Tinashe B; Xu, Haiyue; Li, Xu; Taylor, Amber N; Shi, Yan-Chun; Cui, Zhengrong

    2016-06-01

    Aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate are commonly used human vaccine adjuvants. In an effort to improve the adjuvant activity of aluminum salts, we previously showed that the adjuvant activity of aluminum oxyhydroxide nanoparticles is significantly more potent than that of aluminum oxyhydroxide microparticles. The present study was designed to (i) understand the mechanism underlying the potent adjuvant activity of aluminum oxyhydroxide nanoparticles, relative to microparticles, and (ii) to test whether aluminum hydroxyphosphate nanoparticles have a more potent adjuvant activity than aluminum hydroxyphosphate microparticles as well. In human THP-1 myeloid cells, wild-type and NLRP3-deficient, both aluminum oxyhydroxide nanoparticles and microparticles stimulate the secretion of proinflammatory cytokine IL-1β by activating NLRP3 inflammasome, although aluminum oxyhydroxide nanoparticles are more potent than microparticles, likely related to the higher uptake of the nanoparticles by the THP-1 cells than the microparticles. Aluminum hydroxyphosphate nanoparticles also have a more potent adjuvant activity than microparticles in helping a model antigen lysozyme to stimulate specific antibody response, again likely related to their stronger ability to activate the NLRP3 inflammasome. PMID:27155490

  5. Synthesis and Characterization of Cell-Permeable Oligonucleotides Bearing Reduction-Activated Protecting Groups on the Internucleotide Linkages.

    PubMed

    Saneyoshi, Hisao; Iketani, Koichi; Kondo, Kazuhiko; Saneyoshi, Takeo; Okamoto, Itaru; Ono, Akira

    2016-09-21

    Cell-permeable oligodeoxyribonucleotides (ODNs) bearing reduction-activated protecting groups were synthesized as oligonucleotide pro-drugs. Although these oligonucleotides were amenable to solid-phase DNA synthesis and purification, the protecting group on their phosphodiester moiety could be readily cleaved by nitroreductase and NADH. Moreover, these compounds exhibited good nuclease resistance against 3'-exonuclease and endonuclease and good stability in human serum. Fluorescein-labeled ODNs modified with reduction-activated protecting groups showed better cellular uptake compared with that of naked ODNs. PMID:27598574

  6. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  7. Reduction of TIP30 in esophageal squamous cell carcinoma cells involves promoter methylation and microRNA-10b

    SciTech Connect

    Dong, Wenjie; Shen, Ruizhe; Cheng, Shidan

    2014-10-31

    Highlights: • TIP30 expression is frequently suppressed in ESCC. • TIP30 was hypermethylated in ESCC. • Reduction of TIP30 was significantly correlated with LN metastasis. • miR-10b is a direct regulator of TIP30. - Abstract: TIP30 is a putative tumor suppressor that can promote apoptosis and inhibit angiogenesis. However, the role of TIP30 in esophageal squamous cell carcinoma (ESCC) biology has not been investigated. Immunohistochemistry was used to investigate the expression of TIP30 in 70 ESCC. Hypermethylation of TIP30 was evaluated by the methylation specific PCR (MSP) method in ESCC (tumor and paired adjacent non-tumor tissues). Lost expression of TIP30 was observed in 50 of 70 (71.4%) ESCC. 61.4% (43 of 70) of primary tumors analyzed displayed TIP30 hypermethylation, indicating that this aberrant characteristic is common in ESCC. Moreover, a statistically significant inverse association was found between TIP30 methylation status and expression of the TIP30 protein in tumor tissues (p = 0.001). We also found that microRNA-10b (miR-10b) targets a homologous DNA region in the 3′untranslated region of the TIP30 gene and represses its expression at the transcriptional level. Reporter assay with 3′UTR of TIP30 cloned downstream of the luciferase gene showed reduced luciferase activity in the presence of miR-10b, providing strong evidence that miR-10b is a direct regulator of TIP30. These results suggest that TIP30 expression is regulated by promoter methylation and miR-10b in ESCC.

  8. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  9. Aluminum Corrosion and Turbidity

    SciTech Connect

    Longtin, F.B.

    2003-03-10

    Aluminum corrosion and turbidity formation in reactors correlate with fuel sheath temperature. To further substantiate this correlation, discharged fuel elements from R-3, P-2 and K-2 cycles were examined for extent of corrosion and evidence of breaking off of the oxide film. This report discusses this study.

  10. Aluminum-ferricyanide battery

    SciTech Connect

    Marsh, C.; Licht, S.L.

    1993-11-29

    A battery capable of producing high current densities with high charge capacity is described which includes an aluminum anode, a ferricyanide electrolyte and a second electrode capable of reducing ferricyanide electrolyte which is either dissolved in an alkaline solution or alkaline seawater solution. The performance of the battery is enhanced by high temperature and high electrolyte flow rates.

  11. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  12. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  13. Aluminum Foam-Phase Change Material Composites as Heat Exchangers

    SciTech Connect

    Hong, Sung-tae; Herling, Darrell R.

    2007-04-07

    The effects of geometric parameters of open-cell aluminum foams on the performance of aluminum foam-phase change material (PCM) composites as heat sinks are investigated by experiments. Three types of open-cell aluminum 6061 foams with similar relative densities and different cell sizes are used. Paraffin is selected as the PCM due to its excellent thermal stability and ease of handling. The experimental results show that the performance of the heat sink is significantly affected by the surface area density of the aluminum foam. In general, as the surface area density of the foam increases, the performance of the heat sink is improved regardless of the current phase of the PCM.

  14. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L.

    PubMed Central

    Panda, Brahma B.; Achary, V. Mohan M.

    2014-01-01

    In the current study, we studied the role of signal transduction in aluminum (Al3+)-induced DNA damage and adaptive response in root cells of Allium cepa L. The root cells in planta were treated with Al3+ (800 μM) for 3 h without or with 2 h pre-treatment of inhibitors of mitogen-activated protein kinase (MAPK), and protein phosphatase. Also, root cells in planta were conditioned with Al3+ (10 μM) for 2 h and then subjected to genotoxic challenge of ethyl methane sulfonate (EMS; 5 mM) for 3 h without or with the pre-treatment of the aforementioned inhibitors as well as the inhibitors of translation, transcription, DNA replication and repair. At the end of treatments, roots cells were assayed for cell death and/or DNA damage. The results revealed that Al3+ (800 μM)-induced significant DNA damage and cell death. On the other hand, conditioning with low dose of Al3+ induced adaptive response conferring protection of root cells from genotoxic stress caused by EMS-challenge. Pre-treatment of roots cells with the chosen inhibitors prior to Al3+-conditioning prevented or reduced the adaptive response to EMS genotoxicity. The results of this study suggested the involvement of MAPK and DNA repair network underlying Al-induced DNA damage and adaptive response to genotoxic stress in root cells of A. cepa. PMID:24926302

  15. Aluminum Elicits Exocellular Phosphatidylethanolamine Production in Pseudomonas fluorescens

    PubMed Central

    Appanna, V. D.; Pierre, M. S.

    1996-01-01

    Pseudomonas fluorescens ATCC 13525 was found to grow in a minimal mineral medium supplemented with millimolar amounts of aluminum, a known environmental toxicant. During the stationary phase of growth, the trivalent metal was localized in a phosphatidylethanolamine (PE)-containing residue. The concentration of PE in pellets ranged from 1.7 to 13.9 mg ml of culture(sup-1) in media supplemented with 1 to 30 mM aluminum. Although the gelatinous residue was observed during the stationary phase of growth, ultracentrifugation and dialysis experiments revealed that PE was produced from earlier stages of incubation and was associated with aluminum. A sharp diminution in the levels of PE and aluminum in the spent fluid was concomitant with the formation of the insoluble deposit. The aluminum content of the soluble cellular fraction increased during growth and reached an optimum of 1.85 mM of test metal at 45 h in cultures with 15 mM aluminum. Further incubation, however, led to a marked decrease in the cellular aluminum content, and during the stationary phase of growth, only trace amounts of the trivalent metal were detected in this fraction. When 45-h cells were incubated in fresh citrate medium, most of the intracellular aluminum was secreted in the spent fluid and citrate was rapidly consumed. Aluminum efflux was also observed in cultures in which d-glucose was substituted for citrate. However, no efflux of this trivalent metal was evident in media devoid of either citrate or d-glucose. Scanning electron microscopic studies and X-ray energy-dispersive analyses of the dialyzed supernatant aided in the visualization of nodule-like aluminum- and phosphorus-rich bodies associated with thread-like carbon-, oxygen-, and phosphorus-containing structures. Transmission electron microscopic and electron energy loss spectroscopic analyses revealed the presence of aluminum within bacteria after 45 h of incubation. Cells harvested after aluminum insolubilization did not shown

  16. Facet-Dependent Catalytic Activity of Platinum Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells

    PubMed Central

    Zhang, Bo; Wang, Dong; Hou, Yu; Yang, Shuang; Yang, Xiao Hua; Zhong, Ju Hua; Liu, Jian; Wang, Hai Feng; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui

    2013-01-01

    Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully. PMID:23670438

  17. Reduction in amounts of mitochondrial DNA in the sperm cells as a mechanism for maternal inheritance in Hordeum vulgare.

    PubMed

    Sodmergen; Zhang, Quan; Zhang, Yingtao; Sakamoto, Wataru; Kuroiwa, Tsuneyoshi

    2002-12-01

    It is known that extranuclear organelle DNA is inherited maternally in the majority of angiosperms. The mechanisms for maternal inheritance have been well studied in plastids but not in mitochondria. In the present study we examined the mitochondrial DNA in the male reproductive cells of Hordeum vulgare L. by immunoelectron microscopy. Our results show that the number of anti-DNA gold particles on sections of sperm cell mitochondria decreased by 97% during pollen development. The reduction occurred rapidly in the generative cells and subsequently in the sperm cells, concomitant with a remarkable reduction in mitochondrial volume. It seems that the copy numbers of mitochondrial DNA were reduced in the male reproductive cells, which may be a possible mechanism by which paternal transmission is inhibited. Unlike mitochondria, plastids are excluded from the generative cells during the first pollen mitosis. These data suggest a mechanism for maternal inheritance of mitochondria in angiosperms and for independent control of inheritance of mitochondria and plastids in H. vulgare.

  18. Mesoporous aluminum phosphite

    SciTech Connect

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-08-15

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S{sup +}I{sup -} surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  19. Aluminum fluoride induces phosphatidylinositol turnover, elevation of cytoplasmic free calcium, and phosphorylation of the T cell antigen receptor in murine T cells

    SciTech Connect

    O'Shea, J.J.; Urdahl, K.B.; Luong, H.T.; Chused, T.M.; Samelson, L.E.; Klausner, R.D.

    1987-11-15

    Antigen activation of murine T lymphocytes leads to phosphorylation of three subunits of the murine T cell antigen receptor. Two kinases are activated in this process: protein kinase C which leads to phosphorylation of the ..gamma.. and, to a lesser extent, the epsilon subunits on serine residues and a tyrosine kinase which phosphorylates the p21 subunit. The authors sought to determine whether treatment of these cells with NaF could simulate any of these antigen-induced events. Indeed NaF treatment resulted in breakdown of polyphosphoinositides and production of phosphoinositols. This treatment also resulted in a rise in cytosolic free Ca/sup 2 +/. EGTA failed to block this rise suggesting that NaF liberated intracellular stores of Ca/sup 2 +/. Finally NaF treatment resulted in phosphorylation of the ..gamma.. and epsilon chains of the T cell receptor indistinguishable from the effects of phorbol esters. The NaF effect was potentiated by addition of AlCl/sub 3/ consistent with the view that the active moiety is AlF/sub 4//sup -/. The AlF/sub 4//sup -/-induced phosphorylations were abolished in cells in which protein kinase C was depleted by prior treatment with phorbol myristate acetate. All of these observations are compatible with the interpretation that the AlF/sub 4//sup -/ phosphorylation is mediated by protein kinase C. Antigen and anti-receptor antibody-induced receptor serine phosphorylation and phophatidylinositol turnover are blocked by raising intracellular levels of cyclic adenosin monophosphate. In contrast, AlF/sub 4//sup -/-induced effects were in sensitive to cyclic adenosine monmonophosphate

  20. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  1. Filtrates and Residues. Galvanic Cells and the Standard Reduction Potential Table.

    ERIC Educational Resources Information Center

    Tanis, David O.

    1990-01-01

    Presented is an activity designed to introduce introductory chemistry students to the standard reduction potential table. Included are lists of equipment and reagents, procedures, sample worksheets, and teaching directions. (CW)

  2. Hydrogen effects on the age hardening behavior of 2024 aluminum

    NASA Technical Reports Server (NTRS)

    Wagner, J. A.; Louthan, M. R., Jr.; Sisson, R. D., Jr.

    1986-01-01

    It has been found that the fatigue crack growth rate in aluminum alloys increases significantly in the presence of moisture. This phenomenon along with a moisture effect observed in another context has been attributed to 'embrittlement' of the aluminum by absorbed hydrogen generated by the reaction of moisture with freshly exposed aluminum. A description is given of a number of age hardening experiments involving 2024 aluminum. These experiments show that a mechanism related to the segregation of absorbed hydrogen to the coherent theta-double-prime interfaces may account for the observed reduction in fatigue life. It is pointed out that this segregation promotes a loss of coherency in the hydrogen rich region at a fatigue crack tip. Subsequently, the loss of coherency causes local softening and reduces fatigue life.

  3. Cost-Effective Consolidation of Fine Aluminum Scrap for Increased Remelting Effieciency

    SciTech Connect

    William Van Geertruyden

    2005-09-22

    The main objective of this research was to develop a new re-melting process for fine or light gauge aluminum scrap products that exhibits dramatic improvements in energy efficiency. Light gauge aluminum scrap in the form of chips, turnings, and borings has historically been underutilized in the aluminum recycling process due to its high surface area to volume ratio resulting in low melt recovery. Laboratory scale consolidation experiments were performed using loose aluminum powder as a modeling material as well as shredded aluminum wire scrap. The processing parameters necessary to create consolidated aluminum material were determined. Additionally, re-melting experiments using consolidated and unconsolidated aluminum powder confirmed the hypothesis that metal recovery using consolidated material will significantly improve by as much as 20%. Based on this research, it is estimated that approximately 495 billion Btu/year can be saved by implementation of this technology in one domestic aluminum rolling plant alone. The energy savings are realized by substituting aluminum scrap for primary aluminum, which requires large amounts of energy to produce. While there will be an initial capital investment, companies will benefit from the reduction of dependence on primary aluminum thus saving considerable costs. Additionally, the technology will allow companies to maintain in-house alloy scrap, rather than purchasing from other vendors and eliminate the need to discard the light gauge scrap to landfills.

  4. JAK inhibition induces silencing of T Helper cytokine secretion and a profound reduction in T regulatory cells.

    PubMed

    Keohane, Clodagh; Kordasti, Shahram; Seidl, Thomas; Perez Abellan, Pilar; Thomas, Nicholas S B; Harrison, Claire N; McLornan, Donal P; Mufti, Ghulam J

    2015-10-01

    CD4(+) T cells maintain cancer surveillance and immune tolerance. Chronic inflammation has been proposed as a driver of clonal evolution in myeloproliferative neoplasms (MPN), suggesting that T cells play an important role in their pathogenesis. Treatment with JAK inhibitors (JAKi) results in improvements in MPN-associated constitutional symptoms as well as reductions in splenomegaly. However, effects of JAKi on T cells in MPN are not well established and the baseline immune signature remains unclear. We investigated the frequency and function of CD4(+) T cell subsets in 50 MPN patients at baseline as well as during treatment with either ruxolitinib or fedratinib in a subset. We show that CD4(+)  CD127(low)  CD25(high)  FOXP3(+) T regulatory cells are reduced in MPN patients compared to healthy controls and that this decrease is even more pronounced following JAKi therapy. Moreover, we show that after 6 months of treatment the number of T helper (Th)-17 cells increased. We also describe a functional 'silencing' of T helper cells both in vivo and in vitro and a blockade of pro-inflammatory cytokines from these cells. This profound effect of JAKi on T cell function may underlay augmented rates of atypical infections that have been reported with use of these drugs.

  5. Time-dependent reduction of structural complexity of the buccal epithelial cell nuclei after treatment with silver nanoparticles.

    PubMed

    Pantic, I; Paunovic, J; Perovic, M; Cattani, C; Pantic, S; Suzic, S; Nesic, D; Basta-Jovanovic, G

    2013-12-01

    Recent studies have suggested that silver nanoparticles (AgNPs) may affect cell DNA structure in in vitro conditions. In this paper, we present the results indicating that AgNPs change nuclear complexity properties in isolated human epithelial buccal cells in a time-dependent manner. Epithelial buccal cells were plated in special tissue culture chamber / slides and were kept at 37°C in an RPMI 1640 cell culture medium supplemented with L-glutamine. The cells were treated with colloidal silver nanoparticles suspended in RPMI 1640 medium at the concentration 15 mg L⁻¹. Digital micrographs of the cell nuclei in a sample of 30 cells were created at five different time steps: before the treatment (controls), immediately after the treatment, as well as 15 , 30 and 60 min after the treatment with AgNPs. For each nuclear structure, values of fractal dimension, lacunarity, circularity, as well as parameters of grey level co-occurrence matrix (GLCM) texture, were determined. The results indicate time-dependent reduction of structural complexity in the cell nuclei after the contact with AgNPs. These findings further suggest that AgNPs, at concentrations present in today's over-the-counter drug products, might have significant effects on the cell genetic material.

  6. Aluminum involvement in the progression of Alzheimer's disease.

    PubMed

    Walton, J R

    2013-01-01

    The neuroanatomic specificity with which Alzheimer's disease (AD) progresses could provide clues to AD etiopathology. Magnetic resonance imaging studies of AD clinical progression have confirmed general conclusions from earlier studies of AD neuropathological progression wherein neurofibrillary tangle pathology was observed to spread along a well-defined sequence of corticocortical and corticosubcortical connections, preferentially affecting certain cell types, while sparing others. Identical and non-identical twin studies have consistently shown AD has mixed (environmental and genetic) etiopathogenesis. The decades-long prodromal phase over which AD develops suggests slow but progressive accumulation of a toxic or infective agent over time. Major environmental candidates are reviewed to assess which best fits the profile of an agent that slowly accrues in susceptible cell types of AD-vulnerable brain regions to toxic levels by old age, giving rise to AD neuropathology without rapid neuronal lysis. Chronic aluminum neurotoxicity best matches this profile. Many humans routinely ingest aluminum salts as additives contained in processed foods and alum-treated drinking water. The physical properties of aluminum and ferric iron ions are similar, allowing aluminum to use mechanisms evolved for iron to enter vulnerable neurons involved in AD progression, accumulate in those neurons, and cause neurofibrillary damage. The genetic component of AD etiopathogenesis apparently involves a susceptibility gene, yet to be identified, that increases aluminum absorption because AD and Down syndrome patients have higher than normal plasma, and brain, aluminum levels. This review describes evidence for aluminum involvement in AD neuropathology and the clinical progression of sporadic AD.

  7. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    NASA Astrophysics Data System (ADS)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  8. A Diguanylate Cyclase Acts as a Cell Division Inhibitor in a Two-Step Response to Reductive and Envelope Stresses

    PubMed Central

    Kim, Hyo Kyung

    2016-01-01

    ABSTRACT Cell division arrest is a universal checkpoint in response to environmental assaults that generate cellular stress. In bacteria, the cyclic di-GMP (c-di-GMP) signaling network is one of several signal transduction systems that regulate key processes in response to extra-/intracellular stimuli. Here, we find that the diguanylate cyclase YfiN acts as a bifunctional protein that produces c-di-GMP in response to reductive stress and then dynamically relocates to the division site to arrest cell division in response to envelope stress in Escherichia coli. YfiN localizes to the Z ring by interacting with early division proteins and stalls cell division by preventing the initiation of septal peptidoglycan synthesis. These studies reveal a new role for a diguanylate cyclase in responding to environmental change, as well as a novel mechanism for arresting cell division. PMID:27507823

  9. Reduction in vitro of red cell glutathione reproduces defects of cellular sodium transport seen in oedematous malnutrition.

    PubMed

    Forrester, T; Golden, M; Brand, S; Swales, J

    1990-05-01

    Red cells in oedematous malnutrition (kwashiorkor) have an increased sodium content, 'leakiness' to sodium and enhanced sodium pumping. In non-oedematous malnutrition (marasmus) there is a reduction in the sodium pump activity. The explanation has hitherto been unknown but the glutathione content of red cells is low in kwashiorkor and normal in marasmus. We artificially lowered the glutathione content of normal red cells to values characteristic of mild oedematous malnutrition, using the enzyme inhibitors bischloronitrosourea (BCNU) and buthionine sulfoximine (BSOX). After preincubation, the cells were washed to remove the inhibitors and oxidized glutathione. Cellular content of sodium and potassium, and 86Rb influx were then measured. The reduction in glutathione reproduced the abnormalities of sodium content and flux observed in kwashiorkor. We suggest that oxidant stress in kwashiorkor, by reducing cellular glutathione, may affect cell membrane electrolyte transport. This may act through alterations in membrane sulfhydryl groups. Glutathione depletion may therefore play an important role in the clinical picture and natural history of oedematous malnutrition and may have relevance to other conditions where oxidant stress occurs.

  10. Synergistic action of auxin and ethylene on root elongation inhibition is caused by a reduction of epidermal cell length

    PubMed Central

    Alarcón, M Victoria; Lloret, Pedro G; Salguero, Julio

    2014-01-01

    Auxin and ethylene have been largely reported to reduce root elongation in maize primary root. However the effects of auxin are greater than those caused by ethylene. Although auxin stimulates ethylene biosynthesis through the specific increase of ACC synthase, the auxin inhibitory effect on root elongation is not mediated by the auxin-induced increase of ethylene production. Recently it has been demonstrated that root inhibition by the application of the synthetic auxin NAA (1-naphtalenacetic acid) is increased if combined with the ethylene precursor ACC (1-aminocyclopropane-1-carboxilic acid) when both compounds are applied at very low concentrations. Root elongation is basically the result of two processes: a) cell divisions in the meristem where meristematic cells continuously generate new cells and b) subsequently polarized growth by elongation along the root axis as cells leave the meristem and enter the root elongation zone. Our results indicate that exogenous auxin reduced both root elongation and epidermal cell length. In a different way, ethylene at very low concentrations only inhibited root elongation without affecting significantly epidermal cell length. However, these concentrations of ethylene increased the inhibitory effect of auxin on root elongation and cell length. Consequently the results support the hypothesis that ethylene acts synergistically with auxin in the regulation of root elongation and that inhibition by both hormones is due, at least partially, to the reduction of cell length in the epidermal layer. PMID:24598313

  11. Synergistic action of auxin and ethylene on root elongation inhibition is caused by a reduction of epidermal cell length.

    PubMed

    Alarcón, M Victoria; Lloret, Pedro G; Salguero, Julio

    2014-01-01

    Auxin and ethylene have been largely reported to reduce root elongation in maize primary root. However the effects of auxin are greater than those caused by ethylene. Although auxin stimulates ethylene biosynthesis through the specific increase of ACC synthase, the auxin inhibitory effect on root elongation is not mediated by the auxin-induced increase of ethylene production. Recently it has been demonstrated that root inhibition by the application of the synthetic auxin NAA (1-naphtalenacetic acid) is increased if combined with the ethylene precursor ACC (1-aminocyclopropane-1-carboxilic acid) when both compounds are applied at very low concentrations.   Root elongation is basically the result of two processes: a) cell divisions in the meristem where meristematic cells continuously generate new cells and b) subsequently polarized growth by elongation along the root axis as cells leave the meristem and enter the root elongation zone. Our results indicate that exogenous auxin reduced both root elongation and epidermal cell length. In a different way, ethylene at very low concentrations only inhibited root elongation without affecting significantly epidermal cell length. However, these concentrations of ethylene increased the inhibitory effect of auxin on root elongation and cell length. Consequently the results support the hypothesis that ethylene acts synergistically with auxin in the regulation of root elongation and that inhibition by both hormones is due, at least partially, to the reduction of cell length in the epidermal layer.

  12. PFC Emissions from Detected Versus Nondetected Anode Effects in the Aluminum Industry

    NASA Astrophysics Data System (ADS)

    Wong, David S.; Fraser, Paul; Lavoie, Pascal; Kim, Jooil

    2015-02-01

    Perfluorinated carbon compounds (PFCs) CF4 and C2F6 are potent greenhouse gases that are generated in aluminum reduction cells during events known as anode effects (AEs). Since the 1990s, the aluminum industry has made considerable progress in reducing PFCs from conventionally defined and detected AEs. However in recent years, the industry has noted the presence of unaccounted PFCs that are generated outside the conventional AE definition. Two additional AE categories have been proposed, namely low-voltage, propagating AEs (LVP-AEs) and nonpropagating AEs (NP-AEs) that relate to continuous, background levels of PFC emissions. These unaccounted PFC phenomena may help explain the recent discrepancy between industry accounting and atmospheric measurements of global PFC emissions. Estimates from AGAGE, a global network of atmospheric observatories, suggest as much as 50% underaccounting of PFCs by the aluminum industry in the 2006-2010 period. The following work reviews this discrepancy and the potential role played by LVP-AEs and NP-AEs.

  13. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    SciTech Connect

    Petrovic, John; Thomas, George

    2011-06-01

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the production of hydrogen for on-board hydrogen-powered vehicle applications. Although the concept of reacting aluminum metal with water to produce hydrogen is not new, there have been a number of recent claims that such aluminum-water reactions might be employed to power fuel cell devices for portable applications such as emergency generators and laptop computers, and might even be considered for possible use as the hydrogen source for fuel cell-powered vehicles.

  14. Improved cryogenic aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Vukobratovich, Daniel; Don, Ken; Sumner, Richard E.

    1998-09-01

    Optical surface deformation of metal mirrors used at cryogenic temperatures is reduced through the use of a new process of plating amorphous aluminum on aluminum. The AlumiPlateTM process (produced by AlumiPlate, Inc. in Minneapolis, MN) plates a layer of 99.9+% high purity aluminum about 125 micrometers thick atop the substrate. Very good surface finishes are produced by direct diamond turning of the plating, with some samples below 40 angstroms RMS. Optical testing of a 175-mm diameter, 550-mm optical radius of curvature 6061-T651/AlumiPlateTM aluminum sphere was performed at 65 K to determine cryogenic optical surface figure stability. In five cycles from 300 to 65 K, an average optical surface change of 0.047 wave RMS (1 wave equals 633 nm) was observed. A total optical figure change of 0.03 wave RMS at 65 K was observed from the first to last cycle. The cause of this relatively small long-term change is not yet determined. The test mirror is bi-concave, with a semi- kinematic toroidal mount, and is machined from the axis of a billet. An `uphill quench' heat treatment consisting of five cycles from liquid nitrogen to boiling water temperatures is used to minimize residual stress in the test mirror. Initial diamond turning of the mirror by the Optical Filter Corp., Keene, NH, produced a 300 K unmounted optical surface figure of 0.380 wave peak-to-valley and 0.059 wave RMS. A second effort at diamond turning by II-VI, Inc., Saxonburg, PA produced a 300 K optical figure of 0.443 wave peak-to-valley and 0.066 wave RMS, with a surface roughness varying from 29 to 42 angstroms.

  15. Reduction of Nup107 attenuates the growth factor signaling in the senescent cells

    SciTech Connect

    Kim, Sung Young; Kang, Hyun Tae; Choi, Hae Ri; Park, Sang Chul

    2010-10-08

    Research highlights: {yields} Decreased expression of Nup107 in aged cells and organs. {yields} Depletion of Nup107 results in impaired nuclear translocation of p-ERK. {yields} Depletion of Nup107 affects downstream effectors of ERK signaling. {yields} Depletion of Nup107 inhibits cell proliferation of oligodendroglioma cells. -- Abstract: Hypo-responsiveness to growth factors is a fundamental feature of cellular senescence. In this study, we found markedly decreased level of Nup107, a key scaffold protein in nuclear pore complex assembly, in senescent human diploid fibroblasts as well as in organs of aged mice. Depletion of Nup107 by specific siRNA in young human diploid fibroblasts prevented the effective nuclear translocation of phosphorylated extracellular signal-regulated kinase (ERK) following epidermal growth factor (EGF) stimulation, and decreased the expression of c-Fos in consequence. The disturbances in ERK signaling in Nup107 depleted cells closely mirror the similar changes in senescent cells. Knockdown of Nup107 in anaplastic oligodendroglioma cells caused cell death, rather than growth retardation, indicating a greater sensitivity to Nup107 depletion in cancer cells than in normal cells. These findings support the notion that Nup107 may contribute significantly to the regulation of cell fate in aged and transformed cells by modulating nuclear trafficking of signal molecules.

  16. Shrinkage of experimental benign prostatic hyperplasia and reduction of prostatic cell volume by a gastrin-releasing peptide antagonist

    PubMed Central

    Rick, Ferenc G.; Abi-Chaker, Andrew; Szalontay, Luca; Perez, Roberto; Jaszberenyi, Miklos; Jayakumar, Arumugam R.; Shamaladevi, Nagarajarao; Szepeshazi, Karoly; Vidaurre, Irving; Halmos, Gabor; Krishan, Awtar; Block, Norman L.; Schally, Andrew V.

    2013-01-01

    Gastrin releasing-peptide (GRP) is a potent growth factor in many malignancies. Benign prostatic hyperplasia (BPH) is a progressive age-related proliferation of glandular and stromal tissues; various growth factors and inflammatory processes are involved in its pathogenesis. We have demonstrated that potent antagonists of GRP inhibit growth of experimental human tumors including prostate cancer, but their effect on models of BPH has not been studied. Here, we evaluated the effects of GRP antagonist RC-3940-II on viability and cell volume of BPH-1 human prostate epithelial cells and WPMY-1 prostate stromal cells in vitro, and in testosterone-induced BPH in Wistar rats in vivo. RC-3940-II inhibited the proliferation of BPH-1 and WPMY-1 cells in a dose-dependent manner and reduced prostatic cell volume in vitro. Shrinkage of prostates was observed after 6 wk of treatment with RC-3940-II: a 15.9% decline with 25 μg/d; and a 18.4% reduction with 50 μg/d (P < 0.05 for all). Significant reduction in levels of proliferating cell nuclear antigen, NF-κβ/p50, cyclooxygenase-2, and androgen receptor was also seen. Analysis of transcript levels of genes related to growth, inflammatory processes, and signal transduction showed significant changes in the expression of more than 90 genes (P < 0.05). In conclusion, GRP antagonists reduce volume of human prostatic cells and lower prostate weight in experimental BPH through direct inhibitory effects on prostatic GRP receptors. GRP antagonists should be considered for further development as therapy for BPH. PMID:23359692

  17. Age-associated reduction of the count and functional activity of stromal precursor cells can be caused by both true reduction (exhaustion) of cell pool and regulatory effects of the organism.

    PubMed

    Gorskaya, Yu F; Danilova, T A; Nesterenko, V G

    2011-06-01

    The study was carried out on CBA mice using the method of heterotopic transplantation. A fragment of the femoral bone marrow (1/2) or spleen (1/5 of the organ) was transplanted under the renal capsule of a recipient. The following donor-recipient cross-transplantation variants were studied: young-young (Y-Y), young-old (Y-O), old-old (O-O), and old-young (O-Y). Cell suspensions were prepared from 2-month transplants inoculated in monolayer cultures and the cloning efficiency (ECF-F) of stromal precursor cells (CFC-F) was evaluated. The bone marrow transplant ECF-F and the count of CFC-F in the O-O group were 8-fold lower than in the Y-Y group. In the O-Y group, ECF-F was 3-fold higher than in the O-O group, but by 2.5 times lower than in the Y-Y group. ECF-F in Y-O group was 2-fold lower than in Y-Y group. The ECF-F and CFC-F count in spleen transplants in the O-O group were 4- and 6-fold lower, respectively, than in Y-Y group. However, in O-Y group ECF-F was 7-fold higher than in O-O group and higher than even in Y-Y group. The weight of induced ectopic bone tissue after transplantation of the osteoinductor (fragments of the allogenic urinary bladder mucosa) was 2-fold lower in the O-O vs. Y-Y group. However, comparison of the ectopic bone tissue weights in different experimental groups showed that osteoinductor activity of the bladder epithelium did not decrease, but increased 3-fold with age (O-Y:Y-Y). A 5-fold reduction of this proportion in groups where the osteoinductor was transplanted from old donors to old and young recipients (O-Y:O-O) could be attributed to age-specific reduction of the count of inducible osteogenic precursor cells (IOPC). The data in general suggest that age-specific reduction of the stromal precursor count and functional activity could be caused by the true reduction (exhaustion) of cell pool (bone marrow CFC-F; presumably, IOPC) and by the regulatory effects of the organism (bone marrow and splenic CFC-F, IOPC). These data seem to be

  18. Future materials requirements for the high-energy-intensity production of aluminum

    NASA Astrophysics Data System (ADS)

    Welch, B. J.; Hyland, M. M.; James, B. J.

    2001-02-01

    Like all metallurgical industries, aluminum smelting has been under pressure from two fronts—to give maximum return on investment to the shareholders and to comply with environmental regulations by reducing greenhouse emissions. The smelting process has advanced by improving efficiency and productivity while continuing to seek new ways to extend the cell life. Materials selection (particularly the use of more graphitized cathodic electrodes) has enabled lower energy consumption, while optimization of the process and controlling in a narrow band has enabled increases in productivity and operations at higher current densities. These changes have, in turn, severely stressed the materials used for cell construction, and new problems are emerging that are resulting in a reduction of cell life. The target for aluminum electro-winning has been to develop an oxygen-evolving electrode, rather than one that evolves substantial amounts of carbon dioxide. Such an electrode, when combined with suitable wettable cathode material developments, would reduce operating costs by eliminating the need for frequent electrode change and would enable more productive cell designs and reduce plant size. The materials specifications for developing these are, however, an extreme challenge. Those specifications include minimized corrosion rate of any electrode into the electrolyte, maintaining an electronically conducting oxidized surface that is of low electrical resistance, meeting the metal purity targets, and enabling variable operating current densities. Although the materials specifications can readily be written, the processing and production of the materials is the challenge.

  19. Aluminum doped zinc oxide for organic photovoltaics

    SciTech Connect

    Murdoch, G. B.; Hinds, S.; Sargent, E. H.; Tsang, S. W.; Mordoukhovski, L.; Lu, Z. H.

    2009-05-25

    Aluminum doped zinc oxide (AZO) was grown via magnetron sputtering as a low-cost alternative to indium tin oxide (ITO) for organic photovoltaics (OPVs). Postdeposition ozone treatment resulted in devices with lower series resistance, increased open-circuit voltage, and power conversion efficiency double that of devices fabricated on untreated AZO. Furthermore, cells fabricated using ozone treated AZO and standard ITO displayed comparable performance.

  20. [Skin vessel lesions in aluminum potroom workers].

    PubMed

    Siurin, S A; Nikanov, A N; Shilov, V V

    2012-01-01

    The features of development of the skin vessels lesions in 550 aluminum production workers have been investigated. The high prevalence of these disorders have been revealed in anode-operators and cell-operators, 49, 3 and 26.0% of workers, respectively. The regularity and staging of the development of this abnormity have been established, etiology, pathogenesis and clinical significance of those remain unknown.

  1. Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Huang, Liping; Quan, Xie; Li Puma, Gianluca

    2016-03-01

    The performance of carbon rod (CR), titanium sheet (TS), stainless steel woven mesh (SSM) and copper sheet (CS) cathode materials are investigated in microbial fuel cells (MFCs) for simultaneous electricity generation and Cu(II) reduction, in multiple batch cycle operations. After 12 cycles, the MFC with CR exhibits 55% reduction in the maximum power density and 76% increase in Cu(II) removal. In contrast, the TS and SSM cathodes at cycle 12 show maximum power densities of 1.7 (TS) and 3.4 (SSM) times, and Cu(II) removal of 1.2 (TS) and 1.3 (SSM) times higher than those observed during the first cycle. Diffusional resistance in the TS and SSM cathodes is found to appreciably decrease over time due to the copper deposition. In contrast to CR, TS and SSM, the cathode made with CS is heavily corroded in the first cycle, exhibiting significant reduction in both the maximum power density and Cu(II) removal at cycle 2, after which the performance stabilizes. These results demonstrate that the initial deposition of copper on the cathodes of MFCs is crucial for efficient and continuous Cu(II) reduction and electricity generation over prolonged time. This effect is closely associated with the nature of the cathode material. Among the materials examined, the SSM is the most effective and inexpensive cathode for practical use in MFCs.

  2. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    SciTech Connect

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATP level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig

  3. A New Family of Membrane Electron Transporters and Its Substrates, Including a New Cell Envelope Peroxiredoxin, Reveal a Broadened Reductive Capacity of the Oxidative Bacterial Cell Envelope

    PubMed Central

    Cho, Seung-Hyun; Parsonage, Derek; Thurston, Casey; Dutton, Rachel J.; Poole, Leslie B.; Collet, Jean-Francois; Beckwith, Jon

    2012-01-01

    ABSTRACT The Escherichia coli membrane protein DsbD functions as an electron hub that dispatches electrons received from the cytoplasmic thioredoxin system to periplasmic oxidoreductases involved in protein disulfide isomerization, cytochrome c biogenesis, and sulfenic acid reduction. Here, we describe a new class of DsbD proteins, named ScsB, whose members are found in proteobacteria and Chlamydia. ScsB has a domain organization similar to that of DsbD, but its amino-terminal domain differs significantly. In DsbD, this domain directly interacts with substrates to reduce them, which suggests that ScsB acts on a different array of substrates. Using Caulobacter crescentus as a model organism, we searched for the substrates of ScsB. We discovered that ScsB provides electrons to the first peroxide reduction pathway identified in the bacterial cell envelope. The reduction pathway comprises a thioredoxin-like protein, TlpA, and a peroxiredoxin, PprX. We show that PprX is a thiol-dependent peroxidase that efficiently reduces both hydrogen peroxide and organic peroxides. Moreover, we identified two additional proteins that depend on ScsB for reduction, a peroxiredoxin-like protein, PrxL, and a novel protein disulfide isomerase, ScsC. Altogether, our results reveal that the array of proteins involved in reductive pathways in the oxidative cell envelope is significantly broader than was previously thought. Moreover, the identification of a new periplasmic peroxiredoxin indicates that in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm. PMID:22493033

  4. Surface-modified separators prepared with conductive polymer and aluminum fluoride for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shin, Won-Kyung; Yoo, Ji-Hyun; Kim, Dong-Won

    2015-04-01

    Conventional polyethylene (PE) separators are surface-modified by thin coating with conductive poly(3,4-ethylenedioxythiophen)-co-poly(ethylene glycol) (PEDOT-co-PEG) copolymer and aluminum fluoride particles. The surface-modified separators exhibit a significant reduction in thermal shrinkage and an improved electrolyte uptake. By using these separators, the lithium-ion cells composed of carbon negative electrodes and LiNi1/3Co1/3Mn1/3O2 positive electrodes are assembled and their cycling performances are evaluated. The cells assembled with the surface-modified separators demonstrate superior cycling performance compared to cells prepared with pristine PE separator, both at ambient temperatures and at elevated temperature.

  5. Effect of neck geometry of resonance cells on noise reduction efficiency in sound-absorbing structures

    NASA Astrophysics Data System (ADS)

    Pisarev, P. V.; Anoshkin, A. N.; Pan'kov, A. A.

    2016-10-01

    The present work formulates the physical and mathematical models capable to forecast acoustic properties of resonance cells in sound absorbing structures. Distribution of acoustic pressure inside the duct and on sidewall cell was found, loss factor of output acoustic pressure wave was calculated for variety of geometric forms of cell's chamber and neck for monochromatic wave in 100-600Hz frequency range. Analysis of the acoustic pressure fields revealed that cell neck geometry strongly influences on cell resonant frequency and on outlet acoustic pressure loss factor. The effectiveness of the proposed by the authors biconical design of the resonant cell was proved, which increased acoustic radiation at the resonance frequency resulting significant increase of loss ratio of wave acoustic pressure at duct outlet.

  6. Reduction of front-metallization grid shading in concentrator cells through laser micro-grooved cover glass

    SciTech Connect

    García-Linares, Pablo Voarino, Philippe; Besson, Pierre; Baudrit, Mathieu; Dominguez, César; Dellea, Olivier; Fugier, Pascal

    2015-09-28

    Concentrator solar cell front-grid metallizations are designed so that the trade-off between series resistance and shading factor (SF) is optimized for a particular irradiance. High concentrator photovoltaics (CPV) typically requires a metallic electrode pattern that covers up to 10% of the cell surface. The shading effect produced by this front electrode results in a significant reduction in short-circuit current (I{sub SC}) and hence, in a significant efficiency loss. In this work we present a cover glass (originally meant to protect the cell surface) that is laser-grooved with a micrometric pattern that redirects the incident solar light towards interfinger regions and away from the metallic electrodes, where they would be wasted in terms of photovoltaic generation. Quantum efficiency (QE) and current (I)-voltage (V) characterization under concentration validate the proof-of-concept, showing great potential for CPV applications.

  7. Reduction of myoblast differentiation following multiple population doublings in mouse C2 C12 cells: a model to investigate ageing?

    PubMed

    Sharples, Adam P; Al-Shanti, Nasser; Lewis, Mark P; Stewart, Claire E

    2011-12-01

    Ageing skeletal muscle displays declines in size, strength, and functional capacity. Given the acknowledged role that the systemic environment plays in reduced regeneration (Conboy et al. [2005] Nature 433: 760-764), the role of resident satellite cells (termed myoblasts upon activation) is relatively dismissed, where, multiple cellular divisions in-vivo throughout the lifespan could also impact on muscular deterioration. Using a model of multiple population doublings (MPD) in-vitro thus provided a system in which to investigate the direct impact of extensive cell duplications on muscle cell behavior. C(2) C(12) mouse skeletal myoblasts (CON) were used fresh or following 58 population doublings (MPD). As a result of multiple divisions, reduced morphological and biochemical (creatine kinase, CK) differentiation were observed. Furthermore, MPD cells had significantly increased cells in the S and decreased cells in the G1 phases of the cell cycle versus CON, following serum withdrawal. These results suggest continued cycling rather than G1 exit and thus reduced differentiation (myotube atrophy) occurs in MPD muscle cells. These changes were underpinned by significant reductions in transcript expression of: IGF-I and myogenic regulatory factors (myoD and myogenin) together with elevated IGFBP5. Signaling studies showed that decreased differentiation in MPD was associated with decreased phosphorylation of Akt, and with later increased phosphorylation of JNK1/2. Chemical inhibition of JNK1/2 (SP600125) in MPD cells increased IGF-I expression (non-significantly), however, did not enhance differentiation. This study provides a potential model and molecular mechanisms for deterioration in differentiation capacity in skeletal muscle cells as a consequence of multiple population doublings that would potentially contribute to the ageing process. PMID:21826704

  8. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  9. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  10. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  11. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  12. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  13. Computational and genetic reduction of a cell cycle to its simplest, primordial components.

    PubMed

    Murray, Seán M; Panis, Gaël; Fumeaux, Coralie; Viollier, Patrick H; Howard, Martin

    2013-12-01

    What are the minimal requirements to sustain an asymmetric cell cycle? Here we use mathematical modelling and forward genetics to reduce an asymmetric cell cycle to its simplest, primordial components. In the Alphaproteobacterium Caulobacter crescentus, cell cycle progression is believed to be controlled by a cyclical genetic circuit comprising four essential master regulators. Unexpectedly, our in silico modelling predicted that one of these regulators, GcrA, is in fact dispensable. We confirmed this experimentally, finding that ΔgcrA cells are viable, but slow-growing and elongated, with the latter mostly due to an insufficiency of a key cell division protein. Furthermore, suppressor analysis showed that another cell cycle regulator, the methyltransferase CcrM, is similarly dispensable with simultaneous gcrA/ccrM disruption ameliorating the cytokinetic and growth defect of ΔgcrA cells. Within the Alphaproteobacteria, gcrA and ccrM are consistently present or absent together, rather than either gene being present alone, suggesting that gcrA/ccrM constitutes an independent, dispensable genetic module. Together our approaches unveil the essential elements of a primordial asymmetric cell cycle that should help illuminate more complex cell cycles.

  14. Computational and Genetic Reduction of a Cell Cycle to Its Simplest, Primordial Components

    PubMed Central

    Fumeaux, Coralie; Viollier, Patrick H.; Howard, Martin

    2013-01-01

    What are the minimal requirements to sustain an asymmetric cell cycle? Here we use mathematical modelling and forward genetics to reduce an asymmetric cell cycle to its simplest, primordial components. In the Alphaproteobacterium Caulobacter crescentus, cell cycle progression is believed to be controlled by a cyclical genetic circuit comprising four essential master regulators. Unexpectedly, our in silico modelling predicted that one of these regulators, GcrA, is in fact dispensable. We confirmed this experimentally, finding that ΔgcrA cells are viable, but slow-growing and elongated, with the latter mostly due to an insufficiency of a key cell division protein. Furthermore, suppressor analysis showed that another cell cycle regulator, the methyltransferase CcrM, is similarly dispensable with simultaneous gcrA/ccrM disruption ameliorating the cytokinetic and growth defect of ΔgcrA cells. Within the Alphaproteobacteria, gcrA and ccrM are consistently present or absent together, rather than either gene being present alone, suggesting that gcrA/ccrM constitutes an independent, dispensable genetic module. Together our approaches unveil the essential elements of a primordial asymmetric cell cycle that should help illuminate more complex cell cycles. PMID:24415923

  15. The protective effect of a constant magnetic field. [reduction of molecular cell pathology

    NASA Technical Reports Server (NTRS)

    Sosunov, A. V.; Tripuzov, A. N.

    1974-01-01

    The protective effect of a constant magnetic field sharply reduced spontaneous lysis of E. coli cells when subjected to ultraviolet radiation. A protective effect of a CMF was found in a study of tissue cultures of normally growing cells (kidney epithelium) and cancer cells (cells from a cancer of the larynx). The protective effect of a CMF is also seen in a combined exposure of tissue cultures to X-rays and CMF energy (strength of the CMF was 2000 oersteds with a gradient of 500 oersteds/cm). The data obtained are of interest to experimental oncology (development of new methods of treating malignant tumors).

  16. Extensin network formation in Vitis vinifera callus cells is an essential and causal event in rapid and H2O2-induced reduction in primary cell wall hydration

    PubMed Central

    2011-01-01

    Background Extensin deposition is considered important for the correct assembly and biophysical properties of primary cell walls, with consequences to plant resistance to pathogens, tissue morphology, cell adhesion and extension growth. However, evidence for a direct and causal role for the extensin network formation in changes to cell wall properties has been lacking. Results Hydrogen peroxide treatment of grapevine (Vitis vinifera cv. Touriga) callus cell walls was seen to induce a marked reduction in their hydration and thickness. An analysis of matrix proteins demonstrated this occurs with the insolubilisation of an abundant protein, GvP1, which displays a primary structure and post-translational modifications typical of dicotyledon extensins. The hydration of callus cell walls free from saline-soluble proteins did not change in response to H2O2, but fully regained this capacity after addition of extensin-rich saline extracts. To assay the specific contribution of GvP1 cross-linking and other wall matrix proteins to the reduction in hydration, GvP1 levels in cell walls were manipulated in vitro by binding selected fractions of extracellular proteins and their effect on wall hydration during H2O2 incubation assayed. Conclusions This approach allowed us to conclude that a peroxidase-mediated formation of a covalently linked network of GvP1 is essential and causal in the reduction of grapevine callus wall hydration in response to H2O2. Importantly, this approach also indicated that extensin network effects on hydration was only partially irreversible and remained sensitive to changes in matrix charge. We discuss this mechanism and the importance of these changes to primary wall properties in the light of extensin distribution in dicotyledons. PMID:21672244

  17. Quasicrystalline particulate reinforced aluminum composite

    SciTech Connect

    Anderson, I.E.; Biner, S.B.; Sordelet, D.J.; Unal, O.

    1997-07-01

    Particulate reinforced aluminum and aluminum alloy composites are rapidly emerging as new commercial materials for aerospace, automotive, electronic packaging and other high performance applications. However, their low processing ductility and difficulty in recyclability have been the key concern. In this study, two composite systems having the same aluminum alloy matrix, one reinforced with quasicrystals and the other reinforced with the conventional SiC reinforcements were produced with identical processing routes. Their processing characteristics and tensile mechanical properties were compared.

  18. Sustained Immune Complex-Mediated Reduction in CD16 Expression after Vaccination Regulates NK Cell Function

    PubMed Central

    Goodier, Martin R.; Lusa, Chiara; Sherratt, Sam; Rodriguez-Galan, Ana; Behrens, Ron; Riley, Eleanor M.

    2016-01-01

    Cross-linking of FcγRIII (CD16) by immune complexes induces antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells, contributing to control of intracellular pathogens; this pathway can also be targeted for immunotherapy of cancerous or otherwise diseased cells. However, downregulation of CD16 expression on activated NK cells may limit or regulate this response. Here, we report sustained downregulation of CD16 expression on NK cells in vivo after intramuscular (but not intranasal) influenza vaccination. CD16 downregulation persisted for at least 12 weeks after vaccination and was associated with robust enhancement of influenza-specific plasma antibodies after intramuscular (but not intranasal) vaccination. This effect could be emulated in vitro by co-culture of NK cells with influenza antigen and immune serum and, consistent with the sustained effects after vaccination, only very limited recovery of CD16 expression was observed during long-term in vitro culture of immune complex-treated cells. CD16 downregulation was most marked among normally CD16high CD57+ NK cells, irrespective of NKG2C expression, and was strongly positively associated with degranulation (surface CD107a expression). CD16 downregulation was partially reversed by inhibition of ADAM17 matrix metalloprotease, leading to a sustained increase in both CD107a and CD25 (IL-2Rα) expression. Both the degranulation and CD25 responses of CD57+ NK cells were uniquely dependent on trivalent influenza vaccine-specific IgG. These data support a role for CD16 in early activation of NK cells after vaccination and for CD16 downregulation as a means to modulate NK cell responses and maintain immune homeostasis of both antibody and T cell-dependent pathways. PMID:27725819

  19. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline

    PubMed Central

    Chi, Woo; Wu, Eleanor; Morgan, Bruce A.

    2013-01-01

    Although the hair shaft is derived from the progeny of keratinocyte stem cells in the follicular epithelium, the growth and differentiation of follicular keratinocytes is guided by a specialized mesenchymal population, the dermal papilla (DP), that is embedded in the hair bulb. Here we show that the number of DP cells in the follicle correlates with the size and shape of the hair produced in the mouse pelage. The same stem cell pool gives rise to hairs of different sizes or types in successive hair cycles, and this shift is accompanied by a corresponding change in DP cell number. Using a mouse model that allows selective ablation of DP cells in vivo, we show that DP cell number dictates the size and shape of the hair. Furthermore, we confirm the hypothesis that the DP plays a crucial role in activating stem cells to initiate the formation of a new hair shaft. When DP cell number falls below a critical threshold, hair follicles with a normal keratinocyte compartment fail to generate new hairs. However, neighbouring follicles with a few more DP cells can re-enter the growth phase, and those that do exploit an intrinsic mechanism to restore both DP cell number and normal hair growth. These results demonstrate that the mesenchymal niche directs stem and progenitor cell behaviour to initiate regeneration and specify hair morphology. Degeneration of the DP population in mice leads to the types of hair thinning and loss observed during human aging, and the results reported here suggest novel approaches to reversing hair loss. PMID:23487317

  20. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline.

    PubMed

    Chi, Woo; Wu, Eleanor; Morgan, Bruce A

    2013-04-01

    Although the hair shaft is derived from the progeny of keratinocyte stem cells in the follicular epithelium, the growth and differentiation of follicular keratinocytes is guided by a specialized mesenchymal population, the dermal papilla (DP), that is embedded in the hair bulb. Here we show that the number of DP cells in the follicle correlates with the size and shape of the hair produced in the mouse pelage. The same stem cell pool gives rise to hairs of different sizes or types in successive hair cycles, and this shift is accompanied by a corresponding change in DP cell number. Using a mouse model that allows selective ablation of DP cells in vivo, we show that DP cell number dictates the size and shape of the hair. Furthermore, we confirm the hypothesis that the DP plays a crucial role in activating stem cells to initiate the formation of a new hair shaft. When DP cell number falls below a critical threshold, hair follicles with a normal keratinocyte compartment fail to generate new hairs. However, neighbouring follicles with a few more DP cells can re-enter the growth phase, and those that do exploit an intrinsic mechanism to restore both DP cell number and normal hair growth. These results demonstrate that the mesenchymal niche directs stem and progenitor cell behaviour to initiate regeneration and specify hair morphology. Degeneration of the DP population in mice leads to the types of hair thinning and loss observed during human aging, and the results reported here suggest novel approaches to reversing hair loss.

  1. Metabolic adaptation and oxaloacetate homeostasis in P. fluorescens exposed to aluminum toxicity.

    PubMed

    Lemire, Joseph; Kumar, Puja; Mailloux, Ryan; Cossar, Kathyrn; Appanna, Vasu D

    2008-08-01

    Microbial systems are known to elaborate intricate metabolic strategies in an effort to fend the toxic impact of numerous metals. In this study, we show that the exposure of Pseudomonas fluorescens to aluminum (Al) resulted in a metabolic shift aimed at diverting oxaloacetate towards the biogenesis of an aluminophore. This metabolic alteration was characterized by uncoupling of two gluconeogenic enzymes, namely pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK). While PC displayed a sharp increase in activity and expression, PEPCK was severely diminished. Malic enzyme (ME) and NAD kinase (NADK), two enzymes involved in maintaining a reductive environment, were markedly increased in the Al-stressed cells. Hence, Al-exposed Pseudomonas fluorescens evoked a metabolic response aimed at generating oxaloacetate and promoting an intracellular reductive environment.

  2. Angiotensin II attenuates NMDA receptor-mediated neuronal cell death and prevents the associated reduction in Bcl-2 expression.

    PubMed

    Schelman, William R; Andres, Robert; Ferguson, Paul; Orr, Brent; Kang, Evan; Weyhenmeyer, James A

    2004-09-10

    While angiotensin II (Ang II) plays a major role in the regulation of blood pressure, fluid homeostasis and neuroendocrine function, recent studies have also implicated the peptide hormone in cell growth, differentiation and apoptosis. In support of this, we have previously demonstrated that Ang II attenuates N-methyl-D-aspartate (NMDA) receptor signaling [Molec. Brain Res. 48 (1997) 197]. To further examine the modulatory role of Ang II on NMDA receptor function, we investigated the effect of angiotensin receptor (AT) activation on NMDA-mediated cell death and the accompanying decrease in Bcl-2 expression. The viability of differentiated N1E-115 and NG108-15 neuronal cell lines was reduced following exposure to NMDA in a dose-dependent manner. MTT analysis (mitochondrial integrity) revealed a decrease in cell survival of 49.4+/-12.3% in NG108 cells and 79.9+/-6.8% in N1E cells following treatment with 10 mM NMDA for 20 h. Cytotoxicity in N1E cells was inhibited by the noncompetitive NMDA receptor antagonist, MK-801. Further, NMDA receptor-mediated cell death in NG108 cells was attenuated by treatment with Ang II. The Ang II effect was inhibited by both AT1 and AT2 receptor antagonists, losartan and PD123319, respectively, suggesting that both receptor subtypes may play a role in the survival effect of Ang II. Since it has been shown that activation of NMDA receptors alters the expression of Bcl-2 family proteins, Western blot analysis was performed in N1E cells to determine whether Ang II alters the NMDA-induced changes in Bcl-2 expression. A concentration-dependent decrease of intracellular Bcl-2 protein levels was observed following treatment with NMDA, and this reduction was inhibited by MK801. Addition of Ang II suppressed the NMDA receptor-mediated reduction in Bcl-2. The Ang II effect on NMDA-mediated changes in Bcl-2 levels was blocked by PD123319, but was not significantly changed by losartan, suggesting AT2 receptor specificity. Taken together, these

  3. Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of aldo-keto reductase 1C3

    SciTech Connect

    Hofman, Jakub; Malcekova, Beata; Skarka, Adam; Novotna, Eva; Wsol, Vladimir

    2014-08-01

    Pharmacokinetic drug resistance is a serious obstacle that emerges during cancer chemotherapy. In this study, we investigated the possible role of aldo-keto reductase 1C3 (AKR1C3) in the resistance of cancer cells to anthracyclines. First, the reducing activity of AKR1C3 toward anthracyclines was tested using incubations with a purified recombinant enzyme. Furthermore, the intracellular reduction of daunorubicin and idarubicin was examined by employing the transfection of A549, HeLa, MCF7 and HCT 116 cancer cells with an AKR1C3 encoding vector. To investigate the participation of AKR1C3 in anthracycline resistance, we conducted MTT cytotoxicity assays with these cells, and observed that AKR1C3 significantly contributes to the resistance of cancer cells to daunorubicin and idarubicin, whereas this resistance was reversible by the simultaneous administration of 2′-hydroxyflavanone, a specific AKR1C3 inhibitor. In the final part of our work, we tracked the changes in AKR1C3 expression after anthracycline exposure. Interestingly, a reciprocal correlation between the extent of induction and endogenous levels of AKR1C3 was recorded in particular cell lines. Therefore, we suggest that the induction of AKR1C3 following exposure to daunorubicin and idarubicin, which seems to be dependent on endogenous AKR1C3 expression, eventually might potentiate an intrinsic resistance given by the normal expression of AKR1C3. In conclusion, our data suggest a substantial impact of AKR1C3 on the metabolism of daunorubicin and idarubicin, which affects their pharmacokinetic and pharmacodynamic behavior. In addition, we demonstrate that the reduction of daunorubicin and idarubicin, which is catalyzed by AKR1C3, contributes to the resistance of cancer cells to anthracycline treatment. - Highlights: • Metabolism of anthracyclines by AKR1C3 was studied at enzyme and cellular levels. • Anthracycline resistance mediated by AKR1C3 was demonstrated in cancer cells. • Induction of AKR1C3

  4. Aluminum-lithium for aerospace

    SciTech Connect

    Fielding, P.S.; Wolf, G.J.

    1996-10-01

    Aluminum-lithium alloys were developed primarily to reduce the weight of aircraft and aerospace structures. Lithium is the lightest metallic element, and each 1% of lithium added to aluminum reduces alloy density by about 3% and increases modulus by about 5%. Though lithium has a solubility limit of 4.2% in aluminum, the amount of lithium ranges between 1 and 3% in commercial alloys. Aluminum-lithium alloys are most often selected for aerospace components because of their low density, high strength, and high specific modulus. However, other applications now exploit their excellent fatigue resistance and cryogenic toughness.

  5. Mineral of the month: aluminum

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2005-01-01

    Aluminum is the second most abundant metallic element in Earth’s crust after silicon. Even so, it is a comparatively new industrial metal that has been produced in commercial quantities for little more than 100 years. Aluminum is lightweight, ductile, malleable and corrosion resistant, and is a good conductor of heat and electricity. Weighing about one-third as much as steel or copper per unit of volume, aluminum is used more than any other metal except iron. Aluminum can be fabricated into desired forms and shapes by every major metalworking technique to add to its versatility.

  6. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    PubMed

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence. PMID:25700743

  7. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    PubMed

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.

  8. Direct reduction of antigen receptor expression in polyclonal B cell populations developing in vivo results in light chain receptor editing.

    PubMed

    Shen, Shixue; Manser, Tim

    2012-01-01

    Secondary Ab V region gene segment rearrangement, termed receptor editing, is a major mechanism contributing to B lymphocyte self-tolerance. However, the parameters that determine whether a B cell undergoes editing are a current subject of debate. We tested the role that the level of BCR expression plays in the regulation of receptor editing in a polyclonal population of B cells differentiating in vivo. Expression of a short hairpin RNA for κ L chain RNA in B cells resulted in reduction in levels of this RNA and surface BCRs. Strikingly, fully mature and functional B cells that developed in vivo and efficiently expressed the short hairpin RNA predominantly expressed BCRs containing λ light chains. This shift in L chain repertoire was accompanied by inhibition of development, increased Rag gene expression, and increased λ V gene segment-cleavage events at the immature B cell stage. These data demonstrated that reducing the translation of BCRs that are members of the natural repertoire at the immature B cell stage is sufficient to promote editing.

  9. CHROMATE INHIBITION OF THE LOCALIZED CORROSION OF ALUMINUM: MEASUREMENTS OF ELECTROCHEMICAL TRANSIENTS.

    SciTech Connect

    SASAKI,K.; ISAACS,H.S.

    2001-09-02

    We investigated the inhibition by chromate ions of the localized corrosion of aluminum by electrochemical transient measurements. In agreement with other work, the measurements demonstrated that chromate is a cathodic inhibitor for aluminum in open circuit. The reduction of hexavalent chromium to trivalent chromium is assumed to take place on catalyzed sites of the surface. The resulting products inhibit oxygen reduction reactions at these sites, thereby retarding pitting corrosion.

  10. Mathematically combined half-cell reduction potentials of low-molecular-weight thiols as markers of seed ageing.

    PubMed

    Birtić, Simona; Colville, Louise; Pritchard, Hugh W; Pearce, Stephen R; Kranner, Ilse

    2011-09-01

    The half-cell reduction potential of the glutathione disulphide (GSSG)/glutathione (GSH) redox couple appears to correlate with cell viability and has been proposed to be a marker of seed viability and ageing. This study investigated the relationship between seed viability and the individual half-cell reduction potentials (E(i)s) of four low-molecular-weight (LMW) thiols in Lathyrus pratensis seeds subjected to artificial ageing: GSH, cysteine (Cys), cysteinyl-glycine (Cys-Gly) and γ-glutamyl-cysteine (γ-Glu-Cys). The standard redox potential of γ-Glu-Cys was previously unknown and was experimentally determined. The E(i)s were mathematically combined to define a LMW thiol-disulphide based redox environment (E(thiol-disulphide)). Loss of seed viability correlated with a shift in E(thiol-disulphide) towards more positive values, with a LD(50) value of -0.90 ± 0.093 mV M (mean ± SD). The mathematical definition of E(thiol-disulphide) is envisaged as a step towards the definition of the overall cellular redox environment, which will need to include all known redox-couples.

  11. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells.

    PubMed

    Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang

    2012-01-01

    Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm(0.5)Sr(0.5)CoO(3-δ) (SSC) catalyst coating bonded onto the internal surface of a high-porosity La(0.9)Sr(0.1)Ga(0.8)Mg(0.2)O(3-δ) (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm(2) at 650°C and 0.043 Ω cm(2) at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm(-2) at 650°C and 1.46 W cm(-2) at 600°C when operated on humidified hydrogen fuel and air oxidant.

  12. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells

    PubMed Central

    Da Han; Liu, Xuejiao; Zeng, Fanrong; Qian, Jiqin; Wu, Tianzhi; Zhan, Zhongliang

    2012-01-01

    Tremendous efforts to develop high-efficiency reduced-temperature (≤ 600°C) solid oxide fuel cells are motivated by their potentials for reduced materials cost, less engineering challenge, and better performance durability. A key obstacle to such fuel cells arises from sluggish oxygen reduction reaction kinetics on the cathodes. Here we reported that an oxide hybrid, featuring a nanoporous Sm0.5Sr0.5CoO3−δ (SSC) catalyst coating bonded onto the internal surface of a high-porosity La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) backbone, exhibited superior catalytic activity for oxygen reduction reactions and thereby yielded low interfacial resistances in air, e.g., 0.021 Ω cm2 at 650°C and 0.043 Ω cm2 at 600°C. We further demonstrated that such a micro-nano porous hybrid, adopted as the cathode in a thin LSGM electrolyte fuel cell, produced impressive power densities of 2.02 W cm−2 at 650°C and 1.46 W cm−2 at 600°C when operated on humidified hydrogen fuel and air oxidant. PMID:22708057

  13. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio.

    PubMed

    Winston, Ryan J; Dorsey, Jay D; Hunt, William F

    2016-05-15

    Green infrastructure aims to restore watershed hydrologic function by more closely mimicking pre-development groundwater recharge and evapotranspiration (ET). Bioretention has become a popular stormwater control due to its ability to reduce runoff volume through these pathways. Three bioretention cells constructed in low permeability soils in northeast Ohio were monitored for non-winter quantification of inflow, drainage, ET, and exfiltration. The inclusion of an internal water storage (IWS) zone allowed the three cells to reduce runoff by 59%, 42%, and 36% over the monitoring period, in spite of the tight underlying soils. The exfiltration rate and the IWS zone thickness were the primary determinants of volume reduction performance. Post-construction measured drawdown rates were higher than pre-construction soil vertical hydraulic conductivity tests in all cases, due to lateral exfiltration from the IWS zones and ET, which are not typically accounted for in pre-construction soil testing. The minimum rainfall depths required to produce outflow for the three cells were 5.5, 7.4, and 13.8mm. During events with 1-year design rainfall intensities, peak flow reduction varied from 24 to 96%, with the best mitigation during events where peak rainfall rate occurred before the centroid of the rainfall volume, when adequate bowl storage was available to limit overflow. PMID:26906696

  14. Wafer-scale aluminum nano-plasmonics

    NASA Astrophysics Data System (ADS)

    George, Matthew C.; Nielson, Stew; Petrova, Rumyana; Frasier, James; Gardner, Eric

    2014-09-01

    The design, characterization, and optical modeling of aluminum nano-hole arrays are discussed for potential applications in surface plasmon resonance (SPR) sensing, surface-enhanced Raman scattering (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). In addition, recently-commercialized work on narrow-band, cloaked wire grid polarizers composed of nano-stacked metal and dielectric layers patterned over 200 mm diameter wafers for projection display applications is reviewed. The stacked sub-wavelength nanowire grid results in a narrow-band reduction in reflectance by 1-2 orders of magnitude, which can be tuned throughout the visible spectrum for stray light control.

  15. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells.

    PubMed

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24h and then treated with HBCDD+hCG for additional 2h. Results showed that HBCDD caused a sustained reduction in ATP level after 24h of exposure, which persisted after additional 2-hour treatment with HBCDD+hCG. cAMP and androgen accumulations measured after 2h of HBCDD+hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30kDa steroidogenic acute regulatory protein (StAR) after HBCDD+hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. PMID:25447410

  16. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells.

    PubMed

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24h and then treated with HBCDD+hCG for additional 2h. Results showed that HBCDD caused a sustained reduction in ATP level after 24h of exposure, which persisted after additional 2-hour treatment with HBCDD+hCG. cAMP and androgen accumulations measured after 2h of HBCDD+hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30kDa steroidogenic acute regulatory protein (StAR) after HBCDD+hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells.

  17. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  18. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  19. Characterization of ultradispersed aluminum

    SciTech Connect

    Simpson, R.L.; Maienschein, J.L.; Swansiger, R.W.; Garcia, F.; Darling, D.H.

    1994-12-08

    Samples of ultradispersed Al were received, which were produced by electrically exploding Al wires in argon. These samples comprised very small particles that were not significantly oxidized and that were stable in air. Particle morphology were studied with SE, micropycnometry, and gas adsorption surface area. Composition were determined using various techniques, as were thermal stability and reaction exotherms. The inexplicable reports of an Al-Ar compound and of an exothermic reaction were not confirmed. The material is a stable, nonoxidized, small-particle, highly reactive form of aluminum that is of interest in energetic materials formulations.

  20. Aluminum nitride grating couplers.

    PubMed

    Ghosh, Siddhartha; Doerr, Christopher R; Piazza, Gianluca

    2012-06-10

    Grating couplers in sputtered aluminum nitride, a piezoelectric material with low loss in the C band, are demonstrated. Gratings and a waveguide micromachined on a silicon wafer with 600 nm minimum feature size were defined in a single lithography step without partial etching. Silicon dioxide (SiO(2)) was used for cladding layers. Peak coupling efficiency of -6.6 dB and a 1 dB bandwidth of 60 nm have been measured. This demonstration of wire waveguides and wideband grating couplers in a material that also has piezoelectric and elasto-optic properties will enable new functions for integrated photonics and optomechanics.

  1. Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L

    PubMed Central

    2010-01-01

    Background Increased Al concentration causes reduction of mitotic activity, induction of nucleolar alteration, increase of the production of ROS and alteration of several antioxidant enzyme activities in plant cells. Allium cepa is an excellent plant and a useful biomarker for environmental monitoring. Limited information is available about the effects of Al on nucleoli, antioxidant enzyme system, contents of MDA and soluble protein in A. cepa. Therefore, we carried out the investigation in order to better understand the effects of Al on the growth, nucleoli in root tip cells and selected physiological and biochemical characters. Results The results showed that the root growth exposed to 50 μM Al was inhibited significantly. 50 μM Al could induce some particles of argyrophilic proteins scattered in the nuclei and extruded from the nucleoli into the cytoplasm. The nucleolus did not disaggregate normally and still remained its characteristic structure during metaphase. Nucleolar reconstruction was inhibited. 50 μM Al induced high activities of SOD and POD in leaves and roots significantly (P < 0.05) when compared with control, whereas the level of CAT was low significantly (P < 0.05). At 50 μM Al the content of MDA in leaves was high significantly (P < 0.05) at 9th day and in roots increased (P < 0.05) with prolonging the treatment time during 6-12 days. The soluble protein content in leaves treated with 50 μM Al was high significantly (P < 0.05) at 6th day and increased with prolonging the treatment time. Conclusions We suggest that variations in nucleoli and the alterations of antioxidant enzyme activities, MDA and soluble protein contents in Allium cepa can serve as useful biomarkers, which can provide valuable information for monitoring and forecasting effects of exposure to Al in real scenarios conditions. Among the antioxidant enzymes SOD and POD appear to play a key role in the antioxidant defense mechanism under Al toxicity condition. Data from MDA

  2. Study on the Inter-electrode Process of Aluminum Electrolysis

    NASA Astrophysics Data System (ADS)

    Yang, Youjian; Gao, Bingliang; Wang, Zhaowen; Shi, Zhongning; Hu, Xianwei

    2016-02-01

    The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode-cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas-liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm-2 is approximately 50 pct.

  3. Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition

    PubMed Central

    Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody

    2012-01-01

    Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489

  4. Reduction of solar cell efficiency by edge defects across the back-surface-field junction - A developed perimeter model

    NASA Technical Reports Server (NTRS)

    Sah, C. T.; Yamakawa, K. A.; Lutwack, R.

    1982-01-01

    Material imperfections, impurity clusters and fabrication defects across the back-surface-field junction can degrade the performance of high-efficiency solar cells. The degradation from defects appearing on the circumference of a solar cell is analyzed using a two-region developed perimeter device model. The width of the defective perimeter region is characterized by the range or the distance-of-influence of the defective edge and this width is about two diffusion lengths. The defective edge is characterized by a surface recombination velocity. Family of theoretical curves and numerical examples are presented to show that significant reduction of open-circuit voltage can occur in high-efficiency cells which are thin compared with the diffusion length. In one example, the degradation is decreased from 135 mV to 75 mV when the cell size is increased from 10 to 100 times the diffusion length in a thin cell whose thickness is 1% of the diffusion length.

  5. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  6. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, Robert K.; LaCamera, Alfred F.; Troup, R. Lee; Ray, Siba P.; Hosler, Robert B.

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  7. Reduction of meckelin leads to general loss of cilia, ciliary microtubule misalignment and distorted cell surface organization

    PubMed Central

    2014-01-01

    Background Meckelin (MKS3), a conserved protein linked to Meckel Syndrome, assists in the migration of centrioles to the cell surface for ciliogenesis. We explored for additional functions of MKS3p using RNA interference (RNAi) and expression of FLAG epitope tagged protein in the ciliated protozoan Paramecium tetraurelia. This cell has a highly organized cell surface with thousands of cilia and basal bodies that are grouped into one or two basal body units delineated by ridges. The highly systematized nature of the P. tetraurelia cell surface provides a research model of MKS and other ciliopathies where changes in ciliary structure, subcellular organization and overall arrangement of the cell surface can be easily observed. We used cells reduced in IFT88 for comparison, as the involvement of this gene’s product with cilia maintenance and growth is well understood. Results FLAG-MKS3p was found above the plane of the distal basal body in the transition zone. Approximately 95% of those basal bodies observed had staining for FLAG-MKS3. The RNAi phenotype for MKS3 depleted cells included global shortening and loss of cilia. Basal body structure appeared unaffected. On the dorsal surface, the basal bodies and their associated rootlets appeared rotated out of alignment from the normal anterior-posterior rows. Likewise, cortical units were abnormal in shape and out of alignment from normal rows. A GST pull down using the MKS3 coiled-coil domain suggests previously unidentified interacting partners. Conclusions Reduction of MKS3p shows that this protein affects development and maintenance of cilia over the entire cell surface. Reduction of MKS3p is most visible on the dorsal surface. The anterior basal body is attached to and moves along the striated rootlet of the posterior basal body in preparation for duplication. We propose that with reduced MKS3p, this attachment and guidance of the basal body is lost. The basal body veers off course, causing basal body rows to be

  8. Aluminum-air battery for automotive propulsion

    SciTech Connect

    Cooper, J.F.; Behrin, E.

    1980-12-01

    Research on the development of aluminum-air batteries which will be used in energy efficient, economical electric vehicles is reviewed with information on the research strategy, performance characteristics of aluminum-air cells, vehicle design, and the net energy required and energy costs for producing and operating Al-air batteries. The aluminum-air battery is being developed to provide a propulsion source for a general-purpose electric vehicle that has the acceleration, range, and rapid-refueling characteristics of current automobiles. The objective is petroleum conservation in a time frame in which synthetic liquids will enter large scale production. Two parallel development paths are being pursued. These involve hardware developments using model electrodes, and research directed toward cost-effective electrodes. The project is currently directed toward developing rapidly-refuelable single cells. Successful development of battery hardware and electrodes would make possible a general-purpose vehicle with costs and energy consumption similar to advanced ICE vehicles using fuels synthesized from coal, but with the advantages of a broad primary energy base and an emissionless vehicle. (LCL)

  9. Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size.

    PubMed

    Zhou, Yang; Jiang, Youchun; Kang, Y James

    2008-07-01

    Previous studies have shown that dietary copper supplementation reversed heart hypertrophy induced by pressure overload in a mouse model. The present study was undertaken to understand the cellular basis of copper-induced regression of cardiac hypertrophy. Primary cultures of neonatal rat cardiomyocytes were treated with phenylephrine (PE) at a final concentration of 100 microM in cultures for 48 h to induce cellular hypertrophy. The hypertrophied cardiomyocytes were exposed to copper sulfate at a final concentration of 5 microM in cultures for additional 24 h. This copper treatment reduced the size of the hypertrophied cardiomyocytes, as measured by flow cytometry, protein content in cells, cell volume and cardiomyocyte hypertrophy markers including beta-myosin heavy chain protein, skeletal alpha-actin, and atrial natriuretic peptide. Cell cycle analysis and cell sorting of p-histone-3 labeled cardiomyocytes indicated that cell division was not involved in the copper-induced regression of cardiomyocyte hypertrophy. Copper also inhibited PE-induced apoptosis, determined by a TUNEL assay. Because copper stimulates vascular endothelial growth factor (VEGF) production through activation of hypoxia-inducible transcription factor, an anti-VEGF antibody at a final concentration of 2 ng/ml in cultures was used and shown to blunt copper-induced regression of cell hypertrophy. Conversely, VEGF alone at a final concentration of 0.2 microg/ml reversed cell hypertrophy as the same as copper did. This study demonstrates that both copper and VEGF reduce the size of hypertrophied cardiomyocytes, and copper regression of cardiac hypertrophy is VEGF-dependent. PMID:18495151

  10. Nanopore gradients on porous aluminum oxide generated by nonuniform anodization of aluminum.

    PubMed

    Kant, Krishna; Low, Suet P; Marshal, Asif; Shapter, Joseph G; Losic, Dusan

    2010-12-01

    A method for surface engineering of structural gradients with nanopore topography using the self-ordering process based on electrochemical anodization of aluminum is described. A distinct anodization condition with an asymmetrically distributed electric field at the electrolyte/aluminum interface is created by nonparallel arrangement between electrodes (tilted by 45°) in an electrochemical cell. The anodic aluminum oxide (AAO) porous surfaces with ordered nanopore structures with gradual and continuous change of pore diameters from 80 to 300 nm across an area of 0.5-1 cm were fabricated by this anodization using two common electrolytes, oxalic acid (0.3 M) and phosphoric acid (0.3 M). The formation of pore gradients of AAO is explained by asymmetric and gradual distribution of the current density and temperature variation generated on the surface of Al during the anodization process. Optical and wetting gradients of prepared pore structures were confirmed by reflective interferometric spectroscopy and contact angle measurements showing the ability of this method to generate porous surfaces with multifunctional gradients (structural, optical, wetting). The study of influence of pore structures on cell growth using the culture of neuroblastoma cells reveals biological relevance of nanopore gradients and the potential to be applied as the platform for spatially controllable cell growth and cell differentiation.

  11. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.

    PubMed

    Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing

    2016-11-01

    In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions. PMID:27262274

  12. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  13. Nonlinear response of unidirectional boron/aluminum

    NASA Technical Reports Server (NTRS)

    Pindera, M.-J.; Herakovich, C. T.; Becker, W.; Aboudi, J.

    1990-01-01

    Experimental results obtained for unidirectional boron/aluminum subjected to combined loading using off-axis tension, compression and Iosipescu shear specimens are correlated with a nonlinear micromechanics model. It is illustrated that the nonlinear response in the principal material directions is markedly influenced by the different loading modes and different ratios of the applied stress components. The observed nonlinear response under pure and combined loading is discussed in terms of initial yielding, subsequent hardening, stress-interaction effects and unloading-reloading characteristics. The micromechanics model is based on the concept of a repeating unit cell representative of the composite-at-large and employs the unified theory of Bodner and Partom to model the inelastic response of the matrix. It is shown that the employed micromechanics model is sufficiently general to predict the observed nonlinear response of unidirectional boron/aluminum with good accuracy.

  14. The Stability Challenge on the Pathway to Low and Ultra‐Low Platinum Loading for Oxygen Reduction in Fuel Cells

    PubMed Central

    Cherevko, Serhiy

    2015-01-01

    Abstract We report the influence of catalyst loading on rates of platinum degradation in acidic electrolyte at room temperature. A piezoelectric printer is used to deposit spotted arrays of a commercially available catalyst comprised of Pt nanoparticles on a porous carbon support. The kinetically controlled oxygen reduction reaction (ORR) activity at different loadings is measured using an electrochemical scanning flow cell (SFC), and found to be quite stable over the range of loadings studied. This behaviour, however, contrasts sharply with rates of both transient and quasi‐steady‐state platinum dissolution. These are shown using downstream inductively coupled plasma mass spectrometry (ICP‐MS) analytics, to increase as loading becomes lower. This dichotomy between activity and stability has direct implications for the development of improved catalyst materials, as well as for the achievement of current targets for reduced loadings of noble metals for fuel cells and other energy storage devices. PMID:27525211

  15. Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells.

    PubMed

    Werner, Jérémie; Geissbühler, Jonas; Dabirian, Ali; Nicolay, Sylvain; Morales-Masis, Monica; Wolf, Stefaan De; Niesen, Bjoern; Ballif, Christophe

    2016-07-13

    Transition metal oxides (TMOs) are commonly used in a wide spectrum of device applications, thanks to their interesting electronic, photochromic, and electrochromic properties. Their environmental sensitivity, exploited for gas and chemical sensors, is however undesirable for application in optoelectronic devices, where TMOs are used as charge injection or extraction layers. In this work, we first study the coloration of molybdenum and tungsten oxide layers, induced by thermal annealing, Ar plasma exposure, or transparent conducting oxide overlayer deposition, typically used in solar cell fabrication. We then propose a discoloration method based on an oxidizing CO2 plasma treatment, which allows for a complete bleaching of colored TMO films and prevents any subsequent recoloration during following cell processing steps. Then, we show that tungsten oxide is intrinsically more resilient to damage induced by Ar plasma exposure as compared to the commonly used molybdenum oxide. Finally, we show that parasitic absorption in TMO-based transparent electrodes, as used for semitransparent perovskite solar cells, silicon heterojunction solar cells, or perovskite/silicon tandem solar cells, can be drastically reduced by replacing molybdenum oxide with tungsten oxide and by applying a CO2 plasma pretreatment prior to the transparent conductive oxide overlayer deposition. PMID:27338079

  16. Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells.

    PubMed

    Werner, Jérémie; Geissbühler, Jonas; Dabirian, Ali; Nicolay, Sylvain; Morales-Masis, Monica; Wolf, Stefaan De; Niesen, Bjoern; Ballif, Christophe

    2016-07-13

    Transition metal oxides (TMOs) are commonly used in a wide spectrum of device applications, thanks to their interesting electronic, photochromic, and electrochromic properties. Their environmental sensitivity, exploited for gas and chemical sensors, is however undesirable for application in optoelectronic devices, where TMOs are used as charge injection or extraction layers. In this work, we first study the coloration of molybdenum and tungsten oxide layers, induced by thermal annealing, Ar plasma exposure, or transparent conducting oxide overlayer deposition, typically used in solar cell fabrication. We then propose a discoloration method based on an oxidizing CO2 plasma treatment, which allows for a complete bleaching of colored TMO films and prevents any subsequent recoloration during following cell processing steps. Then, we show that tungsten oxide is intrinsically more resilient to damage induced by Ar plasma exposure as compared to the commonly used molybdenum oxide. Finally, we show that parasitic absorption in TMO-based transparent electrodes, as used for semitransparent perovskite solar cells, silicon heterojunction solar cells, or perovskite/silicon tandem solar cells, can be drastically reduced by replacing molybdenum oxide with tungsten oxide and by applying a CO2 plasma pretreatment prior to the transparent conductive oxide overlayer deposition.

  17. The Benefits of Aluminum Windows.

    ERIC Educational Resources Information Center

    Goyal, R. C.

    2002-01-01

    Discusses benefits of aluminum windows for college construction and renovation projects, including that aluminum is the most successfully recycled material, that it meets architectural glass deflection standards, that it has positive thermal energy performance, and that it is a preferred exterior surface. (EV)

  18. Lost-Soap Aluminum Casting.

    ERIC Educational Resources Information Center

    Mihalow, Paula

    1980-01-01

    Lost-wax casting in sterling silver is a costly experience for the average high school student. However, this jewelry process can be learned at no cost if scrap aluminum is used instead of silver, and soap bars are used instead of wax. This lost-soap aluminum casting process is described. (Author/KC)

  19. Primary Aluminum Plants Worldwide - 1998

    USGS Publications Warehouse

    1999-01-01

    The 1990 U.S. Bureau of Mines publication, Primary Aluminum Plants Worldwide, has been updated and is now available. The 1998 USGS edition of Primary Aluminum Plants Worldwide is published in two parts. Part I—Detail contains information on individual primary smelter capacity, location, ownership, sources of energy, and other miscellaneous information. Part II—Summary summarizes the capacity data by country

  20. Aluminum Nanoholes for Optical Biosensing.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-07-09

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.